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ABSTRACT
We measure the intrinsic shapes and alignments of the dwarf spheroidal (dSph) galaxies
of the Local Group. We find the dSphs of the Milky Way are intrinsically flatter (mean
intrinsic ellipticity μE ∼ 0.6) than those of M31 (μE ∼ 0.5) and that the classical Milky Way
dSphs (MV < −8.5 mag) are rounder (μE ∼ 0.5) than the ultrafaints (μE ∼ 0.65) whilst in
Andromeda (M31) the shapes of the classical and ultrafaint dSphs are very similar. The M31
dSphs are preferentially radially aligned with a dispersion of ∼45 deg. This signal is driven
by the ultrafaint population whilst the classical M31 dSphs are consistent with a random
orientation. We compare our results to the Aquarius mock stellar catalogues of Lowing et al.
and find the subhalo radial alignment distribution matches the Local Group dSphs results,
whilst the Aquarius intrinsic ellipticities are significantly smaller than the data (�〈E〉 ≈ 0.4).
We provide evidence that the major axes of the Milky Way satellites lie within a preferential
plane with normal vector pointing towards (�, b) = (127, 5) deg. We associate this preferred
direction with the Vast Polar Orbital structure although their respective great circles are offset
by ∼30 deg. No signal in the alignments of the major axes is found in M31, suggesting that
the great plane of satellites is formed from recent accretion or chance alignment. Finally, we
provide predictions for the discrepancy between the velocity dispersion versus scale radius
distributions for the Milky Way and M31 populations and demonstrate that the projection
effect from viewing similar populations from two different locations does not account for the
discrepancy which is probably caused by increased tidal disruption in M31.

Key words: galaxies: dwarf – galaxies: fundamental parameters – galaxies: kinematics and
dynamics – Local Group – galaxies: structure.

1 IN T RO D U C T I O N

The � cold dark matter (CDM) cosmological paradigm predicts
that density fluctuations in the early Universe were magnified by
the accretion of dark matter and these early dark matter haloes
provided potential wells in which baryons could cool and begin
forming galaxies. The subsequent evolution of the Universe was hi-
erarchical with small dark matter haloes accreting on to ever larger
haloes. A natural manifestation of this picture is the presence of
a spectrum of dark matter subhaloes within each halo (Diemand,
Kuhlen & Madau 2007; Springel et al. 2008) which are believed
to host the dwarf spheroidal (dSph) galaxies of the Local Group
(LG). The dSphs are heavily dark matter dominated environments
(Mateo 1998; Kleyna et al. 2001; McConnachie 2012) and so
provide ideal laboratories to test the �CDM paradigm – as the
less well understood effects of baryons are sub-dominant in these
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systems. Recent years have seen the number of known dSphs in
the Milky Way (MW) and Andromeda (M31) increase significantly
(approximately 60 spectroscopically confirmed dSphs fainter than
MV = −13.5 mag are known) such that studies based on the statis-
tical properties of the dSph population are possible. In particular,
matching the shape and structure of the dSph population is a key
test of the �CDM picture.

From a theoretical perspective, dark matter haloes are generically
triaxial (e.g. Jing & Suto 2002; Bailin & Steinmetz 2005; Allgood
et al. 2006). Both field haloes and subhaloes are typically more flat-
tened and more triaxial with increasing mass (Allgood et al. 2006),
and subhaloes tend to be rounder than field haloes due to tidal ef-
fects (Kuhlen, Diemand & Madau 2007; Vera-Ciro et al. 2014). For
MW-mass haloes, the addition of baryons makes the haloes rounder
(Debattista et al. 2008), but it appears that at lower subhalo mass
scales, baryons have very little effect on shape of the dark matter
haloes (Knebe et al. 2010).

A further prediction from dark-matter-only cosmological simu-
lations is that dark matter subhaloes tend to have major axes that
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Figure 1. Shape and alignment of the M31 dSphs. Each dSph is depicted as an ellipse showing the axis ratio and on-sky orientation (in a local Cartesian
basis). The colour shows the distance along the line of sight from the plane in which M31 lies. The black line shows the M31 disc plane and the dashed grey
lines show great circles through the centre of M31 (shown by a black dot)1.

align with the vector towards the centre of their host halo (Kuhlen,
Diemand & Madau 2007; Pereira, Bryan & Gill 2008; Faltenbacher
et al. 2008; Barber et al. 2015). Filamentary accretion produces a
weak alignment signal for haloes outside the virial radius and once
subhaloes pass inside the virial radius, tidal interaction increases
the degree of radial alignment independent of the subhalo mass
(Pereira et al. 2008). After approximately one orbit, the initially
triaxial subhaloes become tidally locked to the host halo and so
spend a large fraction of their orbits pointing towards the halo cen-
tre (around pericentre, the subhalo cannot respond fast enough to
remain aligned). Additional figure rotation against the orbital direc-
tion delays the tidal locking of the subhaloes (Pereira et al. 2008;
Barber et al. 2015).

However, it appears from several studies that galaxies in
clusters are essentially consistent with random alignment (e.g.
Schneider et al. 2013) and so it is acknowledged that dark mat-
ter only simulations may produce ‘too much’ radial alignment
(Joachimi et al. 2015; Kiessling et al. 2015). A solution to this dis-
crepancy uses more centrally bound dark matter particles as proxies
for baryons for which the degree of alignment is weaker (Knebe
et al. 2008b; Pereira et al. 2008) as tidal locking takes ∼ twice as
long for a more centrally concentrated stellar population (Pereira
& Bryan 2010). However, other baryonic effects are important on
the cluster scale and the degree of radial alignment from full hy-
drodynamical simulations on these scales is an on-going area of
active research (Tenneti et al. 2015), particularly for interpreta-
tion of weak cosmological gravitational lensing signals (Joachimi
et al. 2015; Kiessling et al. 2015). The effect of baryons on the MW
subhalo scale is still an open question with, for instance, Knebe

1 The projection employed is not conformal so the angles depicted between
the major axes and the great circles (in the main panel) are not exactly the
true angles (shown in the inset).

et al. (2010) suggesting baryons have little effect on the alignment
of the dark matter haloes at these low mass scales.

Observations of the LG provide an alternative route to constrain-
ing the properties of dark matter on subhalo scales. For instance, we
show the on-sky distribution of the M31 dSphs in Fig. 1 along with
the distribution of misalignments between the on-sky major axis and
the on-sky radial direction. As already noted by, e.g. Barber et al.
(2015), the distribution of radial misalignment angles is not uniform
suggesting there is evidence for preferential radial alignment in the
LG. Indeed, Salomon et al. (2015) has already used the M31 data set
to measure the intrinsic shapes and alignments, assuming all dSphs
are prolate figures. These authors in general find a mean intrinsic
ellipticity of ∼0.5 and that both a purely tangentially aligned model
and a randomly aligned model are preferred over a purely radially
aligned model, as the latter fails to reproduce the roundest dSphs.

There is already some evidence that the dSph population of the
LG is unusual when compared to simulations. In both MW and M31,
the dSphs seem to be preferentially grouped in planes. Lynden-Bell
(1976) first noted that in MW the dSph galaxies seem to lie along
a great circle that also coincides with the Magellanic stream and
this picture has been reinforced in recent years by the discovery of
more dSphs that may also reside in the plane (the so-called vast po-
lar orbital structure, VPOS, Pawlowski, McGaugh & Jerjen 2015).
Additionally, Ibata et al. (2013) discovered a similar plane of M31
dSph galaxies, the so-called great plane of satellites (GPOS). It is
therefore quite natural to ask whether the shapes and alignments of
the dSphs support these interpretations of the data.

In this paper, we measure the intrinsic distribution of shapes
and alignments of the dwarf spheroidal galaxies of the LG. The
central idea behind our work is that if the MW and M31 host
similar populations of dSphs, then we can exploit the two distinct
viewing perspectives to extract the intrinsic shape and alignment
distributions. With the MW dSphs alone, we have little leverage
on measuring the radial alignment distribution and the MW dSphs
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Figure 2. Dwarf spheroidal coordinate definition: the dSph is located at
the displacement vector rgc from the centre of its host galaxy (gc) and
displacement vector ngc from the observer, who sits at Rgc relative to the
galaxy centre. An equidensity contour of the dSph is shown by the blue
mesh. In the intrinsic spherical polar coordinate system of the dSph (x, y, z),
the vector −rgc is at angles (θ , φ) and −ngc is at (ϑ , ϕ). The angle between
the major axis and the radial vector is given by η. The observer sees the
projected ellipse shown at the bottom of the diagram with its major axis
aligned at a position angle of PA with respect to North through East.

can break some of the degeneracies in extracting the intrinsic shape
distribution using just the M31 dSphs.

We begin by presenting the framework for converting between
intrinsic and observed properties of an optically thin galaxy stratified
on self-similar triaxial ellipsoids in Section 2. In Section 3, we
present three models for the intrinsic shape and alignment of the
dSph population and discuss the results of fitting these models to
the data. In Section 4, we compare the results of our analysis to the
tagged Aquarius simulations provided by Lowing et al. (2015) and in
Section 5, we discuss how the predictions for the velocity dispersion
against scale radius relation from our models. In Section 6, we
present our conclusions.

2 FR A M E WO R K

In this section, we give the transformations between the orientation
of a dSph with respect to the centre of its host galaxy and the
properties of the dSph observed from Earth. Throughout this paper,
we assume that dSphs are well modelled as optically thin and the
light distribution is stratified on self-similar ellipsoids. We also
assume the dSphs are sufficiently small and distant (i.e. rh/D � 1)
such that the observed shape can be computed assuming the galaxies
are observed from infinity. Fig. 2 gives a diagrammatic definition
of many of the quantities used in this Section.

2.1 Ellipsoidal systems

We begin with a brief primer on the properties of ellipsoids and
their projected ellipses (Contopoulos 1956; Binney 1985; Franx,

Illingworth & de Zeeuw 1991; Evans, Carollo & de Zeeuw 2000).
An ellipsoid is characterized by two axis ratios: the intermediate-to-
major axis ratio p = b/a and the minor-to-major axis ratio q = c/a.
It is convenient to define the intrinsic ellipticity E and the triaxiality
T:

E = 1 − q > 0,

T = (1 − p2)/(1 − q2). (1)

An oblate spheroid has T = 0, whilst a prolate spheroid has T = 1.
If an ellipsoid is viewed by an observer located at infinity, it

appears as an ellipse. The viewing angles ϕ and ϑ are defined as
standard spherical polar angles with respect to the principal axes
(x̂, ŷ, ẑ) of the dSph (in the order major, intermediate, minor) i.e.
tan φ = | ŷ|/|x̂| and cos θ = | ẑ|. The ellipticity of the observed el-
lipse, ε(p, q, ϕ, ϑ), is given by

(1 − ε)2 = A − √
B

A + √
B

, (2)

where

A = (1 − q2) cos2 ϑ − (1 − p2) sin2 ϑ sin2 φ + p2 + q2,

B = ((1 − q2) cos2 ϑ − (1 − p2) sin2 ϑ sin2 φ − p2 + q2)2

+ 4(1 − p2)(1 − q2) sin2 ϑ cos2 ϑ sin2 ϕ. (3)

The observed minor axis of the ellipse is offset from the projected
ellipsoidal minor axis by an angle f(p, q, ϕ, ϑ) given by

tan 2f = 2T sin ϕ cos ϕ cos ϑ

sin ϑ − T (cos2 ϕ − sin2 ϕ cos2 ϑ)
. (4)

2.2 Conversion between observed and Galactocentric
properties

We work in a Galactocentric right-handed Cartesian coordinate
system where x̂gc points from the centre of MW towards the Sun, ŷgc

points in the opposite direction to Galactic rotation and ẑgc points
towards the North Galactic Pole. We introduce the displacement
vector R̂gc between the host galactic centre and the Sun, and the
displacement vector rgc between the centre of the dSph and the host
galaxy. The displacement vector between the Sun and the dSph is
then given by ngc = rgc − Rgc.

An observer at the centre of the host galaxy observes the dSph at
viewing angles (θ , φ). There is a third degree of freedom described
by the angle χ which gives the rotation of the on-sky basis vectors
for an observer at the centre of the galaxy i.e. the direction of North
(χ is formally the right-handed rotation angle about the galactocen-
tric radial vector rgc). For an observer situated at the galactic centre,
χ only affects the zero-point of the rotation angle of the observed
major axis and so does not change the observed properties of the
dSph. However, it does affect the viewing angle of an observer at
some other location – we can think of χ as rotating the entire galaxy
about a vector pointing towards a fixed dSph.

We wish to transform coordinates in the Galactocentric Cartesian
basis into the intrinsic basis of the dSph such that given a general
vector ngc, we can compute the viewing angles (ϑ , ϕ) and the
orientation of the projected ellipsoidal minor axis on the sky with
respect to equatorial North, PAproj. Note that the orientation of the
projected ellipsoidal minor axis is not the same as the minor axis of
the observed ellipse and they are related via equation (4).

MNRAS 472, 2670–2685 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/472/3/2670/4085204
by University of Cambridge user
on 24 November 2017



Shapes and alignments of Local Group galaxies 2673

We introduce the Euler rotation matrix R(α, β, γ ) =
Rz(α)Rx(β)Rz(γ ) where

Rz(a) =
⎛
⎝ cos a − sin a 0

sin a cos a 0
0 0 1

⎞
⎠ ,Rx(b) =

⎛
⎝ 1 0 0

0 cos b − sin b

0 sin b cos b

⎞
⎠ . (5)

We first perform a rotation to align the radial vector rgc with
respect to the z′′ axis of an on-sky coordinate system (x′′, y′′, z′′)
for an observer at the galactic centre. Setting ξ = arccos zgc/rgc

and ψ = arctan ygc/xgc, the corresponding rotation matrix is given
by Rgc,obs = R(0, ξ, π/2 − ψ). Note this aligns the y′′ axis with
ξ̂ . Next we perform the rotation Robs,int = R(φ + π/2, θ − π,−χ )
between the ‘galactocentric observer’ frame and the intrinsic dSph
frame (χ gives the angle between the projected intrinsic minor axis
and the Galactic North Pole for an observer at the galactic centre.
If χ = 0 the minor axis of the dSph lies in the x′′ = 0 plane).
This rotates to the intrinsic coordinate system of the dSph such that
rgc = −|rgc|(sin θ cos φ, sin θ sin φ, cos θ ) (in the intrinsic basis of
the dSph). The combined matrix Robs,intRgc,obs rotates any vector
n from galactocentric coordinates (xgc) to the intrinsic coordinate
system (x) such that ϑ = arccos nz/|n| and ϕ = arctan ny/nx .

A final consideration is the observed on-sky orientation of the
dSph. Given (ϑ , ϕ), equation (4) gives the angle between the ob-
served minor axis and the projected ellipsoidal minor axis, so we
therefore must compute the orientation of the projected ellipsoidal
minor axis for the observer. We first compute the minor axis di-
rection in the galactocentric frame as R−1

gc,obsR
−1
obs,int ẑ [where ẑ is

expressed in the dSph basis as ẑ = (0, 0, 1)]. We then rotate this vec-
tor to galactic coordinates using Rgc,gal = R(0, b − π/2, π/2 − l).
A further rotation takes us to equatorial coordinates which enables
us to compute the angle of the projected minor axis with respect to
equatorial North, PAproj. Note that this is distinct from the observed
minor axis from equation (4). The observed position angle of the
major axis is given by

PA = PAproj + f + π/2. (6)

The angle, η, between the galactocentric radial vector and the
major axis is given by

cos η = sin θ cos φ. (7)

A sanity check of our procedure is to draw uniform samples in rgc,
χ , φ and cos θ , and check the distributions of cos ϑ , ϕ and PAproj are
also uniform and display no correlations with � and b. Additionally,
placing the observer at a large distance and sampling uniformly in
χ and φ produces a uniform distribution in cos ϑ irrespective of the
distribution of θ .

3 SH A P E A N D A L I G N M E N T IN F E R E N C E

For our data, we use all confirmed dwarf spheroidal galaxies of MW
and M31 with absolute V-band magnitude >−13.5 mag (addition-
ally we remove Leo T due to its high gas content). There are 33 MW
dwarf spheroidals and 28 M31 dwarf spheroidals in our sample with
properties listed in Table 1. Our data are taken primarily from the
updated tables of McConnachie (2012) complemented by the recent
analysis of the M31 dSphs by Martin et al. (2016c) in addition to
data from Torrealba et al. (2016a,b). We also opt to analyse just the
‘classical’ dSphs which are defined as the nine MW dwarfs brighter
than MV = −8.5 mag (Canes Venatici I, Carina, Draco, Fornax, Leo
I, Leo II, Sextans, Sculptor, Ursa Minor) and equivalently the 19
M31 dSphs brighter than MV = −8.5 mag.

Table 1. Data used in this study: ellipticities (ε), position angles of major
axes (PA) and distance moduli μ. The first section gives the data for the
classical MW dSphs (brighter than MV = −8.5 mag); the second, the ultra-
faints of the MW; the third, the classical M31 dSphs; and the final section,
the ultrafaint M31 dSphs.

Name ε PA(deg) μ(mag)

Canes Venatici I 0.39 ± 0.03 70 ± 4 21.69 ± 0.10
Carina 0.33 ± 0.05 65 ± 5 20.11 ± 0.13
Draco 0.31 ± 0.02 89 ± 2 19.40 ± 0.17
Fornax 0.30 ± 0.01 41 ± 1 20.84 ± 0.18
Leo I 0.21 ± 0.03 79 ± 3 22.02 ± 0.13
Leo II 0.13 ± 0.05 12 ± 10 21.84 ± 0.13
Sculptor 0.32 ± 0.03 99 ± 1 19.67 ± 0.14
Sextans 0.35 ± 0.05 56 ± 5 19.67 ± 0.10
Ursa Minor 0.56 ± 0.05 53 ± 5 19.40 ± 0.10
Aquarius II 0.39 ± 0.09 121 ± 9 20.16 ± 0.07
Bootes 0.39 ± 0.06 14 ± 6 19.11 ± 0.08
Bootes II <0.59 145 ± 55 18.10 ± 0.06
Canes Venatici II 0.52 ± 0.11 177 ± 9 21.02 ± 0.06
Coma Berenices 0.38 ± 0.14 115 ± 10 18.20 ± 0.20
Crater II <0.14 –a 20.35 ± 0.02
Draco II <0.72 70 ± 28 16.90 ± 0.30
Eridanus II 0.48 ± 0.04 81 ± 6 22.90 ± 0.20
Grus I 0.41+0.20

−0.28 4 ± 60 20.40 ± 0.20
Hercules 0.68 ± 0.08 102 ± 4 20.60 ± 0.20
Horologium I <0.40 –a 19.50 ± 0.20
Hydra II <0.40 28+40

−35 20.64 ± 0.16
Leo IV 0.49 ± 0.11 121 ± 9 20.94 ± 0.09
Leo V 0.50 ± 0.15 96 ± 13 21.25 ± 0.12
Pegasus III <0.88 133 ± 17 21.56 ± 0.20
Pisces II 0.40 ± 0.10 77 ± 12 21.30 ± 0.20b

Reticulum II 0.59+0.02
−0.03 71 ± 1 17.40 ± 0.20

Segue I 0.48 ± 0.13 85 ± 8 16.80 ± 0.20
Segue II 0.15 ± 0.10 2 ± 17 17.70 ± 0.10
Triangulum II <0.54 56+16

−24 17.40 ± 0.10
Tucana II 0.39+0.10

−0.20 107 ± 18 18.80 ± 0.20
Ursa Major I 0.80 ± 0.04 71 ± 3 19.93 ± 0.10
Ursa Major II 0.63 ± 0.05 98 ± 4 17.50 ± 0.30
Willman I 0.47 ± 0.08 77 ± 5 17.90 ± 0.40
And I 0.28 ± 0.03 30 ± 4 24.36 ± 0.07
And II 0.16 ± 0.02 31 ± 5 24.07 ± 0.06
And III 0.59 ± 0.04 140 ± 3 24.37 ± 0.07
And V 0.26+0.09

−0.07 54 ± 10 24.44 ± 0.08
And VI 0.41 ± 0.03 163 ± 3 24.47 ± 0.07
And VII 0.13 ± 0.04 94 ± 8 24.41 ± 0.10
And XIV <0.47 176 ± 14 24.50+0.06

−0.56

And XV 0.24 ± 0.10 38 ± 15 23.98+0.26
−0.12

And XVI 0.29 ± 0.08 98 ± 9 23.39+0.19
−0.14

And XVII 0.50 ± 0.10 110 ± 9 24.31+0.11
−0.08

And XIX 0.58+0.05
−0.10 34 ± 5 24.57+0.08

−0.43

And XXI 0.36+0.10
−0.13 139 ± 13 24.59+0.06

−0.07

And XXIII 0.41+0.05
−0.06 138 ± 5 24.43 ± 0.13

And XXV <0.33 164 ± 30 24.55 ± 0.12
And XXXI 0.43 ± 0.07 121 ± 6 24.40 ± 0.12
And XXXII 0.50 ± 0.09 90 ± 7 24.45 ± 0.14
And XXXIII 0.43+0.15

−0.17 174+15
−10 24.44 ± 0.18

And IX <0.32 41 ± 65 24.42 ± 0.07
And X <0.71 30+20

−12 24.13+0.08
−0.13

And XI <0.68 54 ± 30 24.33 ± 0.05
And XII 0.61+0.16

−0.48 16+12
−36 24.84+0.09

−0.34
And XIII 0.61+0.14

−0.20 160+9
−12 24.62 ± 0.05

And XX <0.85 90+20
−44 24.35+0.12

−0.16
And XXII 0.61+0.10

−0.14 114 ± 10 24.82+0.07
−0.36

And XXIV <0.65 90 ± 34 23.89 ± 0.12
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Table 1 – Continued

Name ε PA(deg) μ(mag)

And XXVI <0.96 50 ± 90 24.41 ± 0.12
And XXIX 0.35 ± 0.06 51 ± 8 24.32 ± 0.22
And XXX 0.43+0.10

−0.12 110 ± 9 24.17+0.10
−0.26

Notes. aFor Crater II and Horologium I, the position angle is unconstrained.
bThe distance modulus uncertainty for Pisces II is not provided by
McConnachie (2012) so we use a default value of 0.2.

For our modelling, we use PYSTAN (STAN Development
Team 2016a,b, a Python wrapper for the STAN probabilistic program-
ming language) to construct probabilistic models for the intrinsic
distribution of shapes and alignments. In this section, we describe
each of the models employed. Using PYSTAN, we sample from our
models using a Hamiltonian Monte Carlo algorithm (the in-built
NUTS sampler Hoffman & Gelman 2014). Four separate chains are
run and we ensure the Gelman–Rubin convergence diagnostic is
close to unity (R̂ < 1.005) for each of the parameters. The results
of our model fits are given in Table 2. We will now discuss the
specifics of the modelling and discuss the results.

3.1 Asymmetric uncertainties

Our primary data are the ellipticities and position angles given in
Table 1, which often come with asymmetric error bars. As we lack
the specific probability density functions of the measured quantities,
we must approximate their posteriors. We use the ‘linear-variance’
approximation from Barlow (2004) such that for a measured value
of the ellipticity of ε

+σε+
−σε− the likelihood on the ellipticity is

p(ε′|ε, σε+, σε−) ∝ G(ε′ − ε, σε+σε− + (σε+ − σε−)(ε′ − ε)), (8)

where G(μ, σ 2) is a Gaussian with mean μ and variance σ 2. This
distribution has the problem that the variance can be negative so we
truncate the variance at 1 × 10−4. For a sample of M31 dSphs in the
PAndAS survey, Martin et al. (2016c) has supplied posterior samples
for the ellipticity and position angle from fits to the photometry,
which we can use to check our approximate posteriors. We have
found that for small asymmetric errors, equation (8) matches the
posterior distributions well but when ε − σ ε − < 0 (i.e. the ellipticity
is consistent with zero), the distributions are better approximated
as

p(ε′|ε, σε+, σε−) ∝ G(ε′, σ 2
ε+ + σ 2

ε−), (9)

Any 95 per cent upper bound measurements εu are treated as mea-
surements of zero with an uncertainty of εu/2. We use the same
linear-variance approach for the position angle and distance modu-
lus measurements with no further adjustment.

In the Appendix, we discuss the validity of the approximation
used in equation (8) by comparison to models which explicitly em-
ploy the posterior samples from Martin et al. (2016c). We find that
the posterior distributions on the model parameters are very similar
when using the posterior samples compared to the approximation
employed throughout the paper. Additionally, in the absence of sim-
ilar sets of posterior samples for the other M31 dSphs and all of the
MW dSphs, we are forced to employ an approximation.

We now detail each of the models employed. The first model as-
sumes the dSphs are randomly aligned with respect to the observer,
so does not utilize the position angle information. The second model
assumes the major axis of the dSphs are preferentially aligned with
the galactocentric radial vector. Our final model assumes the major
axes of the dSphs preferentially lie in a plane.

3.2 Random alignment

We attempt to infer the distribution of T and E given the observed
shapes ε and associated uncertainties under the assumption that
there is no preferred orientation for the dSphs. Implicitly, this as-
sumes the distribution of observed position angles is uniform. Our
model is described as

μT , μE ∼ U(0, 1),

σT , σE ∼ C(0, 1),

cos ϑi ∼ U(0, 1),

ϕi ∼ U(0,
1

2
π ),

Ti ∼ N (μT , σT ),

Ei ∼ N (μE, σE),

εi ∼ N ′(ε(cos ϑi, ϕi, Ti, Ei), σε+i , σε−i), (10)

where N ′ is the modified normal distribution to account for the
asymmetric uncertainties, and subscript i corresponds to the ith of
N� dSphs. U(a, b) is a uniform distribution between a and b and
C(a, b) is a Cauchy distribution centred on a with scale param-
eter b. From dark-matter-only simulations, the triaxiality and el-
lipticity distribution are well approximated by Gaussians (Allgood
et al. 2006; Knebe et al. 2008a). The natural choice for the prior
on a scale parameter σ would be a Jeffrey’s prior of 1/σ . Instead,
we heed the advice of Gelman (2006) and adopt a half-Cauchy
distribution as a weakly informative prior. Very large values of σ

are disfavoured, whilst very small values are not strongly favoured.
This matches nicely our expectation that the intrinsic triaxiality and
ellipticity distributions will not be δ-function spikes nor will they
lack any structure at all. The choice of the scale as unity is inspired
by the finite range of both the triaxiality and the ellipticity.

One complication is that some of our variables have a discrete
range so the pdf that describe them must be normalized over this
range. In the case of the uniformly distributed variables, the normal-
ization is a constant factor but for the normally distributed variables
(i.e. Ti and Ei) the normalization depends on the parameters μ and
σ that we are attempting to constrain. Therefore, any distributions
f(x) for a variable x constrained to lie in the interval (a, b) that are
quoted in this paper implicitly contain a factor of N−1 where

N (f (x), a, b) =
∫ b

a

dx f (x). (11)

We additionally introduce the pdf G ′ given by

G ′(μ, σ 2) = G(μ, σ 2)

N (G(μ, σ 2), 0, 1)
. (12)

For clarity, the log-likelihood for this model is given by

lnL =
N�∑
i

ln
∫

dε′ d cos θ dφ dT dE p(εi |ε′, σε+ , σε− )

× p(ε′| cos θ, φ, T , E)G ′ (T |μT , σ 2
T

)G ′ (E|μE, σ 2
E

)
, (13)

where p(ε′|cos θ , φ, T, E) is a δ-function related to equation (2).

3.2.1 Results

The posterior distributions for the model parameters are shown
in Fig. 3 and the corresponding medians and 1σ intervals are
provided in Table 2. We also provide maximum marginalized
posterior and likelihood values (identical for the location param-
eters for which we use uniform priors). When these two quantities
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Table 2. Results table: medians and 1σ intervals for the parameters in our model fits (maximum marginalized posterior and likelihoods given in
brackets below each entry – these are identical for location parameters for which we use uniform priors). The three sets of rows are for the random
alignment model, the radially aligned model and the planar aligned model. Each set of rows is broken down into the MW and M31 subsets which in turn
are divided into the classical (C) (MV < −8.5 mag) and ultrafaint (UF) subsets. The first four parameters describe the mean μ and standard deviation
σ of the triaxiality T and ellipticity E distributions. σ cos η gives the intrinsic spread about radial alignment. �n and bn give the Galactic angles of the
preferred plane with the intrinsic spread of major axes about this as σ sin α .

μT ln σ T μE ln σE

Random MW All 0.55+0.29
−0.36 −0.10+1.27

−1.39 0.61+0.20
−0.12 −1.07+1.44

−0.84

(0.68) (−0.04, −3.50) (0.59) (−1.73, −1.91)
C 0.52+0.32

−0.34 −0.07+1.26
−1.31 0.49+0.24

−0.16 −1.03+1.70
−1.40

(0.63) (−0.10, −3.67) (0.47) (−2.11, −2.46)

UF 0.56+0.30
−0.37 0.01+1.24

−1.24 0.65+0.22
−0.31 −0.24+1.30

−1.12

(0.85) (−0.02, 1.47) (0.65) (−0.54, −1.92)
M31 All 0.50+0.33

−0.33 −0.04+1.23
−1.25 0.52+0.10

−0.09 −1.92+1.89
−0.84

(0.36) (−0.20, −0.42) (0.52) (−2.16, −2.54)
C 0.51+0.32

−0.34 −0.08+1.26
−1.35 0.53+0.17

−0.14 −1.40+1.85
−1.16

(0.58) (−0.10, −3.75) (0.52) (−2.10, −2.58)
UF 0.50+0.34

−0.34 −0.03+1.24
−1.24 0.49+0.32

−0.31 0.07+1.17
−1.08

(0.56) (−0.02, −2.19) (0.45) (0.06, 0.13)
Both All 0.54+0.30

−0.35 −0.04+1.26
−1.27 0.55+0.05

−0.04 −1.94+0.36
−0.30

(0.67) (−0.03, −2.73) (0.55) (−1.98, −2.04)
C 0.54+0.30

−0.36 −0.11+1.27
−1.35 0.50+0.05

−0.05 −2.30+0.50
−0.53

(0.59) (−0.11, −5.09) (0.50) (−2.26, −2.40)
UF 0.57+0.29

−0.38 −0.07+1.26
−1.36 0.62+0.23

−0.29 −0.19+1.27
−1.13

(0.76) (0.03, −2.81) (0.62) (−0.37, −1.76)
μT ln σ T μE ln σE ln σ cos η

Aligned MW All 0.51+0.32
−0.34 −0.26+1.05

−1.41 0.61+0.19
−0.11 −1.18+1.29

−0.77 −0.12+0.97
−1.18

(0.58) (−0.02, −3.67) (0.59) (−1.71, −1.94) (−0.03, 0.81)
C 0.50+0.32

−0.34 −0.24+1.04
−1.23 0.50+0.22

−0.13 −1.33+1.60
−1.23 −0.12+0.97

−1.18

(0.58) (−0.25, −1.02) (0.48) (−2.12, −2.54) (0.11, −1.81)
UF 0.52+0.33

−0.36 −0.17+1.01
−1.24 0.66+0.22

−0.29 −0.35+1.06
−1.02 −0.18+1.00

−1.30

(0.82) (−0.02, −1.90) (0.65) (−0.66, −1.05) (−0.04, −2.79)
M31 All 0.53+0.31

−0.35 −0.22+1.02
−1.30 0.52+0.11

−0.09 −1.85+1.72
−0.83 −0.24+0.94

−0.60

(0.69) (−0.03, −3.14) (0.52) (−2.12, −2.43) (−0.65, −0.78)
C 0.51+0.32

−0.33 −0.20+1.01
−1.26 0.54+0.18

−0.13 −1.39+1.65
−1.15 0.05+0.85

−0.69

(0.56) (−0.07, −1.67) (0.53) (−2.00, −2.47) (−0.21, −0.50)
UF 0.50+0.33

−0.34 −0.17+0.99
−1.23 0.49+0.31

−0.30 −0.07+0.95
−1.08 −0.91+1.26

−1.02

(0.69) (0.09, 0.76) (0.49) (−0.03, 1.28) (−1.22, −1.91)
Both All 0.52+0.31

−0.34 −0.27+1.05
−1.35 0.56+0.05

−0.04 −1.93+0.37
−0.31 −0.18+0.92

−0.63

(0.69) (−0.10, −3.26) (0.56) (−1.96, −2.04) (−0.51, −0.72)
C 0.55+0.30

−0.35 −0.23+1.04
−1.28 0.51+0.05

−0.05 −2.31+0.51
−0.55 0.02+0.86

−0.68

(0.63) (−0.10, −2.78) (0.50) (−2.27, −2.46) (−0.36, −0.57)
UF 0.48+0.34

−0.33 −0.18+1.01
−1.24 0.63+0.22

−0.28 −0.30+1.04
−1.03 −1.09+1.36

−1.03

(0.07) (−0.13, −4.08) (0.62) (−0.36, −1.05) (−1.44, −2.11)
μT ln σ T μE ln σE �n/ deg sin bn ln σ sin α

Planar MW All 0.51+0.31
−0.34 −0.18+1.01

−1.24 0.61+0.18
−0.10 −1.28+1.28

−0.72 127.46+10.06
−12.34 0.07+0.20

−0.22 −1.49+0.90
−0.87

(0.60) (−0.03, −2.95) (0.59) (−1.78, −1.95) (128.87) (0.09) (−1.41, −1.95)
C 0.52+0.31

−0.34 −0.23+1.03
−1.30 0.49+0.22

−0.13 −1.41+1.68
−1.18 136.83+22.81

−86.35 0.09+0.38
−0.48 −0.64+1.27

−1.25

(0.62) (−0.08, −3.23) (0.47) (−2.18, −2.52) (146.44) (0.12) (−1.09, −1.97)
UF 0.52+0.33

−0.36 −0.18+1.01
−1.30 0.66+0.21

−0.27 −0.44+1.11
−1.08 115.35+16.55

−30.78 0.03+0.35
−0.39 −0.96+1.42

−1.14

(0.76) (−0.08, −2.73) (0.65) (−0.64, −1.68) (118.45) (0.07) (−1.30, −2.03)
M31 All 0.51+0.32

−0.34 −0.22+1.03
−1.27 0.52+0.09

−0.08 −1.97+1.72
−0.83 93.69+57.16

−61.76 −0.18+0.77
−0.57 0.14+0.83

−0.85

(0.56) (−0.07, −3.41) (0.52) (−2.19, −2.52) (92.45) (−0.76) (0.08, 1.10)
C 0.51+0.32

−0.34 −0.21+1.03
−1.28 0.54+0.17

−0.12 −1.47+1.69
−1.12 90.27+61.67

−60.04 −0.19+0.72
−0.51 0.04+0.89

−0.97

(0.64) (−0.07, −3.57) (0.53) (−2.11, −2.50) (85.16) (−0.59) (0.06, 1.17)
UF 0.49+0.34

−0.34 −0.19+1.02
−1.26 0.49+0.31

−0.31 −0.08+0.98
−1.09 98.90+52.05

−64.61 0.00+0.73
−0.74 −0.03+0.91

−1.05

(0.58) (0.04, −3.72) (0.50) (−0.11, 1.09) (136.13) (−0.86) (0.11, −3.52)

MNRAS 472, 2670–2685 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/472/3/2670/4085204
by University of Cambridge user
on 24 November 2017



2676 J. L. Sanders and N. Wyn Evans

Table 2 – Continued

μT ln σ T μE ln σE

Both All 0.50+0.32
−0.32 −0.13+0.97

−1.16 0.56+0.05
−0.04 −1.95+0.38

−0.31 127.49+11.73
−15.60 0.05+0.21

−0.25 −1.22+1.17
−0.84

(0.42) (0.02, −4.33) (0.55) (−1.99, −2.05) (129.21) (0.07) (−1.32, −1.81)
C 0.57+0.28

−0.36 −0.24+1.04
−1.28 0.50+0.05

−0.05 −2.32+0.47
−0.52 141.03+19.65

−88.51 0.04+0.33
−0.45 −0.56+1.21

−1.28

(0.67) (−0.05, −3.04) (0.50) (−2.26, −2.47) (149.20) (0.10) (−0.79, −3.35)
UF 0.50+0.33

−0.35 −0.16+1.01
−1.26 0.63+0.22

−0.26 −0.39+1.08
−1.16 115.54+17.18

−32.02 0.04+0.37
−0.41 −0.83+1.35

−1.11

(0.68) (0.04, 1.28) (0.62) (−0.29, −1.96) (118.43) (0.06) (−1.12, −1.88)

Figure 3. Inference for the random alignment model. The corner plot gives
the 2D correlations between the model parameters (we show contours con-
taining 68 per cent and 95 per cent of the probability) and the 1D distributions
on the diagonal (the dashed grey lines show the adopted prior distributions).
The shape distributions are modelled as Gaussian distributions described by
the mean μ and variance σ 2 in the triaxiality T and ellipticity E. The thin
blue contours show the results for just the MW dSphs, the thicker red for
just the M31 dSphs and the thick black for both samples combined. The top
extra panel shows the distribution of position angles decomposed into MW
(blue) and M31 (red) dSphs along with the Kolmogorov–Smirnov proba-
bilities that these data are drawn from a uniform distribution. The bottom
extra panel shows the difference between the samples of the ellipticity and
the ellipticity data normalized by the reported uncertainties.

differ significantly, the results are highly prior-dependent and un-
certain. We see that the triaxiality distribution parameters are poorly
measured with the width parameter σ T following the prior and all
allowed values of μT being near equally probable (there is a weak
bias using the MW data for more prolate models i.e. higher T).
Binggeli (1980) showed that inferences on the triaxiality distribu-
tion were poor using only photometric data. The ellipticity param-
eters on the other hand are much better measured. We find that the
median μE for MW (μE = 0.61+0.20

−0.12) is slightly larger than that for
M31 (μE = 0.52+0.10

−0.09) such that the dSphs of M31 are in general
slightly rounder. However, the spread parameter σ E is less well
constrained for MW, highlighting there is a larger spread about this
median flattest dSph. The combination of MW and M31 provides a
measurement of μE = 0.55 ± 0.05.

In Table 2, we give a further breakdown into the classical and
ultrafaint dSphs in the MW and M31. We find that in the MW
the classical dSphs are intrinsically rounder (μE = 0.49+0.24

−0.16) than
the ultrafaint dSphs (μE = 0.65+0.22

−0.31) and have a larger spread of
intrinsic ellipticities (σ E ≈ 0.8 for the ultrafaints compared to σ E ≈
0.4 for the classical dSphs). This was already observed by Martin,
de Jong & Rix (2008) using a sample of 15 dSphs. However, in
M31 we do not find a significant difference between the mean
intrinsic ellipticities of the classical and ultrafaint dSphs, although
as with the MW the classical dSphs have a narrower spread in
the intrinsic ellipticity distribution. When comparing the MW to
M31, we find that the classical dSph populations are very similar,
whilst the ultrafaint populations are more distinct with the M31
ultrafaints being generally rounder. This may be a reflection of
the fainter magnitudes (and hence masses) reached for the MW
dSphs. Additionally, the width of the intrinsic ellipticity distribution
for all the dSphs in the MW appears to be narrower (σ E = 0.31)
than that in M31 (σ E = 0.16). It is worth noting that dark-matter-
only simulations at the MW scale (Kuhlen et al. 2007) and cluster
scale (Knebe et al. 2008a) find that subhaloes become flatter with
increasing mass.

Our results can be directly compared to those of Sánchez-Janssen
et al. (2016), who also fitted the triaxiality and ellipticity distribu-
tions to the MW and M31 dSphs assuming no preferred viewing
angle. Sánchez-Janssen et al. (2016) used 23 LG dSphs brighter than
MV = −8 mag, so we can compare to our results using the classi-
cal dSphs. These authors find μE = 0.51+0.07

−0.06 and σE = 0.12+0.06
−0.05

exactly in agreement with our result of μE = 0.5 ± 0.05 and
σE = 0.10+0.06

−0.04. Interestingly, these authors also find that the mean
triaxiality is constrained (μT ≈ 0.5), which we do not find, but this
may due to the use of different priors.

In Fig. 3, we show the residuals between the model and data ellip-
ticities indicating the model is a good fit.2 We also show the distri-
bution of position angles and the associated Kolmogorov–Smirnov
probability that these distributions are drawn from a uniform distri-
bution (i.e. that expected from this random model). These indicate
there is weak evidence that the position angles are in tension with
the random orientation model, so we now go on to investigate two
further models.

2 Here we have taken σε =
√

σ 2
ε+ + σ 2

ε−/
√

2. As the ellipticity distribu-
tions are not Gaussian, the residuals do not perfectly match a Gaussian
distribution. In particular, our procedure breaks down for the ellipticity
measurements of zero so, for plotting purposes only, we randomly make
half the residuals negative so the residual distribution better approximates a
Gaussian.
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3.3 Preferred alignment

We now explore whether the data favour a particular orientation for
the dSphs. As discussed in the introduction, cosmological simula-
tions tend to produce subhaloes that have their major axes radially
aligned with their host halo. Our data are now supplemented with
position angles PA+σP.A.+i

−σP.A.−i
and positions (�, b, μ ± σμ), where we

assume no uncertainty on the Galactic coordinates (�, b) and use the
Gaussian uncertainty on the distance modulus μ (given in Table 1).
From these measurements, we can compute ngc and combined with
Rgc we can find rgc (from Section 2).

We expand the model of the previous section as

cos θi ∼ U(−1, 1),

φi ∼ U(−π

2
,
π

2
),

χi ∼ U(0, π ),

σcos η ∼ C(0, 1),

| cos ηi | ∼ N (1, σcos η),

PAi ∼ N ′(P (rgc, φ, θ, χ ), σPA+i , σPA−i), (14)

where we have only listed the changes to the model presented
in equation (10). ϑ and ϕ are now deterministic variables and the
function P is given by P = PAproj + f + π/2 [equation (6)]. Note the
position angle is constrained to 0 < PA < π and if |P − PA| > π/2
we take P + π if P > PA and P − π otherwise. The chosen model
is a Gaussian in the cosine of the misalignment angle between the
radial vector and major axis (η). Knebe et al. (2008a) has found in
dark-matter-only simulations that a cos 4η distribution matches the
alignment distribution over all mass scales probed. Here, we adopt
a normal distribution for its simplicity.

3.3.1 Results

The results of fitting this model to the data are shown in Fig. 4
and given in Table 2. We also show the residuals for the ellipticities,
position angles and distance moduli. Note the peak in position angle
is produced by the unconstrained position angles (Crater II and
Horologium II). We see that the posterior distributions for the shape
parameters are very similar to the results obtained in the random
alignment case. When considering solely the MW dSphs, we find
that there is no constraint on the spread about radial alignment
σ cos η as the posterior exactly follows the prior. This is exactly
per expectation where, as we are observing very near the radial
direction for the dSphs, it is very difficult to measure how radially
aligned the dSphs are. However, for M31 we observe the population
from a different perspective and we find there is weak evidence
for preferential radial alignment in the M31 dSph population with
σ cos η ∼ 0.45 (maximum likelihood) corresponding to an angular
spread of ∼45 deg although there is a long tail to much larger values.
We note though that the posterior distribution is much peakier than
the prior so the signal is genuine and matches expectation from
Fig. 1. When combining the MW and M31 dSphs we find very
similar conclusions to just the M31 case. It appears that given the
current data quality we do not gain any significant leverage on the
shape and alignment distributions of the dSph population by using
two perspectives.

When we break down the M31 dSphs into classical and ultrafaint
groups, we find that the classical M31 dSph population is consistent
with being randomly distributed whilst it is the ultrafaint population
that has a significant radial alignment signal with σ cos η ≈ 0.15 (max-
imum likelihood) corresponding to an angular spread of ∼25 deg.

Figure 4. Inference for the radial alignment model. The corner plot gives the
2D correlations between the model parameters (we show contours containing
68 per cent and 95 per cent of the probability) and the 1D distributions on
the diagonal (the dashed grey lines show the adopted prior distributions).
The parameter σ cos η gives the intrinsic scatter about pure radial alignment
η = 0 and the shape parameters are as in the random alignment case. The
thin blue contours show the results for just the MW dSphs, the thicker red
for just the M31 dSphs and the thick black for both samples combined. The
other three panels show the distributions of the sample with respect to the
measured values normalized by the uncertainties for the distance modulus,
position angle and ellipticity (from top left to bottom right).

Figure 5. Posterior distributions for the spread about radial alignment
σ cos η . The thick lines show the results using just the M31 dSphs whilst
the thin lines show the addition of the MW dSphs. The grey dashed line
shows the adopted prior. The two vertical lines give the maximum marginal-
ized posterior values for the combined data sets labelled by the approximate
angular spread about radial alignment.

The posterior distributions for σ cos η are shown in Fig. 5. When con-
sidering all the ultrafaint dSphs, we find a maximum posterior value
of σ cos η ≈ 0.24 (∼33 deg) but a maximum likelihood value of σ cos η

≈ 0.12 (∼23 deg), whilst for all the classical dSphs we find σ cos η

≈ 0.6 (∼50 deg). This result is in contradiction to dark-matter-only
simulations of subhaloes where the degree of radial alignment is
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Figure 6. Inference for the preferred plane model. The corner plot gives the 2D correlations between the model parameters (we show contours containing
68 per cent of the probability) and the 1D distributions on the diagonal (the dashed grey lines show the adopted prior distributions). The parameters �n and
sin bn are the Galactic coordinates that describe the normal to the plane and σ sin α gives the intrinsic scatter about the plane. The four shape parameters are
as in the random model case. The thin blue contours show the results for just the MW dSphs, the thicker red for just the M31 dSphs and the thick black for
both samples combined. The other two panels show the distributions of the sample with respect to the measured values normalized by the uncertainties for the
position angle (top) and ellipticity (bottom).

observed to be independent of mass (Knebe et al. 2008a,b; Pereira
et al. 2008).

3.4 Planar alignment

We finally investigate whether the major axes of the dSphs are
aligned in a plane. We introduce the vector n̂ = (cos bn cos �n,

cos bn sin �n, sin bn) in the Galactocentric basis and express our new
probabilistic model as

�n ∼ U(0, π ),

sin bn ∼ U(−1, 1),

sin αi ∼ N (0, σsin α),

σsin α ∼ C(0, 1), (15)

where again we have only listed additions and note that there is
no constraint on η in this model. αi is the angle between the plane
defined by the normal vector n̂ and the major axis of the dSph so is
given by

sin αi = n̂ · R−1
gc,obsR

−1
obs,int x̂, (16)

where x̂ is expressed in the dSph basis as x̂ = (1, 0, 0). The param-
eters of this model do not depend on the distance modulus to each
dSph.

3.4.1 Results

The posterior distributions for the parameters of this model are
shown in Fig. 6. We see from this figure, as well as from Table 2,
that the results for the shape distributions are very similar to the
random case. Interestingly, the MW fits produce a very clear peak
in the posterior distribution for the direction of the unit vector de-
scribing the plane with median �n = 128 deg and bn = 5 deg. The
median spread about this plane is σ sin α = 0.23 corresponding to
an angular spread of ∼14 deg. We note that the distribution of the
spread parameter σ sin α is significantly different to the prior, indicat-
ing that the plane is significant. When including all the M31 dwarfs,
the direction of n̂ moves to slightly lower latitudes and the spread
about the plane becomes slightly larger ∼20 deg. This indicates that
the M31 dSph orientations are not consistent with lying within any
particular plane. Indeed, when using just the M31 dSphs, we find
no strong evidence for a preferred plane – there is a small peak
in the location parameters at � ≈ 90 deg and b ≈ −50 deg, but the
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Figure 7. Orientation of the discovered plane in Mollweide projection. Main panel: the blue contours show the 32 and 68 per cent confidence regions for the
location of the normal vector to the preferred plane and the grey contours show the corresponding confidence regions for the intercept of this plane with the
celestial sphere. The dSphs of MW are shown in orange (with the nine classical dSphs given a thicker black outline) and those of M31 in green. Each dSph is
depicted as an ellipse showing the on-sky orientation and observed ellipticity (as these are deformed by the projection, we also show a circle at each location
in black). The blue line shows the median plane fitted solely to the MW dSphs with normal vector given by the upside-down black-outlined triangle. Using
solely the nine classical MW dSphs, we find the plane shown by the blue dashed line and the normal vector given by the non-outlined upside-down triangle,
whilst using the MW ultrafaints we find the plane as the long-dashed blue line with normal vector given by the empty blue triangle. The median normal vector
of the plane fitted to M31 is given by the green cross (although the uncertainties in this case are large). The VPOS from Pawlowski et al. (2015) is shown by
the solid pink line and its normal vector is given by the outlined triangle (the dashed line and non-outlined triangle show the plane and pole with four outliers
removed – VPOS+new-4). Inset panel: for the nine classical MW dSphs we also show the proper motion vectors (corrected for the Solar motion) and the inset
panel shows the posterior distributions for the cosine of the angle between the angular momentum and the normal vector for the plane. Lower panels: the left
lower panel shows the dSphs on a Cartesian representation of the Galactic coordinate system. Each dSph is shown as an ellipse in the local on-sky Cartesian
coordinates (��cos b, �b) and the black line segments show the intercept of the great circle that passes through the median normal vector (shown by a blue
dot) and the location of each dSph. The right-hand panel shows the distribution of the absolute differences in position angle between the minor axis of each
dSph and the corresponding great circle split by those with accurate position angle measurements (σ PA < 10 deg in short-dashed blue) and just the classical
MW dSphs (in long-dashed green).

distribution of the spread parameter σ sin α is much less peaked than
in the MW only case and essentially follows the prior indicating
that there is no significant plane. This conclusion is in tension with
claims of GPOS in M31 (Ibata et al. 2013). However, it seems that
although the plane of satellites appears as an overdensity along a
great circle through the centre of M31, the members of this plane do
not have their major axes preferentially aligned with this plane (this
can be seen approximately in Fig. 1). This echoes the conclusions of
Collins et al. (2015), who found that the sizes, masses, luminosities
and metallicities of on- and off-plane M31 satellites are essentially
indistinguishable and the conclusions of Salomon et al. (2015), who
found that there is no difference in the morphology and alignment of
the on- and off-plane satellites. These results point towards a chance
alignment (Gillet et al. 2015). However, a different interpretation is
that the GPOS is formed from recent group infall (Bowden, Evans &
Belokurov 2014; Angus et al. 2016). If the satellites that form the

GPOS have only recently been accreted, tidal locking of the major
axis into the orbital plane may not have taken effect. This interpre-
tation is also supported by the theoretical arguments of Bowden,
Evans & Belokurov (2013), who showed that planes of satellites in
the outer parts of triaxial dark haloes cannot generically persist over
long times without thickening. However, it is a challenge to explain
why the GPOS is thinner than expected if produced by dwarf galaxy
associations similar to those observed at the current epoch (Metz
et al. 2009).

We now investigate further the discovered plane for the MW
satellites. In Fig. 7, we show the on-sky distribution of the MW
and M31 dSphs indicating their orientations and flattenings with
ellipses. The posterior distribution for the direction of the normal
to the plane is indicated along with the posterior for the intercept of
the plane with the celestial sphere. We see that the plane is oriented
essentially normal to the Galactic disc and passes through Sculptor
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and Fornax in the Galactic South and Leo I and II in the Galactic
North. We also show the claimed VPOS plane from Pawlowski et al.
(2015) fitted to the spatial distribution of the MW dwarf galaxies
(including the Magellanic clouds and the Sagittarius dwarf galaxy).
Although our plane does not match exactly with the VPOS (offset
by ∼30 deg), it is similar in that it is also polar.

The ellipses in the top panel of Fig. 7 are deformed by the pro-
jection employed so, for clarity, the lower panel shows the shapes
of the dSphs in their local Cartesian basis set along with segments
of great circles that pass through the location of the normal vector
n̂ and the centres of the dSphs. It is clear that the great circle seg-
ments preferentially lie near the minor axes of the dSphs, which can
be quantitatively seen in the lower right panel of Fig. 7 where we
display the distributions of the position angle difference between
the great circle segments and the minor axes |�PA|. Both the clas-
sical dSphs and the full sample peak near |�PA| = 0 and the peak
becomes more pronounced when restricting ourselves to well mea-
sured position angles σ PA < 10 deg. The equatorial coordinates of
the normal vector are (α, δ) ≈ (23, 67) deg which essentially means
there is a preference for the dSphs (which are all at declinations
less than 67 deg) to have their major axes along lines of constant
declination. This can be seen clearly in the upper right panel of
Fig. 3, where there is a peak in the MW dSphs at PA = 90 deg. This
anisotropy in position angles was noted for the classical dSphs by
Lynden-Bell (1994), but it is striking that it has persisted with the
discovery of many fainter satellites.

Our interpretation for the discovered plane is that it is approxi-
mately the orbital plane for the satellites. For an orbiting satellite,
Barber et al. (2015) has demonstrated that the major axis is more
significantly aligned with the galactocentric radial direction than
the instantaneous orbital velocity. However, it is reasonable to sup-
pose that tidal torques cause the major axis to lie within the orbital
plane of the satellite such that from the centre of the galaxy the major
axis does appear to be aligned with the orbital direction. The orien-
tation of the major axes of some dSphs was used to lend credence
to suggested streams of satellites from Lynden-Bell & Lynden-Bell
(1995). Our discovered anisotropy of the position angles supports
the picture that the satellites are orbiting within the plane in which
they currently reside.

One piece of evidence supporting this interpretation of the VPOS
is that there are a number of satellites with proper motions (cor-
rected for the peculiar velocity of the Sun) that lie within the plane
(including the Magellanic clouds). In Fig. 7, we also show the on-
sky solar-motion-corrected velocities for those dSphs with proper
motion measurements (Pawlowski & Kroupa 2013, Carina, Draco,
Fornax, Leo I, Leo II, Sculptor, Sextans, Ursa Minor). As noted by
Pawlowski & Kroupa (2013), there is weak evidence for circula-
tion of the classical dSphs about the polar structure. To quantify
this, we have computed the dot product between the normalized
angular momentum vector and the normal vector to our discovered
plane for a series of samples from the posterior distribution for our
joint model fits and from the velocity error ellipsoids. If the plane
is long-lived, we anticipate that |L̂ · n̂| peaks at unity. We see that
both Fornax and Leo II have peaks in |L̂ · n̂| near unity, Draco and
Ursa Minor have a peak near |L̂ · n̂| ∼ 0.5 and all other classical
dSphs have much flatter distributions of |L̂ · n̂|. This suggests that
the discovered plane is not long lived. However, the proper mo-
tion measurements are not accurate enough to decide the matter
conclusively for the moment.

We have investigated what happens when fitting planes to samples
of ∼30 randomly distributed satellites (both distributed over the
whole sky and only at high latitudes |b| > 25 deg). In general, we

find a peak in the posterior for the (�n, bn) distributions, which
is less significant than that presented here. Additionally, for these
checks we find that the posterior distribution of σ sin α approximately
follows the prior. This suggests that the plane discovered here is
significant and real, but the strength of the signal is perhaps in part
due to the selection effects governing the discovery of the dSphs and
the corresponding absence of dSphs near the Galactic disc plane.
However, we note that the identification of a plane based on the
alignments is significantly less affected by selection effects than
any identification based on spatial location.

4 C O S M O L O G I C A L S I M U L AT I O N
P R E D I C T I O N S

For our aligned model fitted to both the MW and M31 data, we
found a maximum likelihood value of σ cos η = 0.48 and a median of
σ cos η = 0.84. This can be directly compared to results from other
authors using dark-matter-only simulations. Kuhlen et al. (2007)
find that at r/rt = 0.1 (rt is the tidal radius) the median alignment is
〈cos η〉 ∼ 0.55, which corresponds approximately to σ cos η = 1, but
the degree of alignment increases to 〈cos η〉 ∼ 0.75 and σ cos η = 0.37
at r/rt = 1. Similarly, Faltenbacher et al. (2008) find that for sub-
haloes within the virial radius 〈cos η〉 ∼ 0.55 whilst Vera-Ciro et al.
(2014) find that 〈cos η〉 ∼ 0.75 for subhaloes within a radius con-
taining 95 per cent of the mass. Pereira et al. (2008) find that for sub-
haloes within the virial radius the alignment is mass-independent
with a median alignment 〈cos η〉 ∼ 0.66 and σ cos η = 0.55. De-
spite these simulations being dark matter only, it appears that they
match our results well, which points towards dark matter being only
weakly influenced by and approximately tracing the baryons on the
LG subhalo scale as suggested by Knebe et al. (2010).

We now turn to comparing the results of our modelling to expec-
tation from the Aquarius simulations (Springel et al. 2008). These
are a series of six MW sized dark matter haloes (each of total mass
∼1012 M�) chosen randomly from a large cosmological simulation
and re-simulated at a series of resolution levels. As such, they are
perfect for studying the dark matter subhaloes of MW. The halo
of M31 is believed to be a very similar mass to that of the MW
(Diaz et al. 2014), so the Aquarius simulations are also appropri-
ate for the study of M31. Lowing et al. (2015) used the second
highest resolution level (maximum particle mass 104 h−1 M�) to
create an accreted stellar halo for five of the Aquarius simulations
(simulation F was not used as it has two major mergers at z ∼ 0.6).
Using a semi-analytic galaxy formation code (Font et al. 2011), the
one per cent most bound dark matter particles at each time step are
tagged with a total stellar mass and metallicity. At the final simu-
lation snapshot, each tagged particle is then converted into a full
stellar population using a set of isochrones and the set of stars is
distributed in phase-space over the volume occupied by the parent
dark matter particle. Lowing et al. (2015) provides the resulting
stellar catalogues complete with labels indicating the dark matter
subhalo to which the stars are still bound.

These catalogues are ideal for simulating a realistic population of
dSph galaxies. However, they naturally have a number of limitations
(Cooper et al. 2010; Bailin et al. 2014; Cooper et al. 2017; Le
Bret et al. 2017). As the baryons are added by tagging the dark
matter particles, the stellar distributions will naturally match the
dark matter distribution (albeit the most one per cent most bound)
rather than potentially following a more flattened distribution or
even living on completely different orbits. Additionally, the addition
of baryons does not affect the distribution of dark matter. It is
expected that due to the high mass-to-light ratio in dSphs, the effect
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Figure 8. Properties of the stellar components of the subhaloes from the models of Lowing et al. (2015) using five haloes from the Aquarius simulation
series. The coloured bars show the number counts from the five simulations with the black error bars giving the total counts. The black curves and associated
grey band are the median and ±1σ region for the radially aligned model fitted to both the MW and M31 dwarf spheroidals. The first three panels show the
intermediate-to-major axis ratio b/a, the minor-to-major axis ratio c/a and the cosine of the angle between the major axis and the direction from the centre of
the dSph to the centre of the host halo. The final panel shows the mass distribution of the subhaloes. The black line shows the distribution of the whole dSph
sample with the short (long) dashed line showing just the MW (M31) dSphs.

of the baryons on the dark matter is small (Knebe et al. 2010).
Finally, the simulations do not include a disc which is anticipated to
have a significant effect on the lifetime and structure of subhaloes
(D’Onghia et al. 2010).

From the Lowing et al. (2015) catalogues, we extract all the stars
associated with subhaloes (Subhalo ID > 0) that lie within the virial
radius of the host halo (taken from Springel et al. 2008). The shapes
and alignments of the subhaloes are computed by diagonalizing the
reduced inertia tensor, I ij :

I ij =
∑

n mn(xi,n − 〈xi〉)(xj,n − 〈xj 〉)/d2
n∑

n mn/d2
n

, (17)

where n indexes the stars and the weighting factor of d2
n =

x2
n + (yn/p)2 + (zn/q)2 is introduced to down-weight the impor-

tance of particles at large radii (Gerhard 1983). The axis ratios are
determined by the square-root of the eigenvalue ratios and the radial
alignment is found as cos η = ê1 · 〈x〉. As I ij depends on the axis
ratios, we compute I ij iteratively by first setting p = q = 1, comput-
ing p, q and the eigenvectors, realigning the coordinate system and
repeating until p and q both differ by no more than two per cent.
The distributions of the axis ratios, the radial alignment and the
stellar masses are shown in Fig. 8. We also show the distributions of
these quantities from our radially aligned model of MW and M31.
From 1000 posterior samples, we generate the median and ±1σ

distributions of p, q and cos η. The distributions of q and cos η are
trivially given by our model, whilst the calculation of the distribu-
tion of p for each set of parameters is given by

p(p|μT , σT , μE, σE) =
∫ 1

1−b/a

dE

∣∣∣∣∂T

∂p

∣∣∣∣
E

×G ′ (T (p, E) − μT , σ 2
T

)G ′ (E − μE, σ 2
E

)
. (18)

Additionally, we show the stellar mass distributions of our sample of
MW and M31 dSphs computed from the absolute V-band magnitude
assuming a mass-to-light ratio of unity. The mass distributions for
the data and simulations are quite distinct as many of the lower mass
subhaloes are too faint to be seen (or the efficiency of star formation
at low masses is incorrect in the simulations). We therefore opt to
approximate the selection function of the known dSphs by the ratio
of the mass distributions and we show the p, q and cos η distributions
weighted by this ‘selection function’. Clearly, the selection effects
are quite weak.3

3 We also experimented with computing luminosity-weighted reduced in-
ertia tensors and weighting the distributions by the luminosity distribution
ratio. The conclusions are very similar although the simulation results are
noisier as we are more dominated by very bright single stars in the low-mass
systems such that some computations of the reduced inertia tensor for low
mass haloes do not converge.
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The shape distributions from the Aquarius subhaloes do not
match the corresponding distributions from the models exactly. The
intermediate-to-major axis ratio p = (b/a) distribution is broader in
the models than in the simulations, indicating that the centres of the
Aquarius haloes are more oblate than the dSph population appears.
Additionally, the mass-weighted distribution, although broadly very
similar to the non-mass-weighted distribution, has a larger peak
near b/a ∼ 1 showing that the more massive subhaloes in Aquarius
are slightly more oblate than the lower mass subhaloes (Vera-Ciro
et al. 2014, finds that b/a measured at the location of maximum cir-
cular velocity decreases with increasing mass for field haloes but the
decrease is much more gradual for the subhaloes). It is perhaps sur-
prising that the data appear more triaxial than the simulations when
baryons tend to form more axisymmetric components. However, as
we have seen, the results on triaxiality are not strong and highly prior
dependent. The minor-to-major axis ratio distributions are clearly
in disagreement with the Aquarius haloes, which are significantly
rounder than the models (the peaks differ by �(c/a) ∼ 0.4). The
conclusion is not affected by mass weighting. If the shape of low-
mass dark matter subhaloes are unaffected by any central baryonic
component (e.g. Knebe et al. 2010) then we conclude that the stellar
populations in dSphs are intrinsically flatter than their dark matter
haloes by approximately a factor of 2. However, further hydrody-
namic simulations at low mass scales are required to study how
the growth of a baryonic component reshapes the dark matter halo
and it is difficult to draw any strong conclusions from the observed
discrepancy.

The model cos η distribution matches the weak preference for ra-
dial alignment from the simulations very nicely. This is in contrast
to the results of dark-matter-only simulations (Joachimi et al. 2015;
Kiessling et al. 2015), which produce satellite haloes that are sig-
nificantly more radially aligned than observed in the data. The good
agreement found here is possibly because we are using mock stellar
samples generated from the most bound dark matter particles and

it is known the degree of radial alignment decreases for the more
bound particles (Pereira et al. 2008; Knebe et al. 2008b). However,
it should be acknowledged that even in the Aquarius catalogues
there is a slightly larger number of the most radially aligned haloes
compared to the model although the results are consistent within the
errors. There is also a slight overabundance of tangentially aligned
haloes in the simulations which may be produced by neglecting cor-
relations between orbital phase and alignment (Pereira et al. 2008,
cutting the sample on the absolute radial velocity produces a much
flatter distribution in cos η), but doesn’t seem to be produced by near
oblate haloes with ill-defined major axis orientations. The match be-
tween the model and the Aquarius simulations leads us to conclude
that the LG dSph population (in particular the ultrafaint population
of M31 which drive the radial alignment signal) are aligned with
their host haloes. Note also that the mass-weighted distribution is
very similar to the non-mass-weighted distribution demonstrating
that in the Aquarius simulations the degree of radial alignment is
independent of mass (Knebe et al. 2008a,b; Pereira et al. 2008).

5 V ELOCI TY DI SPERSI ON AG AI NST
H A L F - L I G H T R A D I U S S C AT T E R

The dSphs seem to naturally fill in the low dispersion end of the
scaling relation between radius and the circular velocity due to
dark matter followed by data from spirals and low surface bright-
ness galaxies (Walker et al. 2010). However, there appears to be
significant scatter below this relationship with the dSphs of M31
falling further from the relation than those of MW. In the left-hand
panel of Fig. 9, we show the compilation of MW and M31 dSphs
with luminosity-averaged line-of-sight velocity dispersions plotted
against the length of their projected half-light major axis. In ad-
dition to the data given in the updated table from McConnachie
(2012), we use the upper-bound velocity dispersion measurements
for And XI from Collins et al. (2010) and for And XXIV from

Figure 9. Velocity dispersion against radius predictions: the left-hand panel shows the line-of-sight velocity dispersion against projected major-axis length for
MW and M31 dwarf spheroidal galaxies (upper limits are shown as arrows). The black-line shows the relationship given by Walker et al. (2010) with the grey
band showing the ±1σ interval. The red line shows the track from Peñarrubia et al. (2008) that a tidally stripped dSph will follow whilst losing 99 per cent
of its stars with the red dot showing the point where 90 per cent of the mass has been lost. The inset panel shows the distance (in log space) of the median
velocity dispersion and half-light radius measurements with respect to the black line (with positive distance corresponding to points that fall beneath the line).
The right-hand panel shows model predictions of the discrepancy between the perpendicular distance distributions for M31 relative to the MW. We show two
sets of models with varying mean triaxiality μT which differ in their degree of radial alignment (σ cos η). The two bands show the median (solid line) and ±1σ

spread of the MW (blue) and M31 (green) data distributions.
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Collins et al. (2013) as well as the recent velocity dispersion mea-
surements for And XXXI, And XXXII and And XXXIII from Mar-
tin et al. (2014). We take velocity dispersion measurements for the
recently discovered MW dSphs from Torrealba et al. (2016a), Cald-
well et al. (2017), Martin et al. (2016a), Li et al. (2017), Walker
et al. (2016), Koposov et al. (2015), Kirby, Simon & Cohen (2015),
Kim et al. (2016), Kirby et al. (2013) and Martin et al. (2016b).
Also displayed is the velocity dispersion against radius relation fol-
lowed by spiral and low surface brightness galaxies given by Walker
et al. (2010). The red line shows the path followed by a dwarf
spheroidal undergoing tidal stripping from Peñarrubia, Navarro &
McConnachie (2008). The inset panel shows the perpendicular log-
arithmic distance from the relation of Walker et al. (2010) (positive
distance is defined to be the region beneath the line). Clearly, the
M31 dSphs fall in general further below the line than the MW dSphs.
With our models of the dSph populations of M31 and MW, we now
briefly investigate whether this effect could be due to projection
effects.

If we assume that the dSph population of the MW and M31
follow similar shape-alignment distributions (as has been assumed
throughout this paper), then one natural explanation for the differ-
ence in distance from the Walker relation is that we are observing
the two populations from different perspectives and so preferen-
tially observe the dSphs in certain directions. For the models from
Section 3, we can generate and observe mock samples for M31 and
MW. To do this, we require a sampling distribution for the positions
of the dSphs. For simplicity we assume spherical symmetry. An
exponential distribution in distance with a scalelength of 124 kpc
and a truncation radius of 400 kpc gives a simple fit to the MW
dSph population that does not account for any incompleteness (for
M31 we use a scaled version with a truncation radius of 350 kpc
and 109 kpc).

If we assume that the Walker relation traces the properties of
galaxies averaged over the viewing angle, we hypothesise that any
deviation from the relation is due to preferentially viewing along
a particular direction. As discussed in Sanders & Evans (2016),
under the assumption that the dark matter and stars are stratified
on the same self-similar ellipsoids we can relate the ratio of the
observed line-of-sight velocity dispersion to the spherically aver-
aged dispersion. Similarly, we can relate the observed major axis
length of an ellipsoid to the equivalent spherical radius. For each
of our samples, we calculate these ratios and hence the correspond-
ing distance from the Walker relation. In the right-hand panel of
Fig. 9 we show the median M31 distance from the relation (with
respect to the median MW distance) for a series of populations
with μE = 0.55, σ E = 0.15 and σ T = 0.05 and varying μT for two
different values of σ cos η = 0.2, 0.45 (approximately the smallest
value consistent with the data and the maximum likelihood value).
We see that for σ cos η = 0.45 there is essentially no difference be-
tween the MW and M31 populations whilst for σ cos η = 0.2 there
is a weak trend with μT such that for the prolate figures (μT ∼ 1)
there is a difference in the median perpendicular distances in the
same sense as the data. However, the magnitude of the difference
is very small (∼0.1) compared to the signal in the data. Note that
more extreme differences can be created by using different shape
and alignment distributions but such distributions are not consistent
with the data. We therefore conclude that the scatter in the velocity
dispersion against scale radius relation cannot be due to projection
effects and that some other factor is at play. As noted in Walker
et al. (2010), perhaps the most convincing explanation is provided
by tidal effects on the dSphs (Peñarrubia et al. 2008), which cause
the dSphs to significantly stray from the Walker relation as shown

in Fig. 9. Tidal effects are naturally more significant in M31 due to
its more massive disc – McMillan (2017) estimates the total stel-
lar mass of MW as M∗ = (5.4 ± 0.6) × 1010 M� whilst Chemin,
Carignan & Foster (2009) estimates the total stellar mass of M31
as M∗ = (9.5 ± 1.7) × 1010 M�.

6 C O N C L U S I O N S

The recent discoveries of low-luminosity dwarf galaxies in the LG
have made it possible to begin analysing the collective properties
of the dwarf spheroidal population. In particular, we are in the
beneficial position of studying a dwarf spheroidal population both
from approximately the centre of the galaxy in MW and from the
outside of the galaxy for the case of M31. We have analysed the
intrinsic shape and alignment distributions of 33 MW and 28 M31
dwarf spheroidals assuming the galaxies are all optically thin triaxial
ellipsoids and compared the results to dark-matter-only simulations
of a population of subhaloes. The conclusions of this study are given
below.

(i) We fitted the observed ellipticities of the MW and M31 dSphs
assuming we do not observe the dSphs from any preferential di-
rection. We found that the distribution of triaxialities is not well
constrained whereas the intrinsic ellipticity distribution is well con-
strained as a Gaussian with mean μE = 0.55 ± 0.05 and width σ E

≈ 0.15. Examining the MW and M31 populations separately, we
found that the MW dSphs (μE ≈ 0.6) are intrinsically flatter than
those of M31 (μE ≈ 0.5). Splitting into classical (MV < −8.5 mag)
and ultrafaint populations, we find that the ultrafaints are flatter (μE

≈ 0.6) than the classical dSphs (μE ≈ 0.5). The classical popula-
tions of both M31 and MW have very similar intrinsic ellipticity
distributions whilst the discrepancy between the whole populations
is driven by the ultrafaint dSphs.

(ii) We additionally used the distance moduli and position angles
of the major axes of the dSphs to measure the distribution of the in-
trinsic alignments with respect to the galactocentric radial direction
(of each dSph). We found that MW alone gives no constraint on the
degree of radial alignment and that using the M31 dSphs (with and
without the inclusion of the MW dSphs) we measure the spread of
the misalignment about radial as approximately 45 deg. This signal
appears to be entirely driven by the ultrafaint M31 population.

(iii) We compared these conclusions to the predictions from the
tagged dark-matter-only Aquarius simulations provided by Lowing
et al. (2015). We found that the intrinsic ellipticities of Aquarius
subhaloes are smaller than those of the LG dSphs with a difference
in minor-to-major axis ratio of �(c/a) ≈ 0.4. The degree of radial
alignment, however, matches the results obtained from fitting the
LG dSphs.

(iv) We also measured whether the dSph major axes preferen-
tially lie in a plane. When using the M31 dwarfs, we find no in-
dication of a preferred plane of alignment, despite claims in the
literature of a GPOS. Although Ibata et al. (2013) demonstrated the
existence of an overdensity of satellites along a great circle through
the centre of M31, the satellites do not have their major axes pref-
erentially aligned with this plane, as evident already from visual
inspection of Fig. 1. This suggests the GPOS is not a long-lived
structure, but formed from recent group infall (Bowden et al. 2014;
Fernando et al. 2017) as there has not been the time for the major
axes of the dSphs to become tidally locked in the orbital plane.
Discs as thin as observed in M31 cannot be long-lived in triaxial
haloes (Bowden et al. 2013), but, even assuming recent formation,
explaining the observed thinness of the plane is challenging (Metz
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et al. 2009; Angus et al. 2016). A further possibility is that the GPOS
is due to chance alignment (Gillet et al. 2015) – a hypothesis sup-
ported by evidence that the in-plane and out-of-plane satellites in
the GPOS show no differences in their physical and morphological
properties (e.g. Collins et al. 2015).

(v) When using the MW data (with or without the M31
data), we find that there is a preferred plane of alignment of
the dSph major axes. It has a normal vector pointing towards
(�n, bn) = (127, 5) deg. Using just the classical MW dSphs, we
find (�n, bn) = (137, 5) deg and using the ultrafaint MW dSphs we
find (�n, bn) = (115, 2) deg. We note that this plane has a roughly
similar orientation to the VPOS of Pawlowski et al. (2015). The
agreement is only crude, as the normal vectors lie ∼30 deg apart on
the sky. However, on analysing the velocities of the classical dSphs,
it appears that this plane too cannot be long-lived. Specifically, our
posterior distributions permit us to compute the alignment between
the normalized angular momentum vector of a dSph and the normal
vector to our discovered plane. The resulting flattish distributions
are not strongly peaked at vanishing misalignment, suggesting that
the structure cannot survive over orbital time-scales.

(vi) We closed by providing a perspective on the distribution of
MW and M31 dSphs in the velocity dispersion against scale radius
plane. The M31 dSphs have a much larger scatter about the ob-
served relation given by Walker et al. (2010) than the MW dSphs.
We demonstrate that if M31 and MW have the same dSph shape and
alignment distributions, the projection effects can produce a small
difference in the scatter about the Walker et al. (2010) relation in
the right sense but the amplitude is quite discrepant from that ob-
served and we conclude the discrepancy must be due to the relative
importance of tidal disruption in the two galaxies.
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APPENDIX: MODELS USING ELLIPTICITY
A N D P O S I T I O N A N G L E P O S T E R I O R SA M P L E S

For the models in this paper, we have used approximations to the
distribution of ellipticity and position angle uncertainties which
importantly neglect any correlation between these two quantities.
For 21 M31 dSphs, Martin et al. (2016c) have provided 250 posterior
samples of the ellipticity and position angle from the MCMC chains
used to fit the photometry. For moderate ellipticities (ε � 0.2) the
correlations between ellipticity and position angle are small whereas
for smaller ellipticities there is naturally a much larger scatter in the
position angle estimates. We find that the simple approximations to
the 1D distributions of ellipticity (described in Section 3.1) match
the distribution of the posterior samples.

As a check of the modelling procedure employed in the bulk of
the paper, we also fit a model using the posterior samples for those
dSphs analysed by Martin et al. (2016c). For this we employ a kernel
density estimate for the posterior distributions of the ellipticity and
position angle. For each dSph m, we write the M ellipticity and
position angle samples as {xi}m = {(εi, PAi)}m and we replace the
distributions N ′ in equations (10) and (14) with the likelihood

Lm= 1

M

M∑
i

1√
(2π )2|�m| exp

[
−1

2
(xim−Xm)T · �−1

m · (xim−Xm)

]
,

(A1)

where Xm are the parameters describing the ‘true’ ellipticity and
position angle of each dSph and �m is the covariance matrix of the
{xi}m scaled by the bandwidth computed using Scott’s rule.

Figure A1. Comparison of the radially aligned inference using posterior
samples from the error distributions from (Martin et al. 2016c, thick red)
and using the approximation to the error distribution from Section 3.1 (thin
blue).

In Fig. A1, we show the posteriors obtained by fitting this model
compared to the model using the approximate distributions of
Section 3.1 for the radially aligned model case.
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