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1 Introduction

Recently the Eσρ [USp(2N)] family of 4d N = 1 quiver theories labelled by ρ and σ partitions
of N have been introduced [1]. Upon circle compactification to 3d and suitable real mass
deformations, these theories flow to the 3d T σρ [SU(N)] family of linear N = 4 quivers
introduced in [2]. The Eσρ [USp(2N)] theories, like their 3d counterparts, enjoy a mirror
duality which relates pairs of theories with swapped partitions ρ and σ.
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The T σρ [SU(N)] theories can be realised on Hanany-Witten brane set-ups with D3-
branes suspended between NS5 and D5-branes [3]. They can also be defined as the theories
at the end of an renormalization group (RG) flow triggered by nilpotent vacuum expectation
values (VEVs), labelled by ρ and σ, for the Higgs and Coulomb moment maps of the
T [SU(N)] theory. The Eσρ [USp(2N)] theories were analogously defined by turning on VEVs,
labelled by ρ and σ, for the moment map operators of the E[USp(2N)] theory introduced
in [4]. The E[USp(2N)] theory has a non-abelian global symmetry group consisting of a
manifest USp(N)x and an emergent USp(N)y factor which are swapped by the action of
mirror symmetry, and reduces to the 3d T [SU(N)] theory, which analogously has a manifest
SU(N)x and an emergent SU(N)y acting respectively on the Higgs and Coulomb branches
which are swapped by mirror symmetry [5].

Therefore 3d mirror dualities belong to the very large family of 3d dualities which can
be derived starting from 4d N = 1 dualities, performing S1 compactifications to 3d and
turning on various deformations as discussed in [6, 7].

It is then natural to wonder whether other known results for 3d theories have a 4d
counterpart. For example, T [SU(N)] was identified with the S-duality wall [2], implementing
the action of the S element of SL(2,Z) and interpolating between two copies of the 4d
N = 4 SU(N) SYM with coupling τ and − 1

τ . The T [SU(N)] theory is then expected to
satisfy various relations inherited from the properties of the SL(2,Z) generators S and T
(the latter corresponding in field theory to the insertion of a Chern-Simon (CS) coupling):
S2 = −1, S−1S = 1 and STS = T−1S−1T−1. These relations have been tested using the S3

partition function of the T [SU(N)] theory [8–11]. Here will focus on whether such relations
have a field theory interpretation as genuine dualities involving the T [SU(N)] theory, rather
than just as matrix model identities, and whether such dualities hold for the 4d counterpart
E[USp(2N)] as well.

To answer these questions we analyse the quiver theories obtained by gluing two copies
of the E[USp(2N)] theory, gauging a common USp(2N) symmetry group and inserting
some chiral fields.

We first consider the case in which we gauge together two E[USp(2N)] theories without
extra chirals and we shall denote the resulting theory by Tg. We interpret the resulting
object as an Identity operator identifiying the two remaining USp(2N) global symmetries.
Indeed we show that the index of the glued theories is proportional to a Dirac δ-function
which identifies the fugacities of the two remaining USp(2N) factors. As we will see the
physics behind this behaviour is a chiral symmetry breaking pattern, closely related to the
familiar one of the SU(2) theory with 2 flavors [12] which indeed was shown to have an
index proportional to a δ-function with support at points where chiral symmetry breaking
occurs [13]. Considering the 3d limit followed by the mass deformations, which as we
mentioned above reduces the E[USp(2N)] theory to T [SU(N)], we obtain an analogous
result in 3d: if we glue two copies of the T [SU(N)] theory by gauging a common SU(N)
factor we get an identity operator which identifies the two remaining SU(N) symmetries.
Moreover, we will see that depending on the way the limit is taken we can identify this
relation with either the S2 = −1 or the S−1S = 1 properties of the S-wall.
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Figure 1. The quiver diagram for E[USp(2N)]. Round nodes denote gauge symmetries and square
nodes denote global symmetries, where the number 2n insides each node represents the USp(2n)
group. Single lines denote chiral fields in representations of the nodes they are connecting. In
particular, lines between adjacent nodes denote chiral fields in the bifundamental representation of
the two nodes symmetries, while arcs denote chiral fields in the antisymmetric representation of the
corresponding node symmetry. Crosses represent the singlets βn that flip the diagonal mesons.

We also show how starting from the so-called braid duality [4], which involves two
copies of the E[USp(2N)] theory glued with the insertion of two chirals, we can obtain in
3d a duality related to the STS = T−1S−1T−1 property. Specifically, this duality relates
the gluing of two T [SU(N)] tails with a CS interaction at level −1 to a single T [SU(N)]
with background CS levels +1 for its SU(N) global symmetries and one chiral singlet in
the adjoint of one of the two SU(N).

It is then tempting to push further the analogy between 3d and 4d and speculate
that E[USp(2N)] might play the role of an S-wall in 4d. We will further investigate this
possibility in an upcoming paper [14].

In this paper we also discuss other interesting gluings of E[USp(2N)] theories with
some flavors in the middle. Interestingly we are able to prove some dualities for the
resulting theories, which belong to the Eσρ [USp(2N)] family. This is done by means of a
procedure based on the iteration of the Intriligator-Pouliot (IP) duality [15] along the quiver,
which throughout this paper plays the role of fundamental duality. This also suggests the
possibility of deriving mirror dualities in terms of some more fundamental ones, such as IP.
This will be the main result of [14].

2 A review of the E[USp(2N)] and F E[USp(2N)] theories

In this section we quickly review the E[USp(2N)] theory and its dual frames. This theory was
first introduced in [4] and later studied in [1, 16, 17]. We refer the reader to these references
for more details, while here we will just focus on the aspects that will be relevant for us.

The E[USp(2N)] theory is the 4d N = 1 quiver theory represented in figure 1. The
superpotential contains a cubic coupling between the bifundamentals Q(n,n+1) and the
antisymmetrics A(n), another cubic coupling between the chirals in each triangle of the
quiver and finally the flip terms with the singlets βn, denoted by cross marks in the quiver,
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Figure 2. Trial R-charges and charges under the abelian symmetries. The power of c is the charge
under U(1)c, while the power of t is the charge under U(1)t.

coupled to the diagonal mesons

WE[USp(2N)] =
N−1∑
n=1

Trn
[
A(n)

(
Trn+1Q

(n,n+1)Q(n,n+1) − Trn−1Q
(n−1,n)Q(n−1,n)

)]

+
N−1∑
n=1

Tryn+1 Trn Trn+1
(
V (n)Q(n,n+1)D(n+1)

)
+

+
N−1∑
n=1

βn Tryn Trn
(
D(n)D(n)

)
, (2.1)

where Trn denotes the trace over the color indices of the n-th USp(2n) gauge node, while
Tryn denotes the trace over the n-th SU(2) flavor symmetry. Notice that for n = N we have
the trace over the USp(2N)x flavor symmetry, which we will also denote by TrN = Trx. All
the traces are defined including the J antisymmetric tensor of USp(2n)

J = In ⊗ i σ2 . (2.2)

The manifest global symmetry

USp(2N)x ×
N∏
n=1

SU(2)yn ×U(1)t ×U(1)c (2.3)

is enhanced in the IR to

USp(2N)x ×USp(2N)y ×U(1)t ×U(1)c . (2.4)

This can be argued, as shown in [4], in various ways, for example by checking that the gauge
invariant operators form representations of the enhanced symmetry and that the expanded
supersymmetric index forms characters of this symmetry. Another way to understand the
enhancement is by means of a self-duality that we will review momentarily. The charges of
all the chiral fields under the two U(1) symmetries as well as their trial R-charges in our
conventions are summarized in figure 2.
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USp(2N)x USp(2N)y U(1)t U(1)c U(1)R0

H N(2N− 1)− 1 1 1 0 0
C 1 N(2N− 1)− 1 −1 0 2
Π N N 0 +1 0
Bnm 1 1 m− n −2 2n

Table 1. Trasnformation rules of the E[USp(2N)] operators.

The gauge invariant operators of E[USp(2N)] that will be important for us are of three
main types. Here we just review their properties under the global symmetry, while we refer
the reader to [4] for their explicit construction:

• two operators, which we denote by H and C, in the traceless antisymmetric represen-
tation of USp(2N)x and USp(2N)y respectively;

• an operator Π in the bifundamental representation of USp(2N)x ×USp(2N)y;

• some gauge invariant operators that are also singlets under the non-abelian global
symmetries and are only charged under U(1)c and U(1)t, which include the singlets
βn and which are collectively denoted by Bnm.

The charges and representations of all these operators under the global symmetry are given
in table 1.

In [4] it was shown that E[USp(2N)] has a limit to the T [SU(N)] theory [2]. This limit
consists of three main steps. The first one is a dimensional reduction on S1 so to get a 3d
N = 2 quiver gauge theory that is identical to E[USp(2N)], but with extra superpotential
terms containing monopole operators [6, 7]. The second step is a Coulomb branch VEV
that higgses the gauge groups from USp(2n) to U(n). One should also simultaneously give
some compensating real mass deformations to keep part of the matter fields massless. The
result is the M [SU(N)] theory of [18]. In this latter reference it was then shown that a
further real mass deformation for the U(1)c symmetry, under which only the fields of the
saw are charged, makes M [SU(N)] flow to T [SU(N)]. In section 5 we give more details
on these limits, while here we just mention that, among the operators of E[USp(2N)], Π
and Bnm become massive, while the traceless antisymmetric operators H, C reduce to the
moment map operators of T [SU(N)].

Our main computational tool will be the supersymmetric index [19–21] (see also [22]
for a review and appendix A.2 for our conventions) of the E[USp(2N)] theory. This is a
function of the fugacities xn, yn, t and c in the Cartan of the global symmetry that can be
expressed with the following recursive definition:

IE[USp(2N)](~x; ~y; t; c) =

= Γe
(
pq c−2t

) N∏
n=1

Γe
(
c y±1

N x±1
n

) ∮
d~z(N−1)

N−1 ∆N−1(~z(N−1)
N−1 ; pq/t)

N−1∏
i=1

∏N
n=1 Γe

(
t1/2z

(N−1)
i

±1x±1
n

)
Γe
(
t1/2c y±1

N z
(N−1)
i

±1
)

× IE[USp(2(N−1))]
(
z

(N−1)
1 , · · · , z(N−1)

N−1 ; y1, · · · , yN−1; t; t−1/2c
)
, (2.5)
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E[USp(2N)] E[USp(2N)]∨

FFE[USp(2N)] FFE[USp(2N)]∨
Mirror

Mirror

Flip-Flip Flip-Flip

H C H∨ C∨

OH OC OH
∨ OC

∨

Figure 3. Duality web of the E[USp(2N)] theory. On the horizontal direction we have the mirror-
like duality, while on the vertical direction we have the flip-flip duality. Operators of the same color
are mapped to each other across the dualities.

with the base of the iteration defined as

IE[USp(2)](x; y; c) = Γe
(
c y±1x±1

)
. (2.6)

We also defined the integration measure of the m-th USp(2n) gauge node as

d~z(m)
n = 1

2nn!

n∏
i=1

dz(m)
i

2πi z(m)
i

(2.7)

and the contribution of the USp(2n) vector and antisymmetric chiral multiplets as

∆n

(
~z(m)
n ; pq/t

)
=

[(p; p)∞(q; q)∞]nΓe
(
pq t−1)n∏n

i<j Γe
(
pqt−1 z

(m)
i
±1z

(m)
j
±1
)

∏n
i=1 Γe

(
z

(m)
i
±2
)∏n

i<j Γe
(
z

(m)
i
±1z

(m)
j
±1
) . (2.8)

As pointed out in [4], the expression (2.5) coincides up to some prefactor corresponding
to singlet fields with the interpolation kernel Kc(x, y) studied in [23], where many integral
identities for this function were proven. These are naturally interpreted as dualities for
E[USp(2N)], which we are now going to review.

E[USp(2N)] enjoys various dualities that constitute a commutative diagram schemat-
ically represented in figure 3. First of all, we have the mirror dual frame E[USp(2N)]∨
where the USp(2N)x and USp(2N)y symmetries are exchanged and the U(1)t fugacity is
mapped to

t→ pq

t
. (2.9)

Under this duality, E[USp(2N)] is self-dual with a non-trivial map of the gauge invariant
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operators

H↔ C∨

C↔ H∨

Π↔ Π∨

Bnm ↔ B∨mn . (2.10)

At the level of the index we have the following identity:

IE[USp(2N)](~x; ~y; t, c) = IE[USp(2N)](~y; ~x; pq/t, c) , (2.11)

which has been proven in Theorem 3.1 of [23]. This duality reduces in the 3d limit to the
known self-duality under mirror symmetry of T [SU(N)].

The second duality that forms the diagram is called the flip-flip duality. The flip-flip
dual frame FFE[USp(2N)] is defined as E[USp(2N)] plus two sets of singlets OH and OC
flipping the two operators HFF and CFF

WFFE[USp(2N)] =WE[USp(2N)] + Trx
(
OHHFF

)
+ Try

(
OCCFF

)
. (2.12)

In this case the USp(2N)x and USp(2N)y symmetries are left unchanged, while only the
U(1)t fugacity transforms as in (2.9). The operator map is indeed

H↔ OH

C↔ OC

Π↔ ΠFF

Bnm ↔ BFF
mn . (2.13)

The flip-flip dual frame can be reached by iteratively applying the Intriligator-Pouliot
duality [15] by means of an iterative procedure as shown in [1]. At the level of the
supersymmetric index, the flip-flip duality is encoded in the following integral identity:

IE[USp(2N)](~x; ~y; t; c) =
N∏

n<m

Γe
(
tx±1
n x±1

m

)
Γe
(
pqt−1y±1

n y±1
m

)
IE[USp(2N)](~x; ~y; pq/t; c) ,

(2.14)

which is proven in Proposition 3.5 of [23]. This duality reduces in the 3d limit to the flip-flip
duality of T [SU(N)] discussed in [24], which can also be derived by iteratively applying a
more fundamental duality, in this case the Aharony duality [25], as shown in [1] (see also
appendix B of [26]).

For later convenience we also introduce a variant of the E[USp(2N)] theory. We call
this FE[USp(2N)] theory since it is defined as E[USp(2N)] with one extra set of singlets
OH, as well as a singlet βN , interacting via the superpotential

WFE[USp(2N)] =WE[USp(2N)] + Trx(OHH) + βN Trx TryN D(N)D(N) . (2.15)
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This theory has a self-dual frame which we call FE[USp(2N)]∨, that can be understood as
a consequence of the combined mirror and flip-flip dualities of E[USp(2N)]. Across this
duality the USp(2N)x and USp(2N)y symmetries are exchanged, while U(1)t and U(1)c are
left unchanged. At the level of the supersymmetric index, this is encoded in the following
integral identity:

IFE[USp(2N)](~x; ~y; t; c) = IFE[USp(2N)](~y; ~x; t; c) , (2.16)

which can be easily derived from eqs. (2.11) and (2.14). We will refer to this as spectral
duality, since in the 3d limit it reduces to the spectral duality of FT [SU(N)] discussed in [24].

The index of FE[USp(2N)] is defined recursively as

IFE[USp(2N)](~x; ~y; t; c) =

= Γe
(
pq c−2

)
Γe
(
pq t−1

)N N∏
n<m

Γe
(
pq t−1x±1

n x±1
m

) N∏
n=1

Γe
(
c y±1

N x±1
n

)

×
∮

d~z(N−1)
N−1 ∆N−1(~z(N−1)

N−1 )
N−1∏
i=1

∏N
n=1 Γe

(
t1/2z

(N−1)
i

±1x±1
n

)
Γe
(
t1/2c y±1

N z
(N−1)
i

±1
)

× IFE[USp(2(N−1))]
(
z

(N−1)
1 , · · · , z(N−1)

N−1 ; y1, · · · , yN−1; t; t−1/2c
)
, (2.17)

where now the base of the iteration is

IFE[USp(2)](x; y; t; c) = Γe
(
pq c−2

)
Γe
(
pq t−1

)
Γe
(
c y±1x±1

)
(2.18)

and ∆n(~z(m)
n ) contains the contribution of the vector only and not the one of the antisym-

metric chiral

∆n(~z(m)
n ) = [(p; p)(q; q)]n∏n

i=1 Γe
(
z

(m)
i
±2
)∏n

i<j Γe
(
z

(m)
i
±1z

(m)
j
±1
) . (2.19)

It simply relates to the index of E[USp(2N)] as follows:

IFE[USp(2N)](~x;~y; t;c) = Γe
(
pq c−2

)
Γe
(
pq t−1

)N N∏
n<m

Γe
(
pq t−1x±1

n x±1
m

)
IE[USp(2N)](~x;~y; t;c) .

(2.20)

3 Gluing S-walls without matter: the Identity wall

3.1 Gluing E[USp(2N)] theories: the delta-function property

In this section we study the gluing of two E[USp(2N)] theories corresponding to commonly
gauging a diagonal combination of one USp(2N) symmetry. We begin considering the theory
Tg, obtained by gauging a diagonal combination of the two manifest USp(2N) symmetries
of each E[USp(2N)] block as in figure 4. The gauging is done adding an antisymmetric
chiral field A as well as two singlets βL/RN and a superpotential interaction of the form (the
rest of the superpotential is simply the sum of those of the two E[USp(2N)] theories)

δW = Trz
[
A ·

(
HL − HR

)]
+ βLN Trz

[
D

(N)
L D

(L)
L

]
+ βRN Trz

[
D

(N)
R D

(L)
R

]
, (3.1)
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Figure 4. The theory Tg, obtained by the Lagrangian gluing of two E[USp(2N)] theories.

where the indices L/R distinguish the field and operators of the left and right E[USp(2N)]
blocks, for example HL and HR denote the H operators in the antisymmetric representation
of their manifest USp(2N) symmetries which we identify and call USp(2N)z, and Trz is
taken over such gauged USp(2N)z. This superpotential implies that the U(1)t symmetries
of the two blocks are identified. Moreover, one can check that of the two U(1)c symme-
tries, one coming from each block, the diagonal combination is anomalous because of the
USp(2N)z gauging, while only the anti-diagonal combination survives. We claim that the
supersymmetric index of this theory satisfies the following remarkable property:

INg = Γe
(
pqc±2

) ∮
d~zN ∆N (~z; pq/t)IE[USp(2N)](~z; ~x; t; c)IE[USp(2N)](~z; ~y; t; c−1)

=
∏N
j=1 2πixj

∆N (~x; t)
∑
σ∈SN

∑
±

N∏
i=1

δ
(
xi − y±1

σ(i)

)
≡ ~xÎ~y(t) . (3.2)

Note that the summation ∑σ∈SN
∑
± spans the Weyl group of USp(2N) and ~xÎ~y(t), the

Identity operator, which identifies the Cartans of the remaining USp(2N)x and USp(2N)y
symmetries, is a normalised delta-function defined in such a way that∮

d~zN ∆N (~z; t) ~z Î~y(t) = 1 . (3.3)

In subsection 5.1 we will show how, starting from this result, we can prove that gluing
two copies of the T [SU(N)] theory by gauging a diagonal SU(N) symmetry we obtain the
Identity operator identifying the two remaining SU(N) symmetries, as expected from the
identification of the T [SU(N)] theory with the S generator of SL(2,Z).

We observe that eq. (3.2) can also be understood as a limit of the identity associated
with the braid duality [4], which we will review in subsection 5.2,

Γe
(
pqc−2

)
Γe
(
pqd−2

)
×

×
∮

d~zN ∆N (~z; pq/t)IE[USp(2N)](~z; ~x; t; c)IE[USp(2N)](~z; ~y; t; d)
N∏
i=1

Γe
(
(pq)

1
2 c−1d−1v±1z±1

i

)
=

=
∏N
i=1 Γe

(
(pq) 1

2d−1v±1x±1
i

)
Γe
(
(pq) 1

2 c−1v±1y±1
i

)
Γe(c2d2)Γe(t)N

∏N
i<j Γe

(
t x±1

i x±1
j

) IE[USp(2N)](~x; ~y; t; cd) , (3.4)

which also appeared in Proposition 2.12 of [23]. Setting cd→ 1 on the l.h.s. of (3.4) removes
the SU(2)v doublets giving the l.h.s. of (3.2). We can then try to understand the effect of
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this limit on the r.h.s. of the braid relation. We expect the factor IE[USp(2N)](~x; ~y; t; cd) to
become singular and give the delta appearing on the r.h.s. of (3.2). In fact, according to
Theorem 3.7 of [23], the following ratio:

IE[USp(2N)](~x; ~y; t; cd)∏N
i<j Γe

(
pq t−1y±1

i y±1
j

)∏N
i,j=1 Γe

(
cd x±1

i y±1
j

) (3.5)

is a holomorphic function in the variables xi and yj for fixed t, c, q and p. This means that
the only poles of the index of E[USp(2N)] w.r.t. the USp(2N) fugacities are the same as
those of the combination of gamma-functions

N∏
i<j

Γe
(
pq t−1y±1

i y±1
j

) N∏
i,j=1

Γe
(
cd x±1

i y±1
j

)
. (3.6)

In particular, in the limit cd→ 1 the pairs of poles coming from the second product collide
to the points xi = y±1

j . This implies that if we integrate the index of E[USp(2N)] over the
variables xi against a test function f(~x), the colliding poles pinch the integration contour
and we should take the corresponding residues as discussed in [27]. The total number of
residues for the N -dimensional integral is 2NN !. Indeed, we can think of integrating over,
say, x1 first and take the 2N residues at x1 = y±j for j = 1, · · · , N . For each fixed j, the
contribution of the vector multiplet, which should always be included in the test function
f(~x), evaluated at the pole cancels the poles xi = y±j of the remaining N − 1 variables xi
for i = 2, · · · , N . Hence, for the second integration over x2 we only have 2(N − 1) poles.
Iterating this procedure, we get the 2NN ! poles xi = y±σ(i) for i = 1, · · · , N and σ ∈ SN .
This explains the summation over the Weyl group of USp(2N) on the r.h.s. of (3.2). In the
following, we show that the residue at these poles gives the delta-functions.

3.2 Proof strategy and interpretation

Our proof of the gluing property (3.2) is based on two key observations.
The first one is the fact that the SU(2) theory with 2 flavors (4 fundamental chirals)

has a quantum deformed moduli space with chiral symmetry breaking and its index is a
distribution acting on test theories:∮

dz1

∏4
i=1 Γe

(
siz
±1)

Γe(z±2) =

= 1
(p;p)∞(q;q)∞

[
Γe
(
s±1

1 s±1
2

)
(δ(φ1+φ3)+δ(φ1+φ4))+Γe

(
s±1

2 s±1
3

)
δ(φ1+φ2)

]
, (3.7)

where we defined si = e2πiφi , 0 ≤ φi < 1 and ∏4
i=1 si = 1. This neat result was obtained

in [13], starting from the SU(2) theory with 6 fundamentals which is s-confining and Seiberg
dual to a WZ model and turning on a mass for two chirals to flow to the theory with 4 chirals.
By carefully studying the effect of the mass deformation in the integral identity corresponding
to the s-confining Seiberg duality, the authors of [13] argued that the index of the SU(2)
theory with 4 chirals is a distribution with support at special values of the fugacities
corresponding to the points in the moduli space where chiral symmetry breaking occurs.
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We can also understand this result as follows. The moduli space of the SU(2) gauge
theory with 4 flavors is parametrized by Vij = TrQ[iQj] which satisfies

Pf V = Λ4 (3.8)

with Λ the strong coupling scale [12]. Since the moduli space doesn’t include the origin
Vij = 0, the SU(4) flavor symmetry is always broken. If we try to gauge a subgroup of
the SU(4) flavor symmetry, say SU(2)x, so to form a new quiver gauge theory, the gauged
SU(2)x is Higgsed by the non-zero VEV of Vij . This is the field theory interpretation of the
result (3.7) of [13].

The second key observation is the fact that by iterative applications of the Intriligator-
Pouliot (IP) duality1 we can split the quiver Tg in figure 4 into a product of SU(2) theories
with 2 flavors plus extra singlets. The steps of the derivation are then as follows:

• We pick one of the USp(2) gauge nodes at the two ends of the quiver. The antisym-
metric chiral is just a singlet so we can apply the IP duality to this node. The dual
gauge node is still a USp(2) node and the antisymmetric of the adjacent USp(4) node
becomes massive. Since now also the USp(4) node has no antisymmetric we can apply
the IP duality to it and we can iterate the procedure. Indeed at each application of
the duality the antisymmetric chiral field of the adjacent node becomes massive.

• The ranks of the gauge groups are left invariant by the action of the dualisations until
we reach the middle USp(2N) gauge node. This node sees 2 × 2(N − 1) + 4 = 4N
fundamentals, so its rank is decreased to USp(2N − 4). The subsequent USp(2N − 2)
node will now see 2×2(N−2)+4 = 4N−4 fundamentals, so its rank is also decreased
to USp(2N − 6) after the dualization.

• We keep going towards the other end of the tail with the dualisations, each time
decreasing the ranks of the groups of the second half of the quiver by two units. When
we reach the USp(4) node this confines since it only sees 8 fundamentals. The quiver
then splits into two parts: one is the gluing of two E[USp(2(N − 1))] blocks and
the other is an USp(2) theory with 4 fundamentals and some singletes yielding a
one-dimensional delta-function according to (3.7).

• We then iterate this procedure. At the n-th iteration we will have the gluing of two
E[USp(2(N − n))] blocks plus n copies of SU(2) with 4 fundamentals, which will give
the product of n one-dimensional delta functions. After the N -th iteration we will be
left only with N copies of SU(2) with 4 chirals, which will give us the N -dimensional
delta-function (3.2) that identifies the two USp(2N) global symmetries, as expected.

In the following we will explicitly apply this procedure at the level of the supersymmetric
index so to prove (3.2) for the simplest cases of N = 1, 2. One caveat is that, as we will see,

1The IP duality relates USp(2Nc) with 2Nf fundamental chirals and no superpotential to USp(2Nf −
2Nc − 4) with 2Nf fundamental chirals and an antisymmetric matrix Xab of Nf (2Nf − 1) singlets flipping
the dual mesons W = Xabqaqb [15]. See also appendix B.
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this procedure only captures the residues corresponding to one particular representative of
SN ∈ WUSp(2N), which for definiteness we take to be xi = y±1

σ(i) = y±1
i . Nevertheless, this

procedure indeed gives us the correct value of the residue at this particular set of poles.
Furthermore, the full set of poles can be correctly obtained by a slightly refined argument
using a regularized version of the integral on the l.h.s. of (3.2), as we show in detail in
appendix C for arbitrary N .

Our identity (3.2) for the quiver theory Tg with global symmetry USp(2N)x×USp(2N)y
×U(1)c×U(1)t can be considered as the generalization of (3.7) for the SU(2) theory with 4
chirals, to which indeed it reduces for N = 1 (modulo some singlets). The moduli space of Tg
is parameterized by various gauge invariant chiral operators. Among these, we have a gauge
invariant operator Trz ΠLΠR in the bifundamental representation of USp(2N)x×USp(2N)y,
where ΠL and ΠR are bifundamental operators between USp(2N)z×USp(2N)x and between
USp(2N)z × USp(2N)y respectively (see table 1). As in the N = 1 case, we expect that
the moduli spaced is deformed at the quantum level by

〈Trz ΠLΠR〉 6= 0 , (3.9)

which leads to the breaking of USp(2N)x ×USp(2N)y to its diagonal subgroup. Therefore,
if either USp(2N)x or USp(2N)y is gauged, it should be Higgsed by this non-zero VEV,
which exactly corresponds to our delta function identity (3.2).

3.2.1 Explicit computation for N = 1

For N = 1 the E[USp(2)] theory is just a WZ model of an SU(2)× SU(2). Hence, the Tg
theory for N = 1 is just an SU(2) gauge theory with 4 chirals and some flipping fields.
Explicitly, its supersymmetric index is

IN=1
g = Γe

(
pq c±2

)
Γe
(
pq t−1

) ∮
dz1 ∆1(z)Γe

(
c x±1z±1

)
Γe
(
c−1y±1z±1

)
. (3.10)

The identity (3.2) is then just a direct application of (3.7) in this case. Specifically, we
apply it identifying

~s = (cx, cx−1, c−1y, c−1y−1) . (3.11)

This gives

IN=1
g = Γe

(
pq c±2)Γe(pq t−1)
(p; p)∞(q; q)∞

[
Γe
(
c±2

)
Γe
(
x±2

)
(δ(X + Y ) + δ(X − Y ))+

+ Γe
(
xy−1

)
Γe
(
x−1y

)
Γe
(
c2x−1y−1

)
Γe
(
c2xy

)
δ(2C)

]
, (3.12)

where we defined

x = e2πiX , y = e2πiY , c = e2πiC , 0 ≤ X,Y,C < 1 . (3.13)

The last term containing δ(2C) vanishes, because this delta implies that the contribution of
one of the singlets in the prefactor becomes zero

Γe
(
pq c±2

)
= Γe(pq) = 0 . (3.14)
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Using that
δ(X ± Y ) = δ

( 1
2πi log(xy)

)
= 2πixδ(x− y±1) , (3.15)

we find
IN=1
g = 2πixΓe

(
x±2)

(p; p)∞(q; q)∞Γe(t)
[
δ(x− y) + δ(x− y−1)

]
, (3.16)

which is exactly (3.2) for N = 1.

3.2.2 Explicit computation for N = 2

For N = 2 the supersymmetric index of the theory is

IN=2
g = Γe

(
pqc±2

)
Γe
(
pq t−1

)2 ∮
d~z2 ∆2(~z2;pq/t)IE[USp(4)](~z;~x; t;c)IE[USp(4)](~z;~y; t;c−1) ,

(3.17)
where the supersymmetric index of E[USp(4)] is defined by

IE[USp(4)](~z;~x; t;c) = Γe
(
pq c−2t

)
Γe
(
pq t−1

) 2∏
i=1

Γe
(
cx±1

2 z±1
i

)
×

×
∮

du1 ∆1(u)Γe
(
ct−

1
2x±1

1 u±1
)
Γe
(
pq c−1t−

1
2x±1

2 u±1
) 2∏
i=1

Γe
(
t

1
2 z±1
i u±1

)
.

(3.18)

The first step of the derivation consist of applying the IP duality to the SU(2) node of
one of the two E[USp(4)] blocks, which is equivalent to the flip-flip duality for E[USp(4)]

IE[USp(4)](~z; ~x; t; c) = Γe
(
t z±1

1 z±1
2

)
Γe
(
pq t−1x±1

1 x±1
2

)
IE[USp(4)](~z; ~x; pq t−1; c) . (3.19)

After this, the full index of the theory explicitly reads

IN=2
g = Γe

(
pq t−1

)2
Γe
(
pq t−1x±1

1 x±1
2

)
Γe
(
pq c±2

)
Γe
(
pq c2t

)
Γe
(
(pq)2c−2t−1

)
×

×
∮

d~z2 du1 dw1 ∆1(u)∆1(w)∆2(~z2)
2∏
i=1

Γe
(
c x±1

1 z±1
i

)
Γe
(
c−1y±1

2 z±1
i

)
×

× Γe
(
(pq)

1
2 t−

1
2u±1z±1

i

)
Γe
(
t

1
2w±1z±1

i

)
Γe
(
(pq)

1
2 t

1
2 c−1x±1

1 u±1
)
×

× Γe
(
(pq)−

1
2 t

1
2 c x±1

2 u±1
)
Γe
(
c−1t−

1
2 y±1

1 w±1
)
Γe
(
pq c t−

1
2 y±1

2 w±1
)
, (3.20)

where ∆n(~zn) was defined in (2.19). Notice that the USp(4) gauge node has no antisymmetric
anymore, so we can proceed applying the IP duality to it. Since this node sees only 8
fundamentals, it confines. At the level of the supersymmetric index, this amounts to
applying the following evaluation formula:∮

d~z2 ∆2(~z2)
2∏
i=1

Γe
(
c x±1

1 z±1
i

)
Γe
(
c−1y±1

2 z±1
i

)
Γe
(
(pq)

1
2 t−

1
2u±1z±1

i

)
Γe
(
t

1
2w±1z±1

i

)
=

= Γe
(
c±2

)
Γe
(
x±1

1 y±1
2

)
Γe
(
(pq)

1
2 t−

1
2 c x±1

1 u±1
)
Γe
(
t

1
2x±1

1 w±1
)
×

× Γe
(
(pq)

1
2 t−

1
2 c−1y±1

2 u±1
)
Γe
(
t

1
2 c−1y±1

2 w±1
)
Γe
(
(pq)

1
2u±1w±1

)
. (3.21)
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Plugging this back into IN=2
g and simplifying the contribution of the massive fields we get

IN=2
g = Γe

(
pq t−1

)2
Γe
(
pq t−1x±1

1 x±1
2

)
Γe
(
x±1

1 y±1
2

)
Γe
(
pq c2t

)
Γe
(
(pq)2c−2t−1

)
×

×
∮

du1 ∆1(u)Γe
(
(pq)

1
2 t−

1
2 c−1y±1

2 u±1
)
Γe
(
(pq)−

1
2 t

1
2 c x±1

2 u±1
)
×

×
∮

dw1 ∆1(w)Γe
(
t

1
2 c x±1

1 w±1
)
Γe
(
c−1t−

1
2 y±1

1 w±1
)
. (3.22)

The expression that we found takes the factorized form of two independent SU(2) gauge
theories with 4 chirals plus some singlets. Hence, we can evaluate each of them separately
using (3.7). This is done in the same way as we did for the N = 1 case and it gives the results

Γe
(
(pq)2t−1c−2

) ∮
du1 ∆1(u)Γe

(
(pq)

1
2 t−

1
2 c−1y±1

2 u±1
)
Γe
(
(pq)−

1
2 t

1
2 c x±1

2 u±1
)

=

=
2πiy2Γe

(
y±2

2

)
Γe
(
pq c−2t−1)

(p; p)∞(q; q)∞

[
δ(x2 − y2) + δ(x2 − y−1

2 )
]

(3.23)

and

Γe
(
pq t c2

) ∮
dw1 ∆1(w)Γe

(
t

1
2 c x±1

1 w±1
)
Γe
(
c−1t−

1
2 y±1

1 w±1
)

=

=
2πix1Γe

(
x±2

1

)
Γe
(
c2t
)

(p; p)∞(q; q)∞

[
δ(x1 − y1) + δ(x1 − y−1

1 )
]
, (3.24)

where as in the N = 1 case the term with the third delta on the r.h.s. of (3.7) disappears
because it is multiplied by a singlet that gives vanishing contribution after imposing the
constraint of the delta. Plugging these two expressions into IN=2

g and simplifying the
contribution of massive fields we get

IN=2
g =

∏2
i=1 2πixi
∆2(~x; t)

[
δ(x1 − y1) + δ(x1 − y−1

1 )
][
δ(x2 − y2) + δ(x2 − y−1

2 )
]
, (3.25)

which is exactly the term xi = yi of (3.2) for N = 2.
As we mentioned, this computation only captures the contribution at xi = y±1

i for
i = 1, 2 because we lose the information of the other poles x1 = y±1

2 , x2 = y±1
1 when the

USp(4) gauge node is confined such that we obtain two factorized SU(2) theories with
4 fundamentals. In the appendix C, we will show that if we slightly deform the quiver
theory by introducing a fictitious U(1) whose holonomy plays the role of a regulator, the
theory is not factorized anymore because there is a bifundamental field between two SU(2)
gauge nodes, which becomes massive if the fictitious U(1) is killed. Nevertheless, this
bifundamental field plays an essential role in capturing the contribution of the other pole
we neglected in the derivation we just did so that the l.h.s. of (3.2) correctly produces all
the contributions on the r.h.s..

3.3 Non-Lagrangian gluings of F E[USp(2N)] blocks

So far we have been considering Lagrangian gluings, obtained by gauging manifest USp(2N)
symmetries. However, thanks to the mirror property of the E[USp(2N)] theory we can
consider the gauging of emergent symmetries as well.
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Figure 5. Quiver diagram of FE[USp(2N)] on the left and its shorthand representation on the right.

In fact in the following, rather than working with the E[USp(2N)] theory, we will
use the FE[USp(2N)] theory introduced in section 2 to simplify the notation. As we
will explain better momentarily, the Lagrangian gluing of two E[USp(2N)] theories and
the gluing of two FE[USp(2N)] lead precisely to the same theory Tg up to massive fields
that are integrated out at low energies, provided that the gauging prescription is suitably
modified between the two cases. The corresponding quiver diagram is shown in figure 5,
where we also introduce a shorthand depiction that explicitly displays both of the USp(2N)
symmetries that the theory possesses in the IR.

The gluing is now defined as the gauging of the diagonal combination USp(2N)z of the
manifest USp(2N) symmetries of the two FE[USp(2N)] blocks, with an extra antisymmetric
chiral field Φ which couples to OH

L and OH
R via the superpotential

Trz
[
Φ ·
(
OH

L − OH
R
)]

(3.26)

where Trz is taken over the gauged USp(2N)z. Since this extra superpotential makes both
Φ and OH

L − OH
R massive, we can integrate them out, and the remaining massless field

OH
L + OH

R can be identified with A in equation (3.1). Moreover, the singlets β(L/R)
N are

already included in the definition of FE[USp(2N)]. In other words, the gluing of two
FE[USp(2N)] theories with the superpotential (3.26) is equivalent to the gluing of two
E[USp(2N)] theories with the superpotential (3.1), which is the theory that we dubbed Tg.
This theory is represented by the quiver diagram in figure 6. The identity (3.2) can be then
rewritten as follows:

INg =
∮

d~zN ∆N (~z; t)IFE[USp(2N)](~z; ~x; t; c)IFE[USp(2N)](~z; ~y; t; c−1) = ~xÎ~y(t) , (3.27)

where we are still calling the integral on the l.h.s. INg since it coincides exactly with the
index of the theory Tg that we defined in (3.2). Notice also that on the r.h.s. we have
precisely the Identity operator as defined in (3.2).

So far we have just presented theory Tg in another equivalent way using FE[USp(2N)]
blocks, while we still gauge the manifest symmetries of the blocks, which we call the
Lagrangian gluing. Using the spectral duality of FE[USp(2N)], on the other hand, one can
extend the result (3.27) for Tg to several non-Lagrangian dual frames where an emergent
USp(2N) symmetry is gauged. For example, we can use the property (2.16) of the left
block to rewrite the identity (3.27) as follows:

INg =
∮

d~zN ∆N (~z; t)IFE[USp(2N)](~x; ~z; t; c)IFE[USp(2N)](~z; ~y; t; c−1) = ~xÎ~y(t) . (3.28)
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Figure 6. The Lagrangian gluing of two FE[USp(2N)] theories that gives the delta and the
corresponding shorthand representation. The latter is independent from whether we are doing a
Lagrangian or a non-Lagrangian gluing thanks to the spectral duality of FE[USp(2N)].

Notice that the integral is not exactly the one defining the index INg of the theory Tg defined
in (3.2), but they coincide up to spectral duality (2.16). It corresponds to a dual frame
where the diagonal combination of the emergent USp(2N) of the left block and the manifest
USp(2N) of the right block is gauged, with an extra antisymmetric field Φ coupled to CL
and OH

R as follows:

Trz
[
Φ ·
(
CL − OH

R
)]
. (3.29)

Similarly, we can use the spectral duality of the right block rather than the left block, which
leads to

INg =
∮

d~zN ∆N (~z; t)IFE[USp(2N)](~z; ~x; t; c)IFE[USp(2N)](~y; ~z; t; c−1) = ~xÎ~y(t) . (3.30)

This corresponds to another dual frame where the diagonal combination of the manifest
USp(2N) of the left block and the emergent USp(2N) of the right block is gauged, with an
extra antisymmetric field Φ coupled to OH

L and CR as follows:

Trz
[
Φ ·
(
OH

L − CR
)]
. (3.31)

Lastly, we can use the spectral duality of both blocks simultaneously, which results in the
identity

INg =
∮

d~zN ∆N (~z; t)IFE[USp(2N)](~x; ~z; t; c)IFE[USp(2N)](~y; ~z; t; c−1) = ~xÎ~y(t) . (3.32)

This corresponds to a dual frame where the diagonal combination of the emergent USp(2N)
symmetries of both blocks is gauged, with an extra antisymmetric field Φ coupled to CL
and CR as follows:

Trz
[
Φ ·
(
CL − CR

)]
. (3.33)
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3.4 The 4d S-wall and Identity wall

As we mentioned the theory Tg obtained from gluing two FE[USp(2N)] (or E[USp(2N)])
blocks in any of the ways we just described has a quantum deformed vacuum moduli space
and displays chiral symmetry breaking. The result that its index is a delta distribution acting
on test functions corresponds to this fact: if we glue Tg to some theory Ttest exhibiting
a USp(2N)a symmetry by gauging the diagonal combination of USp(2N)a and one of
its USp(2N) symmetries, say USp(2N)x, (adding an antisymmetric and the appropriate
superpotential) the VEV of the bifundamental operator Trz ΠLΠR will Higgs the new gauged
node. In other words, the theory Ttest glued with the theory Tg is dual to the original theory
Ttest. Hence, we can interpret the theory Tg as the Identity wall, which also explains our
notation ~xÎ~y for its index.

In order to exemplify these statements, let us consider the simple case where our
test theory Ttest is just a Wess-Zumino model exhibiting the USp(2N)a symmetry, e.g., a
bifundamental chiral P of USp(2N)a ×USp(2K)b coupled to an USp(2N)a antisymmetric
chiral A as follows:

Tra
[
Trb
(
P 2
)
·A
]
, (3.34)

where Tra is taken over USp(2N)a, while Trb is taken over USp(2K)b. As we discussed,
there are many equivalent dual frames of theory Tg. For example, let us choose the frame
corresponding to the identity (3.28), where the diagonal combination of the emergent
USp(2N) of the left block and the manifest USp(2N) of the right block is gauged. Thus,
the non-abelian global symmetry of Tg is USp(2N)x ×USp(2N)y, the manifest USp(2N)x
of the left block and the emergent USp(2N)y of the right block, respectively. We can
gauge the diagonal combination of USp(2N)a and USp(2N)x, which we call USp(2N)z, in
the presence of an extra antisymmetric chiral Φ as before. Φ couples to A and OH

L, the
antisymmetric operators of USp(2N)a and USp(2N)x respectively, as follows:

Trz
[
Φ ·
(
A− OH

L
)]
. (3.35)

This quadratic superpotential makes both Φ and A−OH
L massive. Once we integrate them

out, we are left with the theory shown on the l.h.s. of the second line in figure 7, with the
superpotential between P and OH

L

Trz
[
Trb
(
P 2
)
· OH

L
]

(3.36)

since A in (3.34) is now identified with OH
L. From the discussion we made around eq. (3.9)

we know that the USp(2N)z gauge node is fully Higgsed and identified with USp(2N)y.
What we obtain is the theory on the bottom right of figure 7, which is precisely the original
theory Ttest: a WZ model of P and A with the superpotential

Try
[
Trb
(
P 2
)
·A
]
, (3.37)

where P is now in the bifundamental representation of USp(2K)b ×USp(2N)y and A is in
the antisymmetric representation of USp(2N)y.
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Figure 7. Gluing theory Tg to a test theory Ttest. The resulting theory is dual to the original test
theory Ttest. We thus identify Tg with the Identity wall.

As we will discuss in subsection 5.1 we have a completely analogue result in 3d, where
by taking two copies of the T [SU(N)] theory and by gauging a diagonal combination of
the SU(N) symmetries we obtain an Identity wall identifying the two remaining SU(N)
symmetries. More precisely by taking two slightly different 3d limits of the 4d delta
property (3.2) one can recover both the relations S2 = −1 and S−1S = 1 enjoyed by
T [SU(N)]. In subsection 5.2 we will also show that the braid duality of E[USp(2N)] that
we already mentioned, reduces in 3d to a duality involving the gluing of T [SU(N)] with
CS interactions which can be interpreted as the relation STS = T−1S−1T−1 satisfied by
the SL(2,Z) generators S and T . Because of these observations one could expect that
the FE[USp(2N)] block could play the role of an S-duality wall in 4d. We will further
investigate this interpretation in an upcoming paper [14]. We stress again the fact that
we can equivalently identify S with E[USp(2N)] or FE[USp(2N)] by just modifying the
gluing/gauging prescription as we explained in subsection 3.3. We can then rephrase
the delta-function property in this language saying that concatenating two S-walls these
annihilate each other giving a trivial Identity wall. Since S2 = −1 and S−1S = 1 are
actually degenerate in 4d the duality group would be PSL(2,Z) = SL(2,Z)/Z2 rather than
the full SL(2,Z) as in 3d.

3.5 The asymmetric S-wall

In this subsection, we introduce an asymmetric S-wall, by turning on a deformation which
partially breaks the global symmetry of the FE[USp(2N)] theory. We introduce an extra
superpotential

δWdef = Try[J · OH] , (3.38)

where the antisymmetric matrix J is given by

J = 1
2
[
J2 ⊗ (OM ⊕ JN−M )− JT2 ⊗

(
OM ⊕ JTN−M

)]
, M < N (3.39)
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Figure 8. The quiver diagram for the deformed FE[USp(2N)] theory and the compact form of the
asymmetric S-wall. Each colored line denotes a set of chiral multiplets in the same representation of
the non-abelian global symmetry, but with different charges under the abelian symmetries. The blue
line denotes Q̃(N−1,2)

i , the green line denotes Ri and the red cross denotes (OH)±,±
M+i,M+j in (3.42).

with the K-dimensional empty matrix OK and the K-dimensional Jordan matrix JK . This
superpotential can be rewritten in terms of the components of OH as follows:

δWdef =
N−M−1∑
j=1

(OH)+,−
M+j,M+j+1 (3.40)

where an USp(2N)x flavor index is labeled by (i, α) with i = 1, . . . , N and α = ±. For
example, the antisymmetric invariant symbol J = iσ2 ⊗ IN of USp(2N) has the indices in
the following form:

(J)α,βi,j = (iσ2)α,β ⊗ (IN )i,j . (3.41)

This extra superpotential breaks the USp(2N)x global symmetry down to its subgroup
USp(2M)x × SU(2)v. Thus, the fields of FE[USp(2N)] charged under the USp(2N)x
symmetry are reorganized into the representations of the unbroken symmetry USp(2M)x ×
SU(2)v as follows:

Q(N−1,N) −→ (2M,1)︸ ︷︷ ︸
Q̃(N−1,M)

⊕ (1,2)⊕N−M︸ ︷︷ ︸
Q̃

(N−1,2)
i=1,...,N−M

,

OH −→ (M(2M− 1),1)︸ ︷︷ ︸
ÕH

⊕ (2M,2)⊕N−M︸ ︷︷ ︸
Ri=1,...,N−M

⊕ (1,1)⊕(N−M)(2N−2M−1)︸ ︷︷ ︸
(OH)±,±

M+i,M+j

.
(3.42)

For instance, field Ri in the bifundamental of USp(2M)x × SU(2)v is defined by(
R+
i , R

−
i

)β
j

=
(
(OH)β,+j,M+i, (OH)β,−j,N+1−i

)
, i = 1, . . . , N −M (3.43)

with the SU(2)v index ± and the USp(2M)x index (j, β). The corresponding quiver diagram
and the compact form are given in figure 8.

Note that this deformed FE[USp(2N)] theory is closely related to the theory denoted by
E[N−M,1M ][USp(2N)] in [1]. Since OH couples to the gauge invariant operator H, see (2.15),
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the extra superpotential (3.40) gives rise to a non-vanishing VEV of H triggering an RG
flow to E[N−M,1M ][USp(2N)] with some additional gauge singlets.

Clearly we can consider also an S-wall with a deformation of the emergent USp(2N)y
global symmetry. This is actually provided by the spectral duality. Indeed the FE[USp(2N)]
theory deformed by the superpotential (3.40) is dual to the FE[USp(2N)] theory deformed
by the superpotential

δWdef =
N−M−1∑
j=1

(C)+,−
M+j,M+j+1 , (3.44)

where C is the gauge invariant operator in the antisymmetric representation of the emergent
USp(2N)y symmetry of the FE[USp(2N)] theory. This deformation breaks USp(2N)y
down to its USp(2M)y × SU(2)v. Indeed, it corresponds to a massive deformation for some
of the chirals in the saw, see subsection 3.2 of [1] for more details.

3.6 Gluing asymmetric S-walls

We now consider gluing an S-wall to an asymmetric S-wall. For convenience, here we choose
a particular frame where we glue the emergent USp(2N) of the S-wall with the manifest
USp(2N) of the asymmetric S-wall which has the emergent USp(2N) symmetry broken to
USp(2M) × SU(2) by the superpotential (3.44). We will refer to the resulting theory as
theory T̃g.

At the level of the index, such deformation corresponds to the specialization of part of the
variables ~y in the form of a geometric progression: yM+i → t

N−M+1
2 −iv for i = 1, . . . , N −M

with M ≤ N . Then the identity (3.28) reduces to:

IN,Mg =
∮

d~zN ∆N (~z; t)IFE[USp(2N)](~x; ~z; t; c)

IFE[USp(2N)](~z; ~y, t
N−M−1

2 v, t
N−M−3

2 v, · · · , t−
N−M−1

2 v; t; c−1) =

=
∏N
j=1 2πixj

∆N (~x; t)
∑
σ∈SN

∑
±

M∏
i=1

δ
(
x±1
σ(i) − yi

)N−M∏
j=1

δ
(
x±1
σ(M+j) − t

N−M−1
2 −jv

)
≡ ~xÎ~y,v(t) .

(3.45)

Notice that we can recover the standard delta-property (3.2) for M = N .
We can now think of gluing theory T̃g to a test theory Ttest exhibiting the USp(2N)a

global symmetry. The delta-function property of T̃g, which we call the deformed Identity
wall, then leads to a duality between theory Ttest glued with theory T̃g and the deformed
T̃test whose USp(2N)a symmetry is broken to USp(2M)y × SU(2)v. Again let us consider
the simplest case where the test theory Ttest is given by a WZ model with the superpotential

Tra
[
Trb
(
P 2
)
·A
]
, (3.46)

where P is in the bifundamental representation of USp(2N)a × USp(2K)b and A is in
the antisymmetric representation of USp(2N)a. Now we gauge the diagonal combination
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Figure 9. On the left, the diagram representing the gluing of theory T̃g, which we identify with the
deformed Identity wall, and a test theory Ttest. On the right, the dual theory T̃test. Each colored
line denotes a set of chiral multiplets in the same representation of the non-abelian global symmetry,
but with different charges under the abelian symmetries. Especially, the blue line denotes Qi, the
green line denotes Ri and the red cross denotes (A)α,βM+j,M+k in (3.49).

USp(2N)z ⊂ USp(2N)a × USp(2N)x, where USp(2N)x comes from T̃g, with an extra
antisymmetric chiral Φ coupled to A and OH

L as follows:

Trz
[
Φ ·
(
A− OH

L
)]
. (3.47)

Since Φ and A − OH
L are massive, if we integrate them out we are left with the theory

corresponding to the left diagram in figure 9 with the superpotential between P and OH
L

Trz
[
Trb
(
P 2
)
· OH

L
]

(3.48)

as A in (3.46) is identified with OH
L. As before, the USp(2N)z is fully Higgsed, but this

time it is identified with USp(2M)y × SU(2)v. We accordingly decompose the fields as

P −→ (2K,2M,1)︸ ︷︷ ︸
P̃

⊕ (2K,1,2)⊕N−M︸ ︷︷ ︸
Qi=1,...,N−M

,

A −→ (1,M(2M− 1),1)︸ ︷︷ ︸
Ã

⊕ (1,2M,2)⊕N−M︸ ︷︷ ︸
Ri=1,...,N−M

⊕ (1,1,1)⊕(N−M)(2N−2M−1)︸ ︷︷ ︸
(A)α,β

M+j,M+k

,
(3.49)

where (α, β) = (±,±) if 1 ≤ j < k ≤ N−M and (α, β) = (+,−) if 1 ≤ j = k ≤ N−M . The
result of the Higgsing is the WZ model T̃test on the right of figure 9 with the superpotential

Try
[
Trb
(
P̃ 2
)
· Ã
]

+
N−M∑
i=1

TryTrb
[
P̃Q±i R

∓
i

]
+
N−M∑
i=1

Trb
[
Q−i Q

+
i

]
(A)+,−

M+i,M+i

+
∑
j<k

εαβεγδ Trb
[
QαjQ

γ
k

]
(A)β,δM+j,M+k +

N−M−1∑
i=1

(A)+,−
M+i,M+i+1 , (3.50)

where the last term comes from the deformation (3.44) and is the responsible for the
breaking of USp(2N) to USp(2M)y × SU(2)v.

4 Gluing S-walls with matter

4.1 Gluing with two fundamental chirals

We will now consider the gluing of two S-walls with additional matter fields. We start
considering the case where we gauge the diagonal combination USp(2N)z of two manifest
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Figure 10. The theory obtained by gluing two S-walls with 2 chirals is dual to a WZ model.

USp(2N) symmetries of the S-walls with an antisymmetric field Φ and two extra fundamental
fields (P+, P−) interacting via the superpotential

Trz
[
Φ ·
(
OH

L − OH
R
)]

+ Trz
[
P+P− ·

(
OH

L + OH
R
)]

(4.1)

where Trz is taken over the gauged USp(2N)z and OH
L, OH

R are the gauge singlet fields of
the two FE[USp(2N)] blocks in the antisymmetric representation of USp(2N)z.

Also with this gluing the “U(1)t” symmetries of the two FE[USp(2N)] blocks are
identified because of the first term in the superpotential. Of the two “U(1)c” symmetries
for the FE[USp(2N)] blocks, which we call U(1)c and U(1)d, one combination is broken
and correspondingly the fugacities of U(1)c and U(1)d satisfy

cd = (pq/t)
1
2 . (4.2)

The total global symmetry is

USp(2N)x ×USp(2N)y × SU(2)v ×U(1)c ×U(1)t (4.3)

where USp(2N)x and USp(2N)y are the emergent USp(2N) symmetries of each
FE[USp(2N)] block and (P+, P−) is a doublet of SU(2)v.

Notice that the first term in (4.1) gives mass to both Φ and OH
L − OH

R, so they can
be integrated out, and we are left with

δWfund = Trz
[
εαβP

αP β ·A
]
, where A = OH

L + OH
R . (4.4)

As depicted in figure 10, we will show that the dual is a simple WZ theory. In terms of
the supersymmetric index, this duality corresponds to the following identity:

∮
d~zN ∆N (~z; t)

N∏
i=1

Γe
(
t

1
2 v±1z±1

i

)
IFE[USp(2N)](~z; ~x; t; c)IFE[USp(2N)](~z; ~y; t; (pq/t)

1
2 c−1)

=
N∏

i,j=1
Γe
(
(pq/t)

1
2x±1

i y±1
j

) N∏
i=1

Γe
(
t

1
2 cv±1x±1

i

) N∏
j=1

Γe
(
(pq)

1
2 c−1v±1y±1

j

)
, (4.5)

where v is the fugacity of SU(2)v acting on (P+, P−).
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The duality in figure 10 can be generalized to the case where we glue S-walls of different
lengths N > M as shown in compact form in figure 11. More precisely as shown in the
first line in figure 12 we take one asymmetric S-wall, the FE[USp(2N)] theory deformed
by the superpotential (3.40), which breaks USp(2N) to USp(2M)× SU(2)v, and the S-wall
FE[USp(2M)] exhibiting two USp(2M) symmetries and gauge the diagonal combination,
which we call USp(2M)z, of USp(2M) of the deformed FE[USp(2N)] and the manifest
USp(2M) symmetry of FE[USp(2M)]. We then introduce the doublet of fundamental
chirals (P+, P−) with the superpotential

δWfund = εαβTrzRαN−MP β (4.6)

where we recall that the fields Ri (depicted in green in figure 12) were defined in (3.42).
Notice that the superpotential (4.6) has both the effects of fixing the abelian charges of P
and of identifying the SU(2) symmetry rotating P with SU(2)v acting on RN−M (and on the
other Ri). From figure 12 we also see that the fields Q̃(N−1,2)

i and Ri respectively represented
by the blue and green line form cubic superpotential with the horizontal bifundamental
Q̃(N−1,M) inherited from the cubic superpotential of FE[USp(2N)] involving OH

L.
At the level of the index, the deformation (3.40) is translated into the specialization of the

variables ~zN of IE[USp(2N)](~x; ~z; t; c) in (4.5) to ~zN = (z1, . . . , zM , t
N−M−1

2 v, . . . , t−
N−M−1

2 v).
Then we can integrate over the remaining ~zM = (z1, . . . , zM ) and obtain the following
generalized identity:2

N−M∏
i=1

Γe
(
t−i+1c2

)N−M∏
i=1

Γe
(
ti
) ∮

d~zM ∆M (~z; t)
N∏
i=1

Γe
(
t
N−M+1

2 v±1z±1
i

)
× IFE[USp(2N)](~z, t

N−M−1
2 v, . . . , t−

N−M−1
2 v; ~x; t; c)IFE[USp(2M)](~z; ~y; t; (pq/t)

1
2 c−1)

=
N∏
i=1

M∏
j=1

Γe
(
(pq/t)

1
2x±1

i y±1
j

) N∏
i=1

Γe
(
t−

N−M−1
2 cv±1x±1

i

) M∏
j=1

Γe
(
(pq)

1
2 t

N−M
2 c−1v±1y±1

j

)
≡ I(N,M)

5

(
~x; ~y; v; t; ct−

N−M
2
)
, (4.7)

where we have defined

I(N,M)
5 (~x;~y;v; t;c) =

N∏
i=1

M∏
j=1

Γe
(
(pq/t)

1
2x±1

i y±1
j

) N∏
i=1

Γe
(
t

1
2 cv±1x±1

i

) M∏
j=1

Γe
(
(pq)

1
2 c−1v±1y±1

j

)
.

(4.8)

2Notice that the index of F E[USp(2N)] includes the contribution of OH
L which, due to the specialization

zM+i → t
N−M+1

2 −iv for i = 1, . . . , N −M , is decomposed as:

N∏
i<j

Γe
(
pqt−1z±1

i z±1
j

)
−→



∏M

i<j
Γe
(
pqt−1z±1

i z±1
j

)
,∏M

i=1

∏N−M
j=1 Γe

(
pqt−1z±1

i

(
t

N−M+1
2 −jv

)±1
)

,∏N−M
i<j

Γe
(

pqt−1
(

t
N−M+1

2 −iv
)±1(

t
N−M+1

2 −jv
)±1

)
where the first line correspond to ÕH, the second line corresponds to Ri, and the third line corresponds to
(OH)±,±

M+i,M+j in (3.42).
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Figure 11. The theory obtained by gluing two S-walls of different length with 2 chirals is dual to a
WZ model.

Also in this case, as we will see, the proof of the duality is based on the iterative
application of the IP duality. Indeed for N = M = 1 the duality in figure 10 is the
star-triangle duality corresponding to IP for Nc = 1 and Nf = 3 or Seiberg duality for
SU(2) with 6 chirals.

The first step of the derivation consists in applying iteratively the IP duality along the
quiver starting from the leftmost USp(2) node until we reach the (N − 2)-th gauge node,
which leads to the second quiver in figure 12. Note that the SU(2) flavor node with fugacity
x1 is now attached to the (N − 2)-th gauge node and the (N − 1)-th gauge node, both of
which do not have antisymmetric fields.

We then apply IP duality on the (N − 1)-th gauge node, doing so the Ri fields in
green becomes massive and disappear, while only two of the Q̃(N−1,2)

i fields remain massless,
which are denoted by a black line connecting the (N − 1)-th gauge node and the SU(2)v
flavor node in the third line of figure 12. Indeed we can see that after the dualisation the
fugacities of the Q̃(N−1,2)

i fields lead to a telescopic canellation

N−M∏
i=1

N−1∏
j=1

Γe
(
t

1
2
(
t
N−M+1

2 −iv
)±1(

z
(N−1)
j

)±1
)

→
N−M∏
i=1

N−1∏
j=1

Γe
(

(pq/t)
1
2
(
t
N−M+1

2 −iv
)±1(

z
(N−1)
j

)±1
)

=
N−1∏
j=1

Γe
(

(pq)
1
2 t−

N−M
2 v±1

(
z

(N−1)
j

)±1
)
.

(4.9)

Now we apply the IP duality on the remaining gauge nodes sequentially arriving at the
last diagram in figure 12.

The next steps are shown in figure 13. We first apply the IP duality along the quiver
starting from the left and up to the second to last gauge node, arriving at the second line
of figure 13. Then we start again from the leftmost node and apply IP sequentially, but
this time stopping at the third to last node. We repeat this procedure for i = 4, . . . , N − 1,
applying the IP duality from the first gauge node to the i-th last node, obtaining the
third diagram. We now notice that the initial part of the tail consists of a series of SU(2)
gauge nodes which sequentially confine once we go through it with the IP duality, and we
eventually reach the last diagram.
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Figure 12. The first steps for the derivation of the duality associated to the gluing of two S-walls
of different lengths with the insertion of 2 chirals. We avoid drawing gauge singlets not to clutter
the picture.
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Figure 13. The subsequent steps for the derivation of the duality associated to the gluing of two S-
walls of different lengths with the insertion of 2 chirals. We avoid drawing gauge singlets not to clutter
the picture. Some of these would connect the USp(2M)y flavor node to some of the other flavor nodes.

Implementing these manipulations at the level of the index, we find that the l.h.s. of (4.7)
is equal to

Γe(pq/t)N
N∏
i<j

Γe
(
pqt−1x±1

i x±1
j

) N∏
i=1

Γe
(
ti
)N−1∏
i=1

Γe
(
tM−ic2

)

×
N∏
i=1

M∏
j=1

Γe
(
(pq/t)

1
2x±1

i y±1
j

) M∏
j=1

Γe
(
(pq)

1
2 t

N−M
2 c−1v±1y±1

j

)

×
N∏
i=1

Γe
(
ti−

N−M+1
2 cv±1x±1

1

) ∮
d~zN−1 ∆N−1(z)

N−1∏
j=1

Γe
(
(pq)

1
2 t−

N
2 v±1z±1

j

)
× Γe

(
(pq)

1
2 t−

M−1
2 c−1x±1

1 z±1
j

)
IFE[USp(2N−2)]

(
~z;xN , . . . , x2; pq/t; (pq)−

1
2 t

M+1
2 c

)
(4.10)

for N > 1. If N = M = 1, the identity (4.5) is nothing but the IP duality itself (B.3).
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We now observe that the last diagram of figure 13 is the mass-deformed E[USp(2N)]
theory dual to a WZ model discussed in [1]. Indeed comparing with the recursive defini-
tion (2.17) of IFE[USp(2N)] and the relation (2.20) between IFE[USp(2N)] and IE[USp(2N)], we
find that the last two lines of (4.10) are nothing but the index IE[USp(2N)] with specialized
~y variables

IE[USp(2N)]
(
t
N−1

2 v, . . . , t−
N−1

2 v;xN , . . . ,x1;pq/t; t
M
2 c
)

=
N∏
i=1

Γe
(
ti−

N−M+1
2 cv±1x±1

1

)∮
d~zN−1 ∆N−1(z)

N−1∏
j=1

Γe
(
(pq)

1
2 t−

N
2 v±1z±1

j

)
×Γe

(
(pq)

1
2 t−

M−1
2 c−1x±1

1 z±1
j

)
IFE[USp(2N−2)]

(
~z;xN , . . . ,x2;pq/t; (pq)−

1
2 t

M+1
2 c

)
. (4.11)

By the sequential application of the IP duality, this theory was shown in [1] to be dual to a
WZ model. The corresponding index identity is given by

IE[USp(2N)]
(
t
N−1

2 v, . . . , t−
N−1

2 v;xN , . . . , x1; pq/t; t
M
2 c
)

= Γe
(
tMc2

)
Γe(t)N

N∏
n<m

Γe
(
tx±1
n x±1

m

) N∏
i=1

Γe
(
t−

N−M−1
2 cv±1x±1

i

)
Γe(tM−i+1c2)Γe(ti)

(4.12)

which leads to the identity (4.7).
Also in this case although we proved the identity (4.7) by gauging the manifest USp(2M)

symmetry, using the spectral duality of FE[USp(2M)] we can show that this identity holds
for any combination of USp(2M), either manifest or emergent; i.e. one can either swap
(~z, tN−M−1

2 v, . . . , t−
N−M−1

2 v) and ~x in the left block as follows:

N−M∏
i=1

Γe
(
t−i+1c2

)N−M∏
i=1

Γe
(
ti
) ∮

d~zM ∆M (z, t)
N∏
i=1

Γe
(
t
N−M+1

2 v±1z±1
i

)
× IFE[USp(2N)](~x; ~z, t

N−M−1
2 v, . . . , t−

N−M−1
2 v; t; c)IFE[USp(2M)](~z; ~y; t; (pq/t)

1
2 c−1)

= I(N,M)
5

(
~x; ~y; v; t; ct−

N−M
2
)

(4.13)

or swap ~z and ~y in the right block, or both, without changing the identity.

4.2 Gluing with 2L fundamental chirals for L > 1

We now consider theory T 2L
g obtained by gluing two S-walls with the insertion of 2L

fundamental fields P j for j = 1, . . . , 2L, which are rotated by an extra USp(2L)v global
symmetry. Similarly to the L = 1 case, we introduce the superpotential

Trz
[
Φ ·
(
OH

L − OH
R
)]

+ Trz
[
Trv

(
P 2
)
·
(
OH

L + OH
R
)]
, (4.14)

where Trz and Trv are taken over the gauge USp(2N)z and the global USp(2L)v respectively.
Once we integrate out the massive fields Φ and OH

L − OH
R, the remaining superpotential

can be written as

δW = Trz
[
Trv

(
P 2
)
·A
]
, (4.15)
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Figure 14. The dual of the gluing of two S-walls with the insertion of 2L fundamental chirals fields.

where A is defined by A = OH
L + OH

R. The global symmetry of T 2L
g is given

USp(2N)x ×USp(2N)y ×USp(2L)v ×U(1)c ×U(1)t . (4.16)

As we are about to see, T 2L
g admits a dual description given by the linear quiver with L− 1

gauge nodes shown in figure 14.
This duality can be derived from the dualities we have obtained for L = 0, 1. The idea

is to first split the 2L chirals into L doublets by inserting L−1 Identity walls, corresponding
to pairs of S-walls glued together, as shown in figure 15. This dual frame can also be
regarded as a sequence of L blocks formed by two S-walls glued with the insertion of a
doublet of fundamental chirals. We can then apply the duality of figure 10 L times to reach
the dual frame on the right of figure 14.

In terms of the supersymmetric index, the duality can be expressed as follows:∮
d~zN ∆N (~z; t)IFE[USp(2N)](~z;~x; t;c)

N∏
i=1

L∏
j=1

Γe
(
t

1
2 v±1
j z±1

i

)
IFE[USp(2N)]

(
~z;~y; t; (pq/t)

L
2 c−1

)

=
∮

d~w(1)
N ∆N (w(1), t) · · ·

∮
d~w(L−1) ∆N (w(L−1), t)

L∏
i=1
I(N,N)
5

(
~w(i−1); ~w(i);vi; t; (pq/t)−

i−1
2 c
)
,

(4.17)

where ~w(0) ≡ ~x and ~w(L) ≡ ~y and I(N,M)
5 (~x; ~y; v; t; c) was defined in (4.8). Note that the

U(1)c fugacity of the right block is fixed to (pq/t)L2 c−1 due to the anomaly cancelation and
the superpotential (4.15).

Again, while we have derived the duality for the theory with the Lagrangian gluing,
this can be further extended to several non-Lagrangian dual frames with the gauging of
emergent USp(2N) symmetries. Those can be achieved by using the spectral duality of
each FE[USp(2N)] block; e.g. one can simply exchange ~z and ~x among the arguments of
the left block without affecting the r.h.s. using the spectral duality (2.16):∮

d~zN ∆N (z, t)IFE[USp(2N)](~x;~z; t;c)
N∏
i=1

L∏
j=1

Γe
(
t

1
2 v±1
j z±1

i

)
IFE[USp(2N)]

(
~z;~y; t; (pq/t)

L
2 c−1

)

=
∮

d~w(1)
N ∆N (w(1), t) · · ·

∮
d~w(L−1) ∆N (w(L−1), t)

L∏
i=1
I(N,N)
5

(
~w(i−1); ~w(i);vi; t; (pq/t)−

i−1
2 c
)
.

(4.18)
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Figure 15. The auxiliary dual frame for the gluing of two S-walls with 2L chiral fields obtained by
the insertion of L− 1 identity walls.

In this case, we gauge the diagonal combination of the emergent USp(2N) of the left block
and the manifest USp(2N) of the right block, with interaction

Trz
[
Φ ·
(
CL − OH

R
)]

+ Trz
[
Trv

(
P 2
)
·
(
CL + OH

R
)]
, (4.19)

where Φ and CL − OH
R are massive and can be integrated out. In addition, one can also

use the spectral duality of the right block, which simply exchanges ~z and ~y among its
arguments.

The duality that we derived in this section, schematically represented in figure 14,
is in fact one particular instance of the 4d mirror duality discussed in [1]. Specifically,
up to gauge singlets, T 2L

g , the theory on the left, coincides with Eσρ [USp(2NL)] where
ρ = [(L− 1)N , 1N ] and σ = [NL], while the theory on the right can be identified with its
mirror dual Eρσ[USp(2N)]. Hence, we found a derivation of this particular 4d mirror duality
by iterative application of the IP duality. This leads us to wonder whether it is possible to
derive all the mirror dualities, both in 4d and in 3d, by iterative application of some more
fundamental duality, like the IP duality in 4d.

This actually turns out to be true, as it will be shown in an upcoming paper [14], where
the dualities we derived in this section will play the role of basic duality moves that we apply
locally in linear quivers to determine their mirror dual. We will then need our dualities for
generic values of the parameter N,M,L which might include cases in which our theories are
not flowing to an interacting SCFT. Actually determining the range of parameters for which
our dual quiver theories flow to an interacting IR SCFT is quite complicated compared for
example with the case of Seiberg duality, which relates interacting theories if the number of
colors and flavors is such that both theories are in the conformal window. Remember that
in Seiberg duality, for a fixed value of, say, the number of colors, the range of the number of
flavors that defines the conformal window is determined by requiring that the beta-function
is negative for one of the two extreme of the range and that all the gauge invariant operators
have their superconformal dimension above the unitarity bound for the other extreme. In
our theories determining the precise conformal window is more complicated for various
reasons. First, the requirement on the negative beta-functions at each gauge node is not a
necessary condition anymore. This is because several interactions are involved in our quiver
theory, both gauge and superpotential interactions. The requirement on the dimension
of gauge invariant operators is still a necessary condition, but verifying it is much more
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Figure 16. The quiver representation of the Lagragian gluing of two FT [U(N)] theories. Round
nodes denote U(n) gauge symmetries. Pairs of lines between adjacent nodes denote chiral fields in
the bifundamental and anti-bifundamental representation of the two nodes symmetries, while arcs
denote chiral fields in the adjoint representation of the corresponding node symmetry.

complicated than in Seiberg duality since the structure of the gauge invariant operators, as
we saw, is more convoluted and moreover we have abelian symmetries that can mix with
the R-symmetry in the IR. For these reasons, determining the precise conformal window
for our dualities is tricky and we don’t attempt this. In addition, for the reasons above,
when our theories are coupled to other theories (as it will happen when we will use these
dualities as basic duality moves) we would have to discuss again the IR dynamics as new
interactions are generated.

5 3d dualities and SL(2,Z) relations

In this section we will show how the basic properties of the S and T generators of SL(2,Z)
can be reinterpreted as dualities involving the 3d S-wall theory. In particular we will show
how to recover the 3d field theory realisations of the relations S2 = −1, SS−1 = 1 and
STS = T−1S−1T−1. As we already mentioned we can equivalently identify the 3d S-wall
with T [SU(N)] or FT [SU(N)] by just modifying the notion of gluings of walls, so we will
always work with FT [SU(N)].

5.1 Gluing 3d S-walls and Identity walls

In order to prove that gluing two 3d S-walls we get an Identity wall, we can either take the
3d limit followed by various real mass deformations of the 4d result or we can follow an
iterative procedure as in section 3.2. Here we will discuss in detail the first approach by
showing how the various limits can be taken at the level indices and partition functions,
giving just a quick description of the second approach.

For the iterative procedure we consider the Lagrangian gluing of two 3d S-walls, that
is we gauge the manifest U(N) symmetries of two FT [U(N)] tails as depicted in figure 16.

Notice that, since there is no flavor node in the quiver, an overall U(1) in the gauge
group is redundant and can be re-absorbed. The standard choice is to re-absorbe the U(1)
part of the middle U(N) node, so to turn it into a U(N)/U(1) = SU(N)/ZN node (we will
see this at the level of partition functions later). In the following discussion we will neglect
this redundancy in our description of the theory and keep the middle node to be U(N).

The fundamental duality in this case is the Aharony duality3 [25] which can be applied
iteratively starting from the leftmost U(1) node. The dualisation of each node among other

3The Aharony duality relates U(Nc) with Nf flavors and no superpotential to U(Nc−Nf ) with Nf flavors
and N2

f + 2 singlets Xa
b, S±1 flipping the dual mesons and monopoles W = Xa

bqaq̃b + S−M+ + S+M−.
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things has the effect of removing the adjoint at the adjacent nodes so the dualisation can
be iterated proceeding from the left to the right of the quiver. As we pass the central U(N)
node the ranks start decreasing, and when we reach the right U(2) node this will only see
two flavors and confine. So the original quiver splits into two FT [U(N − 1)] blocks gauged
together and a decoupled U(1) theory with a BF coupling of the form:∫

d3xd2θd2θ̄ V̂ Σ−
(∫

d3xd2θ iΦΦ̂ + c.c.

)
(5.1)

where Σ and Φ are the dynamical linear and chiral multiplets inherited from the N = 4
vector for the decoupled gauge U(1), while V̂ and Φ̂ are the background N = 2 vector and
chiral multiplets inherited from the background N = 4 vector for a U(1) global symmetry
which is a combination of the topological symmetries of the leftmost and of the rightmost
U(1) nodes of the original theory. This is the analogue of what happens also in 4d, where
at the end of the first iteration of the IP duality we got a decoupled SU(2) gauge theory
with 4 chirals with the SU(2)2 symmetry acting on them, originating from the leftmost
and the rightmost SU(2) symmetries of the saw of figure 4. In 3d integrating over the
dynamical fields will lead to a functional delta function setting the background fields to
zero [28] and so identifying the topological symmetries of the first and last nodes. Iterating
this procedure as in the 4d case we can split the theory obtained by gluing two FT [U(N)]
tails into the product of N U(1) theories with BF couplings. The functional integration
over these N abelian nodes yields the functional delta function identifying the topological
symmetries of the left and of the right FT [U(N)] tails.

We can alternatively obtain this result starting from the 4d gluing of two FE[USp(2N)]
theories that gives an Identity wall and implementing the following steps which reduce the
4d FE[USp(2N)] theory to the 3d FT [U(N)] theory.

We first compactify on a circle so to get a 3d N = 2 quiver gauge theory that looks
exactly as FE[USp(2N)], but with the addition of a monopole superpotential that is
dynamically generated in the reduction [6, 7]. Specifically, the fundamental monopole of
each USp gauge node is turned on in the superpotential, with the effect of breaking some
abelian symmetries that were anomalous in 4d. We will refer to the resulting theory as
FE[USp(2N)]3d.

We then consider a combination of a Coulomb branch VEV that breaks all the gauge
groups from USp to U combined with a real mass deformation so to follow the theory
to a vacuum where half of the matter chiral fields remains massless. This gives the 3d
N = 2 theory called FM [U(N)] that was studied in [18].4 In particular in this theory the
fundamental monopoles of magnetic charge ±1 of every unitary gauge node is turned on in
the superpotential.

Finally, we consider a further real mass deformation for what used to be the U(1)c
symmetry in 4d, which has the effect of giving mass to all of the fields of the saw and of

4This theory was originally introduced in [18] from a completely different perspective, that is exploiting
a relation between 3d N = 2 dualities and 2d CFT correlators in the free field realisation [29]. From this
perspective, the F M [SU(N)] theory corresponds to the 3d gauge theory avatar of the kernel function used
to manipulate the free field correlators of Liouville theory in [30].
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lifting the monopole superpotential. The result is that now we have two FT [U(N)] theories
glued together yielding an Identity wall operator identifying the topological symmetries of
the two tails.

Let’s see how these series of limits is implemented at the level of supersymmetric
partition functions. The starting point is the 4d delta-identity (3.27), which we report again
here for reference

INg =
∮

d~zN ∆N (~z; t)IFE[USp(2N)](~z; ~x; c; t)IFE[USp(2N)](~z; ~y; c−1; t)

=
∏N
i=1 2πixi

∆N (~x; t)
∑
σ∈SN

∑
±

N∏
i=1

δ
(
xi − y±1

σ(i)

)
. (5.2)

The first step consists of taking the limit from the S3×S1 partition function of FE[USp(2N)]
to the S3

b partition function of the theory obtained from circle compactification (see [31–34]
and appendix A.1 for our conventions on the squashed three-sphere partition function). For
this purpose, we redefine the parameters of (5.2) as follows:

z
(n)
L/R,a = e2πirZ(n)

L/R,a , n = 1, · · · , N − 1, a = 1, · · · , n,

xi = e2πirXi , yi = e2πirYi , zi = e2πirZi , i = 1, · · · , N,

c = e2πir∆, t = e2πir(iQ−2mA), p = e−2πrb, q = e−2πrb−1
, (5.3)

where r is interpreted as the radius of S1 and all the new parameters in capital letters
are taken to live in

[
− 1

2r ,
1
2r

]
, so that in the r → 0 limit we recover the real axis which is

the standard domain for parameters of the S3
b partition function. Moreover, in order to

conform with the conventions already appering in the literature, we renamed the U(1)c
symmetry in 3d with U(1)∆. At the level of the integrand of the S3 × S1 partition function,
the limit is taken using the following property that relates the elliptic gamma function to
the double-sine function, in terms of which the contribution of 3d N = 2 multiplets to the
S3
b partition function can be written:

lim
r→0

Γe
(
e2πirx; p = e−2πrb, q = e−2πrb−1) = e−

iπ
6r (iQ2 −x)sb

(
i
Q

2 − x
)
, (5.4)

where Q = b+ b−1. Using this, one can show that [4]

lim
r→0
IFE[USp(2N)](~x; ~y; t; c) = CN ZFE[USp(2N)]3d( ~X; ~Y ;mA; ∆) , (5.5)

where we defined the S3
b partition function of FE[USp(2N)]3d as

ZFE[USp(2N)]3d( ~X; ~Y ; ∆;mA) = sb

(
−iQ2 + 2∆

)
sb

(
i
Q

2 − 2mA

)N
×

×
N∏
i<j

sb

(
i
Q

2 ±Xi ±Xj − 2mA

) N∏
i=1

sb

(
i
Q

2 ± YN ±Xi −∆
)
×

×
∫ ∏N−1

a=1 dZ(N−1)
a

2N−1(N − 1)!

∏N−1
a=1 sb

(
YN ± Z(N−1)

a −mA + ∆
)∏N

i=1 sb
(
Z

(N−1)
a ±Xi +mA

)
∏N−1
a=1 sb

(
iQ2 ± 2Z(N−1)

a

)∏N−1
a<b sb

(
iQ2 ± Z

(N−1)
a ± Z(N−1)

b

) ×

×ZFE[USp(2N−2)]3d

(
Z

(N−1)
1 , · · · , Z(N−1)

N−1 ;Y1, · · · , YN−1;mA; ∆ +mA − i
Q

2

)
(5.6)
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and the divergent prefactor is

CN =
[
r
(
e−2πrb; e−2πrb

)
∞

(
e−2πrb−1 ; e−2πrb−1)

∞

]N(N−1)
2 ×

× exp
[
− iπ6r

(
i
Q

4 N(9N − 1)− 2N(2N − 1)mA − 2N∆
)]

. (5.7)

Instead, the limit of the contribution of a USp(2N) vector multiplet together with that of a
USp(2N) antisymmetric chiral is

lim
r→0

∆N (~z; t)
[(p; p)(q; q)]N

= exp
[
− iπ6r

(
2N(2N − 1)mA + i

Q

2 N(1− 4N)
)]
×

×
sb
(
−iQ2 + 2mA

)N ∏N
i<j sb

(
−iQ2 ± Zi ± Zj + 2mA

)
∏N
i=1 sb

(
iQ2 ± 2Zi

)∏N
i<j sb

(
iQ2 ± Zi ± Zj

) . (5.8)

Combining these results, we find that the 3d limit of (5.2) yields

C

∫ ∏N
i=1 dZi
2NN !

sb
(
−iQ2 + 2mA

)N ∏N
i<j sb

(
−iQ2 ± Zi ± Zj + 2mA

)
∏N
i=1 sb

(
iQ2 ± 2Zi

)∏N
i<j sb

(
iQ2 ± Zi ± Zj

) ×

×Z3d
FE[USp(2N)](~Z; ~X; ∆;mA)Z3d

FE[USp(2N)](~Z; ~Y ;−∆;mA) =

=
∏N
i=1 sb

(
iQ2 ± 2Xi

)∏N
i<j sb

(
iQ2 ±Xi ±Xj

)
sb
(
−iQ2 + 2mA

)N ∏N
i<j sb

(
−iQ2 ±Xi ±Xj + 2mA

) ∑
σ∈SN

∑
±

N∏
i=1

δ(Xi ± Yσ(i)) . (5.9)

The overall divergent prefactor coming from both sides of the identity

C =
[
r
(
e−2πrb; e−2πrb

)
∞

(
e−2πrb−1 ; e−2πrb−1)

∞

]N(N+1)
exp

[
− iπ6r

(
i
Q

2 N(N + 1)
)]
−→
r→0

1

(5.10)

turns out to be trivial as one can easily show using the following asymptotic behaviour of
the q-Pochhammer symbol [35]:

lim
β→0

(e−2β ; e−2β)∞ =
√
π

β
exp

[
− π2

12β

]
. (5.11)

The identity (5.9) we obtained is the analogue of (5.2) for the theory associated to the
circle compactification of FE[USp(2N)].

We now consider the combination of Coulomb branch VEV and real mass deformation
that makes us flow to the FM [U(N)] theory of [18]. This limit can be implemented at the
level of the S3

b partition function considering the following scaling of the parameters:

Xi → Xi + s, Yi → Yi + s, Zi → Zi + s, Z
(n)
L/R,a → Z

(n)
L/R,a + s, s→ +∞ (5.12)

and using the following property of the double-sine function:

lim
x→±∞

sb(x) = e±i
π
2 x

2
. (5.13)
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Using this, one can show that [4]

ZFE[USp(2N)]3d( ~X; ~Y ;mA; ∆)→ KN

N∏
j=1

sb

(
−iQ2 + 2∆ + 2(j − 1)

(
mA − i

Q

2

))
×

×ZFM [U(N)]( ~X; ~Y ;mA; ∆) , (5.14)

where we defined the S3
b partition function of the FM [U(N)] theory as

ZFM [U(N)]( ~X; ~Y ;∆;mA) =
N∏
i=1

sb

(
i
Q

2 ±(Xi−YN )−∆
) N∏
i,j=1

sb

(
i
Q

2 ±(Xi−Xj)−2mA

)
×

×
∫ ∏N−1

a=1 dZ(N−1)
a

(N−1)!

∏N−1
a=1 sb

(
±(Z(N−1)

a −YN )+∆−mA

)∏N
i=1 sb

(
±(Z(N−1)

a −Xi)+mA

)
∏N−1
a<b sb

(
iQ2 ±(Z(N−1)

a −Z(N−1)
b )

) ×

×ZFM [U(N−1)]

(
Z

(N−1)
1 , · · · ,Z(N1)

N−1;Y1, · · · ,YN−1;mA;∆+mA−i
Q

2

)
(5.15)

and the divergent prefactor is

KN = exp
{

2πi
[
i
Q

2 −∆ + (N − 1)
(
i
Q

2 −mA

)][
2Ns+

N∑
i=1

(Xi + Yi)
]}

. (5.16)

The partition function of FM [SU(N)] can be obtained from that of FM [U(N)] by just
imposing the tracelessness conditions ∑N

i=1Xi = ∑N
i=1 Yi = 0. Instead, the limit of the

contribution of a USp(2N) vector multiplet together with that of a USp(2N) antisymmetric
chiral is

sb
(
−iQ2 + 2mA

)N ∏N
i<j sb

(
−iQ2 ± Zi ± Zj + 2mA

)
∏N
i=1 sb

(
iQ2 ± 2Zi

)∏N
i<j sb

(
iQ2 ± Zi ± Zj

)
→ exp

[
2πi(2(N − 1)mA − iNQ)

(
Ns+

N∑
i=1

Zi

)]∏N
i,j=1 sb

(
−iQ2 ± (Zi − Zj) + 2mA

)
∏N
i<j sb

(
iQ2 ± (Zi − Zj)

) .

(5.17)

This is the contribution of a U(N) vector multiplet and a U(N) adjoint chiral multiplet.
Indeed, as we mentioned before, the effect of this limit is of breaking all the symplectic
groups, both of gauge and flavor symmetries, down to their unitary subgroups. Combining
these results, we find that after such a limit (5.9) reduces to

K
N∏
j=1

sb

(
−iQ2 ± 2∆ + 2(j − 1)

(
mA − i

Q

2

))
×

×
∫ ∏N

i=1 dZi
N !

sb
(
−iQ2 + 2mA

)N ∏N
i<j sb

(
−iQ2 ± (Zi − Zj) + 2mA

)
∏N
i<j sb

(
iQ2 ± (Zi − Zj)

) ×

×ZFM [U(N)](~Z; ~X;mA; ∆)ZFM [U(N)](~Z; ~Y ;mA;−∆) =

=
∏N
i<j sb

(
iQ2 ± (Xi −Xj)

)
sb
(
−iQ2 + 2mA

)N ∏N
i<j sb

(
−iQ2 ± (Xi −Xj) + 2mA

) ∑
σ∈SN

N∏
i=1

δ(Xi − Yσ(i)) . (5.18)
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The divergent prefactors on the two sides of the identity cancel out yielding a finite result,
but we still have an overall prefactor

K = exp
[
2πi

(
(N − 1)mA −∆− iQ2 N

)( N∑
i=1

Xi − Yi

)]
= 1 , (5.19)

which turns out to be trivial once we enforce the contraint Xi = Yσ(i) due to the delta. The
identity (5.18) we obtained is the analogue of (5.2) for the FM [U(N)] theory.

We remark at this point that one could have equivalently considered the limit in which
the Yi parameters are sent to −∞, namely Yi → Yi−s. In this case, we would have obtained
the same identity (5.18) but with the exchange Yi → −Yi. The two choices correspond
to two different embeddings of U(N) inside USp(2N) which are related by an element of
the Weyl group of USp(2N) which is not in the Weyl group of its U(N) subgroup. This
observation will be important in a moment.

We conclude the series of limits by considering the real mass deformation with respect
to the parameter ∆

∆→ ∆ + s, s→ +∞ , (5.20)

after which, at it was shown in [18], the partition function of FM [U(N)] reduces to that of
FT [U(N)],5

ZFM [U(N)]( ~X; ~Y ; ∆;mA)→ ΩNe−iπ
(∑N

i=1 X
2
i +Y 2

i

)
ZFT [U(N)]( ~X; ~Y ;mA) (5.21)

where the prefactor is

ΩN = exp
{
iπ

[ 1
12N

(
−12(∆ + s)2 − 8m2

A(N − 2)(N − 1) + 4imA(N − 1)((2N − 1)Q+

+6i(∆ + s)) +
(
2N2 + 1

)
Q2 + 12i(∆ + s)NQ

)]}
(5.22)

and we defined the S3
b partition function of FT [U(N)] as

ZFT [U(N)]( ~X; ~Y ;mA) = e2πiYN
∑N

i=1 Xi
N∏

i,j=1
sb

(
i
Q

2 ± (Xi −Xj)− 2mA

)
×

×
∫ ∏N−1

a=1 dZa
(N − 1)! e−2πiYN

∑N−1
a=1 Z

(N−1)
a

∏N−1
a=1

∏N
i=1 sb

(
±(Z(N−1)

a −Xi) +mA

)
∏N−1
a<b sb

(
iQ2 ± (Z(N−1)

a − Z(N−1)
b )

) ×
×ZFT [U(N−1)]

(
Z

(N−1)
1 , · · · , Z(N−1)

N−1 ;Y1, · · · , YN−1;mA;
)
. (5.23)

Again, the partition function of FT [SU(N)] can be obtained from that of FT [U(N)] by just
imposing the tracelessness conditions ∑N

i=1Xi = ∑N
i=1 Yi = 0, or equivalently, by gauging

5The same series of limits can be used to flow from E[USp(2N)] to T [SU(N)]. In that case, the U(1)t
symmetry is interpreted as the U(1) axial symmetry that is the commutant of the U(1)R R-symmetry of
N = 2 inside the SU(2)H × SU(2)C R-symmetry of N = 4 [36]. More precisely, the embedding is such that
U(1)R = U(1)H + U(1)C , where U(1)H ⊂ SU(2)H and U(1)C ⊂ SU(2)C , and U(1)t is identified with the
opposite combination.
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the diagonal U(1) symmetries of both U(N)X and U(N)Y . This is because the matter
part is independent of such diagonal U(1)X × U(1)Y ⊂ U(N)X × U(N)Y , while U(1)X and
U(1)Y have a BF coupling between them, which can be easily seen by shifting the variables
as follows:

Z(n)
a −→ Z(n)

a + w ,

Xi −→ X̃i + w ,

Yi −→ Ỹi + u

(5.24)

where X̃i and Ỹi are defined such that ∑N
i=1 X̃i = ∑N

i=1 Ỹi = 0. Therefore, w and u

parametrize U(1)X and U(1)Y respectively. Since the representation of each matter is
either bifundamental or adjoint, w in the matter part of the partition function completely
cancels out. Indeed, w and u only appear in the exponential factors corresponding to the
BF couplings; collecting those exponentials, we get

e
2πi
[
YN
∑N

i=1 Xi+(YN−1−YN )
∑N−1

a=1 Z
(N−1)
a +···+(Y1−Y2)Z(1)

1

]
−→ e

2πi
[
Nwu+(ỸN−1−ỸN)∑N−1

a=1 Z
(N−1)
a +···+(Ỹ1−Ỹ2)Z(1)

1

]
. (5.25)

The first term in the exponent corresponds to the BF coupling between U(1)X and U(1)Y ,
whereas the remaining terms show the BF coupling between each gauge node and the
associated topological symmetry, which is nothing but the FI term. If we focus on the BF
coupling between U(1)X and U(1)Y , the exponential factor gives rise to a delta function
δ(Nw) once it is integrated over u. This delta can be removed by further integrating over
Nw. What we are left with is exactly the partition function of FT [SU(N)].

We also use

N∏
i=1

sb

(
−iQ2 ± 2∆ + 2(i− 1)

(
mA − i

Q

2

))
→ exp[2πi(2(N − 1)mA − iNQ)(s+ ∆)] ,

(5.26)
to see that after such a limit (5.18) reduces to

∫ ∏N
i=1 dZi
N !

sb
(
−iQ2 + 2mA

)N ∏N
i<j sb

(
−iQ2 ± (Zi − Zj) + 2mA

)
∏N
i<j sb

(
iQ2 ± (Zi − Zj)

) ×

×ZFT [U(N)](~Z; ~X;mA)ZFT [U(N)](~Z;−~Y ;mA) =

=
∏N
i<j sb

(
iQ2 ± (Xi −Xj)

)
sb
(
−iQ2 + 2mA

)N ∏N
i<j sb

(
−iQ2 ± (Xi −Xj) + 2mA

) ∑
σ∈SN

N∏
i=1

δ(Xi − Yσ(i)) , (5.27)

where again we simplified an overall prefactor which becomes trivial after imposing the
contraint Xi = Yσ(i) due to the delta. Notice that this identity corresponds to the gluing
of two FT [U(N)], while that of FT [SU(N)] can be obtained by gauging the diagonal
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U(1) ⊂ U(N)X ×U(N)Y . Again we implement the shifts of variables

Z
(n)
L,R,a −→ Z

(n)
L,R,a + v , n = 1, . . . , N − 1 ,

Zi −→ Z̃i + v ,

Xi −→ X̃i + w ,

Yi −→ Ỹi + u

(5.28)

where ∑N
i=1 Z̃i = ∑N

i=1 X̃i = ∑N
i=1 Ỹi = 0 is satisfied. Note that u, v and w parametrize

the diagonal U(1)’s of U(N)X , U(N)Y and the gauged U(N)Z respectively. For the same
reason we explained for a single FT [U(N)], the matter part of the l.h.s. is independent of
u, v and w, which only appear in the exponential factors. Collecting the exponential factors
depending on them, we get

e2πiNv(w−u) . (5.29)

Thus, once we gauge the anti-diagonal combination of U(1)X and U(1)Y , i.e., integrate over
w−u, we get a delta function δ(Nv). Also note that the original N -dimensional integration
can be decomposed into the one-dimensional integration over v and the (N − 1)-dimensional
integration over Z̃i with a constraint ∑N

i=1 Z̃i = 0; more precisely,

N∏
i=1

dZi = N dv
N−1∏
i=1

dZ̃i . (5.30)

Since v only appears in the delta function we got, we can explicitly perform the v-integration.
Then δ(Nv) gives 1/N , which cancels the Jacobian determinant N in (5.30). The remaining
integral is then exactly the gluing of two FT [SU(N)].

One can perform the same operation on the right hand side shifting Xi → X̃i+w, Yi →
Ỹi + u and integrating over w − u. The shift only affects the product of the delta functions,
which can be written as

N∏
i=1

δ(Xi − Yσ(i)) = 1
N
δ(w − u)

N−1∏
i=1

δ(X̃i − Ỹσ(i)) , (5.31)

where δ(w − u) becomes one if we perform the integration over w − u. Therefore, the final
duality we get is

∫ ∏N−1
i=1 dZ̃i
N !

sb
(
−iQ2 +2mA

)N∏N
i<j sb

(
−iQ2 ±(Z̃i−Z̃j)+2mA

)
∏N
i<j sb

(
iQ2 ±(Z̃i−Z̃j)

) ×

×ZFT [SU(N)]

(
~̃Z; ~̃X;mA

)
ZFT [SU(N)]

(
~̃Z;− ~̃Y ;mA

)
=

=
∏N
i<j sb

(
iQ2 ±(X̃i−X̃j)

)
sb
(
−iQ2 +2mA

)N∏N
i<j sb

(
−iQ2 ±(X̃i−X̃j)+2mA

) 1
N

∑
σ∈SN

N−1∏
i=1

δ(X̃i−Ỹσ(i)) (5.32)
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2
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2

2N2N 2N

2N2N

Figure 17. A schematic representation of the braid duality. We remind the reader that the key
difference with the duality of figure 10 is that the doublet of chirals in the theory on the left is not
interacting with the antisymmetric.

with ∑N
i=1 Z̃i = ∑N

i=1 X̃i = ∑N
i=1 Ỹi = 0. This duality can be interpreted as the relation

S−1S = 1 for the S generator of SL(2,Z) once we identify either FT [SU(N)] or T [SU(N)]
with the S-wall [10, 11].

There is another relation satisfied by the S element, namely S2 = −1. One can interpret
it as (5.32) where we redefined Yi → −Yi, that is

∫ ∏N−1
i=1 dZ̃i
N !

sb
(
−iQ2 +2mA

)N∏N
i<j sb

(
−iQ2 ±(Z̃i−Z̃j)+2mA

)
∏N
i<j sb

(
iQ2 ±(Z̃i−Z̃j)

) ×

×ZFT [SU(N)]

(
~̃Z; ~̃X;mA

)
ZFT [SU(N)]

(
~̃Z; ~̃Y ;mA

)
=

=
∏N
i<j sb

(
iQ2 ±(X̃i−X̃j)

)
sb
(
−iQ2 +2mA

)N∏N
i<j sb

(
−iQ2 ±(X̃i−X̃j)+2mA

) 1
N

∑
σ∈SN

N−1∏
i=1

δ(X̃i+Ỹσ(i)) . (5.33)

We already pointed out before that this other identity can be obtained by considering a
different scaling in the limit that made us flow from FE[USp(2N)]3d to FM [U(N)] and
that the two choices are related by an element of the Weyl group of USp(2N). Hence, while
in 3d the identities associated to SS−1 = 1 and S2 = −1 differ by acting with complex
conjugation on one of the two SU(N) global symmetries, in 4d they collapse on a single
equation since such action is an element of the USp(2N) global symmetry.

5.2 Braid duality and the ST S = T −1S−1T −1 relation

In order to derive the STS = T−1S−1T−1 relation between the S and T generators of
SL(2,Z) we consider the braid duality depicted in figure 17 which was discussed in [4].
Here we glue two FE[USp(2N)] blocks by gauging a diagonal combination of one USp(2N)
symmetry from each of the two blocks.

By now we have understood that it is equivalent to consider the manifest or the emergent
symmetry, but for definiteness let us consider the Lagrangian gauging. In the process we also
add, as usual, an antisymmetric chiral field which couples to the antisymmetric operators
of the two blocks

δW = Trz
[
Φ ·
(
OH

L − OH
R
)]

(5.34)
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and a doublet of fundamental chirals (P+, P−) which are not involved in any superpotential
interaction. This is the key difference w.r.t. the case considered in figure 10. As a
consequence, while the “U(1)t” symmetries of the two blocks are still identified by the
superpotential (5.34), the “U(1)c” symmetries both survive as independent symmetries,
which we call U(1)c and U(1)d. The full global symmetry of the theory is thus

USp(2N)x ×USp(2N)y ×U(1)t ×U(1)c ×U(1)d , (5.35)

where as usual the two USp(2N) are enhanced from the symmetries of the saws of the two
FE[USp(2N)] blocks if we consider the Lagrangian gluing.

The dual theory is one FE[USp(2N)] block coupling to two sets of 2× 2N chirals L
and R via the superpotential

δW = εαβ Trz
[
LαΠRβ

]
, (5.36)

where we recall that Π is the operator in the bifundamental representation of USp(2N)x ×
USp(2N)y symmetries of FE[USp(2N)] and α, β are SU(2)v flavor indices. Hence L and R
are chirals in the bifundamental of USp(2N)x×SU(2)v and USp(2N)y×SU(2)v respectively.
We refer the reader to [4] for a detailed discussion of the mapping of the gauge invariant
operators in the braid duality.

The index identity corresponding to the braid duality appeared in [23] and is given by

∮
d~zN∆N (~z; t)IFE[USp(2N)](~z; ~x; t; c)IFE[USp(2N)](~z; ~y; t; d)

N∏
n=1

Γe
(
(pq)

1
2 c−1d−1v±1z±1

n

)
=

=
N∏
n=1

Γe
(
(pq)

1
2d−1v±1x±1

n

)
Γe
(
(pq)

1
2 c−1v±1y±1

n

)
IFE[USp(2N)](~x; ~y; t; cd). (5.37)

From the braid duality we can flow to the duality of figure 10 by turning on the following
interaction on the l.h.s.:

Trz
[
P+P− ·

(
OH

L + OH
R
)]
, (5.38)

which, as we discussed in subsection 4.1, has the effect of breaking one combination of U(1)c
and U(1)d, that at the level of fugacities in the index is reflected in the constraint

cd = (pq/t)
1
2 . (5.39)

On the r.h.s. this deformation is mapped to a VEV for the singlet βN−1 of FE[USp(2N)],
which makes the theory flow to a simple WZ model. This was discussed in [4] from the
field theory perspective, while the associated index identity was proven in Proposition 2.10
of [23]

IFE[USp(2N)](~x; ~y; t; (pq/t)
1
2 ) =

N∏
i=1

N∏
j=1

Γe
(
(pq/t)

1
2x±i y

±
j

)
. (5.40)

Using this identity inside (5.37) with the specialisation (5.39) we precisely recover (4.5).
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Now starting from the braid duality in figure 17 we take the 3d limit discussed in
previous section. In particular we first compactify on a circle and obtain on the l.h.s. two
FE[USp(2N)]3d blocks glued with the insertions of a doublet of chirals (not involved in
the superpotential) and on the r.h.s. an FE[USp(2N)]3d block coupled to the two sets of
chirals L and R via the superpotential (5.36).

We then take the Coulomb branch VEV that breaks all the gauge groups from USp to U.
On the l.h.s. we get two FM [U(N)] blocks glued by the gauging of a common U(N) symme-
try with the insertion of one flavor (again not involved in the superpotential), while on the
r.h.s. an FM [U(N)] block coupled to the two sets of flavors L, L̃ and R, R̃ via the superpoten-
tial terms LΠR and L̃Π̃L̃, where Π and Π̃ are in the bifundamental and anti/bifundamental
representations of the U(N)×U(N) symmetries of FM [U(N)] discussed in [18].

Finally, we consider two further real mass deformations for what used to be the U(1)c
and U(1)d symmetries in 4d. This is done in two steps. We first give mass to the combination
U(1)c − U(1)d. This has the effect on the l.h.s. of giving mass to all of the fields of the saw
and of lifting the monopole superpotential so to get the gluing of two FT [U(N)], while still
keeping massless the flavor at the middle U(N) node. On the r.h.s., instead, we are giving
mass to the flavors L, L̃ and R, R̃ while keeping the FM [U(N)] block unchanged.

The last step is the real mass deformation for the remaining U(1)c + U(1)d symmetry.
On the l.h.s. side this is a mass deformation associated to the axial symmetry of the
flavor at the middle U(N) node, which results in a CS level +1 or −1, depending on the
sign of the mass, for such gauge node. On the r.h.s. the deformation is the one that we
already mentioned in the previous subsection that makes FM [U(N)] flow to FT [U(N)],
with background CS couplings for its global U(N) symmetries. Hence, we recovered the
duality relating the gluing of two FT [U(N)] with a CS level ±1 and a single FT [U(N)]
theory with background CS levels for the two U(N) global symmetries at level ∓1.

Recalling the interpretation of the T generator as an integer shift of the Chern-Simons
level, one can interpret such duality as a 3d field theoretic version of the SL(2,Z) relation
STS = T−1S−1T−1. This naturally leads us to interpret the braid relation (5.37) as a
4d realisation of this SL(2,Z) relation, which confirms our identification of E[USp(2N)]
or FE[USp(2N)] with the S element. Moreover, this result allows us to identify also the
representative in 4d of the T generator, which seems to correspond to the addition of a
doublet of chiral fields. We plan to investigate this aspect further in a future work [37].

Let us now consider the 3d limit of the braid duality we just described at the level
of supersymmetric partition functions. We start from the index identity (5.37) and, as
in the previous subsection, we first take the limit from the S3 × S1 partition function of
FE[USp(2N)] to the S3

b partition function of the theory obtained after circle compactification.
In this case, we will use the following redefinition of the parameters of (5.37):

z
(n)
L/R,a = e2πirZ(n)

L/R,a , n = 1, · · · , N − 1, a = 1, · · · , n,

xi = e2πirXi , yi = e2πirYi , zi = e2πirZi , i = 1, · · · , N,
c = e2πir∆1 , d = e2πir∆2 , t = e2πir(iQ−2mA),

v = e2πirV , p = e−2πrb, q = e−2πrb−1
. (5.41)

– 40 –



J
H
E
P
0
3
(
2
0
2
2
)
0
3
5

Using some of the results of the previous subsection, we obtain the following result for
the 3d limit of (5.37):

C

∫ ∏N
i=1 dZi
2NN !

sb(−iQ2 + 2ma)N
∏N
i<j sb(−iQ2 ± Zi ± Zj + 2mA)∏N

i=1 sb(iQ2 ± 2Zi)
∏N
i<j sb(iQ2 ± Zi ± Zj)

×

×ZFE[USp(2N)]3d(~Z; ~X;mA; ∆1)ZFE[USp(2N)]3d(~Z; ~Y ;mA; ∆2)×

×
N∏
i=1

sb(∆1 + ∆2 ± V ± Zi) =
N∏
i=1

sb(∆2 ± V ±Xi)
N∏
i=1

sb(∆1 ± V ± Yi)

×ZFE[USp(2N)]3d( ~X; ~Y ;mA; ∆1 + ∆2). (5.42)

The divergent prefactor C coming from both sides of the identity

C =
[
r
(
e−2πrb; e−2πrb

)
∞

(
e−2πrb−1 ; e−2πrb−1)

∞

]N(N+1)
2 exp

[
− iπ6r

(
i
Q

2
N(N + 1)

2

)]
−→
r→0

1

(5.43)

is again trivial, as expected.
Now we can consider the combination of Coulomb branch VEV and real mass deforma-

tion that leads us to the braid relation for the FM [U(N)] theory. This is achieved by the
following shift of the parameters:

Zi → Zi+s, Z
(n)
L/R,a → Z

(n
L/R,a+s, Xi → Xi+s, Yi → Yi+s, V → V +s, s→∞.

(5.44)
Again using some of the results of the previous subsection, we find that (5.42) reduces to

K
N∏
j=1

sb

(
−iQ2 +2∆1+2(j−1)

(
ma−i

Q

2

)) N∏
j=1

sb

(
−iQ2 +2∆2+2(j−1)

(
ma−i

Q

2

))
×

∫ ∏N
i=1 dZi
N !

sb
(
−iQ2 +2ma

)N∏N
i<j sb

(
−iQ2 ±(Zi−Zj)+2mA

)
∏N
i<j sb

(
iQ2 ±(Zi−Zj)

) ZFM [U(N)]
(
~Z; ~X;mA;∆1

)
×

×ZFM [U(N)]
(
~Z; ~Y ;mA;∆2

) N∏
i=1

sb
(
∆1+∆2±(V −Zi)

)
= K̃

N∏
i=1

sb
(
∆2±(V −Xi)

)
×

×
N∏
i=1

sb
(
∆1±(V −Yi)

) N∏
j=1

sb

(
−iQ2 +2(∆1+∆2)+2(j−1)

(
ma−i

Q

2

))
×

×ZFM [U(N)]
(
~X; ~Y ;mA;∆1+∆2

)
. (5.45)

The prefactors K and K̃ obtained collecting all exponentials on each side respectively

K = exp
{

2πi
[
2NV (∆1 + ∆2)− 2∆1

N∑
i=1

Xi − 2∆2

N∑
i=1

Yi+

− (2(N − 1)mA − iNQ)
(

2Ns+
N∑
i=1

Xi +
N∑
i=1

Yi

)]}
= K̃, (5.46)
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turn out to be equal, so that they cancel out between the two sides of the equation giving a
finite result. We can also notice that in equation (5.45) the parameter V is now redundant,
and can be reabsorbed into a shift of the parameters of the non-abelian global symmetries
and of the gauge symmetries Xi, Yi, Zi and Z(n)

L/R,a. Hence we will set V = 0 in the following.
At this point, we can perform two further mass deformations that lead us to the

FT [U(N)] theory. First, we consider the limit

∆1 → ∆1 + s, ∆2 → ∆2 − s, s→∞, (5.47)

such that the combination ∆1 + ∆2 remains finite. In this way, the FM [U(N)]( ~X; ~Y ;mA;
∆1 + ∆2) on the r.h.s. of (5.45) remains unaffected by the limit, as well as the flavor glued
to the two FM [U(N)](~Z; ~X;mA; ∆1) and FM [U(N)](~Z; ~Y ;mA; ∆2) on the l.h.s., which
instead turn into FT [U(N)]’s. Again recycling some of the result of the previous subsection,
we obtain the following identity:

Ω
∫ ∏N

i=1 dZi
N !

sb(−iQ2 + 2ma)N
∏N
i<j sb(−iQ2 ± (Zi − Zj) + 2mA)∏N

i<j sb(iQ2 ± (Zi − Zj))
ZFT [U(N)](~Z; ~X;mA)×

×ZFT [U(N)](~Z;−~Y ;mA)
N∏
i=1

sb
(
∆1 + ∆2 ± Zi

)
= Ω̃

N∏
j=1

sb

(
−iQ2 + 2(∆1 + ∆2) + 2(j − 1)

(
ma − i

Q

2

))
×

×ZFM [U(N)]( ~X; ~Y ;mA; ∆1 + ∆2) (5.48)

Again, it turns out that the two exponential prefactors Ω and Ω̃

Ω = exp
{
πi

[
N∆2

1 −N∆2
2 + 2N(∆1 + ∆2)s−

N∑
i=1

(X2
i − Y 2

i )
]}

= Ω̃, (5.49)

coming from the l.h.s. and the r.h.s. respectively are the same, so that they cancel out.
Lastly, we can take a final mass deformation to reduce also the partition function of the

FM [U(N)] on the r.h.s. to that of FT [U(N)] and which has also the effect on the l.h.s. of
intergating out the flavor. This is achieved by shifting the parameters as

∆1 → ∆1 + s, ∆2 → ∆2 + s, s→∞. (5.50)

Performing this last limit, equation (5.48) becomes

e
−iπ
{[

N(N−1)m2
A−i

Q
2 mA(N−1)+Q2

8

]} ∫ ∏N
i=1 dZi
N !

sb
(
−iQ2 +2ma

)N∏N
i<j sb

(
−iQ2 ±(Zi−Zj)+2mA

)
∏N
i<j sb

(
iQ2 ±(Zi−Zj)

) ×

×eiπ
∑N

i=1Z
2
i ZFT [U(N)](~Z; ~X;mA)ZFT [U(N)](~Z;−~Y ;mA)

= e−iπ
∑N

i=1(X2
i +Y 2

i )ZFT [U(N)]( ~X; ~Y ;mA) . (5.51)

Notice that the quadratic exponentials correspond to CS terms, hence what we have found
is the S3

b integral identity relating the gluing of two FT [U(N)] with a CS level −1 and a
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single FT [U(N)] theory with background CS levels for the two U(N) global symmetries at
level +1.

Again we can translate this identity to the one written in terms of FT [SU(N)] by
gauging one global U(1) symmetry. We first make the shift of variables

Z
(n)
L/R,a −→ Z

(n)
L/R,a + v , n = 1, . . . , N − 1 ,

Zi −→ Z̃i + v ,

Z(n)
a −→ Z(n)

a + w , n = 1, . . . , N − 1 ,
Xi −→ X̃i + w ,

Yi −→ Ỹi + u

(5.52)

where Z(n)
a without the subscript L or R in the third line is an integration variable on the

right hand side. Then the factors depending on u, v and w are

eiπN[v2+2v(w−u)] (5.53)

on the left hand side and

e−iπN(w−u)2 (5.54)

on the right hand side. Then we gauge the anti-diagonal U(1) ⊂ U(N)X × U(N)Y by
integrating over w − u. Namely, on the left hand side, we have

∫
d(w − u)

∫
Ndv eiπN[v2+2v(w−u)]

∫ ∏N
i=1 dZ̃i
N ! . . .

=
∫
Ndv eiπNv

2
δ(Nv)

∫ ∏N
i=1 dZ̃i
N ! · · · =

∫ ∏N
i=1 dZ̃i
N ! . . . , (5.55)

where the remaining integrand denoted by . . . is exactly in the same form as the l.h.s.
of (5.51) but with X̃i, Ỹi, Z̃i instead of Xi, Yi, Zi. On the right hand side, we have

∫
d(w − u) e−iπN(w−u)2 · · · =

√
1
iN

. . . , (5.56)

where . . . again denotes the remaining integrand, which is in the same form as the r.h.s.
of (5.51) but with X̃i, Ỹi, Z̃i instead of Xi, Yi, Zi. Thus, the duality we get is

e
−iπ
{[

N(N−1)m2
A−i

Q
2 mA(N−1)+Q2

8

]} ∫ ∏N
i=1 dZ̃i
N !

sb
(
−iQ2 +2ma

)N∏N
i<j sb

(
−iQ2 ±(Z̃i−Z̃j)+2mA

)
∏N
i<j sb

(
iQ2 ±(Z̃i−Z̃j)

) ×

×eiπ
∑N

i=1 Z̃
2
i ZFT [SU(N)]

(
~̃Z; ~̃X;mA

)
ZFT [SU(N)]

(
~̃Z;− ~̃Y ;mA

)
=
√

1
iN

e−iπ
∑N

i=1(X̃2
i +Ỹ 2

i )ZFT [SU(N)]

(
~̃X; ~̃Y ;mA

)
. (5.57)
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6 Conclusions

In this paper we investigated some new properties of the E[USp(2N)] theory, or equivalently
of its FE[USp(2N)] variant. Specifically, we considered the gluing of two E[USp(2N)]
blocks by gauging a common USp(2N) symmetry with the addition of one antisymmetric
and 2L fundamental matter chiral fields. We found some dualities for the resulting theories,
which we derived from iterative applications of the Intriligator-Pouliot duality. This plays
for us the role of fundamental duality, from which we derive all others.

The case L = 0 is somewhat special, in the sense that we showed that the resulting
theory has a quantum deformed moduli space with chiral symmetry breaking and that
its index takes the form of a delta-function. We interpreted it as the Identity wall which
identifies the two surviving USp(2N) of each E[USp(2N)] block.

For higher L, instead, we found a dual frame consisting of a linear quiver with bi-
fundamental matter and the characteristic saw structure. For L = 0, 1 we also general-
ized the results to the case in which we glue two blocks of different lengths, that is a
E[USp(2M)] theory with a E[USp(2N)] theory subjected to a deformation that breaks
USp(2N)→ USp(2M)× SU(2), where M < N .

We then focused on the 3d version of some of the 4d dualities discussed above which
now involve the T [SU(N)] quiver theory, the 3d S-wall. We showed how these 3d dualities
correspond to the relations S2 = −1, S−1S = 1 and STS = T−1S−1T−1, where S and T
are the SL(2,Z) generators. These observations lead us to conjecture that E[USp(2N)] can
also be interpreted as an S-wall in 4d.

In 3d we can use the Type IIB brane set-up to understand that T [SU(N)] is a domain
wall interpolating between two copies of the 4d N = 4 SU(N) Super-Yang-Mills (SYM) at
two different values of the gauge coupling which are related by the S action τ → −1/τ .
Indeed, T [SU(N)] can be engineered as a system of N D3-branes suspended between D5
and NS5-branes, of which we can think as imposing boundary conditions on the SYM theory
living on the N D3’s [2].

It would be interesting to have a similar explanation for why E[USp(2N)] possesses all
the properties of an S-duality domain wall in 4d. In this case we miss an interpretation similar
to the one that we have for T [SU(N)], primarily because we lack a brane realisation of the
E[USp(2N)] theory. It may be possible, though, to achieve a domain wall interpretation of
E[USp(2N)] by exploiting its E-string origin. Indeed, E[USp(2N)] was originally introduced
in [4] because it plays a crucial role in the study of the compactifications of the 6d N = (1, 0)
rank-N E-string SCFT [38, 39] on Riemann surfaces with fluxes. Specifically, the theory
obtained by adding two octets of chiral fields to E[USp(2N)] with some superpotential
interaction corresponds to the compactification of E-string on a tube with a specific value of
flux that breaks the E8 global symmetry in 6d down to U(1)×E7. Since the compactification
of E-string to 5d on a circle with a suitable holonomy flows to the 5d N = 1 USp(2N)
gauge theory with one antisymmetric and 8 fundamental hypers [40], we may expect that
E[USp(2N)] with the octet fields is a domain wall interpolating between two copies of this
5d gauge theory. Indeed, this was first noticed in [41] for the rank-one case: the E[USp(2)]
theory, which is just an SU(2) × SU(2) bifundamental, with two octets is a domain wall
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interpolating two 5d theories corresponding to the 6d rank-one E-string theory compactified
on a circle with holonomies of opposite signs. This point of view may be useful for obtaining
an interpretation of E[USp(2N)] as an S-duality wall.

Another important observation that leads to interesting developments is that the duality
for the gluing of two E[USp(2N)] with 2L chirals that we derived in this paper coincides
with one of the 4d mirror dualities of [1], specifically the one between Eσρ [USp(2N)] and
Eρσ[USp(2N)] with ρ = [(L − 1)N , 1N ] and σ = [NL]. This means that we provided a
field theory derivation for this instance of mirror symmetry by iterative applications of
the Intriligator-Pouliot duality. Reducing to 3d, we can get a similar derivation for the
mirror duality between T σρ [SU(N)] and T ρσ [SU(N)] with ρ = [(L− 1)N , 1N ] and σ = [NL]
by sequentially applying the Aharony duality.

A natural question is then whether we can derive other mirror dualities in a similar
fashion, that is by iterating some more fundamental dualities. In an upcoming paper [14]
we will show that this is possible in the case of linear quivers, that is for the Eσρ [USp(2N)]
theories in 4d and the T σρ [SU(N)] in 3d. More precisely, we will present an algorithm to
obtain the mirror dual of a given Eσρ [USp(2N)] quiver by locally dualising the fields using
two basic duality moves. These duality moves are strictly related to the dualities that we
derived in this paper and can be interpreted as local actions of the S element of SL(2,Z).
This will strengthen our interpretation of E[USp(2N)] as an S-duality domain wall.
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A Supersymmetric partition functions conventions

A.1 S3
b partition function

The partition function of a 3d N = 2 theory on the three-sphere was first computed using
localization techniques in [31]. The set-up considered was that of the theory on a round
sphere, namely with trivial squashing parameter b = 1, and with canonical assignment of
R-charges to the chiral fields, namely R-charge 1

2 . This result was later generalized in [32]
to the case of generic R-charges and in [33, 34] to the case of a squashed sphere S3

b , which
can be parametrized as

b2|z1|+
1
b2
|z2| = 1, z1, z2 ∈ C . (A.1)

The result is a matrix integral with the following form:

Z(~m, η, k) = 1
|W|

∫ +∞

−∞

rkG∏
a=1

dsa Zcl Zvec Zchir , (A.2)
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where |W| is the dimension of the Weyl group associated to the gauge group G. The
different contributions to the integrand of (A.2) are:

• the contribution from the classical action of CS and BF interactions

Zcl = e2πiη
∑rkG

a=1 sae−iπk
∑rkG

a=1 s
2
a , (A.3)

where rkG is the rank of the gauge group G and we denoted with k the CS level and
with η the FI parameter;

• the contribution of the N = 2 vector multiplet

Zvec = 1∏
α>0 sb

(
iQ2 + α(s)

) , Q = b+ b−1 , (A.4)

where α are the positive roots of the gauge algebra g and we are using the short-hand
notations

α(s) =
rkG∏
a=1

αasa ; (A.5)

• the contribution of an N = 2 chiral field transforming in some representation RG and
RF of the gauge and the flavour symmetry respectively and with R-charge r

Zchir =
∏
ρ∈RG

∏
ρ̃∈RF

sb

(
i
Q

2 − ρ(s)− ρ̃(m)− iQ2 r
)
, Q = b+ b−1 , (A.6)

where ρ and ρ̃ are the weights of RG and RF respectively.

In all the previous definitions appeared the double-sine function that can be defined as

sb(x) =
∞∏

n,m=0

nb+mb−1 + Q
2 − ix

nb+mb−1 + Q
2 + ix

, Q = b+ b−1 . (A.7)

A.2 S3 × S1 partition function

In this appendix we briefly summarize the basic notion of the S3 × S1 partition function of
an N = 1 theory, which is also known as the 4d supersymmetric index. This coincides with
the superconformal index [19–21] when computed with the superconformal R-symmetry;
see also [22] for a more comprehensive review. We follow closely the exposition of the latter
reference.

The index of a 4d N = 1 SCFT is a refined Witten index of the theory quantized on
S3 × R,

I = Tr(−1)F e−βδe−µiFi , δ = 1
2
{
Q,Q†

}
, (A.8)

where Q is one of the Poincaré supercharges, Q† = S is the conjugate conformal supercharge,
Fi are Q-closed conserved charges and µi are their chemical potentials. All the states
contributing to the index with non-vanishing weight have δ = 0, which makes the index
independent of β.
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For N = 1 SCFTs, the supercharges are{
Qα, Sα = Q†α, Q̃α̇, S̃ α̇ = Q̃†α̇

}
, (A.9)

where α = ± and α̇ = ±̇ are respectively the SU(2)1 and SU(2)2 indices of the isometry
group SO(4) = SU(2)1 × SU(2)2 of S3. For definiteness, let us choose Q = Q̃−̇. With this
particular choice, it is common to define the index as

I(p, q) = Tr(−1)F pj1+j2+ 1
2 rqj2−j1+ 1

2 r , (A.10)

where p and q are fugacities associated with the supersymmetry preserving squashing of the
S3 [21]. Indeed, even if the dimension of the bosonic part of the 4d N = 1 superconformal
algebra is four, the number of independent fugacities that we can turn on in the index is
two because of the constraints δ = 0 and [Fi,Q] = 0. We should then make a choice for
which combinations of the bosonic generators that satisfy these requirements to take, and
we shall use ±j1 + j2 + R

2 , where j1 and j2 are the Cartan generators of SU(2)1 and SU(2)2,
and R is the generator of the U(1)R R-symmetry.

The index counts gauge invariant operators that can be constructed from modes of the
fields. The latter are usually referred to as “letters” in the literature. The single-letter index
for a vector multiplet and a chiral multiplet χ(R) transforming in the R representation of
the gauge and flavour group and with R-charge R is

iV (p, q, U) = 2pq − p− q
(1− p)(1− q)χadj(U),

iχ(r)(p, q, U, V ) = (pq) 1
2RχR(U, V )− (pq) 2−R

2 χR̄(U, V )
(1− p)(1− q) , (A.11)

where χR(U, V ) and χR̄(U, V ) are the characters of R and the conjugate representation R̄,
with U and V gauge and flavour group matrices, respectively.

The index can then be obtained by symmetrizing of all of such letters into words and
then projecting them to the gauge invariant ones by integrating over the Haar measure of
the gauge group. This takes the general form

I(p, q, V ) =
∫

[dU ]
∏
a

PE[ia(p, q, U, V )] , (A.12)

where a labels the different multiplets in the theory, and PE[ia] is the plethystic exponential
of the single-letter index of the a-th multiplet, responsible for generating the symmetrization
of the letters. It is defined as

PE[ia(p, q, U, V )] = exp
[ ∞∑
k=1

1
k
ia
(
pk, qk, Uk, V k

)]
. (A.13)

For definiteness, let us discuss a specific example of the SU(Nc) gauge group. The
contribution of a chiral superfield in the fundamental representation Nc or anti-fundamental
representation N̄c of SU(Nc) with R-charge R can be written as follows

PE
[
iχ(Nc)(p, q, U)

]
=

Nc∏
a=1

Γe
(
(pq)

R
2 za

)
, PE

[
iχ(N̄c)(t, y, U)

]
=

Nc∏
a=1

Γe
(
(pq)

R
2 z−1

a

)
,

(A.14)
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where {za}, with a = 1, . . . , Nc and ∏Nc
a=1 za = 1, are the fugacities parametrizing the

Cartan subalgebra of SU(Nc) and the elliptic gamma function is defined as

Γe(z) ≡ Γe(z; p, q) =
∞∏

n,m=1

1− pnqmz−1

1− pn+1qm+1z
. (A.15)

We will also use the shorthand notation

Γe
(
uz±n

)
= Γe(uzn)Γe

(
uz−n

)
. (A.16)

On the other hand, the contribution of the vector multiplet in the adjoint representation of
SU(Nc), together with the SU(Nc) Haar measure, can be written as

κNc−1

Nc!

∮
TNc

Nc−1∏
a=1

dz a
2πiza

Nc∏
a 6=b

1
Γe(zaz−1

b )
· · · , (A.17)

where the dots denote that it will be used in addition to the full matter multiplets trans-
forming in representations of the gauge group. The integration contour is taken over a
unitary circle in the complex plane for each element of the maximal torus of the gauge
group and κ is the index of a U(1) free vector multiplet defined as

κ = (p; p)∞(q; q)∞ , (A.18)

where we recall the definition of the q-Pochhammer symbol (a; b) = ∏∞
n=0(1− abn).

In case of a USp(2Nc) gauge group, instead, the contribution of a chiral multiplet in
the fundamental representation and with R-charge R is

PE
[
iχ(Nc)(p, q, U)

]
=

Nc∏
a=1

Γe
(
(pq)

R
2 z±1

a

)
, (A.19)

while the full contribution of the vector multiplet in the adjoint representation together
with the matching Haar measure and the projection to gauge singlets can be written as

κNc

2NcNc!

∮
TNc

Nc∏
a=1

dzi
2πiza

Nc∏
a<b

1
Γe(z±1

a z±1
b )

Nc∏
a=1

1
Γe(z±2

a )
· · · . (A.20)

We conclude by mentioning one important property enjoyed by the elliptic gamma
function that we used extensively in the main text

Γe(x)Γe
(
pq x−1

)
= 1 . (A.21)

This is the manifestation in the index of the fact that two chirals X and Y interacting
quadratically with the superpotential W = XY are massive and can be integrated out at
low energies.
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B The Intriligator-Pouliot duality

The Intriligator-Pouliot duality [15] relates a USp(2Nc) gauge theory with 2Nf fundamental
chirals and no superpotential W = 0 to a USp(2Nf − 2Nc − 4) gauge theory with 2Nf

fundamental chirals, Nf (2Nf − 1) singlets antisymmetric matrix Xab and superpotential
Ŵ = Xabqaqb.

This implies the following identity between the supersymmetric indices of the dual
theories, which was proven in Theorem 3.1 of [42]

∮
d~uNc ∆Nc(~uNc)

Nc∏
a=1

2Nf∏
i=1

Γe
(
xiu
±1
a

)
=

=
2Nf∏
i<j

Γe(xixj)
∮

d~uNf−Nc−2 ∆Nf−Nc−2(~uNf−Nc−2)
Nf−Nc−2∏

a=1

2Nf∏
i=1

Γe
(
(pq)1/2x−1

i u±1
a

)
,

(B.1)

which holds provided that
2Nf∏
i=1

xi = (pq)Nf−Nc−1 . (B.2)

Notice that for Nc = N and Nf = N+2 the dual theory is a WZ model of (N+2)(2N+3)
chiral fields and the identity (B.1) reduces to [43]

∮
d~uN ∆N (~uN )

N∏
a=1

2N+4∏
i=1

Γe
(
xiu
±1
a

)
=

2N+4∏
i<j

Γe(xixj) , (B.3)

with the condition
2N+4∏
i=1

xi = pq . (B.4)

C The iterative proof of (3.2) for arbitrary N

In this appendix, we are going to provide a more rigorous proof of the delta-function
property (3.2) of the E[USp(2N)] block of arbitrary length:

INg = Γe
(
pqc±2

) ∮
d~zN ∆N (~z; pq/t)IE[USp(2N)](~z; ~x; t; c)IE[USp(2N)](~z; ~y; t; c−1)

=
∏N
j=1 2πixj

∆N (~x; t)
∑
σ∈SN

∑
±

N∏
i=1

δ
(
xi − y±1

σ(i)

)
, (C.1)

capturing all the expected poles.
The l.h.s. of the identity (C.1) can be represented by the quiver diagram shown in

figure 4, or equivalently, the first diagram in figure 18 where we have used the permutation
symmetry SN ⊂ USp(2N)x for later convenience so that the ∏N

i=1 SU(2)xi UV symmetry
is embedded in the USp(2N)x IR symmetry as shown in the figure and similarly for∏N
i=1 SU(2)yi ⊂ USp(2N)y.
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Sequential IP

IP

y1 yN−2x1 yN−1 xN yNxN−3xN−2xN−1

y1 yN−2x1 xN yNxN−3xN−2xN−1 yN−1

y1 yN−3x1 yN−1 yNxN−2xN−1xN yN−2

s−2

s

s−1 s−2

s

s−1 s

s−1

s−2
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Figure 18. Derivation of the delta-function property in the presence of the regulator s. For
simplicity, we omit the gauge singlets excepts those between SU(2)xN

and SU(2)yi
, which contain

poles we are interested in.

Note that the r.h.s. of (C.1) vanishes for generic ~x and ~y, while it is singular at xi = y±1
σ(i).

Thus, we are going to examine the behavior of the l.h.s. at xi = y±1
σ(i) as well as at generic ~x

and ~y. We first focus on xN and examine the behavior of the index around xN = y±1
N . For

this purpose, we apply the IP duality sequentially along the quiver from the left. Naively,
this results in the last gauge node disconnected from the others because once the IP duality
is applied on the second last node, its rank becomes zero and there is no remaining field
between the last gauge node and the other gauge nodes of the quiver. There would have
been a bifundamental field between the last node and the third last node, which is however
massive and should be integrated out. However, this is not completely correct because, as
we have seen in subsubsection 3.2.2 for the N = 2 case, we lose some information of the
poles if we blindly ignore such a massive bifundamental field. Thus, we have to be careful
when we apply the IP duality on the gauge node whose dual rank is zero. For this reason,
here we slightly deform the quiver by introducing a regulator s as shown in figure 18, which
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has to be sent to 1 at the end. This s can be regarded as a fugacity for a fictitious U(1)s
symmetry that is broken by the superpotential term

TrR1 TrR2 A
(1)
R Q

(1,2)
R Q

(1,2)
R , (C.2)

where R in super/subscripts denotes the right E[USp(2N)] block. In other words, the
presence of s means that we are considering the theory without this superpotential term.
Our procedure will give us a duality for such a theory, which we will then deform restoring
the aforementioned superpotential term, which is done in the index by sending s to 1.

Once we apply the IP duality sequentially until the second last node, the result is
almost the same as that without s except the fact that now the bifundamental field between
the last gauge node and the third last is not massive anymore, as shown in the second
quiver diagram in figure 18, because its mass term was mapped to the superpotential term
we removed in the original theory, which breaks U(1)s. Then we apply the IP duality on
the last node and obtain the third quiver diagram with gauge singlets:

Γe
(
pqs2

)
Γe
(
s−1x±1

N y±1
N

)
Γe
(
s−1x±1

N y±1
N−1

)N−2∏
j=1

Γe
(
x±1
N y±1

j

)

Γe
(
pqt−1

)N−1∏
j=1

Γe
(
pqt−1x±1

j x±1
N

)
Γe
(
tN−1c2s2

)
Γe
(
pqt−N+1c−2

)
(C.3)

where the last two factors cancel each other if we take s → 1. We immediately see that
this vanishes for generic xN due to the first factor, while it becomes singular when xN
approaches y±1

N due to the second factor. More precisely, the first two factors give, using
another form of the result (3.7) of [13],

lim
s→1

Γe
(
pqs2

)
Γe
(
s−1x±1

N y±1
N

)
=

Γe
(
x±2
N

)
(p; p)∞(q; q)∞

[δ(XN + YN ) + δ(XN − YN )] , (C.4)

where xn = e2πiXn , yn = e2πiYn . In addition, the blue and green lines in the third diagram
of figure 18, whose index contributions are

Γe
(
(pq)

1
2 t−

N−1
2 c−1s−1z(2N−3)±1y±1

N

)
, (C.5)

Γe
(
(pq)

1
2 t

N−1
2 cs2z(2N−3)±1x±1

N

)
(C.6)

respectively, become massive at xN = y±1
N for s→ 1. The resulting index of the gauge part

is then nothing but IN−1
g (~x(N−1); ~y(N−1)). Thus, the entire index around xN = y±1

N can be
written as

INg (~x(N); ~y(N))
∣∣∣
xN≈y±1

N

=
Γe
(
x±2
N

)
(p; p)∞(q; q)∞

Γe
(
pqt−1

)N−1∏
j=1

Γe
(
pqt−1x±1

j x±1
N

)

×
N−1∏
j=1

Γe
(
x±1
N y±1

j

)
δ(XN ∓ YN )INg (~x(N−1); ~y(N−1)) , (C.7)
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where now for clarity we are explicitly writing the dependence on the fugacities for the
non-abelian symmetries of the theory Tg, and the factors other than IN−1

g (~x(N−1); ~y(N−1))
come from the gauge singlet contributions (C.3).

Similarly, one can also examine the index around xN = y±1
N−1. In this case, the third

factor in (C.3) is singular and can be written as

lim
s→1

Γe
(
pqs2

)
Γe
(
s−1x±1

N y±1
N−1

)
=

Γe
(
x±2
N

)
(p;p)∞(q;q)∞

(δ(XN+YN−1)+δ(XN−YN−1)) (C.8)

where yN−1 = e2πiYN−1 . Moreover, the green and red lines in figure 18, whose index
contributions are

Γe
(
(pq)

1
2 t

N−1
2 cs2z(2N−3)±1x±1

N

)
, (C.9)

Γe
(
(pq)

1
2 t−

N−1
2 c−1s−1z(2N−3)±1y±1

N−1

)
(C.10)

respectively, become massive at xN = y±1
N−1 for s → 1. The gauge part is then given by

IN−1
g (~xN−1; ~yN−2; yN ), which leads to the following index around xN = y±1

N−1:

INg (~x(N); ~y(N))
∣∣∣
xN≈y±1

N−1
=

Γe
(
x±2
N

)
(p; p)∞(q; q)∞

Γe
(
pqt−1

)N−1∏
j=1

Γe
(
pqt−1x±1

j x±1
N

)

×
N∏
j=1

j 6=N−1

Γe
(
x±1
N y±1

j

)
δ(XN ∓ YN−1)IN−1

g (~x(N−1); ~y(N−2), yN ) .

(C.11)

On the other hand, the behavior around xN = y±1
i for other i is not manifest in this frame.

Instead, we can equivalently start from the initial quiver with yN−1 swapped with yi by the
permutation symmetry SN ⊂ USp(2N)y. Then we again apply the IP duality along the
quiver and find the behavior of INg (~x; ~y) around xN = y±1

i as follows:

INg (~x(N); ~y(N))
∣∣∣
xN≈y±1

i

=
Γe
(
x±2
N

)
(p; p)∞(q; q)∞

Γe
(
pqt−1

)N−1∏
j=1

Γe
(
pqt−1x±1

j x±1
N

)

×
N∏
j=1
j 6=i

Γe
(
x±1
N y±1

j

)
δ(XN ∓ Yi)IN−1

g (~x(N−1); ~y(N) \ {yi}), (C.12)

where yi = e2πiYi .
Once we combine the contributions from different singularities, we obtain the following

recursive relation between INg and IN−1
g :

INg (~x(N); ~y(N)) =
Γe
(
x±2
N

)
(p; p)∞(q; q)∞

Γe
(
pqt−1

)N−1∏
j=1

Γe
(
pqt−1x±1

j x±1
N

)

×
N∑
i=1

N∏
j=1
j 6=i

Γe
(
x±1
N y±1

j

)
δ(XN ± Yi)IN−1

g (~x(N−1); ~y(N) \ {yi}) . (C.13)
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Recall that we have already shown the identity (C.1) is true for N = 1. Now if we assume
this is true for N = n− 1, i.e.

In−1
g (~x(n−1); ~y(n−1)) =

n−1∏
i=1

Γe
(
x±2
i

)
(p; p)∞(q; q)∞

Γe
(
pqt−1

)n−1 n−1∏
i<j

Γe
(
pqt−1x±1

i x±1
j

)

×
∑

σ∈Sn−1

n−1∏
i>j

Γe
(
x±1
i y±1

σ(j)

)(n−1∏
i=1

[
δ(Xi ± Yσ(i))

])
, (C.14)

then Ing (~x(n); ~y(n)) is given by

Ing (~x(n);~y(n)) =

=
n∏
i=1

Γe
(
x±2
i

)
(p;p)∞(q;q)∞

Γe
(
pqt−1

)n n∏
i<j

Γe
(
pqt−1x±1

i x±1
j

)

×

n−1∏
j=1

Γe
(
x±1
n y±1

j

)δ(Xn±Yn)
∑

σ∈Sn−1

n−1∏
i>j

Γe
(
x±1
i y±1

σ(j)

)(N−1∏
i=1

[
δ
(
Xi±Yσ(i)

)])

+(yn↔ yi for i= 1, . . . ,n−1) =

=
n∏
i=1

Γe
(
x±2
i

)
(p;p)∞(q;q)∞

Γe
(
pqt−1

)n n∏
i<j

Γe
(
pqt−1x±1

i x±1
j

) ∑
σ∈Sn

 n∏
i>j

Γe
(
x±1
i y±1

σ(j)

)( n∏
i=1

[
δ(Xi±Yσ(i))

])

=
[∏n

i=1 2πixi]
[∏n

i=1 Γe
(
x±2
i

)][∏n
i<j Γe

(
x±1
i x±1

j

)]
[(p;p)∞(q;q)∞]nΓe(t)n

[∏n
i<j Γe

(
tx±1

i x±1
j

)] ∑
σ∈Sn

(
n∏
i=1

[
δ
(
xi−yσ(i)

)
+δ
(
xi−y−1

σ(i)

)])
,

(C.15)

where for the last equality we have used (3.15). Since (C.15) is exactly the r.h.s. of
identity (C.1), by mathematical induction this proves the identity for arbitrary N .
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any medium, provided the original author(s) and source are credited.
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