
1

Deep Learning-based Multivariate Time Series
Classification for Indoor/Outdoor Detection

Stefanos Bakirtzis, Member, IEEE, Kehai Qiu, Student Member, IEEE, Ian Wassell, Marco Fiore, Senior
Member, IEEE and Jie Zhang, Senior Member, IEEE

This is the author’s accepted version of the article. The final version published by IEEE is S. Bakirtzis, K.Qui, I. Wassell, M. Fiore and J. Zhang,
“Deep Learning-based Multivariate Time Series Classification for Indoor/Outdoor Detection” IEEE Internet of Things Journal, vol TBD, pp. TBD, DOI:
10.1109/JIOT.2022.3190555.

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Recently, the topic of indoor outdoor detection
(IOD) has seen its popularity increase, as IOD models can be
leveraged to augment the performance of numerous Internet of
Things and other applications. IOD aims at distinguishing in
an efficient manner whether a user resides in an indoor or an
outdoor environment, by inspecting the cellular phone sensor
recordings. Legacy IOD models attempt to determine a user’s
environment by comparing the sensor measurements to some
threshold values. However, as we also observe in our experiments,
such models exhibit limited scalability, and their accuracy can be
poor. Machine learning (ML)-based IOD models aim at removing
this limitation, by utilizing a large volume of measurements to
train ML algorithms to classify a user’s environment. Yet, in
most of the existing research, the temporal dimension of the
problem is disregarded. In this paper, we propose treating IOD
as a multivariate time series classification (TSC) problem, and we
explore the performance of various deep learning (DL) models.
We demonstrate that a multivariate TSC approach can be used
to monitor a user’s environment, and predict changes in its state,
with greater accuracy compared to conventional approaches
that ignore the feature variation over time. Additionally, we
introduce a new DL model for multivariate TSC, exploiting
the concept of self-attention and atrous spatial pyramid pooling.
The proposed DL multivariate TSC framework exploits only low
power consumption sensors to infer a user’s environment, and it
outperforms state-of-the-art models, yielding a higher accuracy
combined with a smaller computational cost.

Index Terms—indoor outdoor detection, deep learning, time
series classification, self-attention, seamless navigation.

I. INTRODUCTION

EMPOWERED by the major advances in sensor, com-
puting, communication and networking technologies, the

Internet of Things (IoT) has flourished over the last decade
or so [1]. The unprecedented number of mobile and sensing
devices produces an enormous volume of data, which can

This work was supported by European Commission through the Horizon
2020 Framework Programme, H2020-MSCA-ITN-2019, MSCA-ITN-EID,
Grant No. 860239, BANYAN.

Stefanos Bakirtzis, Kehai Qiu and Dr. Ian Wassell are with the Department
of Computer Science and Technology, University of Cambridge, Cambridge,
CB3 0FD, United Kingdom (e-mail: ssb45/kq218/ijw24@cam.ac.uk).

Dr. Marco Fiore is with the IMDEA Networks Institute, Madrid, Spain
(e-mail: marco.fiore@imdea.org).

Professor Jie Zhang is with the Department of Electronic and Electrical
Engineering, University of Sheffield, Sheffield, S10 2TN, United Kingdom
(e-mail: jie.zhang@sheffield.ac.uk).

Stefanos Bakirtzis, Kehai Qiu and Professor Jie Zhang are also with
Ranplan Wireless Network Design, Upper Pendrill Court, Ermine Street
North, Papworth Everard, Cambridge, CB23 3UY, United Kingdom. (e-mails:
stefanos.bakirtzis/kehai.qiu/jie.zhang@ranplanwireless.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier: 10.1109/JIOT.2022.3190555.

be exploited for the development of intelligent interconnected
environments and the design of new smart applications [2].
Among the various IoT applications, location-based services
and context-aware applications have received strong attention
across the research community [3]–[6].

Such applications adapt their behaviour based on contextual
information, such as the user’s profile, their location, and their
surroundings, along with others. Their design and performance
can be enhanced significantly by characterising a user’s envi-
ronment, i.e., whether a user is found in an indoor or in an
outdoor space. Knowledge of a user’s environment has been
recently leveraged to develop healthcare applications [7], [8],
design seamless navigation systems [9]–[11], and augment the
efficiency of wireless network operation [12], [13]. Hence,
a significant effort has been made to develop accurate and
efficient indoor outdoor detection (IOD) models [14]–[20].

Existing IOD models make use of the mobile device sensors
to determine a user’s environment, and they can be separated
into two categories: (i) threshold-based and (ii) machine
learning (ML)-based models. In the first case, the user’s envi-
ronment is determined by comparing measurements from the
cellular phone sensors to some predefined fixed values [14],
[16]. The fixed values are typically determined empirically
through measurement campaigns. In the second case, the
mobile phone sensor measurements are exploited to train ML
algorithms, which learn to infer a user’s environment [15],
[17], [18], [20]. Threshold-based models are lightweight, easy
to implement and interpret, however they lack scalability and
their accuracy can deteriorate significantly in environments
other than those in which the measurement campaigns take
place [15].

Indeed, the idea of determining a user’s environment based
on some fixed threshold values, derived from a limited data
set, is innately constraining and it cannot be compared with
the flexibility of an ML-based IOD model where the weights
are iteratively selected such as to maximize the IOD accuracy.
Thus, ML-based modes are considerably more versatile, but
they require a large and diverse quantity of training data for
their performance to be satisfactory [18]. More importantly,
once trained offline, ML-based models can be employed in
real-time to infer a user’s environment in a computationally
efficient manner, since their predictions are based only on
simple operations between matrices. The fact that the main
computational burden of ML-based models resides in their off-
line training stage, along with their augmented generalizability,
has fostered their wider adoption, and hence they have lately
attracted greater scientific interest [15], [17], [18], [20]–[25].

2

The viability of ML-based IOD models has alredy been proved
for several applications critical for the IoT ecosystem, such as
seamless navigation systems and healthcare services [8], [9].

The preponderance of the current ML-based models treat
IOD as a simple classification problem, categorizing users
either as indoor or outdoor according to the instantaneous
mobile sensor measurements, ignoring the temporal dimension
of the problem [15], [17], [18]. However, a user’s environment
can often be classified more easily based on the sensor reading
variation over time, rather than by only inspecting their instan-
taneous values. For instance, when a user enters a building
it should be expected that the received cellular signal power
will exhibit a rapid fall. Thus, lately there have been attempts
to exploit the temporal nature of the problem, considering
sensor information not only from the current state, but from
previous states as well [19], [20]. In [20], a long short-term
memory (LSTM)-based model is employed to determine a
user’s environment. Hence, instead of classifying user’s en-
vironments based only on the current mobile sensor readings,
the authors also considered measurements from previous time
steps. Although the proposed model yields a high accuracy,
it entails substantial complexity, much of which we prove to
be redundant. This leaves the doors open for further research
on more expedient models, which can demonstrate the same
or higher accuracy in a more computationally efficient way.
Furthermore, it is also necessary to ensure that the IOD models
developed exhibit only a small delay when an environment
transition occurs (e.g., moving from outdoors to indoors).

Apart from ensuring a high accuracy and small transition
detection time, IOD models ought to be power-friendly, keep-
ing the cell phone power consumption to a minimum. A lot of
recent work on ML-based IOD has leveraged signals from the
GPS or the WiFi sensors to determine a user’s environment
[11], [20], [22], [26]. In such cases, constant use of the GPS
sensor or continuous WiFi scanning can provoke rapid battery
drain. Thus, despite the accuracy of these models, the use of
power-hungry sensors can put in jeopardy the efficiency of
the IOD model. Instead, the exploitation of the cellular signal,
which is always recorded by default by the mobile device
operating system, can be considerably advantageous in terms
of an IOD model’s power efficiency. Additional low energy
consumption sensors, such as the accelerometer or the light
sensor readings, can be employed to augment the performance
of the IOD model while preserving a low power consumption.

Hence, striking a balance between high IOD accuracy, fast
environment transition detection, and a high computational
and power efficiency still remains an open problem. Another
significant problem related to the ML-based IOD models
is their interpretability. Threshold-based models are easy to
explain, since their environment decision is based on simple
comparisons between the sensors’ readings and some fixed
values. On the contrary, the complex nature of ML algorithms
makes it practically impossibly to understand the reasoning
behind the predictions made by ML-based IOD models. Con-
sequently, it is infeasible to either identify wrong predictions
or to simplify and improve the power efficiency of the ML
model by eliminating input features that have only a minor

contribution to prediction accuracy.
In this paper we seek to address these challenges. Unlike

previous ML-based models [15], [17], [18], [21], [23]–[25],
we study IOD as a multivariate time series classification
(TSC) problem, investigating the performance of different
deep learning (DL) TSC models. We refrain from using power-
hungry sensors, thus the multivariate time series comprise
readings from sensors that are either always active or consume
only a small amount of power. Additionally, we employ the
concept of self-attention [27] for the first time in the context of
IOD, enabling an increase of IOD accuracy by allowing a DL
sequence model to focus on the most significant parts of the
multivariate sequence. We then introduce a DL framework for
multivariate TSC, consisting of cascaded convolutional blocks,
and an atrous spatial pyramid pooling (ASPP) [28] layer,
followed by a two-layer LSTM using self-attention [27]. Our
results indicate that accounting for the sensor measurement
variation over time can considerably augment the performance
of an IOD model. Finally, we leverage recent research that
helps the interpretability of ML algorithms [29], in order to
evaluate the importance of the various sensors used, and make
our framework more power-friendly.

To summarize, the contributions of this work are:

• We demonstrate that a multivariate TSC approach exhibits
a higher accuracy compared to standard ML-based classi-
fication IOD models, and it also outperforms conventional
threshold-based models.

• We employ an attention mechanism in order to identify
the parts of the time series that contribute the most
towards the characterisation of a user’s environment. We
also use a pre-processing layer, consisting of consec-
utive standard and atrous convolutions, that allows the
initial time series to be transformed and to handle larger
time sequences, without comprising the computational
efficiency of the proposed model. The proposed DL
framework outperforms existing TSC models, in terms
of accuracy and computational efficiency, especially for
large measurement sequences.

• To infer a user’s environment the proposed model builds
only on sensors with low power consumption, such as the
cellular signal and the accelerometer readings. Moreover,
to make the proposed model interpretable, we make use
of the Shapley additive explanations (SHAP) framework
[29]. This allows the most significant features to be
identified and, if necessary, eliminate the features with
the lower contribution, thus further decreasing the power
consumption of our model.

• To make our work reproducible, and allow researchers to
further advance the state-of-the-art in the future, we make
our data available at a public repository [30].

The outline of this paper is as follows. First, in Section
II, we survey the state of the art in IOD, presenting existing
threshold-based and ML-based IOD models. Consequently, in
Section III, we explain how we formulated our multivariate
TSC approach, we briefly discuss some commonly used DL
TSC models, we introduce a novel multivariate DL TSC model
employed for IOD, and we explain the main idea behind the

3

SHAP framework. In section IV, we explore the performance
of the various DL TSC and threshold-based models for IOD,
comparing their accuracy, computational efficiency and how
rapidly they can detect environment transitions. Moreover,
we show how these metrics are affected as the size of the
input multivariate time series increases, i.e., as we consider
larger sequences of measurements for the IOD classification.
Finally, Section VI concludes the paper by outlining its main
contributions.

II. STATE OF THE ART

Indoor outdoor detection models exploit the measurements
from the mobile phone sensors to characterize a user’s en-
vironment. Typical features used include the GPS, the WiFI
or the cellular signal, the ambient light and the magnetic
intensity, and measurements from the inertial sensors. Each
feature exhibits a different behaviour in indoor and outdoor
environments, thus by inspecting their values one can infer
a user’s environment. Specifically, cellular and GPS signals
undergo significant attenuation when they propagate through
construction materials [26], [31]. Light intensity is expected to
be lower inside buildings during daytime, while the opposite
holds during the night [14]. The magnetic field demonstrates
strong fluctuations in the presence of ferromagnetic materials
and electrical devices, which are commonly found in indoor
environments [14]. Finally, inertial sensors can be exploited to
detect whether a user is in motion.

The topic of IOD was first studied in [14], where the authors
used the cellular signal, the ambient light and the magnetic
field intensity to distinguish indoor from outdoor users. The
authors considered two cases: (i) stateless, where the environ-
ment was determined by the instantaneous sensor readings,
and (ii) stateful, where the previous state (indoors, semi-
outdoors or outdoors) was also considered during the current
environment decision-making. In the first case, each feature
was processed separately by a detector, which compared the
measured feature values to a standard threshold value, and
pronounced an environment type along with a confidence level
associated with its decision. The final environment decision
was made by selecting the environment with the highest con-
fidence level. In the second case, a first-order hidden Markov
model was employed to estimate the probability of being
at each state at every time step, given the observed sensor
measurements, the prior state, and the transition probability
between the different states.

Another threshold-based approach was presented in [16],
using as features the cellular and the WiFi signal, the ambi-
ent light intensity and the accelerometer measurements. The
user environment was determined based on four conditional
subsequent comparisons between the measured features and
some fixed-values. First, the accelerometer measurements were
used to determine the state of the user (in-vehicle, walking,
standing), marking high-speed vehicle users as outdoors. If the
user was standing or was in motion, then the cellular signal
was employed for IOD, and in case there was still a high
uncertainty, the final decision was made based on the WiFi
signal strength. However, as mentioned earlier, it is unlikely

that these models will be reliable in environments other than
those in which they were developed [15].

Machine learning-based IOD models don’t suffer from this
limitation, as they can be trained with crowd-sourced data
originating from many different areas. Such an approach was
presented in [15], where IOD was studied as a supervised
and semi-supervised learning problem. The authors considered
five different ML models and explored their IO classification
performance, demonstrating that an ML-based IOD approach
outcompetes conventional threshold-based models. A similar
approach was presented in [17], [18], where data from a mo-
bile network operator was used to carry out IOD. The authors
employed a self-supervising multilayer perceptron (MLP)-
based scheme to classify the users’ environment according
to the measured reference signal received power (RSRP), the
channel quality indicator and the time advance. Although these
works demonstrated a high accuracy, the feature variation and
correlation over time were not considered, which leaves room
for improvement.

The temporal dimension of the problem was exploited in
[20], by integrating DenseNet [32] with a stacked-LSTM
module. The features used were the GPS signal, the ambient
light and the magnetic intensity, the barometric pressure and
the WiFi signal. Initially, each feature was processed through
a 1D DenseNet, and consequently the various feature maps
were concatenated and passed to a 3-layer LSTM followed
by an MLP, which performed the final classification task.
The DenseNet LSTM architecture yielded accurate results,
however, it entailed a substantial computational complexity,
requiring the estimation of up to approximately 280 million
trainable parameters. More importantly, by choosing to asso-
ciate a distinct DenseNet with each sensor feature, the cross-
feature correlation was neglected during the transformation of
the initial input sequence and the extraction of high-level fea-
tures. Additionally, the proposed model was benchmarked only
against threshold-based models, and there was no comparison
with other ML-based or TSC models. Finally, the use of the
GPS signal renders the proposed model inconvenient, since
the majority of the cellular users have their GPS switched off
and, more importantly, GPS is highly power consuming.

III. PROBLEM FORMULATION AND PROPOSED METHOD

A reliable IOD model ought to provide (i) a high IOD
accuracy and (ii) a small environment change detection delay,
between the actual and the predicted time at which an environ-
ment transition takes place. In addition, it is essential to ensure
that there is good trade-off between these two measures and
the complexity of the model. In what follows, we describe the
process followed to structure our IOD problem, we briefly
discuss existing DL models for multivariate TSC, and we
introduce a new multivariate TSC DL model for IOD.

A. Data Collection and Problem Formulation

To study the performance of different DL multivariate TSC
models, a set of eight different features was recorded over a 6-
month period, using a HUAWEI P30 lite and two Redmi Note
9 Android smartphones. Specifically, the features captured are

4

Fig. 1: Example of measurements collected in the city of Cambridge;
the route is shown in blue, while the buildings visited are depicted
as red dots.

(i) the RSRP, (ii) the reference signal received quality (RSRQ),
(iii) the total magnetic and (iv) the ambient light intensity, (v)
the acceleration, (vi) and the sound intensity. Moreover, to
assess the reliability of the ambient light sensor, we use the
readings from (vii) the proximity sensor, indicating whether
the light sensor is blocked by an obstacle, and (viii) we
also include a binary label including whether the recording
was taken during night or daytime. The sampling rate for
all the sensors is set to 1 Hz and a min-max normalization
is applied to the sensor data, that has been cleaned and had
outliers removed. In particular, while inspecting the data we
observed that substantial outliers existed at the top 1% of the
samples distribution, presumably attributed to malfunction of
the recording cellphone sensors. Hence, this data was removed
before applying the min-max normalization.

The data set comprises approximately one million samples
collected in three different countries, Greece, Luxembourg
and the United Kingdom, at different sites including cities,
countryside, villages and sub-urban areas. Moreover, the data
depicts various aspects of the every-day life, such as work,
entertainment (malls, cinemas, cafes, bars, etc.), traveling,
physical exercise, etc. Furthermore, the recordings took place
under various weather conditions such as light and heavy
rain, clear sky, fog etc. An example of measurements taken
in the city of Cambridge is shown in Fig. 1, where the path
followed within the city is depicted in blue and the buildings
visited are marked as red dots. Fig. 2 shows the Pearson

Fig. 2: Pearson correlation between the various sensor features and
the environment type.

correlation coefficient [33], ρ, which indicates the strength
of linear association between the recorded features and the
environment type. Hence, a ρ value close to 0 translates to a
weak correlation between a sensor and user’s environment,
while values close to ±1 suggest a strong correlation. A
positive ρ implies that as the value of one feature increases, so
does the value of the other feature, while the opposite holds for
negative ρ values. For instance, as the strength of the cellular
signal decreases, the IO label increases, i.e., takes values closer
to 1, which implies an indoor environment.

To form a TSC problem, and create the time sequences to
train and test the various DL models, a time window of length
w is slid with a step s over the recorded data. Hence, each
generated training or test sample Xi ∈ IRw×M is a multivariate
time series comprising the values of M different features at w
different time steps. Each sample Xi is associated to a binary
target value, yi, where 1 represents an indoor and 0 an outdoor
environment. Hence, the objective of the multivariate TSC
problem is to determine a user’s environment at the current
time step t, given the variation of the M different features
within the time interval (t− w, t].

B. Deep learning-based time series classification in a nutshell

In the context of DL, multivariate TSC is realized by
applying consecutive non-linear transformations to the input
time series. Assuming k classes, each time series sample, Xi,
is associated to a certain class to form an input-target pair,
and in the output the DL model predicts the probability of Xi

belonging to each class [34]. Eventually, the class with the
highest probability is selected as the actual time series class.
Indoor outdoor detection is a binary time series classification
problem, where without loss of generality we assume that 1
corresponds to indoor and 0 to outdoor environments.

Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), are among the common DL model types
employed for TSC. The basic functionalities executed within
CNNs are convolutional and local or global pooling operations.
The convolutional operation is equivalent to applying a sliding
window filter to the input time sequence, where the filter
weights are estimated such as to minimize a loss function.
Since a filter with a given set of weights can identify a specific
pattern within the input sequence, by using multiple filters it

5

is possible to retrieve various patterns within the same input
sequence. Let wf ×mf be the filter dimensions, where wf is
the filter length and mf is the number of features of the input
sequence. Separate filter weights are estimated for every input
feature sequence, and the elements of the final output sequence
are computed through a dot product between the filter weights
and the input sequence elements, followed by a cross-channel
summation. According to the number of the filters, nf , applied
to the input sequence, the output of the convolutional layer,
known as the feature map, can be a univariate (only one filter is
used, nf = 1) or a multivariate time series (where the number
of output features is equal to nf). Finally, pooling operations
are used to reduce the size of the feature maps and aggregate
information.

A convolutional neural network is a feedforward type neural
network, i.e., the information is directed only from the input
layer towards the output layer. Unlike CNNs, in RNNs the
neurons of each layer are allowed to establish connections with
themselves or with neurons found in previous layers. Hence, a
neuron output does not depend only on the current input, but
on the previous data history as well, rendering RNNs a reliable
sequence modeling tool. The standard RNN model includes a
self-loop at the hidden unit between the input and the output
layer. Thus, the current hidden state of the RNN, ht, is a non-
linear function of the previous time step hidden state, ht−1,
and the current input, xt:

ht = f(xt, ht−1). (1)

The main drawbacks of the standard RNN model is that
it suffers from (i) the vanishing gradient problem, which
can prevent the network from updating, and from (ii) the
exploding gradient problem which can compromise long-term
memory predictions, leading to severe accuracy deterioration.
To eliminate the vanishing gradient problem, and mitigate
the exploding gradient problem, LSTM networks can be
leveraged. In addition to the hidden state, h, which carries
short-term past information, LSTMs also have a cell state, c,
which transfers long-term memory information. As shown in
the orange box in Fig. 3a, the operation of the LSTM cell

is regulated by three gates: the forget, the update and the
output gate. The σ and the tanh notation in Fig. 3a denote
the application of a sigmoid and a tanh activation function,
respectively. The forget gate is responsible for deciding which
part of the cell state will be kept and which part will be
forgotten/zeroed. The update gate defines which cell state
values will be updated and, finally, the output gate determines
the hidden state values that will be forwarded to the next
LSTM cell.

Deep LSTM architectures consist of multiple stacked LSTM
layers, where for two consecutive layers, the hidden states of
the lower layer are used as the input for the upper layer. To
further improve the performance of such architectures, the use
of attention mechanisms has been proposed [27], [35]. In that
case, as shown in Fig. 3a, instead of receiving as an input
the hidden states of the lower layer, the LSTM cells of the
upper layer are fed with a context vector, c̃, which conveys
information about the entire input sequence. Additionally, in
cases where there is a dependence between two consecutive
cell outputs, e.g., in text translation tasks, the output of the
previous time step can be provided as an extra input for the
current LSTM cell. Thus, the current hidden state of the upper
LSTM layer, h′t, is now a non-linear function of the previous
cell hidden state, h′t−1, the previous cell output, yt−1, and the
current step context vector c̃t:

h′t = f(yt−1, h
′
t−1, c̃t) (2)

where yt−1 is estimated by applying a softmax activation
function to h′t−1, and the context vector is estimated as a
weighted sum of the lower layer hidden states [27]:

c̃t =

w∑
j=1

ai,jhj (3)

with the weights ai,j being computed by applying a softmax
function over the respective alignment score ei,j [27]:

ei,j = g(h′t−1, hj) (4)

tanhσ

tanh

𝑐𝑡−1 𝑐𝑡

Concat
enate

ℎ𝑡−1

𝑥𝑡

σ
ℎ𝑡

LSTM cell

LS
TM

 c
el

l

……

ℎ𝑤−1

𝑐𝑤−1𝑐0

ℎ0

𝑐1

ℎ1

𝑥𝑤𝑥1

LS
TM

ce
ll

LSTM
cell

LSTM
cell

……

A�en�on A�en�on

𝑐𝑡−1
′

ℎ𝑡−1
′

𝑐0
′

ℎ0
′

σ

Forget
gate

Update
gate

Output
gate

First Layer

Second Layer

Intermediate
A�en�on Layer

𝑦𝑡𝑦1

LSTM
cell

𝑦𝑡−1

LSTM
cell

A�en�on

𝑐𝑤−1
′

ℎ𝑤−1
′

𝑦𝑤

𝑐1
′

ℎ1
′

ℎ𝑡
ℎ𝑤ℎ1

𝑐𝑡 𝑐𝑤𝑐1

(a) LSTM cell structure and self-attention mechanism between two LSTM layers.

𝑎𝑡 ,𝑡 𝑎𝑡 ,𝑤

(b) Intermediate self-attention layer structure.

Fig. 3: Block 3 of the proposed model.

6

𝑤 ×𝑚
(windows size, features)

Input mul�variate
�me series

Two-layer LSTM
with a�en�on

MLP for IO
classifica�on

1x1 Conv

3x3 Conv
rate 6

3x3 Conv
rate 12

3x3 Conv
rate 18

Image
Pooling

1x1 Conv

Encoder

Atrous Conv

DCNNImage
2

4

8

𝑎𝑡𝑟𝑜𝑢𝑠 𝑐𝑜𝑛𝑣,
𝑤𝑓 = 3, 𝑟 = 2

𝑎𝑡𝑟𝑜𝑢𝑠 𝑐𝑜𝑛𝑣,
𝑤𝑓 = 3, 𝑟 = 3

𝑎𝑡𝑟𝑜𝑢𝑠 𝑐𝑜𝑛𝑣,
𝑤𝑓 = 3, 𝑟 = 4

s𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑣
𝑤𝑓 = 1

1x1Conv

3x3Conv
rate6

3x3Conv
rate12

3x3Conv
rate18

Image
Pooling

1x1Conv

Encoder

AtrousConv

DCNN Image
2

4

8

C
o

n
ca

te
n

at
e

Max-pooling
s𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑣

𝑤𝑓 = 1

Block 1; Repeats 2 �mes to transform
& compress the input tensor

Block 2; ASPP

s𝑡
𝑎
𝑛
𝑑
𝑎
𝑟𝑑
𝑐𝑜
𝑛
𝑣

𝑤
𝑓
=
1

Block 3; Sequence
model

Block 4; MLPs𝑡
𝑎
𝑛
𝑑
𝑎
𝑟𝑑
𝑐𝑜
𝑛
𝑣

𝑤
𝑓
=
3

Fig. 4: Proposed model architecture.

where the alignment model g is parametrized via an MLP,
as proposed in [27]. Figure 3b depicts the aforementioned
procedure, showing the overall structure of a self-attention
layer inserted between two LSTM layers.

C. Proposed Deep Learning Framework

In this subsection we present a new DL framework for
multivariate TSC. As shown in Fig. 4, the proposed model
consists of four different blocks: (i) a standard convolution
with wf = 3 followed by a max-pooling operation, (ii) an
atrous spatial pyramid pooling (ASPP) [28] block, (iii) a two-
layer LSTM module using self-attention [27], and (iv) an MLP
used to carry out the final classification. From now on, we refer
to this model as convolutional atrous spatial pyramid pooling
attention LSTM (CAP-ALSTM). The motivation behind the
use of the first two blocks prior to the LSTM with atten-
tion module, is that instead of processing raw sensor data,
the sequence model receives at its input high level feature
maps, which convey correlations between different features at
different time steps. That is to say that the initial time series is
transformed into a new one that will be easier for the sequence
model to process. More importantly, in the case of a large
window sizes, the initial sequence is compressed, effectively
reducing the high computational cost during training time,
associated with the complicated LSTM structure.

Specifically, the first block is used to identify correlations
between different features of the input tensor at different
time steps, and to compress useful information. The block
is typically repeated 2 times and depending on the window
size, w, the max-pooling operation can be skipped. The initial
number of filters used in the convolutional layer is 32, and it
is increased by a factor of two each time the block is repeated.
The purpose of max-pooling is to ensure that the size of the
output feature map is reduced before it is eventually forwarded
to the stacked LSTM module, allowing the network to process
larger time-sequences without comprising its computational
efficiency. The size of the max-pooling layer is 2, i.e., each
max-pooling operation halves the time sequence length, and in
cases where w is already small we choose to omit the pooling
layer.

The second block was introduced in [28] for image segmen-
tation. However, in this paper we exploit its potential to capture
multi-scale correlations for a TSC problem. In ASPP, multiple
parallel atrous convolutional layers are employed to process
the input feature map and unveil correlations in multiple scales
between the feature map’s elements. The output feature maps

are then concatenated and passed to a standard convolutional
layer with wf = 1, used to fuse the information originating
from the multiple atrous layers. The functionality of an atrous
convolutional layer is similar to that of a standard layer, with
the difference that the convolutional filter weights are dilated.
This means that holes, i.e., zero elements, are placed between
consecutive filter weights. The number of holes is equal to
r−1, where r is a hyperparameter known as the dilation rate.
The use of dilated filters with different dilation rates allows
information to be captured originating from different temporal
scales, and so identify correlations between distant points. As
shown in Fig. 4, the ASPP employed comprises a standard
convolution with wf = 3, and three atrous convolutions with
wf = 3 and a dilation rate r = 2, 3, and 4, respectively. The
number of filters used in these four convolutional layers is
64, while the standard convolutional layer used to fuse the
concatenated feature map has 32 filters.

The feature map coming out of the ASPP is then pro-
cessed by a stacked two-layer LSTM, where a self-attention
mechanism is applied to the information forwarded from the
lower towards the upper LSTM layer [27], as shown in Fig. 3.
The attention mechanism employed between the two LSTM
layers, allows the reconstruction of the time series, enabling
the second layer to focus on the time series parts that are
more relevant to the user environment prediction. Practically,
this is an encoder-decoder architecture where the first layer
encodes the input time series, and the second layer decodes
it, pronouncing an environment type. Finally, the proposed
network is terminated by an MLP with a 32 unit hidden layer
and a single neuron output layer, used to complete the binary
classification task.

D. Interpreting Machine Models with the SHAP framework

Machine learning models have been criticized for their lack
of interpretability, since they are commonly considered as
black boxes. Indeed, the consecutive non-linear operations
applied to the input features make it hard to develop an
intuition between the connection of the inputs and the output
of an ML model. However, recently, a unified framework was
introduced to shed light on the complicated operations that
take place within an ML model [29]. The SHAP framework
attempts to explain the response of an ML model through a set
of linear polynomial functions with binary random variables.
Let u be a polynomial explanation function, then [29]:

7

u(x′) = φo +

M∑
i=1

φix
′
i (5)

where x′ ∈ {0, 1}M are the binary random variables which
are mapped to initial input space through a function v,
x = v(x′), and M is the number of the input features. The
coefficients of the explanation function must be selected such
as u(x′) ≈ f(v(x′)), and for a specific input, x′, they quantify
the contribution of each feature towards the output. Moreover,
the explanation functions u must satisfy a local accuracy, a
missingness and a consistency property [29]. In [29], it was
shown that there is a unique explanation function that satisfies
these three requirements, for which the polynomial coefficients
are equal to the Shapley values [36]:

φi(f, x) =
∑
z′⊂x′

|z′|!(M − |z′| − 1)!

M !
[f(z′)− f(z′\i)] (6)

where z′ ⊂ x′ corresponds to all the possible vectors z′

whose non-zero entries are a subset of the entries of x′. The
notation |·| denotes the number of non-zero entries in a vector,
while the notation z′\i signifies setting z′ = 0 for the i-
th feature, and retaining the rest of the entries. The terms
of the difference in the summation represent the response
of the black box with and without the i-th feature, whose
impact we seek to quantify. By subtracting the two responses,
one can isolate the contribution attributed to feature i. The
difference is also weighted according to the number of non-
zero features included in z′. It should be noted that Shapley
values consider all the possible permutation in x′. Hence, the
SHAP framework does not account only for the sole impact of
a feature, but it also considers how the feature interacts with
the rest of the features to affect the model’s output.

The Shapley values can be estimated using model-agnostic
approximations, such as the Kernel SHAP, or the model-
specific approximations, such as DeepSHAP [29]. A problem
that arises in both cases, is that the calculation of the Shapley
values in (6) entails removing the i-th feature from the input
tensor. Since the input tensor of an ML model assumes a
constant size, it is infeasible to remove entirely an input
feature. Instead, the value of the feature that needs to be
excluded can be replaced by a random value of the same
feature coming from the training data set. By doing so for
all the possible subsets z′, the effect of the feature to be
removed will be eventually sampled out. Consequently the
coefficients are straightforwardly estimated through (6) with
x being sampled from the test set.

IV. RESULTS

In this section, we explore the performance of different IOD
models. To that end, we use 6-fold cross-validation, evaluat-
ing the performance of each IOD model over six different
subsets of our entire data set, each containing approximately
N ≈ 800, 000 samples. As shown in Fig. 5, the first subset
comprises the initial N samples of our data set, while the
rest of the subsets are created by sliding the starting point
of the subset by approximately Ns ≈ 150, 000 samples and

Training Set Val set

Training Set Val set

Training Set Val set

Training Set Val set

…

Training set
Vailda�on set
Unused data

≈ 196,000≈ 590,000 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

Fig. 5: Generation of the validation sub-sets.

considering the following N samples. To avoid information
leakage from future towards past samples in the case of DL
TSC models, all the models are trained using the first 590,000
samples of each subset, whilst their performance is measured
with respect to the remaining samples. All the models are
trained on a Nvidia Quadro RTX 8000 GPU over Tensorflow,
using the Adam optimization algorithm for 250 epochs, with
the initial learning rate set to 0.001, and a batch size equal to
512. Finally, the loss function sought to be optimized is the
binary crossentropy loss function.

A. IOD models considered

In our work, we compare the performance of different IOD
models: ML-based classification models, DL TSC models and
threshold-based models. For the ML-based IOD models, the
feature variation over time is neglected [15], [24], [25]. We
consider two ML architectures that have been used in the past
in the context of IOD [15], [17], [24]. Specifically, we train
(i) an MLP consisting of 5 hidden layers with 1024, 512, 256,
128, and 64 neurons for each hidden layer, respectively, [24],
[25] and (ii) a random forest (RF) classifier with 100 trees
[15]. To avoid overffiting in the MLP a dropout layer, with a
dropout rate equal to 0.2, is placed after each hidden layer.

Additionally, four DL TSC models are explored for the IOD
classification problem: (iii) a DenseNet-LSTM [20], (iv) an
LSTM (v) an LSTM with attention (ALSTM), and (vi) the
CAP-ALSTM model. The DenseNet-LSTM used is similar to
that of [20]. A distinct DenseNet is used to process separately
each input feature and generate higher-level features. Hence,
we use 5 parallel DenseNets receiving as an input the (i)
cellular signal readings, (ii) the magnetic sensor readings, (iii)
the light intensity, the daytime and the proximity indicator,
(iv) the accelerometer readings, and (v) the sound sensor
measurements, respectively. Each DenseNet comprises two
dense blocks connected with an intermediate transition layer.
The dense blocks use standard convolutions with wf = 3,
they assume a compression rate equal to 0.5, and they have
a depth and a growth rate equal to 18 and 12, respectively.
For more information regarding the dense block structure and
functionality we refer the reader to [32]. The feature maps of
the individual DenseNets are concatenated and forwarded to a
three-layer LSTM, followed by an MLP. We preserve the same
number of hidden state units per LSTM cell as in [20], i.e.,
4096, 2048, and 1024. Finally, the MLP hidden layer has 1024
neurons connected to single output neuron which determines
the environment type.

8

The LSTM and ALSTM models consist of two stacked
layers followed by an MLP layer used to carry out the final
classification. For the LSTM the first and the second layers
have 64 and 32 hidden state units, respectively, while the
MLP has 32 neurons. In the ALSTM case, both recurrent
layers have 32 hidden state units and the attention mechanism
described in Section III-B is employed to weight the informa-
tion transferred from the lower to the upper LSTM layer. The
ALSTM practically corresponds to Blocks 3 & 4 of Fig. 4,
i.e., the CAP-ALSTM without the convolutional layers. The
parameters for the convolutional layers of the CAP-ALSTM
model are shown in Fig. 4. Blocks 3 & 4 share the same
parameters as the ALSTM.

Finally, we also consider the performance of two threshold-
based models, the IODetector and the SenseIO [14], [16]. As
discussed in Section II, for IODetector the light, the magnetic
and the cellular signal readings are processed separately by
a detector, which provides an environment type along with a
confidence level associated with its decision. For each detector
we use the same thresholds as those in [14]. For the cellular
detector, whose decision is made base on the signal strength
difference, we only considered the RSRP variation of the
serving base station. For SenseIO, we only use the recordings
of the light and the cellular sensor, since our data set does not
include WiFi readings. Additionally, we do not incorporate the
activity recognition module, since it was implemented through
an external application. The thresholds used are the same as
those in [16].

To evaluate the performance of each model we inspect
their accuracy and their F1-score, in order to account for
unbalances between the two classes. Additionally, we provide
statistics of the delay (mean, median and standard deviation),
d, when there is an environment transition. To explore the
computational efficiency of each model we record the number
of its parameters, its memory requirements, the simulation
time required per prediction, and the training time.

B. Comparison between different models

The classification results for w = 6 and s = 1 are presented
in Table I, while Figs. 6a and 6b show the accuracy and
the delay boxplot, respectively, over the 6-sub sets for each
model. The best performances in Table I are shown in bold
black color, while the worst with dark red. As we can observe,
in terms of accuracy, all the DL TSC models perform better
than the standard classifiers, which suggests that exploiting the
temporal dimension is beneficial for an IOD model. Among

(a) Accuracy boxplot for the ML-based and DL TSC IOD
models.

(b) Delay boxplot for the ML-based and DL TSC IOD models.

Fig. 6: Accuracy and delay boxplot for the ML-based and DL TSC
IOD models. The green dashed line represents the mean value.

the models considered, the CAP-ALSTM demonstrates the
best performance compared to the standard classifiers, having
approximately a 2% better accuracy. More importantly, as we
can see in Fig. 6a, the CAP-ALSTM yields the best upper and
lower accuracy bounds over the 6 validation sets. On the other
hand, the standard classifiers exhibit the worst lower bound,
with the RF accuracy deteriorating to approximately 72%
in the worst case scenario. Additionally, it can be observed
that the use of the attention mechanism between the LSTM
layers can increase the accuracy of the sequence model, and
lead to improved lower and upper quantiles. All the models
yield a high F1 score, indicating that both classes are treated
fairly. However, we note that for the given window value,
the difference in the accuracy and the F1 score between
the various DL TSC models is relatively small. We can

TABLE I: IOD TEST SET PERFORMANCE OF THE ML-BASED AND DL TSC MODELS.

(i) MLP [24], [25] (ii) RF [15], [25] (iii) Dense-
LSTM [32] (iv) LSTM (v) ALSTM (vi) CAP-

ALSTM
Accuracy (%) 86.98 ± 6.50 85.59 ± 8.42 88.05 ± 6.42 88.06 ± 6.05 88.65 ± 5.69 89.36 ± 5.28

F1-score 89.14 ± 5.80 87.75 ± 7.60 89.84 ± 5.56 90.23 ± 5.55 90.33 ± 5.44 90.97 ± 5.06
d (sec) 10.57 ± 23.50 9.63 ± 23.65 18.35 ± 29.71 18.53 ± 27.26 13.60 ± 16.51 14.20 ± 23.12

Median d (sec) 2 2 4.00 5.00 3.00 3.00
Training Time (sec) 312 123 68440 2220 3650 4458

Single Prediction Time (msec) 6.3 7.1 17.1 3.7 4.1 4.9
Required Memory (Mb) 16.4 2.9 500.1 4.5 3.5 5.4

Model Parameters 176K - 146M 32K 17K 74K

9

TABLE II: COMPARISON BETWEEN THE CAP-ALSTM AND
TWO THRESHOLD-BASED MODELS.

CAP-
ALSTM

IODetector
[14]

SenseIO
[16]

Accuracy 89.36 ± 5.28 68.10 ± 8.47 67.2 ± 5.80
F1-score 90.97 ± 5.06 77.7 ± 6.79 77.8 ± 5.00
d (sec) 14.20 ± 23.12 11.6 ± 11.85 19.51 ± 23.37

Median d (sec) 5 9 5

also observe that preprocessing the input time series, i.e.,
models (iii) and (vi), can lead to a higher accuracy than using
raw sensor data (LSTM and ALSTM). For instance, CAP-
ALSTM demonstrates a better lower quartile than ALSTM,
while DenseNet-LSTM exhibits a better higher top quartile
than LSTM.

As shown in Table I and Fig 6b, the environment transitions
are detected by all models on average in less than half a
minute, which can be definitely considered as a tolerable delay.
We can observe that the standard classifiers demonstrate a
smaller average delay than the DL TSC models using LSTMs.
However, the use of the attention mechanism can reduce the
average delay of the LSTM by approximately 5 seconds. From
Fig. 6b, we can observe that there are outliers in the delay
distribution, thus the models yield a mean and a standard
deviation much greater than the median. This suggests that
some environment transitions can be detected easier than
others for all the models.

Finally, a comparison between the CAP-ALSTM and the
two threshold-based models is shown in Table II. Both
threshold-based models yield an accuracy close to 70%, which
is approximately 20% lower than that of CAP-LSTM. Similar
accuracy levels have also been reported in [15] and [20].
Part of the significantly deteriorated accuracy could be due
to the fact that we did not consider the full threshold model
implementation. As mentioned, for SenseIO we do not include
the WiFi detector component, while for the IODetecor we
only consider the cellular signal variation of the serving
base station. We can also observe that the average transition
delay for IODetector is smaller. This can be attributed to
the cellular detector component, which can effectively capture
abrupt RSRP variations when the environment changes.

Regarding the computational efficiency of the DL models,
the DenseNet-LSTM architecture appears to be the most com-
putationally demanding, as it entails three orders of magnitude
more parameters than the other models. Indeed, the model
proposed in [20] associates an individual DenseNet with every
input feature. The DenseNet architecture encompass cascaded
convolutional layers with direct connections emerging from
every layer to all subsequent layers, which results in an
increased computational cost. On top of that, by choosing to
have a separate DenseNet for each feature, the cross-feature
correlation is neglected during the preprocessing of the initial
input time series. Furthermore, the authors in [20] used a
tremendous number of LSTM hidden units, which appears to
be redundant as the same levels of accuracy can be achieved
with substantially more lightweight models.

C. Impact of window size

Consequently, we evaluate the performance of each model
as the window size w increases, i.e., as we take into account
a larger number of the past sensor readings. Four different
windows sizes are considered: 6, 12, 25, and 50 seconds.
In the implementation of the proposed model, we skip the
max-pooling layer for w = 6 and 12, whilst for w = 25
and 50 we use 1 and 2 max-pooling layers, respectively. In
this manner, we can reduce the training computational cost
by preserving sequences with small length in the input of
the ALSTM. Specifically, the input sequence passed to the
ALSTM has a length equal to 12, for w = 25 and 50. For the
DenseNet-LSTM model, we change the number of the LSTM
hidden state units, since we find that those used in [20] are
unnecessarily large, resulting in computationally exhaustive
requirements and overextended training times. Specifically, in
what follows, the concatenated vector from the DenseNets is
fed to a two-layer LSTM, instead of a three-layer, with 64 and
32 hidden state units, respectively. The parameters for the rest
of the models remain the same.

Figures 7a and 7b show the accuracy and the average delay
of each model, respectively. In terms of accuracy, we can see
that proposed model outperforms the other DL TSC models
as the window size increases. In particular, the accuracy is
increased from 93.5% up to approximately 95.3%, which
is almost a 2% accuracy increase. That is attributed to the
use of the ASPP block and the attention mechanism, which

(a) Accuracy for different values of w.

(b) Average environment transition detection delay for
different values of w.

Fig. 7: Accuracy and average delay of the DL TSC models under
consideration, for different values of w.

10

becomes more effective for longer time sequences. When the
dilation rate is comparable to the window size, the number
of valid filter weights is small (i.e., weights multiplied with
valid, non zero-padded, input feature map regions). Thus, as
w increases the convolutional layers of the ASPP with larger
dilation rate become more effective (i.e., applied in larger
non-zero areas), and they are capable of capturing multi-scale
correlation within the input sequence. For w = 12, 25, 50,
the feature map forwarded to ASPP the has a length equal
to 12 due to the max-pooling, however as w increases the
feature map conveys more purposeful information, and hence
the multi-scale sampling becomes more efficient. We can also
observe that a simple attention mechanism enables the LSTM
to achieve the same accuracy level as the Dense-Net LSTM,
but with a considerably smaller number of model parameters.

In terms of delay, a common trend identified for all the
models is that a larger window size entails a larger average
delay between the actual and the predicted transition moment.
Again, an environment transition is detected by all models
on average in less than half a minute. Initially, for w = 6
the ALSTM and the CAP-ALSTM demonstrate the smallest
delay. However, as the window size is increased, we can
observe that for w = 25 and 50 the delay for the DenseNet-
LSTM remains constant at around 15 seconds, thus yielding
the smallest delay. As a final comment, we note that increasing
the window size does not severely affect the computational
efficiency of our model. Indeed, the time required to train our
model was only 5 hours compared to approximately 11 and
28 hours required for the LSTM and ASLTM, respectively.
That is due to the downsampling of the initial input sequence,
which allows the sequence length to be decreased, avoiding
an overextended backpropagation through time during the
training phase. Therefore, it is evident that the proposed model
can meet the high accuracy and small delay objectives better
than the other DL TSC models.

V. DEEP LEARNING MODEL INTERPRETATION AND
ENERGY CONSUMPTION

In this section we discuss the power consumption of the
proposed model and we also investigate which are the features
that assume the most pronounced role in its decision making.

Fig. 8: Power consumption of each sensor type for the cellphones
used to collect our data.

Fig. 9: Shapley values for the CAP-ALSTM; average contribution of
each feature towards the characterization of a user’s environment.

The power required by each sensor at each cellular phone,
as recorded by the application used to collect our data, is
shown in Fig. 8. The consumption of the cellular signal is
not presented, as the associated data are part of the normal
operation of the mobile device, and did not entail the recording
of additional signals. The accumulated power consumption
ranges from 2.6 mAh up to 8.7 mAh for the 3 cell phone
models. The power consumption of the GPS or WiFi sensors,
which have also been employed for IOD [20], [22], [23], is
typically much higher than that of the sensors used in our
work. For instance, in [15] it was reported that the GPS and
the WiFI sensors can consume up to 6 times more power than
the sensors used in our work.

An important observation from Fig. 8 is that for the same
sensors the power consumption could vary from cell phone to
cell phone. For instance, one can observe that for the Huawei
P30 Lite the power consumption of the magnetic field sensor
is substantially higher than that of the other models. Hence,
it is necessary to develop an intuition behind the contribution
of each sensor to the final model’s decision. In the event that
the contribution is negligible, while the power consumption is
high, one could simply ignore this feature.

To achieve this, we leverage the SHAP framework describe
in Section III-D. The Shapley values for the pretrained CAP-
ALSTM model are estimated through (6), where f depicts
all the consecutive non-linear operations of the CAP-ALSTM
applied to the input time series. The contribution of each
feature is estimated using the Kernel SHAP [29], and the
Shapley values for the CAP-ALSTM are shown in Fig. 9.
The three most important features are the RSRP, the linear
acceleration and the light intensity, while the three less im-
portant features are the daytime, the RSRQ and the magnetic
field. Although recording the RSRQ does not pose additional
power requirements, from Fig. 8 we can observe that the
magnetometer consumes the highest power for Huawei P30
Lite and the second highest power for the other two cellphones.
Hence, we consequently explore what is the performance of
our model when trained without these two features. In that
case, the average accuracy for the CAP-ALSTM over the six
validation sets of Section IV-B is 88.83% compared to the
initial 89.36% when using all the features, i.e., we have a
0.5 % reduction but it still remains higher than that of the
rest of the models. The mean transition detection delay is

11

increased by approximately 1.5 seconds. However, the power
consumption is substantially reduced for all the cellphones,
with the accumulated power consumption ranging now from
1.5 mAh to 3.2 mAh, without jeopardizing the effectiveness
of the DL TSC model.

VI. CONCLUSION

In this paper we evaluated the performance of various
DL TSC models for IOD. Efficient IOD models are of
high significance for location-based services and seamless
navigation systems, which are an inextricable component of
the IoT ecosystem. Unlike previous work in the field, we
leveraged the sensor reading variation over time to enhance
the environment detection accuracy and ensure a small en-
vironment transition delay. We introduced a new DL TSC
model, building on the concept of self-attention and ASPP.
We showed that a multivariate TSC perspective of the IOD
problem can be advantageous both in terms of IOD accuracy
and transition detection delay. The proposed DL TSC model
outperforms the other models studied, especially for longer
time series, yielding the highest accuracy, a small delay for
the environment transition detection, and having significantly
smaller computational requirements and using only low-power
consumption sensor readings.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of things (IoT): A vision, architectural elements, and future
directions,” Future generation computer systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
“Internet of things for smart cities,” IEEE Internet Things J.,
vol. 1, no. 1, pp. 22–32, 2014.

[3] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos,
“Context aware computing for the internet of things: A survey,”
IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 414–454,
2013.

[4] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, “Context-aware
computing, learning, and big data in internet of things: A
survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 1–27, 2017.

[5] L. Chen, S. Thombre, K. Järvinen, E. S. Lohan, A. Alén-
Savikko, H. Leppäkoski, M. Z. H. Bhuiyan, S. Bu-Pasha, G. N.
Ferrara, S. Honkala, et al., “Robustness, security and privacy
in location-based services for future IoT: A survey,” IEEE
Access, vol. 5, pp. 8956–8977, 2017.

[6] H. Huang, G. Gartner, J. M. Krisp, M. Raubal, and N. Van
de Weghe, “Location based services: Ongoing evolution and
research agenda,” Journal of Location Based Services, vol. 12,
no. 2, pp. 63–93, 2018.

[7] C. Monn, “Exposure assessment of air pollutants: A review
on spatial heterogeneity and indoor/outdoor/personal exposure
to suspended particulate matter, nitrogen dioxide and ozone,”
Atmospheric environment, vol. 35, no. 1, pp. 1–32, 2001.

[8] B. Ye, K. Liu, S. Cao, P. Sankaridurg, W. Li, M. Luan,
B. Zhang, J. Zhu, H. Zou, X. Xu, et al., “Discrimination
of indoor versus outdoor environmental state with machine
learning algorithms in myopia observational studies,” Journal
of translational medicine, vol. 17, no. 1, p. 314, 2019.

[9] H. Jia, Y. Zhang, and W. Kong, “Indoor/outdoor detection for
seamless positioning,” Sensors & Transducers, vol. 171, no. 5,
p. 283, 2014.

[10] J. Cheng, L. Yang, Y. Li, and W. Zhang, “Seamless out-
door/indoor navigation with WiFi/GPS aided low cost inertial
navigation system,” Physical Communication, vol. 13, pp. 31–
43, 2014.

[11] Q. Zeng, J. Wang, Q. Meng, X. Zhang, and S. Zeng,
“Seamless pedestrian navigation methodology optimized for
indoor/outdoor detection,” IEEE Sensors J., vol. 18, no. 1,
pp. 363–374, 2017.

[12] S. Mekki, T. Karagkioules, and S. Valentin, “HTTP adap-
tive streaming with indoors-outdoors detection in mobile
networks,” in 2017 IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), IEEE, 2017,
pp. 671–676.

[13] L. Ravindranath, C. Newport, H. Balakrishnan, and S. Mad-
den, “Improving wireless network performance using sensor
hints,” in Proc. USENIX NSDI, vol. 11, 2011.

[14] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen, “IODetector: A
generic service for indoor outdoor detection,” in Proceedings
of the 10th acm conference on embedded network sensor
systems, 2012, pp. 113–126.

[15] V. Radu, P. Katsikouli, R. Sarkar, and M. K. Marina, “A
semi-supervised learning approach for robust indoor-outdoor
detection with smartphones,” in Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems, 2014,
pp. 280–294.

[16] M. Ali, T. ElBatt, and M. Youssef, “SenseIO: Realistic ubiq-
uitous indoor outdoor detection system using smartphones,”
IEEE Sensors J., vol. 18, no. 9, pp. 3684–3693, 2018.

[17] I. Saffar, M. L. A. Morel, K. D. Singh, and C. Viho, “Semi-
supervised deep learning-based methods for indoor outdoor
detection,” in ICC 2019-2019 IEEE International Conference
on Communications (ICC), IEEE, 2019, pp. 1–7.

[18] I. Saffar, M. L. A. Morel, K. D. Singh, and C. Viho, “Machine
learning with partially labeled data for indoor outdoor detec-
tion,” in 2019 16th IEEE Annual Consumer Communications
& Networking Conference (CCNC), IEEE, 2019, pp. 1–8.

[19] S. Li, Z. Qin, H. Song, C. Si, B. Sun, X. Yang, and R. Zhang,
“A lightweight and aggregated system for indoor/outdoor
detection using smart devices,” Future Generation Computer
Systems, vol. 107, pp. 988–997, 2020.

[20] Y. Zhu, H. Luo, F. Zhao, and R. Chen, “Indoor/outdoor
switching detection using multi-sensor densenet and LSTM,”
IEEE Internet Things J., 2020.

[21] I. Ashraf, S. Hur, and Y. Park, “MagIO: Magnetic field
strength based indoor-outdoor detection with a commercial
smartphone,” Micromachines, vol. 9, no. 10, p. 534, 2018.

[22] G. Shtar, B. Shapira, and L. Rokach, “Clustering Wi-Fi
fingerprints for indoor–outdoor detection,” Wireless Networks,
vol. 25, no. 3, pp. 1341–1359, 2019.

[23] Y. Zhu, H. Luo, Q. Wang, F. Zhao, B. Ning, Q. Ke, and C.
Zhang, “A fast indoor/outdoor transition detection algorithm
based on machine learning,” Sensors, vol. 19, no. 4, p. 786,
2019.

[24] L. Wang, L. Sommer, T. Riedel, M. Beigl, Y. Zhou, and Y.
Huang, “NeuralIO: Indoor outdoor detection via multimodal
sensor data fusion on smartphones,” in International Summit
Smart City 360°, Springer, 2019, pp. 127–138.

[25] W. Wang, Q. Chang, Q. Li, Z. Shi, and W. Chen, “Indoor-
outdoor detection using a smart phone sensor,” Sensors,
vol. 16, no. 10, p. 1563, 2016.

[26] T.-H. Yi, H.-N. Li, and M. Gu, “Effect of different construction
materials on propagation of GPS monitoring signals,” Mea-
surement, vol. 45, no. 5, pp. 1126–1139, 2012.

[27] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” arXiv
preprint arXiv:1409.0473, 2014.

[28] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected

12

crfs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 834–848, 2017.

[29] S. M. Lundberg and S.-I. Lee, “A unified approach to inter-
preting model predictions,” in Proceedings of the 31st inter-
national conference on neural information processing systems,
2017, pp. 4768–4777.

[30] S. Bakirtzis, “Research data supporting “Deep learning-based
multivariate time series classification for indoor outdoor detec-
tion”,” 2022. DOI: 10.17863/CAM.82668. [Online]. Available:
https://doi.org/10.17863/CAM.82668.

[31] R. Janaswamy, Radiowave propagation and smart antennas
for wireless communications. Springer Science & Business
Media, 2001.

[32] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell,
and K. Keutzer, “Densenet: Implementing efficient convnet
descriptor pyramids,” arXiv preprint arXiv:1404.1869, 2014.

[33] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson cor-
relation coefficient,” in Noise reduction in speech processing,
Springer, 2009, pp. 1–4.

[34] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and
P.-A. Muller, “Deep learning for time series classification: A
review,” Data mining and knowledge discovery, vol. 33, no. 4,
pp. 917–963, 2019.

[35] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv
preprint arXiv:1508.04025, 2015.

[36] L. S. Shapley, H. Kuhn, and A. Tucker, “Contributions to
the theory of games,” Annals of Mathematics studies, vol. 28,
no. 2, pp. 307–317, 1953.

