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ABSTRACT 

MECHANISMS OF SPOKEN WORD RECOGNITION AND MEMORY 

ENCODING STUDIED THROUGH COMPETITOR PRIMING 

Yingcan Wang 

Human listeners achieve quick and effortless speech comprehension in daily life and can adopt 

new words easily into their vocabulary. However, the underlying mechanisms under spoken 

word recognition and learning remain to be better understood. This thesis examines the neural 

and functional mechanisms of spoken word recognition and memory encoding by using a 

competitor priming paradigm - prior presentation (priming) of a competitor spoken word (e.g. 

hijack) is followed by the presentation of a similar sounding word sharing the same initial 

segments (e.g. hygiene). Consistent with the Bayes rule, the prior probability of the competitor 

word has been increased due to the earlier exposure, which can in turn change the perception 

or memory encoding of the target word.   

The MEG study described in Chapter 2 examined the neural implementations of spoken 

word recognition by testing two distinct implementations of Bayes perceptual inference. 

Competitive-selection accounts (e.g. TRACE) propose direct competition between lexical units 

such that inhibition of irrelevant candidates leads to selection of critical words, while 

predictive-selection accounts (e.g. Predictive Coding) suggest that computations of prediction 

error by comparing heard and predicted speech sounds drive the update of lexical probabilities 

that are crucial to word recognition. The study results indicated that MEG signals localised to 

the superior temporal gyrus (STG) showed greater neural responses evoked by competitor 

primed words than unprimed words after the point at which they were uniquely identified (after 

/haidʒ/ in hygiene) and these stronger neural signals also correlated with the longer response 
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times caused by competitor priming. These findings were more in line with the predictive 

neural mechanisms. 

Chapter 3 reports studies that investigated lexical and sub-lexical processing during 

spoken word recognition, specifically whether changes in lexical prediction that give rise to 

the competitor priming effect (longer response times) continue to be observed even when word 

recognition is not required for task performance. Here, the pause detection task was compared 

with the lexical decision task in a set of experiments to direct participants’ attention to 

phonological processing or lexical processing respectively during the perception of prime or 

target items. The findings showed opposite effects of these two kinds of processing, with the 

competitor priming effect observable only when participants’ attention was on lexical 

processing, while phonological facilitatory effect was observed when the pause detection task 

was used, and that prime item was presented with pause inserted. These results were in 

accordance with the Predictive Coding account and the Distributed Cohort Model, as both of 

which support inhibitory lexical processing and facilitatory sub-lexical processing in their 

respective structures.     

Chapter 4 describes tasks and analyses that examined the effect of competitor priming 

on spoken word memory encoding by using additional recognition memory data collected from 

the same experiments as reported in Chapter 2 and 3. Participants’ memory performance was 

measured by how accurately they could distinguish previously heard items from foils. The 

findings indicated that enhanced prediction error caused by competitor priming facilitated 

memory encoding of words when the encoding was repeated multiple times and involved 

deeper lexical-semantic processing. These findings were consistent with the PIMMS 

framework, which proposes that prediction error caused by the competitor priming effect 

should improve memory encoding. Moreover, subsequent memory analyses of the MEG data 

(as reported in Chapter 2) showed pseudoword encoding localised to the medial temporal lobe, 
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consistent with the initial rapid encoding stage of novel word learning in the complementary 

learning systems. 

In conclusion, the thesis provides evidence for a unified account of computations of 

prediction error which supports spoken word recognition and memory encoding while also 

shows that the effects of lexical and sub-lexical processing are dissociated during these two 

processes.  
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1 INTRODUCTION AND LITERATURE REVIEW 

Speech comprehension is a fundamental human cognitive skill that affects our daily life. In 

order to understand speech, it is necessary that we can recognise each individual spoken word 

that is familiar to us and also constantly learn new words that we have not encountered before. 

This thesis investigates the mechanisms of spoken word recognition and memory encoding by 

using a competitor priming paradigm (Monsell & Hirsh, 1998).  

Speech perception is a process that constantly matches segments of speech input with 

word forms and meanings that we know. This process unfolds over time and the speech input 

is often transiently ambiguous, since a speech segment (e.g. /kæptɪ/) can match multiple word 

candidates (e.g. captain, captive) at a given time. Therefore, in order to select the suitable match, 

the process of spoken word recognition is essentially competitive and the competitor priming 

paradigm reflects exactly such competitive process.  

In this chapter, I first introduce what the competitor priming paradigm is and why it is 

helpful for studying spoken word recognition and memory encoding while reviewing existing 

studies that used this paradigm. Then, I review the theories and evidence on the functional and 

neural mechanisms of how spoken word is recognised and subsequently remembered and how 

the mechanisms involved in these processes are revealed through the competitor priming 

paradigm. Finally, I describe the remaining structure of the thesis.    

 

1.1 The competitor priming paradigm 

It has been known that repetition priming can enhance response speed or accuracy towards 

previously exposed stimuli even when considerable time has elapsed between successive 

presentations (Forbach et al. 1974). Such effects are prevalent during spoken word recognition 
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(e.g. Orfanidou et al., 2006, 2011) and are commonly used to measure implicit memory of 

spoken words (Church & Schacter, 1994; Goldinger, 1996). In contrast to repetition priming, 

competitor priming leads to an inhibitory priming effect which shows that a prior presentation 

of a competitor word (e.g. hijack) delays the response of similar sounding word that shares the 

same initial sounds (e.g. hygiene).  

While this inhibitory effect caused by competitor priming was predicted by major 

models of spoken word recognition such as TRACE (McClelland & Elman, 1986), the cohort 

model (Marslen-Wilson, 1987, 1990) and Shortlist (Norris, 1994), surprisingly, the effect was 

unstable and even facilitatory when the competitor prime was presented very shortly before the 

target (Radeau et al., 1995; Slowiaczek & Pisoni, 1986; Slowiaczek & Hamburger, 1992) due 

to possible response biases (Goldinger et al., 1992; Norris et al., 2002). For example, Norris 

and colleagues (2002) conducted experiments that examined facilitation effects on the 

perception of spoken word targets when they rhymed with the prime items (e.g. ramp-lamp). 

They found that participants could notice the rhyming relationship between the prime and the 

target, which hence helped them adopt a strategy that biased their response towards “yes”. 

Goldinger et al. (1992) also showed similar findings that phonological primes (e.g. ram-run) 

had facilitatory effects for both words and pseudowords, which was also likely due to the fact 

that participants noticed the presence of related pairs.  In addition, Dufour and Peereman (2003) 

showed that the inhibitory effect in competitor priming with a short lag was reliable only with 

certain restrictions, such as target words having few competitors within the same cohort. 

In order to explore the possibility of a clear and stable inhibitory effect in the competitor 

priming paradigm, Monsell and Hirsh (1998) conducted a series of experiments in which words 

and word-sounding novel words (referred to as pseudowords hereafter) having the same heads 

(e.g. difficult, diffident) or rhymes (e.g. sharp, harp) served as the prime and target items with 

either short lags (a few trials) or long lags (separate blocks of trials, 1-5 min) in between, and 
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participants’ lexical decision performance on these items were measured. They found that 

response times increased for words preceded by another word sharing its head but not its rhyme 

when there was a long lag between them, while similar effects were not observed for words 

primed by pseudowords or pseudowords primed by items of either lexicality. When the prime 

lag was short, however, general phonological facilitatory effects and response bias were found 

as in previous literature (Goldinger et al., 1992; Norris et al., 2002). Dufour and Nguyen (2017) 

replicated these results by also using a lexical decision task with long priming lag. They also 

showed that the competitor priming effect remained robust when the prime and the target were 

presented in different voices and that the prime was presented only once.   

These reliable findings on long-lag competitor priming have important implications for 

lexical access, competition and selection during spoken word recognition. The fact that the 

inhibitory priming effect was shown only for words sharing the same initial segments but not 

the rhyme indicated that the overlap of the initial sounds but not rhyme or overall phonological 

similarity defines the effective competitor during lexical activation, which is in accordance 

with the cohort theories (the Cohort Model, Marslen-Wilson, 1987, 1990; the Distributed 

Cohort Model, Gaskell & Marslen-Wilson, 1997, see section 1.2 for more details of these 

models). Meanwhile, just one prior presentation of the competitor word could already affect 

the recognition of the target word - this showed the strong modulation effect of prior probability 

of a word, namely the frequency effect (Dahan et al., 2001). Finally, target words were 

recognised more slowly due to the prior presentation of the competitor prime word while 

similar effects were not found for when pseudowords served as primes or targets. This could 

be explained by competitions between pre-existing lexical candidate through lateral inhibition 

(TRACE; McClelland & Elman, 1986, see section 1.2, 1.3 for more details of this model) or 

calculations of prediction error during lexical selection (Predictive Coding; Davis & Sohoglu, 

2020, see section 1.2, 1.3 for more details of this model). These processes involved in the 
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competitor priming paradigm makes it an ideal platform to study both the functional and neural 

mechanisms of spoken word recognition. 

Moreover, while word memory can be enhanced after repetition priming, it is possible 

that competitor priming may also improve episodic memory encoding of unexpected target 

items due to computations of prediction error (PIMMS account; Henson & Gagnepain, 2010, 

see section 1.4 for more details of this model). However, while a number of studies on 

recognition memory of words and visual episodic memory (Corley et al., 2007; Federmeir et 

al., 2007; Greve et al., 2017) showed support for the positive encoding effect of prediction 

error, other studies (Bernhard et al., 2009; Höltje et al. 2019) suggested that more expected 

words are remembered more successfully in subsequent memory tests. The competitor priming 

paradigm is therefore suitable for further investigating the role of prediction error in memory 

encoding of words and pseudowords.  

Overall, both functional and neural mechanisms of spoken word recognition and word 

episodic memory encoding can be studied using the competitor priming paradigm. I will review 

these mechanisms in more detail in the following sections.   

 

1.2 Functional mechanisms of spoken word recognition  

Speech comprehension appears to be a common and easy task for most people, yet it in fact 

involves a challenging computational process for listeners. In daily conversation, listeners need 

to identify approximately 200 words/minute (Tauroza & Allison, 1990) from a vocabulary of 

~40,000 words (Brysbaert et al., 2016). This means that they must recognise 3-4 words/second, 

constantly select from sets of transiently ambiguous words that start with the same sounds (e.g. 

hijack and hygiene both begin with /haidʒ/) and cannot easily go backwards to check what they 

have missed due to the temporal dimension of the speech signal – it unfolds over time.  
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  In essence, the process of spoken word recognition can be described as matching the 

spoken input with mental representations of possible word candidates and ultimately select one 

that is consistent with the input. The functions of spoken word recognition were classified into 

three stages by Frauenfelder and Tyler (1987) – the initial contact that activate lexical 

representations, the selection of activated lexical candidates that match the sensory input, and 

the integration of selected word items with context. I will review the functions in the first two 

stages that are involved in competitor priming. 

 

1.2.1 Lexical activation 

It has been agreed that the recognition of spoken words is not simply phoneme perception, 

rather, it involves lexical activation to achieve the ease and rapidity of recognition. That being 

said, theories differ on how lexicons of spoken words are activated. The original and revised 

Cohort Models (Marslen-Wilson & Welsh, 1978; Marslen-Wilson, 1987) and the Distributed 

Cohort Model (DCM; Gaskel & Marslen-Wilson, 1997) emphasize on the temporal dimension 

of speech and suggest that words having the same onsets as the spoken word (i.e. the word-

initial cohort) are activated first and, as the signal input coming in, items that no longer match 

the input will decrease in activation. While the original Cohort Model has strict match 

constraint for word-initial cohort, the revised Cohort Model and the DCM evaluate the 

similarity between lexical representations and speech input continuously so that the possibility 

that a word could be recognised even when the initial sounds are mispronounced can be 

accounted for (Cole, 1973). Similarly, the TRACE model (McClelland & Elman, 1986) also 

predicts that words sharing the same initial sounds with the input have an advantage in early 

activation, but it also supports activation of rhyme-overlapping candidates at a later stage of 

the speech input (Allopenna et al., 1998).   
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 In contrast, the Neighbourhood Activation Model (NAM; Luce & Pisoni, 1998) differs 

from cohort theories by predicting that spoken words are activated by their overall similarity 

with the sensory input instead of giving priority to the match of initial sounds. The model 

proposes that words differ from the spoken word input by no more than one phoneme are 

activated regardless of the position of the phoneme (e.g. words such as fat, cut, cab, at, scat 

should be activated on hearing cat, while words such as captain will not be activated due to the 

difference in more than one phonemes). 

 There is empirical evidence for each of these predictions. For the NAM model, Luce & 

Pisoni (1998) conducted three experiments using perceptual identification, lexical decision and 

single-word shadowing paradigms respectively and showed that the accuracy and processing 

speed of spoken words were affected by their overall similarity neighbourhood. For the Cohort 

Model, Marslen-Wilson (1993) described results showing that when a word (e.g. beetle) had 

the same onset as the prime spoken word (e.g. beaker), the priming effect on its semantic 

associates (e.g. insect) was reliable in the visual lexical decision task, while this was not the 

case when the word had the same rhyme as the prime (e.g. speaker, with stereo as the semantic 

associate). In addition, Allopenna and colleagues (1998) found evidence for the TRACE model 

through an eye tracking experiment. They showed that participants’ eye movements were fixed 

more on the onset-overlapping competitor earlier although there was also a small proportion of 

fixation on the rhyme-overlapping competitor later. Finally, the competitor priming effect 

observed by Mosell and Hirsh (1998) showed reliably delayed recognition only for words 

sharing the onset but not the rhyme, which highlighted the importance of the word-initial cohort 

in lexical activation.  
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1.2.2 Probability modulation – the frequency effect 

Apart from phonological similarity to the sensory input, frequency, or the prior probability of 

words and sound sequences (i.e. how probable for the word to occur based on Bayes theorem, 

see Norris & McQueen, 2008), also play an important role in shaping both the activation and 

selection of lexical candidates. In this section, I review the frequency effect on word 

recognition from both the time dimension (i.e. the locus of the lexical frequency effect during 

word identification) and the functional dimension (i.e. the phonotactic probability at the sub-

lexical level of processing as opposed to the lexical frequency effect). 

 

The time locus of lexical frequency effect 

  While there is a consensus that word frequency influences word recognition, models 

diverge in when its effect comes into place. In localist models (i.e. models with discrete lexical 

representations), such as the Cohort Model (Marslen-Wilson, 1987) and TRACE (McClelland 

& Elman, 1986), frequency operates at an early stage by affecting the baseline activation level 

of each lexical unit or the connection weights between sublexical and lexical units. Similarly, 

in the Distributed Cohort Model (DCM; Gaskell & Marslen-Wilson, 1997), frequency affects 

the weights of the distributed lexical representations and this effect persists throughout the 

duration of word processing. In contrast, the Neighbourhood Activation Model (NAM; Luce 

& Pisoni, 1998) places the effect of frequency later after the lexical activation stage, this is 

because, in NAM, frequency affects the selection of words after sensory information for 

lexicons has been accumulated, although the procedure still happens during the recognition 

process.  

However, Balota and Chumbley (1984) proposed an even later influence of frequency, 

which operates at the decision stage evoked by different tasks. They found that the word 

frequency effect on visual word recognition is largest in the lexical decision task, but smaller 
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in the pronunciation task and smallest in the category verification task even though lexical 

access must be involved in both lexical decision and category verification. They argued that 

the lexical decision task differs from the other tasks due to its emphasis on frequency 

information at the decision stage of the task, as the familiarity of the stimulus and its 

meaningfulness are the two most obvious pieces of information that help the participants 

differentiate words from pseudowords. It should also be noted that this account only intended 

to show the effect of frequency caused by decisions made during the task and did not intend to 

negate the frequency effect during lexical access in the early stage. However, similar effects 

caused by tasks were not observed by Monsell et al. (1989), their categorization and naming 

tasks showed similar sensitivity to frequency as the lexical decision task and they argued that 

it was the global monitoring of lexical activation during word identification, which the decision 

process depended on, that was sensitive to frequency. However, these results were based on 

visual word perception, the effect during spoken word recognition may differ due to the time-

course by which words are heard, since late decision effects will only occur later on once words 

can be identified.  

Empirical evidence was found for early as well as late effects of frequency. Connine 

and colleagues (1993) used a phoneme identification task in which participants were asked to 

identify the ambiguous phoneme in words (e.g. the phoneme /b/ or /p/ on a scale between best 

and pest), and they manipulated the “context” of the word by presenting a list of other words 

with different frequencies at the same time. They reported that presenting a low frequency word 

list biased the ambiguous word towards the low frequency choice, i.e. a reversed frequency 

effect, while high frequency word list exaggerated the frequency effect by biasing the 

ambiguous word towards the high frequency choice even more. Furthermore, they found that 

fast responses were affected by the list manipulation rather than by the frequency of the word 
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itself. Hence, they suggested that word frequency operates at the decision stage, in accordance 

with Balota & Chumbley’s (1984) account.  

In contrast, Cleland and colleagues (2006) observed an early frequency effect through 

the psychological refractory period (PRP) techniques, in which there is a central bottleneck that 

prevents processing of two sequential stimuli being carried out simultaneously. They found 

that the frequency effect was reliably smaller when the interval between the two stimuli was 

short (100ms) than when it was longer (800ms), which indicated that at least some of the 

frequency-sensitive processing (i.e. the extra recognition cost carried by low-frequency relative 

to high frequency words) occurred in the early pre-bottleneck period.  

The early frequency effects were further confirmed by an ERP study conducted by 

Dufour and colleagues (2013). They used French words with high and low frequency to test 

participants ERP response during a lexical decision task. They showed that low frequency 

words generated a stronger P350 (a component reflecting activation of lexical form) than high 

frequency words during lexical decision as early as 350ms post stimuli onset when the stimuli 

were still ambiguous.  

Furthermore, Dahan and colleagues (2001) monitored participants’ eye movements as 

they were instructed to click on and move pictured objects using the computer mouse. They 

showed in their first experiment that participants were more likely to fixate on high frequency 

competitor (e.g. a picture of bed) of the target picture (e.g. picture of a bench) than the low 

frequency one (e.g. picture of a bell) from as early as 267ms after the onset of the target word 

in the spoken instruction (e.g. “Pick up the bench.”), while the magnitude of the effect grew as 

more of the word was heard. This means that the frequency effect occurred at a very early time 

of spoken word perception when the speech signal was still ambiguous and that the effect was 

continuous. In addition, the authors also simulated three different implementations of 

frequency in the TRACE model using the word stimuli from their experiments. The three 
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implementations respectively were frequency operating on resting activation levels, frequency 

operating on connection weights and frequency based on a post-activation decision rule. As 

shown in Figure 1.1, they found that resting level and post-activation bias produced very 

similar predictions, while connection weights between phonemes and words provided the most 

accurate predictions out of the three implementations, which was consistent with an account of 

continuous frequency effect which depends on the strength of the bottom-up input. 

In short, previous evidence seemed to show that the frequency effect during word 

recognition can occur very early during the lexical activation stage, but the effect is somewhat 

continuous throughout the recognition of a spoken word and could also be affected by tasks at 

the decision level.  
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Figure 1.1. The difference of fixation probability between high and low-frequency competitors 

as a function of time (from Dahan et al., 2001). The actual data together with four simulated 

implementations of frequency were shown: simulation without frequency, simulation with 

frequency operating on resting activation levels, simulation with frequency operating on 

connection weights and simulation with frequency based on a post-activation decision rule.  

 

 

Frequency effect at the sub-lexical level 

 Most theories agree that the process of spoken word recognition consists of both lexical 

and sub-lexical representations (e.g. TRACE, Shortlist, DCM). While the effect of word 

frequency at the lexical level has been studied widely, the effect of sub-lexical phonotactic 

probability, i.e. the frequency of segments or sound sequences within words, is less well known.  

The TRACE model (McClelland & Elman, 1986, see Figure 1.2) consists of the feature, 

phoneme and word levels, hence it supports both lexical and sub-lexical level processing. 

However, the effects of phoneme processing are shown through excitatory interactions between 

the phoneme and the word layers, while word identification is driven by lateral inhibitions 

(more details see section 1.2.3) between lexical competitors at the word level, hence the effects 

of sub-lexical units on spoken word recognition are indirect and have been masked by the 

lexical level.  

However, in the DCM (Gaskell & Marslen-Wilson, 1997, see Figure 1.3), feature input 

passes through the hidden layer onto the phonological and semantic representations of spoken 

words at the same time. The lexical and sub-lexical representations are blended together in the 

same nodes, hence the effect of phonotactic probabilities can be shown directly through 

coherent phonological representations from words within the same cohort (Gaskell & Marslen-

Wilson, 1999, 2002).  
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Figure 1.2. Schematic illustration of the TRACE model (from Magnuson et al., 2012) showing 

input passing through the feature, phoneme and word layers (only four phonemes and two 

words are shown in the illustration for simplicity). Arrows indicate excitatory forward and 

backward connectivity between levels. Filled circles indicate lateral inhibition between nodes 

within the same level.  
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Figure 1.3. Schematic illustration of the Distributed Cohort Model (adapted from Gaskell & 

Marslen-Wilson, 1999, 2002). A. The structure of the model which shows feature input passing 

through the hidden units layer onto two sets of output units that represent the semantic and 

phonological aspects of the spoken words. B. Hypothetical activation pattern of semantic and 

phonological units as a function of time. Filled circles represent high activations while open 

circles represent low activations, larger circles indicate more extreme values. The activation 

pattern is a blend of all distributed word representations at each time step. The phonological 

pattern is already informative early on, since all matching candidates share the same 

phonological features at word onsets.     

 

A

B
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Perhaps the most detailed account of phonotactic probabilities was proposed by 

Vitevitch and Luce (1998, 1999, 2005). They suggested that word forms with high phonotactic 

probability tend to have many phonological neighbours (e.g. cat is high in phonotactic 

probability because /k/, /æ/ an /t/ are high-frequency segments in the initial, medial and final 

positions respectively), and that higher phonotactic probability should facilitate word 

recognition. However, Vitevitch et al. (1999) also showed that the sum of the frequency of 

segments in words positively correlated with the words’ neighbourhood density, which is 

supposed to have an inhibitory effect on their identification. In light of this, Vitevitch and Luce 

(1998) proposed a two-level framework of processing in spoken word recognition, in which 

lexical and sub-lexical levels of representations have reversed effects. This is similar to the 

DCM account, which proposes intrinsic competitions between lexical representations and 

facilitations caused by phonological coherence. However, models such as TRACE also embody 

suitable architectures for this kind of dual-level processing, although it is unclear if these 

models as currently instantiated can simulate the opposite effects of the two levels. 

An obvious example of these effects were shown through responses to words and 

nonwords with manipulated neighbourhood density / phonotactic probability. In a series of 

experiments using the shadowing task, Vitevitch and Luce (1998; 1999) showed that words 

with densely populated neighbourhoods were shadowed less quickly than words with sparsely 

populated neighbourhoods, while nonwords that were high in segment frequency were 

responded more quickly than those with low phonotactic probability. Additionally, the use of 

different experimental paradigms can also trigger similarly opposite effects from lexical and 

sub-lexical representations. Gaskell and Marslen-Wilson (2002) conducted a series of studies 

using cross model repetition priming and semantic priming paradigms respectively, with 

participants performing the lexical decision task. They showed that short and incomplete 
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spoken word segments (e.g. /kæpt/) had a significant facilitatory repetition priming effect on 

visual words that shared the same segments (e.g. captain) despite the segments’ high ambiguity, 

whereas during the semantic priming, in which word segments primed semantic synonyms of 

target words (e.g. commander as the synonym for captain), there was no reliable priming effect 

for words with late uniqueness point (UP; i.e. the diverging point at which words can be 

uniquely identified). Their results indicated facilitatory effects between coherent phonological 

representations and competition effects between lexical semantic representations. In particular, 

this facilitatory phonotactic effect was caused by activations of multiple candidates who share 

the same initial segments, and repetition priming has enhanced the prior probability of these 

sound segments, which is consistent with the effect of higher phonotactic probability.   

Overall, both the time and the processing level at which frequency operates can affect 

spoken word recognition. By presenting the competitor prime item prior to the target item, the 

competitor priming paradigm provides a way to manipulate the prior probability (frequency) 

of the prime item. While Monsell and Hirsh (1998) used the lexical decision task in their study, 

it remains unclear if similarly delayed word recognition effect can be found when a task not 

focusing on lexical processing is used. We will investigate this topic more in Chapter 3 of the 

thesis. 

 

1.2.3 Lexical selection 

Once word candidates are activated based on phonological similarity with the spoken input and 

their prior probability (i.e. frequency of occurrence), a mechanism is needed to select the 

matching word item in order to achieve word recognition. A number of spoken word 

recognition theories assume some form of competition during the lexical selection process 

(Cohort, DCM, NAM, Shortlist, TRACE), while the calculation of prediction error has also 

been proposed as a possible selection mechanism (Predictive Coding; Davis & Sohoglu, 2020).  
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Competitive selection 

Multiple models support that spoken word recognition needs competition, but they differ in 

how the competition mechanism is implemented. The revised Cohort Model (Marslen-Wilson, 

1987) proposes that the activation level of a unit was monitored with respect to all other units, 

hence the recognition of a given word item was affected by other matching candidates and the 

selected item fits the input the best.  

In the Distributed Cohort Model (DCM; Gaskell & Marslen-Wilson, 1997), lexical 

competition is an intrinsic process for lexical selection, since all representations of semantic 

and phonological features are blended together and there is interference between patterns that 

are consistent with the partial input. However, partial activation and blending of multiple 

phonological representations will produce a lesser form of competition – since the set of 

partially active words all include a set of segments that are shared between lexical competitors, 

hence the representation of these onset segments can be readily identified.  

The NAM account (Luce & Pisoni, 1998) states that the probability of recognising a 

word is proportional to the ratio between frequency of the target word and the total frequency 

of its neighbourhood, hence it also embodies competition between lexical candidates as 

specified in the concept of the neighbourhood.  

Finally, hierarchical connectionist models such as TRACE (McClelland & Elman, 1986) 

and Shortlist (Norris, 1994) assume direct competition between lexical units via an explicit 

competition mechanism - lateral inhibition, namely a lexical item with units that are more 

activated within the same lexical layer (and phoneme layer, in the case of TRACE) will also 

directly inhibit other candidates more, which eventually leads to its selection. In addition, the 

recurrent loops created by lateral inhibition also allow for continuous updates of activations of 

candidates over time.      
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Predictive selection 

Like TRACE and Shortlist, the Predictive Coding account (PC; Davis & Sohoglu, 2020) also 

supports a hierarchical structure for speech processing, with acoustic, phoneme and semantic 

levels. It differs from competitive selection models by incorporating inhibitory top-down 

predictions based on activated lexical units (see Figure 1.4 for a comparison between TRACE 

and the PC). This theory proposes that the strength of predictions depends on the prior 

probabilities of connected lexical units. By subtracting top-down predictions from bottom-up 

sensory signals, the resulting prediction errors at intermediate levels should drive recognition 

of spoken words. When sensory signals are stronger than predicted, the relevant perceptual 

hypotheses are strengthened and leading to positive prediction errors, while weaker signals 

would lead to negative prediction errors which suppress incorrect perceptual hypotheses.   

Although competitive- and predictive-selection models propose different 

implementations for the lexical selection stage of spoken word recognition, they both 

approximate conditional probability in activating lexical units and their predictions for 

behavioural responses are similar (Spratling, 2008). For example, in the competitor priming 

paradigm, both TRACE and PC predict that words primed by another competitor word with 

the same initial segments should be recognised more slowly. From the perspective of TRACE, 

this is because prior presentation of the competitor word should activate it more due to the 

change of its frequency (Dahan et al., 2001), and hence there is stronger lateral inhibition 

coming from the competitor word, which makes it more difficult to select the target word. 

However, according to PC, prior presentation of the competitor word increases its prior 

probability (frequency), which hence strengthens the predictions between its initial segments 

and ending segments. Therefore, a larger prediction error should be evoked when this 

prediction is disrupted by the presentation of the target word which has a different ending 
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segment from the competitor word. In order to dissociate the competitive- and predictive-

selection accounts, it is necessary to review evidence from neural data, which I will discuss 

more in the next section.     

  

 

Figure 1.4. A comparison of the TRACE model (McClelland & Elman, 1986) and the 

Predictive Coding model (PC; Davis & Sohoglu, 2020). TRACE supports lexical selection 

through direct competitions (i.e. lateral inhibitions) between activated units, while PC proposes 

that computations of prediction error by subtracting top-down predictions from bottom-up 

sensory input drive the selection of the matching word (adapted from Davis & Sohoglu, 2020). 

 

 

1.3 Neural implementations of spoken word recognition  

Understanding the neural basis of how humans identify spoken words is helpful for us to 

explain the remarkable speed and flexibility of spoken word recognition. In this section, I will 

review the brain regions and the time course at which lexical selection happens and how 

competitive- and predictive-selection accounts differ in their predictions for neural responses.  

(Davis & Sohoglu, 2020)
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1.3.1 The location  

To distinguish between the brain regions that contribute to word recognition, studies 

contrasting neural responses to familiar words and novel words (pseudowords) are especially 

insightful. Davis and Gaskell (2009) reviewed 11 PET and fMRI studies, through which they 

observed differential responses between spoken words and pseudowords in both directions – 

greater word responses were shown in the inferior frontal region, several areas of the lateral 

temporal lobe and the temporoparietal junction, while greater pseudoword responses were 

mainly shown in the superior temporal gyrus (see Figure 1.5).  

 

 

Figure 1.5. Results of a meta-analysis of 11 PET and fMRI studies comparing neural responses 

evoked by spoken words and pseudowords (Davis & Gaskell, 2009; Figure from Davis, 2016). 

A. The Activation Likelihood Estimation maps are thresholded at p <.05 FDR corrected and 

only clusters larger than 100 mm3 are displayed. Areas in red (mainly peri-auditory regions of 
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the STG) show greater neural responses evoked by pseudowords than words, areas in blue (IFG, 

anterior, posterior and inferior regions of the lateral temporal lobe and adjacent parietal regions) 

show greater word responses than pseudowords. B. A cross section illustration (z = -18) of 

greater word responses in inferior temporal area.  

 

 

Competitive-selection models with localist structure (e.g. TRACE; McClelland & 

Elman, 1986) propose that lexical nodes represent words rather than pseudowords, hence they 

predict additional activation for words than pseudowords during lexical processing. However, 

it is hard for these models to explain the reverse observation of greater neural responses evoked 

by pseudowords in the superior temporal gyrus (STG). While the DCM (Gaskell & Marslen-

Wilson, 1997) is also a competitive-selection model, it assumes common phonological 

representations for both words and pseudowords, hence stronger pseudoword responses could 

also be explained by greater processing effort engaged by sub-lexical processing in 

pseudowords due to their unfamiliarity (Taylor et al. 2013). The predictive-selection accounts 

(e.g. Predictive Coding; Davis & Sohoglu, 2020), however, predict stronger pseudoword 

responses than word responses in the STG due to the maximal prediction error evoked by 

pseudowords (since the difference between lexical informed predictions and sensory input for 

unfamiliar pseudowords is large). 

 Neural evidence exists for both competitive- and predictive-selection accounts. 

Additional brain activities evoked by spoken words due to lexical competition are commonly 

reflected in the superior temporal region (Hickok & Poeppel, 2007) and the inferior frontal 

cortex (Bozic et al., 2010; Zhuang et al., 2014). Okada and Hickok (2006) showed in their 

fMRI study that spoken words with high neighbourhood density (i.e. more lexical competition 

due to many similar sounding neighbours) produced significantly stronger neural responses in 
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the posterior superior temporal sulcus compared to low-density words. In addition, Bozic and 

colleagues (2010) reported an fMRI study which showed that comparison between spoken 

words presented with and without an embedded stem (e.g. claim(clay)) highlighted that 

bilateral inferior frontal cortex with a focus on BA47 (pars orbitalis) and BA45 (pars 

triangularis) were activated due to on-line lexical competition. Zhuang and colleagues (2014) 

also found activations of similar inferior frontal regions for words with more initially activated 

competitors.  

In contrast, the additional responses to spoken pseudowords in the STG have been 

attributed to greater processing effort possibly evoked by larger prediction error in identifying 

pseudowords (Davis, 2016). For instance, Davis et al. (2009) and Gagnepain et al. (2012) 

reported similar interaction effects of neural signals between the lexicality of items and the day 

on which the items were presented using fMRI and MEG respectively. As shown in Figure 1.6, 

Gagnepain and colleagues (2012) found that pseudowords (i.e. novel words) produced stronger 

MEG responses than words (i.e. source words) in the left STG. Importantly, at the same 

location, they also found that pseudowords presented on the second day (newer, e.g. mushrood) 

evoked stronger responses than pseudowords presented on the first day (older, e.g. formubo), 

while words presented on the second day (e.g. mushroom) evoked weaker responses than those 

presented on the first day (e.g. formula).  

They reasoned that pseudoword presented on the second day (e.g. mushrood) was 

newer and therefore evoked larger prediction error than the pseudowords presented on the first 

day (e.g. formubo, which should have been lexicalised and included in participants’ vocabulary 

after overnight consolidation), while words presented on the first day (e.g. formula) should 

produce larger prediction error since these words share the same initial segments with the 

lexicalised pseudowords (e.g. formubo) and this newly added competitor should enlarge the 

difference between prior expectations (now predicting two possible segments on hearing formu, 
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i.e. “–la” and “-bo”) and the sensory input (e.g. formula). The interaction effects localised to 

the STG reflected the greater processing difficulty caused by pseudowords compared to words, 

newer pseudowords compared to lexicalised pseudowords, and words with more competitors 

compared to words with less competitors. Taken together, these findings are more in line with 

the predictive-selection account. In addition, it should be noted that the time-locked measures 

of neural activity adopted in this study also added an important time dimension that accounts 

for spoken word recognition. I will discuss this in more detail in the next section.   

 

 

Figure 1.6. The lexicality by day interaction effect localised in the STG (adapted from 

Gagnepain et al., 2012). Novel words (pseudowords) on average evoked stronger MEG 

responses than source words. In addition, novel words presented on the second day produced 

greater neural responses than those presented on the first day, while source words showed more 

responses on the first day compared to the second day. 

 

 

A B
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1.3.2 The time course 

As introduced above, an important feature of speech is that it unfolds over time, it is therefore 

crucial to also study the neural mechanisms of spoken word recognition reflected through the 

time dimension. According to competitive-selection accounts, lexical competition reflects the 

degree of uncertainty before word identification. This can be quantified by entropy over lexical 

competitors activated at the point of the speech input, as described in information theory 

(Shannon, 1948; see Figure 1.7). Therefore, lexical entropy should be greatest when the number 

of competitors are the largest (i.e. at word onset), and it should be gradually reduced to 

minimum when a word item can be uniquely identified. While based on predictive-selection 

accounts, prediction error (or surprisal) is also the largest on hearing an item due to the large 

difference between the prediction of multiple lexically activated units and just one unit of 

sensory input. The prediction error should become smaller with more information input 

received. Note that prediction error and surprisal are similar neural measures in that prediction 

error is equivalent to the sum of all surprisal values associated with the heard segment. Even 

though the strength of lexical entropy and prediction error seem correlated in their general trend 

over time (Gwilliams & Davis, 2021, see Figure 1.7), they are still distinguishable with suitable 

manipulation.      
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Figure 1.7. Illustration of information theory metrics measuring phoneme activations during 

spoken word recognition (adapted from Gwilliams & Davis, 2021). The word trombone is used 

as an example here. The blue trajectories represents the likelihood of each phoneme on hearing 

the previous phoneme, with the thicker ones showing higher likelihood. Entropy is represented 

by the number of possible continuations following each phoneme input, while the size of the 

phoneme (in orange) indicates the surprisal (similar to prediction error).  

 

 

The MEG study by Gagnepain et al. (2012), as described in the previous section (see 

Figure 1.6), time-locked the neural responses to the divergence point of their stimuli (i.e. formu 

for formula, formubo). They predicted that when hearing the word formula on the second day 

of the experiment, lexical entropy before the divergence point should be enhanced, since a new 

competitor (formubo) has been added to the lexicon. Conversely, prediction error should be 

increased after the divergence point, since the ending segment “-la” is less expected now that 

“-bo” is also possible following the presentation of the initial segment formu. Their results 

showed that the MEG signal strength pattern before and after the divergence point matched 

with the hypotheses of predictive-selection accounts better, with reduced neural responses 
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before the divergence point and greater neural responses evoked 280-350ms after the 

divergence point for words like formula.   

Kocagoncu and colleagues (2017) observed neural evidence for continuous lexical 

competition as quantified by entropy before the point at which words can be uniquely identified 

(UP) using the MEG. By using the LexComp model (which was defined as the change in cohort 

entropy from the onset until the UP), they found that early transient effects reflecting phonetic 

computations were shown in left STG and SMG from -400ms to -376ms before the UP, which 

mapped onto later effects engaging competitive processes between word candidates in left 

MTG and IFG around -200ms before the UP. They concluded that the location and timing of 

these effects were consistent with competitive-selection accounts. 

A few recent studies using natural continuous speech stimuli provided neural evidence 

for both competitive- and predictive- selection accounts. Brodbeck and colleagues (2018) used 

predictor variables such as cohort size, cohort reduction (the number of items removed from 

cohort on hearing speech input), phoneme surprisal (i.e. an information theory term for 

prediction error) and cohort entropy to model MEG-recorded neural responses to continuous 

speech. They reported that both phoneme surprisal and entropy significantly accounted for 

brain responses, with predictive processing occurring at 114ms and lexical competition at 

125ms after phoneme onset in the STG. In addition, Donhauser and Baillet (2019) trained a 

neural network which used context to predict speech phonemes and showed that early theta (4-

10 Hz) responses at 60-120ms and 230ms were accounted for by lexical entropy while later 

delta responses (0.5-4 Hz) at 80-160ms and 230-420ms were modulated by phoneme surprisal. 

However, it should be noted that lexical entropy and phoneme surprisal are ordinarily 

correlated in continuous speech and hence hard to separate. 

Overall, the responses to words in continuous speech are faster than those to words 

studied in isolation (Gwilliams & Davis, 2021; see Figure 1.8). It could be that the context in 
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natural speech has facilitated processing of individual word items and hence neural responses 

were evoked earlier. It may also be possible that words are produced faster when spoken in 

connected speech than in isolation. Experiments using both natural speech and isolated words 

as stimuli can be helpful in testing these hypotheses. In addition, lexical competition and 

segment prediction error are also more correlated in continuous speech. Hence, in order to 

clearly distinguish the competitive- and predictive-selection accounts, it is necessary to 

intentionally manipulate lexical probability using a specifically designed paradigm. I will 

report a MEG study testing the two accounts using the competitor priming paradigm in Chapter 

2. 

 

 

Figure 1.8. A summary of the time course at which different studies of spoken word perception, 

using either isolated words or continuous speech, found significant effects of cohort entropy 

(which quantifies competition) and phoneme surprisal (similar to prediction error), figure 

adapted from Gwilliams & Davis (2021). 
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1.4 Mechanisms of word memory encoding 

In everyday life, human can not only perceive and comprehend speech easily, but also recall 

the words they heard, even if they are novel words such as noob, troll, from conversations 

without intentional effort to remember them. In this section, I will review cognitive theories 

that explain how subsequent recognition memory can be enhanced and their supporting neural 

mechanisms. I will first review the effect of prediction on memory, which can be manipulated 

through the competitor priming paradigm. Then I will focus on the effect of levels of processing 

and divided attentional resources on memory, which can be modulated by experimental tasks. 

Finally, I will review the complementary learning systems account which explains how novel 

information such as pseudowords can be encoded in memory. 

 

1.4.1 Prediction and memory 

As reviewed in previous sections, the competitor priming effect during spoken word 

recognition can be explained by the Predictive Coding account (Davis & Sohoglu, 2020), i.e. 

competitor-primed words evoke larger prediction error, which cause delay in identifying these 

words. At the same time, the same prediction error may also have long-lasting effects on their 

subsequent episodic memory. For example, PIMMS (Predictive Interactive Multiple Memory 

Systems; Henson & Gagnepain, 2010, see Figure 1.9) proposes that stronger prediction error 

drives episodic learning due to greater synaptic exchanges between the medial temporal lobe 

(MTL) and neocortex, hence unexpected items should be better remembered. However, 

literature from schema-based learning showed that better memory is associated with schema-

congruent information that matches representations in semantic memory (Alba & Hasher, 1983; 

Cycowicz et al., 2008; Höltje et al., 2019). Conversely, information that is not relevant to the 

schema is remembered less well (Sweegers et al., 2015), hence unexpectancy may also hinder 
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memory. Here, I review empirical evidence for both sides of argument, with a focus on word 

memory studies.   

 

Figure 1.9. Illustration of the relationship between brain, hypothetical memory system and 

behaviour as proposed by the PIMMS model (from Henson & Gagnepain, 2010). Letters mark 

different routes that represent possible causes of behavioural outcomes in recognition memory 

task and perceptual priming paradigm. The outcome of recognition memory task could be 

affected by interactions between episodic memory system in the hippocampus and semantic 

memory system in the perirhinal cortex, while perceptual priming task is more related to the 

perceptual system in the occipito-temporal cortex with potential input from the hippocampal 

episodic system.  

 

 

 According to PIMMS, memory is organized in a processing hierarchy with multiple 

levels, in which higher levels predict activities in lower sensory levels. The difference between 

predictions and lower-level activities, namely the prediction error, updates learning. In 

Bayesian terms, the higher-level predictions are equivalent to prior probability distribution, 
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while the lower-level activities are the likelihood (evidence). However, depending on the 

strength and accuracy of the prediction and whether the sensory input has pre-existing 

representations (e.g. familiar words or novel pseudowords), the size of prediction error is also 

different.  

For example, PIMMS suggests that there should be a large prediction error when the 

prediction is based on the initial segments of a familiar word that has been previously presented  

and that the input is an unexpected competitor target word. This prediction error should lead to 

better memory of the target word. However, novel items such as pseudowords have no prior 

phonological and semantic representations, hence even though they evoke large prediction 

error in perceptual systems (in the context of spoken word recognition), there was only minimal 

prediction error in the semantic memory system, whose interaction with the episodic system 

helps driving memory encoding and recollection. Hence, PIMMS does not predict strong 

memory effects for pseudowords. It may be that many such learning episodes and long-term 

consolidations are needed before novel items can be effectively remembered (see section 1.4.3 

on complementary learning systems). 

 A number of previous studies have demonstrated that larger prediction error evoked 

either from form prediction or context prediction helps improve memory for words. Tulving 

and Kroll (1995) presented a list of random words to participants in the familiarization phase, 

and then presented half of the words that had appeared previously in the critical study phase, 

while the other half had not been presented before. They found that participants’ memory for 

the previously unpresented words were better than the primed words. This result can be 

explained by the PIMMS account as participants might have been expecting to see repeated 

words during the critical study phase, and that the appearance of unprimed words was more 

surprising, which generated larger prediction error that facilitated encoding. Indeed, Kafkas 

and Montaldi (2015a) showed that the proportion of primed and unprimed items in the critical 
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phase was essential and that the more unexpected type of item (with smaller proportion during 

the critical phase) was better remembered. In addition, Corley and colleagues (2007) found in 

their ERP study that words were better remembered when they were shown as an unexpected 

ending of a sentence compared to when they fit into a predictable sentence (e.g. “That drink’s 

too hot; I have just burnt my nails.” vs “Everyone’s got bad habits and mine is biting my nails.”). 

Unpredictable words also led to greater negativity over 300-500ms (i.e. N400) after word onset 

mainly over central and midline locations. Furthermore, Haeuser & Kray (2021) used a self-

paced reading task which manipulated the predictability of gender-marked German nouns 

based on prior sentence context, with the pre-nominal gender-marked article (i.e. the, dem or 

der in German) and buffer adjectives (i.e. old but reliable, alten aber zuverlässign in German ) 

used as an early cue. They found that early prediction error during the pre-nominal period 

enhanced subsequent memory for nouns.  

 In contrast, other studies also showed that more predictable words are better 

remembered than unexpected ones. Höltje and colleagues (2019) conducted an ERP study in 

which participants learned category exemplar words that were either congruent (e.g. dog) or 

incongruent (e.g. pepper) with a preceding category cue (e.g. a four-footed animal). They found 

that congruent words were better remembered than incongruent words and that the subsequent 

memory effects for congruent words emerged in the N400 time window in the frontal and 

parietal area. Riggs and colleagues (1993) also found that better word subsequent memory 

tested through free recall, cued recall and multiple-choice recognition was related with more 

predictable prose passages. These results contradict with the PIMMS account and indicate that 

information integrating with prior knowledge (i.e. schema) better can be encoded more easily.  

However, Greve and colleagues (2019) found evidence for both accounts in which 

memory was a “U-shaped” function of congruency, with superior memory for both congruent 

and incongruent trials (at the two sides of “U”) compared to controls (in the middle of “U”), as 
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supported by the SLIMM framework (van Kesteren et al., 2012). This framework suggests that 

memory performance can be a nonlinear function of congruency, by which better schematic 

memory for congruent items is mediated by medial prefrontal cortex (mPFC) and better 

instance memory for incongruent items is mediated by the MTL. Therefore, it seems that 

prediction plays a complex role on memory and that a one-sided view cannot cover the full 

story. In Chapter 4, I report subsequent word memory results after encoding during the word 

perception phase (see Chapter 2 and 3). With the manipulation of initial sound segment-based 

predictions rather than schema-based semantic predictions during encoding, the competitor 

priming provides a different method for testing the PIMMS account. 

 

1.4.2 Levels of processing and attentional resources   

Apart from prediction, other mechanisms such as levels of processing (Craik & Lockhart, 1972) 

and attentional resources (Craik et al., 1996; Jurica & Shimamura, 1999) also affect episodic 

memory encoding. 

 According to Craik and Lockhart (1972), words that are processed at the semantic level 

(the deeper level) are better remembered than words processed at the shallower phoneme or 

feature level because deep levels of analysis are associated with stronger memory trace. 

Wagner and colleagues (1998b) conducted an fMRI study in which participants performed a 

semantic processing task (deciding if a word is abstract of concrete) and a non-semantic task 

(deciding if a word is printed in upper- or lowercase letters). They found that 85% of words 

were remembered in the subsequent memory test following the semantic task, while only 47% 

of words were remembered following non-semantic processing. Both semantic processing (vs 

non-semantic processing) and remembered (vs forgotten) words evoked greater activation in 

the left prefrontal cortex, left parahippocampal and fusiform gyri. Similar results were also 

found by Kapur et al. (1994), who reported that deep encoding task involving semantic 
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processing (noun categorisation as living or non-living) promoted better subsequent memory 

than shallow encoding task (detecting the presence of the letter a), and that the positron 

emission tomography (PET) demonstrated robust left prefrontal activation for deep processing. 

Another reason why deeper, more semantic encoding might lead to better subsequent 

memory is that completing these tasks might require additional attentional resources (e.g. 

because they are more difficult or attention demanding). According to Craik et al. (1996), an 

item is more likely to be forgotten when attention was directed away from it. Using PET, 

Fletcher and colleagues (1995) further showed that adding a distracting task during intentional 

encoding impaired memory performance and diminished neural activity in the frontal cortex. 

In addition, Jurica and Shimamura (1999) found that when participants spent more attentional 

resources in doing the task (i.e. answering questions about topics, rather than just reading 

statements about topics), their memory for items (i.e. the question topics) was enhanced, 

although at the same time, their memory for the source of the items (i.e. the person who asked 

the question) was disrupted. Hence, they proposed that the encoding of item and source 

information are dissociable and there was an item-source trade-off during episodic encoding.    

Overall, it seems that deeper level of processing and greater attentional resources 

facilitate subsequent memory of items. These processes also seem closely related and are both 

engaged by frontal activities. However, it is also possible that episodic encoding involves 

separate processes for item and source memory, and that more attention spent on items does 

not necessarily enhance memory for forming item-source associations. I will discuss these 

more in Chapter 4, in which I report memory results that are relevant to manipulations of levels 

of processing and attentional effort due to the use of lexical and sub-lexical tasks during 

encoding. 
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1.4.3 The complementary learning systems for novel word encoding 

While the PIMMS account (as reviewed in 1.4.1) does not predict strong encoding of novel 

items without prior semantic presentations (e.g. pseudowords), it is undeniable that we must 

be able to learn something about these new items when encountering them, as learning novel 

words is a common practice in our daily life. This section reviews the complementary learning 

systems account and its supporting empirical evidence on how novel items such as 

pseudowords can be encoded in memory. 

The complementary learning systems framework (CLS; Kumaran et al., 2016; 

McClelland et al., 1995) suggests that effective learning requires two complementary systems: 

one is rapid learning of episodes of individual items and experiences located in the 

hippocampus, the other is gradual acquisition of structured knowledge about the environment 

in the neocortex through active rehearsal and inactive states such as sleep (see Figure 1.10). 

The CLS account also suggests that with further learning in the neocortex, the dependence of 

the memory on the hippocampus is gradually reduced via the process of systems consolidation. 

Indeed, such multiple memory systems are demonstrated by amnesic patients with lesions in 

the hippocampus (e.g. H.M.), who have trouble remembering previous experiences, but have 

no problem in neocortical memory functions such as motor learning and perceptual learning 

(Squire, 2009). Crucially, the memory impairment in hippocampal amnesic patients is less 

severe as the time between memory establishment (prior to the brain damage) and amnesia 

onset increases (Kapur & Brooks, 1999), which suggests that the knowledge is less dependent 

on intact hippocampal structure and connectivity.   
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Figure 1.10. A depiction of the complementary learning systems (CLS) represented in the brain, 

showing connections within the hippocampus for initial rapid learning (red), connections 

within neocortical areas for gradual acquisition of structured knowledge (green) and 

interactions between the two systems (blue) (adapted from Kumaran et al.,2016).  

 

 

Davis and Gaskell (2009) applied this CLS account to spoken word learning. They 

propose that novel spoken word learning also involves the two systems consistent with CLS. 

An initial rapid acquisition of novel words happens in the medial temporal lobe (MTL) and, 

after the initial learning stage, these novel words are consolidated offline slowly in the 

neocortex, with sleep playing an important role during this process. In addition, in order to 

allow for recognition of both familiar and novel words, the hippocampal and neocortical routes 

should operate with prioritization such that the neocortical route is dominant until the point 

when it fails to recognize familiar words, and this is the point when the hippocampal route 
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would activate to support rapid learning for novel words. This process is potentially triggered 

by high prediction error as suggested by Davis & Sohoglu (2020). Hence, such operations of 

the two routes also mean that novel words will not affect recognition of familiar words until 

they are consolidated in the neocortex (see also Dumay & Gaskell, 2012). 

Neural evidence has shown that hippocampal activation contributes to initial 

acquisition of novel words both on associative learning of meaning and form-only phonological 

learning. Breitenstein and colleagues (2005) used fMRI to record participants neural activity 

during spoken pseudoword-picture associative learning. They found that the strength of the 

neural activity in hippocampus in the first learning block was already predictive of subsequent 

learning success of pseudowords. Additionally, linear decrease of neural activity in the left 

hippocampus was shown over five learning blocks of the same stimuli pairing and that less 

decline of the hippocampal activity is associated with more efficient learning of the new words. 

Mestres-Misse and colleagues (2008) also showed in their fMRI study that successful encoding 

of written pseudowords presented at the end of constrained sentence contexts is associated with 

neural activity in the parahippocampal gyrus.  

Moreover, Davis and colleagues (2009) tested pseudoword form learning using fMRI. 

They used three sets of spoken words and pseudowords as stimuli, one set was familiarized 

through phoneme monitoring one day before testing in the scanner, another set was familiarized 

about 4 hours before scanning, the last set was presented in the scanner only. The testing in the 

scanner was conducted using the pause detection task. They found that the hippocampus 

showed significantly stronger activity for untrained pseudowords compared to recently trained 

ones during the first scanning run, while this difference was non-significant in subsequent 

scanning sessions. Furthermore, Takashima et al. (2014) also used a phoneme monitoring task 

to train participants’ learning of two sets of spoken pseudowords: one set presented alone with 

only the phonological information, and one set presented together with pictures of unfamiliar 
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objects. Recognition memory tests were then conducted both on the training day and the day 

after while participants’ neural activity was recorded using the fMRI. They found greater 

activation in the medial temporal lobe for both types of pseudowords compared to untrained 

ones on the first day, while a connectivity analysis indicated that successfully remembered 

picture-associated pseudowords connected more to the right hippocampus than form-only 

pseudowords. Overall, these results indicated that the hippocampus plays an important role in 

the initial encoding of pseudowords, although the degree might be different for form-only 

learning and meaning-associated learning.     

In addition, evidence was also found in support of the role of overnight consolidation 

on novel word learning. Gaskell and Dumay (2003) examined the effect of lexicalized novel 

words on recognition of existing words. They taught participants pseudowords sharing initial 

segments with existing words (eg. cathedruke and cathedral) through repeated presentations 

(36 times each novel word) using a phoneme monitoring task. After the encoding phase, the 

participants were tested on direct recognition of the novel items using a 2-AFC test, which 

showed excellent effects of learning. The lexicalization of these novel items was also tested 

both immediately after the encoding phase and a week later using a pause detection task, which 

reflects the overall level of lexical activity before the location of the pause (Mattys & Clark, 

2002). No evidence of increased competition was shown for existing words immediately after 

the encoding session, but the competition effect became reliable a week later. The dissociation 

of immediate form learning and delayed lexicalization of novel words is in line with the dual-

stage learning process as supported by the CLS account. To further examine the role of sleep 

on memory consolidation, Dumay and Gaskell (2007) tested two groups of participants, with 

one group trained at 8am and another group trained at 8pm for novel words learning using the 

same phoneme monitoring task as in the 2003 study. They tested both groups of participants 

using 2-AFC, pause detection and free recall immediately after training, 12 hours later and 24 
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hours later respectively. Both groups showed good recognition memory of the novel items in 

the 2-AFC test at all time points, however, only after overnight consolidation (i.e. after 24 hours 

for the 8am training group, after 12 and 24 hours for the 8pm training group) did the lexical 

competition effects appear in the pause detection task. Similarly, free recall rate was improved 

only after nocturnal sleep. In addition, other work also showed that similar mechanisms of 

overnight consolidation operate in children’s novel word learning (see James et al., 2017, for 

review) and that overnight lexical integration is associated with sleep spindle activity 

(Tamminen et al., 2010).  

   However, a few studies also suggest that consolidation may not always be required to 

lexicalize novel words. Fernandes and colleagues (2009) used continuous artificial language as 

the training stimuli, in which transitional probabilities between adjacent syllables served as the 

cue to word boundaries. Using the lexical decision task at test, they found effects of lexical 

interference from familiarized novel words immediately after training. In addition, Kapnoula 

et al. (2015) used the phoneme monitoring task to familiarize participants with novel words. 

Immediately after training, they found that splicing a trained novel words (e.g. nep) onto the 

target word (e.g. net) caused significantly fewer looks to the target word during eye tracking 

than splicing an untrained novel word. These studies showed that there are still possibilities of 

lexicalizing newly learned words without overnight consolidation and the effects may be 

related to the sensitivity of the tasks used for testing and whether words are trained in isolation 

(see McMurray et al., 2016, for review).   

 Overall, most evidence have shown that novel word encoding is associated with rapid 

initial acquisition in the hippocampus and slow consolidation in the neocortex as suggested by 

the CLS account. However, since consolidation-related changes are graded, more remains to 

be learned about the hippocampal plasticity and how different tasks affect novel word learning. 

I report memory tests in Chapter 4 that investigated the effect of competitor priming on word 
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and pseudoword memory. Although the role of consolidation on pseudoword memory was not 

studied directly, we explored how priming of related prior knowledge changes learning and 

examined the neural underpinnings of the initial encoding of pseudowords.         

 

1.5 Thesis structure 

This thesis aims to examine the neural and functional mechanisms of spoken word recognition 

and memory encoding by using the competitor priming paradigm.  

Chapter 2 reports an MEG study that examined the neural mechanisms of spoken word 

recognition by testing two distinct implementations of Bayes perceptual inference - the 

competitive-selection accounts (e.g. TRACE) and the predictive-selection accounts (e.g. 

Predictive-Coding). The hypotheses of these two accounts were tested in terms of the location, 

timing and direction of the neural responses manipulated through competitor priming.     

Chapter 3 describes a series of studies that investigated the effect of lexical and sub-

lexical tasks on competitor priming. We explore this by comparing the effect of 

word/pseudoword lexical decision and pause detection (sub-lexical decisions) during 

perception of priming and target items. While lexical inhibitory effect and phonological 

facilitatory effect for similar words are potentially embodied in most spoken word models with 

hierarchical structures, e.g. TRACE, they are most directly reflected in the Distributed Cohort 

Model (DCM) with distinct phonological and semantic representations.  

Chapter 4 reports tasks and analyses that examined the mechanisms of spoken word 

memory encoding during competitor priming using additional recognition memory data from 

the same experiments as reported in Chapter 2 and 3. The competitor priming paradigm 

changes the degree to which heard words are predicted or not, and hence assesses whether 

prediction strength and accuracy modulates memory. The use of lexical and sub-lexical 



  1 | Introduction and literature review  

 55 

encoding tasks modulated the levels of processing and participants’ attention. In addition, the 

neural responses from the MEG study (described in Chapter 2) that predicted subsequent 

memory were also analysed to further investigate the neural representations of remembered 

and forgotten words and pseudowords. 

Finally, Chapter 5 summarises and integrates findings reported in previous chapters, 

with an emphasis on how they advanced our understanding of spoken word recognition and 

learning. Limitations of these studies and future directions will also be discussed.  
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2 PREDICTIVE NEURAL COMPUTATIONS SUPPORT 

SPOKEN WORD RECOGNITION: EVIDENCE FROM MEG AND 

COMPETITOR PRIMING 

2.1 Introduction 

Although it is recognised that humans achieve quick and effortless word recognition by 

combining current speech input with its prior probability using Bayes theorem (Norris & 

McQueen, 2008; Davis & Scharenborg, 2016; Gwilliams & Davis, 2021), the underlying neural 

implementation of Bayesian perceptual inference remains unclear (Aitchison & Lengeyl, 2017). 

In this chapter, I describe an MEG study that tested two computational accounts of spoken 

word recognition that both implement Bayes rules.  

In competitive-selection accounts (e.g. TRACE, McClelland & Elman, 1986, Figure 

2.1A), word recognition is achieved through within-layer lateral inhibition between neural units 

representing similar words. By this view, hijack and hygiene compete for identification such 

that an increase in probability for one word inhibits units representing other similar-sounding 

words. Conversely, predictive-selection accounts (e.g. Predictive-Coding, Davis & Sohoglu, 

2020) suggest that word recognition is achieved through computations of prediction error 

(Figure 2.1D). On hearing transiently ambiguous speech like /haidʒ/, higher-level units 

representing matching words make contrasting predictions (/æk/ for hijack, /i:n/ for hygiene). 

Prediction error (the difference between sounds predicted and actually heard) provides a signal 

to update word probabilities such that the correct word can be selected.  

          In this study, we used the competitor priming effect (Monsell & Hirsh, 1998; Marsolek, 

2008), which is directly explicable in Bayesian terms, as competitor priming can increase the 
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prior probability of the prime competitor word due to the observation of a new instance of the 

prime word and this slows down identification of the target word. The assumption here is that 

the change of prior probability caused by competitor priming is achieved through the same 

mechanism that updates word frequency knowledge. Monsell and Hirsh (1998) showed that 

this effect can last for 1-5 minutes, such that the recognition of the target word (hygiene) is 

delayed if a competitor word (hijack) was presented up to 5 minutes earlier. Therefore, the 

study reported in this chapter also adopted a prime lag of similar length. However, it is also 

true that this effect may decay if the lag between prime and target words is too long. For 

example, Rodd and colleagues (2016) found that word-meaning priming for the selected 

meanings of ambiguous words was reduced to zero after about 4 hours of delay. Competitor 

priming effects with a longer lag between prime and target items are further explored in Chapter 

3.    

The delayed recognition caused by competitor priming could be due to increased lateral 

inhibition according to competitive-selection accounts, or greater prediction error based on 

predictive-selection accounts. Thus, similar behavioural effects of competitor priming are 

predicted by two distinct neural computations (Spratling, 2008). To distinguish them, it is 

critical to investigate neural data that reveals the direction, timing and level of processing at 

which competitor priming modulates neural responses. Existing neural data remains equivocal 

with some evidence consistent with competitive-selection (Bozic et al., 2010; Okada & Hickok, 

2006), predictive-selection (Gagnepain et al, 2012), or both mechanisms (Brodbeck et al., 2018; 

Donhauser et al., 2019). We followed these studies in correlating two computational measures 

with neural activity: lexical entropy (competitive-selection) and segment prediction error (or 

phoneme surprisal, for predictive-selection). 

          We used MEG to record the location and timing of neural responses during spoken words 

recognition in a competitor priming experiment. Pseudowords (e.g. hijure) were included in 
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our analysis to serve as a negative control for competitor priming, since existing research found 

that pseudowords neither produce nor show this effect (Monsell & Hirsh, 1998). We compared 

items with the same initial segments (words hygiene, hijack, pseudowords hijure, higent share 

/haidʒ/) and measured neural and behavioural effects concurrently to link these two effects for 

single trials.  

          While lexical entropy and prediction error are correlated for natural speech (see 

Gwilliams & Davis, 2021), this competitor priming manipulation allows us to make differential 

predictions as illustrated in Figure 2.1. As shown in panel A, B and C, the TRACE model 

predicts that spoken word recognition is achieved at the word level through lexical competition 

(as quantified by lexical entropy), while panel D, E and F indicate that, in the Predictive Coding 

account, it is the segment prediction error calculated at the phoneme level that drives spoken 

word recognition. Although our hypotheses for the MEG neural responses are based on these 

assumptions, it should also be noted that both accounts are hierarchical and that the phoneme 

level of the TRACE model and the lexical level of the Predictive Coding model are both crucial 

in contributing towards the process of word recognition, hence these assumptions could easily 

be revised depending on the measurement being used. Indeed, Luthra and colleagues (2021) 

showed that TRACE simulation based on phoneme activation may also explain signal 

reduction when input is consistent with expectations just as the Predictive Coding account.      

Overall, our predictions are the following: (1) before the deviation point (DP, the point 

at which similar-sounding words diverge), competitor priming increases lexical entropy and 

hence neural responses (Figure 2.1B&C Pre-DP). Such responses might be observed in inferior 

frontal regions (Zhuang et al., 2011) and posterior temporal regions (Prabhakaran et al., 2006). 

However, prediction error will be reduced for pre-DP segments, since heard segments are 

shared and hence more strongly predicted (Figure 2.1E&F Pre-DP). This should be reflected 

in the superior temporal gyrus (STG, Sohoglu & Davis, 2016). (2) After the DP, predictive-
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selection but not competitive-selection accounts propose that pseudowords evoke greater 

signals in the left-STG, since they evoke maximal prediction errors (Figure 2.1E&F 

Pseudoword, Post-DP). (3) Furthermore, in predictive-selection theories, competitor priming 

is associated with an increased STG response to post-DP segments due to enhanced prediction 

error caused by mismatch between primed words (predictions) and heard speech (Figure 

2.1E&F Word, Post-DP).     

 



  2 | Predictive neural mechanisms 

 61 

Figure 2.1 Illustration of neural predictions based on competitive-selection and predictive-

selection models respectively for recognition of a word (hygiene) or pseudoword (hijure) that 

is unprimed or primed by a similar-sounding word (hijack) or pseudoword (higent). A. In a 

competitive-selection model, such as TRACE (McClelland & Elman, 1986), word recognition 

is achieved through within-layer lexical competition. B. Illustration of the competitive-

selection procedure for word (e.g. hygiene) and pseudoword (e.g. hijure) recognition. Phoneme 

input triggers the activation of multiple words beginning with the same segments, which 

compete with each other until one word is selected. No word can be selected when hearing a 

pseudoword, though it would be expected that lexical probability (although not lexical entropy) 

should be greater for words than for pseudowords. C. Illustration of neural predictions based 

on lexical entropy. Lexical entropy gradually reduces to zero as more speech is heard. Before 

the deviation point (hereafter DP) at which the prime (hijack) and target (hygiene) diverge, 

these items are indistinguishable, and competitor priming should transiently increase lexical 

entropy (shaded area). After the DP, competitor priming should not affect entropy since prime 

and target words can be distinguished. D. In a predictive-selection model such as the 

Predictive-Coding account (PC, Davis & Sohoglu, 2020), words are recognised by minimising 

prediction error, which is calculated by subtracting the predicted segments from the current 

sensory input. E. Illustration of the predictive-selection procedure during word (e.g. hygiene) 

and pseudoword (e.g. hijure) recognition. Speech input evokes predictions for the next segment 

(based on word knowledge as in panel B), which is then subtracted from the speech input and 

used to generate prediction errors that update lexical predictions (+ shows confirmed 

predictions that increase lexical probability, - shows disconfirmed predictions that decrease 

lexical probability). F. Illustration of neural predictions based on segment prediction error. 

Before the DP, priming of initial word segments should strengthen predictions and reduce 

prediction error. After the DP, there will be greater mismatch between predictions and heard 
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speech for competitor-primed words and hence primed words should evoke greater prediction 

error than unprimed words (shaded area). This increased prediction error should still be less 

than that observed for pseudowords, which should evoke maximal prediction error regardless 

of competitor priming due to their post-DP segments being entirely unpredictable.  

 

 

2.2 Methods 

2.2.1 Participants 

Twenty-four (17 female, 7 male) right-handed, native English speakers were tested after giving 

informed consent under a process approved by the Cambridge Psychology Research Ethics 

Committee. This sample size was selected based on previous studies measuring similar neural 

effects with the same MEG system (Gagnepain et al. 2012; Sohoglu & Davis, 2016; Sohoglu 

et al. 2012, etc.). All participants were aged 18-40 years and had no history of neurological 

disorder or hearing impairment based on self-report. Two participants’ MEG data were 

excluded from subsequent analyses respectively due to technical problems and excessive head 

movement, resulting in 22 participants in total. All recruited participants received monetary 

compensation. 

 

2.2.2 Experimental Design  

To distinguish competitive- and predictive-selection accounts, we manipulated participants’ 

word recognition process by presenting partially mismatched auditory stimuli prior to targets. 

Behavioural responses and MEG signals were acquired simultaneously. Prime and target 

stimuli pairs form a repeated measures design with two factors (lexicality and prime type). The 
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lexicality factor has 2 levels: word and pseudoword, while the prime type factor contains 3 

levels: unprimed, primed by same lexical status, primed by different lexical status. Hence the 

study is a factorial 2 x 3 design with 6 conditions: unprimed word (hijack), word-primed word 

(hijack-hygiene), pseudoword-primed word (basef-basin), unprimed pseudoword (letto), 

pseudoword-primed pseudoword (letto-lettan), word-primed pseudoword (boycott-boymid). 

Prime-target pairs were formed only by stimuli sharing the same initial segments. Items in the 

two unprimed conditions served as prime items in other conditions and they were compared 

with target items (Figure 2.2A). 

         The experiment used a lexical decision task (Figure 2.2B) implemented in MATLAB 

through Psychtoolbox-3 (Kleiner et al. 2007), during which participants heard a series of words 

and pseudowords while making lexicality judgments to each stimulus by pressing buttons using 

their left index and middle fingers only, with the index finger pressing one button indicating 

word and the middle finger pressing the other button indicating pseudoword. 344 trials of 

unique spoken items were presented every ~3 seconds in two blocks of 172 trials, each block 

lasting approximately 9 minutes. Each prime-target pair was separated by 20 to 76 trials of 

items that do not start with the same speech sounds, resulting in a relatively long delay of ~1-

4 minutes between presentations of phonologically-related items. This delay was chosen based 

on Monsell and Hirsh (1998), who suggest that it prevents strategic priming effects (Norris et 

al. 2002). Stimuli from each of the quadruplets were Latin-square counterbalanced across 

participants, i.e. stimulus quadruplets that appeared in one condition for one participant were 

allocated to another condition for another participant. The stimulus sequences were pseudo-

randomised using Mix software (van Casteren & Davis, 2006), so that the same type of lexical 

status (word/pseudoword) did not appear successively on more than 4 trials.  
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Figure 2.2 Experimental design. A. Four different types of prime-target pairs. Each pair was 

formed by two stimuli from the same quadruplet, separated by between 20 to 76 trials of items 

that do not share the same initial segments. B. Lexical decision task. Participants made 

lexicality judgments to each item they heard via left hand button-press. The response time was 

recorded from the onset of the stimuli. As shown, items within each quadruplet are repeated 

after a delay of ~1-4 minutes following a number of other intervening stimuli.  

 

 

2.2.3 Stimuli  

The stimuli consisted of 160 sets of four English words and pseudowords (see Appendix A), 

with durations ranging from 372 to 991 ms (M = 643, SD = 106). Each set contained 2 words 

(e.g. letter, lettuce) and 2 phonotactically-legal pseudowords (e.g. letto, lettan) that share the 

same initial segments (e.g. /let/) but diverge immediately afterwards.  

We used polysyllabic word pairs (Msyllable = 2.16, SDsyllable =0.36) instead of monosyllabic 

ones in our experiments so as to identify a set of optimal lexical competitors that are similar to 

their prime yet dissimilar from all other items. All words were selected from the CELEX 

database (Baayen et al., 1993). Their frequencies were taken from SUBTLEX UK corpus (Van 

basin

/beɪsən/
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Heuven et al., 2014) and restricted to items under 5.5 based on log frequency per million word 

(Zipf scale, Van Heuven et al., 2014). In order to ensure that any priming effect was caused 

purely by phonological but not semantic similarity, we also checked that all prime and target 

word pairs have a semantic distance of above 0.7 on a scale from 0 to 1 based on the Snaut 

database of semantic similarity scores (Mandera et al., 2017), such that morphological relatives 

(e.g. darkly/darkness) were excluded. 

All spoken stimuli were recorded onto a Marantz PMD670 digital recorder by a male 

native speaker of southern British English in a sound-isolated booth at a sampling rate of 44.1 

kHz. Special care was taken to ensure that shared segments of stimuli were pronounced 

identically (any residual acoustic differences were subsequently eliminated using audio 

morphing as described below). 

        The point when items within each quadruplet begin to acoustically differ from each other 

is the deviation point (hereafter DP, see Figure 2.3A). Pre-DP length ranged from 150 to 672 

ms (M = 353, SD = 96), while post-DP length ranged from 42 to 626 ms (M = 290, SD = 111, 

see Figure 2.3B). Epochs of MEG data were time-locked to the DP.  Using phonetic 

transcriptions (phonDISC) in CELEX, the location of the DP was decided based on the 

phoneme segment at which items within each quadruplet set diverge (Mseg=3.53, SDseg=0.92). 

To determine when in the speech files corresponds to the onset of the first post-DP segment, 

we aligned phonetic transcriptions to corresponding speech files using the WebMAUS forced 

alignment service (Kisler et al., 2017; Schiel, 1999). In order to ensure that the pre-DP portion 

of the waveform was acoustically identical, we cross-spliced the pre-DP segments of the 4 

stimuli within each quadruplet and conducted audio morphing to combine the syllables using 

STRAIGHT (Kawahara, 2006) implemented in MATLAB. This method decomposes speech 

signals into source information and spectral information, and permits high quality speech re-

synthesis based on modified versions of these representations. This enables flexible averaging 
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and interpolation of parameter values that can generate acoustically intermediate speech tokens 

(see Rogers & Davis, 2017, for example). In the present study, this method enabled us to 

present speech tokens with entirely ambiguous pre-DP segments, and combine these with post-

DP segments without introducing audible discontinuities or other degradation in the speech 

tokens. This way, phonological co-articulation in natural speech was reduced to the lowest 

level possible at the DP, hence any cross-stimuli divergence evoked in neural responses can 

only be caused by post-DP deviation. 

 

Figure 2.3 Stimuli and post-test gating study results. A. Stimuli within the same quadruplet 

have identical onsets in STRAIGHT parameter space (Kawahara, 2006) and thus only diverge 

from each other after the deviation point (DP). MEG responses were time-locked to the DP. B. 
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Stimuli length histogram. C. Bayes factor for chance level accuracy (BF01) at each post-DP 

alignment point of the stimuli in the post-test gating study. D. Mean rating score at each post-

DP alignment point of the stimuli in the gating study. 

 

2.2.4 Post-test Gating Study 

As encouraged by a reviewer, we conducted a post-test perceptual experiment using a gating 

task in order to confirm that the cross-splicing and morphing of our stimuli worked as expected. 

This experiment used a gating task implemented in JavaScript through JSpsych (de Leeuw, 

2015). During the experiment, auditory segments of all 160 pairs of words used in the MEG 

study were played. Twenty British English speakers were recruited through Prolific Academic 

online with monetary compensation. The sample size was selected based on a similar gating 

study conducted by Davis et al. (2002). Participants were evenly divided into two groups, one 

group were presented with 160 stimuli words with different pre-DP segments (e.g. hygiene), 

while the other group were presented with the other paired 160 stimuli (e.g. hijack). Therefore, 

participants only ever heard one of the two items in each pair. Stimuli segments of each word 

item consist of the pre-DP segment and, depending on the stimuli length, also longer segments 

that are 75ms, 150ms, 225ms and 300ms post DP. The segments of each word were presented 

in a gating manner, with the shortest segment played the first and the full item played at the 

end. After hearing each segment (e.g. /haidʒ/), participants were also presented with the writing 

of the word (e.g. hygiene) that contained the segment and the other paired word that shared the 

same pre-DP segment (e.g. hijack) on the screen. We asked the participants to choose which 

item the auditory segment matches and indicate their confidence from a rating scale of 1 to 6, 

with 1 representing being very confident that the item is the one on the left and 6 representing 

being very confident that the item is the one on the right, while 3 and 4 representing guessing 
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the possible item. In order to avoid potential practice effect, we also added 40 filler stimuli that 

are identifiable on initial presentation.  

        Given our goal of assessing whether there is any information to distinguish the words 

prior to the divergence point, we needed to adopt an analysis approach that could confirm the 

null hypothesis that no difference exists between perception of the shared first syllable of word 

pairs like hijack and hygiene. We therefore analysed the results using Bayesian methods which 

permit this inference. Participants’ response accuracy was analysed using mixed-effect logistic 

regression and confidence rating scores were analysed using mixed-effect linear regression 

using the brms package (Bürkner, 2017) implemented in R. Response scores were computed 

in a way such that correct and most confident responses were scored 1, while incorrect and 

most confident responses were scored 6 and so on. Participants and items were included as 

random factors of the models and there was no fixed factor since we are only interested in the 

intercepts, whose estimates indicate the logit transformed proportion of correctness in the 

logistic model and the mean rating in the linear model respectively. We chose weakly 

informative priors for each model and conducted Bayes Factor analyses through the Savage-

Dickey density ratio method (Wagenmakers et al., 2010). Model estimate, standard error, lower 

and upper boundary of 95% credible interval (CI) are also reported. 

         When checking our data, we found that 16 pairs of word items were not morphed 

correctly, hence the spectral information of the pre-DP segments of these word pairs were not 

exactly the same and some of them diverged acoustically before the DP due to coarticulation. 

Therefore, we excluded these items from analyses of the gating data and confirmed that 

excluding these items did not modify the interpretation or significance of the MEG or 

behavioral results reported in the paper.   

        As shown in Figure 2.3C, we found that when gating segments ended at the DP, Bayes 

factor provides strong evidence in favour of the null hypothesis, chance-level accuracy (i.e. 
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proportion of correct responses is 0.5), β = 0.04, SE = 0.08, lCI = -0.11, uCI = 0.20, BF01 = 

23.04. This indicates that participants could not predict the full stimuli based on hearing the 

pre-DP segments. On the other hand, the Bayes factor at later alignment points is close to 0, 

providing extremely strong evidence for the alternative hypothesis that the proportion of 

correct responses is higher than 0.5 (75ms post-DP: β = 3.41, SE = 0.22, lCI = 2.99, uCI = 3.85, 

BF01 < 0.01; 150ms post-DP: β = 6.26, SE = 0.56, lCI = 5.24, uCI = 7.41, BF01 < 0.01; 225ms 

post-DP: β = 7.39, SE = 1.02, lCI = 5.65, uCI = 9.72, BF01 < 0.01; 300ms post-DP: β = 8.04, 

SE = 1.88, lCI = 4.99, uCI = 12.32, BF01 < 0.01). Figure 2.3D shows that, with the gating 

segment becoming longer, the rating scores gradually reduce (lower scores indicating more 

accurate and more confident identification). We examined whether the mean score at the DP is 

equal to 3.5 (i.e. chance performance) and found strong evidence supporting the null hypothesis, 

β = -0.02, SE = 0.04, lCI = -0.10, uCI = 0.06, BF01 = 21.79, which is consistent with the 

accuracy results. Furthermore, in order to refine the estimate of the time point at which 

participants recognise the stimuli with enough confidence, we also investigated at what 

alignment point is there evidence showing the mean score lower than 2 (i.e. participants 

indicating more confident identification). We found moderate evidence supporting the null 

hypothesis (mean score equals to 2) at 75ms post-DP (β = -0.09, SE = 0.08, lCI = -0.25, uCI = 

0.07, BF01 = 6.07), but extremely strong evidence in favour of the alternative hypothesis at 

150ms post-DP (β = -0.71, SE = 0.05, lCI = -0.79, uCI = 0.62, BF01 < 0.01). These results 

show that critical acoustic information that supports confident word recognition arrives 

between 75ms and 150ms post-DP.    

         Overall, the post-test gating study confirmed that the pre-DP segments of correctly 

morphed stimuli are not distinguishable within each stimuli set. However, since we found items 

that were not correctly morphed during this control study, we did a thorough check of our 

stimuli and identified all the problematic items (16 words and 12 pseudowords), which resulted 
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in 8.68% of all trials presented in the MEG study. In order to double check our MEG study 

results, we then removed all these problematic trials from the data and reanalysed the data using 

the same methods as described in the method section. Fortunately, we did not find any 

inconsistent pattern or significance in our behavioural or neural results compared to those 

reported with all trials included (see Appendix B). Therefore, I report the original MEG and 

behavioural results with all items included in this Chapter.     

 

2.2.5 Behavioural Data Analyses 

Response times (RTs) were measured from the onset of the stimuli and inverse-transformed so 

as to maximise the normality of the data and residuals; Figures report untransformed response 

times for clarity.  Inverse-transformed RTs and error rates were analysed using linear and 

logistic mixed-effect models respectively using the lme4 package in R (Bates et al. 2014). 

Lexicality (word, pseudoword) and prime type (unprimed, primed by same lexical status, 

primed by different lexical status) were fixed factors, while participant and item were random 

factors. Maximal models accounting for all random effects were attempted wherever possible, 

but reduced random effects structures were applied when the full model did not converge (Barr 

et al., 2013). Likelihood-ratio tests comparing the full model to a nested reduced model using 

the Chi-Square distribution were conducted to evaluate main effects and interactions. 

Significance of individual model coefficients were obtained using t (reported by linear mixed-

effect models) or z (reported by logistic mixed-effect models) statistics in the model summary. 

One-tailed t statistics for RTs are also reported for two planned contrasts: (1) word-primed 

versus unprimed conditions for word targets, and (2) word-primed versus pseudoword-primed 

conditions for word targets. 

         When assessing priming effects, we excluded data from target trials in which the 

participant made an error in the corresponding prime trial, because it is unclear whether such 
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target items will be affected by priming given that the prime word was not correctly identified. 

In addition, three trials with RTs shorter than the average pre-DP length (353ms) were removed 

from further analysis, since responses before words and pseudowords acoustically diverge are 

too quick to be valid lexical decision responses. 

                                                                 

2.2.6 MEG Data Acquisition, Processing and Analyses 

Magnetic fields were recorded with a VectorView system (Elekta Neuromag) which contains 

a magnetometer and two orthogonal planar gradiometers at each of 102 locations within a 

hemispherical array around the head. Although electric potentials were recorded 

simultaneously using 68 Ag-AgCl electrodes according to the extended 10-10% system, these 

EEG data were excluded from further analysis due to excessive noise. All data were digitally 

sampled at 1 kHz. Head position were monitored continuously using five head-position 

indicator (HPI) coils attached to the scalp. Vertical and horizontal electro-oculograms were 

also recorded by bipolar electrodes. A 3D digitizer (FASTRAK; Polhemus, Inc.) was used to 

record the positions of three anatomical fiducial points (the nasion, left and right preauricular 

points), HPI coils and evenly distributed head points for use in source reconstruction.  

            MEG Data were preprocessed using the temporal extension of Signal Source Separation 

in MaxFilter software (Elekta Neuromag) to reduce noise sources, normalise the head position 

over blocks and participants to the sensor array and reconstruct data from bad MEG sensors. 

Subsequent processing was conducted in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) and 

FieldTrip (http://www.fieldtriptoolbox.org/) software implemented in MATLAB. The data 

were epoched from -1100 to 2000ms time-locked to the DP and baseline corrected relative to 

the -1100 to -700ms prior to the DP, which is a period before the onset of speech for all stimuli 

(Figure 2.3B). Low-pass filtering to 40 Hz was conducted both before and after robust 

averaging across trials (Litvak et al., 2011). A time window of -150 to 0ms was defined for 

https://www.fil.ion.ucl.ac.uk/spm/
http://www.fieldtriptoolbox.org/
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pre-DP comparisons based on the shortest pre-DP stimuli length. A broad window of 0 to 

1000ms was defined for post-DP comparisons, which covered the possible period for lexicality 

and prime effects. After averaging over trials, an extra step was taken to combine the 

gradiometer data from each planar sensor pair by taking the root-mean square (RMS) of the 

two amplitudes.  

           Sensor data from magnetometers and gradiometers were analysed separately. We 

converted the sensor data into 3D images (2D sensor x time) and performed F tests for main 

effects across sensors and time (the term “sensors” denotes interpolated sensor locations in 2D 

image space). Reported effects were obtained with a cluster-defining threshold of p < .001, and 

significant clusters identified as those whose extent (across space and time) survived p < 0.05 

FWE-correction using Random Field Theory (Kilner & Friston, 2010). Region of interest (ROI) 

analyses for the priming effect were then conducted over sensors and time windows that 

encompassed the significant pseudoword>word cluster, orthogonal to priming effects. When 

plotting waveforms and topographies, data are shown for sensors nearest to the critical points 

in 2D image space.  

          Apart from the two planned contrasts mentioned above (see Behavioural Data Analyses), 

which were applied to post-DP analysis, one-tailed t statistics was also reported on the pre-DP 

planned contrast between unprimed and word-primed items.  

 

2.2.7 Source Reconstruction 

In order to determine the underlying brain sources underlying the sensor-space effects, source 

reconstruction was conducted using SPM’s Parametric Empirical Bayes framework (Henson 

et al., 2011). To begin with, we obtained T1-weighted structural MRI (sMRI) scans from each 

participant on a 3T Prisma system (Siemens, Erlangen, Germany) using an MPRAGE sequence. 
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The scan images were segmented and normalised to an MNI template brain in MNI space. The 

inverse of this spatial transformation was then used to warp canonical meshes derived from 

that template brain back to each subject’s MRI space (Mattout et al., 2007). Through this 

procedure, canonical cortical meshes containing 8196 vertices were generated for the scalp and 

skull surfaces. We coregistrated the MEG sensor data into the sMRI space for each participant 

by using their respective fiducials, sensor positions and head-shape points (with nose points 

removed due to the absence of the nose on the T1-weighted MRI). Using the single shell model, 

the lead field matrix for each sensor was computed for a dipole at each canonical cortical mesh 

vertex, oriented normal to the local curvature of the mesh.   

         Source inversion was performed with all conditions pooled together using the ‘IID’ 

solution, equivalent to classical minimum norm, fusing the magnetometer and gradiometer data 

(Henson et al, 2011). The resulting inversion was then projected onto wavelets spanning 

frequencies from 1 to 40 Hz and from -150 to 0ms time samples for pre-DP analysis and 400 

to 900ms for post-DP analysis. This post-DP time window was defined by overlapping 

temporal extent of the pseudoword > word cluster between gradiometers and magnetometers. 

The total energy within these time-frequency windows was summarised by taking the sum of 

squared amplitudes, which was then written to 3D images in MNI space.  

         Reported effects for source analyses were obtained with a cluster-defining threshold of p 

< 0.05 (FWE-corrected). And as in sensor space, ROI analyses were conducted over significant 

sensors and time windows from the orthogonal pseudoword>word cluster. Factorial ANOVA 

were carried out on main effects and one-tailed paired t-tests on planned contrasts (see section 

2.2.6). 
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2.3 Results 

2.3.1 Behaviour  

          Response Times. As shown in Figure 2.4A, factorial analysis of lexicality (word, 

pseudoword) and prime type (unprimed, primed by same lexical status, primed by different 

lexical status) indicated a significant main effect of lexicality, in which RTs for pseudowords 

were significantly longer than for words, X2(3) = 23.60, p < .001. In addition, there was a 

significant interaction between lexicality and prime type, X2(2) = 10.73, p = .005. This 

interaction was followed up by two separate one-way models for words and pseudowords, 

which showed a significant effect of prime type for words, X2(2) = 10.65, p = .005, but not for 

pseudowords, X2(2) = 1.62, p = .445. Consistent with the competitor priming results from 

Monsell and Hirsh (1998), words that were primed by another word sharing the same initial 

segments were recognised significantly more slowly than unprimed words (for mean raw RTs 

see Figure 2.4A), β = 0.02, SE = 0.01, t(79.69) = 3.33, p < .001, and more slowly than 

pseudoword-primed words, β = 0.02, SE = 0.01, t(729.89) = 2.37, p = .009. As mentioned 

earlier (see Introduction), both competitive- and predictive-selection models predicted longer 

response times to word-primed target words compared to unprimed words, it is hence critical 

to distinguish the two accounts through further investigation of the MEG responses. 

         Accuracy. Figure 2.4B shows that there was a trend towards more lexical decision errors 

in response to words than to pseudowords, although this lexicality effect was marginal, X2(3) 

= 7.31, p = .063. The error rates for words and pseudowords were also affected differently by 

priming, as indicated by a significant interaction between lexicality and prime type, X2(2) = 

6.08, p = .048. Follow-up analyses using two separate models for each lexicality type showed 

there was a main effect of prime type for words, X2(2) = 13.95, p < .001, but not for 

pseudowords, X2(2) = 1.93, p = .381. Since we had not anticipated these priming effects on 
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accuracy, post-hoc pairwise z tests were Bonferroni corrected for multiple comparisons. These 

showed that pseudoword priming reliably increased the error rate compared to the unprimed 

condition, β = 1.68, SE = 0.54, z = 3.14, p = .005, and to the word-primed condition, β = 2.74, 

SE = 0.89, z = 3.07, p = .007. Although no specific predictions on accuracy were made a priori 

by either competitive- or predictive-selection model, it is worth noting that participants might 

have expected pseudowords to be repeated given the increased error rate of responses to 

pseudoword-primed target words.  

 

Figure 2.4 Response time results (A) and accuracy results (B) of the lexical decision task. Bars 

are color-coded by lexicality and prime type on the x axis (words, blue frame; pseudowords, 

orange frame; unprimed, no fill; primed by same lexicality, consistent fill and frame colors; 

primed by different lexicality, inconsistent fill and frame colors). Bars show the subject grand 

averages, error bars represent ± within-subject SE, adjusted to remove between-subjects 

variance (Cousineau, 2005). Statistical significance is shown based on (generalised) linear 

mixed-effects regression: * p<0.05, ** p<0.01, *** p<0.001. Statistical comparisons shown 

with solid lines indicate the lexicality by prime-type interaction and main effects of prime-type 

for each lexicality, whereas comparisons with broken lines indicate the significance of pairwise 

comparisons.  
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2.3.2 MEG  

In order to explore the impact of lexicality and competitor priming on neural responses to 

critical portions of speech stimuli, both before and after they diverge from each other, MEG 

responses were time-locked to the DP. All reported effects are family-wise error (FWE)-

corrected at cluster level for multiple comparisons across scalp locations and time at a threshold 

of p < 0.05. We reported data from gradiometers, magnetometers and source space wherever 

possible, since sensor x time analyses help define the time-windows used by source localisation.  

Although some minor effects were shown in only one of these analyses, our most interesting 

effects are reliable in all three data types. 

          Pre-DP analyses. We assessed neural responses before the DP, during which only the 

shared speech segments have been heard and hence the words and pseudowords in each 

stimulus set are indistinguishable. Since there could not have been any effect of lexical status 

pre-DP, only prime type effects were considered in this analysis. Predictive- and competitive-

selection accounts make opposite predictions for pre-DP neural signals evoked by word-primed 

items compared to unprimed items. We therefore conducted an F-test for neural differences 

between these two conditions across the scalp and source spaces over a time period of -150 to 

0ms before the DP. A significant cluster of 295 sensor x time points (p = .023) was found in 

gradiometers over the mid-left scalp locations from -28 to -4ms (Figure 2.5A), in which 

unprimed items evoked significantly greater neural responses than word-primed items. On the 

suggestion of a reviewer, and mindful of the potential for these pre-DP neural responses to be 

modulated by post-DP information, we report an additional analysis with a lengthened analysis 

time window of -150ms to 100ms. Again, we found a significant unprimed > word-primed 

cluster of 313 sensor x time points (p = .033) over the exact same locations in gradiometers 

from -28 to -3ms pre-DP, which confirmed that this pre-DP effect was not pushed forward by 

any post-DP effect. We did not find any cluster showing stronger neural responses for word-
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primed items than unprimed items and no clusters survived correction for multiple comparisons 

for magnetometer responses or for analysis in source space.                                                                                                                      

         To further examine these results, we also conducted ROI analysis of gradiometer signals 

evoked by unprimed and primed items averaged over the same -150 to 0ms pre-DP time 

window but across the scalp locations that showed the post-DP lexicality effect at which 

pseudowords elicited greater neural responses than words (see Figure 2.6A). As shown in 

Figure 2.5B, the results indicated that unprimed items elicited significantly stronger neural 

responses than word-primed items, t(21) = 2.41, p = .013, consistent with the whole-brain 

analysis. In particular, the mid-left cluster shown in panel A partially overlaps with the post-

DP pseudoword>word cluster. The direction and location of these pre-DP neural responses are 

in accordance with the predictive-selection account and inconsistent with the competitive-

selection account. A surprising finding is that post-hoc analysis also showed greater neural 

responses evoked by unprimed items than pseudoword-primed items, t(21) = 2.69, p = .014, 

although we had not predicted these effects from pseudoword primes. 

 

Figure 2.5 Pre-DP results. A. Pre-DP response difference between items that are unprimed and 

primed by a word in MEG gradiometer sensors within -150 to 0ms (a time window at which 

words and pseudowords are indistinguishable). The topographic plot shows F-statistics for the 

entire sensor array with the scalp locations that form a statistically significant cluster 
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highlighted and marked with black dots. Waveforms represent MEG response averaged over 

the spatial extent of the significant cluster shown in the topography. The grey shade of 

waveforms represents ± within-participant SE, adjusted to remove between-participants 

variance (Cousineau, 2005). B. ROI analysis of neural responses evoked by unprimed and 

primed items averaged over the same pre-DP time period of -150-0ms but across gradiometer 

sensor locations which showed the post-DP pseudoword>word lexicality effect (see Figure 

2.6A). Bars are color-coded by prime type on the x axis (unprimed items, no fill; word-primed 

items, blue; pseudoword-primed items, orange; black frame indicates that words and 

pseudowords are indistinguishable). All error bars represent ± within-participant SE, adjusted 

to remove between-participant variance. Statistical significance: * p<0.05. 

 

          Post-DP analyses. We then examined the post-DP response differences between words 

and pseudowords (lexicality effect). The gradiometer sensors showed a significant cluster of 

39335 sensor x time points (p < .001) over the left side of the scalp at 313-956ms post-DP 

(Figure 2.6A). In this cluster, pseudowords evoked a significantly stronger neural response than 

words. Similarly, magnetometer sensors also detected a significant left-hemisphere cluster of 

68517 sensor x time points (p < .001) at 359-990ms post-DP (Figure 2.6B) showing the same 

lexicality effect. We did not find any significant cluster in which words evoked greater neural 

responses than pseudowords. These results are consistent with findings from Gagnepain and 

colleagues (2012). To locate the likely neural source of the effects found in sensor space, we 

conducted source reconstruction by integrating gradiometers and magnetometers. As shown in 

Figure 2.6C, results from source space showed that neural generators of the lexicality effect 

were estimated to lie within the left superior temporal gyrus (STG, volume of 2315 voxels, p 

< .001, peak at x = -46, y = -36, z = 0; x = -52, y = -34, z = -6; x = -56, y = -28, z = -10). This 
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location, and direction of response, is consistent with a sub-lexical (e.g. phonemic) process 

being modulated by lexicality; in line with the predictive-selection account.  

         Next, we investigated whether the neural responses that were modulated by lexicality 

were also influenced by prime type by conducting an ROI analysis which tested the interaction 

between prime type and lexicality, as well as planned pairwise comparisons of priming effects 

on words alone, using data averaged over the time window and the sensor locations of the 

significant cluster shown in panel A and B (Figure 2.6D & E). Since these planned pairwise 

comparisons involve responses to familiar words only (i.e. words that are word-primed vs 

unprimed, words that are word-primed vs pseudoword-primed), they are orthogonal to the 

lexicality effect that defined the pseudoword>word cluster and hence are not confounded by 

task. The interaction was significant in both gradiometers, F(1.96, 41.11) = 7.30, p = .002, and 

magnetometers, F(1.90, 39.99) = 5.80, p = .007. Specifically, there was a significant effect of 

prime type for words, F(1.93, 40.55) = 8.01, p = .001 (gradiometers), F(1.81, 37.96) = 5.61, p 

= .009 (magnetometers), such that neural signals evoked by word-primed words were 

significantly stronger than those evoked by unprimed words, t(21) = 2.22, p = .019 

(gradiometers), t(21) = 3.33, p = .002 (magnetometers), and pseudoword-primed words, t(21) 

= 3.70, p < .001 (gradiometers), t(21) = 2.64, p = .008 (magnetometers). In contrast, there was 

no reliable main effect of prime type for pseudowords, F(1.94, 40.80) = 0.67, p = .514 

(gradiometers), F(1.79, 37.61) = 0.80, p = .446 (magnetometers).  

         The corresponding tests performed on the source-reconstructed power within the 

lexicality ROI of suprathreshold voxels (Figure 2.6F) did not show a reliable interaction effect 

between lexicality and competitor priming, F(1.56, 32.85) = 0.99, p = .360. Nevertheless, 

consistent with sensor space results, source power indicated a significant effect of prime type 

for words, F(1.73, 36.42) = 3.77, p = .038, but not pseudowords, F(1.62, 33.94) = 1.12, p = .326. 

Pairwise comparisons also indicated that word-primed words evoked significantly greater 
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source strength than unprimed words, t(21) = 2.66, p = .007, though the effect between word-

primed and pseudoword-primed words was not significant, t(21) = 1.26, p = .110. Overall, in 

line with behavioural results, neural responses evoked by words and pseudowords were also 

influenced differently by prime type. Critically, competitor priming modulated the post-DP 

neural responses evoked by words, but not those evoked by pseudowords, and these effects 

were localised to the left STG regions that plausibly contribute to sub-lexical processing of 

speech. This matches the pattern of responses proposed in the predictive-selection model (see 

Figure 2.1F).  

         As encouraged by a reviewer, we also conducted whole brain analyses for the competitor 

priming effects. We found a significant word-primed word > unprimed word cluster of 1197 

sensor x time points (p = .034) in magnetometers in the left hemisphere within a time window 

of 426 - 466ms post-DP. We also found a significant and a marginal word-primed word > 

pseudoword-primed word cluster in gradiometers in the left hemisphere respectively of 527 

sensor x time points (p = .011) at 719-749ms and 471 sensor x time points (p = .053) at 315-

336ms. These topographies and time courses overlap with the pseudoword > word clusters and 

are consistent with our ROI results. Hence, the ROI analyses have picked up the most important 

findings from these whole-brain analyses. 
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Figure 2.6 Post-DP results showing lexicality effects and corresponding ROI responses evoked 

by conditions of interest. A & B. Post-DP lexicality effects in MEG gradiometer and 

magnetometer sensors. The topographic plots show the statistically significant cluster with a 

main effect of lexicality (pseudoword > word). Waveforms represent MEG response averaged 
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over the spatial extent of the significant cluster shown in the topography. The grey shade of 

waveforms represents ± within-participant SE, adjusted to remove between-participants 

variance. C. Statistical parametric map showing the cluster (pseudoword > word) rendered onto 

an inflated cortical surface of the Montreal Neurological Institute (MNI) standard brain 

thresholded at FWE-corrected cluster-level p < 0.05, localised to the left STG. D, E & F. Post-

DP ROI ANOVA on neural signals and source strength evoked by conditions of interest 

averaged over the time window and scalp locations of the significant cluster shown in panel A, 

B & C. Bars are color-coded by lexicality and prime type on the x axis (words, blue frame; 

pseudowords, orange frame; unprimed, no fill; primed by same lexicality, consistent fill and 

frame colors; primed by different lexicality, inconsistent fill and frame colors). All error bars 

represent ± within-participant SE, adjusted to remove between-participants variance. Statistical 

significance from ANOVAs: * p<0.05, ** p<0.01, *** p<0.001. Statistical comparisons shown 

with solid lines indicate the lexicality by prime-type interaction and main effects of prime-type 

for each lexicality, whereas comparisons with broken lines indicate the significance of planned 

pairwise comparisons.  

 

 

          To ensure that other response patterns were not overlooked, we also investigated whether 

there was any lexicality by prime-type interaction at other locations across the scalp and source 

spaces, and during other time periods. As shown in Figure 2.7A, a significant cluster of 

Gradiometers at midline posterior scalp locations were found at 397-437ms post-DP, in which 

the effect of priming was significantly different for words and pseudowords. Figure 2.7B shows 

gradiometer signals evoked by conditions of interest averaged over the spatial and temporal 

extent of the significant cluster in panel A. To explore this profile, we computed an orthogonal 

contrast to assess the overall lexicality effect (the difference between words and pseudowords), 
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and the result was marginal, F(1.00, 21.00) = 3.50, p = .075. The effect of prime type was 

marginally significant for words, F(1.89, 39.78) = 3.08, p = .060, but significant for 

pseudowords, F(1.80, 37.85) = 7.14, p = .003. The location and pattern of this interaction 

cluster were dissimilar to those predicted by either competitive- or predictive-selection theories 

and no cluster survived correction in magnetometer sensors or source space hence we did not 

consider this effect to be as relevant or interpretable as our other findings. I report it here in the 

interest of completeness and transparency. 

 

Figure 2.7 Post-DP results showing lexicality-by-priming interaction effects in MEG 

gradiometers. A. The topographic plot shows F-statistics for the statistically significant cluster 

that showed an interaction between lexicality and prime type. Waveforms represent 

gradiometer responses averaged over the spatial extent of the significant cluster shown in the 

topography. The grey shade of waveforms represents ± within-participant SE, adjusted to 

remove between-participants variance. B. Gradiometer signals evoked by conditions of interest 

averaged over temporal and spatial extent of the significant cluster in panel A. All error bars 

represent ± within-participant SE, adjusted to remove between-participants variance. Statistical 

significance: ** p<0.01. The statistical comparison lines indicate main effects of prime type 

for each lexicality. The lexicality by prime-type interaction is statistically reliable as expected 

based on the defined cluster.  
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           Linking neural and behavioural effects. To further examine the relationship between 

neural and behavioural response differences attributable to competitor priming or lexicality, 

we conducted a single-trial regression analyses using linear mixed-effect models that account 

for random intercepts and slopes for participants and stimuli sets (grouped by their initial 

segments). We calculated behavioural RT differences and neural MEG differences caused by: 

(1) lexicality. i.e. the difference between pseudoword and word trials (collapsed over primed 

and unprimed conditions) and (2) competitor priming, i.e. the difference between unprimed 

and word-primed word trials, with MEG signals averaged over the spatial and temporal extent 

of the post-DP pseudoword>word cluster seen in sensor space and the STG peak voxel in 

source space (see Figure 2.6). We then assessed the relationship between these behavioural and 

neural difference effects in linear mixed-effect regression of single trials, with differences in 

RTs as the independent variable and differences in MEG responses as the dependent variable. 

The analyses were conducted using the lme4 package in R (Bates et al. 2014). 

           As shown in Figure 2.8A, we observed a significant positive relationship between RTs 

and magnetometers on lexicality difference (β = 0.11, SE = 0.01, t(23.31) = 7.77, p < .001), 

although associations between RTs and gradiometers or source response were not significant. 

These observations from magnetometers indicated that slower lexical decision times evoked 

by pseudowords were associated with greater neural responses. Furthermore, the intercept 

parameter for the magnetometers model was significantly larger than zero, β = 37.58, SE = 

5.72, t(23.09) = 6.57, p < .001. We can interpret this intercept as the neural difference that 

would be predicted for trials in which there was no delayed response to pseudowords compared 

to words. The significant intercept indicated a baseline difference in neural responses to words 

and pseudowords, even in the absence of any difference in processing effort (as indexed by 
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lexical decision RTs). This suggested the engagement of additional neural processes specific 

to pseudowords regardless of the behavioural effect (cf. Taylor et al., 2014).  

           Figure 2.8B showed another significant positive relationship between RTs and 

magnetometers on competitor priming difference (β = 0.15, SE = 0.02, t(38.85) = 7.89, p 

< .001), while relationships between RTs and gradiometers or source response were again not 

significant. Interestingly, unlike for the lexicality effect, the intercept in this competitor priming 

magnetometers model did not reach significance (β = 12.88, SE = 7.27, t(21.33) = 1.77, p 

= .091). This non-significant intercept might suggest that if word-primed words did not evoke 

longer RTs than unprimed words, magnetometer signals would not be reliably different 

between the two conditions either. Hence, consistent with predictive-selection accounts, the 

increased post-DP neural responses in the STG caused by competitor priming was both 

positively linked to and mediated by longer response times.  

 

Figure 2.8 Single-trial linear mixed-effect models which accounted for random intercepts and 

slopes for participants and stimuli sets (grouped by initial segments) were constructed to 

compute the relationship between RTs and magnetometers on (A) lexicality difference (i.e. 

between pseudowords and words, collapsed over unprimed and primed conditions) and (B) 

competitor priming difference (i.e. between word-primed word and unprimed word conditions). 

Magnetometer responses were averaged over the time window and scalp locations of the 
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significant post-DP pseudoword>word cluster (see Figure 2.6). β1 refers to the model slope, 

β0 refers to the model intercept. Statistical significance: *** p<0.001.  

 

 

2.4 Discussion 

In this Chapter, I reported an MEG study which distinguished different implementations of 

Bayesian perceptual inference by manipulating the prior probability of spoken words and 

examining the pattern of neural responses. We replicated the competitor priming effect such 

that a single prior presentation of a competitor word (e.g. hijack) delayed the recognition of a 

similar-sounding word (e.g. hygiene), whereas this effect was not observed when the prime or 

target was a pseudoword (e.g. hijure). Armed with this behavioural evidence, we used MEG 

data to test the neural bases of two Bayesian theories of spoken word recognition.  

 

2.4.1 Competitive- vs predictive-selection 

Competitive-selection accounts propose that word recognition is achieved through direct 

inhibitory connections between representations of similar candidates (e.g. McClelland & 

Elman, 1986). Priming boosts the activation of heard words and increases lateral inhibition 

applied to neighbouring words, which delays their subsequent identification. The effect of 

competitor priming is to increase lexical uncertainty, and hence lexical-level neural responses, 

until later time points when target words can be distinguished from the competitor prime 

(Figure 2.1C). In contrast, predictive-selection accounts propose that word recognition is 

achieved by subtracting predicted speech from heard speech and using computations of 

prediction error to update lexical probabilities (Davis & Sohoglu, 2020). By this view, 
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predictions for segments that are shared between competitor primes and targets (pre-DP 

segments) will be enhanced after presentation of prime words. Thus, competitor priming will 

reduce the magnitude of prediction error, and hence neural responses pre-DP (Figure 2.1F). 

Only when speech diverges from predictions (post-DP segments) will competitor-primed 

words evoke greater prediction error, leading to increased neural response in brain areas 

involved in pre-lexical (e.g. phonemic) processing of speech (Blank et al., 2018; Blank & Davis, 

2016).  

It should be acknowledged that both models involve multiple levels of representation 

and hence both sub-lexical and lexical processes. However, our focus is on lexical processing 

within the competitive-selection framework and sub-lexical processing within the predictive-

selection framework. These are the critical levels that 1) support word recognition according 

to each theory, 2) are modulated by the competitor priming effect that our study manipulates 

and 3) are invoked to explain the slower behavioural responses and associated changes in MEG 

responses that we observed.  

          We tested the predictions for the direction and timing of neural responses associated with 

competitor priming using MEG data which showed opposite neural effects pre- and post-DP. 

In the pre-DP period, consistent with predictive-selection but contrary to competitive-selection 

mechanism, we saw decreased neural responses for word-primed items compared to unprimed 

items. The initial, shared segments between prime (hijack) and target (hygiene) words evoked 

a reduced response during early time periods in line with a reduction in prediction error. 

However, during the post-DP period, we found competitor-primed words evoked stronger 

neural responses than unprimed words in exactly the same locations and time periods that 

showed increased responses to pseudowords (hijure) compared to words. These post-DP 

response increases are in line with enhanced processing difficulty for competitor-primed words 

and pseudowords due to greater prediction error. Thus, the time course of the competitor 
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priming neural effects – showing reduced neural responses pre-DP and increased neural 

responses post-DP – closely resembles the expected changes in prediction error (Figure 2.1F) 

based on predictive-selection mechanisms. 

          On top of the direction and timing of neural responses, effects of lexicality and 

competitor priming localised to the left STG. This is a brain region that has long been 

associated with lower-level sensory processing of speech (Yi et al., 2019). Our observation of 

increased responses to pseudowords in this region is in accordance with source-localised MEG 

findings (Gagnepain et al., 2012; Shtyrov et al., 2012) and evidence from a meta-analysis of 

PET and fMRI studies (Davis & Gaskell, 2009). This location is also consistent with the 

proposal that lexical influences on segment-level computations (rather than lexical-level 

computations themselves) produce reliable neural differences between words and pseudowords 

(Davis & Sohoglu, 2020). We take this finding as further evidence in favour of computations 

of segment prediction error as a critical mechanism underlying word identification. Increased 

prediction error for pseudowords has also been linked to encoding of novel lexical items in 

theoretical work (Davis & Sohoglu, 2020) and in studies of word learning in young children 

(Ylinen, et al 2017).  

          We further show using regression analyses that neural (MEG) and behavioural (RT) 

effects of lexicality and competitor priming are linked on a trial-by-trial basis. Trials in which 

pseudoword processing or competitor priming leads to larger increases in RT also have greater 

post-DP neural responses. These links between behavioural and neural effects of lexicality and 

competitor priming are once more in-line with the proposal that post-DP increases in prediction 

error are a key neural mechanism for word and pseudoword processing and can explain the 

delayed behavioural responses seen in competitor priming. Interestingly, lexicality and 

competitor priming effects differ in terms of whether a reliable neural response difference 

would be seen for trials with no baseline RT difference. While neural lexicality effects were 
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significant even for trials that did not show behavioural effects, the same was not true for the 

competitor priming effect. These results indicate that, consistent with predictive-selection 

accounts, the post-DP neural competitor priming effect was mediated by changes in 

behavioural RTs. Only those trials in which competitor priming slowed behavioural responses 

led to larger neural responses. In contrast, an increased neural response to pseudowords was 

expected even in trials for which RTs did not differ between pseudowords and words. We will 

consider the implications of these and other findings for pseudoword processing in the next 

section. 

 

2.4.2 How do listeners process pseudowords? 

Participants identified pseudowords with a speed and accuracy similar to that seen during 

recognition of familiar words. This is consistent with an optimally-efficient language 

processing system (Marslen-Wilson, 1984; Zhuang et al, 2014), in which pseudowords can be 

distinguished from real words as soon as deviating speech segments are heard. Beyond this 

well-established behavioural finding, however, we reported two seemingly contradictory 

observations concerning pseudoword processing.  

The first is that, while post-DP neural activity and response times for words were 

modulated by competitor priming, processing of pseudowords was not similarly affected. This 

might suggest that the prior probability of hearing a pseudoword and the prediction error 

elicited by mismatching segments are not changed by our experimental manipulations. This 

may be because pseudowords have a low or zero prior probability and elicit maximal prediction 

errors that cannot be modified by a single prime. Yet, memory studies suggest that even a single 

presentation of a pseudoword can be sufficient for listeners to establish a lasting memory trace 

(Mckone & Trynes, 1999; Arndt et al., 2008). However, it is possible that this memory for 
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pseudowords reflects a different type of memory (e.g. episodic memory) from that produced 

by a word, with only the latter able to temporarily modify long-term, lexical-level 

representations and predictions for word speech segments (cf. Complementary Learning 

Systems theories, McClelland et al., 1995; Davis & Gaskell, 2009). Additionally, these 

differences between words and pseudowords may be influenced by the lexical decision task, 

which may have implicitly cued participants to treat words and pseudowords differently. 

Participants need to identify the exact form of a single word in order to confirm its lexical 

status, but a deviation from all known words needs to be established to indicate a pseudoword 

(Norris & Kinoshita, 2008). 

A second observation is that, contrary to the null result for post-DP processing, 

pseudoword priming reduced subsequent pre-DP neural responses evoked by target items to a 

similar degree as word priming (Figure 2.5B). This pre-DP effect is surprising given previous 

evidence suggesting that pseudowords must be encoded into memory and subject to overnight, 

sleep-associated consolidation in order to modulate the speed of lexical processing (Tamminen 

et al., 2010; James et al., 2017) or neural responses (Davis & Gaskell, 2009; Landi et al. 2018). 

It might be that neural effects seen for these pre-DP segments were due to changes to the 

representation of familiar words that our pseudowords resembled, though these were 

insufficient to modulate processing of post-DP segments.  

           

2.4.3 Conclusion 

This chapter described an MEG study that provided compelling evidence in favour of neural 

computations of prediction error during spoken word recognition. Although the previous work 

by Gagnepain et al. (2012) also provided evidence for the predictive-selection account, their 

behavioural effects of consolidation on word recognition were obtained during different tasks 

and different sessions from their neural responses. This study goes beyond the previous work 
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by adopting a single task (lexical decision) and using a competitor priming paradigm that 

permits concurrent measurement of perceptual outcomes and neural responses in a single 

session. This enables us to directly link trials that evoked stronger neural signals in the STG to 

delayed RTs and hence provide stronger evidence that both of these effects are caused by 

competitor priming.  

         In addition, unlike previous work (Brodbeck et al. 2018; Donhauser & Baillet, 2020) 

which reported neural responses correlated with lexical entropy as well as prediction error 

(surprisal), we did not find any similarly equivocal evidence. These earlier studies measured 

neural responses to familiar words in continuous speech sequences such as stories or talks. It 

might be that effects of lexical entropy are more apparent for connected speech than isolated 

words. However, since lexical uncertainty (entropy) and segment-level predictability (segment 

prediction error or surprisal) are highly correlated in natural continuous speech, these studies 

may be less able to distinguish between the lexical and segmental mechanisms that we assessed 

here. In contrast, our speech materials were carefully selected to change lexical probability 

(through priming) and for priming to have opposite effects on segment prediction error before 

and after DP. This manipulation provides evidence in favour of predictive-selection 

mechanisms that operate using computations of prediction error during spoken word 

recognition.  
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3 LEXICAL AND SUB-LEXICAL PROCESSING IN 

SPOKEN WORD RECOGNITION  

3.1 Introduction 

The MEG study reported in Chapter 2 confirmed that the competitor priming effect involves 

lexical processing and is not affected by non-lexical knowledge (e.g. episodic or other source 

of memory for recently presented pseudowords), since it was seen for word-primed words only 

but not for when pseudowords served as the prime or the target. Indeed, Dufour and Nguyen 

(2017) also showed that the competitor priming effect was not modulated by talker differences 

between prime and target items when the prime was presented once only. In addition, the robust 

effect lasting across separate blocks of stimuli was evoked by just a single prior presentation 

of a competitor word. This is in line with Bayesian mechanisms which propose probabilistic 

processing of words while also indicating strong cognitive flexibility of the human brain. The 

MEG results from the previous chapter also showed that the differential neural responses to 

words and pseudowords during competitor priming were manifested at the same sub-lexical 

level, which is consistent with top-down lexical predictions. In this chapter, I will further 

investigate whether the changes in lexical prediction that gives rise to competitor priming 

continue to be observed even when lexical processing is not required for task performance. 

 

Competitor priming as supported by models of spoken word recognition 

The behavioural effect of competitor priming - delayed word recognition caused by prior 

presentation of a competitor word beginning with the same initial segments - is supported by 

major spoken word recognition models although through different mechanisms.  
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In localist models such as TRACE (McClelland & Elman, 1986; Figure 3.1A), lexicons 

are represented in separate nodes and selection of word candidates is achieved through parallel 

process of competition. Its hierarchical structure allows facilitative interactions between nodes 

in different levels (i.e. features, phonemes and words levels) and inhibitory competitions within 

the same representational level. Input from the phonological and feature levels are fed onto the 

lexical level, which drives word recognition. In TRACE, word frequency (i.e. prior probability 

of words in Bayesian term) not only determines the baseline activation level of each lexical 

unit, but also changes the weights between phoneme and word nodes. Hence, lexical frequency 

plays a role in recognition as soon as word candidates become active (Dahan et al., 2001). 

During competitor priming, prior presentation of the competitor word enhances its frequency, 

hence it will be more activated when the initial segments of the target word is heard and 

consequently delays the recognition of the target word due to lateral inhibition.  

While TRACE is a hierarchical model that include lexical, phoneme and feature levels, 

the effect of phonotactic probability (i.e. the likelihood of phoneme sequence) is only reflected 

through interactions with the lexical level and does not affect recognition of words directly 

(Vitevitch & Luce, 1998). When a lexical competitor is presented and activated, the 

phonotactic probability of the pre-DP segments shared with the target word should be enhanced. 

Therefore, contrary to the inhibitory lexical competitor priming effect, the processing of the 

coherent pre-DP phonological segment should lead to facilitatory recognition. However, 

whether these different effects of lexical and sub-lexical processing can be simulated by 

TRACE is unclear. 

In the Predictive Coding account (PC; Davis & Sohoglu, 2020; Figure 3.1B), 

calculations of prediction error – by subtracting top-down predictions from bottom-up speech 

input – drives word recognition. This account proposes that word frequency modulates 

connection weights at the phoneme level. Predictions of the next segments are strengthened by 
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higher connection weights, while prediction error reflects the disruption of such connection. 

Hence, during competitor priming, prior presentation of the competitor word strengthens the 

connection weights between pre-DP and post-DP segments of the prime item, but inhibits the 

segment connection for the target word, which delays its recognition.  

At the same time, facilitatory phonological priming effect is also incorporated by the 

PC. This is because the prediction for the phoneme sequence before the DP is strengthened 

during the presentation of the competitor prime, and this prediction matched with the input of 

the target pre-DP segment, hence prediction error for this sound sequence should be reduced. 

These hypotheses were also confirmed by the reduced pre-DP neural results of competitor 

primed items as described in Chapter 2. 

In addition, the Distributed Cohort Model (DCM; Gaskell & Marslen-Wilson, 1997; 

Figure 3.1C) proposes an architecture in which phonological representations and lexical 

representations of all words are blended on the same nodes that map directly from the low-

level feature input. Hence, competition is an intrinsic part of the model due to the interference 

of multiple distributed representations. The size of candidates and their relative frequency 

strongly affect semantic activation. However, unlike the relatively fixed property of lateral 

inhibition in TRACE, the DCM proposes that the effects of competition vary across lexical and 

phonological dimensions of the distributed representational space. As shown in cross-model 

studies by Gaskell and Marslen-Wilson (1999, 2002), interference was strong at the semantic 

level between competitive words, but phonological coherence between cohort members 

reduced interference and allowed for facilitatory activation when the priming segment was 

incomplete and ambiguous (i.e. matching multiple activated lexical items).  

In the competitor priming paradigm, words from the same cohort (e.g. hygiene and 

hijack) are coherent in terms of the phonological features before the deviation point but not 

after, and compete with each other constantly on semantic nodes. Higher frequency of the 
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prime word, due to its prior presentation, would indicate a larger distance between the output 

of the network (target word) and the expected lexical representations (closer to prime word), 

hence leading to lower activation of the target word, which delays its recognition. However, 

due to the blended representations of phonology and meaning, the effects of both lexical and 

sub-lexical processing may be reflected through suitable tasks and stimuli manipulations. 

 

 

Figure 3.1. Hierarchical structure of spoken word recognition models: TRACE (McClelland 

& Elman, 1986), Predictive Coding (Davis & Sohoglu, 2020) and Distributed Cohort Model 

(Gaskell & Marslen-Wilson, 1997). 

 

 

Motivations and predictions for studies reported in this chapter 

In order to probe both lexical and phonological processing during spoken word recognition, we 

conducted a series of experiments that adopted the lexical decision task, which involves explicit 

lexical judgment, as well as the pause detection task (Davis et al., 2009; Dumay & Gaskell 

2007; Gagnepain et al. 2012; Gaskell & Dumay, 2003; Mattys & Clark, 2002), which leads 

participants to focus on the phonetic features of the stimuli while measures the overall lexical 

activity implicitly at the location of the pause at the same time. The use of the pause detection 
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task also serves the purpose of evoking the same kind of responses in words and pseudowords. 

This contrasts with the lexical decision task, which always triggers a ‘yes’ response on words 

and a ‘no’ response on pseudowords, hence potentially evokes different cognitive processes on 

these two types of stimuli (Norris & Kinoshita, 2008). Additionally, inserting a pause in the 

stimulus will also temporarily seperate the stimulus into two independent phonological 

segments, hence disrupts the completeness of the word. The manipulation of word 

completeness (Gaskell & Marslen-Wilson, 2002) together with the pause detection task can 

help dissociate effects of phonological processing from lexical processing. 

To test whether the competitor priming effect observed during lexical processing can 

also be observed when the task focuses on phonological processing, we used the lexical 

decision task in Experiment 2 and the pause detection task in Experiment 3 respectively on a 

similar competitor priming paradigm as the one adopted by the MEG study (see Chapter 2). In 

order to simplify the results interpretation, we kept all prime and target words pause absent in 

Experiment 3 (while using pause present filler words to balance the responses). All three 

accounts discussed above predict that the competitor priming effect should be observed in both 

experiments. In particular, although these models account for lexical and sub-lexical processing 

during competitor priming, the completeness of the word representations also matters. Since 

the competitor word primes were presented in full and without any disruptions from pauses in 

both experiments, any initial phonological coherence evoked between the cohort prime and 

target words should not last after the DP while the semantic competition effect persists, hence 

facilitatory effect from phonological processing are not likely to be observed in behavioural 

RT results.   

 To further dissociate phonological and lexical processing, we adopted a study design 

with separate prime and target phases in Experiment 4a, 4b, 5a and 5b. Lexical decision task 

and pause detection task were mixed in the two phases (for specific tasks used in each 
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experiment, see Table 3.1). This way, the effect of task switching in a design with interleaved 

prime and target items can be avoided. Moreover, in order to increase the power, all prime 

items were presented four times, in particular, twice with pause and twice without pause during 

the pause detections task. Through this design, lexical decision and pause detection tasks used 

during the prime phase could help dissociate the effect of inhibitory lexical processing caused 

by presentations of competitor primes and the effect of facilitatory sub-lexical processing 

caused by presentations of ambiguous phonological segments (temporarily isolated by pause) 

shared by both prime and target words. In addition, the different tasks used during the target 

phase aimed to test whether these effects (modulated by frequency changes at either lexical or 

sub-lexical level) is also affected by task-evoked decisions as suggested by Balota and 

Chumbley (1984). While the opposite effects of lexical and sub-lexical processing are 

embodied in TRACE, facilitatory phonological-level effects are masked by the inhibitory 

lexical-level effects in this model. In contrast, these opposite effects could be accounted for by 

computations of prediction error at the phoneme level in the PC account and the distributed 

structure of the DCM.  

 

Table 3.1. Experiments and corresponding tasks  

Experiments  Tasks 

Experiment 2  Lexical Decision (LD) 

Experiment 3 Pause Detection (PD) 

Experiment 4a  Prime phase: PD – Target phase: LD 

Experiment 4b  Prime phase: LD - Target phase: LD 

Experiment 5a  Prime phase: PD - Target phase: PD 

Experiment 5b  Prime phase: LD - Target phase: PD 
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3.2 Experiment 2 

Experiment 2 used the same lexical decision task as Experiment 1 (the MEG study) for 

replication purposes. In order to further examine whether the competitor priming effect is 

unique to word-primed word, we added another two conditions that involved words primed by 

two similar pseudowords and pseudowords primed by two similar words to test if double 

priming by items of different lexicality would evoke any stronger effect than a single prime.  

 

3.2.1 Method 

Participants 

Thirty-three native British English speakers aged between 18 to 35 were tested on this 

experiment. Among which, sixteen participants were recruited from the volunteer panel of the 

MRC Cognition and Brain Sciences Unit and were tested in the lab, while the rest were 

recruited through a website platform, Prolific Academic (www.prolific.ac), and were tested 

online. Online testing largely accelerated the speed of data collection and became especially 

helpful due to the pandemic (although the data for this study was collected pre-pandemic), 

while lab testing ensured the quality of the research procedure and provided a reference for the 

data collected through online testing. All recruited participants provided informed consent 

under a process approved by the Cambridge Psychology Research Ethics Committee and 

received monetary compensation. None of them had any history of neurological disorder or 

hearing impairment based on self-report. One participant recruited online was removed from 

subsequent analyses due to high error rate (two standard deviations above the mean), resulting 

in 32 participants in total. 

 

Experimental Design and Materials 

http://www.prolific.ac/
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The experiment was implemented in JavaScript using JSpsych (de Leeuw, 2015) so that it can 

be presented in web browsers for both lab and online testing. The data were collected through 

the web server tool JATOS (Lange et al., 2015). This experiment was also built on the same 

lexicality (word, pseudoword) and prime type factors (unprimed, primed by same lexical status, 

prime by different lexical status) from Experiment 1. However, here we extended the paradigm 

of Experiment 1 by adding an additional prime type level: double-primed by different lexical 

status, resulting in two additional conditions: two pseudowords-primed word and two words-

primed pseudoword, on top of the original single word-primed word, single word-primed 

pseudoword, single pseudoword-primed word and single pseudoword-primed pseudoword 

conditions (Figure 3.2). The same lexical decision task was used as in experiment 1. 

Participants were asked to press a key on the keyboard with their right index finger if they 

heard a word and another key with their left index finger if they heard a pseudoword. 480 

unique spoken items were presented in 4 blocks of 120 trials, with each block lasting 

approximately 5 minutes. Like before, each prime-target pair was separated by ~20-80 trials of 

items and stimuli were Latin-square counterbalanced across participants and pseudo-

randomised within each block.  

          We used the same set of spoken stimuli as those for the MEG study described in Chapter 

2, with stimuli in each of the 160 quadruplet sets containing two words and two pseudowords 

sharing the same initial segments and diverging only after the deviation point (DP). However, 

we used the original stimulus recordings here rather than morphing the pre-DP segments of the 

4 stimuli within each quadruplet set.  
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Figure 3.2. The design of Experiment 2 showing all conditions. On top of the original 

conditions used in the MEG study – word-primed word (WW), pseudoword-primed word (PW), 

word-primed pseudoword (WP) and pseudoword-primed pseudoword (PP), this experiment 

added two more conditions – double word-primed pseudoword (WWP) and double 

pseudoword-primed word (PPW). All prime and target pairs share the same initial segments, 

which are coloured in black in the example phonetic transcriptions, words are shown with blue 

ending and pseudowords are shown with orange ending in the transcriptions.   

 

Data analysis 

The response times (RTs) were measured from the DP of the stimuli, since it is impossible to 

make accurate lexical judgements before the deviation point. The RTs were then transformed 

based on the normality of Q-Q plots and histograms (i.e. which transformation made the data 

and residuals more normally distributed) and we chose the transformation that maximises the 

normality of the data and residuals. In accordance with this principle, we log transformed the 

RTs, although all Figures report untransformed response times for clarity. See Appendix C for 

descriptive statistics for the data presented in all Figures in this Chapter.  

basin

/beɪsən/
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          All data were analysed using mixed-effect models, with lexicality and prime type as 

fixed factors and participants and items as random factors. Transformed RTs and error rates 

were respectively analysed using linear and logistic mixed-effect models using the lme4 

package implemented in R (Bates et al. 2014). Like in Experiment 1, maximal models 

accounting for all random effects were attempted wherever possible, but reduced random 

effects structures were applied when the full model did not converge (Barr et al., 2013). 

Likelihood-ratio tests comparing the full model to a nested reduced model using the Chi-Square 

distribution were conducted to evaluate the main effect of lexicality and the interaction between 

lexicality and prime type. Significance of individual model coefficients were obtained using t 

(reported by linear mixed-effect models) or z (reported by logistic mixed-effect models) 

statistics from the model summary. One-tailed t statistics for RTs are reported for the following 

planned pairwise contrasts: (1) word-primed words versus unprimed words, (2) word-primed 

words versus pseudoword-primed words. 

          When assessing priming effects, we excluded data from target trials in which the 

participant made an error in the corresponding prime trial, because it is unclear whether such 

target items will be affected by priming given that the prime word was not correctly identified 

(Monsell & Hirsh, 1998). In addition, trials with RTs shorter than 200ms were removed from 

further analysis, since responses shorter than 200ms are quicker than the minimal time required 

for stimulus processing (Woods et al., 2015). 

 

3.2.2 Results  

Response Times. Figure 3.3A shows results of factorial analysis of lexicality (word, 

pseudoword) and prime type (unprimed, primed by same lexical status, primed by different 

lexical status and double primed by different lexical status). The plot reports untransformed 
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results for clarity (see Appendix C for descriptive statistics for the data presented in the figure). 

Consistent with the behavioural results from the MEG Study, there was a significant main 

effect of lexicality, in which RTs for pseudowords were significantly longer than for words, 

X2(3) = 35.72, p < .001, and a significant interaction between lexicality and prime type, X2(2) 

= 16.05, p < .001. We then conducted two separate one-way models for words and pseudowords 

respectively, with prime type as the only factor. The word model showed a significant effect 

of prime type, X2(3) = 12.42, p = .006, while the pseudoword model showed a marginal effect, 

X2(3) = 7.55, p = .056. Our planned pairwise contrasts again showed the competitor priming 

effect, i.e. word-primed words were recognised significantly more slowly than unprimed words 

(results reported here are in log scale, for mean raw RTs see Fig 3.2A), β = 0.05, SE = 0.01, 

t(31.73) = 3.72, p < .001, and single pseudoword-primed words, β = 0.03, SE = 0.01, t(82.68) 

= 2.86, p = .003. After Tukey correction for multiple comparison, word-primed words also 

received marginally more delayed response than those double primed by pseudowords, β = 

0.03, SE = 0.01, t(90.50) = 2.42, p = .073. However, neither single pseudoword-primed words 

nor double pseudoword-primed words produced any reliably longer response than unprimed 

words, β = 0.01, SE = 0.01, t(41.39) = 1.22, p = .615 ; β = 0.02, SE = 0.01, t(60.54) = 1.41, p 

= .495, and there was no significant difference between these two pseudoword-primed 

conditions either, β = 0.002, SE = 0.01, t(143.32) = 0.20, p = .997. Finally, post-hoc analyses 

of contrasts from the pseudoword target model did not show any significance after Tukey 

correction.  

         Accuracy. As shown in Figure 3.3B, responses to words have significantly higher error 

rate than pseudowords, X2(3) = 17.94, p < .001. There was also a reliable interaction effect 

between lexicality and prime type, X2(2) = 15.13, p < .001. Separate models for each lexicality 

type did not show any main effect of prime type for words, X2(3) = 3.93, p = .269, but the effect 

for pseudowords was significant, X2(3) = 9.13, p = .028. Since the pattern of these accuracy 
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priming effects were different from those in the MEG study, we conducted further post-hoc 

pairwise z tests on pseudoword targets, the results of which were Tukey corrected for multiple 

comparisons. These showed marginally higher accuracy caused by pseudoword priming 

compared to unprimed pseudowords, β = 1.56, SE = 0.61, z = 2.56, p = .052.  

 

Figure 3.3. Response time results (A) and accuracy results (B) of the lexical decision task from 

Experiment 2. Bars are color-coded by lexicality and prime type on the x axis (words, blue 

frame; pseudowords, orange frame; unprimed, no fill; primed by same lexicality, consistent fill 

and frame colors; (double) primed by different lexicality, inconsistent fill and frame colors). 

Bars show the subject grand averages, error bars represent ± within-subject CI, adjusted to 

remove between-subjects variance (Cousineau, 2005). Statistical significance is shown based 

on (generalised) linear mixed-effects regression in log-odds (for error rate) or log scale (for rt): 

(*) p<0.1 * p<0.05, ** p<0.01, *** p<0.001. Statistical comparisons shown with solid lines 

indicate the lexicality by prime-type interaction and main effects of prime-type for each 

lexicality, while broken lines indicate the significance of pairwise comparisons.  
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3.2.3 Discussion 

Overall, the results of Experiment 2 match the behavioural results from the MEG study, 

i.e. competitor priming affects words and pseudowords differently and the effect is only reliable 

for word-primed word. In addition, target items that were double primed by a different 

lexicality did not evoke reliably different response from those primed by a single item of 

different lexicality.  Hence, it seems unlikely that the failure to observe significant pseudoword 

priming is due to this being too small an effect to detect following presentation of a single item. 

However, the different word response times evoked by word and pseudoword priming 

may also be influenced by the lexical decision task itself, which may have implicitly cued 

participants to treat words and pseudowords differently. This is because participants need to 

identify the exact form of a single word in order to confirm its lexical status, but a deviation 

from all known words needs to be established to indicate a pseudoword (Norris & Kinoshita, 

2008).  In addition, lexical decision is also a decision made based on activity in semantic units 

(Plaut, 1997), namely participants’ focus was mainly on lexical-semantic processing when 

performing this task. Therefore, we used a different task in Experiment 3, which is more “equal” 

for words and pseudowords while also directs participants’ attention to sub-lexical processing. 

 

3.3 Experiment 3 

In order to address the question raised from Experiment 2, that is, whether the competitor 

priming effect is lexical-decision specific, we conducted Experiment 3 using the pause 

detection task (Davis et al., 2009; Dumay & Gaskell 2007; Gagnepain et al. 2012; Gaskell & 

Dumay, 2003; Mattys & Clark, 2002), which does not involve explicit linguistic judgement but 

is still sensitive to lexical activity. During the pause detection task, participants listen to the 

stimuli and then respond whether they have heard an unnatural pause in the stimuli. Mattys and 
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Clark (2002) first showed that response times during the pause detection task were affected by 

the number of activated lexical items at the location of the pause. For example, when pause 

was placed after a monosyllabic nonword segment, the response to the item was slower when 

the monosyllable matched more compatible lexical items. In addition, Gaskell and Dumay 

(2003) used the pause detection task to test the lexicalization of newly learned pseudowords. 

They found that slower pause detection response for existing words (e.g. cathedral) were only 

significant after long-term overnight consolidation of similar sounding pseudowords (e.g. 

cathedruke) but not after their immediate encoding. These results showed that only overnight 

consolidated pseudowords were added to the lexicon and confirmed that the pause detection 

task is sensitive to the change of overall amount of lexical activity (i.e. lexical entropy) before 

the pause location. Furthermore, Gagnepain et al. (2012) showed larger neural response after 

the pause location for words with lexicalized novel competitors, which indicates that this task 

is also sensitive to the size of prediction error.    

  Here, we used the pause detection task in Experiment 3 as a task that could direct 

participants attention to sub-lexical processing. However, since the task should reflect the 

change of lexical entropy before the pause location as well as the size of prediction error after 

pause, models such as TRACE, PC and DCM still predict a significant effect of competitor 

priming.  

 

3.3.1 Methods 

Participants 

We recruited 65 paid participants from the same population as in Experiment 2 through Prolific 

Academic and all participants were tested online. This sample size was chosen based on a 

previous study using the pause detection task (Dumay & Gaskell, 2007). Five participants were 
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excluded from subsequent analyses due to error rate higher than two standard deviations above 

the mean, resulting in 61 participants in total. 

 

Experimental Design and Materials 

In Experiment 3, we adopted the same paradigm as Experiment 1 (i.e., without the double 

primed conditions) but used a pause detection task (Mattys & Clark, 2002) instead of the lexical 

decision task. Participants were asked to make judgements as to whether they heard an inserted 

pause in each item regardless of its lexicality via a keyboard response, with left index finger 

indicating pause absent and right index finger indicating pause present (Figure 3.4). In order 

not to over complicate the interpretation of results of interest, we kept all target words pause-

absent and target pseudowords pause-present. Pause-present and -absent items were evenly 

distributed in prime words and pseudowords, with pause-absent prime words also served as the 

unprimed word condition and pause-present prime pseudowords also served as the unprimed 

pseudoword condition. Pause-present filler words and pause-absent filler pseudowords were 

added to balance the overall number of pause-present and -absent items in both lexicalities. 

Again, 480 trials were presented in 4 blocks, with each block of 120 trials lasting ~5 minutes. 

          The stimuli were the same as Experiment 2. In addition, for the purpose of the pause 

detection task, we inserted a pause of 200ms (Gaskell & Dumay, 2003) at the deviation point 

(DP) of each pause-present item.  
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Figure 3.4. Experiment 3 task and design. A short pause of 200ms was inserted at the DP of 

each pause-present item. 

 

Data analysis 

Like in Experiment 2, all analyses were conducted using mixed-effect models to account for 

the random effect from participants and items. The RTs were measured from the DP, which 

was the same as the pause onset in items with pause (Mattys & Clark, 2002), and were log 

transformed to maximise normality. Exclusion criteria were the same as Experiment 2.  

 

3.3.2 Results 

Response Times. Figure 3.5A shows factorial analysis results of lexicality and prime type 

(unprimed, primed by same lexical status and primed by different lexical status). There was a 

significant main effect of lexicality, with pseudowords evoking longer response time than 

words, X2(3) = 98.86, p < .001, the larger effect size (compared to previous experiments) is 

likely because all target pseudowords were pause present while words were pause absent.  

However, we did not find any reliable interaction between lexicality and prime type, X2(2) = 

4.19, p = .123. A one-way analysis of the words showed a significant prime type effect, X2(2) 

= 6.78, p = .034, while there was no reliable prime effects for pseudowords, X2(2) = 0.04, p 

= .98. We further examined the word pairwise effects, surprisingly, word-primed words did not 

evoke significantly longer RTs than unprimed words, β = 0.01, SE = 0.01, t(89.72) = 0.85, p 

= .199. Instead, pseudoword-primed words were recognised significantly more slowly than 

unprimed words, β = 0.02, SE = 0.01, t(66.56) = 2.73, p = .008. These results are inconsistent 

with predictions by the models and the competitor priming effect that we have found in 

Experiment 1 and 2 using the lexical decision task. In addition, the delayed word response 
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caused by pseudoword priming without extensive prior training or overnight consolidation is 

also contradictory to previous published studies (Dumay & Gaskell, 2007, Gaskell & Dumay, 

2003).     

         Accuracy. Figure 3.5B shows that responses to words have significantly lower error rate 

than pseudowords, X2(3) = 72.38, p < .001, which is understandably opposite to what we found 

using lexical decision task. There was no significant interaction effect between lexicality and 

prime type, X2(2) = 0.69, p = .707, and we did not find any main effect of prime type for words, 

X2(2) = 0.32, p = .852, or pseudowords, X2(2) = 0.73, p = .695.  

 

Figure 3.5. Response time results (A) and accuracy results (B) of the pause detection task from 

Experiment 3. Bars are color-coded by lexicality and prime type on the x axis (words, blue 

frame; pseudowords, orange frame; unprimed, no fill; primed by same lexicality, consistent fill 

and frame colors; primed by different lexicality, inconsistent fill and frame colors). Bars show 

the subject grand averages, error bars represent ± within-subject CI, adjusted to remove 

between-subjects variance. Statistical significance is shown based on (generalised) linear 

mixed-effects regression: * p<0.05. Statistical comparisons shown with solid lines indicate the 

lexicality by prime-type interaction and main effects of prime-type for each lexicality, while 

broken lines indicate the significance of pairwise comparisons.  
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3.3.3 Discussion 

We conducted Experiment 3 with the goal of testing whether the word competitor priming 

effect was specific to the lexical decision task, during which words and pseudowords were 

likely processed differently. Our results showed that, when the task was changed to pause 

decision, word-primed words did not evoke reliably delayed response compared to unprimed 

words while pseudoword-primed words did.   

We did not expect to observe the pseudoword priming effect since previous studies 

(Dumay & Gaskell, 2007; Gagnepain et al., 2012; Gaskell & Dumay, 2003) have demonstrated 

that for a pseudoword to be an effective ‘competitor’, it needs to be presented many more times 

during training and consolidated overnight or even over the course of several days. Hence, one-

instance priming of a pseudoword did not seem to be sufficient to cause any delay in the target 

response immediately after priming. It may be that previous studies used a different task 

(phoneme detection) for training and that pause detection used during the perception of the 

prime item in this experiment somehow had different effects. Additionally, McMurray et al. 

(2016) also suggested that the setting of training (in isolation or with context) and the sensitivity 

of the task used for testing may affect whether newly learned items can be lexicalized 

immediately without overnight consolidation.  

The non-significant word priming effect is also contrary to predictions made by spoken 

word recognition models such as TRACE, PC and DCM. One possible reason is that even 

though pause detection may reflect lexical activity indirectly, it needs stronger priming than 

just one prior presentation of the competitor word to evoke the competitor priming effect. As 

mentioned above, previous studies (Dumay & Gaskell, 2007; Gagnepain et al., 2012; Gaskell 

& Dumay, 2003) trained items many times – sometimes more than 10 times per item. However, 

this explanation makes the result contradictory to the significant delay caused by priming of 
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just one pseudoword item. Hence, it could also be that the experiment did not have large enough 

power to detect the competitor priming effect using the pause detection task.   

Therefore, we conducted four more experiments (Experiment 4a, 4b, 5a, 5b) with 

increased number of participants based on power analyses results and increased number of 

presentations of each prime item so as to create stronger priming effects. We also dissociated 

the effect of lexical and sub-lexical processing more clearly by using separate prime and target 

phases and introduced pause in all prime items when using the pause detection task. With these 

changes in study design, we aimed to further examine in what way is sub-lexical processing 

different from lexical processing. 

 

3.4 Experiment 4-5 

In Experiment 2 and 3, we examined the competitor priming effect using lexical decision and 

pause detection tasks with prime and target items presented in an interleaved manner. However, 

the pause detection task is sensitive to lexical activity and prime words used in the word-primed 

word condition were always pause absent (i.e. the completeness of competitor prime words 

was not compromised) in Experiment 3, hence only the inhibitory effect of lexical processing 

(but not the facilitatory effect of phonological processing) was predicted by spoken word 

recognition models for both Experiment 2 and 3.  

In order to better dissociate inhibitory lexical processing and facilitatory sub-lexical 

processing during priming and to test the influence of task-evoked decision (after word 

frequency has changed by competitor priming) at response to target items, we conducted a 

series of four more experiments (see Table 3.2 and Figure 3.6) with separate prime and target 

phases (necessary to avoid effects of task switching) and mixed the lexical decision and pause 

detection tasks in the two phases. Each prime item was presented four times to strengthen the 

priming effect and they were presented twice with pause and twice without pause during the 
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pause detection task. In this way, half of the presentations of the prime items were partially 

disrupted when the task was pause detection, hence there should be phonological segment 

processing without heavy influence from lexical processing of the complete item.  

 In experiment 4a and 4b, pause detection and lexical decision tasks were used 

respectively in each experiment in the prime phase, while the lexical decision task was used in 

the target phase for both experiments. In experiment 5a and 5b, prime phase also adopted the 

two different tasks respectively, while the task in the target phase was pause detection. The 

different tasks used in the prime phase in these experiments respectively tested lexical and sub-

lexical processing during priming. The DCM (Gaskell & Marslen-Wilson, 1997) and PC 

(Davis & Sohoglu, 2020) predict an explicit facilitatory effect of phonological processing 

caused by the temporarily ambiguous pre-DP segments separated by pause during the pause 

detection task, and inihibitory effect of lexical competitor priming when the stimuli was 

presented without pause. TRACE (McClelland & Elman, 1986) also predicts the inhibitory 

lexical competitor priming effect, but the effect of facilitatory phonological priming may not 

directly affect spoken word recognition. In addition, the different tasks used in the target phase 

tested whether the lexical decision task was particularly more sensitive to the manipulation of 

word frequency (Balota & Chumbley, 1984) compared to the pause detection task. Note that 

Experiment 4b was a replication of Experiment 1 and 2 due to the use of lexical decision task 

in both phases. Although Experiment 5a also used the pause detection task in both phases, it 

was not an exact replication of Experiment 3 due to the existence of both pause-present and 

pause-absent presentations of each prime item.     

For these experiments, we adopted a blended frequentist and Bayesian approach of data 

analysis. For results on word-primed words in all four experiments, we used the Bayesian 

framework to incorporate priors based on our previous study results of the competitor priming 

effect. This was also done for experiments 4a and 5a in which pause detection task was the 
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prime task, since even though phonological segments separated by pause might be processed 

through the sub-lexical pathway, pause-absent presentations for each item also existed and 

should be more sensitive to lexical processing. To avoid bias from priors, analyses using the 

frequentist approach were also conducted for all conditions of interest.   

 All four experiments were preregistered on OSF (Experiment 4a, 

10.17605/OSF.IO/9453V; 4b,  10.17605/OSF.IO/JCUAR; 5a & b, 10.17605/OSF.IO/547GK). 

Although it was mentioned in the preregistration documents that Experiment 4a and 4b would 

be analysed using the frequentist approach and Experiment 5a and 5b would be analysed using 

the Bayesian approach, we later decided that it was more reasonable to analyse all four 

experiments the same way, i.e. using the Bayesian approach only for word contrasts for which 

we had consistent a priori information (e.g. RT difference between word-primed word and 

unprimed word) while using the frequentist approach as a benchmark for all analyses in these 

experiments.  

 

 

Table 3.2. Experiment tasks in 4a, 4b, 5a and 5b 

Experiment 4a 4b 5a 5b 

Prime Task Pause Detection Lexical Decision Pause Detection Lexical Decision 

Target Task Lexical Decision Lexical Decision Pause Detection Pause Detection 

 

 

https://doi.org/10.17605/OSF.IO/9453V
https://doi.org/10.17605/OSF.IO/JCUAR
https://doi.org/10.17605/OSF.IO/547GK
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Figure 3.6. Paradigm of Experiment 4-5 with separate prime and target phases using different 

perception tasks. 

 

 

3.4.1 Methods 

Participants 

A total of 409 paid participants from the same population pool as before were tested for these 

four experiments (88 on Experiment 4a, 86 on Experiment 4b, 118 on Experiment 5a, 117 on 

Experiment 5b). None of these participants had taken part in any of the previous experiments 

and they were all recruited through Prolific Academic and tested online. Participants with error 

rate two standard deviations above the mean were excluded from subsequent analyses, hence 

resulting in 81 on Experiment 4a, 77 on Experiment 4b, 110 on Experiment 5a and 110 on 

Experiment 5b.  

          We conducted power analyses to decide the sample size for Experiment 4 and 5. For 

Experiment 4a & b, we used the simr package (Green & MacLeod, 2016) implemented in R, 

which was specifically designed to calculate power for linear mixed models using simulation 

and to work with models fit using the lme4 package (Bates et al. 2014). Based on the effect 

size of Experiment 2, we calculated the number of participants necessary to obtain 80% power 

to detect a slope of 0.05 (log-scale) at a 0.05 significance level. For Experiment 5a & b, the 

sample size was calculated using the sequential design of the Bayes Factor Design Analysis 

(BFDA, Schoenbrodt & Wagenmakers, 2018; Stefan et al., 2019) since we adopted a blended 

Bayesian approach for the analyses of these experiments (see Data Analysis section). Using a 

neutral design prior that follows a central Cauchy distribution (with a location at 0 and a scale 

parameter of √2/2) and based on an estimated effect size of the pseudoword-primed word > 

unprimed word contrast in Experiment 3, we simulated 10000 hypothetical studies using the 
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BFDA package implemented in R (Schoenbrodt & Stefan, 2018), with the Bayes factor 

boundary set to 6 (H1) and 1/6 (H0). As shown in Figure 3.7, our simulation results indicated 

that a sample size of ~110 is needed for ~80% of the simulated studies to hit the H1 boundary 

with BF 6 as the threshold, and ~75 is needed to hit the corresponding H0 boundary. In order 

to be able to collect high quality data from 110 participants, we set the maximum number of 

sample size to 120 participants for each study and, based on the sample size of Exp4a & b, we 

tested a minimum number of 80 participants, and then kept testing until reaching either of the 

stopping boundary or the maximum number of sample size. 

 

Figure 3.7. Sample size calculated using the Bayes Factor Design Analysis (BFDA) based on 

10000 simulations. The Bayes factor boundaries are set to 6 (H1) and 1/6 (H0). A. Sample size 

based on simulations for H1. B. Sample size based on simulations for H0. 

 

Experimental Design and Materials 
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Experiment 4 and 5 did not have prime and target items presented in an interleaved manner as 

in previous experiments, instead, these experiments have separate prime and target phases (see 

Figure 3.6). This way, lexical and sub-lexical processing could be studied using different tasks 

within the same experiment and the effect of different kinds of priming could also be compared 

across experiments. As shown in Table 3.2, Experiment 4a and b adopted the pause detection 

task and the lexical decision task respectively in the prime phase, while both used the lexical 

decision task in the target phase. Experiment 5a and b also used different tasks in their prime 

phase, but both used pause detection task in the target phase.  

In the prime phase, the stimuli (the same as in Experiment 1-3) were presented in 4 

blocks of 108 trials, with 54 words and 54 pseudowords in each block. Two filler items were 

added at the beginning of each block to help participants get ready. Each spoken item was 

repeatedly presented across the four blocks, hence 4 repetitions per item (i.e. one presentation 

of each item in each block).  If pause detection task was used in the prime phase, then each 

item was presented with and without pause twice respectively.  

In the target phase, unprimed control items and target items sharing the same initial 

segments with prime were presented, among which each prime type condition (word-primed 

word, word-primed pseudoword, pseudoword-primed word, pseudoword-primed pseudoword, 

unprimed word, unprimed pseudoword) contains 27 unique target items and each item was 

presented only once. If pause detection task was used in the target phase, then like in 

Experiment 3, target words were pause absent and target pseudowords were pause present. In 

Experiment 4a and 4b, 27 word fillers and 27 pseudoword fillers were added so that half of the 

items in the target phase had the same initial sounds as prime, while the other half had different 

beginnings. In Experiment 5a and 5b, 81 word fillers with inserted pause and 81 pseudoword 

fillers without pause were added so that both words and pseudowords have the same number 

of items with and without pause. 
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Note that the lag between the last prime block and the target phase was longer than the 

lag between prime and target items presented in an interleaved manner in previous experiments. 

In Experiment 4a and 4b, the lag range was between ~20 and ~310 trials, which was between 

~1min to ~10min. In Experiment 5a and 5b, due to the added number of fillers, the lag range 

was between ~20 and ~410 trials, approximately from ~1min to ~14min. 

 

Data analysis 

In Experiment 4 and 5, we adopted a blended frequentist and Bayesian approach (Bickel, 2015). 

While the frequentist framework was the same as in Experiment 2 and 3, the Bayesian analysis 

framework was implemented in the probabilistic programming language Stan (Carpenter et al., 

2017) using the model wrapper package brms in R (Bürkner, 2017). Our motivation for using 

this blended approach is that the Bayesian method allows us to incorporate insights from our 

previous studies using priors (e.g. competitor priming effect for words), while the frequentist 

method serves as a benchmark when there is no reliable prior knowledge (e.g. response 

accuracy and pseudowords RTs) and when bias from the prior needs to be avoided. Hence, we 

think that it makes sense to report posterior results from Bayesian models when the prior is 

known (either based on previous literature or experiment results) and to report inference from 

frequentist models for all conditions of interest at the same time for when there is little 

knowledge of the prior and to make sure that the results were not biased by unreliable priors 

that are too narrow or too big.  

We assessed convergence of Bayesian models by verifying that there were no divergent 

transitions and that the Rhat (between- to within-chain variances) was close to one. As before, 

we fit linear and logistic mixed effect models on transformed RTs and error rates respectively. 

Mean estimates (β), 95% quantile-based Bayesian credible intervals (CrI, an interval that 

contains the true value with 95% probability) and Bayes factors (a measurement that quantifies 
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the evidence in favour of one hypothesis over another, e.g. a null hypothesis relative to an 

alternative hypothesis) were reported from Bayesian models.  

          Apart from analysing the main effect of lexicality and the interaction between lexicality 

and prime type as in previous experiments, our design of Experiment 4a & b and 5a & b also 

allowed us to combine the data from these 4 experiments respectively to compare the effect of 

different prime tasks (lexical decision vs pause detection) while controlling for the target task 

and compare the effects of different target tasks while controlling for the prime task.  

To evaluate the main effects, we compared the full model to nested reduced models 

using the likelihood-ratio tests under the frequentist approach. The effect of planned pairwise 

contrasts were evaluated using Bayes factors calculated through the Savage-Dickey density 

ratio method (Wagenmakers et al., 2010). In order to make sure that Bayes factors were not 

biased by informative priors, we also checked these results against the frequentist tests.  

          On top of the exclusion criteria used for previous experiments, in Experiment 4 and 5, 

prime items with an error rate of more than 50% (more than two incorrect responses out of four) 

were excluded, so were their corresponding target items. 

 

3.4.2 Results of Experiment 4a (prime: pause detection; target: lexical decision)  

Response Times. RT results from the target phase (lexical decision task) of Experiment 4a are 

shown in Figure 3.8A. The factorial analysis of lexicality and prime type was conducted using 

the frequentist model. As before, pseudowords evoked significantly longer response time than 

words, X2(3) = 31.08, p < .001, but the interaction between lexicality and prime type was not 

reliable, X2(2) = 1.11, p = .574. In addition, there was no main effect of prime type for either 

words, X2(2) = 2.28, p = .320, or pseudowords, X2(2) = 0.19, p = .908.     
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With the hypothesis that lexical competitor priming effect can be evoked on word-

primed word conditions regardless of which task being used in either prime or target phase, we 

fitted a Bayesian model on these contrasts to incorporate our prior knowledge using informative 

priors. As shown in Figure 3.9A, we used a normal distribution with 0.045 as the mean and 

0.02 as the standard deviation (Normal(0.045, 0.02)) as the prior for word-primed word > 

unprimed word condition. This prior distribution is on log scale since the RTs are log-

transformed. The mean (i.e. the location of the distribution) indicated an effect size of ~30ms 

difference between the RTs evoked by word-primed words and unprimed words (the reference 

condition) based on our Experiment 1 and 2. The standard deviation, also the scale of the 

distribution, limited the range of the effect size to ~3ms - ~59ms, which is informative on the 

direction of the effect while not overly restrictive given the surprising results we have found in 

Experiment 3. Figure 3.9B shows that the prior for pseudoword-primed word > unprimed word 

condition was neutral, Normal(0, 0.1), as we did not have a clear prediction on pseudoword 

priming effects.  

With these priors, the posterior distribution showed that word-primed word evoked 

longer RTs than unprimed word, β = 0.02, 95% CrI = [0.001, 0.03]. However, since the 

evidence for 0 is still stronger in the posterior distribution than in the prior distribution, Bayes 

factor analysis using the Savage-Dickey density ratio method showed moderate support for the 

null hypothesis (BF01 = 3.5), which is consistent with the marginal result under the frequentist 

framework, β = 0.01, SE = 0.01, t(205.4) = 1.39, p = .083. Pseudoword-primed word did not 

show a clear effect in delaying the response, β = 0.002, 95% CrI = [-0.02, 0.02], and the Bayes 

factor analysis showed strong support for the null (BF01 = 11.6).  

These results did not seem to indicate any clear effect caused by word competitor 

priming and there was no reliable effect of pseudoword-priming on targets. The use of pause 

detection task in the prime phase, with both pause absent and pause present presentations of 
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prime items, should trigger both lexical- and phonological-level processing. The use of lexical 

decision task in the target phase should be particularly sensitive to the manipulation of word 

frequency (Balota & Chumbley, 1984). The marginal delay of recognition on word-primed 

word seemed to show that both inhibitory effect of lexical competitor priming and facilitatory 

effect of phonological priming played a role during this process. It may also be possible that 

the lag between prime and target was too long to evoke any pronounced effect. Experiment 4b 

using the same lexical decision task in both prime and target phase helped us further address 

these questions.    

Accuracy. Figure 3.8B shows that responses to words have significantly higher error 

rate than pseudowords, X2(3) = 28.88, p < .001. There was no significant interaction effect 

between lexicality and prime type, X2(2) = 1.42, p = .490. Main effect of prime type was found 

for word conditions, X2(2) = 6.88, p = .032, specifically unprimed words had significantly 

higher accuracy than pseudoword-primed words after Tukey correction, β = 0.29, SE = 0.12, z 

= 2.49 p = .034. We did not find any significant main effect of prime type for pseudowords, 

X2(2) = 0.11, p = .945.  
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Figure 3.8. Response time results (A, C, E, G) and accuracy results (B, D, F, H) of the target 

phase in Experiment 4-5. Bars are color-coded by lexicality and prime type on the x axis (words, 

blue frame; pseudowords, orange frame; unprimed, no fill; primed by same lexicality, 

consistent fill and frame colors; primed by different lexicality, inconsistent fill and frame 

colors). Bars show the subject grand averages, error bars represent ± within-subject CI, 

adjusted to remove between-subjects variance. Statistical significance is shown for error rate 

results based on generalised linear mixed-effects regression: ** p<0.01, * p<0.05, (*) p<0.1. 

Statistical comparisons shown with solid lines indicate the lexicality by prime-type interaction 

and main effects of prime-type for each lexicality, while broken lines indicate the significance 

of pairwise comparisons. Statistical significance is not shown for RT results due to the blended 

analyses approach. 
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Figure 3.9. Prior and posterior distribution for word-primed word > unprimed word RTs and 

pseudoword-primed word > unprimed word RTs in Experiment 4. X-axis shows log RT 

differences, y-axis shows the density of the distributions. The prior distribution shows the initial 

probability of the contrast difference before seeing the data, while the posterior distribution 

shows the probability of the contrast difference given the data. A, C. The word-primed word > 

unprimed word contrast in Experiment 4a & b had the same informative prior, Normal(0.045, 

0.02), which was based on results from Experiment 1 and 2. B, D. The pseudoword-primed 

word > unprimed word contrasts in these two experiments had a neutral prior, Normal(0, 0.1). 

 

 

3.4.3 Results of Experiment 4b (prime: lexical decision; target: lexical decision) 

Response Times. RT results from the target phase (lexical decision task) of Experiment 4b is 

shown in Figure 3.8C. The factorial analysis of lexicality and prime type showed that 

pseudowords evoked significantly longer response time than words, X2(3) = 33.30, p < .001. 

There was also a significant interaction between lexicality and prime type, X2(2) = 45.07, p 

< .001. The main effect of prime type was not significant for words, X2(2) = 4.30, p = .117, but 

surprisingly it was significant for pseudowords, X2(2) = 28.83, p < .001. More specifically, 

after Tukey correction, pseudoword-primed pseudowords evoked significantly quicker 

response than unprimed pseudowords, β = -0.03, SE = 0.01, t(151.27) = -3.69, p < .001, while 

word-primed pseudowords evoked significantly delayed responses than unprimed ones, β = 

0.02, SE = 0.01, t(151.55) = 2.49, p = .035. These could be practice effects caused by 

associative learning between stimuli and responses. Since each item with unique initial 

segments corresponded to either word or pseudoword response four times during the prime 

phase, it is possible that participants already associated certain initial segments with certain 
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lexical decision, hence priming by the same lexicality facilitated lexical decision on the target 

item while priming by a different lexicality caused delay in its recognition.  

We then conducted Bayesian analyses on the RT results of word contrasts. As shown 

in Figure 3.9 C & D, we used the same informative prior, Normal(0.045, 0.02), as in 

Experiment 4a for word-primed word > unprimed word condition, and the same neutral prior 

for pseudoword-primed word > unprimed word condition, Normal(0, 0.1). We found that word-

primed word evoked longer RTs than unprimed word, β = 0.03, 95% CrI = [0.01, 0.04]. The 

Bayes factor was also weakly in favour of the alternative hypothesis (BF10 = 2.2), which was 

consistent with the results under the frequentist framework, β = 0.02, SE = 0.01, t(79.06) = 

2.02, p = .023. Pseudoword-primed word did not show a clear effect in delaying the response, 

β = 0.01, 95% CrI = [-0.01, 0.02], and the Bayes factor analysis showed strong support for the 

null (BF01 = 8.9).  

The word competitor priming effect was reliable although the effect size was smaller 

than those in Experiment 1 and 2. One possible reason is that the same kind of practice effect 

as shown for pseudoword targets might have dampened the effect size. Another explanation is 

that the longer lag between prime and target items reduced the strength of the effect. 

Accuracy. Figure 3.8D shows significantly greater error rates for word responses than 

for pseudoword responses, X2(3) = 65.14, p < .001. There was no significant interaction effect 

between lexicality and prime type, X2(2) = 4.27, p = .119. The main effect of prime type was 

found for word conditions, X2(2) = 13.49, p = .001, specifically unprimed words had 

significantly higher accuracy than pseudoword-primed words, β = 0.57, SE = 0.16, z = 3.54, p 

= .001, and word-primed words, β = 0.57, SE = 0.18, z = 3.23, p = .004, both survived Tukey 

correction. This pattern is similar to that found in Experiment 4a. In addition, there was a 

marginal main effect of prime type for pseudowords, X2(2) = 5.84, p = .054, in which word-
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primed pseudoword evoked marginally higher error rate than unprimed pseudoword, β = 1.16, 

SE = 0.51, z = 2.29, p = .058.  

 

Figure 3.8C & D 

 

 

3.4.4 Results of Experiment 5a (prime: pause detection; target: pause detection) 

Response Times. RT results from the target phase (pause detection task) of Experiment 5a are 

shown in Figure 3.8E. Like before, pseudowords evoked significantly longer response time 

than words, X2(3) = 37.73, p < .001, although the interaction between lexicality and prime type 

was not significant, X2(2) = 1.15, p = .562. The main effect of prime type was significant for 

words, X2(2) = 6.70, p = .035, and marginal for pseudowords, X2(2) = 4.95, p = .084, with 

word-primed pseudowords evoking marginally delayed response than pseudoword-primed 

pseudowords after Tukey correction, β = 0.02, SE = 0.01, t(140.9) = 2.25, p = .064.  

For the Bayesian analyses on word target RT results, we used an informative prior, 

Normal(0.017, 0.008), based on the results of word-primed word > unprimed word condition 

from Experiment 4a (since both experiments used pause detection as the prime task), as shown 

in Figure 3.10A. The effect of word priming compared to the unprimed condition was unclear, 

β = 0.001, 95% CrI = [-0.01, 0.01], and since a large portion of posterior samples fell outside 
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of the prior distribution, this informative prior might have been too restrictive. Hence we 

switched to a weaker prior using a larger standard deviation (wider scale), Normal(0.017, 0.1), 

as shown in Figure 3.10B, to prevent the prior from biasing the posterior results too much. The 

results indicate that word-primed words evoked faster response than unprimed words, β = -

0.02, 95% CrI = [-0.04, -0.003]. The Bayes factor also weakly supported the alternative 

hypothesis (BF10 = 1.4). This result matched with the reliable effect under the frequentist 

framework, β = -0.02, SE = 0.01, t(111.18) = -2.26, p = .026. For the pseudoword-primed word > 

unprimed word condition, we used the same neutral prior, Normal(0, 0.1), as shown in Figure 

3.10C. Pseudoword priming did not show a clear effect although it is also in the negative 

direction, β = -0.01, 95% CrI = [-0.03, 0.02], and the Bayes factor analysis showed strong 

support for the null hypothesis (BF01 = 8.3). 

This experiment used the pause detection task in both prime and target phases and 

showed shortened RTs evoked by word primed word. The finding from Experiment 3 that 

pseudoword priming caused delayed word response was not replicated. The faster response 

caused by word priming here was not due to associative learning between stimuli and response 

either, since each prime word was presented twice with pause and twice without pause. And it 

is exactly because prime items were presented in both ways, together with the use of the pause 

detection task, that it was possible for these stimuli to be processed at both lexical level and 

sub-lexical level during the prime phase. Additionally, even though the pause detection task 

was found to be sensitive to the change of lexical entropy (Gaskell & Dumay, 2003) and 

prediction error (Gagnepain et al., 2012), using the pause detection task in the target phase still 

evoked different effects from using the lexical decision task. Taken together, the shorter 

response times evoked by word-primed word seemed to reflect the facilitatory effect from sub-

lexical processing of the pre-DP segment. However, it is also unclear why similar phonological 

facilitatory effect was not shown for pseudoword-primed words. It may be that the unfamiliar 
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post-DP segment in pseudowords reduced the activation of words compatible with the pre-DP 

segment during the pause detection task.  

Accuracy. Opposite to Experiment 4a & b, Figure 3.8F shows that pseudowords 

evoked significantly higher error rate than words, X2(3) = 42.77, p < .001. There was no 

significant interaction effect between lexicality and prime type, X2(2) = 1.35, p = .509. Main 

effect of prime type was not significant for either word targets, X2(2) = 1.45, p = .485, or 

pseudoword targets, X2(2) = 3.05, p = .218.  

 

Figure 3.8E & F 
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Figure 3.10. Prior and posterior distribution for word-primed word > unprimed word RTs and 

pseudoword-primed word > unprimed word RTs in Experiment 5. X-axis shows log RT 

differences, y-axis shows the density of the distributions. The prior distribution shows the initial 

probability of the contrast difference before seeing the data, while the posterior distribution 

shows the probability of the contrast difference given the data. A. An informative prior, 

Normal(0.017, 0.008), was applied to the word-primed word > unprimed word contrast in 

Experiment 5a, based on results from Experiment 4a. B. A weaker prior, Normal(0.017, 0.1), 

was applied to the word-primed word > unprimed word contrast in Experiment 5a as the 
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informative prior appears to be too restrictive. D. An informative prior, Normal(0.025, 0.012), 

was applied to the word-primed word > unprimed word contrast in Experiment 5b, based on 

results from Experiment 4b. C, E. A neutral prior, Normal(0, 0.1), was applied to the 

pseudoword-primed word > unprimed word contrast in both Experiment 5a and 5b. 

 

 

3.4.5 Results of Experiment 5b (prime: lexical decision; target: pause detection) 

Response Times. RT results from the target phase (pause detection task) of Experiment 5b is 

shown in Figure 3.8G. Pseudowords evoked significantly longer response time than words, 

X2(3) = 54.47, p < .001, but the interaction between lexicality and prime type was not reliable, 

X2(2) = 4.08, p = .13. The main effect of prime type was not significant for words, X2(2) = 1.89, 

p = .388, but it was significant for pseudowords, X2(2) = 7.48, p = .024, with pseudoword-

primed pseudowords evoking significantly faster response than unprimed pseudowords after 

Tukey correction, β = -0.02, SE = 0.01, t(90.80) = -2.69, p = .020. Although this effect is 

reminiscent of the potential practice effect shown for pseudoword targets in Experiment 4b, it 

is worth noting that in Experiment 5b, different tasks were used in the prime phase and the 

target phase, hence even if an association was created between the stimuli and the lexicality 

response during the prime phase, it should not affect the pause detection task in the target phase. 

I will discuss more on what this pseudoword priming effect indicates in the General Discussion.  

For the Bayesian analyses on word contrasts, we used an informative prior, 

Normal(0.025, 0.012), based on the results of word-primed word > unprimed word condition 

from Experiment 4b (since both experiments used the lexical decision task in the prime phase), 

as shown in Figure 3.10D. Here, word priming effect did not seem to be reliable, though it was 

in the positive direction, β = 0.01, 95% CrI = [-0.004, 0.027]. The Bayes factor analysis showed 
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moderate support for the null hypothesis (BF01 = 4.2). These results were in line with the 

frequentist test, β = 0.002, SE = 0.01, t(132.68) = 0.20, p = .842. For the pseudoword-primed 

word > unprimed word condition, we applied the same neutral prior, Normal(0, 0.1), as shown 

in Figure 3.10E. Pseudoword-primed word did not show a clear effect compared to the 

unprimed condition although it is in the negative direction, β = -0.01, 95% CrI = [-0.022, 0.013], 

and the Bayes factor analysis showed strong support for the null (BF01 = 9.82).  

These results showed that even when the lexical decision task was used in the prime 

phase, using the pause detection task in the target phase would not lead to a significant 

competitor priming effect. One possible reason is that, as Balota and Chumbley (1984) 

suggested, the lexical decision task is especially sensitive to the manipulation of word 

frequency compared to other tasks. However, we could not rule out the possibility that the long 

lag (even longer than in Experiment 4a and 4b) between prime and target items made it 

impossible to evoke reliable lexical competitor priming effect.  

Accuracy. Similar to the pattern shown in Experiment 5a, Figure 3.8H indicates that 

pseudowords evoked significantly higher error rate than words, X2(3) = 37.75, p < .001. There 

was no significant interaction effect between lexicality and prime type, X2(2) = 1.14, p = .564. 

Main effect of prime type was not significant for either word targets, X2(2) = 3.25, p = .197, or 

pseudoword targets, X2(2) = 2.23, p = .327.  

 

Figure 3.8G & H 
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3.4.6 Comparison of Word Targets RT results from Experiment 4 & 5 

As mentioned in the Method section (3.4.1), our design of Experiment 4 and 5 also allowed us 

to compare different prime task effects while controlling for the target task and vice versa. This 

is especially helpful for dissociating the effect of lexical and sub-lexical processing that we led 

the participants to focus on during the prime and target phase. A comparison of RT effect size 

on word-primed word > unprimed word and pseudoword-primed word > unprimed word under 

the Bayesian framework from all four experiments is shown in Figure 3.11.  

We then combined RT data from word targets in all four experiments and included a 

prime task factor (lexical decision, pause detection) and a target task factor (lexical decision, 

pause detection) on top of the prime type factor in our linear mixed-effect models. In addition, 

we also conducted analyses on combined data from paired experiments (Experiment 4a and 4b, 

4a and 5a, 5a and 5b, 4b and 5b), with either prime task or target task as an additional factor. 

Since these analyses involve the new task factor, they were conducted under the frequentist 

framework. 

Our word model with all data together and controlling for the prime and target tasks 

showed that word priming significantly delayed word recognition, β = 0.02, SE = 0.01, t(212.1) 

= 2.21, p = .029. In addition, pause detection as the target task led to significantly faster 

response than when lexical decision was used as the target task, β = -0.08, SE = 0.03, t(468.5) 

= -2.98, p = .003.  

The word model with combined data from 4a and 4b (controlling for the target task) 

did not show any reliable difference in RTs caused by the different prime tasks, β = 0.02, SE = 

0.02, t(160.8) = 0.74, p = .459, hence we removed the prime task factor from this model and 
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ran a model with prime type as the only factor. This model also showed a significant delay in 

word recognition caused by word priming, β = 0.02, SE = 0.01, t(134.7) = 2.28, p = .024.  

The model with data from Experiment 4b and 5b (controlling for the prime task) 

showed a significant effect of target task, β = -0.08, SE = 0.03, t(212.4) = -2.83, p = .005, 

consistent with the results from the model with all data. In addition, it also indicated that word-

primed words evoked significantly longer RTs than unprimed words, β = 0.02, SE = 0.01, 

t(121.5) = 2.11, p = .037. These results indicated that Experiment 4a, 4b and 5b shared the 

same pattern in terms of the competitor priming effect.  

On the other hand, the model with combined data from Experiment 4a and 5a 

(controlling for the prime task) showed a significant effect of target task, β = -0.09, SE = 0.03, 

t(264.8) = -3.58, p < .001, and a significant interaction between target task and prime type, 

X2(2) = 6.97, p = .031. Similarly, the model with data from Experiment 5a and 5b (controlling 

for the target task) also showed a significant interaction between prime task and prime type, 

X2(2) = 7.94, p = .019, and word-primed word evoked significantly shorter RTs than the 

unprimed condition, β = -0.02, SE = 0.01, t(164.4) = -2.29, p = .023. These results indicated 

that Experiment 5a, which used the pause detection task in both prime and target phase, was 

an ‘outlier’ with a different results pattern from the other three experiments.  
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Figure 3.11. Effect size of word-primed word > unprimed word and pseudoword-primed word > 

unprimed word in log-transformed RT from Experiment 4a, 4b, 5a, 5b. Points show the 

coefficients of the effect size, error bars show the 95% credible interval, both were computed 

under the Bayesian framework. 

 

 

3.5 General Discussion 

In this Chapter, I described a series of studies that examined the role of lexical and sub-lexical 

processing during spoken word recognition using the competitor priming paradigm through a variety of 

tasks and experimental designs.  

 

3.5.1 Competitor priming effect limited to lexical processing 

As shown in Experiment 2, the competitor priming effect was robust when participants made 

lexical decisions during stimuli perception. This effect was not reliable when target words were primed 

by one or two similar sounding pseudowords. To test whether the lexical competitor priming effect can 

be observed when the task focuses on phonological processing, we conducted Experiment 3 using a 

similar paradigm as previous studies but changed the task to pause detection. The findings showed a 

surprising pseudoword priming effect on word targets while word competitor priming did not reliably 

delay word recognition as expected.  

These results suggested that the competitor priming effect may not be observed during a task 

that focuses on sub-lexical processing even though pause detection has been proved to be sensitive to 

lexical activity (Mattys & Clark, 2002). However, this could also be because the pause detection task 

was not as effective a training task as the lexical decision task, and hence one presentation of the prime 

item might not be enough to induce the competitor priming effect as observed with lexical decision.  
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In addition, the significant delay in word recognition caused by pseudoword priming also 

indicated that pseudowords could be added to the lexicon and induce lexical competition not long after 

their initial presentation (contrary to Dumay & Gaskell, 2007; Gaskell & Dumay, 2003). Nevertheless, 

this result might have been false positive, since it was not replicated by Experiment 5a which also used 

the pause detection task in a similar design, as summarised below. 

In order to better understand the findings of Experiment 3 and to dissociate the role of lexical 

and sub-lexical processing during spoken word recognition, we conducted Experiment 4a, 4b, 5a and 

5b with separate prime and target phases, multiple presentations of each prime item and mixed the 

lexical decision and pause detection tasks in both phases. As mentionaed above, when using the pause 

detection task in both prime and target phases (Experiment 5a), we did not find delayed recognition of 

word targets caused by pseudoword priming as shown in Experiment 3. Instead, a phonological 

facilitatory effect was shown for the recognition of word-primed words. On the other hand, when using 

the lexical decision task for both prime and target phases (Experiment 4b), the competitor priming effect 

on word targets remained significant although with a smaller effect size, possibly due to the long lag 

between prime and target items. These results seemed to show that the competitor priming effect was 

observable only when participants intentionally focused on lexical-level processing.  

Such findings could be linked to the “good enough” comprehension process, which was found 

in syntactic processing literature (Ferreira & Patson, 2007), i.e. instead of always compute the complete 

and complex meaning of sentences, listeners fall back on an interpretation that might be inaccurate or 

incomplete when the task does not have such requirements. Similarly, since the pause detection task 

does not require participants to process the semantic meaning of items, it may be the case that lexical 

representations were not even thoroughly accessed by participants during the prime task, which was 

why no lexical competition or lexically informed prediction error was evoked during the recognition of 

the target word. 
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3.5.2 Lexical and sub-lexical processing during spoken word recognition 

The competitor priming effect measures word probability (frequency) change during spoken word 

recognition. This effect is predicted by spoken word recognition models in different ways.  

In TRACE (McClelland and Elman, 1986), frequency effect is intrinsic to lexical nodes that 

compete within the same level, and it has early influence on lexical access (Allopenna et al., 1998; 

Dahan et al., 2001). Hence, prior presentation of the competitor word enhanced its own frequency and 

lexical activation while inhibited the recognition of the target word. Although, according to TRACE, 

phoneme-level processing also affects lexical level processing through interaction, the facilitatory effect 

of coherent phoneme priming of the pre-DP segment may be masked by the inhibitory lexical 

competitor priming effect during word recognition (Vitevitch & Luce, 1998).  

The Predictive Coding account (Davis & Sohoglu, 2020) proposes that lexical frequency 

modulates the change of connection weights between words and their constituent speech sounds (i.e. 

lexical to phonological connections). Hence, priming of the competitor word strengthened the 

prediction between pre-DP and post-DP segments via top-down connections from lexical units of the 

prime word. Therefore, large prediction error was evoked when such prediction was disrupted by the 

unexpected post-DP segments of the target word. On the other hand, when prime was presented with 

an inserted pause, the prediction between pre-DP and post-DP segment was temporarily disturbed, but 

the processing of the separated pre-DP segment was unaffected and this temporarily independent 

segment could still lead to predictions of multiple words beginning with the same sounds. Since the 

target word also shared the same pre-DP segment as the prime, its response could be facilitated by the 

priming of this phoneme sequence, as shown in the faster response produced by word-primed words in 

Experiment 5a. These results are also consistent with the reduced pre-DP MEG signals evoked by 

competitor primed words as shown in Chapter 2. 

These opposite effects caused by lexical and sub-lexical processing are also accounted for by 

the Distributed Cohort model (DCM; Gaskell & Marslen-Wilson, 1997). According to the DCM, 

phonological and semantic representations are blended in the same nodes. Therefore, lexical 

competition caused by priming of the competitor word and phonological facilitation caused by priming 
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of the coherent pre-DP segments (when pause separated them from the post-DP segments) can be 

directly reflected in this distributed model structure (Gaskell & Marslen-Wilson, 2002). In Experiment 

2 and 4b, when the lexical decision task was used for both prime and target phases, priming of the 

competitor word caused greater intrinsic competitions between lexical representations of the prime and 

the target word. However, in Experiment 5a, when the pause detection task was used for both phases 

and that each prime word was presented multiple times with and without pause, the pre-DP segment 

was processed temporarily as isolated ambiguous phoneme sequence which matched with multiple 

activated lexical items. Therefore, the coherence between the pre-DP segments of the prime and target 

words facilitated pause detection in the target phase.         

It should also be noted that, in Experiment 4a and 5b, the lexical decision task and the pause 

detection task were used in prime and target phases in a mixed manner and the effects on word targets 

in these experiments were not reliable although there was a trend for delayed response. However, the 

combined results controlling for the prime or the target task showed significant interaction effect 

between target task and prime type, which differentiated Experiment 5a from Experiment 4a and 5b, 

while such difference was not found between Experiment 4b and Experiment 4a and 5b. These findings 

indicated that the facilitatory effect from sub-lexical processing was observable only when pause 

detection was involved in both prime and target phases, while the pattern of the competitor priming 

effect was shared by the other three experiments that all used the lexical decision task at some point 

during the study. These findings on word targets reflected influence from task-evoked decisions during 

spoken word recognition. Since, in order to make a lexical decision, participants needs to use their 

knowledge of both word semantics and word frequency (Balota & Chumbley, 1984), while the pause 

detection task only requires that participants to spot whether there is an unnatural gap between 

phonemes. Therefore, even though the pause detection task is also sensitive to the change of lexical 

activity, it is the phonotactic probability that plays the most important role in making this response.     
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3.5.3 Facilitatory effect from pseudoword priming 

As for pseudoword targets, pseudoword priming using the lexical decision task led to reliably 

shortened responses compared to unprimed pseudowords in both Experiment 4b and 5b.  

In Experiment 4b, the lexical decision task was used for both the prime and target phases and 

the same lexical response was made four times for each stimulus during the prime phase. Hence, this 

effect was possibly due to associative learning between the initial segments of stimuli and lexical 

decision, which made it easier for participants to response to target pseudowords beginning with the 

same initial segments. Such facilitatory task effect could also be a possible reason for the smaller effect 

size of the competitor priming effect on word-primed words in this experiment. However, at the same 

time, it was also harder for participants to response to pseudowords that were primed by words, which 

were associated with the “word” response rather than the “pseudoword” response during lexical 

decision in the prime phase. This could explain why word-primed pseudowords were recognised more 

slowly than unprimed ones here.  

However, in Experiment 5b, the prime and target tasks were different. Therefore, even if 

participants managed to form strategic association between stimuli and responses due to the lexical 

decision task in the prime phase, it would not be helpful for the pause detection task in the target phase. 

Instead, pseudoword priming with a focus on lexical processing (lexical decision task) may have 

activated closely resembling lexical representations that shared the same initial segments, since the 

pseudoword response was made by establishing that it was distinct from all known words (which was 

different from identifying the exact form of a single word when making the word response). Hence the 

phonotactic probability of the pre-DP segments was increased, which led to sub-lexical facilitatory 

effects on pseudoword targets (using pause detection). These results are also in line with the pre-DP 

results found in our MEG study, which showed reduced pre-DP neural response in pseudoword-primed 

items. Therefore, the faster RTs here may also indicate an advantage for sub-lexical processing of 

speech sounds that match multiple activated words.  
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3.5.4 Conclusion 

This chapter described a series of experiments that studied lexical and sub-lexical processing 

during spoken word recognition. By manipulating the prior probability of the competitor word 

through the competitor priming paradigm and using tasks that focused on lexical processing 

(lexical decision) and sub-lexical processing (pause detection) respectively, we found that 1) 

the competitor priming effect was observed only when participants’ focus was intentionally on 

lexical processing; 2) inihibitory lexical competitor priming effect and facilitatory 

phonological priming effect can be dissociated using the same competitor priming paradigm 

and a combination of different tasks. Such opposite effects of lexical and sub-lexical processing 

are also supported by most spoken word recognition models. Even though some of the results 

reported in this chapter are not completely clear-cut, they provide valuable insights on 

functional mechanisms of spoken word recognition. 

 The effect of pseudoword priming on pseudoword targets also makes me reflect more 

on word learning. I will discuss this further in the next chapter, which focuses on memory for 

spoken words and pseudowords. 
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4 SPOKEN WORD ENCODING – ANALYSES ON 

MEMORY DATA FROM EXPERIMENTS 1 - 5 

4.1 Introduction 

On top of effortless speech comprehension in daily life, human adults can also learn and adopt 

new words, such as vlog, Brexit, into their vocabulary easily (though perhaps not comfortably). 

Recently, one mechanism that has been recognised as important to memory encoding is the 

computations of the difference between predictions and perceived information, i.e. the 

prediction error (see Reichardt et al., 2020 and Quent et al., 2021 for review). According to the 

probabilistic PIMMS framework (The Predictive Interactive Multiple Memory Systems, 

Henson & Gagnepain, 2010), prediction error drives synaptic change (learning) between 

higher-level predictions and lower-level sensory signals, hence items that evoke greater 

prediction error should be better remembered. As reviewed in Chapter 1, previous studies using 

word repetition priming (Tulving & Kroll, 1995) and cloze probability (Corley et al, 2007; 

Haeuser & Kray, 2021) have demonstrated that large prediction error improves word memory. 

However, other studies (Alba & Hasher, 1983; Cycowicz et al., 2008; Höltje et al., 2019) also 

showed that information that is semantically congruent with schema (i.e. low prediction error) 

can be better encoded in memory, while irrelevant or incongruent items are remembered less 

well (Sweegers et al., 2015).  

 In this chapter, we tested whether computations of prediction error enhance memory 

encoding using additional recognition memory data collected as part of the experiments 

reported in Chapter 2 and 3. We measured the accuracy with which participants can distinguish 

previously heard target items from foils in a surprise subsequent memory task following the 
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earlier encoding phase (lexical decision/pause detection). By using the competitor priming 

paradigm in the encoding phase, in which the target word (e.g. hygiene) was primed by a similar 

sounding competitor word (e.g. hijack) sharing the same initial segments, we examined 

whether computations of prediction error that caused delay in spoken word recognition can 

also drive word memory encoding.  

 

Mechanisms for word memory encoding during competitor priming 

Based on the PIMMS account, competitor-primed words should be better remembered than 

unprimed ones because they evoke greater prediction error. According to PIMMS, hearing the 

prime word (e.g. hijack) enhances the prior probability (under the Bayes rule) of the association 

between the initial stem of the word (e.g. /haidʒ/) and the ending segment (e.g. /æk/), hence 

when the target item with the same initial segment but a different ending (e.g. /i:n/) is presented, 

prediction error should be evoked due to the disruption of the prior prediction based on the 

initial stem (see Figure 4.1 for an illustration of the PIMMS account applied to competitor 

priming). This prediction error should enhance the synaptic exchange between the medial 

temporal lobe (MTL) supporting the episodic memory system and the perirhinal cortex 

supporting the semantic memory system, which improves encoding and recollection of the 

target item. However, when the prime or target is a pseudoword, the prediction error should be 

much smaller than when both the prime and target items are words. This is because 

pseudowords are novel and lack prior lexical-semantic and phonological representations, hence 

pseudoword-based predictions or pseudoword perception are high in uncertainty in the 

semantic memory system, which prevents effective calculations of prediction error that drives 

memory encoding. Note that this is different from maximal prediction error evoked by 

pseudowords in the perceptual systems in the context of spoken word recognition (see Chapter 
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2), since pre-existing representations are especially important in forming the interactions 

between episodic and semantic memory systems, which is crucial for memory encoding and 

recollection. Overall, PIMMS predicts that one will encode word-primed words better than 

unprimed words, but the encoding is not as strong when a pseudoword is primed by a word and 

vice versa, and learning is negligible when both the prime and the target are pseudowords.  

In addition, by changing the number of presentations of the prime item (four times in 

Experiment 4-5 vs one time in Experiment 1-3) and using tasks that focused on lexical 

processing (lexical decision) and sub-lexical processing (pause detection) respectively, we 

manipulated the strength of prediction (Greve et al., 2017) and levels of processing (Craik & 

Lockhart, 1972; Craik & Tulving, 1975) during memory encoding. Presenting the same item 

multiple times increased the certainty and the strength of prediction between the initial sounds 

and the ending segments of the prime item, hence the corresponding prediction error evoked 

by the target item should also be larger and better memory performance is expected. In addition, 

according to the levels of processing account, words processed at the semantic level (lexical 

decision) should be better encoded than words processed at the sub-lexical level (pause 

detection), since semantic processing is a “deeper” level of processing that produces stronger 

memory trace. This hypothesis is also supported by neural imaging studies using fMRI 

(Wagner et al., 1998b) and PET (Kapur et al., 1994), which showed stronger neural activation 

in the left prefrontal region for semantic processing as opposed to non-semantic processing.   

Another reason why semantic processing leads to better subsequent memory is that it 

requires more attentional resources (i.e. more challenging or attention demanding) than the 

shallower sub-lexical processing (see Craik et al., 1996; Fletcher et al., 1995 for the relationship 

between attention and memory performance). This is also reflected by the longer response 

times evoked during the lexical decision task compared to the pause detection task (see Chapter 

3 results). However, Jurica & Shimamura (1999) further proposed that more attentional 
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resources spent on processing the item may lead to worse episodic encoding of item and context 

association, namely there is an “item-context trade-off”. Hence shorter response times (less 

attentional resources) spent on the prime task may instead lead to better associative memory 

between the item and the context in which the item is encoded (i.e. the experimental context in 

which participants responded to each stimuli in this case).  
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Figure 4.1. Schematic illustration of the PIMMS account with the perceptual, semantic and 

episodic memory systems applied to the competitor priming paradigm. Example items captain, 

captive, captik and captis are used as the prime word, target word, prime pseudoword, target 

pseudoword respectively. They share the same initial segment /kæptɪ/ (pre-DP segment), while 

their post-DP segments are respectively /n/, /v/, /k/, /s/. The x-axis at the perceptual system 

level captures similarity between phoneme features as perceived by listeners represented in 

phonDISC transcription. The bars in dashed lines represent the predicted post-DP segments for 

the target word after hearing the prime word (for simplicity, only the primed segment is shown 

as the predicted segment here), while the bars in solid lines shows the perception of the actual 

post-DP signal input of the target word. The items at the semantic memory system level shows 

the matching existing representations of the predicted and perceived items. Words have 

matching phonological, lexical and semantic representations while pseudowords do not. The 

distribution curves shown at the episodic memory system level reflect the certainty of 

prediction- and perception-based activity built on interactions between the episodic and 

semantic memory systems. Pointy curves reflect higher certainty than flat curves. The PE bar 

at the right side of each condition shows the divergence between the prediction and perception. 

A. the word-primed word condition. Based on the prime word, captain, there is a strong 

prediction for /n/ after hearing /kæptɪ/. However, the sensory input in the target word after 

/kæptɪ/ is /v/, namely the word captive. Hence a large prediction error is evoked. B. the 

pseudoword-primed word condition. After hearing the prime pseudoword captik, the prediction 

for /k/ is not particularly strong due to a lack of prior phonological and lexical-semantic 

representations in the semantic memory system. Therefore, there is high uncertainty in the 

prediction. The perception of the target word captive should still be high in certainty as in panel 

A. Hence the prediction error is smaller than when both the prime and the target are words. C. 

the word-primed pseudoword condition. Like in panel A, the prediction for /n/ after hearing 
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/kæptɪ/ is strong. However, when perceiving the /s/ sound following /kæptɪ/ in the target item, 

participants encounter a novel phonological combination that does not have pre-existing 

representations. Hence there is high uncertainty in this perception. The prediction error is 

therefore also smaller than when both the prime and the target are words. D. the pseudoword-

primed pseudoword condition. As explained for panel B and C, pseudoword-based prediction 

and perception are high in uncertainty due to the lack of prior phonological and lexical-

semantic representations, therefore this condition evokes the smallest prediction error for 

memory encoding.     

 

 

Neural underpinnings of word memory encoding 

Apart from testing the mechanisms of memory encoding using the behavioural data, in order 

to further examine the neural representations of remembered and forgotten words and 

pseudowords in the brain, we also analysed the MEG data based on the behavioural subsequent 

memory performance in Experiment 1 (see Paller & Wagner, 2002, for review on subsequent 

memory analyses of neural data).  

The PIMMS account does not predict strong pseudoword encoding due to the lack of 

previous knowledge about pseudowords in semantic memory system. However, it is also true 

that we learn novel words quite often in our daily life. One possible explanation of how this 

process of novel word learning happens is provided by the complementary learning systems 

account (CLS, McClelland et al., 1995; see Davis & Gaskell, 2009 for review). This account 

proposes two complementary systems for lexical acquisition, in which rapid initial acquisition 

of novel words (pseudowords) is supported by medial temporal and hippocampal learning 

(Breitenstein et al., 2005; Davis et al., 2009; Mestres-Misse et al., 2008; Takashima et al., 2014), 

while slow overnight consolidation in the neocortex is needed to further encode and lexicalise 
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novel words (Davis et al., 2009; Dumay & Gaskell, 2007; Gaskell & Dumay, 2003; see James 

et al., 2017, for review). However, since our MEG experiment only tested memory effects 

immediately after encoding, our subsequent memory analyses of the MEG data could only 

provide evidence for the first stage of novel word learning as described in the CLS.  

In addition, previous subsequent memory studies also showed mixed results of neural 

underpinnings for word and pseudoword encoding. For example, Clark and Wagner (2003) 

showed in their fMRI study that neural activities in the left inferior prefrontal cortex (LIPC) 

and parietal regions predicted participants’ subsequent memory for both (visually encoded) 

words and pseudowords although the effect was greater in posterior LIPC for pseudowords 

than familiar words. However, Otten and colleagues (2007) showed in their 

electrophysiological study that the brain supported the encoding of visually presented familiar 

words at frontally distributed locations from around 600ms post onset with positive going EEG 

signals. Whereas for pseudowords, the neural activities that supported encoding were more 

widely spread in the brain and happened at 1000ms onwards with negative going signals. It 

seems that Otten et al. (2007) showed distinct patterns of EEG signals that formed memory for 

words and pseudowords, while Clark and Wagner (2003) showed more consistent brain 

activities that corresponded to word and pseudoword memory encoding. It is therefore timely 

to extend the previous evidence by further investigating the neural mechanisms supporting 

spoken word learning.     

 

4.2 Memory Data Analyses (Experiment 1-5) 

To investigate the role of prediction error on memory encoding, we tested participants 

subsequent memory of target words and pseudowords presented during the encoding phase of 

Experiment 1 to 5 (i.e. the phase in which word perception was tested using the lexical decision 
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task or pause detection task, as reported in Chapter 2 and 3) using a two-alternative forced 

choice (2AFC) task. These memory tasks were conducted immediately after the encoding phase, 

with words tested before pseudowords (Figure 4.2A). When testing memory for words, we 

presented a semantic foil close in meaning (e.g. sink) with each target word (e.g. basin), as 

shown in Figure 4.2B. For pseudowords, we used phonological foils that have the same initial 

sounds as target pseudowords (Figure 4.2C). The reason why we used different types of foils 

for words and pseudowords is that it was hard to find similar sounding word phonological foil 

for target words when prime words were already used as the stimuli. In addition, we used the 

2AFC test rather than the yes/no recognition test in order to reduce biased responses, especially 

because participants were likely to think that they had heard the pseudoword phonological lure, 

which sound very similar to the targets. More details of the 2AFC task are described in the 

Methods section below.    

 The memory tasks and data analyses of Experiments 4a, 4b, 5a and 5b were 

preregistered on OSF (Experiment 4a, 10.17605/OSF.IO/9453V; 4b,  

10.17605/OSF.IO/JCUAR; 5a & b, 10.17605/OSF.IO/547GK). While it was mentioned in the 

preregistration that Experiment 4a and 4b would be analysed using the frequentist approach 

and Experiment 5a and 5b would be analysed using the Bayesian approach, we later decided 

that it was most appropriate to use the frequentist approach for all the analyses of the memory 

data. This was because the memory results of Experiments 1-3 (see section 4.2.2) were not 

consistent enough and were not well supported by previous literature, hence it did not make 

sense to use the Bayesian framework with priors to analyse memory results of Experiment 4-

5.  

 

https://doi.org/10.17605/OSF.IO/9453V
https://doi.org/10.17605/OSF.IO/JCUAR
https://doi.org/10.17605/OSF.IO/547GK
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Figure 4.2. The paradigm of memory tasks used in Experiment 1 to 5. A. The memory tasks 

for target words and pseudowords came after the encoding phase as reported in Chapter 2 and 

3. B. Word memory task. Participants saw two words (one is the target, the other is the semantic 

foil) on the screen each time and chose the word that they remembered hearing in the encoding 

phase while indicating their confidence by pressing a key. C. Pseudoword memory task. 

Participants heard two pseudowords each time (one is the target, the other is the phonological 

foil) and chose the one that they remembered hearing in the encoding phase while indicating 

their confidence by pressing a key. 

 

 

4.2.1 Methods 

Participants 

As the memory tasks were conducted immediately after the encoding phase, in which 

participants performed word and pseudoword perception tasks (in the form of lexical decision 

or pause detection task) in each experiment, all data described in this chapter were collected 



  4 | Spoken word encoding 

 149 

from the same participants as mentioned in Chapter 2 and 3. Participants removed from the 

encoding phase due to high error rates (two standard deviations above the mean) were also 

removed from the memory analyses. Similarly, participants with high error rates in the word 

memory task were also removed from our analyses. In addition, due to the greater difficulty of 

the pseudoword memory task, participants with high probability of random responding in this 

task (with lower than 80% cumulative probability of observing correct responses in up to half 

of all trials in a binomial test as the threshold for Exp 1-4, and 60% as the threshold for 

Exp5a&b due to longer lags between prime and target items in these experiments) were 

excluded from further analyses. As a result, we included 22 participants in Experiment 1, 31 

participants in Experiment 2, 51 participants in Experiment 3, 72 participants in Experiment 

4a, 70 participants in Experiment 4b, 92 participants in Experiment 5a, 84 participants in 

Experiment 5b. 

 

Experimental Design and Materials 

The memory tasks were conducted following the encoding phase (i.e. word and pseudoword 

perception in the form of lexical decision or pause detection task) in each experiment (see 

Figure 4.2A), hence the same repeated measures design of lexicality and prime type factors as 

described in Chapter 2 and 3 also applied to the memory tasks. These tasks focused on episodic 

memory for target items (as opposed to prime items) that were presented previously during the 

encoding phase (in the case of Experiment 4-5, all target items were presented in the target 

phase, which we refer to as the encoding phase in this Chapter). In order to avoid unnecessary 

distraction from word and pseudoword perception during the encoding phase, participants were 

not informed in advance that their memory of the target items would be tested.  

As shown in Figure 4.2B and C, Two-alternative forced choice (2AFC) tasks were used 

to test participants’ episodic memory of target words and pseudowords, in which participants 
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were asked to choose which one out of the two items had been presented in the encoding phase 

and indicated confidence ratings on a 1-6 scale on the keyboard (1-4 scale on the button box in 

Experiment 1 due to the limited number of buttons), with 1 indicating very confident in the 

item shown on the left and 6 indicating very confident in the item shown on the right, 2 and 5 

indicating less confidence and 3 and 4 indicating guessing. Each word target was paired with 

a semantic foil (close in meaning, but not necessarily sounding similar, e.g. sink as a semantic 

foil for the target word basin) and was presented visually on the screen together with the foil. 

Each pseudoword was paired with a phonological foil (close in pronunciation and starting with 

the same initial segments, e.g. hijous as a phonological foil for the target pseudoword hijure) 

and was presented auditorily only, since participants never saw what each pseudoword looked 

like during the encoding phase.  

In addition, since the number of participants was relatively small in the MEG study 

(Experiment 1), we added a second phase of perception and memory tasks using the rest of the 

stimuli that we have created (see Figure 4.3, e.g., if hijack and hygiene were used in the first 

phase as the prime and target word, then higent and hijure sharing the same initial segments 

were used in the second phase as the prime and target pseudoword) so as to maximize the 

power of the experiment, especially for the subsequent memory analyses of MEG data as 

described in section 4.3. Participants went through the same perception and memory tasks in 

the second phase of the experiment. We describe the behavioural memory results of data from 

phase 1, phase2 and both phases of Experiment 1 in the results section 4.2.2. Note that results 

from phase 2 might differ from phase 1 due to the fact that memory tests in phase 2 were no 

longer surprise tests and that participants might change the way they encoded items in phase 2. 

Another caveat is that “unprimed” items in phase 2 were not truly unprimed, which is also why 

word perception results from the second phase are not reported in Chapter 2. 
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Figure 4.3. The paradigm and design of Experiment 1 (the MEG study). A. The full experiment 

consisted of two phases of encoding and memory tasks. B. The lexical decision task (encoding) 

from both phase 1 and phase 2 involved prime and target items sharing the same initial 

segments and the same four conditions (word-primed word, pseudoword-primed word, word-

primed pseudoword and pseudoword-primed pseudoword). Each item was presented once only 

in the entire experiment.  

 

 

Data analysis 

Response accuracy and confidence ratings of the memory tasks were measured. While accuracy 

results simply reflected whether participants have remembered or forgotten an item, confidence 

rating results were more sensitive to how well an item was remembered or how completely an 

item was forgotten. The data were analysed using mixed effect models, with lexicality and 

prime type as fixed factors and participants and items as random factors. Accuracy was 

analysed using logistic mixed-effect model with the lme4 package and confidence rating 

(ordinal data) was analysed using the mixed-effect cumulative link model with the ordinal 

package (Christensen, 2015) implemented in R. Similar to analyses for word and pseudoword 

perception data from the encoding phase, we attempted to run maximal models with full 

hierarchical structures wherever possible, but reduced random effects structures were applied 
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when the full model did not converge. Likelihood-ratio tests comparing the full model to a 

nested reduced model using the Chi-Square distribution were conducted to evaluate the 

lexicality effect and the interaction effect between lexicality and prime type. Significance of 

model coefficients were obtained using z statistics from the model summary. Since we were 

interested in contrasts between the unprimed condition and each primed condition and we did 

not have definite a priori predictions, Bonferroni correction was applied to these pairwise 

contrasts. We excluded target items that were not responded to correctly during the encoding 

phase from further analyses in the memory task. See Appendix D for descriptive statistics for 

the data presented in all figures in this Chapter. 

 

4.2.2 Results & Discussion 

Experiment 1 

We analysed the results from phase 1 (Figure 4.4A&B), phase 2 (Figure 4.4C&D) and from 

both phases (Figure 4.4E&F) of Experiment 1 respectively. The descriptive statistics for the 

data presented in the plots are reported in Appendix D.  

Phase 1. Results from phase 1 only showed significant effect of lexicality – memory 

accuracy and confidence rating for pseudowords were worse than words, X2(3) = 37.59, p 

< .001 (accuracy), X2(3) = 41.79, p < .001 (rating). However, there was no reliable interaction 

between lexicality and prime type on either accuracy, X2(2) = 0.66, p = .720, or rating, X2(2) = 

0.58, p = .750. In addition, the main effect of prime type was not significant for either words, 

X2(2) = 3.88, p = .144 (accuracy), X2(2) = 2.40, p = .302 (rating), or pseudowords X2(2) = 1.88, 

p = .391 (accuracy), X2(2) = 3.06, p = .217 (rating). 
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Phase 2. Results from phase 2 also showed significant lexicality effect on accuracy, 

X2(3) = 41.54, p < .001, and rating, X2(3) = 40.65, p < .001, while there was no interaction 

between lexicality and prime type, X2(2) = 1.87, p = .392 (accuracy), X2(2) = 3.55,  p = .170 

(rating). However, different from phase 1, there was a main effect of prime type for both word 

and pseudoword target item memory accuracy, X2(2) = 9.47, p = .009 (words); X2(2) = 12.62, 

p = .002 (pseudowords), and for pseudoword rating, X2(2) = 11.41, p = .003. More specifically, 

there was a trend that pseudoword priming disrupted word memory, β = -0.39, SE = 0.19, z = 

-2.08, p = .076, whereas pseudoword memory was enhanced by pseudoword priming, as 

reflected in both accuracy, β = 0.41, SE = 0.16, z = 2.50, p = .025, and rating, β = -0.25, SE = 

0.09, z = -2.91, p = .007.   

Both Phases. When using data from both phase 1 and phase 2, we again saw the 

significant lexicality effect for both accuracy, X2(3) = 42.25, p < .001, and rating, X2(3) = 44.76, 

p < .001, and there was no significant interaction effect between lexicality and prime type, X2(2) 

= 0.75, p = .687 (accuracy), X2(2) = 3.7, p = .157 (rating). In addition, the pairwise effects were 

similar to the results from phase 2 alone, with marginally worse memory accuracy for 

pseudoword-primed words compared to unprimed words, β = -0.30, SE = 0.14, z = -2.07, p 

= .077, and better memory for pseudoword-primed pseudowords compared to unprimed 

pseudowords in terms of both accuracy, β = 0.26, SE = 0.11, z = 2.29, p = .044, and rating, β = 

-0.14, SE = 0.06, z = -2.54, p = .022.  

We also tested the effect of phase on target words and pseudowords separately. In word 

models, we found no interaction effect between word conditions and phase, X2(2) = 1.18, p 

= .556 (accuracy), X2(2) = 1.28, p = .527 (rating), or main effect of phase, X2(3) = 1.65, p 

= .649(accuracy), X2(3) = 2.10, p < .553 (rating). Whereas in pseudoword models, the prime 

effect was affected by phase as shown in the marginally significant interaction by accuracy, 

X2(2) = 5.20, p = .074, and reliable interaction by rating, X2(2) = 6.05, p = .048, and the overall 
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pseudoword memory accuracy and ratings are also significantly worse in phase 2 compared to 

phase 1, X2(3) = 27.74, p < .001(accuracy), X2(3) = 25.96, p < .001 (rating).    

However, it is worth noting that the priming effect is less clear-cut in phase 2, because 

all items presented in phase 2 followed two other items sharing the same initial segments from 

phase 1 (see Figure 4.2B), hence participants might still remember those two similar sounding 

items from phase 1 when performing the tasks in phase 2. Moreover, participants were also 

aware that there would be memory tasks following the encoding phase in phase 2, which could 

potentially change their encoding or response strategy. In addition, ‘unprimed’ and ‘word-

primed’ pseudowords from phase 2 also had the same foil as the pseudowords sharing the same 

initial segments presented in phase 1, hence having heard the same foil before could also have 

biased participants in making incorrect responses in these two conditions in phase 2, which 

could be a possible reason for the better memory in pseudoword-primed condition only.  

In short, the results from phase 2, especially those of pseudoword targets, are potentially 

confounded by multiple factors on top of the intended priming design, while results from phase 

1 alone could be under powered. Therefore, we included the memory tasks in our subsequent 

experiments as well to further examine the effect of competitor priming on word and 

pseudoword memory. Additionally, the MEG data from both phases of this study were also 

analysed for subsequent memory effects and are reported later in section 4.3 of this chapter.   



  4 | Spoken word encoding 

 155 

 

Figure 4.4. Accuracy (panel A, C, E) and confidence rating results (panel B, D, F) from the 

memory tasks from phase 1, phase 2 and both phases of Experiment 1 (the MEG study). Bars 

are color-coded by lexicality and prime type on the x axis (words, blue frame; pseudowords, 

orange frame; unprimed, no fill; primed by same lexicality, consistent fill and frame colors; 
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primed by different lexicality, inconsistent fill and frame colors). Bars show the subject grand 

averages, error bars represent ± within-subject CI, adjusted to remove between-subjects 

variance (Cousineau, 2005). Statistical significance is shown based on generalised linear 

mixed-effects regression (for accuracy analyses) and ordinal mixed-effect regression (for rating 

analyses) in log-odds: (*) p<0.1, * p<0.05, ** p<0.01. Statistical comparisons shown with solid 

lines indicate the lexicality by prime-type interaction and main effects of prime-type for each 

lexicality, while broken lines indicate the significance of pairwise comparisons.     

 

 

Experiment 2 

In this study, there was an extra condition in the encoding phase, double primed by different 

lexicality, (see Figure 3.2 from Chapter 3 for the paradigm) on top of the existing conditions 

in Experiment 1.  

Figure 4.5 shows consistent results of memory accuracy and confidence rating from 

Experiment 2. Like in Experiment 1, memory error rate and rating were significantly higher 

for pseudowords than words, X2(4) = 77.1, p < .001 (accuracy), X2(4) = 98.12, p < .001 (rating). 

Moreover, there was a significant interaction between prime type and lexicality, X2(3) = 14.10, 

p = .003 (accuracy), X2(3) = 25.80, p < .001 (rating), meaning that the competitor priming effect 

on memory was different for words and pseudowords. Specifically, pseudoword priming 

disrupted word memory comparing to unprimed words, β = -0.56, SE = 0.20, z = -2.82, p = .015 

(accuracy), β = 0.17, SE = 0.06, z = 2.90, p = .011 (rating). Although there was a similar trend 

on words that were double primed by pseudowords, the effect did not survive correction for 

multiple comparison. In addition, pseudoword priming also retarded pseudoword memory 
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comparing to unprimed pseudowords, β = -0.24, SE = 0.10, z = -2.41, p = .048 (accuracy), β = 

0.10, SE = 0.05, z = 2.19, p = .084 (rating).  

The results of word targets seemed consistent with those in Experiment 1, however it 

was unclear why double primed words did not produce a similarly, if not more, measurable 

effect compared to the single primed condition. On the other hand, the results of pseudoword 

targets were opposite to those found in Experiment 1, further studies are therefore necessary to 

test whether these effects are replicable.  

It should be noted that the PIMMS account does not predict these decremental memory 

effects caused by pseudoword priming. According to PIMMS, memory performance is 

proportional to the size of prediction error, one prior presentation of a pseudoword should not 

have produced any strong prediction since pseudowords are novel items with low prior 

probability, hence there should not be any reliable enhancement of memory performance, but 

a negative memory effect was not predicted either. Additionally, the attentional resources 

account predicts worse associative memory between item and experimental context caused by 

greater attentional effort on responding to the item. However, pseudoword-primed items did 

not evoke any reliably longer response times than unprimed items during the lexical decision 

task in the encoding phase, hence their disrupted memory was not expected.   
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Figure 4.5. Accuracy (A) and confidence rating (B) memory results from Experiment 2. Bars 

are color-coded by lexicality and prime type on the x axis (words, blue frame; pseudowords, 

orange frame; unprimed, no fill; primed by same lexicality, consistent fill and frame colors; 

(double) primed by different lexicality, inconsistent fill and frame colors). Bars show the 

subject grand averages, error bars represent ± within-subject CI, adjusted to remove between-

subjects variance. Statistical significance is shown based on generalised linear/ordinal mixed-

effects regression in log-odds: (*) p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Statistical 

comparisons shown with solid lines indicate the lexicality by prime-type interaction and main 

effects of prime-type for each lexicality, while broken lines indicate the significance of 

pairwise comparisons.     

 

 

Experiment 3 

This study used the pause detection task rather than lexical decision task in the encoding phase 

and removed the double primed by different lexicality condition.  
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As before, results from Experiment 3 (Figure 4.6) also indicated worse memory for 

pseudowords than words, X2(3) = 57.08, p < .001 (accuracy), X2(3) = 66.83, p < .001 (rating), 

and there was also a reliable interaction between prime type and lexicality, X2(2) = 5.52, p 

= .063 (accuracy), X2(3) = 6.98, p = .031 (rating). In addition, while the main effect of prime 

type was not significant for pseudowords, X2(2) = 1.10, p = .576 (accuracy), X2(2) = 2.00, p 

= .368 (rating), it was reliable for words, X2(2) = 7.69, p = .021 (accuracy), X2(2) = 7.75, p 

= .021 (rating), specifically both word and pseudoword priming disrupted word memory 

compared to the unprimed condition, β = -0.23, SE = 0.09, z = -2.53, p = .023 (word-primed 

word accuracy), β = 0.08, SE = 0.04, z = 2.01, p = .090 (word-primed word rating); β = -0.24, 

SE = 0.10, z = -2.51, p = .024 (pseudoword-primed word accuracy), β = 0.13, SE = 0.05, z = 

2.88, p = .008 (pseudoword-primed word rating).  

Consistent with results from Experiment 1 and 2, pseudoword priming seemed to have 

a negative effect on word memory regardless of the encoding task. Again, these results are not 

predicted by the PIMMS account. However, combined with the behavioural results from the 

encoding phase (see Figure 3.5 in Chapter 3), in which pseudoword-primed words evoked 

longer response time than unprimed words, it seems possible that the disrupted episodic 

memory of pseudoword-primed words could be caused by “item-context trade off”, as 

suggested by the attentional resources account. However, as discussed in Chapter 3, the delayed 

recognition of pseudoword-primed words shown in Experiment 3 was unexpected and not 

replicated in our subsequent studies, which makes the memory results harder to explain in terms 

of attentional resources. Another possible explanation is that there could be some sort of 

proactive interference from the prime item during memory retrieval process, as suggested by 

the contextual binding account of episodic memory (Yonelinas et al., 2019).       

Overall, since the encoding process in Experiment 1-3 were all based on a single prior 

presentation of a similar sounding item, it is unclear if this disruptive priming effect is 
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generalizable when stronger encoding is involved, e.g. multiple presentations of the same prime. 

Therefore, results from memory tests in Experiment 4-5 would help answer this question. 

 

 

Figure 4.6. Accuracy (A) and confidence rating (B) memory results from Experiment 3. Bars 

are color-coded by lexicality and prime type on the x axis (words, blue frame; pseudowords, 

orange frame; unprimed, no fill; primed by same lexicality, consistent fill and frame colors; 

primed by different lexicality, inconsistent fill and frame colors). Bars show the subject grand 

averages, error bars represent ± within-subject CI, adjusted to remove between-subjects 

variance. Statistical significance is shown based on generalised linear/ordinal mixed-effects 

regression in log-odds: (*) p<0.1, * p<0.05, ** p<0.01. Statistical comparisons shown with 

solid lines indicate the lexicality by prime-type interaction and main effects of prime-type for 

each lexicality, while broken lines indicate the significance of pairwise comparisons.     
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Experiment 4-5 

As illustrated in Figure 3.6 in Chapter 3, Experiment 4a, 4b, 5a, 5b adopted a design with 

separate prime and target phases instead of interleaved prime and target trials as in Experiment 

1 to 3. Each prime item was presented 4 times in the prime phase, while each target item was 

presented once in the target phase and their memory was tested subsequently, hence the target 

phase is referred to as the encoding phase here. As shown in Table 3.2 in Chapter 3, Experiment 

4a and 5a used the pause detection task as the prime task, while Experiment 4b and 5b used the 

lexical decision task as the prime task; Experiment 4a and 4b used the lexical decision task as 

the encoding (target) task, while Experiment 5a and 5b used the pause detection task as the 

encoding task. Hence, Experiment 4b and 5a were built on Experiment 1, 2 and 3 with multiple 

presentations of the prime, while Experiment 4a and 5b were entirely new.  

Experiment 4a. Figure 4.7A&B show that memory for pseudowords were worse than 

that for words, X2(3) = 141.76, p < .001 (accuracy), X2(3) = 128.13, p < .001 (rating), and that 

there was no interaction effect between prime type and lexicality, X2(2) = 2.71, p = .258 

(accuracy), X2(2) = 0.24, p = .887 (rating). In addition, accuracy results showed that memory 

for pseudoword-primed words was significantly better than unprimed words, β = 0.45, SE = 

0.20, z = 2.25, p = .048, although this effect was not reliable in the rating results, β = -0.03, SE 

= 0.05, z = -0.72, p = .470. No significant effect of prime type was found for pseudoword 

targets. 

Experiment 4b. The results of this experiment (Figure 4.7C&D) also indicated a 

significant difference between memory for words and pseudowords, X2(3) = 170.13, p < .001 

(accuracy), X2(3) = 151.41, p < .001 (rating). In addition, rating results showed that the priming 

effect was affected by target items’ lexicality, X2(2) = 9.09, p = .011, while this interaction was 

not reliable in accuracy results, X2(2) = 3.38, p = .184. Memory for words was reliably 
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enhanced when they were primed by another similar sounding word, this was especially robust 

in rating, β = 0.46, SE = 0.23, z = 1.99, p = .094 (accuracy), β = -0.18, SE = 0.05, z = -3.64, p 

< .001 (rating). Similar effects were also reliable for pseudoword-primed words as shown in 

their memory rating, β = -0.14, SE = 0.05, z = -2.95, p = .006. Although there was also a 

significant main effect of prime type for pseudowords shown in rating, X2(2) = 17.21, p < .001, 

the pairwise comparison effects for unprimed pseudowords and pseudoword-primed or word-

primed pseudowords did not survive correction for multiple comparison, β = -0.01, SE = 0.04, 

z = -0.23, p = .817 (pseudoword-primed vs unprimed pseudowords), β = -0.07, SE = 0.04, z = 

-1.72, p = .170 (word-primed vs unprimed pseudowords). 

Experiment 5a. Apart from significant lexicality effect, X2(3) = 116.61, p < .001 

(accuracy), X2(3) = 137.82, p < .001 (rating), no other reliable effects were found in results of 

this experiment (Figure 4.7E&F).   

Experiment 5b. As shown in Figure 4.7G&H, the results of Experiment 5b shared a 

similar pattern as those of Experiment 4b. On top of the significant lexicality effect, X2(3) = 

121.79, p < .001 (accuracy), X2(3) = 127.26, p < .001 (rating), there was also a significant 

interaction between lexicality and prime type, X2(2) = 6.40, p = .041 (accuracy), X2(2) = 12.32, 

p = .002 (rating). Moreover, main effect of prime type was only found for words, X2(2) = 11.77, 

p = .003 (accuracy), X2(2) = 15.66, p < .001 (rating), but not for pseudowords, X2(2) = 0.002, 

p = .999 (accuracy), X2(2) = 0.07, p = .964 (rating). Specifically, participants had significantly 

better memory for both word-primed and pseudoword-primed words than unprimed words, β 

= 0.22, SE = 0.08, z = 2.70, p = .014 (word-primed vs unprimed words accuracy), β = -0.12, 

SE = 0.04, z = -3.24, p = .002 (word-primed vs unprimed words rating); β = 0.30, SE = 0.09, z 

= 3.36, p = .002 (pseudoword-primed vs unprimed words accuracy), β = -0.14, SE = 0.04, z = 

-3.81, p < .001 (pseudoword-primed vs unprimed words rating).  
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Figure 4.7 Accuracy (A, C, E, G) and confidence rating (B, D, F, H) memory results from 

Experiment 4-5. Bars are color-coded by lexicality and prime type on the x axis (words, blue 

frame; pseudowords, orange frame; unprimed, no fill; primed by same lexicality, consistent fill 

and frame colors; primed by different lexicality, inconsistent fill and frame colors). Bars show 

the subject grand averages, error bars represent ± within-subject CI, adjusted to remove 

between-subjects variance. Statistical significance is shown based on generalised linear/ordinal 

mixed-effects regression in log-odds: (*) p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Statistical 

comparisons shown with solid lines indicate the lexicality by prime-type interaction and main 

effects of prime-type for each lexicality, while broken lines indicate the significance of 

pairwise comparisons.  

 

 

Comparison of word results from Experiment 4-5. In order to compare the results 

from these four experiments, we conducted factorial analyses on combined word data with 

prime type, prime task and encoding task as factors. Both the accuracy model and rating model 

with data from all four experiments showed a significant main effect of encoding task, namely 

using pause detection as the encoding task (Experiment 5a & b) led to higher error rates and 

lower confidence ratings compared to using lexical decision as the encoding task (Experiment 

4a & b), β = -1.51, SE = 0.16, z = -9.68, p < .001 (accuracy), β = 0.74, SE = 0.07, z = 10.12, p 

< .001 (rating), indicating that memory encoding during the lexical decision task was more 

effective than during the pause detection task overall. In addition, the confidence rating model 

also showed significant interaction effects between prime task and word priming, β = 0.20, SE 

= 0.06, z = 3.59, p < .001, and prime task and pseudoword priming, β = 0.13, SE = 0.06, z = 
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2.37, p = .018. These results suggested that priming effects on target word memory were larger 

when the prime task was lexical decision than when it was pause detection. 

Overall, the results of Experiment 4-5 showed that there was better memory encoding 

when participants performed the lexical decision task than when they performed the pause 

detection task in the target phase. This is consistent with the Levels of Processing model (Craik 

& Lockhart, 1972), with semantic processing being in a deeper level than phonetic processing, 

which hence contributes to stronger memory trace. In addition, the results of multiple prior 

presentations of the same competitor word or pseudoword leading to better target word memory 

than unprimed words contrasted with those of Experiment 1-3, which showed interference from 

single prior presentation.  

However, better memory for primed words could be due to memory for the common 

stems shared by the prime and the target items, which were different from those of the semantic 

foil used in the word memory task. These effects were absent in pseudowords, as the 

pseudoword phonological foil shared the same initial segments as the prime and target items, 

hence the pseudoword memory task probed the offset of the item only. That being said, the fact 

that these encoding effects on words were only significant when the prime task was lexical 

decision but not pause detection indicated that stem encoding, if any, was not sufficient to cause 

a reliable difference between the memory for primed and unprimed words.  

These results were not explainable by the attentional resources account that proposes 

“item-context trade-off”, since better remembered words in Experiment 4b and 5b did not 

occupy less attentional resources (shorter response times) during the encoding task (see Figure 

3.8 in Chapter 3). Importantly, memory for both words and pseudowords were worse when the 

encoding task was pause detection compared to when the task was lexical decision, yet 

participants’ response times were also reliably shorter during the pause detection task, hence 
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less effort in performing the encoding task did not seem to have contributed enough to episodic 

memory that associated the item with experimental context such that it could facilitate 

participants’ subsequent recognition memory of the items.  

On the contrary, the results were in line with the PIMMS account, in which stronger 

prediction between syllables were generated during the prime phase that focused more on 

lexical semantic processing, hence the disruption of the prediction shown in target words 

evoked greater prediction error, which in turn enhanced encoding. It should also be noted that, 

apart from word-primed words, pseudoword-primed words were also reliably better 

remembered than unprimed words when the prime task was lexical decision. One possible 

explanation is that, when the same pseudoword prime was encountered multiple times rather 

than one time only during the lexical decision task, it also built up activation for neighbouring 

words which could have possibly strengthened its lexical representation. In contrast, when the 

prime task focused mainly on phonological processing (i.e. the pause detection task), no strong 

predictions between the initial and ending segments were generated for prime items, hence 

prediction error was not strongly evoked on target items either. These word memory results 

also matched with the opposite effects of lexical processing and sub-lexical processing on 

target word perception (see Chapter 3), in which the competitor priming effect was observable 

only when the lexical decision task was used. Such effects are supported by the Predictive 

Coding account of spoken word recognition, which also promotes the role of computations of 

prediction error.   

However, the fact that memory effects were not shown for pseudoword targets indicated 

that very little prediction error was evoked by pseudoword targets due to the high uncertainty 

of their representations in the semantic memory system. It could also be that the phonological 

memory task used for pseudoword targets was too difficult, as there was no facilitation from 

stem encoding.  
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4.3 Subsequent Memory Analyses of MEG Data  

In order to further understand the relationship between neural responses during spoken word 

and pseudoword perception and subsequent memory, we analysed the MEG data from both 

phases of Experiment 1 based on subsequent behavioural memory results. The conditions for 

analyses were divided into remembered word, forgotten word, remembered pseudoword and 

forgotten pseudoword. Prime types were not considered here due to the confounding effects in 

Phase 2 of the study and the small number of trials in forgotten conditions (see Table 4.1 below).  

Through the subsequent memory analyses, we aimed to examine whether neural 

activity as recorded by the MEG could predict subsequent memory of the items (Paller & 

Wagner, 2002), the brain locations that support word and pseudoword memory encoding 

(Breitenstein et al., 2005; Clark & Wagner, 2003; Davis & Gaskell, 2009; Davis et al., 2009; 

Otten et al., 2007; Paller & Wagner, 2002) and whether remembered and forgotten words and 

pseudowords were represented differently in the brain (Clark & Wagner, 2003; Otten et al., 

2007).  

 

4.3.1 Methods 

Participants  

The same twenty-four participants as described in Chapter 2 also took part in the memory task 

immediately following the lexical decision task. Two participants that were removed from 

word recognition analyses were also excluded from the subsequent memory analyses, one 

further participant was excluded from the subsequent memory analyses due to technical 

problems, hence resulting in 21 participants in total.    
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Preprocessing & Data analyses 

Based on response accuracy in word and pseudoword memory tasks from both phases of 

Experiment 1 (see Figure 4.4 from Section 4.2), we averaged neural responses on each trial 

during the lexical decision task based on subsequent memory performance and item lexicality, 

i.e. each trial was marked as remembered word, forgotten word, remembered pseudoword or 

forgotten pseudoword. In order to increase the power, especially for conditions with less trials 

(e.g. forgotten word condition), we used data from both phases of Experiment 1 for the 

subsequent memory analyses. Since our analyses focused on lexical and memory differences 

rather than the manipulation of competitor priming, the potential confounding in phase two 

data should not be relevant here. Nevertheless, trial number was still unevenly distributed 

among these four conditions for each participant (see Table 4.1). Therefore, to minimise the 

bias of the mean gradiometer RMS for each condition due to the uneven number of trials, the 

RMS of each trial was calculated before robust averaging within each subject, though at the 

cost of lowering the signal to noise ratio. All trials were otherwise preprocessed following the 

same procedure as described in the section 2.2.6 of Chapter 2.  

Sensor data from magnetometers and gradiometers were analysed separately. We 

converted the sensor data into 3D images (2D sensor x time) and performed F tests for main 

effects across sensors and time. Reported effects were obtained with a cluster-defining 

threshold of p < .001, and significant clusters identified as those whose extent (across space 

and time) survived p < 0.05 FWE-correction using Random Field Theory (Kilner & Friston, 

2010). When plotting waveforms and topographies, data are shown for sensors nearest to the 

critical points in 2D image space. The main effects of interest were remembered vs forgotten 

words and remembered vs forgotten pseudowords.  
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In order to locate the brain sources of the effects found in sensor space, source 

reconstruction was also conducted in the same manner as described in section 2.2.7 of Chapter 

2. The source inversion was projected onto the time window of 782-870ms post-DP based on 

the time span of the largest significant cluster from sensor space. 

 

Table 4.1 The mean, maximal, minimal and standard deviation of the trial number of each 

condition in the subsequent memory analyses 

Condition Name Number of Trials 

Mean Max Min SD 

Remembered Word 201 234 162 20.9 

Forgotten Word 39 78 6 20.9 

Remembered Pseudoword 141 163 118 12.4 

Forgotten Pseudoword 99 122 77 12.4 

  

 

4.3.2 Results & Discussion 

We examined the main effect (sensor-time anova) of subsequent memory (remembered vs 

forgotten), interaction between memory and lexicality (words vs pseudowords), the difference 

between remembered and forgotten words, and the difference between remembered and 

forgotten pseudowords in magnetometers, gradiometers and source space. Figure 4.8A shows 

that the magnetometers detected a significant cluster (1313 sensor x time points, p < .001) in 

the right posterior region in which remembered items evoked more negative amplitude effects 

on the scalp than forgotten items at -114 to -73ms before the deviation point. Figure 4.8B shows 
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that this effect was driven more by the difference between remembered and forgotten words, 

t(20) = -3.34, p = .006 (Bonferroni corrected), in comparison to the difference between 

remembered and forgotten pseudowords, t(20) = -2.66, p = .030 (Bonferroni corrected). One 

possible reason for this is that the pre-DP segments in word items could already help 

differentiate word targets (e.g. basin) and semantic lures (e.g. sink), whereas this was unlikely 

for pseudoword targets (e.g. basef) and their phonological lures (e.g. basoy) that shared the 

same initial sounds. However, it was still possible that neural responses to remembered and 

forgotten pseudowords were different during the pre-DP period.    

 

Figure 4.8. Cluster showing significant neural difference between remembered and forgotten 

items in Magnetometers. A. The topographic plot shows the statistically significant cluster. 

Waveforms represent magnetometer responses averaged over the spatial extent of the 

significant cluster shown in the topography. The grey shade of waveforms represents ± within-

participant SE, adjusted to remove between-participants variance. B. Signals evoked by 

conditions of interest averaged over temporal and spatial extent of the significant cluster shown 

in panel A. All error bars represent ± within-participant SE, adjusted to remove between-

participants variance. Statistical significance: ** p<0.01, * p<0.05. 
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The magnetometer sensors did not show any significant clusters for the interaction 

between memory and lexicality. The clusters for the difference between remembered and 

forgotten words did not survive p < 0.05 FWE-correction either. However, the magnetometers 

showed three significant clusters that reflected difference between remembered and forgotten 

pseudowords. Figure 4.9A shows the earliest cluster (1522 sensor x time points, p < .001) at 

685-750ms post-DP in the right hemisphere in which more negative amplitude were shown for 

remembered pseudowords than forgotten pseudowords, while Figure 4.9B shows a larger 

cluster (2322 sensor x time points, p < .001) at 782-870ms post-DP in the left hemisphere in 

which remembered pseudowords evoked neural responses with more positive amplitude than 

forgotten ones. Given the proximity of time and location of the two clusters, it is likely that 

they came from the same source. Additionally, Figure 4.9C shows a cluster (1203 sensor x time 

points, p < .001) in the posterior area of the brain at 821-857ms post-DP in which remembered 

pseudowords showed more negative amplitude than forgotten ones. The gradiometer sensors 

did not show reliable effects in any of these contrasts, which could be due to the very uneven 

trial numbers in word conditions and low signal to noise ratio in gradiometers.  
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Figure 4.9. Clusters showing significant neural difference between remembered and forgotten 

pseudowords in Magnetometers over time. The topographic plots show the statistically 

significant clusters. Waveforms represent magnetometer responses averaged over the spatial 

extent of the significant cluster shown in the topography. The grey shade of waveforms 

represents ± within-participant SE, adjusted to remove between-participants variance. 
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In source space (Figure 4.10), we localised pseudoword memory effects found in 

magnetometers over 782 to 870ms (the time span of the largest cluster) to the right lateral and 

medial temporal lobe (panel A, volume of 2555 voxels, p < .05, peak at x = 62, y = -14, z = -

22, peak-level effect size z = 2.71) and the left anterior superior frontal gyrus (panel B, volume 

of 367 voxels, p < .05, peak at x = -22, y = 52, z = 4, peak-level effect size z = 2.53) with 

forgotten pseudowords evoking greater source strength than remembered pseudowords in these 

two clusters, t(20) = -1.74, p = .097 (panel D); t(20) = -2.22, p = .038 (panel E), and the left 

middle temporal gyrus (panel C, volume of 172 voxels, p < .05, peak at x = -58, y = -46, z = -

8, peak-level effect size  z = 2.51) with remembered pseudowords producing stronger responses 

than forgotten ones, t(20) = 2.69, p = .014 (panel F). Although these source localisation results 

were not significant at the cluster level, they reflected the source of the significant sensor time 

results, which are FWE cluster corrected. Since the canonical cortical meshes used for source 

reconstruction did not include the hippocampus, it is possible that the source shown in panel A 

and C could have originated from that region.  

These observations seemed consistent with the ERP results from previous literature 

(Otten et al., 2008), in which a negative-going ERP was found for remembered versus forgotten 

pseudowords with a focus on right temporal sites at around 1000ms after stimuli onset. The 

engagement of the medial temporal lobe during this initial encoding of pseudowords is also in 

line with the complementary learning systems account. Moreover, pseudoword subsequent 

memory was also predicted by neural activity in the left anterior superior frontal gyrus. This 

could be due to cognitive control related to pseudoword identification, since the region is 

anatomically connected with the cingulate cortices (Li et al., 2013). Or it could be caused by 
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phonological processing during pseudoword encoding, as stronger activation in the nearby left 

inferior frontal gyrus has been observed for processing of phonological information of 

pseudowords relative to familiar words (Newman & Twieg, 2001; Poldrack et al., 1999) and 

that the magnitude of this activation should positively correlate with subsequent word memory 

(Clark & Wagner, 2003). 
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Figure 4.10. Neural activities predicting subsequent pseudoword memory localised in the 

source space. A, B & C. The difference of source activities to remembered and forgotten 
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pseudowords rendered onto the cross section of a single subject brain template, thresholded at 

FWE-corrected cluster-level p < 0.05. The x coordinate shows the sagittal view and the y 

coordinate shows the coronal view.  D, E & F. The source strength evoked by remembered and 

forgotten pseudowords averaged over voxels within each cluster shown in panel A, B and C 

respectively. All error bars represent ± within-participant SE, adjusted to remove between-

participants variance. Statistical significance: * p<0.05, (*) p<0.1.   

 

 

4.4 General discussion 

This Chapter reported results from memory tasks of Experiment 1 to 5, which examined the 

effect of competitor priming on word and pseudoword episodic memory encoding; thereby 

testing whether priming-induced changes to computations of prediction error improved 

memory. At the same time, the use of lexical decision and pause detection tasks that 

respectively focused on lexical and sub-lexical processing during priming modulated the 

strength of prediction for target items.  

We showed that, while the single prime paradigm in Experiment 1-3 did not evoke very 

clear or replicable effects potentially due to the lack of power, multiple prior presentations of 

the same competitor prime with a focus on lexical processing (Experiment 4b & 5b) evoked 

reliably better memory for target words than unprimed words, which is consistent with the 

PIMMS account (Henson & Gagnepain, 2010). The memory effects were not reliable for target 

words whose competitor primes were encoded using the pause detection task (Experiment 4a 

& 5a), which confirmed that lexical processing is at a deeper level than sub-lexical processing 

(Craik & Lockhart, 1972). Additionally, we did not find evidence for the “item-context trade-

off” attentional resources account (Jurica & Shimamura, 1999), as shorter response times 
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during the encoding phase did not seem to have improved episodic memory of items encoded 

in the experimental context.  

Finally, in terms of our subsequent memory analyses of the MEG data from Experiment 

1, we did not find significant neural response supporting word encoding, possibly due to the 

uneven number of trials in word conditions. However, our results support that neural activity 

during pseudoword learning was localized to lateral and medial temporal lobe and left anterior 

superior frontal gyrus from ~782 to ~870ms post-DP. The locations and timing of these neural 

responses are consistent with previous literature (Clark & Wagner, 2003; Otten et al., 2007) 

and the initial rapid learning of novel words as supported by the CLS account (Davis & Gaskell, 

2009). 

 

4.4.1 Competitor priming effects modulate memory encoding 

Chapter 2 and 3 reported studies that investigated the competitor priming effect during spoken 

word recognition, in which word-primed words evoked delayed behavioural responses and 

greater neural signals in the STG when participants’ attention was on lexical processing. The 

results described in this chapter further examined the effect of competitor priming on word 

memory. We found that 1) stable effects of word priming that enhanced word memory were 

present only after multiple presentations of the competitor prime, 2) multiple presentations of 

pseudoword primes also evoked similarly positive effects on word memory as word primes, 

and 3) these effects were reliably observed only when participants’ attention was on lexical 

processing but not phonological processing during the prime phase. I will discuss these findings 

as explained by different theories of memory encoding below. 
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The role of prediction error as proposed by the PIMMS account 

Similar to the Predictive Coding account for spoken word recognition, the PIMMS account 

(Henson & Gagnepain, 2010) is also a Bayesian framework that suggests a hierarchical 

organization of human perception and memory and that the difference between higher-level 

predictions and lower-level signals, i.e. the prediction error, plays a key role in episodic 

memory encoding. Under the PIMMS framework, word priming provides a prior that enhances 

the prediction between the prime’s initial and ending segments, therefore a target word that 

shares the same initial syllables but different ending should evoke a larger prediction error, 

which improves memory encoding. However, when the target or the prime is a pseudoword 

without pre-existing lexical and phonological representations, there is high uncertainty in the 

semantic memory system, which leads to less effective interactions with the episodic memory 

system, hence memory encoding and recollection is weak. Note that this is different from the 

maximal prediction error evoked by pseudowords in the perceptual systems during spoken 

word recognition.  

 Our study results showed that both word and pseudoword priming evoked significantly 

better word memory only after the same word prime was presented multiple times and that the 

prime task was the lexical decision task. No such effect was found for target pseudowords. 

These results have multiple implications, first of all, the fact that multiple presentations of the 

same competitor prime enhanced word memory but single presentation did not produce the 

same effect indicated that the stronger and more accurate the prediction was, the better the 

memory performance became. Our Experiment 4b is a replication of Experiment 1 and 2 except 

that the same prime was presented four times rather than a single time and that the lag between 

prime and target items was also longer (see methods in Chapter 3). Yet the memory effects of 

competitor priming were found only when the prime was presented multiple times. Similar 

effects were also found by Greve and colleagues (2017), who showed that memory encoding 
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for scene-face pairing was improved when the erroneous prime (the same scene paired with a 

different face) was presented multiple times during training. These results are in line with the 

the PIMMS account that the size of the prediction error and hence the success of memory 

encoding is positively associated with the degree of precision of the prior.  

However, the PIMMS account also predicts that a single competitor word prime should 

also induce prediction error on the target word and enhance its memory encoding. One possible 

reason why we did not find this effect in Experiment 1 and 2 could be that the number of 

participants in these two experiments were too small and hence there might be a lack of power 

to detect this effect. Another possible explanation is that a single prime with a long lag (20-80 

trials) was simply too weak to form a strong enough prediction to modulate memory encoding.  

In addition, it should also be noted that multiple presentations of the pseudoword prime 

also had a similar effect in improving word memory as word competitor primes (Experiment 

4b and 5b), while an opposite negative effect was detected when there was only a single 

pseudoword prime (Experiment 1-3). The PIMMS account only predicts weak encoding for 

single pseudoword-primed word condition, but it does not predict any negative memory effect 

either. The disruptive effects shown in the earlier (potentially underpowered) experiments 

could be due to proactive interference from the prime item during memory retrieval process 

(Yonelinas, 2019). However, when the same pseudoword was presented multiple times, it 

might have activated similar sounding words. Hence, a stronger lexical prediction might have 

been formed, which evoked a similarly large prediction error as word primes.  

In contrast to target words, there was no reliable memory effect for target pseudowords. 

As mentioned above, strong memory encoding and recollection relies on pre-existing 

phonological and semantic representations to a large extend, hence effective pseudoword 

learning may need many more learning episodes or long-term overnight consolidation (Davis 
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& Gaskell, 2009; James et al., 2017). Another reason could be that the pseudoword memory 

task was a phonological task that relied only on the ending segments to differentiate the target 

from the foil, hence memory trace of the initial stem could not facilitate the task performance. 

Therefore, the task might be too difficult to be sensitive to the experimental manipulation.    

 

Levels of processing and attentional resources 

Another important finding is that memory encoding effects were reliable only when 

participants focused on lexical processing (Experiment 4b and 5b) rather than phonological 

processing (Experiment 4a and 5a) during the prime phase. Indeed, according to the levels of 

processing model (Craik & Lockhart, 1972), lexical semantic processing is at a “deeper” level 

than phonemic processing, which should hence lead to better memory recall. It is possible that 

lexical processing enhanced predictions between the initial and the final segments of the prime, 

since the lexical decision task required participants to treat each item as a complete lexical-

semantic unit. Therefore, larger prediction error was generated when perceiving the target, 

since its final segment violated the prior prediction. In contrast, during the pause detection task, 

participants mainly focused on lower-level phonetic features of prime items, and they did not 

have to treat each item as a complete lexical-semantic unit. In addition, each prime was also 

presented twice with pause inserted, which could disturb the prediction between pre- and post-

DP segments.  

On the other hand, our study results did not show evidence for the attentional resources 

account that proposes “item-context trade-off” (Jurica & Shimamura, 1999). The longer 

response times evoked by word-primed words in the encoding phase of Experiment 4b (see 

results in Chapter 3) indicated greater attentional resources spent processing the item. The fact 

that these words were also better remembered could not reflect any “trade-off” between item 
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and context memory. Moreover, response times were generally shorter when the encoding task 

was pause detection than when the task was lexical decision, but the memory accuracy was 

generally lower when pause detection was used during encoding. Hence, even if there was 

better episodic association between items and the experimental context during the pause 

detection task, it was not reflected in the memory results. These results were also consistent 

with a previous study by Kim and colleagues (2012), who found that reduced attention on tasks 

caused by prior item repetition also decreased episodic encoding of the item and context 

association rather than improving it. However, it should also be noted that we did not 

manipulate the experimental context by presenting the item using a specific source, such as 

different voices, or presenting the item together with another context stimuli, such as a 

background noise or picture, hence the experimental context varies depending on each 

participant’s environment and mental status when they were responding to each stimuli, and 

we could not test participants’ memory for the context explicitly. Therefore, our study design 

might not be optimal for testing the “trade-off” between item and context.          

 

4.4.2 The neural mechanisms that support pseudoword encoding 

Although we did not find reliable behavioural effects reflecting pseudoword learning, it did not 

mean that pseudowords were not encoded at all. The subsequent memory analyses of the MEG 

data allowed us to examine the neural underpinnings of word and pseudoword encoding. We 

did not find reliable clusters that represented word memory, possibly due to the very uneven 

number of trials in the remembered and forgotten word conditions. However, we found that 

pseudoword learning was driven by positive-going amplitudes in the left middle temporal gyrus 

and negative-going amplitudes in the right lateral and medial temporal lobe and the left anterior 

superior frontal gyrus between ~782 and ~870ms after the deviation point of stimuli.     
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The neural responses shown in the medial temporal lobe are in line with the initial rapid 

learning of novel words, as proposed by the complementary learning systems account (CLS; 

Davis & Gaskell, 2009), and consistent with the fMRI literature suggesting hippocampal 

contributions to word learning in general (Breitenstein et al., 2015; Davis et al., 2009; Mestres-

Misse et al., 2008). The negative-going amplitudes shown in the right lateral and medial 

temporal lobe around 800ms post-DP were also in accordance with previous results found by 

Otten and colleagues (2008), in which pseudoword encoding was driven by negative-going 

ERPs at central and right temporal sites from 1000ms onwards post stimuli onset. Furthermore, 

neural activity in the left anterior frontal gyrus could be related to cognitive control for 

encoding, which has been found in the anatomically connected cingulate cortices (Li et al., 

2013) and phonological processing of pseudowords, which has been found in the nearby left 

inferior prefrontal cortex and frontal gyrus (Clark & Wagner, 2003; Poldrack et al., 1999).   

Due to the uneven number of trials in the word memory conditions, our results did not 

show a difference of neural underpinnings between word and pseudoword memory encoding. 

MEG might also not be the best method for measuring memory results, as the signals could be 

noisy and there was no hippocampal mesh for the forward model. However, the findings 

indicated that, despite a lack of significant behavioural pseudoword memory effect in the 

recognition memory task, neural responses in the medial temporal lobe still supported 

pseudoword encoding, which indicated initial rapid learning through the episodic systems.    

 

4.4.3 Conclusion 

Overall, this chapter reported the results of memory tasks from a series of studies using the 

competitor priming paradigm. We found that multiple presentations of the same word or 

pseudoword prime enhanced memory recollection of similar sounding target words when 
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participants focused on lexical processing during the prime task. These results are in line with 

the PIMMS account, which proposes that greater prediction error improves episodic memory. 

The neural results from the subsequent memory analyses of the MEG data also provided 

evidence that pseudoword encoding was driven by initial rapid learning in the medial temporal 

lobe, consistent with the literature that showed hippocampal contributions to novel word 

learning and the initial stage of the complementary learning systems.  

 Together with the findings reported in Chapter 2 and 3, computations of prediction error 

appear crucial in explaining both spoken word recognition and learning, which I will discuss 

further in the next chapter.  
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5 CONCLUDING REMARKS  

The work reported in this thesis shows that computations of prediction error account for spoken 

word recognition and learning and that these processes are better supported by lexically 

informed processing compared to sub-lexical processing. This final chapter brings together the 

research reported in Chapter 2, 3 and 4 by summarizing and integrating the key findings. The 

limitations of these studies and future directions for research on spoken word recognition and 

learning are also discussed.  

 

5.1 Summary  

Chapter 2 

The MEG study described in Chapter 2 tested whether the neural activities during spoken word 

recognition support the competitive-selection account (e.g. TRACE; McClelland & Elman, 

1986) or predictive-selection account (e.g. Predictive Coding, Davis & Sohoglu, 2020). 

Through competitor priming, the prior probability of the activated lexical units was modulated 

differently for pre-DP and post-DP segments of the target items. While competitive-selection 

models and predictive-selection models both predict that word primed by a similar sounding 

word sharing the same initial segments are recognised more slowly, i.e. the competitor priming 

effect, they make different hypotheses for the timing and location of neural effects triggered 

by competitor priming. Our behavioural results showed slower response times to competitor 

primed words compared to unprimed words. Neural evidence recorded by MEG showed a 

lexical influence on neural activity localized to the STG, with competitively primed words 

showing stronger neural responses than unprimed words after the point at which they could be 



  5 | Concluding remarks 

 186 

uniquely identified but not before. Crucially, the elevated neural responses also correlated with 

the delayed recognition of competitor primed words.  

The location, direction and timing of the neural activities recorded in the study were 

more consistent with the predictive-selection account. The links between behavioural and 

neural activities provided further evidence that prediction error plays a crucial role during 

spoken word recognition. It is true that studies using continuous speech (Brodbeck et al., 2018; 

Donhauser & Baillet, 2019) found effects accounting for both lexical entropy (which quantifies 

lexical competition) and surprisal (similar to prediction error), but these measures are highly 

correlated with each other in natural speech (Gwilliams & Davis, 2021) and it was hard to 

dissociate them in these studies.  

Dufour and Nguyen (2017) found that the behavioural competitor priming effect was 

not modulated by voice change between the prime and the target when the prime was presented 

just once. However, when the prime was presented in a different voice multiple times, the 

competitor priming effect was attenuated. Future studies could explore whether the location 

and timing of corresponding neural effects were also affected by different episodic trace such 

as the change of voice. Moreover, manipulations of such episodic trace may also help dissociate 

the different processes involved in perceptual priming and recognition memory. Additionally, 

the perception of pseudowords in the current paradigm was limited to form, i.e. phonological 

level. It is worth further investigating whether pseudowords perceived with arbitrary semantic 

meaning would alter the neural implementations of the competitor priming effect.   

 

Chapter 3 

The behavioural experiments reported in Chapter 3 examined lexical and sub-lexical 

processing during spoken word recognition using the competitor priming paradigm. In 
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Experiment 4a, 4b, 5a and 5b, the tasks used during the prime phase aimed to dissociate the 

inhibitory lexical competition effect, caused by the prior presentation of competitor prime, and 

the facilitatory phonotactic priming effect, caused by the priming of ambiguous phonological 

segments when pause was present in the prime stimuli during the pause detection task. The 

tasks used in the target phase tested whether the probability change modulated by competitor 

priming could be affected by task-evoked decision (see Balota & Chumbley, 1984).  

The findings showed that only when participants’ attention was on lexical processing 

(lexical decision) during the perception of both prime and target items, the competitor priming 

effect (i.e. delayed recognition of primed words) was significant. However, when phonological 

task (pause detection) was used on both prime and target items and that word items were 

presented multiple times both with and without pause, there was a phonological facilitatory 

effect on target word recognition due to the activation of multiple compatible lexical items 

during the prime phase, even though the segments after pause were not consistent between 

prime and target word items. Conversely, when lexical decision and pause detection were 

mixed as the tasks for the perception of prime and target words, no reliable effects were found 

on word targets although there was a trend for slower response. Results from combined studies 

showed interaction effects between task and prime type for word targets, which differentiated 

the experiment using phonological task throughout both the prime and target phases 

(Experiment 5a) from the other experiments. Additionally, reliable facilitatory effects were 

also shown for pseudoword targets during pause detection when they were primed by the same 

pseudoword multiple times using the lexical decision task. 

These findings showed opposite effects of lexical and phonological processing as 

suggested by the dual-level account (Vitevitch and Luce, 1998). Such effects from lexical and 

phoneme levels are in principle supported by localist models of spoken word recognition such 

as TRACE, but the facilitative phonological processing only affects the lexical level through 
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interaction and does not drive word recognition directly. In contrast, the Predictive Coding 

account incorporates both inhibitory lexical processing and facilitatory phonological 

processing, as calculations of lexically informed prediction error happen at the phoneme level. 

In addition, these opposite effects are also supported by the DCM model (Gaskell & Marslen-

Wilson, 1997). This is because the DCM incorporates blended lexical and phonological 

representations in the same nodes that support both inhibitory lexical competitions and 

facilitatory phonotactic priming of coherent sound segments.  

Additionally, the significant interaction effects between target task and prime type that 

differentiated Experiment 5a (which used the pause detection task in both phases) from 4a, 4b 

and 5b (which all used the lexical decision task at some point during the study) also indicated 

that task-evoked decision may affect spoken word recognition. While the lexical decision task 

requires knowledge of both word meaning and frequency (Balota & Chumbley, 1984), lexical 

representations of the stimuli may not even be accessed when the task (e.g. pause detection) 

did not require such processing. Furthermore, the pseudoword facilitatory priming effect on 

pseudoword targets (in Experiment 5b) could be because repeated lexical decision on the prime 

pseudowords activated multiple lexical items beginning with the same initial sounds. Therefore, 

the primed pre-DP segments had greater phonotactic probability, which led to easier perception 

of target pseudowords during the pause detection task. 

I should also acknowledge that the lag between the prime and target items in the 

separate phase design (Experiment 4-5) might have been too long, which could explain why 

the effect of competitor priming was attenuated even when the lexical decision task was used 

for both the prime and target phases and that the prime was repeated for multiple times 

(Experiment 4b). This could also be the reason why no reliable difference was found between 

the results of Experiment 4b and the results of experiments that mixed lexical and sub-lexical 

processing in prime and target phases (Experiment 4a and 5b). On the other hand, the findings 
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also indicated that the facilitatory effect of phonological priming seemed to be robust and could 

last for ~7min on average when the prime was presented four times. Future studies could test 

whether such long-lasting effect is replicable in real life phoneme sequence learning using 

natural speech. 

 

Chapter 4 

Chapter 4 reported subsequent memory tasks on the items perceived during the MEG and 

behavioural experiments. These tasks investigated the effect of competitor priming on memory 

encoding. The competitor priming paradigm, together with lexical and sub-lexical processing 

manipulated by tasks during the encoding phase, modulated the strength and accuracy of 

predictions for target words. Therefore, the effect of prediction on subsequent memory of 

words could be assessed. Additionally, the neural activity associated with memory encoding 

was also examined through subsequent analyses of MEG signals. The behavioural results 

showed reliable encoding of competitor primed words when the prime was presented multiple 

times using the lexical decision task but not the pause detection task. There was no significant 

behavioural effect of competitor priming on memory for pseudoword targets. However, the 

neural activity associated with pseudoword memory encoding more generally was localized to 

the lateral and medial temporal lobe and the left anterior superior frontal cortex. 

 The behavioural results indicate that enhanced prediction error caused by competitor 

priming facilitated memory encoding of words when the encoding was repeated multiple times 

and involved deeper lexical-semantic processing. These findings are consistent with the 

PIMMS account (Henson & Gagnepain, 2010) and the levels of processing model (Craik & 

Lockhart, 1972). They are also related to the results shown in Chapter 3, which indicated 

different effects of lexical and sub-lexical processing on word perception. The neural 
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implementations of pseudoword encoding localized to the medial temporal lobe was supported 

by lesion studies (Bayley et al., 2008; Martins et al., 2006) and functional neural imaging 

evidence (Breitenstein et al., 2005; Davis et al., 2009), and was consistent with the CLS account 

(Davis & Gaskell, 2009).      

 It should be noted that the different memory tasks used for words (with semantic foil) 

and pseudowords (with phonological foil) might have made it more difficult to retrieve 

pseudoword targets than word targets. The fact the words have prior semantic representations 

while pseudowords do not also made it harder to encode and recollect pseudowords. Therefore, 

future studies could reduce the difficulty of pseudoword encoding by adding more repetitions, 

reducing the lag between encoding and retrieval tasks or presenting pseudowords with 

associable semantic cues. Additionally, while these experiments only explored effects of 

competitor priming on the memory of newly encountered pseudowords, it is worth exploring 

whether novel items after overnight consolidation (hence lexicalized) can show stronger 

episodic memory encoding after being primed by competitor words. 

  

5.2 Predictive coding for spoken word recognition and learning 

The studies reported in this thesis showed that computations of prediction error could explain 

both spoken word recognition and memory encoding, although the predictions required for the 

two processes may be different.  

For spoken word recognition, lexically informed top-down predictions are updated by 

bottom-up prediction errors iteratively during speech perception (Davis & Sohoglu, 2020). 

Results from Chapter 2 and 3 showed that one presentation of the competitor word was 

sufficient to produce slowed behavioural and increased neural responses. This is explained by 

the large prediction error evoked during the perception of the target word. However, a long lag 
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between prime and target could also attenuate this change in prediction error. Conversely, for 

words to be effectively encoded, it is necessary that there is sufficient synaptic exchange 

(learning) between the higher prediction level and lower sensory level (Henson & Gagnepain, 

2010). The results presented in Chapter 4 indicated that the strength of prediction, i.e. multiple 

presentations of the same competitor word, was crucial, while the delay between prime and 

target items did not seem to matter as much as during word perception. Importantly, both 

processes require lexical-level processing. The fact that pseudowords do not have prior lexical 

representations made it hard for their perception and learning to be affected by the manipulation 

of prediction.    

 Previous studies (Church & Schacter, 1994; Schacter et al., 1993) have found 

dissociations between implicit recognition memory, which was shown by perceptual priming 

in the absence of conscious recollection, and explicit recognition, which was tested by 

deliberate memory tasks. While spoken word priming was shown to be affected by voice, 

intonation and fundamental frequency, these factors had no effects on explicit recognition task 

(Church & Shacter, 1994; See Dufour & Nguyen, 2017 for evidence on competitor priming). 

Similarly, Schacter and colleagues (1993) reported that patients with amnesia exhibited normal 

priming effects on degraded word items but performed poorly during the explicit recognition 

memory task.  

This dissociation was possibly because conceptually driven process was more engaged 

in explicit memory retrieval compared to word perception (and perhaps also due to the use of 

semantic foil in our word memory task). Hence, multiple presentations of the same word item 

might have particularly strengthened lexical or semantic-based predictions for the prime word, 

hence prediction error evoked by the target word was larger, which improved its memory 

encoding and retrieval. Whereas delayed spoken word recognition caused by competitor 

priming was more due to pre-lexical segment-level perceptual mismatch caused by lexically 
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informed predictions for the competitor word (as shown in the neural evidence from Chapter 

2), which might be more sensitive to the delay between prime and target items. Such difference 

between recognition memory and perceptual priming was also reflected in pseudowords. While 

maximal perceptual prediction error was evoked by pseudowords during spoken word 

recognition, the prediction error that drives interactions between the episodic and semantic 

memory systems was small due to their lack of pre-existing representations. However, it is true 

that both the effect of delayed spoken word recognition and improved memory are associated 

with lexical processing, which I will discuss in more detail in the next section.        

 

5.3 Lexical and sub-lexical processing for spoken word recognition and learning 

It has been recognised by most spoken word recognition models (DCM, Predictive Coding, 

Shortlist, TRACE) that the identification of spoken word involves at least two levels of 

processing, lexical and sub-lexical. However, the effects of the two processes seem to be in 

opposite directions, with high neighbourhood density producing inhibitory lexical-level 

competitions and high phonotactic probabilities facilitating identification of sub-lexical sound 

sequence (Gaskell & Marslen-Wilson, 2002; Vitevitch and Luce, 1998), as reflected by the 

delayed response caused by competitor priming and faster response caused by phonological 

priming of pre-DP segments described in Chapter 3. Similarly, as shown in Chapter 4, word 

memory is also affected differently by lexical and sub-lexical level processing, particularly 

because lexical level processing tested through the lexical decision task is a deeper form of 

processing with greater semantic involvement, while sub-lexical level processing tested using 

the pause detection task is a shallower form of encoding (Craik & Lockhart, 1972; Craik & 

Tulving, 1975). 
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 However, the perception or learning of pseudowords are less clearly affected by these 

processing. The only reliable effect on pseudoword perception found in our studies was the 

facilitatory effect when a pseudoword was primed by a similar sounding pseudoword multiple 

times. This could be explained by associative learning between lexical responses and the initial 

segments of items (Experiment 4b) and phonotactic facilitation caused by matching of the 

speech sounds shared by multiple activated lexical representations (Experiment 5b). However, 

no competitor priming effect was shown for pseudoword targets due to maximal prediction 

error produced during their perception. Similarly, we did not find any reliable effects of 

pseudoword learning regardless of lexical or sub-lexical level processing during the encoding 

phase. Again, the fact that pseudowords do not have any pre-existing lexical representations 

may be the reason for these results. While sub-lexical facilitatory effects were still shown for 

pseudoword perception because of their shared pre-DP segments with words, lexical level 

inhibitory effects and semantic-related encoding process did not apply to them. Future studies 

on pseudoword perception and learning could consider involving lexical knowledge by 

providing semantic context during the perception of pseudowords or lexicalizing pseudowords 

in advance through training with arbitrary semantic cues (Takashima et al., 2014, 2017) or 

overnight consolidations (Davis & Gaskell, 2009). These results also suggested that, for 

language learning in real life, associate novel words with existing semantic knowledge or 

schema could be especially helpful for learning.   

 

5.4 Conclusion 

In this thesis, I reported studies that examined neural and functional mechanisms of spoken 

word recognition and learning using the competitor priming paradigm. These studies provided 

strong evidence for a unified account that computations of prediction error drive spoken word 
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recognition and memory encoding while the effects of lexical and sub-lexical processing were 

dissociated during these two processes. This research uniquely contributes to existing literature 

by bringing together spoken word recognition and learning with a common prediction-based 

framework using both neural and behavioural approaches. It also paves the way towards a 

mechanistic understanding of the two common human cognitive functions that are closely 

related to each other. Finally, it provides a solid base and a starting point for future research to 

further examine the role of prediction error and the relationship between lexical and sub-lexical 

processing in spoken word recognition and memory encoding.  
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APPENDIX A List of Stimuli 

PhonDISC transcription (which uses unsyllabified, DISC character set) is provided for each 

stimulus. 

1. Stimuli words and pseudowords 

Prime 

Words 

PhonDISC Target 

Words 

PhonDISC Prime 

Pseudowords 

PhonDISC Target 

Pseudowords 

PhonDISC 

letter lEt@R lettuce lEtIs letto lEt5 lettan lEt{n 

boycott b4kQt buoyant b4@nt boyten b4t@n boymid b4mId 

canister k{nIst@R cannibal k{nIb@l canniphyll k{nIfIl cannittock k{nIt@k 

tribute trIbjut tribune trIbjun tribuke trIbjuk tribule trIbjum 

amid @mId amiss @mIs amic @mIk amip @mIp 

poker p5k@R pokey p5kI pokoa p5k5 pokra p5kr@ 

shallow S{l5 chalet S{l1 challon S{l@n shallume S{ljum 

hammer h{m@R hammock h{m@k hamment h{m@nt hamel h{m@l 

motor m5t@R motive m5tIv moton m5tQn motay m5t1 

kilo kil5 kiwi kiwi kini kini keebo kib5 

border b$d@R boredom b$d@m bordle b$d@l bordate b$d@t 

fillet fIlIt filly fIli fillow fIl5 fillain fIl@n 

torrent tQr@nt torrid tQrId torrupt tQrVpt torroon tQrun 

minus m2n@s minor m2n@R minum m2n@m minarch m2n@k 

deacon dik@n decoy dik4 deakime dik2m deaket dikIt 

crocodile krQk@d2l crockery krQk@rI crockellent krQk@l@nt crocony krQk@ni 
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venue vEnju venom vEn@m venid vEnId venaut vEn$t 

hijack h2_{k hygiene h2_in higent h2_@nt hijure h2_jU@ 

carnival k#nIv@l carnivore k#nIv$R carnivit k#nIvIt carnivest k#nIvEst 

climate kl2mIt climax kl2m{ks climod kl2mQd climain kl2m1n 

humour hjum@R humid hjumId humoy hjum4 humite hjum2t 

burden b3d@n birdie b3di birdack b3d{k birdict b3dIkt 

clutter klVt@R cluster klVst@R clunnel klVn@l cluddon klVd@n 

counter k6nt@R counsel k6ns@l coundial k6ndI@l counger k6n_@R 

embassy Emb@sI embryo EmbrI5 embicate EmbIk@t embuty Embjuti 

cemetery sEmItrI seminar sEmIn#R semidure sEmIdju@ semipon sEmIpQn 

docile d5s2l dosage d5sI_ doeset d5sEt doesop d5s@p 

crumpet krVmpIt crumple krVmp@l crumpoon krVmpun crumpon krVmpQn 

adverse {dv3s adverb {dv3b advertch {dv3J adverk {dv3k 

foliage f5lII_ folio f5lI5 folimon f5lImQn foliland f5lIl@nd 

title t2t@l tighten t2t@n titum t2t@m titac t2t@k 

pilot p2l@t pylon p2l@n pielage p2l@_ pilal p2l@l 

beaker bik@R beacon bik@n beacal bik@l beacus bik@s 

barrel b{r@l barren b{r@n barrod b{r@d barroph b{r@f 

cuckoo kUku cookie kUkI cookle kUk@l cookuse kUkjuz 

forage fQrI_ foray fQr1 forrour fQr@ forrack fQr{k 

summit sVmIt summon sVm@n summoy sVm4 summack sVm{k 

banquet b{NkwIt bankrupt b{NkrVpt bankume b{Nkjum bankip b{NkIp 

ally {l2 alloy {l4 allop {l@p allent {l@nt 

mailto:h2_jU@
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village vIlI_ villain vIl@n villief vIlif villate vIl1t 

vertigo v3tIg5 vertebra v3tIbr@ vertifix v3tIfIks vertimid v3tImId 

uniform junIf$m unicorn junIk$n unistall junIst@l unigree junIgri 

gusty gVsti gusto gVst5 gustom gVst@m gustide gVst2d 

turkey t3kI turquoise t3kw4z turkoon t3kun turkus t3k@s 

daily d1lI dainty d1ntI daipent d1p@nt daimous d1m@s 

robot r5bQt rodent r5d@nt rocus r5k@s rotion r5S@n 

garbage g#bI_ garble g#b@l garbet g#b1 garbide g#b2d 

dirty d3tI dervish d3vIS dircle d3k@l durnace d3nIs 

paradise p{r@d2s paradigm p{r@d2m paradite p{r@d2t paradike p{r@d2k 

succeed s@ksid succinct s@ksINkt succsence s@ks@ns succside s@ks2d 

furnace f3nIs furnish f3nIS furnet f3nIt furnic f3nIk 

mercy m3sI murmur m3m@R mertus m3t@s merbute m3bjut 

granite gr{nIt granule gr{njul granarch gr{n#k granult gr{n@lt 

ticket tIkIt tickle tIk@l tickod tIkQd tickute tIkjut 

voter v5t@R vocab v5k{b voble v5b@l vosey v5zi 

fashion f{S@n fascist f{SIst fashew f{Su fassure f{SU@ 

wagon w{g@n waggle w{g@l waggus w{g@s wagget w{g@t 

bonnet bQnIt bonny bQni bonough bQnVf bonnome bQn5m 

domino dQmIn5 domicile dQmIs2l dommiree dQmIri dommippet dQmIpIt 

credit krEdIt crevice krEvIs cremble krEmb@l creckon krEk@n 

gallery g{l@rI galaxy g{l@ksI gallagee g{l@_i gallaby g{l@bi 

ferry fEri ferret fErIt ferrer fEr@ ferrack fEr{k 
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crystal krIst@l christen krIs@n chrisic krIsIk chrisire krIs2@ 

basis b1sIs basin b1s@n basef b1sef basoy b1s4 

pewter pjut@R putrid pjutrId pewtay pjut1 pewtarb pjut#b 

funny fVnI funnel fVn@l funarm fVn#m funnane fVn1n 

envy Envi envoy Env4 envice Env2s envam Env{m 

salad s{l@d sallow s{l5 sallack s{l{k salius s{l7s 

insulin InsjUlIn insulate InsjUl1t insuloon InsjUlun insullock InsjUlQk 

diverse d2v3s divulge d2vVl_ divite d2v2t divom d2v@m 

violent v2@l@nt violet v2@l@t viollus v2@l@s violumn v2@l@m 

fluid fluId fluent flu@nt fluack flu{k fluance flu#ns 

cyclist s2klIst psychic s2kIk cyker s2k@R cycrite s2krIt 

river rIv@R rivet rIvIt rivey rIvi rivest rIvEst 

bowler b5l@R boulder b5ld@R bowllion b5l7n bowlcha b5lJ@ 

malice m{lIs mallet m{lIt malliff m{lIf mallin m{lIn 

tender tEnd@R tendon tEnd@n tendal tEnd@l tendus tEnd@s 

solar s5l@R solo s5l5 solim s5lIm solay s5l1 

bucket bVkIt buckle bVk@l buckoon bVkun buckorde bVk$d 

sequel sikw@l sequin sikwIn sequoy sikw4 sequash sikwQS 

general _En@r@l generate _En@r1t generot _En@rQt generiff _En@rIf 

dragon dr{g@n drastic dr{stIk draffle dr{f@l dralot dr{lQt 

forever f@rEv@R forensic f@rEnsIk forredom f@rEd@m forremid f@rEmId 

cherry JEri cherish JErIS cheret Jer1 cherald JEr@ld 

final f2n@l finite f2n2t finage f2nI_ finect f2nEkt 
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customer kVst@m@R custody kVst@dI custonom kVst@n@m custopus kVst@p@s 

parcel p#s@l parson p#s@n parsus p#s@s parssad p#s@d 

local l5k@l locust l5k@st loakon l5k@n loaker l5k@R 

kidney kIdnI kidnap kIdn{p kidnate kIdn1t kidnise kIdn2z 

founder f6nd@R fountain f6ntIn founshion f6nS@n foundger f6n_@R 

matron m1tr@n matrix m1trIks matrod m1trQd matrope m1tr5p 

doodle dud@l duvet duv1 doocon duk@n ducid dusId 

lion l2@n liar l2@R lieage l2@_ lieette l2@t 

hazel h1z@l hazy h1zI hazar h1z# hazoon h1zun 

loosen lus@n lucid lusId loosack lus{k loosire lus2@ 

vulgar vVlg@R vulture vVlJ@R vulgeon vVl_@n vuldom vVld@m 

mortar m$t@R mortal m$t@l mortus m$t@s mortac m$t@c 

female fim1l femur fim@R feamy fimi femote fim5t 

pinnacle pIn@k@l pinafore pIn@f$R pinallor pIn@l@R pinadit pIn@dIt 

former f$m@R format f$m{t formish f$mIS formaze f$m1z 

career k@r7R caress k@rEs carute k@rut caroy k@r4 

franchise fr{nJ2z frantic fr{ntIk frander fr{nd@R franlot fr{nlQt 

slipper slIp@R sliver slIv@R slidden slId@n slibbet slIbEt 

liver lIv@R livid lIvId livute lIvjut liverse lIv3s 

stubborn stVb@n stubble stVb@l stubbous stVb@s stubber stVb@R 

labour l1b@R label l1b@l labeth l1b@T labon l1b@n 

bullet bUlIt bullock bUl@k bullize bUl2z bullete bUlit 

drizzle drIz@l drivel drIv@l driggle drIg@l drinom drIn@m 
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table t1b@l taper t1p@R tamous t1m@s taget t1gEt 

damsel d{mz@l damson d{mz@n damser d{mz@R damsus d{mz@s 

delicate dElIk@t delegate dElIg@t deleral dElIr@l delepute dElIpjut 

soccer sQk@R socket sQkIt sockite sQk2t sockob sQkQb 

complement kQmplIm@nt complicate kQmplIk1t complinour kQmplIn@R complidence kQmplId@ns 

flourish flVrIS fluster flVst@R fluppent flVp@nt flummal flVm@l 

permanent p3m@n@nt permeate p3mI1t permuda p3mjud@ permoiler p3m4l@R 

broker br5k@R brochure br5S@R broter br5t@R broget br5gEt 

tartan t#t@n tartar t#t@R tartal t#t@l tarttock t#t@k 

quarry kwQri quarrel kwQr@l quarrest kwQrEst quarid kwQrId 

lumpy lVmpI lumber lVmb@R lumket lVmkIt lumtice lVmtis 

merry mEri merit mErIt merrant mEr@nt merrope mEr5p 

ransom r{ns@m rancid r{nsId rancike r{ns2k ransorn r{ns$n 

billion bIlj@n billow bIl5 billid bIlId billous bIl@s 

relish rElIS relic rElIk relip rElIp relid rElId 

journey _3ni journal _3n@l journume _3njum journet _3nIt 

plumber plVm@R plummet plVmIt plummock plVm@k plummute plVmjut 

trifle tr2f@l tripod tr2pQd trimate tr2m1t tricer tr2s@R 

cinema sIn@m# cinnamon sIn@m@n cinnamope sIn@m5p cinnamute sIn@mjut 

tacit t{sIt tassel t{s@l tassoy t{s4 tassike t{s2k 

heritage hErItI_ heresy hErIsI herelade hErIl1d herebin hErIbIn 

valley v{li valid v{lId vallous v{l@s vallar v{l# 

ruby rubi rhubarb rub#b rubon rubQn rubule rubjul 
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total t5t@l totem t5t@m totus t5t@s tottock t5t@k 

transfer tr{nsf3R transfix tr{nsfIks transfike tr{nsf2k transfume tr{nsfjum 

teeny tini teeter tit@R teecon tikQn teebid tibId 

prodigy prQdI_I prodigal prQdIg@l prodicue prQdIkju proditus prQdIt@s 

volume vQljum volley vQlI volance vQl@ns vollike vQl2k 

scandal sk{nd@l scanty sk{ntI scanpate sk{np1t scanvage sk{nvI_ 

rhino r2n5 rifle r2f@l rical r2k5 ripot r2pQt 

mustard mVst@d mustang mVst{N mustine mVst2n mustic mVstIk 

cola k5l@ colon k5lQn colit k5lIt colo k5l5 

rubbish rVbIS rubber rVb@R rubboa rVb5 rubbute rVbjut 

mistress mIstrIs mystic mIstIk mistume mIstjum mistol mIst@l 

salute s@lut saloon s@lun saloupe s@lup saloosh s@luS 

brandy br{ndi brandish br{ndIS brandile br{nd2l brandos br{ndQs 

wicked wIkId wicket wIkIt wickic wIkIk wickiss wIkIs 

fatal f1t@l fable f1b@l facon f1k@n fajor f1_@ 

super sup@R supine sup2n supave sup1v supid supId 

language l{NgwI_ languish l{NgwIS languin l{NgwIn languil l{NgwIl 

series s7riz serum s7r@m serack s7r{k serot s7rQt 

modern mQd@n modest mQdIst moduce mQdjus modron mQdr@n 

swallow swQl5 swaddle swQd@l swabute swQbjut swacket swQkIt 

accent {ksEnt axiom {ks7m accsort {ks$t aksume {ksjum 

goblet gQblIt goblin gQblIn goblidge gQblI_ goblice gQblIs 

platinum pl{tIn@m platypus pl{tIp@s platymer pl{tIm@R platicate pl{tIk@t 
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polish pQlIS pollen pQl@n pollack pQl{k pollar pQl# 

media midj@ median midj@n meediage midj@_ meediape midj@p 

foyer f41 foible f4b@l foitet f4tEt foikon f4k@n 

sherry SEri sheriff SErIf sherra SEr@ sherrow SEr5 

spanish sp{nIS spaniel sp{nj@l spanode sp{n5d spanum sp{n@m 

pedigree pEdIgri pedestal pEdIst@l pedio pEdI5 pedivore pEdIv$ 

protest pr5tEst proton pr5tQn protar pr5t# protal pr5t@l 

walnut w$lnVt walrus w$lr@s waldom w$ld@m walver w$lv@ 

gable g1b@l geisha g1S@ geivy g1vi geirret g1rIt 

witness wItnIs Whitsun wIts@n witcoy wItk4 witmer wItm@R 

caper k1p@R kapok k1pQk capid k1pId capute k1pjut 

dowdy d6dI doughty d6tI dowcal d6k@l dowcid d6sId 

bunker bVNk@R bungle bVNg@l bunkton bVNkt@n bunktion bVNkS@n 

grubby grVbI grumble grVmb@l grugit grVgIt gruvice grVvIs 

sabre s1b@R sable s1b@l sabon s1b@n saboured s1b@d 
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2. Target stimuli and foils 

Word Stimuli Word Foils Pseudoword 

Stimuli  

Pseudoword 

Foils 

lettuce cabbage lettan letty 

buoyant resilient boymid boymid 

cannibal savage cannittock cannidon 

tribune official tribule tribuse 

amiss mistake amip amidge 

pokey tiny pokra pokate 

chalet cabin shallume shallage 

hammock sedan hamel hammop 

motive reason motay motil 

kiwi grapefruit keebo keefit 

boredom tedium bordate bordus 

filly foal fillain filect 

torrid hot torroon torrium 

minor junior minarch minant 

decoy distract deaket deacal 

crockery cutlery crocony crocketal 

venom poison venaut venoid 

hygiene sanitation hijure hijous 

carnivore predator carnivest carnivoke 

climax apex climain climal 



  Appendix A 

 205 

humid moist humite humal 

birdie eagle birdict birdle 

cluster bunch cluddon clucket 

counsel advice counger counvas 

embryo zygote embuty embanent 

seminar assembly semipon semigel 

dosage measure doesop doesoll 

crumple crease crumpon crumpass 

adverb adjective adverk advern 

folio catalogue foliland foleor 

tighten constrict titac titage 

pylon tower pilal pieluc 

beacon signal beacus beacra 

barren infertile barroph barrip 

cookie biscuit cookuse cookrete 

foray raid forrack forroy 

summon convene summack summaut 

bankrupt insolvent bankip bankle 

alloy blend allent allade 

villain scoundrel villate villack 

vertebra spine vertimid vertilla 

unicorn phoenix unigree unipon 

gusto delight gustide gustick 
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turquoise sapphire turkus turkon 

dainty elegant daimous daigel 

rodent mouse rotion ropaque 

garble distort garbide garbon 

dervish devil durnace derpent 

paradigm pattern paradike paradire 

succinct concise succside succsorm 

furnish supply furnic furneal 

murmur whisper merbute merpet 

granule particle granult granol 

tickle stroke tickute tickom 

vocab jargon vosey vobot 

fascist racist fassure fasheen 

waggle jiggle wagget wagoy 

bonny pretty bonnome bonarch 

domicile residence dommippet dommitted 

crevice crack creckon crepit 

galaxy universe gallaby gallaty 

ferret rabbit ferrack ferrent 

christen baptize chrisire chrislot 

basin sink basoy basoy 

putrid rotten pewtarb pewteck 

funnel pipe funnane funnoob 
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envoy emissary envam envout 

sallow pale salius salloy 

insulate isolate insullock insulute 

divulge reveal divom divoke 

violet lilac violumn violac 

fluent eloquent fluance fluette 

psychic telepath cycrite cycoy 

rivet pin rivest rivel 

boulder stone bowlcha bowlom 

mallet hammer mallin mallish 

tendon sinew tendus tendock 

solo single solay soloy 

buckle clasp buckorde buckuum 

sequin spangle sequash sequid 

generate produce generiff generen 

drastic severe dralot drapute 

forensic detective forremid forremel 

cherish treasure cherald cherrow 

finite limited finect finaut 

custody detention custopus custobal 

parson vicar parssad parser 

locust grasshopper loaker loakid 

kidnap abduct kidnise kidnus 
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fountain cascade foundger founlot 

matrix vector matrope matrus 

duvet quilt ducid dootal 

liar fibber lieette lieus 

hazy misty hazoon hazent 

lucid clear loosire loosorn 

vulture buzzard vuldom vulneal 

mortal dying mortac mortent 

femur humerus femote femium 

pinafore apron pinadit pinamen 

format layout formaze formap 

caress cuddle caroy carid 

frantic panic franlot frangy 

sliver slice slibbet slinette 

livid angry liverse livorce 

stubble beard stubber stubbop 

label tag labon labute 

bullock cattle bullete bulleaze 

drivel nonsense drinom dridden 

taper narrow taget tasom 

damson plum damsus damsy 

delegate minister delepute delety 

socket plug sockob sockule 
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complicate complex complidence compligy 

fluster agitate flummal fluzon 

permeate infuse permoiler permaigrate 

brochure catalogue broget bromel 

tartar plaque tarttock tartice 

quarrel squabble quarid quarren 

lumber timber lumtice lumdle 

merit virtue merrope merrod 

rancid fetid ransorn ransute 

billow wave billous biller 

relic artefact relid rellis 

journal diary journet journous 

plummet plunge plummute plumal 

tripod trivet tricer trylon 

cinnamon nutmeg cinnamute cinamy 

tassel bobble tassike tassix 

heresy sacrilege herebin herecker 

valid legal vallar vallow 

rhubarb pumpkin rubule rubet 

totem icon tottock tottad 

transfix stare transfume transfeat 

teeter wobble teebid teedom 

prodigal wasteful proditus prodelong 
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volley strike vollike volloon 

scanty insufficient scanvage scanlin 

rifle shotgun ripot rhigette 

mustang stallion mustic musttle 

colon comma colo colite 

rubber elastic rubbute rubyme 

mystic magic mistol mistard 

saloon tavern saloosh salule 

brandish wield brandos brandiot 

wicket cricket wickiss wickiff 

fable legend fajor failiff 

supine prostrate supid supoy 

languish decline languil languiff 

serum plasma serot serude 

modest humble modron moduct 

swaddle envelope swacket swatton 

axiom maxim aksume accsage 

goblin elf goblice goblive 

platypus duck platicate plattivate 

pollen spore pollar polloy 

median middle meediape meediace 

foible fault foikon foyack 

sheriff sergeant sherrow sherrain 
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spaniel poodle spanum spannard 

pedestal platform pedivore pedicap 

proton positron protal proty 

walrus sealion walver walgar 

geisha singer geirret geinham 

Whitsun Easter witmer witlen 

kapok wadding capute capent 

doughty tough dowcid dowlet 

bungle botch bunktion buncture 

grumble complain gruvice grulus 

sable mink saboured sabet 
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APPENDIX B Supplementary Materials for Chapter 2 

Table S2.1. Behavioural RTs analyses on all data versus data excluding items with pre-

DP acoustic differences (identified in the gating post-test). Reported pairwise effects 

(planned) are one-tailed. 

 All data Data with exclusion 

Contrast X2 t p X2 t p 

Lexicality 23.60  <.001 28.87  <.001 

Lexicality-by-prime type  10.73  .005 8.52  .014 

Word prime type 10.65  .005 8.57  .014 

Word-word > word  3.33 <.001  3.00 .002 

Word-word > pseudo-word  2.37 .009  2.30 .011 

Pseudo prime type 1.62  .445 0.65  .720 

Word-word, word-primed word; pseudo-word, pseudoword-primed word. 
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Table S2.2. Behavioural accuracy analyses on all data versus data excluding items with 

pre-DP acoustic differences. Reported pairwise effects are Bonferroni corrected. 

 All data Data with exclusion 

Contrast X2 z p X2 z p 

Lexicality 7.31  .063 6.40  .094 

Lexicality-by-prime type  6.08  .048 6.98  .031 

Word prime type 13.95  <.001 14.97  <.001 

Pseudo-word > word  3.14 .005  3.03 .007 

Pseudo-word > word-word  3.07 .007  3.05 .007 

Pseudo prime type 1.93  .381 3.16  .206 

Word-word, word-primed word; pseudo-word, pseudoword-primed word. 
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Table S2.3. Pre-DP MEG analyses of unprimed > word-primed items and Post-DP MEG 

analyses of pseudoword > word on all data versus data excluding items with pre-DP 

acoustic differences. Reported effects are FWE corrected at cluster level at p < 0.05.  

  All data Data with exclusion 

Time 

window Modality 

Cluster 

PFWE-corr 

Cluster  

size 

Latency 

(ms) 

Cluster 

PFWE-corr 

Cluster  

size 

Latency 

(ms) 

Pre-DP Grad .023 295 -28 to -4 .005 426 -25 to 0 

Post-DP Grad <.001 39335 313 to 956 <.001 30811 320 to 775 

 Mag <.001 68517 359 to 990 <.001 69777 362 to 988 

 Source <.001 2315 400 to 900 <.001 2287 400 to 900 

Grad, gradiometers; Mag, magnetometers. 
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Table S2.4. Pre-DP MEG ROI analyses on all data versus data excluding items with pre-

DP acoustic differences across gradiometer sensor locations that showed post-DP 

pseudoword > word effect. Reported effects on unprimed > word-primed items (planned) 

are one-tailed. 

 All data Data with exclusion 

Contrast t p t p 

Unprimed > word-primed  2.41 .013 2.57 .009 

Unprimed > pseudo-primed 2.69 .014 3.14 .005 

Unprimed, unprimed items; Word-primed, word-primed items; pseudo-primed, pseudoword-primed items. 
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Table S2.5. Post-DP MEG ROI analyses on all data versus data excluding items with pre-

DP acoustic differences. Reported pairwise effects (planned) are one-tailed. 

  All data Data with exclusion 

Contrast Modality F t p F t p 

Lexicality-by-prime type  Grad 7.30  .002 6.12  .005 

 Mag 5.80  .007 3.77  .035 

 Source 0.99  .360 1.04  .354 

Word prime type Grad 8.01  .001 6.18  .005 

 Mag 5.61  .009 4.46  .021 

 Source 3.77  .038 3.64  .039 

Word-word > word Grad  2.22 .019  2.11 .023 

 Mag  3.33 .002  2.79 .006 

 Source  2.66 .007  2.51 .010 

Word-word > pseudo-word Grad  3.70 <.001  3.60 <.001 

 Mag  2.64 .008  2.33 .015 

 Source  1.26 .110  1.39 .089 

Pseudo prime type Grad 0.67  .514 0.57  .564 

 Mag 0.80  .446 0.37  .681 

 Source 1.12  .326 1.23  .300 

Word-word, word-primed word; pseudo-word, pseudoword-primed word. Grad, gradiometers; Mag, magnetometers. 
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APPENDIX C Supplementary Materials for Chapter 3 

Abbreviations for all the conditions: 

W, unprimed word;  

WW, word-primed word;  

PW, pseudoword-primed word;  

PPW, double pseudowords-primed word;  

P, unprimed pseudoword;  

PP, pseudoword-primed pseudoword;  

WP, word-primed pseudoword;  

WWP, double words-primed pseudoword 

 

Table S3.1 Descriptive statistics for the data presented in Figure 3.3 (Experiment 2). 

Conditions Mean RTs (ms) CI (ms) Mean Error Rate  CI 

W 732.499 22.113 0.095 0.023 

WW 767.155 26.583 0.139 0.034 

PW 743.953 26.577 0.120 0.028 

PPW 750.835 17.390 0.120 0.025 

P 852.037 28.138 0.065 0.022 

PP 834.225 26.354 0.037 0.019 

WP 850.007 24.358 0.041 0.020 

WWP 853.951 22.814 0.044 0.024 
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Table S3.2 Descriptive statistics for the data presented in Figure 3.5 (Experiment 3). 

Conditions Mean RTs (ms) CI (ms) Mean Error Rate  CI 

W 630.726 11.877 0.015 0.006 

WW 638.244 14.953 0.012 0.008 

PW 650.744 13.656 0.014 0.007 

P 767.976 14.352 0.095 0.011 

PP 770.320 15.514 0.072 0.013 

WP 768.012 14.954 0.065 0.009 
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Table S3.3 Descriptive statistics for the data presented in Figure 3.8 (Experiment 4-5) 

Experiment Conditions Mean RTs (ms) CI (ms) Mean Error Rate  CI 

Exp4a W 707.200 11.631 0.127 0.015 

(PD-LD) WW 718.529 10.943 0.141 0.019 

 PW 713.051 11.986 0.144 0.016 

 P 776.688 14.411 0.058 0.013 

 PP 779.571 12.321 0.060 0.015 

 WP 781.464 11.652 0.063 0.015 

Exp4b W 727.937 10.480 0.149 0.016 

(LD-LD) WW 743.559 15.474 0.161 0.017 

 PW 734.252 12.271 0.179 0.018 

 P 748.739 14.595 0.029 0.011 

 PP 730.126 11.289 0.023 0.011 

 WP 762.414 12.586 0.039 0.012 

Exp5a W 660.657 11.098 0.022 0.007 

(PD-PD) WW 641.152 9.798 0.018 0.006 

 PW 656.087 12.665 0.021 0.007 

 P 711.306 13.296 0.092 0.011 

 PP 699.047 10.384 0.085 0.010 

 WP 717.083 11.620 0.085 0.012 

Exp5b W 681.047 9.899 0.030 0.008 

(LD-PD) WW 684.827 12.292 0.026 0.007 

 PW 672.660 10.144 0.026 0.008 

 P 757.650 12.279 0.088 0.011 

 PP 736.174 10.677 0.083 0.011 

 WP 741.628 10.765 0.077 0.011 
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APPENDIX D Supplementary Materials for Chapter 4 

Table S4.1 Descriptive statistics for the data presented in Figure 4.4 (Experiment 1). 

Phase Conditions Mean Error Rate  CI Mean Rating  CI 

Phase1 W 0.157 0.028 1.617 0.065 

 WW 0.133 0.025 1.616 0.055 

 PW 0.169 0.030 1.650 0.067 

 P 0.350 0.024 2.159 0.052 

 PP 0.338 0.040 2.131 0.075 

 WP 0.382 0.035 2.219 0.068 

Phase2 W 0.174 0.034 1.673 0.075 

 WW 0.131 0.024 1.631 0.075 

 PW 0.213 0.039 1.740 0.074 

 P 0.493 0.046 2.494 0.096 

 PP 0.401 0.048 2.290 0.098 

 WP 0.517 0.034 2.515 0.087 

Both 

Phases 

W 0.146 0.027 1.607 0.063 

WW 0.117 0.021 1.595 0.053 

PW 0.167 0.026 1.654 0.054 

P 0.414 0.027 2.311 0.059 

PP 0.361 0.040 2.194 0.081 

WP 0.439 0.024 2.348 0.050 
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Table S4.2 Descriptive statistics for the data presented in Figure 4.5 (Experiment 2). 

Conditions Mean Error Rate  CI Mean Rating  CI 

W 0.112 0.026 2.002 0.090 

WW 0.112 0.022 1.991 0.085 

PW 0.171 0.029 2.193 0.113 

PPW 0.148 0.020 2.094 0.090 

P 0.349 0.028 3.037 0.092 

PP 0.401 0.028 3.169 0.094 

WP 0.344 0.036 3.019 0.111 

WWP 0.363 0.030 3.015 0.107 
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Table S4.3 Descriptive statistics for the data presented in Figure 4.6 (Experiment 3). 

Conditions Mean Error Rate  CI Mean Rating  CI 

W 0.250 0.020 2.592 0.068 

WW 0.274 0.020 2.667 0.069 

PW 0.278 0.024 2.716 0.077 

P 0.410 0.021 3.195 0.073 

PP 0.419 0.024 3.252 0.071 

WP 0.404 0.021 3.210 0.065 
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Table S4.4 Descriptive statistics for the data presented in Figure 4.7 (Experiment 4-5) 

Experiment Conditions Mean Error Rate  CI Mean Rating  CI 

Exp4a W 0.095 0.015 1.825 0.063 

(PD-LD) WW 0.095 0.018 1.841 0.073 

 PW 0.078 0.013 1.801 0.062 

 P 0.311 0.020 2.903 0.065 

 PP 0.323 0.020 2.919 0.082 

 WP 0.333 0.020 2.923 0.067 

Exp4b W 0.101 0.014 1.907 0.062 

(LD-LD) WW 0.080 0.016 1.755 0.059 

 PW 0.088 0.013 1.791 0.052 

 P 0.357 0.021 3.002 0.059 

 PP 0.357 0.024 3.007 0.082 

 WP 0.339 0.023 2.928 0.081 

Exp5a W 0.243 0.018 2.548 0.062 

(PD-PD) WW 0.236 0.019 2.517 0.068 

 PW 0.227 0.016 2.520 0.054 

 P 0.435 0.020 3.324 0.058 

 PP 0.439 0.020 3.310 0.066 

 WP 0.407 0.023 3.241 0.067 

Exp5b W 0.261 0.017 2.660 0.058 

(LD-PD) WW 0.224 0.017 2.518 0.065 

 PW 0.216 0.014 2.482 0.053 

 P 0.424 0.021 3.285 0.069 

 PP 0.427 0.022 3.293 0.064 

 WP 0.425 0.023 3.300 0.069 
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