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Abstract

Solid-state materials find ubiquitous use in modern technology - from semiconductors

in electronics to steel in buildings and superconductors in MRI machines. Theoretical

understanding of the atomic-scale behavior of these materials can be leveraged to design

new materials with desirable properties. In this thesis, we investigate the challenges that

arise when this is attempted in practice.

Accurate and inexpensive methods to tackle the atomic-scale problem are a prerequisite

for materials discovery. We begin with a description of existing methods. This is followed

by the development of a Monte Carlo method to calculate expectation values from the

many-body picture without the need for a trial wavefunction, which is both a fundamental,

and practical, limitation in existing techniques.

Having explored first-principles methods, we turn to their use in understanding ma-

terials, beginning with an investigation of the structure of Lithium. Structure searching

calculations result in a mixed-phase model at low temperatures, in good agreement with

previous experimental and theoretical results. The quasi-harmonic treatment of finite-

temperature thermodynamics is extended to include anharmonic nuclear vibrations, which

are shown to not alter the phase diagram despite the small mass of the Li atoms.

Focus then shifts towards leveraging these same methods to discover novel supercon-

ductors. This begins with an investigation of the LaH10 and YH10 compounds, where

a new hexagonal phase of LaH10 provides an explanation for recent experimental mea-

surements. Machine-learning techniques and novel screening methods are then employed

to discover hydrides of Rb and Cs that exhibit superconductivity at significantly lower

pressures than LaH10. Optimizations to, and automation of, the workflow then enables

the discovery of superconductors on an unprecedented scale, leading to hundreds of new

high-temperature superconductors.

Throughout the thesis, the importance of structures that are saddle-points of the

energy landscape becomes apparent. The thesis closes with the development of a new

algorithm to locate saddle-points that requires no additional information beyond that

used by the cheapest existing methods.

This thesis demonstrates that there is progress to be made at every stage of the first-

principles materials discovery process and highlights that improving the workflow itself is

a non-trivial, but fruitful, pursuit.
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Chapter 1

Introduction

Theoretical models allow us to explain, and to predict, physical phenomena. Typ-

ically, this is also the order in which they are used, whereby models are first used

to understand previously unexplained experimental measurements. Once a model

is capable of explanation, it may seem a trivial task to extend that model to the

task of prediction; surely we can simply apply the model to an otherwise-unstudied

system to predict its properties? Unfortunately, this is not the case - an explanatory

model is a necessary, but not a sufficient, condition for predictive power.

In this thesis we will focus on the problem of predicting the properties of solid-

state materials. We will do this by propagating the quantum-mechanical description

of atomic-scale structure to macroscopic-scale properties such as mechanical stabil-

ity, phase behaviour and superconductivity. We will explore the challenges that

arise at several stages of the predictive process, from the computational challenge

of solving the microscopic models and the conceptual challenge of understanding

those solutions to the wider problem of choosing which of the combinatorially-many

systems to study in the first place.

We will employ an atomistic model of materials - describing them as a collection

of interacting electrons and nuclei. A vast amount of effort has been put into solving

the resulting quantum-mechanical Schrödinger equation, a partial differential equa-

tion in dN variables (where N is the number of particles and d the dimension of

the space they move in). Because of the complexity of this equation (especially in

the many-body N � 1 limit), numerical, rather than analytic, solutions are often

sought. However, even with the exponentially increasing computer power available

to academics, the many-body problem is still intractable for all but the smallest

systems. Therefore, much of the effort involved in describing materials via quantum

mechanics has been focused on the development of approximate solution methods.

In this thesis we will investigate and employ two families of solution methods. The

first, quantum Monte Carlo (QMC) methods, can be traced back to post-war ef-
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forts initiated by John Von Neumann to further the understanding of nuclear fission

via the stochastic methods pioneered by people such as Nick Metropolis [194] and

leveraging the historic ENIAC programmable computer. The method was later de-

veloped into a general-purpose solution method for quantum-mechanical problems

over the course of many years, culminating in the Greens function Monte Carlo of

Malvin Kalos [133], adapted for fermionic systems by David Ceperley [42]. The

method is closely related with the formulation by Feynman of quantum mechanics

as a path integral problem; a point of view that we will take in chapter 3 when inves-

tigating improvements to the treatment of fermionic systems. QMC methods make

the many-body problem tractable by never explicitly storing or operating on the

(extremely) large quantum-mechanical state |ψ〉, but instead statistically sampling

only the most important system configurations (or, equivalently, by only evaluating

the most important paths in the path-integral).

The second family of solution methods we will concern ourselves with are density

functional theory (DFT) methods. Where QMC methods reduced the many-body

problem by approximating the quantum-mechanical state |ψ〉, DFT methods instead

approximate the quantum-mechanical system itself by approximating the Hamilto-

nian, H. Influenced by the Thomas-Fermi model of a system of electrons [261, 86],

which is based on the electron density n(r), Hohenburg and Kohn [114] demon-

strated that the energy of a many-electron system was uniquely specified by its

density. This realisation allowed for the construction of an effective independent-

electron theory by Kohn and Sham [142] - a significantly easier quantum-mechanical

problem, allowing the explicit construction of the quantum mechanical state. Ex-

plicit access to the quantum state has allowed DFT to be extended to the treatment

of electronic and quasiparticle (e.g phonon) exitations and even higher-order effects

such as the electron-phonon coupling responsible for conventional superconductiv-

ity. Access to this extended information allows direct comparison with experiment

and, as a result, DFT has become a cornerstone of quantum chemistry. We will

explore this interplay between experiment and DFT results at several stages of this

thesis. In particular, we will see that the relative ease at which one can perform

structural relaxations using DFT will prove complimentary to crystal structure de-

termination via x-ray crystallography - especially when only partial experimental

information is available. Indeed we will also see how this process allows for fully

in silico crystal structure prediction (CSP) without the need for any experimental

data. Both of these modes of operation will be apparent in a study of the crystal

structure of Lithium presented in chapter 4. Throughout this thesis, we will see that

interesting structures correspond not only to minima of potential energy surfaces,

but also to saddle points - we investigate algorithms to identify this additional class

of structures in chapter 8.
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Once one has access to a crystal structure, DFT allows the calculation of many

of the properties exhibited by a macroscopic sample of that crystal. Thanks to

developments in density functional perturbation theory (DFPT), this routinely in-

cludes properties that are mediated by phonons and electron-phonon coupling. The

latter of these has become particularly relevant in recent years thanks to renewed

interest in conventional superconductivity. This new wave of interest can be traced

back to Ashcroft’s 1968 prediction of high-temperature superconductivity in metal-

lic hydrogen [17]. Whilst this prediction is widely believed to be accurate, extreme

pressures (∼ 500 GPa [55]), naturally occurring only deep inside the gas giants,

are required to stabilize the metallic phase. Ashcroft went on to suggest that, in

order to reduce the required pressure, one could compress the hydrogen via chem-

ical means with the addition of heavy pre-compressor elements [15], resulting in a

metallic Hydride. Thanks to advances in high-pressure experimental techniques, in

particular improved diamond anvil cells, several hydrides have been stabilized in the

laboratory. The 2015 measurement of superconductivity at 203 K in SH3 at 200 GPa

[59] (as predicted theoretically [65]) sparked a flurry of interest and quickly lead to

even higher temperatures with the measurement of superconductivity at 250 K in

LaH10 at 170 GPa [61]. We investigate the structural properties of LaH10 and the

even-higher temperature YH10 superconductor in chapter 5 alongside an investiga-

tion of numerical sensitivities in the theoretical treatment. We also weigh in on the

origin of structural defects in samples of LaH10, which are difficult to characterise

with x-ray diffraction because of the small hydrogen cross-section.

Coupled with the large number of possible Hydride compositions, and the abil-

ity to determine their structure and superconducting properties in silico, the study

of high-pressure Hydrides has grown into an extensive field of research [66, 304,

87, 35, 206, 203, 218], culminating in the first measurements of superconductiv-

ity above room-temperature in a ternary C-S-H system [248] (albiet at the high

pressure of ∼ 270 GPa). Looking ahead, the challenge now is to reduce the pres-

sure at which this family of superconductors operate. Because of the large range

of compositions and difficulty of the relevant experiments, it is desirable to narrow

the search computationally using CSP and DFT. We supplement these techniques

with a machine-learning based screening approach in chapter 6, leading to the pre-

diction of high-temperature Rb and Cs polyhydrides at only 50 GPa. We further

develop these techniques in chapter 7 to enable a high-throughput search for su-

perconductors on an unprecedented scale. The results elucidate general trends in

high-temperature superconductors, where to look for them and the prospects for

ambient-conditions superconductivity as well as identifying a large number of new

high-Tc superconductors.
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Chapter 2

Background theory

2.1 The many-body problem

As one approaches the atomic scale, everything gets blurry. Electrons and nuclei no

longer have a well-defined position and are instead described by a joint probability

distribution over space, given by |ψ(r, R)|2 where r = (r1, r2, ..., rN) ∈ R3N are the

positions of the electrons and R = (R1, R2, ..., RM) ∈ R3M are the positions of the

nuclei. ψ(r, R) is known as the wavefunction of the system. To determine ψ, we

need only solve one equation, the Schrödinger equation:

H |ψ〉 = E |ψ〉 , (2.1)

where |ψ〉 is a vector in a Hilbert space H, equipped with an inner product 〈· |·〉 from

which we can obtain the real-space wavefunction as ψ(r, R) = 〈r, R |ψ〉. Equation

2.1 is simply the eigenvalue equation for the operator H : H → H, known as

the Hamiltonian, where the eigenvector |ψ〉 corresponds to a system state with

well-defined energy E. The operator H is therefore composed of the individual

contributions to the energy of the system. For a system of interacting electrons and

nuclei (i.e essentially any material), this operator takes the following form in real

space:

H =
∑
ri

−1

2
∇2
ri︸ ︷︷ ︸

Electron kinetic

+
∑
Ri

− 1

2mi

∇2
Ri︸ ︷︷ ︸

Nuclear kinetic

+
∑
ri,rj

1

|ri − rj|︸ ︷︷ ︸
Electron-electron

repulsion

+
∑
Ri,Rj

zizj
|Ri −Rj|︸ ︷︷ ︸

Nuclear-nuclear
repulsion

−
∑
Ri,rj

zi
|Ri − rj|︸ ︷︷ ︸

Electron-nuclear
attraction

,

(2.2)

where zi are the nuclear charges and we work in atomic units. As H is an infinite-

dimensional space, there are an infinite number of solutions to 2.1, which can be

indexed in order of increasing energy as H |ψn〉 = En |ψn〉 with E0 ≤ E1 ≤ E2.... For

a real system at a temperature T , states with En −E0 � kbT will quickly dissipate

energy to their surroundings and the system will relax down the ladder towards
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lower-energy states. This means that as the temperature decreases, fewer and fewer

states become relevant. In particular, we can look at the zero-temperature limit

where the system eventually finds itself in the ground state |ψ0〉. This state can be

used as a starting point from which finite-temperatures can be considered in terms

of the excitations |ψ0〉 → |ψn〉 that they permit. Much of this chapter is concerned

with methods to find this ground state.

Having set the stage, all we now need do is solve equation 2.1 for the ground

state and relevant exited states. Unfortunately, this is easier said than done. The

problem lies not in the complexity of the equation itself, or even in the mildly

complicated form of the Hamiltonian, but the size of the configuration space in

which the problem is posed. Quantum mechanics is formulated not in the real world,

but in the configuration space of its constituent particles (r, R) ∈ R3N ×R3M . Even

worse, the central quantity of interest is not an object in this space, but rather a

function on it; ψ(r, R). Knowledge of this function involves knowledge of every point

in configuration space, which grows rapidly enough with system size to render all but

the smallest model systems intractable. This is known as the quantum many-body

problem. For example, consider the modest case of a single Neon atom (z = 10);

if we wished to store a real-space representation of the many-electron wavefunction

on a grid with a spacing of 0.1Å out to a range of ±5Å in each direction, we would

need to store (10/0.1)3×10 numbers. If we use 64-bit floating point numbers, this

means we would need to store 6.4 × 1061 bits of information; around 10,000 times

more bits than there are atoms1 in the sun. Even Moore’s law can’t help us now.

The remainder of this section starts with an introduction to methods that can

tackle the many-body problem by approximating the Hamiltonian H, or the state

|ψ〉. We will then move on to a discussion of how these methods can be applied to the

discovery of novel materials. In particular, we will look at methods to determine the

crystal structure and superconducting properties of materials from first-principles.

2.2 Born-Oppenheimer approximation

The first approximation we will make involves decoupling the electronic (r) and

nuclear (R) degrees of freedom. This is made possible by the considerable mass

difference between electrons and nuclei (Mproton/Melectron ≈ 1823), which means

that electrons respond much more quickly than nuclei to changes in their local

environment. In particular, the electrons adjust very quickly to any nuclear motion

(as a school of fish around a whale) and, from the point of view of the electrons,

the nuclei effectively appear stationary. This allows us to decouple the electronic

1Loosely defined
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and nuclear degrees of freedom and act on a decoupled electronic state |ψ〉 (which

now depends only on r) with a Hamiltonian that depends only parametrically on

the nuclear coordinates R:

Helec(R) |ψ〉 = Eelec(R) |ψ〉 =

( ∑
ri

−1

2
∇2
ri︸ ︷︷ ︸

Electron kinetic

+
∑
ri,rj

1

|ri − rj|︸ ︷︷ ︸
Electron-electron

repulsion

−
∑
Ri,rj

zi
|Ri − rj|︸ ︷︷ ︸

Electron-nuclear
attraction

)
|ψ〉

(2.3)

Here, the electronic energy eigenvalue Eelec(R) inherits the parametric dependence

on the nuclear configuration and forms the energy surface within which the nuclei

move. Eelec(R) is known as a Born-Oppenheimer surface and is felt as an effective po-

tential by the nuclear state |φ〉, appearing in the corresponding nuclear Schrödinger

equation:

Hnuc |φ〉 =

(∑
Ri

− 1

2mi

∇2
Ri︸ ︷︷ ︸

Nuclear kinetic

+
∑
Ri,Rj

zizj
|Ri −Rj|︸ ︷︷ ︸

Nuclear-nuclear
repulsion

+ Eelec(R)︸ ︷︷ ︸
Effective electronic

potential

)
|φ〉 . (2.4)

This separation of electronic and nuclear degrees of freedom is known as the Born-

Oppenheimer approximation and is valid whenever the Born-Oppenheimer surfaces

from different exited electronic states in Eq. 2.3 are well-seperated (E
(0)
elec(R) �

E
(1)
elec(R)� E

(2)
elec(R)...).

When nuclear dynamics are unimportant, one need only solve the electronic

Schrödinger equation (Eq. 2.3) once at a particular nuclear configuration of interest

(the average nuclear configuration of a crystal, for example). If, on the other hand,

nuclear dynamics are important, it is necessary to solve the electronic Schrödinger

equation for a variety of different configurations R to build up sufficient information

about the Born-Oppenheimer surface Eelec(R) to allow the solution (or approximate

solution) of the nuclear Schrödinger equation (Eq. 2.4). For this reason, calcula-

tions involving nuclear dynamics are typically much more expensive than those just

concerned with electronic properties.

Whilst the Born-Oppenheimer approximation is helpful in reducing the size of

the problem, we still need to be able to solve the (now decoupled) electronic and

nuclear problems, which are still many-body problems in their own right. In the

following sections, we will discuss solution methods for these sub-problems.

2.3 Quantum Monte Carlo

“I consider that I understand an equation when I can predict the prop-

erties of its solutions, without actually solving it.” - Paul Dirac
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An important thing to remember in quantum mechanics is that the wavefunction

is an abstract quantity from which we can derive measurable quantities - we don’t

necessarily care about the form of the wavefunction itself. For an operator O whose

eigenvalues correspond to an observable property, the average value of that property

over successive measurements for a state |ψ〉 is given by a quantum-mechanical

expectation value:

〈O〉 = 〈ψ|O |ψ〉 =

∫
ψ∗(r)Oψ(r)d

3N
r. (2.5)

This can be rewritten as the expectation of the local values of the operator OL(r) =

ψ(r)−1Oψ(r), with respect to the probability density |ψ(r)|2, as

〈O〉 =

∫
|ψ(r)|2OL(r)d

3N
r. (2.6)

If we can generate a set of K configurations {r(i) : i ∈ [1, ..., K]} that are distributed

according to |ψ(r)|2, then Eq. 2.6 can be approximated as

〈O〉 ≈ 1

K

∑
i

OL(r(i)) (2.7)

This process is known as Monte Carlo integration. The error in evaluating 〈O〉
via this method can be estimated from the variance of OL (assuming uncorrelated

samples r(i)):

σ〈O〉 =
√
V ar(〈O〉) =

√
V ar(OL)

K
=
σOL√
K

(2.8)

Importantly, this error does not increase with the dimension of the integral, only

the variance of the local operator, and can be made arbitrarily small by taking more

samples (increasing K). This makes Monte Carlo an attractive choice for extracting

observable quantities from the many-body problem. However, we still need to be

able to generate the sample configurations r(i) so that they are distributed according

to |ψ(r)|2. We will investigate two ways to do this.

2.3.1 Variational Monte Carlo (VMC)

If we have access to a trial wavefunction ψT (r, α) that we can evaluate at a particular

configuration r and set of variational parameters α, then we can generate a set of

samples distributed according to |ψT (r, α)|2 via the metropolis algorithm:
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Algorithm 1 The metropolis algorithm. Given an arbitrary probability density

T (r → r′) for a move from r to r′, this algorithm will generate a set S of K samples

from the distribution P (r).

1: r = random point in configuration space

2: S = empty set

3: repeat

4: draw r′ from T (r → r′)

5: a = T (r′ → r)P (r′)/[T (r → r′)P (r)]

6: if a > random ∈ [0, 1] then

7: r = r’

8: end if

9: add r to S

10: until S contains K samples

A common choice for the transition function is T (r → r′) ∼ exp(−(r − r′)2/a2),

which corresponds to drawing r′ from a normal distribution centred at r. By tak-

ing P (r) = |ψT (r, α)|2, this algorithm will generate a set of samples which can be

used to evaluate expectation values via Eq. 2.7. In particular, we can evaluate the

expectation value of the energy E(α) = 〈ψT (α)|H |ψT (α)〉, which is minimized as

|ψ(α)〉 → |ψ0〉, the quantum mechanical ground state. Therefore, by tweaking our

variational parameters α to minimize E(α), we can obtain an improved estimate of

the ground state and its energy.

The main drawback of the variational method is that it requires an evaluatable,

many-body, trial wavefunction ψT (r, α) which, for a suitable value of α, is sufficiently

close to the ground state for our purposes; generating such a function is arguably

just as difficult as solving the Schrödinger equation in the first place! In the following

section, we will explore a method which goes a long way to solving this problem.

2.3.2 Diffusion Monte Carlo (DMC)

In the previous section we saw how VMC provides us with a method to optimize

a given, parameterised, wavefunction ψT (r, α) so that it approaches the ground

state. In principle, by increasing the variational degrees of freedom (i.e increasing

the number of parameters) of this trial wavefunction, we can get a closer and closer

approximation to the true ground state. In the limit of infinite degrees of freedom, we

can treat the entire wavefunction ψ(r) as a variational quantity (one could think of

treating the values of the wavefunction at each and every point in configuration space

as variational parameters). We can then consider making some small modification

to our wavefunction ψ(r)→ ψ(r) + δψ(r), in order to reduce the expectation of our
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energy E = 〈ψ|H |ψ〉. A sensible choice for the step δψ(r) is to move downhill along

the negative gradient of E, by some small step size δτ :

δψ = −δτ δE
δψ

= −δτHψ (2.9)

this is analogous to steepest-descent in finite-dimensional optimization problems,

but where the gradient is replaced by the functional derivative δE/δψ. Taking the

limit δτ → 0, Eq. 2.9 becomes the differential equation

∂ψ(r, τ)

∂τ
= −(H − ET )ψ(r, τ) (2.10)

where an energy offset ET has been introduced to maintain normalization of the state

as τ → ∞. This equation is known as the imaginary time Schrödinger equation

(ITSE)2, named as such because it can be obtained (to within the offset ET ) by

making the substitution τ = it in the time-dependent Schrödinger equation (TDSE)

i∂ψ(r, t)/∂t = Hψ(r, t). To gain insight into the behaviour of ψ(r, τ) as τ varies, we

can expand ψ in the basis of eigenstates of H:

|ψ(τ)〉 =
∑
n

Cn(τ) |ψn〉 (2.11)

where Cn(τ) = 〈ψn|ψ(τ)〉 and H |ψn〉 = En |ψn〉. Substituting this into Eq. 2.10 we

obtain

∂ |ψ(τ)〉
∂τ

= −(H − ET ) |ψ(τ)〉 =
∑
n

∂Cn(τ)

∂τ
|ψ(τ)〉 = −

∑
n

Cn(τ)(En − ET ) |ψn〉

(2.12)

taking the inner product of this equation with 〈ψm| we have

∂Cm(τ)

∂τ
= −(Em − ET )Cm(τ) =⇒ Cm(τ) = Cm(0)e−(Em−ET )τ . (2.13)

We see that the exited state components of the wavefunction (with Em > E0) decay

exponentially quickly relative to the ground state component, which we can retain

by setting ET = E0 so that ψ(r, τ)→ ψ0(r) as τ →∞. Re-inserting the coefficients

from Eq. 2.13 into Eq. 2.11 we have

|ψ(τ)〉 =
∑
n

Cm(0)e−Emτ |ψn〉 = exp(−τ(H − ET )) |ψ(0)〉 . (2.14)

2We introduce the ITSE here mainly in the interest of consistency with existing literature. In

actual fact, I think that the connection to the TDSE is at best unhelpful and, at worst, misleading.

In reality, the ITSE is simply a tool used to attack the variational problem (in the limit τ → ∞)

and should not be elevated to the level of a fundamental equation which we are aiming to solve

(after all, it does not correspond to a physical evolution of the system). Later in this thesis we will

treat the variational problem as fundamental (as it should be) and we will see how the offset ET

appears simply as a Lagrange multiplier corresponding to the normalization constraint.
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Figure 2.1: The discretised path integral (Eq. 2.17), showing a particular path in

red along with the Green’s function factors accumulated along it.

We see that the state at τ can be obtained by applying the imaginary-time propa-

gation operator exp(−τ(H −ET )). We can split up the action of this operator into

M = τ/δτ individual timesteps

exp(−τ(H − ET )) = exp(−Mδτ(H − ET )) =
M∏
i=1

exp(−δτ(H − ET )) (2.15)

Inserting this into Eq. 2.14, and moving to the position representation, we have

ψ(r, τ) = 〈r|ψ(τ)〉 =

〈
r

∣∣∣∣ M∏
i=1

exp(−δτ(H − ET ))

∣∣∣∣ψ(0)

〉
(2.16)

Inserting a resolution of the identity I =
∫
|r〉 〈r| d 3N

r at each timestep, we have

ψ(r, τ) =

∫
〈r| exp (−δτ(H − ET )) |rM〉 〈rM | exp (−δτ(H − ET )) |rM−1〉 ...

... 〈r3| exp (−δτ(H − ET )) |r2〉 〈r2| exp (−δτ(H − ET )) |r1〉

〈r1|ψ(0)〉d 3N
r1d

3N
r2...d

3N
rM

(2.17)

The integrand of this equation can be thought of as a path r1, r2, r3, ..., rM , r

through configuration space where each segment contributes a factor of the Green’s

function G(ri, ri+1, δτ) = 〈ri+1| exp(−δτ(H − ET )) |ri〉 (see figure 2.1). The inte-

gration over {ri} can therefore be thought of as a path integral summing the con-

tributions to ψ(r, τ) from all possible paths in configuration space linking back to

ψ(r1, 0)3. Each of these paths can be thought of as the trajectory of a point-like ob-

ject wandering through configuration space. We call these objects walkers. Because

ψ(r, τ) → ψ0(r) as τ → ∞, the walkers eventually end up distributed according

to the ground state wavefunction - exactly what we need to evaluate expectation

values via Eq. 2.7! We can represent the ith walker by a configuration path xi(τ)

3If we had done this with the TDSE instead of the ITSE, we would have derived path-integral

quantum mechanics.
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and a weight wi(τ) given by the Green’s function contributions accumulated along

that path:

wi(τk) =
k−1∏
j=0

G(xi(τj), xi(τj+1), δτ) (2.18)

where we have introduced the notation τj = jδτ for the timesteps. Our wavefunction

(Eq. 2.17) can then be written as

ψ(x, τ) = lim
W→∞

W∑
i=0

wi(τ)δ(x− xi(τ)) (2.19)

where the limit of infinite walkers limW→∞ corresponds to the infinite number of

possible paths xi(τ) in the path integral. Given an initial configuration {xi(τ =

0), wi(τ = 0)}, a simple way to generate a walker path is to iterate this configura-

tion forward at each timestep according to some transition probability T (xi(τj) →
xi(τj+1)). According to Eq. 2.18, this transition modifies the weight by a factor of

G(xi(τj), xi(τj+1), δτ), leading to the following propagation scheme:

xi(τj+1) sampled from T (xi(τj)→ xi(τj+1))

wi(τj+1) = wi(τj)×G(xi(τj), xi(τj+1), δτ)/T (xi(τj)→ xi(τj+1))
(2.20)

where we have divided the updated weight by a factor of T (xi(τj) → xi(τj+1)), to

remove the bias towards particular paths introduced by T .

In practice, we can’t apply the above propagation scheme to an infinite number

of walkers. By approximating the wavefunction (Eq. 2.19) using a finite walker

population W , we arrive at the wavefunction of diffusion Monte Carlo (DMC)

ψDMC(x, τ) =
W∑
i=0

wi(τ)δ(x− xi(τ)). (2.21)

In principle, when making this approximation, we can choose to retain whichever

configuration paths xi(τ) we like, so long as the weights are properly accounted

for; this is reflected in our freedom to choose T (xi(τj) → xi(τj+1)) in Eq. 2.20.

However, it makes sense to attempt to retain the paths which contribute the most

to Eq. 2.17, corresponding to the walkers with the largest weights wi. In order to

do this we treat the walkers with a birth-death algorithm whereby, each iteration,

a walker with weight wi is replaced by bwi + uc walkers, each with weight 1 at

the same configuration. Here u is a uniform random number ∈ [0, 1] and b·c is

the floor function. In this way, walkers that have insignificant weight will have an

insignificant probability of surviving to the next iteration. In contrast, walkers that

have accumulated too much weight will divide into several children, to ensure that

sufficiently many different paths are sampled. Note that this procedure leaves the

total weight W =
∑

iwi unchanged on average.
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The fluctuations in walker population arising from the birth-death algorithm

introduced in the previous section lead to corresponding fluctuations in expectation

values calculated via Eq. 2.7. This leads to an increased variance (and therefore

error) in our Monte Carlo estimate of the expectation value. By considering Eq.

2.20, we can see that fluctuations in the weights wi can be removed entirely by

choosing T (x → x′) = G(x, x′, δτ). In this way, we see that the Green’s function

G(x, x′, δτ) could have been interpreted as a transition probability from x to x′.

Indeed, by suitable choices for T in Eq. 2.20, we can choose to partition the Green’s

function factor in whatever way we wish between contributing to the transition

probability T (xi(τj)→ xi(τj+1)) or the weight update wi(τj)→ wi(τj+1). To inform

this decision, we need to consider the form of G;

G(x, x′, δτ) = 〈x′| exp(−δτ(H − ET )) |x〉 = 〈x′| exp(−δτ(H − ET )) |x〉 (2.22)

We can partition H into kinetic and potential terms

H = T + V = −1

2
(M−1∇)2 + V (x) (2.23)

where the many-body potential V (x) includes all inter-particle interactions exactly

and M = diag(m1,m1,m1,m2,m2,m2...) is the mass tensor (with mi being the mass

of the ith particle). With this partitioning of H, we can use the Suzuki-Trotter [264]

expansion of the operator exp(−δτH) for small δτ (see Appendix A.1) leading to

G(x, x′, δτ) = GV (x, x′, δτ)GD(x, x′, δτ) exp (δτET ) (2.24)

with the potential-dependent part given by

GV (x, x′, δτ) = exp (−δτ [V (x′) + V (x)]/2) (2.25)

and the kinetic-dependant part given by a 3N -dimensional Gaussian, with variance

δτ/Mii in the ith direction in configuration space:

GD(x, x′, δτ) =
|M |

(2πδτ)3N/2
exp

(
−|M(x− x′)|2

2δτ

)
. (2.26)

We could have obtained G = GD by setting V = ET = 0 in the ITSE, leading to a

diffusion equation:
1

2
(M−1∇)2ψ(r, τ) =

∂ψ(r, τ)

∂τ
. (2.27)

We therefore refer to GD as the diffusive part of the Green’s function (hence the sub-

script D). Indeed, sampling moves according to GD alone would lead to a diffusive

random walk across configuration space.

Now that we have an explicit form for G, we can return to the question of

how it is divided between the transition probability T (xi(τj) → xi(τj+1)) and the
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weight update wi(τj) → wi(τj+1). As mentioned previously, we should absorb as

much of G as possible into the transition probability, to reduce fluctuations in

walker weights. However, it is, in general, difficult to sample moves from an arbi-

trary transition probability, prohibiting the naive choice of T (xi(τj) → xi(τj+1)) =

G(xi(τj), xi(τj+1), δτ). Instead we note that it is comparatively straightforward to

sample x′ from GD(x, x′, δτ) thanks to the fact it has the same form as a normal

distribution (which we can generate samples from using a Box-Muller transforma-

tion [36]). This prompts the choice T (xi(τj)→ xi(τj+1)) = GD(xi(τj), xi(τj+1), δτ),

leading to the following realisation of Eq. 2.20:

xi(τj+1) sampled from GD(xi(τj), xi(τj+1), δτ)

wi(τj+1) = wi(τj)×GV (xi(τj), xi(τj+1), δτ) exp (δτET )
(2.28)

This corresponds to moving the walkers around configuration space according to the

diffusion equation 2.27, but updating their weights according to GV , which depends

only on the local potential V (x), and the renormalization factor exp (δτET ). This

is the propagation scheme employed in a diffusion Monte Carlo (DMC) calculation.

2.3.3 The fermion sign problem

The DMC scheme derived in the previous section relies on the fact that application of

the imaginary-time propagator exp (−τ(H − ET )) will project out the lowest-energy

component of our initial wavefunction:

lim
τ→∞

exp (−τ(H − ET )) |ψ(τ = 0)〉 = |nmin〉 (2.29)

where |nmin〉 is the lowest-energy eigenstate of H that has non-zero overlap with the

initial state |ψ(τ = 0)〉. If this state is to describe our system correctly, it must also

have the correct exchange symmetry under the particle exchange operators Pi;

Pi |nmin〉 =

|nmin〉 if Pi exchanges identical bosons

− |nmin〉 if Pi exchanges identical fermions
(2.30)

Because the Hamiltonian commutes with particle exchange [Pi, H] = 0, if we start in

a state with well-defined exchange symmetry, we should retain this symmetry under

the action of Eq. 2.29. However, in the DMC scheme derived in the previous section,

we simulate the action of the propagator exp (−τ(H − ET )) probabilistically. Whilst,

on average, this reproduces the symmetry-preserving behaviour of the propagator,

symmetry is not preserved on a per-timestep basis. This means that the DMC

method will eventually find its way to the absolute ground state of H, irrespective

of its exchange symmetry. This is a particular problem for electronic systems, where

the fermionic ground state is typically not the absolute ground state of H and so
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Figure 2.2: An illustration of the fixed node approximation for an infinite square

well potential. On the left, we see the absolute ground state (yellow), the trial

wavefunction (green) and the antisymmetric ground state (first exited state, positive

in red, negative in blue). On the right we see how the antisymmetric ground state

can be obtained by propagating a collection of +ve (red lines) and -ve (blue lines)

walkers, subject to removal (indicated by crosses) of walkers that cross the nodal

surface (dotted line at the centre), or that stray into the infinite-potential region

(edges). The removal of walkers creates a bias in the walker density away from the

edges/centre as τ → ∞, resulting in the correct sine-like wavefunction. This can

be thought of as two independent DMC simulations (red and blue) confined to the

nodal pockets (regions of continuous sign) of the trial wavefunction.

is projected away along with all of the exited states, exponentially quickly. This

is known as the fermion sign problem and, because of the exponential decay of the

states we are interested in, is a very serious problem.

The fixed node approximation

In order to overcome the sign problem, we need to enforce exchange symmetry for

the ensemble of walkers at every timestep. One way to achieve this is by reference

to a known wavefunction of the correct symmetry, known as the trial wavefunction,

ψT (x). We can enforce the symmetry of ψT upon the walkers by requiring that the

sign of each walker is equal to the sign of ψT at every timestep (i.e sign[wi(τ)]
!

=

sign[ψT (xi(τ))] ∀ τ). Typically, this is enforced by removing from the simulation

any walker who’s weight is not of the correct sign. The resulting scheme is known

as fixed-node diffusion Monte Carlo (FNDMC), because the zero-crossings ψ(x) = 0

(nodes) of our DMC wavefunction are fixed to that of the trial wavefunction. This

is illustrated for the case of finding the first exited state of a square-well potential

in Fig. 2.2.

The fixed node approximation is one of the most widely-employed quantum
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Monte Carlo schemes and forms the basis of some of the most important quan-

tum mechanical calculations ever performed [40]. However, the reliance on a trial

wavefunction is a major drawback for several reasons. Firstly, one must be able to

generate ψT a priori, in practice by using alternative quantum mechanical methods

(e.g by building a Slater determinant using the non-interacting states from Hartree-

Fock theory, or density functional theory 4). Because of this reliance on alternative

methods, FNDMC is not a self-contained solution method for the many-body prob-

lem in its own right. Secondly, by enforcing the nodal surface of some approximate

trial wavefunction, we introduce a fixed-node error into expectation values which

is expensive to systematically reduce and is often the limiting factor in obtaining

higher accuracy results [105, 227]; Because the trial wavefunction is often generated

using methods that do not contain explicit electron-electron interactions, the result-

ing nodal surface does not exhibit the full influence of electron-electron correlations.

In order to remedy this, one can introduce additional correlated degrees of freedom

into the wavefunction by including a Jastrow factor [130] or backflow corrections

[154]. Whilst this can often recover more than 90% of the correlation energy [90],

it introduces additional parameters that must be optimized, either beforehand us-

ing VMC (see Sec. 2.3.1), or (preferably) in parallel with DMC propagation. The

careful generation and optimization of trial wavefunctions for use with FNDMC is

an involved process and is an active field study in its own right. In chapter 3, we

explore an alternative method to FNDMC to enforce exchange symmetry.

2.4 Density functional theory (DFT)

The Quantum Monte Carlo methods explored in section 2.3 work directly with the

full many-body Hamiltonian H. Whilst this means that all interactions are included

explicitly and without approximation, it also means that we must work in the full

3N -dimensional configuration space. In order to make this manageable, we had to

approximate the state |ψ〉. In this section we will instead shift our focus to the

Hamiltonian. Working within the Born-Oppenheimer approximation, we can write

our electronic Hamiltonian as Helec = T + Vee + Vext where

T =
∑
ri

−1

2
∇2
ri
, Vee =

∑
ri,rj

1

|ri − rj|
, Vext =

∑
ri

Vext(ri) (2.31)

are the electron kinetic energy, electron-electron repulsion and external potential

respectively. We have slightly generalized the form considered in Eq. 2.3 to an

4Using non-interacting single-particle states to construct the interacting many-body state in

this way does not lead to the exact many-body state, or many-body nodal surface; this is an

important source of errors in practical calculations.
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arbitrary potential Vext(r) that acts the same way on each electron (this includes

the specific case of electron-nuclear interaction). For an electronic state |ψ〉, the

energy can be written as

E = 〈ψ|Helec |ψ〉 = 〈ψ|T + Vee + Vext |ψ〉 (2.32)

Focusing just on the contribution from the external potential, we have

〈ψ|Vext |ψ〉 =

∫
|ψ(r1, ..., rN)|2

∑
i

Vext(ri)d
3r1...d

3rN (2.33)

=
∑
i

∫ (
Vext(ri)

∫
|ψ(r1, ..., rN)|2d3r1...d

3rN \ d3ri

)
d3ri (2.34)

where \d3ri indicates that the inner integral is not performed over ri. Because of

exchange symmetry we can permute any of the arguments of |ψ|2 and thus rewrite

this integral as∫
|ψ(r1, ..., rN)|2d3r1...d

3rN \ d3ri =

∫
|ψ(ri, ..., rN)|2d3r2...d

3rN =
n(ri)

N
(2.35)

where n(r) is the electron density (normalized to N). Substituting this into Eq.

2.34, we have

〈ψ|Vext |ψ〉 =
∑
i

∫
Vext(ri)

n(ri)

N
d3ri =

∫
Vext(r)n(r)d3r (2.36)

Hence, the energy due to an external potential depends only on the electron density

rather than the full many-body wavefunction. The former is a function on R3 rather

than R3N and thus is exponentially easier to store, and perform operations on, in a

computer. If we can also write the other contributions to the energy in terms of just

the electron density, we will be able to do away with the wavefunction altogether and

instead treat n(r) as the fundamental quantity. This is the goal of density functional

theory (DFT), named because the most general form of a density-dependant energy

is a functional of the density. Writing the contribution from the external potential

explicitly, this functional can be written as

E[n(r)] = F [n(r)] +

∫
Vext(r)n(r)d3r. (2.37)

We note that Vext contains all of the system-dependent terms in the Hamiltonian.

This means that the remaining contribution F [n(r)] is a universal functional which

is independent of the system in question. The proof of the existence of such a

functional is due to Hohenberg and Kohn [114]. We demonstrate this proof by

employing an explicit construction of the functional F due to Levy [155]:

F [n(r)] = min{〈ψ|T +Vee |ψ〉 : |ψ(r)|2 = n(r)} ≡ 〈ψmin[n]|T +Vee |ψmin[n]〉 . (2.38)

30



Substituting this into Eq. 2.37 we have

E[n(r)] = 〈ψmin[n]|T + Vee |ψmin[n]〉+

∫
Vext(r)n(r)d3r

= 〈ψmin[n]|T + Vee + Vext︸ ︷︷ ︸
Helec

|ψmin[n]〉 ≥ EGS

(2.39)

where the second line follows from Eq. 2.36 and the inequality follows from the

quantum-mechanical variational principle applied to Helec. Equation 2.39 amounts

to a variational principle of the energy functional with respect to the density. From

the definition of F , it can be clearly seen that equality is obeyed if n(r) = nGS(r),

the ground state electron density;

E[nGS(r)] = min{〈ψ|T + Vee |ψ〉 : |ψ(r)|2 = nGS(r)}+

∫
Vext(r)n(r)d3r

= min{〈ψ|H |ψ〉 : |ψ(r)|2 = nGS(r)}

≤ 〈ψGS|H |ψGS〉 = EGS

(2.40)

where the inequality is a consequence of the minimization. Combining equations

2.39 and 2.40, we must have

E[nGS(r)] = EGS (2.41)

Equations 2.39 and 2.41 are known as the Hohenberg-Kohn theorems and are central

to the development of DFT.

Kohn and Sham unpacked the form of F so as to include known contributions

explicitly, leading to:

E[n(r)] = T0[n(r)] +

∫ (
Vext(r) +

1

2
φ(r)

)
d3r + Exc[n(r)] (2.42)

where φ(r) is the Hartree potential and T0[n(r)] is the kinetic energy of a system

of non-interacting electrons 5. Exchange and correlation effects are included in the

so-called exchange correlation functional, Exc[n(r)]. Thanks to the Hohenberg-Kohn

theorems, we know that we are aiming to minimize the energy with respect to the

density. We need to do this with a fixed number of electrons N =
∫
n(r)d3r, so we

introduce the Lagrange multiplier µ and extremise

S[n(r)] = E[n(r)] + µ

[
N −

∫
n(r)d3r

]
(2.43)

5The non-interacting kinetic energy functional T0[n(r)] is actually an unkown quantity and

known approximations are not sufficiently accurate for many applications. However, as we will

see later, the Kohn-Sham formalism involves the construction of an explicit wavefunction (from

the single-particle Kohn-Sham orbitals) from which the kinetic energy can be calculated. The lack

of an accurate kinetic energy functional hinders the development of so called orbital-free DFT

methods, that work exclusively with the density.
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With respect to n(r) and µ. Extremisation with resepct to n(r) leads to:

δS

δn(r)
!

= 0 =⇒ δE

δn(r)
=

δT0

δn(r)
+ Vext(r) + φ(r) +

δExc
δn(r)

= µ (2.44)

If we compare this to the same equation for a system without electron-electron

interactions, but subject to a potential VKS(r):

δE

δn(r)
=

δT0

δn(r)
+ VKS(r) = µ (2.45)

We see that the system with electron-electron interactions is formally equivalent to

a system without electron-electron interactions, but with an effective potential:

VKS(r) = Vext(r) + φ(r) +
δExc
δn(r)

(2.46)

This leads to the (single-particle) Kohn-Sham reformulation of the Schrödinger equa-

tion: (
−1

2
∇2 + VKS(r)

)
φi(r) ≡ HKSφi(r) = εiφi(r) (2.47)

which gives us the electron density via

n(r) =
N∑
i=1

|φi(r)|2 (2.48)

from which, in principle, the exact energy may be extracted via E[n(r)]. However,

the form of Exc is not known exactly and must be approximated. Two different

approximations are employed in this thesis. The first of these is the local density

approximation (LDA), where the potential depends only on the local electron density

Vxc ≈ Vxc(n(r)) (2.49)

The form of Vxc(n(r)) is obtained from quantum Monte Carlo calculations of the

homogeneous electron gas [40]. The second is a generalized gradient approximation

(of Perdew-Burke-Ernzerhof form [215]), in which the gradient of the electron density

is also considered;

Vxc ≈ Vxc(n(r),∇n(r)) (2.50)

Once a form for Vxc is chosen, the Kohn-Sham equations (2.47) can then be solved,

self-consistently, in a basis of our choice. Since we are investigating crystalline sys-

tems with periodic boundary conditions a convenient choice of basis is the plane

waves {eiknr} where {kn} are our reciprocal lattice vectors (hence preserving peri-

odic boundary conditions). Obviously this infinite set of lattice vectors has to be

truncated at some cutoff |k| < kcut (known as the plane-wave cutoff, typically re-

ferred to by the corresponding kinetic energy Ecut = k2
cut/2me), but our results can

be readily converged against this. The CASTEP [48] and Quantum Espresso [101]

implementations of plane-wave DFT are used in this thesis.

32



2.4.1 K-points and finite-size errors

The crystalline systems that we are interested in are effectively infinite, so we might

expect that an infinite amount of time would be needed to apply DFT. However, we

can go a long way to remedying this issue by noting that these systems are periodic;

the potential VKS(r) obeys

VKS(r + L) = VKS(r) ∀ L ∈ {n1a1 + n2a2 + n3a3 : n1, n2, n3 ∈ Z} (2.51)

where L is a lattice vector formed from the primitive lattice vectors a1, a2 and a3.

We can define the lattice translation operators, Ti, via their action on an arbitrary

state:

Tiψ(r) = ψ(r + ai) (2.52)

Then, from Eq. 2.51, it is clear that [Ti, HKS] = 0. As a result, the Hamiltonian

and the translation operators share the same eigenbasis. The action of a translation

operator (n times) on an energy eigenstate ψ(r) is then

T ni ψ(r) = tni ψ(r) = ψ(r + nai) (2.53)

Because this state must be normalized we have |tni | = 1 and are free to make the

association

ti = exp (2πiθi) (2.54)

for some {θi}; we can then define k = θ1b1 +θ2b2 +θ3b3, where {bi} are the primitive

reciprocal lattice vectors (satisfying bi · aj = 2πδij), in order to write the action of

an arbitrary lattice translation L as

TLψ(r) = ψ(r + L) = exp (ik · L)ψ(r) (2.55)

Note that displacing k by a reciprocal lattice vector makes no difference to the

resulting state (as exp (ibi · L) = 1), so we can take {θi} ∈ [0, 1] which implies that

the values of k in the 1st Brillouin zone are sufficient to enumerate all distinct states.

Finally, this allows us to define a function u(r) = exp (−ik · r)ψ(r), which inherits

the periodicity of the lattice:

u(r + ai) = exp (−ik · (r + ai))ψ(r + ai)

= exp (−ik · (r + ai))Tiψ(r)

= exp (−ik · (r + ai)) exp (ik · ai)ψ(r)

= u(r)

(2.56)

This means that all eigenstates of HKS can be written as a product of a plane wave

and a function which inherits the periodicity of the lattice:

ψ(r) = exp (ik · r)u(r) (2.57)
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This result is known as Bloch’s theorem and is central to the study of crystalline

systems. In particular, in DFT this allows us to choose a particular k and to then

solve the resulting Kohn-Sham equations for the possible states, or bands. The

resulting single-particle Kohn-Sham sates may be indexed by a k vector and a band

index n as ψk,n(r) = exp(ik · r)unk(r) ≡ 〈r |k, n〉 where HKS |k, n〉 = εnk |k, n〉.
Important quantities (density of states, charge density, matrix elements etc...) can

then be obtained as integrals over the 1st Brillouin zone;

I =
1

ΩBZ

∫
BZ

f(k)d3k (2.58)

In order to evaluate these, we sample the Brillouin zone using a weighted sum over

discrete k-points;
1

ΩBZ

∫
BZ

f(k)d3k →
∑
i

ωif(ki) (2.59)

Often, an equally spaced (Monkhorst-Pack [197]) grid over the Brillouin zone is used

to choose these sampling points. The final result is that we have reduced the problem

of solving the quantum mechanics of an infinite, periodic system to the problem of

a finite sampling from an infinite set of k-points in the first Brillouin zone. If the

difference between the sum and integral in Eq. 2.59 is significant then it means that

the set of k-points sampled was insufficient. We refer to such errors as finite size

errors as a result of the correspondence between the infinite set of k-points and the

infinite lattice. Similarly to increasing the plane-wave cutoff introduced earlier, this

k-point grid can be made systematically denser in order to reduce these finite size

errors.

2.5 Phonons in DFT

2.5.1 The harmonic approximation

Section 2.4 described a formalism to calculate the (approximate) electronic energy

Eelec(R) for a given set of nuclear coordinates R. However, this is only the first half

of the Born-Oppenheimer problem described in section 2.2. We must now derive a

treatment for the nuclear system which possesses the Hamiltonian

Hnuc |φ〉 =

(∑
Ri

− 1

2mi

∇2
Ri

+
∑
Ri,Rj

zizj
|Ri −Rj|

+ Eelec(R)

)
|φ〉

≡
(∑

Ri

− 1

2mi

∇2
Ri

+ V (R)

)
|φ〉 .

(2.60)

Through which we have defined the effective potential V (R) felt by the nuclei (com-

posed of the nuclear-nuclear repulsion and Born-Oppenheimer energy Eelec(R)). We
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can expand this potential in terms of the perturbations to nuclear coordinates δi (of

which there are 3 × the number of nuclei) as

V (R + δ) = V (R) +
∑
i

δi∂iV (R) +
1

2

∑
ij

δiδj∂i∂jV (R) +O(δ3) (2.61)

where ∂iV (R) ≡ ∂V (R)/∂δi. For an equilibrium crystal structureR(0), ∂iV (R)|R(0) =

0 ∀ i. As a result, the lowest order in which we can consider vibrational effects is

the harmonic approximation in which we neglect terms O(δ3) and above.

At this stage it is useful to consider the classical system of nuclei within the

harmonic approximation, where the equations of motion for the atoms can be written

as

miδ̈i = −∂iV (R) = −
∑
j

δj∂i∂jV (R)|R(0) (2.62)

where mi is the mass of the atom to which the ith coordinate belongs and the last

equality follows from differentiating equation 2.61. If we take a plane-wave ansatz

for our atomic displacements (with wavevector q, frequency ω(q, σ) and amplitude

Pi(q, σ)/
√
mi):

δi =
1
√
mi

Pi(q, σ) exp [i(ω(q, σ)t− q ·R(0)
i )] (2.63)

whereR
(0)
i is the equilibrium position of the atom to which the ith coordinate belongs,

then Eq. 2.62 becomes

ω2(q, σ)Pi(q, σ) =
∑
j

1
√
mimj

exp [iq · (R(0)
i −R

(0)
j )]Pj(q, σ)∂i∂jV (R)|R(0)

=
∑
j

Dij(q)Pj(q, σ)
(2.64)

where

Dij(q) =
1

√
mimj

exp [iq · (R(0)
i −R

(0)
j )]∂i∂jV (R)|R(0) (2.65)

is known as the dynamical matrix, and is Hermitian (due to our inclusion of the

1/
√
mi factor in our ansatz). We see that Eq. 2.64 is simply the eigenvalue problem

for this dynamical matrix. The resulting eigenvalues ω2(q, σ) are the squared fre-

quencies of the phonon modes (indexed by σ), at a particular phonon wavevector q.

The eigenvector component Pi gives the amplitude of the modal oscillations in the

coordinate δi.

Returning to a fully quantum treatment, we define phonon coordinates pq,σ, in

terms of our eigenvectors Pi(q, σ) via

pq,σ =
∑
i

√
mi exp(−iq ·R(0)

i )Pi(q, σ)δi (2.66)
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then the Hamiltonian in the harmonic approximation:

H(2)
nuc =

∑
Ri

− 1

2mi

∇2
Ri

+
1

2

∑
i,j

δiδj∂i∂jV (R)|R(0) (2.67)

can be rewritten in terms of phonon coordinates as (see appendix A.2)

H(2) =
∑
q,σ

−1

2

∂2

∂p2
q,σ

+
1

2
ω2
q,σp

2
q,σ. (2.68)

This Hamiltonian corresponds to a sum of Hamiltonians for a series of non-interacting

simple harmonic oscillators with frequencies ωq,σ.

2.5.2 Anharmonic corrections

The derivation of the Hamiltonian in the harmonic approximation (Eq. 2.68) ne-

glects terms in the potential of third and higher order in the nuclear displacements

(or, equivalently, phonon coordinates). This is a reasonable approximation only if

the amplitude of the nuclear motion is small. In some situations however, this is

not the case. Indeed, as the temperature of the system increases the expected dis-

placement of the nuclei also increases. For example, the average RMS displacement

of a harmonic oscillator (with m = ~ = ω = 1) is given by the square root of

〈x2〉 =

∫
x2
∑
n

1

eβ(En−µ) − 1
|ψn(x)|2dx

=

∫
x2
∑
n

1

eβ(En−µ) − 1
|NnHn(x) exp(−x2/2)|2dx

(2.69)

where β = 1/kbT , Hn(x) are the Hermite polynomials and Nn is the normalization

coefficient of the nth exited state. We choose the Lagrange multiplier µ so that the

total state occupation is one. The resulting RMS displacement is plotted in figure

2.3 and increases with temperature which, for real systems, would push us into the

anharmonic regime. The temperature at which this effect becomes important is

proportional to the frequency of oscillation, so systems with low phonon frequencies

are more likely to display anharmonicity.

In order to calculate anharmonic corrections, we must generalize our vibra-

tional Hamiltonian. Replacing the harmonic potential in Eq. 2.68 with the Born-

Oppenheimer energy surface V (R) gives us the fully anharmonic Hamiltonian

HA =
∑
q,σ

−1

2

∂2

∂p2
q,σ

+ V (R({pq,σ})) (2.70)

Neglecting coupling between different phonon modes, we approximate this Hamil-

tonian as

HA ≈
∑
q,σ

(
−1

2

∂2

∂p2
q,σ

+ Vq,σ(pq,σ)

)
=
∑
q,σ

Hq,σ (2.71)

36



Figure 2.3: The RMS displacement for a harmonic oscillator as a function of tem-

perature.

where

Vq,σ(pq,σ) = V (R(0, 0, . . . , pq,σ, . . . , 0, 0))− V (R(0)) (2.72)

is the so called independent phonon contribution to the Born-Oppenheimer energy

[199]. The resulting independent phonon Hamiltonians, Hq,σ, can then be individu-

ally diagonalized in the basis of harmonic single phonon states |n〉q,σ defined via(
−1

2

∂2

∂p2
q,σ

+
1

2
ω2
q,σp

2
q,σ

)
|n〉q,σ =

(
n+

1

2

)
ωq,σ |n〉q,σ (2.73)

This basis corresponds to the 1D harmonic states 〈p |n〉 = ψn(p) that appeared

earlier in Eq. 2.69 (here p is a phonon coordinate, not to be confused with a mo-

mentum). The independent phonon matrix elements in this basis are calculated by

explicitly mapping the independent phonon potential Vq,σ(pq,σ) and carrying out the

integration

Hq,σ;n,m = 〈n|Hq,σ |m〉 =

∫
ψ∗n(p)

(
−1

2

∂2

∂p2
+ Vq,σ(p)

)
ψ(
mp)dp (2.74)

The resulting eigenvalues of Hq,σ are the anharmonic vibrational energies of that

mode, which can be used to calculate anharmonic corrections to thermodynamic

quantities.

2.6 Electron-phonon coupling in DFT

We determined how to calculate the properties of Kohn-Sham electrons and phonons

independently in the previous two sections. However, in doing so we assumed the

Born-Oppenheimer approximation. In order to calculate the effects of coupling

between Kohn-Sham electrons and phonons, we must consider leading-order correc-

tions to the Born-Oppenheimer approximation in nuclear displacements. Expanding
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our Kohn-Sham potential in terms of these displacements leads to

VKS(R + δR) = VKS(R) +
∑
κ,p

∂VKS
∂Rκ,p

· δRκ,p +O(δR2). (2.75)

Because phonons typically break the translational symmetry of the crystal (i.e they

can not be contained within a single unit cell of the unperturbed crystal), we must

consider a larger supercell (that is periodic) containing Np unperturbed unit cells.

In the above expression, Rκ,p is then the position of atom κ in the pth unit cell.

Displacements of this atom can then be written in terms of phonon creation and

annihilation operators [102] as

δRκ,p =
1√
NpMκ

∑
qν

eiq·Rp
1√
2ωqν

(
aqν + a†−qν

)
eκν(q) (2.76)

where ekν(q) and ωq,ν are, respectively, the eigenvector and frequency of the phonon

mode with creation operator a†qν , Rp is the origin of the pth unit cell and Mκ is the

mass of atom κ. Substituting this into Eq. 2.75 we obtain

VKS(R + δR) = VKS(R) +
1√
Np

∑
qν

Gqν(aqν + a†−qν) (2.77)

where

Gqν =
1√
2ωqν

∑
κ

eκν(q)√
Mκ

·
∑
p

eiq·Rp
∂VKS
∂Rκ,p

(2.78)

This allows us to write down the resulting electron-phonon coupling Hamiltonian in

second-quantized form as

Hep(δR) =
∑
nkn′k′

〈n, k|VKS(R + δR)− VKS(R) |n′, k′〉 c†nkcn′k′

=
1√
Np

∑
qν

[ ∑
nkn′k′

〈n, k|Gqν |n′k′〉 c†nkcn′,k′
]

(aqν + a†−qν)

(2.79)

Where c†nk creates a Kohn-Sham electron in orbital n, wavevector k (i.e occupies the

Bloch state unk(x) exp(ik · x)/
√
Np). Substituting our definition of Gqν we have

〈n, k|Gqν |n′k′〉 =
1√
2ωqν

∑
κ

eκν(q)√
Mκ

·
∑
p

eiq·Rp 〈n, k| ∂VKS
∂Rκ,p

|n′, k′〉 (2.80)

Now

〈n, k| ∂VKS
∂Rκ,p

|n′, k′〉 =

∫
N−1/2
p u∗nk(x)e−ik·x

∂VKS
∂Rκ,p

(x)N−1/2
p un′k′(x)eik

′·x dx

=

∫
N−1/2
p u∗nk(x−Rp)e

−ik·(x−Rp)∂VKS
∂Rκ,p

(x−Rp)

×N−1/2
p un′k′(x−Rp)e

ik′·(x−Rp) dx

= eiRp·(k−k
′)

∫
1st unit-cell

u∗nk(x)e−ik·x
∂VKS
∂Rκ,0

(x)un′k′(x)eik
′·x dx

(2.81)
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where in the last line we have used Bloch’s theorem and the fact that

∂VKS
∂Rκ,p

(x−Rp) =
∂VKS
∂Rκ,0

(x) (2.82)

where Rκ,0 is the position of atom κ in the first unit cell. we may now write Eq.

2.80 as

〈n, k|Gqν |n′k′〉 =
1√
2ωqν

∑
κ

eκν(q)√
Mκ

· 〈n, k| ∂VKS
∂Rκ,0

|n′, k′〉uc

∑
p

ei(q+(k−k′))·Rp

︸ ︷︷ ︸
Npδq,k−k′

(2.83)

where the subscript “uc” on the ket here means integration only over the first unit

cell. Finally we obtain the DFT electron-phonon coupling Hamiltonian

Hep =
1√
Np

∑
qνknm

〈m, k + q|Gqν,uc |n, k〉uc c
†
m,k+qcn,k(aqν + a†−qν) (2.84)

where we have defined

Gqν,uc =
1√
2ωqν

∑
κ

eκν(q)√
Mκ

· ∂VKS
∂Rκ,0

(2.85)

This allows us to write down the Hamiltonian for an interacting Kohn-Sham-electron-

phonon system, correct to first order in the electron-phonon coupling constants

gmnν(k, q) = 〈m, k + q|Gqν,uc |n, k〉uc:

H =
∑
kn

εnkc
†
nkcnk︸ ︷︷ ︸

Electronic dispersion

+
∑
qν

ωqν

(
a†qνaqν +

1

2

)
︸ ︷︷ ︸

phonon dispersion

+

1√
Np

∑
kqmnν

gmnν(k, q)c
†
m,k+qcnk

(
aqν + a†−qν

)
.︸ ︷︷ ︸

electron-phonon coupling

(2.86)

2.6.1 Superconductivity

The Electron-Phonon coupling term in Eq. 2.86 is formed of two contributions,

corresponding to the Feynman diagrams shown in Figs. 2.4(a) and 2.4(b)

Hel-ph =
1√
Np

∑
kqmnν

gmnν(k, q)c
†
m,k+qcnkaqν︸ ︷︷ ︸

Phonon absorption

+ gmnν(k, q)c
†
m,k+qcnka

†
−qν︸ ︷︷ ︸

Phonon emission

. (2.87)

The resulting (lowest order) effective electron-electron interaction is then due to

the virtual phonon exchange shown in figure 2.4(c). Applying the momentum-space

Feynman rules, we obtain the phonon-mediated electron-electron interaction

Hel-ph-el =
∑
k1nn′

k2mm′
qν

Vel-ph-el(k1, k2, q)nn′mm′c
†
k1+q,n′ck1,nc

†
k2−q,m′ck2,m (2.88)
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(a) Phonon absorption (b) Phonon emission

(c) The effective phonon-mediated electron-

electron interaction.

Figure 2.4: Feynman diagrams from Hel-ph.
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where the effective electron-electron interaction Vel-ph-el(k1, k2, q)nn′mm′ is given by

Vel-ph-el(k1, k2, q)nn′mm′ = gnn′ν(k1, q)gmm′ν(k2, q)
ωq,ν

(εk1,n − εk1+q,n′)2 − ω2
q,ν

(2.89)

At temperature T the accessible region of unoccupied final states will lie within

∼ kbT of the Fermi surface. This means that, in the expression above, we will

have (εk1,n − εk1+q,n′)
2 ∼ (kbT )2. At temperatures of interest for superconductors

〈ωq,ν〉 >> kbT and so Vel-ph-el(k1, k2, q)nn′mm′ < 0 is an attractive interaction between

the states at k1 and k2.

2.6.2 BCS theory

The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [24] was the first

widely-successful theory explaining the origin of superconductivity from the attrac-

tive interaction given in Eq. 2.89. Whilst this is not the theory of superconductivity

that we use later in this thesis to derive critical temperatures, it provides significant

insight and demonstrates several important approximations often employed in the

field. We start by considering the Hamiltonian for a metal where only one band (in-

dexed by k) lies within kbT of the Fermi level and is subject to the phonon-mediated

electron-electron interaction arising from a single phonon band (indexed by q);

HBCS =
∑
k

ε(k)c†kck +
∑
k1,k2,q

V (k1, k2, q)c
†
k1+qck1c

†
k2−qck2 (2.90)

where c†k(ck) creates (annihilates) an electron in the band at k with energy ε(k) and

V (k1, k2, q) is our phonon-mediated electron-electron interaction:

V (k1, k2, q) = g(k1, q)g(k2, q)
ωq

(ε(k1)− ε(k1 + q))2 − ω2
q

(2.91)

As noted previously, at the temperatures of interest for superconductivity 〈ωq〉 �
|ε(k1)− ε(k1 + q)| ∼ kbT so this will be an attractive interaction for typical virtual

phonons. BCS6 used this observation to motivate the following approximate form

for V :

VBCS =

{
−|geff|2 if k1, k2, k1 + q, k2 − q ∈ S
0 Otherwise

(2.92)

Where S = {k : εF ≤ ε(k) ≤ εF + 〈ωq〉} is the thin shell of states just above the

Fermi level that are energetically accessible via a kick from the average phonon. The

momentum-dependence of the matrix elements has also been neglected, motivated by

6There is some confusion in the literature about the form of VBCS, with some using the constraint

|ε(k)− ε(k+ q)| ≤ 〈ωq〉, motivated by Eq. 2.91 to ensure VBCS < 0. In this thesis, I instead use the

definition employed by Cooper (k ∈ S) [51] so that I do not need to re-normalize the pair binding

energy with a post-hoc energy cutoff.
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Figure 2.5: The Cooper problem. Two electronic states (k1 and k2) lying above

a filled Fermi sea (blue rectangle) are coupled by a virtual phonon (q, ωq). All

states involved lie within 〈ωq〉 of the Fermi level (i.e in S), resulting in an attractive

interaction.

the fact that only a small region of the relevant electronic band will lie within kbT of

the Fermi level, within which the matrix elements should not vary strongly. We then

have geff ∼ 〈g2(kF , q)/ωq〉 where kF corresponds to a representative electronic state

near the Fermi level and we average over our phonon band. With this approximation,

our Hamiltonian Eq. 2.90 can be written as

H
(eff)
BCS =

∑
k

ε(k)c†kck − |geff|2
∑
k1,k2,q

c†k1+qck1c
†
k2−qck2 (2.93)

Where the momenta in the second sum are restricted such that k1, k2, k1 +q, k2−q ∈
S.

The Cooper problem

Cooper [51] considered the important case of two electrons outside a filled Fermi

sea, evolving according to H
(eff)
BCS (as shown in Fig. 2.5). The wavefunction of these

two electrons can be expanded in the basis of Slater determinants of Kohn-Sham

states:

|ψ〉 =
∑

k1,k2 ∈ I

Ck1,k2 |k1, k2〉 (2.94)

where I = {k : ε(k) > εF} are the states above the Fermi sea and

〈r1, r2 |k1, k2〉 =

∣∣∣∣∣ψk1(r1) ψk1(r2)

ψk2(r1) ψk2(r2)

∣∣∣∣∣ . (2.95)

are our Slater determinants of single-particle Kohn-Sham states ψki(rj). It will turn

out that the lowest energy state |ψ〉 will have no centre-of-mass motion and so only
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states with total momentum k1 + k2 = 0 will contribute, allowing us to index the

Slater determinants with a single momentum k = k1 = −k2:

|ψ〉 =
∑
k∈ I

Ck |k,−k〉 . (2.96)

The Schrödinger equation for this state then reads

H
(eff)
BCS |ψ〉 = E |ψ〉 =

∑
k∈ I

Ck2ε(k) |k,−k〉 − |geff|2
∑
k∈S

q : k+q ∈S

Ck |k + q,−k − q〉 , (2.97)

where the first term is the contribution arising from the bare Kohn-Sham states

(using the fact that ε(k) = ε(−k)). The second term arises from the scattering of

|k,−k〉 into |k + q,−k − q〉 via a virtual phonon with momentum q, subject to the

constraint that the initial and final states are in S (see Fig. 2.5). Because the sum

over q runs over the entire first B.Z, the second sum in Eq. 2.97 can instead be taken

over final states k′ = k + q ∈ S, leading to

E |ψ〉 =
∑
k∈ I

Ck2ε(k) |k,−k〉 − |geff|2
∑
k,k′∈S

Ck |k′,−k′〉 . (2.98)

Taking the inner product with 〈k,−k| (for k ∈ S)7, we obtain

ECk = 2ε(k)Ck − |geff|2
∑
k∈S

Ck. (2.99)

Defining A =
∑

k∈S Ck, we can re-arrange this for Ck:

Ck =
−|geff|2A
E − 2ε(k)

(2.100)

For self-consistency we must then have (from the definition of A):

A =
∑
k∈S

−|geff|2A
E − 2ε(k)

=⇒ 1 = −|geff|2
∑
k∈S

1

E − 2ε(k)
. (2.101)

Replacing the sum over k with an integral over the density of states g(ε) (which we

assume to be constant for k ∈ S) gives

1 = −|geff|2g(εF )

∫ εF+〈ωq〉

εF

1

E − 2ε
dε. (2.102)

Where the prefactor λ = |geff|2g(εF ) is the so-called electron-phonon coupling pa-

rameter, and is assumed to be small within BCS theory. Carrying out the integral

and rearranging gives

E = 2εF −
2〈ωq〉

exp (2/λ)− 1
≈
λ�1

2εF − 2〈ωq〉 exp(−2/λ). (2.103)

7If we had instead taken the inner product with a state outside of S we would have seen that

the energy was just the unaltered KS energy. This is because BCS Hamiltonian neglects the

renormalization of the KS energies due to the electron-phonon interaction.
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Figure 2.6: Temperature dependence of the superconducting gaps in a multi-band

superconductor (intraband coupling constants are those for MgB2 from [269]).

This energy is lower than the energy of two electrons at the Fermi level by an amount

given by

∆ = 2〈ωq〉 exp(−2/λ). (2.104)

BCS realised that this means the entire Fermi surface will be unstable to the forma-

tion of bound pairs of electrons with binding energy ∆. This bound state is called

a Cooper pair and an estimate for the critical temperature of a superconductor is

given by the thermal energy needed to break such pairs

kbTc = ∆ =⇒ Tc =
2〈ωq〉
kb

exp(−2/λ) (2.105)

Which gives reasonable agreement with weakly coupled (λ� 1) conventional super-

conductors. The agreement can be improved by noting that when the entire Fermi

surface becomes unstable to the formation of Cooper pairs, we are in actual fact

dealing with a many-electron problem, rather than a two-electron problem. Solving

the many-body BCS problem at finite temperature leads to

Tc =
1.13〈ωq〉

kb
exp(−1/λ) (2.106)

Which is remarkably similar to Cooper’s result (especially in the limit λ→ 0).
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2.6.3 Approximations in BCS theory

Extension to the multi-band case

In our discussion of BCS theory, we only considered coupling within a single elec-

tronic band mediated by phonons from a single mode. Including additional phonon

modes is relatively straightforward, amounting to summing contributions to |geff|2

from each mode. However, the generalisation to multiple electronic bands is more

involved. Each band that crosses the Fermi level will in general have different elec-

tronic character and so will couple to the phonons differently. This will result both

in different intra-band interactions gmm(k1, k2, q), but also in inter -band couplings

gmn(k1, k2, q) with n 6= m. Neglecting inter-band coupling would result in each band

acting as an independent sub-system with its own Tc - the most significant being

that with the highest Tc. Systems where inter-band coupling cannot be neglected

are better described by a single Tc, with a non-trivial dependence on the mixing of

coherent states from each band (this is the case in the multi-band superconductor

MgB2, for example, as shown in Fig. 2.6).

Renormalization and retardation

The approximation of V (k1, k2, q) by the BCS potential VBCS neglects electron-

phonon coupling for all but a very thin shell of states near the Fermi surface. The

result is that the single-particle electronic energies ε(k) remain unaltered outside

of this shell. In reality, electron-phonon coupling will renormalize the electronic

energies and, consequently, the Fermi surface itself. This argument goes the other

way too; electron-phonon coupling will also renormalize the phonon frequencies. As

well as neglecting this renormalization of the single-particle states, BCS theory only

crudely accounts for retardation effects due to the ‘sluggishness’ of the phonon re-

sponse (by cutting off the electron-phonon interaction above 〈ωq〉). The retardation

of the phonon response allows two electrons to exchange a phonon whilst not being

at the same place at the same time. As a result of this separation, the two electrons

feel a reduced Coulomb repulsion from one another. This will (reasonably directly)

increase the pair binding energy and thus the critical temperature, so including the

effects of retardation correctly is key to understanding the strong-binding/high-Tc

case.

2.6.4 Eliashberg theory

As motivated in the previous section, the correct treatment of retardation in the

phonon response is a crucial step towards understanding strongly-coupled super-

conductors. Extending the BCS theory to include these retardation effects is the
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goal of Eliashberg theory [72], which derives the temperature-dependent imaginary-

time Green’s function for electrons evolving under a Hamiltonian with first-order

electron-phonon coupling (Eq. 2.86). The full derivation [188] is reasonably involved

and does not provide a large amount of additional insight beyond BCS theory (at

least for the purposes of this thesis), so we will simply summarise the main results.

Roughly speaking, one uses a Wick decomposition to re-write the electron Green’s

function in terms of a normal-state Green’s function G, corresponding to the time-

ordered thermodynamic expectation G(k, τ) = −〈Tτck(τ)c†k(0)〉 and an anomalous

(superconducting-pair) Green’s function F (k, τ) = −〈Tτck(τ)ck(0)〉. In practice, it is

convenient to move from the imaginary-time (τ) domain to the imaginary-frequency

(iω) domain. Considering just the contribution from first-order Feynman diagrams,

and confining all quantities to lie on the Fermi surface, the normal and anomalous

Green’s functions can be determined from the following pair of coupled equations,

known as the Eliashberg equations :

[1− Z(iωn)] iωn = −π
β

∑
m

Z(iωm)iωm
Ξ(iωm)

∫
2ωα2F (ω)

(ωn − ωm)2 + ω2
dω

φ(iωn) = −µ∗π
β

∑
m

φ(iωm)

Ξ(iωm)
θ(ωc − |ωm|) +

π

β

∑
m

φ(iωm)

Ξ(iωm)

∫
2ωα2F (ω)

(ωn − ωm)2 − ω2
dω

(2.107)

where

Ξ(iωn) =

√
[Z(iωn)ωn]2 + φ2(iωn) (2.108)

In these equations, Z (proportional to the normal Green’s function) and φ (propor-

tional to the anomalous Green’s function) are the only unknowns and are uniquely

specified via Eqs. 2.107 from the parameters in our Hamiltonian. These parameters

enter Eqs. 2.107 via the so-called Eliashberg function α2F (ω):

α2F (ω) =
1

2ΩBZ

∑
ν

∫
BZ

ωqνλqνδ(ω − ωqν)dq (2.109)

where

λq,ν =
1

N(εF )ωqνΩBZ

∑
nm

∫
BZ

|gmnν(k, q)|2δ(εn,k − εF )δ(εm,k+q − εF )dk (2.110)

are the electron-phonon coupling strengths associated with each phonon mode. In

practice, given α2F (ω), it is relatively straightforward to numerically solve Eqs. 2.107

self-consistently to obtain Z and φ, from which Tc is obtained as the temperature

where the pair-density φ → 0 (to do this I use the ELK code [1], who’s notation

[232] we employ in Eqs. 2.107). However, it is common in the field to instead use

the approximation due to McMillan, Allen and Dynes [192, 11]:

Tc =
ωlog

1.2
exp

(
−1.04(1 + λ)

λ(1− 0.62µ∗)− µ∗

)
(2.111)
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where

λ =
∑
qν

λqν = 2

∫
α2F (ω)

dω

ω
, (2.112)

is the electron-phonon coupling parameter and

ωlog = exp

(
2

λ

∫
α2F (ω) log(ω)

dω

ω

)
(2.113)

is a particular choice for the typical phonon frequency 〈ωq〉. µ∗ is the Morel-Anderson

pseudopotential [200], which is typically treated as an empirical parameter with

values between 0.1 and 0.2.

2.7 Ab initio random structure searching (AIRSS)

2.7.1 The global searching problem

Two factors determine if a particular arrangement of atoms in a crystalline struc-

ture is observed in nature. The first is dynamic stability and is a necessary condition

(although dynamical instabilities can sometimes disappear when moving to a higher

level of theory, see chapter 8). Dynamic stability means that there is no infinites-

imal perturbation to the crystal structure that will result in a reduction in the

energy =⇒ the structure is a local minima of the energy. The second factor is

thermodynamic preference towards lower energy structures. In particular, at zero

temperature and neglecting dynamical effects (zero-point energy), the most ther-

modynamically stable configuration is the global minimum of the energy. Working

within the Born-Oppenheimer approximation, we would like to be able to find such

low energy minima of the Born-Oppenheimer surface Eelec(R).

When calculating the total DFT energy, Eelec(R) of a particular crystal structure

R, we also compute the DFT ground state |ψ〉 (typically in a self-consistent manner).

The Hellmann-Feynman theorem gives us a way to go on to cheaply calculate the

force F = ∂〈H〉/∂R on the atoms:

∂〈H〉
∂R

= 〈∂ψ/∂R|H |ψ〉+ 〈ψ| ∂H/∂R |ψ〉+ 〈ψ|H |∂ψ/∂R〉

= E(〈∂ψ/∂R |ψ〉+ 〈ψ| ∂ψ/∂R〉) + 〈ψ| ∂H/∂R |ψ〉

= E
∂

∂R
〈ψ |ψ〉︸ ︷︷ ︸

1

+ 〈ψ| ∂H/∂R |ψ〉

= 〈ψ| ∂H/∂R |ψ〉 = F

(2.114)

We simply take the expectation value of the derivative of the Hamiltonian with re-

spect to the state we’ve already worked out. Because we can cheaply evaluate the

force, we can efficiently minimize the energy using gradient descent. This gives us a
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way of finding local minima in the Born-Oppenheimer energy surface, which corre-

spond to dynamically stable crystal structures. We call this geometry optimization.

The search for minima in the Born-Oppenheimer surface has an intrinsic problem:

the number of local minima scales exponentially with system size. This can be seen

from a simple argument given in [220] and reproduced here; consider a system of

N atoms divided into M subsystems, each of N/M atoms. If the subsystems are

large enough they will have independent stable configurations. The total number of

stable configurations ns(N) therefore satisfies

ns(N) = nMs (N/M) (2.115)

The solution to which is

ns(N) ∝ eαN (2.116)

This exponential scaling means that in order to efficiently study large systems we

must reduce our search space a priori, by somehow biasing the search towards lower

energy regions of the Born-Oppenheimer surface. This can be done in several ways,

amongst which are Genetic algorithms [262, 207, 144, 180], Simulated annealing [58,

138], Basin hopping [272], Particle swarms [276], Data mining [113] and Random

sampling [220]. In the next section, we define the method that is used in this thesis,

based on random sampling.

2.7.2 AIRSS

Leveraging large multiprocessor computers, we can carry out many geometry opti-

mizations simultaneously to enumerate the minima of the Born-Oppenheimer sur-

face. It turns out that if we begin each of these geometry optimizations at a random

sensible location in configuration space, we can typically recover many of the lowest-

energy minima (those which are likely to correspond to thermodynamically-stable

structures). When we say sensible random configurations, we mean configurations

chosen to satisfy physically motivated constraints. Some examples of these con-

straints are

• Physical atom-atom separations (atoms not overlapping).

• Atoms arranged as structural units (i.e crystalline water arranged using H2O

molecules).

• Preference towards higher crystalline symmetry.

• Incorporation of experimental information.

These choices are based on the following general properties of the Born-Oppenheimer

surface [220]:
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• The portion of the Born-Oppenheimer surface where atoms are very close

together contains almost no minima.

• This high-energy part of the Born-Oppenheimer surface forms a large fraction

of the total surface.

• Minima with lower energies tend to have larger basins of attraction (in general

the basin size follows a power law of the energy).

• Minima tend to correspond to more symmetrical structures.

We see that, simply by requiring that atoms are sensibly far apart, we can reduce

the fraction of the surface that must be searched substantially. Combined with the

fact that the remaining minima will tend to have large basins of attraction, and will

tend to be symmetric, we can efficiently find the lowest energy minima. The method

of generating random, sensible structures and relaxing to a nearby local minimum

using DFT is known as ab initio random structure searching (AIRSS) [220].
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Chapter 3

Stochastic nodal surfaces in

quantum Monte Carlo calculations

3.1 Motivation

Quantum Monte Carlo (QMC) methods were responsible for the data underpinning

all DFT calculations [40] and remain amongst the most accurate methods available

for calculating ground state properties of quantum systems [186]. However, as we

saw in Sec. 2.3.3, for certain systems QMC suffers from the infamous fermion sign

problem, the general solution to which has been shown to be NP-hard [266]. In this

thesis, we focus on the specific case of the diffusion Monte Carlo (DMC) methods

examined in Sec. 2.3.2 [90, 21, 263], which converge on the many-body ground state

by iteratively projecting out exited state components from the wavefunction. Here,

the sign problem arises due to exchange symmetry dividing the wavefunctions into

regions of different sign, known as nodal pockets, separated by a nodal surface. This

increases the fermionic ground state energy relative to that of the bosonic ground

state and, as a result, the former is projected out, typically exponentially decaying

away as the iterative procedure progresses [20].

Despite this exponential decay of the fermionic component, methods such as

release-node DMC can extract information about the fermionic ground state from

the transient behaviour of the wavefunction [41]. However, this transient behaviour

leads to a statistical error that grows with system size, requiring a formidable com-

putational effort to mitigate [268]. The most popular approach to obtain a stable

fermionic ground state in DMC is the fixed-node approximation that we discussed

in Sec. 2.3.3, whereby the nodal surface is fixed to that of some trial wavefunction,

which must be known a priori. We focus on electronic systems, where it is conjec-

tured that the presence of many-body correlation leads to the minimal case of only

two nodal pockets [196], which may make the electronic problem more tractable
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than the general NP-hard case.

The work presented in this chapter was, in part, motivated by my own frustra-

tions with carrying out DMC calculations of solid Lithium - in particular the fact

that the majority of my time was spent generating, optimizing and transferring trial

wavefunctions from preliminary DFT calculations to aid the main DMC calculation.

I wanted to better understand the sign problem as it applies to the electronic systems

that would typically be treated using the fixed node approximation. In particular,

to understand more deeply what goes wrong if we do not stabilise the simulation

with a trial wavefunction and to investigate the possibility of alternative methods

of stabilization that do not require a priori knowledge of the solution.

3.2 Overview

In the rest of this chapter, we develop a formalism of fermionic DMC that makes

no reference to a trial wavefunction. In section 3.3 we show that including exchange

symmetry as a constraint in the energy minimization problem leads to a modified

DMC scheme, resulting in a new propagation channel in the Green’s function that

couples populations of signed walkers. In section 3.4 we go on to show how this

propagation results in the formation of a stochastic nodal surface, constructed from

the entire population of walkers, that is free to vary and minimize the energy. We

propose a diffusion scheme to maximise its stability.

Compared to previous methods employing signed walkers (such as the fermion

Monte Carlo method of Kalos and Pederiva [134], the early work of Anderson and

Traynor [14] or the second-quantized approach of Umrigar [270]) the work in this

chapter represents an alternative way to manage the propagation, and cancellations

between, signed walkers, informed by the underlying optimization problem. In sec-

tion 3.5 we discuss the relationship to these previous schemes. Finally, we provide

an open-source implementation of the method [2] and demonstrate that it obtains

a stable fermionic ground state for the harmonic and atomic systems considered.

3.3 Formalism

We start by formulating the fermionic problem for N particles in d dimensions as

the following constrained optimization problem:

Find |ψ〉 to minimize 〈ψ|H |ψ〉 such that

〈ψ |ψ〉 = 1 (Normalization) (3.1)

〈x |ψ〉 = −〈Pix |ψ〉 (Antisymmetry) (3.2)
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∀ Pi ∈ E , x ∈ RdN

where E is the set of pairwise identical-fermion exchanges. If the system contains M

identical fermions, there are M(M − 1)/2 such exchanges which can be combined

to generate the set P of the M ! permutations of identical fermions (we discuss

the alternative choice of using the permutations P to construct the antisymmetry

constraint in Sec. 3.5.1). Introducing the Lagrange multipliers ET and µi(x) the

optimization problem is equivalent to extremizing the Lagrangian

L = 〈ψ|H |ψ〉︸ ︷︷ ︸
Objective function

+ET [1− 〈ψ |ψ〉]︸ ︷︷ ︸
0 iff ψ is normalized

+
∑
i

∫
ψ∗(x)µi(x) (Pi + 1)ψ(x)︸ ︷︷ ︸

0 iff ψ is antisymmetric

dx (3.3)

with respect to ψ, ψ∗, ET and the µi(x)’s. We note that L can be written as

L = ET + 〈ψ|

HX︷ ︸︸ ︷
H − ET +

∑
i

µi(x)(Pi + 1) |ψ〉 (3.4)

allowing us to define an effective Hamiltonian HX . Because (Pi + 1) |S〉 = 2 |S〉 for

symmetric states |S〉 and (Pi + 1) |A〉 = 0 for antisymmetric states |A〉, the term

involving the Lagrange multipliers µi can be interpreted as a cost function that

penalises the appearance of a symmetric component in the wavefunction (so long

as we take µi(x) > 0). Extremization of L with respect to ψ and ψ∗ (see appendix

A.5) leads to

HXψ = 0 = Hψ − ETψ +

[∑
i

µi(x)(Pi + 1)

]
ψ. (3.5)

Because of the antisymmetry constraint, the term in square brackets vanishes at the

extremum of L, leading to the Schrödinger equation Hψ = ETψ. This allows us to

identify ET as the fermionic ground state energy.

To actually perform the extremization we follow the DMC method outlined in

Sec. 2.3.2 and propagate the imaginary time (τ = it) Schrödinger equation, but for

HX instead of H:
∂ |ψ(τ)〉
∂τ

= −HX |ψ(τ)〉 (3.6)

which can be written in integral form as

〈x |ψ(τ + δτ)〉︸ ︷︷ ︸
Propagated wavefunction

ψ(x,τ+δτ)

=

∫
〈x| exp(−δτHX) |x′〉︸ ︷︷ ︸

Green’s function
G(x,x′,δτ)

〈x′ |ψ(τ)〉︸ ︷︷ ︸
Old wavefunction

ψ(x′,τ)

dx′. (3.7)

Continuing to follow traditional DMC, we sample our wavefunction with a discrete

set of walkers, each representing a particular point in configuration space xi and

carrying a corresponding weight wi, leading to Eq. 2.21, repeated here:

ψDMC(x, τ) =
∑
i

wi(τ)δ(x− xi(τ)). (3.8)
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Eq. 3.7 can then be interpreted as an evolution equation for the walkers, where

the Green’s function G(x, x′, δτ) determines the propagation of the weights wi

and configurations xi. In Sec. 2.3.2, we saw that we can choose how to parti-

tion the influence of the Green’s function between the propagation of the walker

configuration xi(τ) → xi(τ + δτ) and the update procedure of the walker weights

wi(τ) → wi(τ + δτ). As was the case in Sec. 2.3.2, in order to determine how to

distribute this influence, we need the explicit form for the Green’s function. Writing

H = T + V , where T is the kinetic energy operator and V is the (local) many-body

potential, allows us to define the well-known potential and diffusive parts of the

Green’s function, derived in Sec. 2.3.2;

GV (x, x′, δτ) ≡ exp (−δτ [V (x) + V (x′)]/2) ,

GD(x, x′, δτ) ≡ 〈x| exp(−δτT ) |x′〉 ∝ exp

(
−|x− x

′|2

2δτ

)
.

For sufficiently small timesteps δτ � 1, our full Green’s function can then be written

(see appendix A.6) as

G(x, x′, δτ) =

GX⇐⇒ Exchange moves︷ ︸︸ ︷[
N (x′)−

∑
i

Xi(x′)Pi

]
× GV (x, x′, δτ)︸ ︷︷ ︸

Potential weighting

×GD(x, x′, δτ)︸ ︷︷ ︸
Diffusion

×exp(δτET )︸ ︷︷ ︸
Population control

,

(3.9)

with
Xi(x′) = δτµi(Pix

′),

N (x′) = 1−
∑
i

δτµi(x
′).

(3.10)

We note that if we were to neglect the fermionic constraint (i.e take µi → 0 ∀ i),
we would recover the Green’s function of traditional DMC (see section 2.3.2). The

part of the Green’s function arising from the fermionic constraint is labelled GX

and can be applied to a walker at x′ with weight w by carrying out the fermionic

exchange {x′ → Pix
′, w → −w} with probability Xi(x′). These non-local exchange

moves enforce the antisymmetry of the wavefunction by allowing walkers sampling

one nodal pocket to stochastically switch to sampling any symmetry-related nodal

pocket (see Fig. 3.1). The tiling theorem [39] then implies that any walker can

access and contribute weight to all nodal pockets. As a result, rather than each

walker simply contributing to the wavefunction at a particular point in configuration

space, it can now contribute to all symmetry-related points.

For simplicity, in our implementation we choose the probabilities Xi(x′) and

N (x′) so that each of the exchange moves (including no exchange) are equiprob-

able (i.e we take Xi(x′) = N (x′) ∀ i). This corresponds to a particular positive,
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Figure 3.1: Schematic of wavefunction formation arising from competing walker

propagation channels (shown for three fermions in a harmonic well as in Fig. 3.4).

and constant, choice of the Lagrange multipliers µi(x), which can be interpreted as

the rate at which the exchange Pi is applied to walkers at x. Whilst this does re-

sult in a Hamiltonian that penalises symmetric components, strictly speaking µi(x)

should be varied with τ to extremise L (in the same way that we will vary ET to

maintain a constant population in Sec. 3.4.3). This would correspond to biasing

the simulation to carry out particular exchanges for walkers at particular config-

urations. One can see how this might work - regions in configuration space that

have a large symmetric component could be specifically targeted for exchange in

the corresponding coordinates. However, in practice it is very difficult to identify

such regions and, in any case, any random exchange of particles will quickly wipe

out symmetric components1. Without being able to identify which combinations of

configurations and exchanges should be targeted, there is no reason to bias towards

particular exchanges - hence our choice of equiprobable exchanges. As we will see

later, this does not adversely affect the stability of the resulting fermionic state.

3.4 Implementation

3.4.1 Stochastic nodal surface

Now that we have identified an additional propagation channel arising from the anti-

symmetry constraint, we need to think about how it works alongside the propagation

channels we already had, in particular the diffusive channel. The diffusive part of

1In actual fact random exchange will, on average, wipe out all components leading to 〈ψ〉 = 0

(which we refer to later as bosonic collapse), but we will see later how this can be remedied with

a correlated diffusion process.
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Figure 3.2: The diffusive propagation of two nearby walkers of opposite sign located

at x1 and x2 =⇒ ψD(x) = GD(x, x2, δτ)−GD(x, x1, δτ) ≡ G2 −G1 (black dashed

line). The red (blue) shaded region show the portion of G2 (G1) that can be cancelled

in the propagation.

the Green’s function applied to a set of walkers leads to a diffused wavefunction

ψD(x) =
∑
i

wiGD(x, xi, δτ) (3.11)

as shown in Fig. 3.2 for two opposite-sign walkers. If we represent this new wave-

function as a combination of walkers with weights ±1 with configurations sampled

from the distributions P±(x) respectively, we must have

P+(x)− P−(x) = ψD(x). (3.12)

In traditional DMC each walker diffuses independently by an amount sampled from

GD, resulting in

P+(x) = ψ+(x) ≡
∑
wi>0

wi(τ)GD(x, xi, δτ)

P−(x) = ψ−(x) ≡
∑
wi<0

|wi(τ)|GD(x, xi, δτ).
(3.13)

A drawback of this scheme when applied to signed walkers is that it allows +ve

walkers to move into a region where ψD is -ve, and vice versa, as can be seen from

the overlap of P+(x) and P−(x) in Fig. 3.3(a). This prohibits the emergence of well-

separated regions of +ve and -ve walkers, corresponding to nodal pockets. Without

stable nodal pockets, the walkers end up sampling the bosonic ground state with a

randomly fluctuating sign. This is known as bosonic collapse and arises in a similar

fashion to the exponentially decaying signal-to-noise ratio in so-called release-node

DMC [20]. An example is shown in Fig. 3.4(a) for a system of three non-interacting

fermions in a harmonic well.
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(a)

(b)

Figure 3.3: Propagation schemes satisfying Eq. 3.12, applied to the walkers in Fig.

3.2. (a) traditional DMC propagation (Eq. 3.13). (b) our propagation scheme (Eq.

3.15). Note that in (a) there is overlap of the +ve and -ve walker distributions. The

same is not true for (b).

To avoid bosonic collapse, one particular sign of walker should dominate at each

point in configuration space. Typically this sign is chosen according to the fixed-node

approximation as being equal to that of the trial wavefunction (see Fig. 2.2), fixing

the nodal surface of the DMC wavefunction to that of the trial wavefunction. We

instead exploit the freedom to choose P+ and P− in Eq. 3.12 to design a propagation

scheme that encourages the formation of a stochastic nodal surface (that is free to

vary in order to minimize the energy). In order to do this, we seek the form of P±(x)

satisfying Eq. 3.12 that maximizes the expected separation of +ve and -ve walkers,

given by

〈|x+ − x−|〉 =

∫
P+(x+)P−(x−)|x+ − x−|dx+dx− (3.14)

This leads, independently of the form of ψD(x) (see appendix A.7), to

P±(x) =

|ψD(x)| if sign(ψD(x)) = ±1,

0 otherwise.
(3.15)

These distributions have no overlap, as can be seen in Fig. 3.3(b). However, because

P±(x) are no longer simple sums of Gaussian terms (as ψ± were in Eq. 3.13), they

are difficult to sample moves from directly. This can be remedied by exploiting our

freedom to absorb part of the propagation into the weight update by factorising
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Figure 3.4: The wavefunction of three non-interacting fermions with coordinates

x, y and z in a one-dimensional harmonic well, integrated and viewed along the

(1, 1, 1) projection. The analytic nodal surface is shown as a dotted black line.

From this projection, the nodal pockets can be clearly seen. (a) Bosonic collapse

from DMC with exchange moves but without a stochastic nodal surface. (b) From

DMC with exchange moves and a stochastic nodal surface. (c) Analytic bosonic

ground state. (d) Analytic fermionic ground state.
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P±(x) into (see appendix A.8)

P±(x) = ψ±(x)f±(x) (3.16)

where

f±(x) = max (1− ψ∓(x)/ψ±(x), 0) ∈ [0, 1] (3.17)

can be interpreted as reweighting functions, as shown in Fig. 3.3(b). We can then

interpret Eq. 3.16 as a diffusion according to ψ±(x) (corresponding to diffusive moves

sampled from GD(x, x′, δτ)) followed by a corrective reweighting w → f±(x)w, due

to cancellation of +ve and -ve walkers.

Applying this scheme to the same system of three non-interacting fermions in a

harmonic well results in the wavefunction shown in Fig. 3.4(b). Comparing to Fig.

3.4(d) we see that the analytic nodal surface is reproduced.

3.4.2 Initialization

We initialize the walkers in such a way as to speed up their equilibration into an

antisymmetric state. This is achieved by defining a unique ordering of the walker

configurations, whereby the particles are ordered by their increasing coordinates.

For example, in 2 spatial dimensions, the particles are ordered first by increasing

x coordinate, then by increasing y coordinate. Starting with walker configurations

distributed according to a normal distribution xi ∼ N (µ = 0, σ = 1a.u), we apply

exchange moves to the walkers x = (r1, r2, ..., rN) until their constituent particles

are increasing according to this order (i.e r1 ≤ r2 ≤ r3...), and set their weights to

+1. This is the same as the ordering used in Ref. [150], except here we only use

this procedure for initialization of the walkers. As the simulation proceeds, walkers

will be propagated into antisymmetric images of this initial positive-definite group,

quickly setting up a large antisymmetric component.

3.4.3 Energy estimation

The Lagrange multiplier associated with normalization, ET , corresponds to an en-

ergy offset which appears in our effective Hamiltonian HX . As the algorithm pro-

gresses, the value of ET is updated to keep the total weight of walkers, W (τ) =∑
i |wi(τ)|, roughly constant. The expected total weight after propagation from τ

to τ + δτ is given by

〈W (τ + δτ)〉 =
∑
i

|〈wi(τ + δτ)〉| =
∑
i

|wi(τ)G(xi(τ + δτ), xi(τ), δτ)|. (3.18)
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Separating this into contributions from different parts of the Green’s function (see

Eq. 3.9) we have

〈W (τ + δτ)〉 =
∑
i

|wi(τ)G
(i)
X G

(i)
V G

(i)
D exp(δτET )| (3.19)

where we have used the shorthand notation G
(i)
I ≡ GI(xi(τ + δτ), xi(τ), δτ) for

I ∈ [X, V,D]. We keep the total weight roughly constant by requiring

〈W (τ + δτ)〉 !
= W (τ) =

∑
i

|wi(τ)| =⇒

ET (τ) =
1

δτ
ln

( ∑
i |wi(τ)|∑

i |wi(τ)G
(i)
X G

(i)
V G

(i)
D |

)
.

(3.20)

This is known as the growth estimator of the energy and, in order to keep the pop-

ulation stable, will converge to the lowest eigenvalue of HX , which we can therefore

estimate by averaging the value of ET (τ) (after equilibration) over many iterations.

However, because each iteration is correlated with the previous iteration, one must

be careful in estimating the uncertainty of such averages. In this chapter we use the

widely-employed reblocking method [89] to estimate statistical uncertainties.

If one has access to a suitable trial wavefuncion ψT (x), that has non-zero overlap

with the exact fermionic ground state, the fermionic energy can be estimated directly

using the so-called projection estimator:

Eproj(τ) =

∑
iwi(τ)HψT (xi)∑
iwi(τ)ψT (xi)

(3.21)

Note that it is H, not HX , that appears in Eq. 3.21. It is well-known [150] that

the statistical uncertainties in Eproj(τ) are typically smaller than that of ET (τ), due

to the reduced dependence on the fluctuating population. Cancellations between

signed walkers contribute to these fluctuations, resulting in larger statistical errors

for fermionic systems when using the growth estimator. This can be clearly seen by

comparing DMC calculations of the ground state and first exited state of the Helium

atom in Fig. 3.5. However, in order to use Eq. 3.21, we require both access to a

trial wavefunction ψT and for the denominator to remain finite for sufficiently many

DMC timesteps to build up accurate statistical averages. In transient methods, such

as release-node DMC, the exponential decay of the fermionic component leads to an

exponential decay of the denominator of Eq. 3.21 and a correspondingly small set

of usable iterations from which to build up such averages. In contrast, we find that

the fermionic state obtained from propagating the Green’s function of HX leads

to stable (at least on the timescales we have probed in obtaining the results for

this chapter) non-zero denominator of Eq. 3.21, as can be seen in Fig. 3.6, allowing

straightforward use of projection-based estimators. However, both for simplicity
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Figure 3.5: DMC calculations of the Helium atom ground state, with electrons hav-

ing opposite spin (parahelium), and the exited (triplet) state with electrons having

parallel spin (orthohelium), calculated using a stochastic nodal surface. A timestep

of δτ = 10−3 atomic units was used with δτeff = 0.5 atomic units (see section 3.4.4).

It is clear to see that the exited (fermionic) state shows larger fluctuations than

the (bosonic) ground state. This is due to cancellations between oppositely signed

walkers contributing to fluctuations in the growth estimator of the energy. The ref-

erence energies are from VMC optimization of many-parameter trial wavefunctions

[10], accurate to within a few µHa.
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Figure 3.6: The denominator of Eq. 3.21 vs. DMC timestep for the simulation used

to produce Fig. 3.4(b) (104 walkers, δτ = δτeff = 10−3 atomic units). Note the y-axis

scale. For the purposes of this plot, the trial wavefunction was set to the analytic

fermionic ground state (shown in Fig. 3.4(d)). We can see that the denominator

remains large and roughly constant. Inset: the denominator as a fraction of its

maximum possible value (obtained if the walkers are all of the same sign as the

analytic wavefunction).
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and as a proof-of-concept, we restrict ourselves to considering implementations that

require no trial wavefunction, and so are limited to using the growth estimator. Any

symmetric component that remains (despite the exchange-moves and cancellations)

will influence this estimator towards the symmetric ground state energy (as we will

see later), rather than being removed as would be the case with a projection-type

estimator. The extension of the method to include a trial wavefunction (when one

is easily available) to allow both the use of the projection estimator and importance

sampling (see Ref. [90]) would be a straightforward way to improve the efficiency of

the method in future.

As is typical in DMC, after modifying the weights according to each part of

the Green’s function, we treat them with the birth-death algorithm described in

Sec. 2.3.2. In atomic systems, timestep error can lead to a walker diffusing too

close to a configuration where an electron overlaps with a nucleus and obtaining

a correspondingly divergent (+ve) weight. The birth-death algorithm will then

attempt to convert this single walker into a divergent number of child walkers. This is

known as a population explosion. We mitigate this outcome by defining a maximum

walker weight wmax and rejecting any DMC iteration where max(|wi|) > wmax (we

take wmax ≥ 4 resulting in only 1 in every ∼5000 iterations being rejecting). We

also use a softened version of the coulomb interaction of the form

Vc,soft(r, rs) =
1

r + rs
(3.22)

For the calculations performed for this chapter, rs ≤ 10−5 which introduces a bias

that is much smaller than the timestep error. We note that schemes to reduce the

error due to coulomb singularities exist [175, 143], but are not employed here.

3.4.4 Effective nodal surface timestep

For systems existing in one spatial dimension the nodal surface is entirely specified by

the antisymmetry constraint [39]. As a result, fermionic methods must be tested on

higher-dimensional systems, which present a significantly increased challenge. For a

fixed number of walkers, the average walker-walker separation 〈|xi − xj|〉i 6=j increases

exponentially with the dimensionality of configuration space; a manifestation of the

sign problem (see section 2.3.3). This allows the +ve and -ve walkers more space

to slip past one another and induce the bosonic collapse of the wavefunction. To

mitigate this outcome we introduce an effective timestep δτeff ≥ δτ and enforce the

nodal surface of the corresponding diffused wavefunction

ψD,eff(x) =
∑
i

wiGD(x, xi, δτeff). (3.23)
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Figure 3.7: The effect of δτeff on the nodal surface of a two-fermion system in 1D.

Left: δτeff = 0.1 Right: δτeff = 1.0. Red circles (blue squares) represent the location

of positive (negative) walkers. The background is shaded according to ψD,eff(x),

where the nodal surface can be seen as a bright line separating the positive (red)

and negative (dark blue) nodal pockets. It can be clearly seen that increasing δτeff

leads to a smoother nodal surface that is closer to the analytic nodal surface at

x = y.

By increasing δτeff we obtain a long-range ansatz for the nodal surface which, as

before, is still free to vary in order to minimize the energy. Taking δτeff > δτ

can be justified on physical grounds, as the kinetic energy contribution penalises

wavefunctions that fluctuate over small length scales. By increasing δτeff, we are

effectively smoothing out such fluctuations, as can be seen in Fig. 3.7. However,

this is still an approximation and, as such, large values of δτeff introduce a bias into

the DMC energy which grows larger as more features of the nodal surface become

unresolvable on the scale of δτeff. In order to keep this bias as small as possible, the

long range nodal surface is applied post-hoc; δτeff does not enter into the diffusive

step or into evaluation of the functions f±(x) (see section 3.4.5).

We can see how increasing δτeff takes us from the bosonic ground state to the

fermionic ground state of a lithium atom in Fig. 3.8. The DMC energy plateaus at

the fermionic energy as δτeff increases above ∼ 0.6 atomic units. We note that the

resulting fermionic state is stable for long times, in contrast with transient methods

such as release-node DMC. On increasing δτeff beyond ∼ 1.5, we enter the regime

where δτeff is too large to resolve the analytic nodal surface and a positive bias is

introduced to the energy (see Fig. 3.8, inset). This is similar to the situation in

fixed-node DMC where the energy is bounded from below by the true ground state

energy and variational with respect to antisymmetric trial wavefunctions.
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Figure 3.8: The DMC energy of a Lithium atom as a function of the effective

timestep δτeff used to define the stochastic nodal surface. For each value of δτeff,

the energy was obtained from a simulation of 104 walkers for 105 iterations with

a timestep of 10−3 atomic units. The DMC energy is shaded to ± the reblocked

error. The blue dotted line is at the non-relativistic fermionic energy obtained from

a Hylleraas-type expansion, accurate to within a basis set error of < 10−9 Ha [225].

The inset shows the effect of increasing δτeff beyond sensible values.

Clearly, it would be useful to be able to identify a sensible value for δτeff without

having to construct plots such as Fig. 3.8. From the form of Eq. 3.23, δτeff can be

interpreted as the range of influence of a walker on the nodal surface (see also Fig.

3.7). A natural choice for its value is the expected midpoint distance between a +ve

walker and its nearest -ve neighbour:

δτeff =

〈
min
x−

|x+ − x−|
2

〉
x+

(3.24)

Where the minimization is over the positions x− of all of the negative walkers, and

the average is over the positions x+ of all of the positive walkers. In a preliminary

calculation of the beryllium atom, the value given by Eq. 3.24 fluctuates around

δτeff = 1.35. Carrying out an extended DMC calculation of the Beryllium ground

state energy using this value for δτeff produces Fig. 3.9, from which the ground state

energy is estimated as −14.665 ± 0.07 Ha, well within the error bars of the exact

value of −14.66654± 2× 10−4 Ha obtained via Hylleraas-type expansions [244].

3.4.5 Summary of method

Combining the propagation stages explored in the preceding sections, we arrive at

Algorithm. 2, which we refer to as Exchange-Diffusion Monte Carlo (XDMC). We

note that steps 3-6 commute and can be applied in any order.
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Figure 3.9: The evolution of a DMC calculation of a Beryllium atom. The calculation

was carried out using 104 walkers for 104 timesteps, each of δτ = 10−3 atomic units.

An effective timestep of δτeff = 1.35 atomic units, derived in a preliminary calculation

from Eq. 3.24, was used to describe the stochastic nodal surface. In the upper panel,

the dashed line is at the target population. In the lower panel, the dashed line is

at -14.66654 Ha, the energy obtained from a Hylleraas-type expansion, accurate to

within 2 × 10−4 Ha of the exact value [244]. The DMC estimate of the energy is

−14.665± 0.07 Ha.

Algorithm 2 Exchange-diffusion Monte Carlo (XDMC).

1: Initialization Initialise the walkers according to the procedure discussed

in Sec. 3.4.2.

2: repeat

3: Exchange moves To each walker, apply one of the exchange moves x →
Pix, w → −w (or no exchange x→ x, w → w), each with equal probability.

4: Diffusion Diffuse each walker from x→ x′ with probability GD(x, x′, δτ).

5: Potential reweighting For each walker, apply the potential reweighting

w → wGV (x, x′, δτ).

6:
Cancellation Reweight positive walkers according to w → f+(x′)w and

negative walkers according to w → f−(x′)w and, if δτeff > δτ , enforce the

extended-range nodal surface of Eq. 3.23.

7: Birth-death Replace each walker with b|w| + uc walkers each of weight

sign(w) where u is a uniformly-distributed random number in [0, 1].

8: until Expectation values have converged to the required tolerance
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3.5 Discussion

3.5.1 Relation to previous schemes

Step 6: cancellation

For the purposes of this thesis we opted not to explicitly pair walkers for cancellation

and instead enforce a stochastic nodal surface defined by the entire population (see

Fig. 3.10). However, the two methods are closely related. If we consider the limiting

case of cancellation between two walkers with weights w1 > 0 and w2 < 0 at x1 and

x2 respectively, then Eq. 3.13 reads

ψ+(x) = w1GD(x, x1, δτ),

ψ−(x) = |w2|GD(x, x2, δτ).
(3.25)

From which we can construct the cancellation function f±(x) according to Eq. 3.17.

The reweighting given by w → f±(x)w now takes the form

w1 → max(w1 − w2GD(x, x2, δτ)/GD(x, x1, δτ), 0),

w2 → max(w2 − w1GD(x, x1, δτ)/GD(x, x2, δτ), 0).
(3.26)

This pairwise cancellation is the same as that proposed in Refs. [14] and [134].

Ref. [14] goes on to show that it is possible to extend this scheme to facilitate

cancellations within a collection of more than two walkers, from which Eq. 3.17

can be recovered in the entire-population limit. In this thesis, Eq. 3.17 was instead

obtained directly by requiring maximal separation of the walkers into nodal pockets

(see appendix A.7). The schemes given in Refs. [14] and [134] can therefore be

thought of as limiting cases of the maximal-separation scheme when only subsets

of the population are considered for cancellation. This is a sensible approximation

to make if each subset consists of walkers that are near to one another, due to

the limited range of the diffusive Green’s function. Indeed, one could approximate

ψD(x) by only considering the k nearest-neighbouring walkers to x, leading to

ψD(x) ≈ ψ
(k)
D (x) =

k∑
i=1

wiGD(x, xi, δτ) (3.27)

where xi are understood to be in order of increasing distance from x. Taking the

k = 1 case corresponds to a Voronoi tiling of configuration space, where the sign of

the diffused wavefunction at x is given by the sign of the nearest walker to x (as

shown in Fig. 3.11). The same form of nodal surface is obtained on heuristic grounds

in Ref. [195], where it is shown that it produces sensible results for low-dimensional

(D < 20) configuration spaces. It is also known that the nodes of the free fermion

density matrix approach that of the Voronoi wavefunction in the high temperature

limit [39].
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Figure 3.10: Schematic of cancellations via explicit pairing (upper two panels) and

a stochastic nodal surface (lower two panels). Red circles represent positive walkers,

blue squares represent negative walkers and empty shapes represent cancelled walk-

ers. When using explicit pairing, walkers are first paired according to some criterion

and then cancelled. This cancellation is often only partial and may take place over

several iterations [270, 14, 134]. When using a stochastic nodal surface, the diffused

wavefunction is evaluated for the configuration of each walker, and any walker with

the wrong sign is immediately removed from the simulation.

-1.0 0 1.0
x1

-1.0

0

1.0

x
2

Figure 3.11: A Voronoi wavefunction for two non-interacting fermions in a 1D har-

monic oscillator. Red circles (blue squares) represent positive (negative) walkers.

The wavefunction is positive (negative) in red (dark blue) shaded regions. The

emerging stochastic nodal surface at x1 = x2 can be clearly seen. Any walker cross-

ing this surface in the next iteration will be removed from the simulation.
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Step 3: Exchange moves

It is clear that the strictly local influence of a DMC walker is the limiting factor

in describing antisymmetric wavefunctions. In this work, non-local information is

introduced via the exchange moves. However, it is possible to incorporate this

information implicitly in the form of the DMC walker itself. The simplest way to

do this is to modify each walker to represent a set of symmetry-related points in

configuration space, rather than just a single configuration:

δ(x− xi)→
∑
P∈P

sign(P )δ(x− Pxi) (3.28)

where P is the set of all fermionic permutations of the system. We can obtain this

representation by imposing antisymmetry constraints for the wavefunction under

any of the permutations P , rather than the pairwise exchanges E that we have

used thus far. Whilst these are equivalent problems (the exchanges E generate the

permutations P), they lead to different propagation schemes. If we were to use the

permutations P , then the constraints that must be satisfied are

ψ(x) = sign(P )ψ(Px) ∀ P ∈ P . (3.29)

Similarly to the exchange case, we can also derive an effective Hamiltonian for the

permutation case:

HP = H − ET +
∑
P∈P

µP (x)(1− sign(P )P ). (3.30)

The Green’s function for this Hamiltonian is given by

GP (x, x′, δτ) = 〈x| exp (−δτHP ) |x′〉 . (3.31)

Following the derivation for HX , for small timesteps δτ we have

GP (x, x′, δτ) ≈ GV (x, x′, δτ)× 〈x| exp(−δτT )

[
1−

∑
P∈P

δτµP (x)(1− sign(P )P )

]
|x′〉

= GV (x, x′, δτ)×[(
1−

∑
P∈P

δτµP (x′)

)
︸ ︷︷ ︸

NP (x′)

GD(x, x′, δτ)︸ ︷︷ ︸
Diffusion from x′→x

+
∑
P∈P

δτµP (Px′)︸ ︷︷ ︸
Xp(x′)

sign(P ) GD(x, Px′, δτ)︸ ︷︷ ︸
Diffusion from Px′→x

]
.

(3.32)

Choosing the µP (x)s such that NP = 0 and XP (x′) is constant (similarly to what

we do in the HX case), and noting that for a matrix A with entries Ai,j

det(A) = |A| =
∑
P∈P

sign(P )
∏
i

Ai,Pi , (3.33)
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we can obtain the form of the Green’s function given in Eq. 13 of Ref. [270] for

walkers of the form given in Eq. 3.28:

GP (x, x′, δτ) =

GV (x, x′, δτ)

∣∣∣∣∣∣∣∣∣∣
g(x1, x

′
1) g(x1, x

′
2) . . . g(x1, x

′
n)

g(x2, x
′
1) g(x2, x

′
2) . . . g(x2, x

′
n)

...
...

g(xN , x
′
1) g(xN , x

′
2) . . . g(xN , x

′
N)

∣∣∣∣∣∣∣∣∣∣
(3.34)

where

g(xi, x
′
j) =

1√
2πδτ

exp

(
−

(xi − x′j)2

2δτ

)
(3.35)

is a diffusive Green’s function taking single-particle coordinates x1, x2... from the

primed and unprimed configurations as arguments.

The propagation of walkers according to Eq. 3.34 is an alternative method to

the propagation using exchange moves. It can be interpreted as the propagation

of a collection of second-quantized walkers, each consisting of N ! symmetry-related

delta-function walkers (as in Eq. 3.28). Due to its determinental form Eq. 3.34

can be evaluated in O(N3) time, rather than O(N !) time [270]. Whilst this is

still more expensive than the exchange-moves scheme (where the Green’s function

can be evaluated in O(N) time) the additional walker images introduced by the

permutations can be used to increase the cancellation rate between +ve and -ve

walkers [270]. In order to determine the additional scope for cancellations, we should

consider how much closer we can make walkers of opposite signs thanks to the

additional permutations. In Fig. 3.12(a), we plot the distribution of the minimum

separation obtainable by applying permutations to two walkers, each distributed

according to a Gaussian with σ = 1 atomic unit. Mathematically speaking, we are

plotting the distribution of the distance D given by

D = min
P∈S
|x− Py| where x, y ∼ N (µ = 0, σ = 1) (3.36)

where S is either the set of exchanges E or the set of permutations P . Ideally, this

distance would be as small as possible to facilitate cancellations between oppositely-

signed walkers. In Fig. 3.12(b), we plot the average value of D against the number

of fermions in the system. This distance increases linearly as the fermion count

increases, resulting in an exponentially decreasing possibility for cancellation; a

manifestation of the sign problem. This increase is slower when using the full set

of permutations P , because it affords us more freedom in the permuted configura-

tions (|P| > |E|). The choice of whether to use exchanges or permutations depends

strongly on how well this additional freedom can be exploited to perform cancella-

tions in an algorithmic setting. Indeed, in the current work, evaluating Eq. 3.17 for
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Figure 3.12: a) The distribution of D, given in Eq. 3.36. b) The average of the

distributions in a), plotted against fermion number, showing the linear trend.

the purposes of cancellations is the rate-limiting step. For this reason, it is difficult

to say in general whether permutations should be sampled directly, or via exchange-

type moves. Further work on the implementation details of the permutation case is

needed to resolve this question.

3.5.2 Scaling

The sign problem manifests itself as an exponential increase in the computational

effort required to keep the bias in the energy estimator small as the number of

fermions increases. In the method described in the preceding sections, the scaling

is determined by the population of walkers required to obtain a stable fermionic
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ground state, and how much this population can be reduced by increasing δτeff.

In Ref. [20], it is shown that the convergence of the energy to the infinite popu-

lation limit can be sped up by reducing the Bose-Fermi gap (the difference in energy

between the bosonic and fermionic ground states). Typically the Bose-Fermi gap is

a constant property of the Green’s function being sampled. However, in the present

method, the Green’s function is itself constructed from the entire walker popula-

tion via inter-walker cancellations in Eq. 3.17 and the approximate nodal surface of

Eq. 3.23. For small populations (without a large value of δτeff to compensate) the

cancellations due to exchanges become vanishingly probable and the we sample the

bosonic dynamics of H rather than fermionic dynamics of HX (this is the cause of

bosonic collapse as discussed earlier). As the population increases, we approach the

dynamics of HX and the Bose-Fermi gap decreases (eventually to zero). This leads

to a departure from fixed Bose-Fermi gap (power-law [20]) behaviour, as can be seen

in Fig. 3.13.

To decrease the population required to describe a particular fermionic system

we can increase the effective timestep δτeff. The improvement in convergence as a

function of population obtained by doubling δτeff can be seen in Fig. 3.13, allowing

us to use around a quarter of the population for the same level of convergence.

However, the amount that δτeff can be increased is bounded by the length scale

needed to resolve the analytic nodal surface, as can be seen in Fig. 3.8 (inset), where

large values of δτeff lead to a positive bias in the energy estimator. The optimal value

of δτeff can be estimated using Eq. 3.24 and, as can be seen in Fig. 3.15, using this

value allows the description of larger systems than would otherwise be possible; we

note none of the calculations in Fig. 3.15 would lead to a fermionic result in the

limit δτeff → δτ . However, as the number of fermions increases, the number of

walkers required to describe the nodal surface eventually also increases, regardless

of the choice of δτeff (forcing one to perform infinite population extrapolations as

in Figs. 3.13 and 3.14). This can also be seen in Fig. 3.15 where, on increasing the

number of fermions, (partial2) bosonic collapse eventually occurs leading to a large

underestimation of the energy. As a result, even though increasing δτeff enables a

finite set of walkers to describe larger systems than would otherwise be possible, it

cannot be increased fast enough with system size to completely overcome the sign

problem.

2Cancellations still occur, and increase the energy estimator, just not at a sufficient rate to

stabilise the fermionic ground state.
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Figure 3.13: The DMC energy as a function of target population for three non-interacting

fermions in a 1D harmonic well. The result for each population was calculated using 5×104

iterations with a timestep of δτ = 10−3 atomic units. Shown are calculations using two

different values of δτeff (0.1 is shown in blue and converges faster than 0.05, shown in

orange). The inset shows the same data plotted against the inverse population. For large

populations, we found a deviation from power-law behaviour where the convergence is

instead exponential. For δτeff = 0.1 the best fit converges as N−0.79 exp(−N/3542) and

gives an energy of 4.497 ± 0.003 Hartree in the infinite population limit. The analytic

energy is 4.5 Hartree.
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Figure 3.14: The DMC energy as a function of the target walker population for a Boron

atom. The result for each population was calculated using 5×104 iterations with a timestep

of δτ = 10−3 atomic units. δτeff was set to 1.35 atomic units, to facilitate comparison with

our calculations of the beryllium atom. The inset shows the same data, plotted against

the inverse population. The exact energy shown is at -24.65386608 ±2× 10−9 Ha, which

is the result obtained in the infinite-basis limit of an explicitly-correlated Gaussian basis

set expansion [37]. The best fit power law converges as N−0.6 and gives an energy of

−24.67± 0.1 Hartree in the infinite population limit.
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Figure 3.15: The energy of a system of non-interacting fermions in a 1D harmonic

well, as a function of the number of fermions. The DMC calculations were carried

out using 5000 walkers for 104 iterations with a timestep of δτ = 10−3 atomic units.

The statistical errors in the energy are smaller than the widths of the lines.

3.6 Limitations and future direction

As discussed in the preceding sections, the major limitation of this method is the

inability to treat larger systems. This arises from the sign problem, and mani-

fests itself as the amplification of bosonic components in the wavefunction, which

eventually dominate the fermionic component. The bosonic components in the cur-

rent method are introduced by the stochastic nature of the walker moves, which do

not preserve exchange symmetry on a per-timestep basis (so even using a purely

fermionic initial state, bosonic components eventually appear). When the method

is running successfully, these components are removed, by a cancellation process,

faster than they are created. However, the increased degrees of freedom of larger

systems lead to more routes in configuration space by which bosonic components

appear - leading to an exponentially increasing rate of bosonic component genera-

tion, which will eventually overcome any cancellation method that does not itself

become exponentially more efficient with system size. This is a fate shared by all

current methods that rely on cancellation processes [134, 14, 270] and alternative

methods to generate exact many-body wavefunctions also exhibit exponential scal-

ing with system size in the general case (e.g configuration-interaction in the full-CI

limit [209]). A possible route to overcome this limitation is to devise a scheme that

preserves exchange symmetry on a per-timestep basis. Such schemes have recently

shown promise in grid-based Monte Carlo calculations [150]. The extension of such

symmetry-preserving methods to continuous space would be an interesting direction
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of future work; a successful continuous-space, symmetry-preserving method would

allow the evaluation of the nodal structure of many-body wavefunctions to an arbi-

trarily small precision for larger systems than the implementation in this work. Un-

derstanding the structure of many-body wavefunctions using such a method would

provide valuable data to improve current approximate methods, in particular den-

sity functional theory. Currently, more accurate, but still approximate, methods are

used for this purpose (such as coupled-cluster theory or configuration interaction).

The ability to double-check these so-called “gold standard” methods using an exact

many-body treatment would allow us to validate their gold-standard status.

Besides the system size limit, there are several ways in which the method (as

described in this chapter) could be improved. These are all available as standard in

production QMC codes and would be straightforward to implement in the present

method

1. Allowing the treatment of spin-polarized systems, which would be required

to treat systems in a magnetic field. The spin degree of freedom is already

implemented in the current code, but is only used to determine the exchange

symmetry of the particles. The derivation of the Green’s function could be

readily generalized to include spin, allowing the derivation of the propagation

scheme for spin-polarized systems.

2. The ability to specify a trial wavefunction would allow the method to take

advantage of importance sampling to increase sampling efficiency [90]. It would

also allow the use of projection estimators for observable properties, reducing

the bias introduced when bosonic components are present (see sec 3.4.3).

3. The aforementioned trial wavefunctions could be used to enforce the nodal

condition upon the walkers. Strictly enforcing the nodal condition would lead

to a normal FN-DMC calculation, but one can easily imagine a scheme whereby

the nodal condition were only softly enforced (e.g by only removing a walker

from the simulation once it has entered a region of the opposite sign, but with a

sufficient magnitude). Either way, this should be strictly optional functionality

as trial wavefunctions used for this purpose add a fixed-node bias to estimated

quantities.

4. The estimation of expectation values besides the total energy (e.g density,

spin-density, one-body and two-body density matrices, structure factors etc.)

- formulae for calculating these from QMC trajectories are readily available in

the literature [90]. This would allow prediction of various experimental quan-

tities, such as X-ray diffraction patterns, as well as investigation of theoretical

problems such as density and density-matrix functional theories.

73



3.7 Conclusion

We have constructed a scheme for fermionic diffusion Monte Carlo that makes no

reference to a trial wavefunction. We have shown how the resulting propagation

scheme can be interpreted as the formation of a stochastic nodal surface, which

is free to vary and minimize the energy. We go on to derive a diffusion scheme

that maximally stabilizes the nodal surface and show that stable fermionic ground

states for simple harmonic systems and light atoms can be obtained. We have

demonstrated that the number of walkers required to resolve the nodal surface can be

reduced, without introducing significant bias, by introducing an approximate long-

range influence on the nodal surface and have provided a method for estimating a

sensible choice for the associated parameter (δτeff). Extending the method to employ

a guiding wavefunction for the purposes of importance sampling and to allow the

use of projection estimators should allow the study of larger systems, but the sign

problem still persists for the method in its current form. We hope that methods

based on the constrained-optimization formalism of DMC introduced in this thesis

will enable studies to improve the understanding of nodal surfaces in electronic

wavefunctions. In future, this method could be applied to the study of exchange and

correlation in periodic systems, with the potential to generating exchange-correlation

functionals for DFT calculations that do not depend on a choice of trial wavefunction

at the DMC level. An open-source C++ implementation of the methods described

in this chapter is available [2].
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Chapter 4

Mixed phases in Lithium metal

4.1 Motivation

Lithium is the lightest simple metal in the periodic table. It has two stable isotopes,

Li-7 (which we focus on in this chapter) and the much rarer Li-6, both of which ex-

hibit a Martensitic (diffusionless) phase transition from BCC to close-packed upon

cooling [9, 233, 54, 216]. Such phase transitions are of significant practical im-

portance, for example in the martensite-austenite transition in steel, upon which

many thermomechanical treatments and alloying methods are based [57], or in the

shape-memory of materials [129]. Li is the simplest metal that undergoes such a

transformation and, because it is so light, (potentially anharmonic) quantum-nuclear

effects contribute significantly to the free energies of different structures [19, 252, 54].

In particular, at low temperatures Li exhibits close-packed polytypism, whereby the

Martensitic transition results in a mixture of metastable close-packed phases that

can be described by hexagonal layers. Thanks to its simplicity, Li is a useful model

system for understanding transformation kinetics and characterization of such mixed

phases, especially where vibrational effects are important [9, 38, 8]. The work in

this chapter weighs in on a recent dispute over the ground state structure of Lithium

metal [9], with a particular focus on anharmonicity and mixed-phase behaviour.

4.2 Vibrational energies

Thanks to Li being the lightest metal, vibrational contributions are of crucial im-

portance to the thermodynamics of Li phases [252, 9, 104]. In particular, we extend

the Harmonic theory of phonons described in Sec. 2.5.1 to the anharmonic approach

described in Sec. 2.5.2 leading to the Hamiltonian

H =

(∑
q,σ

−1

2

∂2

∂p2
q,σ

)
+ V ({pq,σ}, β). (4.1)
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where V ({pq,σ}, β) is the Born-Oppenheimer energy at the perturbation given by

phonon coordinates {pq,σ}. The inverse temperature β can affect the Born-Oppenheimer

energy through entropic effects (Mermin entropy) and smearing of the electronic

Fermi surface. However, we found these effects to be negligible in our calculations,

helped by the use of a dense electronic k-point sampling which provides an accurate

resolution of the Fermi surface.

Following Sec. 2.5.2, we calculate an anharmonic correction to the phonon dis-

persion at each phonon q-point independently by diagonalizing H in the basis of

single phonon states at that q-point, {|q, σ〉},

Hσ,ν(q) = 〈q, σ|H |q, ν〉 (4.2)

Clearly there is an infinite number of excited states (σ’s) at each q-point; in order to

evaluate the matrix elements we truncate this set to the first 20 exited states, which

is more than sufficient for our purposes. The anharmonic potential Eel({pq,σ}, β), is

mapped using DFT calculations for a discrete set of 31 amplitudes for each mode.

The potential is then interpolated to a large number of points (5000) along each

amplitude using a quadratic spline. The integral in Eq. 4.2 is then carried out

over these points to obtain the matrix elements of the Hamiltonian, which is then

diagonalized. The resulting eigenvalues are the anharmonic excitation energies at a

particular q-point, giving an anharmonic correction to the phonon dispersion. These

excitation energies can then be used to construct an anharmonic phonon free energy

at any given temperature (including entropic and zero-point effects) [93, 25]. We

find that this method is around 50 times more expensive than traditional harmonic

phonon calculations.

Application of a Legendre transform to the free energies provides the Gibbs free

energy at a given temperature and pressure via the following minimization:

G(T, P ) = min
V

[F (T, V ) + PV ] (4.3)

The thermodynamically most stable phase has the lowest Gibbs free energy at a

given temperature and pressure. We perform this minimization by fitting F (T, V )

data to a suitable equation of state (see results section 4.3.2). Within this method

the effects of thermal expansion and any anharmonic contributions to the equilibrium

volume of the system are included.

4.3 Results and discussion

4.3.1 Structure searching

The FCC, BCC, HCP and 9R structures have all been proposed in the past to

explain the experimental data for Li [9, 211, 26, 27]. We find that these struc-
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Space group Fmin (meV/atom) V (Å3/atom) N

Fm3̄m (FCC) 0.0 18.96827 39

P63/mmc (HCP) 0.8115 18.97343 17

Im3̄m (BCC) 1.3684 18.94680 26

R3̄m (9R) 2.0593 18.94582 3

I4/mmm 2.1320 18.94480 30

C2/m 2.5273 18.97458 10

Cmcm 2.7300 18.93219 5

Immm 5.2318 18.97877 2

P21/m 11.781 18.99312 3

P6/mmm 14.167 19.05003 3

Table 4.1: The lowest-energy results of a simple Li AIRSS search. For each space

group the number of times it was found (N) is shown. We also report, for each

space group, the lowest Helmholtz free energy found (Fmin, relative to the FCC

phase) and the corresponding volume (V ). The space groups are reported in order

of increasing Fmin. Only electronic energies are calculated, vibrational energies are

neglected in these calculations. The conventional names for the four phases which

are investigated more deeply in this chapter are shown in brackets next to the space

group. In total 469 structures were generated.

tures can be recovered very quickly from first principles calculations using ab initio

random structure searching (AIRSS [220, 204, 221], see Sec. 2.7.2) using only very

simple constraints on the initial structures. In particular we constrain the volume

per atom to be within 50% of the known value (based on the density of solid BCC

Li) and require that no two atoms are within 1Å of one another (approximately

1/3 of the nearest neighbour distance in BCC Li). The unit cells are generated to

contain between 1 and 6 atoms. The results of an AIRSS search with these con-

straints are shown in Table 4.1. We see that it is possible to obtain a good heuristic

understanding of the energy landscape, even when looking at these static stable

structures, where the effects of vibrations are neglected. The electronic energies of

these phases are extremely similar to one another, with differences on the order of

meV/atom. Several other searches were also carried out with additional constraints

on the symmetry of the initial structures, but this was not found to be useful in this

case.

Close packed structures

In the previous section we saw that the AIRSS searches quickly recovered the FCC,

BCC, HCP and 9R structures. Most of the other structures found in the searches
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consist of various close-packed polytypes. Any repeating sequence of hexagonal

layers, where no two adjacent layers are of the same type (the layer types are labeled

A, B and C; see Fig. 4.1), gives a close-packed structure. As a result, there is an

infinite number of different close packed polytypes. Many of these are realized in

the Martensitic phase of Li that is observed experimentally at ambient pressure

and low temperatures; this phase consists of a mixture of close-packed phases and

remnants of the high-temperature BCC phase [9]. This is an example of one of the

most common forms of Martensitic transformation (BCC → close-packed) [135], in

which anharmonic effects may play an important role [103]. Close packed crystal

structures with a short repeating sequence of hexagonal layers are more likely to

be realized in such a mixed phase, as several repeats are more likely to fit between

defects. Layer-layer interactions also diminish rapidly with inter-layer separation

[177]. This justifies the truncation of the infinite set to smaller sequences that are

below a certain repeat length. In particular we investigate the energetics of all of

the possible close-packed Li structures with a sequence of 15 or fewer layers. There

are 10,922 such structures1, 489 of which are unique, labeling equivalent structures

following Ref. [177]2. For a given unique structure i, we call the number of equivalent

structures wi.

The powder neutron diffraction pattern is simulated for each of these unique

structures and the resulting overall mixed-phase pattern is obtained by thermody-

namic weighting of the individual patterns. Neglecting defect energies the resulting

neutron pattern at temperature T is given by (see Appendix. A.4):

I(2θ) = aIBCC(2θ) + b
∑
i

Ii(2θ)
wi

exp
(
Ei−µ
kBT

)
− 1

(4.4)

where Ii(2θ) is the pattern for the ith structure, Ei is the energy per atom and wi

is the multiplicity of the structure (as defined in the previous paragraph). a, b, µ

and T are fitted to the experimental pattern. The resulting combined patterns are

shown in Fig. 4.2.

In agreement with Ackland et al. the experimental data are well described by

a Martensite consisting of a mixture of close-packed phases and BCC remnants

[9]. We give the results for such weighted close-packed patterns both at a fixed

volume per atom, and after optimizing the volume of each phase. The latter case

is equivalent to allowing density variations across the sample based on the local

1This number is ∼ 2
3214. In general the number of close-packed structures with ≤ n hexagonal

layers is ∼ 2
32n. The factor of 2n arises from the number of leaves in a tree such as Fig. 4.1 and the

2
3 arises from the 1

3 of such structures which have the same initial and final layer in the sequence

(meaning they do not correspond to a close packed structure).
2We note a minor error in [177], where it is stated that the number of unique close-packed

sequences with up to 10 atomic layers is 43. There are in fact only 38.
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Figure 4.1: The possible hexagonal-layer stacking sequences from 2 to 5 layers,

showing the stacking sequence, the space group and the electronic energy per atom

relative to the FCC (ABC stacking) electronic ground state. Note that the energy

differences are on the meV scale. The inset is an illustration of the A, B and C type

layers. Structures which are not close packed as a result of having the same first

and last layer in the sequence are labeled as such.

Figure 4.2: Simulated and experimental neutron diffraction patterns for Li. The

experimental pattern (< 20 K at ambient pressure) from [30] is shown, as well as

patterns derived by thermodynamically weighting close-packed Li structures and

AIRSS structures using DFT energies (see Eq. 4.4). For the close-packed patterns

all unique close-packed sequences consisting of fewer than 16 hexagonal layers are

included. A Gaussian broadening was applied to the derived patterns with a width

derived from a best-fit to the experimental data.
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crystal structure. We see little difference in the resulting patterns, likely because

the optimized volumes are all very similar.

Simply weighting the close packed phases thermodynamically in this way repro-

duces many of the non-BCC characteristics of the experimental pattern, but not as

accurately as the large-scale molecular dynamics calculations performed in Ref. [9].

This is because transformation kinetics are not fully described by a simple thermo-

dynamic weighting of phases, as energy barriers along transition pathways between

phases also play an important role [38]. Such kinetic effects can be captured by

molecular dynamics simulations using suitable interatomic potentials [9, 141]. For

completeness, the pattern that results from combining the structures found in our

AIRSS search using Eq. 4.4 is also given in Fig. 4.2. We see that this actually gives

a reasonably close pattern to the experiment, suggesting that a decent first approxi-

mation to a mixed phase material might be obtained by simply mixing together the

structures that appear in an AIRSS search for that material.

Absence of the DHCP structure

It is interesting to note that our AIRSS searches did not return the DHCP structure

(with hexagonal stacking sequence ABCB, space group P63/mmc - see Tab. 4.1).

In order to investigate this further, we took the DHCP structure and displaced the

locations of each of the atoms by a small random amount (up to 0.1Å in any direc-

tion), followed by a geometry optimization. In the majority of cases the structure

failed to relax back down to the DHCP structure; suggesting it has a small basin

of attraction in configuration space. The resulting structures are shown in Table

4.2. The Cmcm structure appears most frequently and the Cm structure is also

prevalent. These structures both appear in the search used to generate Tab. 4.1,

in lieu of the DHCP structure. As a result, we are led to believe that the basin

of attraction of the DHCP structure is small, and closely surrounded by the other

minima appearing in Table 4.2. All of these structures are very close in energy to

the DHCP structure and many have space groups which are subgroups of P63/mmc,

suggesting that they block the DHCP structure in our AIRSS search.
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Fmin (meV) Space group Nsg

0.0 P63/mmc 12

0.009 Cmcm 19

0.039 Pm 4

0.040 Amm2 5

0.049 Cmc21 5

0.068 Cm 11

0.086 P21/m 5

0.095 C2 9

0.104 P1 5

0.122 C2/m 2

0.194 Cc 2

0.201 C2221 1

0.207 C2/c 1

0.210 P21 3

0.245 P63mc 1

0.263 P 6̄m2 1

Table 4.2: The space groups resulting from perturbing the atoms of the DHCP

(ABCB, P63/mmc) structure by up to 0.1Å and performing a subsequent geometry

optimization. Nsg is the number of structures found with each space group.

4.3.2 Free energy calculations

Quasi-harmonic results

Quasi-harmonic calculations of the Gibbs free energy are performed for the FCC

and BCC phases of Lithium, using a parameter set chosen to give well-converged

physical properties. We use plane-wave DFT with a PBE functional, a plane-wave

cutoff of 3 keV and an electronic k-point grid with a spacing of 0.02 Å−1. The

phonon dispersion is calculated on a 10× 10× 10 grid in reciprocal space using the

highly-efficient non-diagonal supercells method [176] and then Fourier interpolated

to a 40×40×40 grid. The Helmholtz free energy is calculated for a range of volumes

around the equilibrium volume and fitted to the Birch-Murnaghan equation of state

[33] to extract the Gibbs free energy. An example of such a fit at 300 K is shown in

Fig. 4.3.

The Gibbs free energy derived from the Birch-Murnaghan fits is shown in Fig. 4.4

for a range of temperatures between 0 and 350 K. The Murnaghan, Rose-Vinet and

Poirier-Tarantola equations of state [201, 271, 224] give essentially identical results.

A transition from the FCC to a BCC phase occurs upon heating at 217±13 K. This

phase transition is observed on isobaric heating of the FCC phase experimentally;

however, the calculated transition temperature is somewhat above the experimental

range of 110-200 K [9, 216, 246, 190, 235, 52]. The reverse BCC → FCC transition
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Figure 4.3: The Helmholtz free energy per atom verses volume per atom at 300 K

for FCC and BCC Lithium. The solid lines show the Birch-Murnaghan fit used to

derive the 300 K data in Figs. 4.4 and 4.5.

System Parameter Value Standard fitting error

E0 -199.6000 eV 0.6 meV

FCC V0 19.36 Å3 0.05 Å3

K0 0.08993 GPa−1 0.0009 GPa−1

E0 -199.6011 eV 0.4 meV

BCC V0 19.39 Å3 0.02 Å3

K0 0.09100 GPa−1 0.0003 GPa−1

Table 4.3: Results of the fit to the Birch-Murnaghan equation of state at 0 K.

is not seen experimentally upon isobaric cooling at ambient pressure. The FCC

phase is instead prepared via a high-pressure route [9] to avoid formation of the

Martensitic phase investigated in section 4.3.1. Isothermal compressibilities and

thermal expansion coefficients are given in Tables. 4.3 and 4.4 (calculated from fits

at 0 and 300K, respectively) and match experimental results closely [139, 50].

Quasi-anharmonic results

Using the method outlined in section 4.2, we calculate an anharmonic correction

to the Helmholtz free energy, effectively moving from the quasi-harmonic regime

into the “quasi-anharmonic”. The resulting correction to the Gibbs free energy is

shown in Fig. 4.6. The effect on the FCC → BCC transition is included in Fig. 4.4.

Anharmonic effects are much stronger in the BCC phase, with the FCC → BCC

transition temperature increasing by 15 K (to 232 K) as a result.

It is also interesting to note the difference between the lowest-lying eigenvalues

of the harmonic and anharmonic Hamiltonians, shown in Figs. 4.7 and 4.8. These

corrections are present even at zero temperature as they result directly from the
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System Parameter Value Standard fitting error

E0 -199.6383 eV 0.9 meV

FCC V0 19.78 Å3 0.07 Å3

K0 0.0822 GPa−1 0.001 GPa−1

E0 -199.6420 eV 0.7 meV

BCC V0 19.85 Å3 0.03 Å3

K0 0.0802 GPa−1 0.0006 GPa−1

Table 4.4: Results of the fit to the Birch-Murnaghan equation of state at 300 K

from Fig. 4.3.

Figure 4.4: The Gibbs free energy of the FCC and BCC Li phases at a range of

temperatures. This data was obtained by fitting the Birch-Murnaghan equation of

state to data for F (V, T ) from DFT calculations (see main text). The standard

fitting error is shown as a shaded region. The result of including the anharmonic

correction from Fig. 4.6 is also shown.

Figure 4.5: From the same calculation as Fig. 4.4, but showing the derived equilib-

rium volume and thermal expansion.
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Figure 4.6: The correction to the Gibbs free energy of BCC and FCC Li that results

from including the effects of anharmonic vibrations via Eq. 4.2.

anharmonicity of the 0 K Born-Oppenheimer surface. The most significant effect is

a stiffening of the N-point (0, 0.5, 0) phonon in BCC Li by ∼ 1 meV (around 30 %

stiffer than the harmonic case). It has been suggested that stiffening of this mode

could be important in stabilizing BCC phases [46], however we find that this mode

is dynamically stable to begin with (contrary to BCC Zr in [223, 46]).

Functional dependence, including the 9R and HCP structures

We perform a second set of similar calculations which include the 9R and HCP

structures as well as the BCC and FCC structures. These calculations are carried out

with an LDA functional and with less intensive convergence parameters (1 keV plane-

wave cutoff, 0.035 Å−1 electronic k-point grid spacing and an 8x8x8 phonon q-point

grid) in order to investigate the sensitivity of our results with respect to convergence

parameters and the functional used. The resulting Gibbs free energies are shown

in Fig. 4.9. The sequence of phase transitions with increasing temperature is the

same as in the PBE calculations in Fig. 4.4. However, the FCC → BCC transition

temperature in the LDA calculations is 47 K higher at 264±26 K. This is due to the

fact that the transition temperature is extremely sensitive to the convergence of the

differences in the Gibbs free energy; we estimate an increase of 117 K in transition

temperature per meV increase in the BCC-FCC energy difference. The appearance

of a metastable BCC → 9R transition upon cooling through 120 K is compatible

with the Martensitic transition, however the predicted transition temperature is

once again somewhat above the experimental range [246, 235, 247, 190, 216, 52].

We go on to show that the FCC → BCC transition is driven by entropic contri-

butions to the phonon free energy. The phonon free energy is given by:

Fph(T, V ) =
1

2

∫
ωD(ω, V )dω +

∫
ω

exp (ω/T )− 1
D(ω)dω − TSph(T, V ) (4.5)
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Figure 4.7: The 0 K vibrational band structure of BCC Li. The solid line shows the

normal harmonic phonon dispersion. The dotted line shows the lowest eigenvalue of

the anharmonic Hamiltonian given in Eq. 4.2. The Brillouin zone positions are given

in terms of primitive reciprocal lattice vectors. The shapes of the mode potentials

at points N and H in the Brillouin zone are shown in the inset with quadratic fits

(red dashed lines) to illustrate the anharmonicity at the N point.

Figure 4.8: As Fig. 4.7, but for FCC Li. In this case the anharmonicity is negligible.
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Figure 4.9: The Gibbs free energy of Li phases at a range of temperatures. The

data was obtained by fitting the Birch-Murnaghan equation of state to data for

F (V, T ), obtained using DFT calculations (see main text). The standard fitting

error is shown as a shaded region.

where D(ω) is the phonon density of states. The first term is the zero-point energy,

the second arises from the thermal occupation of phonon states and the entropic

term, Sph, is given by [93, 25]:

Sph(T, V ) =

∫
ω/T

exp (ω/T )− 1
D(ω, V )dω−

∫
ln [1− exp (−ω/T )]D(ω, V )dω (4.6)

The importance of the entropic term becomes apparent when its contribution is

explicitly neglected, resulting in the Gibbs free energy landscape shown in Fig. 4.10

in which phase transitions are no longer present. The individual contributions to the

phonon free energy for BCC Li are shown in Fig. 4.11, in which it can be clearly seen

that the entropic contribution dominates the zero-point and occupational terms.

The FCC, HCP and 9R phases show similar behaviour. Because the low-lying

phonon modes in BCC Li are softer than those of FCC (see Figs. 4.7 and 4.8), the

entropic effects are stronger, which leads to the FCC→ BCC phase transition upon

heating.

4.4 Conclusions

We have investigated the application of a general framework for deriving the phase

behaviour of materials with large vibrational free-energy contributions to metallic

Li. The AIRSS approach [220, 204] is found to quickly pick out relevant low-energy

phases with little effort, including both the BCC phase and numerous close-packed

phases. We have found that DFT predicts a zero-temperature FCC phase and a

room temperature BCC phase; a metastable transition from BCC to the 9R phase

is also predicted in the region of FCC stability. These results are consistent with
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Figure 4.10: As Fig. 4.9, but neglecting the entropic contribution to the phonon

free energy. With this modification we see that the phase transitions in the 0–300

K range disappear.

Figure 4.11: Phonon contributions to the Gibbs free energy of BCC Li.
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experimental results, which show a (partial) Martensitic transition from BCC to

various close-packed forms on cooling [9, 246, 190, 235]. Experiments also show

that the FCC phase is stable at low temperatures, but may be formed via a high-

pressure pathway [9]. The predicted FCC → BCC transition temperature is found

to be extremely sensitive to changes in the Gibbs free energy landscape (∼ 117

K/meV). As a result, effects which would normally be considered negligible become

potentially important, including the effects of anharmonic vibrations. We calculate

an anharmonic correction of up to 0.4 meV/atom, which increases the predicted

FCC → BCC transition temperature by 15 K to 232 K, but find that it does not

qualitatively change the phase diagram. Our calculations show that the N-point

phonon in BCC Li is dynamically stable, contrary to the case for BCC Zr in Ref. [223,

46] and is around 30% stiffer when anharmonic effects are included. We calculate the

various contributions to the Gibbs free energy and find that entropic contributions

to the phonon free energy are of crucial importance, without which phase transitions

disappear entirely.
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Chapter 5

Stability and superconductivity of

rare earth decahydrides

5.1 Motivation

Hydrogen was predicted to be a room-temperature superconductor at very high

pressure in 1968 [18], but the pressures required to metallise hydrogen are difficult

to obtain [191, 187, 74, 53, 56, 181]. Hydrides have been suggested to have lower

metallisation pressures than pure hydrogen due to chemical pre-compression [16]

and therefore might become superconducting at more readily accessible pressures.

This idea has motivated a surge of research examining potential superconductivity

in high-pressure hydrides, with several reviews summarising recent developments

[66, 304, 87, 35, 206, 203, 218].

Theoretical studies of ScH3, LaH3 [70], YH3, YH4 and YH6 [136, 162, 110] iden-

tified hydrides of rare-earth elements as potential high-temperature superconduc-

tors. First-principles structure searching studies of rare-earth hydrides have reported

structures with high hydrogen content adopting cage-like structures [165, 213]. Of

particular note, a Tc of 264-286 K was calculated for Fm3̄m LaH10 at 210 GPa [165],

while the analogous YH10 structure was calculated to have Tc = 305-326 K at 250

GPa. Slight distortions of the cubic LaH10 phase were found to lead to C2/m and

R3̄m structures at lower pressures [98, 164], though Ref. [79] showed that quantum

effects render Fm3̄m as the true ground state. These predictions were followed by

experimental measurement of critical temperatures reaching 260 K in LaH10 at 170-

200 GPa [249, 62]. The high-Tc phase was determined to be a structure with an fcc

arrangement of La atoms, lending support to theoretical predictions.

In addition to the aforementioned studies, others have focused on heavier rare-

earth hydrides, exploring the synthesis and superconducting properties of cerium

[231, 161], praseodymium [300] and neodymium [298] hydrides. Here, within the
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framework of density functional theory (DFT) [115, 142], we revisit LaH10 and

YH10 using crystal structure prediction methods. We find a phase transition to

a new hexagonal phase in LaH10 at high pressures, with the metastability of this

phase at low pressures offering an explanation for the experimental observation of

hcp impurities in fcc samples [62]. We go on to predict the phases and corresponding

critical temperatures that may be observed in YH10.

5.2 Theory and methodology

5.2.1 Phonons and superconductivity

The Hamiltonian of a coupled electron-phonon system [102] can be written (see Sec.

2.6) as

H =
∑
kn

εnkc
†
nkcnk︸ ︷︷ ︸

electronic dispersion

+
∑
qν

ωqν

(
a†qνaqν +

1

2

)
︸ ︷︷ ︸

phonon dispersion

+

1√
Np

∑
kqmnν

gmnν(k, q)c
†
m,k+qcnk

(
aqν + a†−qν

)
.︸ ︷︷ ︸

electron-phonon coupling

(5.1)

In this work, we calculate the electronic Kohn-Sham eigenvalues εnk, phonon frequen-

cies ωq,ν , and electron-phonon coupling constants gmnν(k, q) appearing in H from

first-principles using the quantum espresso DFT code [100, 101]. The Hamilto-

nian in Eq. 5.1 can be treated within Migdal-Eliashberg theory [71], allowing us to

define the electron-boson spectral function

α2F (ω) =
1

N(εF )

∑
mnqν

δ(ω−ωqν)
∑
k

|gmnν(k, q)|2× δ(εm,k+q− εF )δ(εn,k− εF ). (5.2)

From α2F we extract the superconducting critical temperature by solution of the

Eliashberg equations using the elk code [1]. From the quantities appearing in H we

may also construct the electronic and vibrational densities of states, from which we

can derive the Gibbs free energy as a function of temperature (as we did in Chapter

4). We do this at a range of pressures, allowing us to construct pressure-temperature

phase diagrams.

To evaluate the double-delta sum in Eq. 5.2 for finite k- and q-point grids, we

follow the method detailed in Appendix A of Ref. [279] and smear the delta functions

with finite-width Gaussians. In order to best approximate the delta functions, the

smallest sensible smearing should be used. However, the smearing must be large

enough to accommodate the finite k-point grids used. We identify the optimal

choice of smearing from discrepancies in the results between different k-point grids

[279], as can be seen in Figs. 5.1 and 5.2.
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Figure 5.1: The dependence of Tc on the double-delta smearing width, σ, for Fm3̄m-

YH10 at 350 GPa. The region of insufficient smearing is shown, along with our choice

of σ for this structure and pressure. The smallest value used in an electron-phonon

calculation with default quantum espresso settings is shown.
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Figure 5.2: The dependence of Tc on the double-delta smearing width, σ, for Im3̄m-

YH6 at 160 GPa. A recent experimental measurement at 166 GPa, falling just

within our calculated Tc range, is also shown [265]. We note that Refs. [265, 145]

highlighted that previous calculated Tc values were considerably higher than their

experimental observations and that the results of Ref. [110], which used accurate

Wannier interpolation techniques, are in agreement with ours.

Our electron-phonon calculations were carried out using the Perdew-Burke-Ernz-
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erhof (PBE) generalised gradient approximation [215] and ultrasoft pseudopoten-

tials, validated against the all-electron WIEN2k code [34]. Well-converged k-point

grids with a spacing of at most 2π×0.015 Å−1 and an 820 eV plane wave cut-off

were used. The q-point grids used were typically 8 times smaller than the k-point

grids and were Fourier interpolated to 10 times their original size. For the cubic

systems studied, this corresponds to ≥ 24 × 24 × 24 k-point grids and a 3 × 3 × 3

q-point grid Fourier-interpolated to 30× 30× 30.

5.2.2 Structure searching

Our structure searching calculations were performed using ab initio random struc-

ture searching (AIRSS) [219, 203] and castep [48]. The PBE functional, castep

QC5 pseudopotentials, a 400 eV plane wave cut-off and a k-point spacing of 2π×0.05

Å−1 were used in these searches unless otherwise stated. The c2x software [228]

was used for converting between castep and quantum espresso file formats, and

also for reporting the space groups of structures at various tolerances.

5.3 Results and discussion

In the following sections, we report results in terms of phonon-corrected pressures,

obtained by fitting the Birch-Murnaghan equation of state [33] to our data. Where

static DFT pressures are reported instead, they are labelled as PDFT - this second

set of pressures facilitates comparison with previous calculations as they are simply

an input parameter to the DFT geometry optimisation.

5.3.1 LaH10

Low enthalpy candidates found by AIRSS for LaH10 include the space groups Fm3̄m,

R3̄m, and a 2-formula-unit C2/m, which had been identified previously. The

searches also revealed a new structure of P63/mmc symmetry. These structures

are shown in Fig. 5.3. A C2/m structure with 3 formula units per unit cell was also

found to be energetically competitive, but was not considered further in this work

as it behaves similarly to the 2-formula unit phase over the pressure range of inter-

est. We also found several previously unreported structures at low pressures with

space groups Pnnm, C2 and P212121 and unit cells containing 2, 3 and 4 formula

units, respectively. These are the lowest enthalpy structures in the low pressure

region, but are distortions of the high-symmetry Fm3̄m structure and, similarly to

the case of R3̄m noted in Ref. [79], it is possible that anharmonic effects may remove

them from the potential energy surface. In addition to this, the low symmetry and
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a) b) c)

Figure 5.3: Structures of LaH10. (a) 2 formula unit/cell C2/m, (b) 2 formula

unit/cell P63/mmc, (c) 1 formula unit/cell Fm3̄m. The R3̄m structure is not

shown as it is visually indistinguishable from the Fm3̄m structure at the pressures

of interest.

large unit cells of these structures make converged phonon calculations prohibitively

expensive; they are therefore not considered further in this work.

The calculated LaH10 phase behaviour is shown in Fig. 5.4 and the corresponding

critical temperatures are shown in Fig. 5.5. Our calculations for the Fm3̄m phase

include unstable phonon modes for PDFT ≤210 GPa. In the harmonic picture, ex-

plicitly taking into account this dynamical instability leads to a window of stability

for the C2/m phase, in agreement with previous calculations [98, 164]. However we

note that, under the assumption that the unstable modes can be neglected in the

calculation of the Gibbs free energy, we obtain the same behaviour as the anhar-

monic calculations of Ref. [79], i.e., Fm3̄m is the only phase with a predicted region

of stability at lower pressures. With increasing pressure, as noted in previous the-

oretical work [79], the R3̄m structure approaches Fm3̄m symmetry. We therefore

expect that these phases will not be distinguishable at high pressures.

At 300 K, the P63/mmc structure becomes thermodynamically favourable at

pressures above∼420 GPa. More importantly, this hexagonal phase is also metastable

at low pressures, lying within 20 meV/atom of the cubic phase down to 150 GPa,

and therefore provides an explanation for the experimental observation of hcp im-

purities in fcc-LaH10 samples at 170 GPa in Ref. [62]. A low-energy hexagonal LaH9

structure predicted previously in similar pressure regions [148] could offer an alter-

native explanation for the observation of these impurities. However, the authors of

Ref. [62] determined that the two kinds of hcp impurities in their fcc-LaH10 sam-

ples possessed LaH10 stoichiometry. We also calculated a high-quality La-H convex

hull at 150 GPa using AIRSS [219] and qhull [23] (see Fig. 5.6). It shows that the
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Figure 5.4: The Gibbs free energy as a function of pressure for energetically com-

petitive phases of LaH10, plotted relative to a third-order Birch-Murnaghan fit of

the Fm3̄m data. Crosses represent calculations with unstable phonon modes - these

points are not included in the Gibbs free energy fit. Solid lines are at 300 K, dashed

lines are at 0 K.
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Figure 5.5: Calculated Tc(P ) for dynamically stable phases of LaH10 from direct

solution of the Eliashberg equations. The width of the lines arises from our treat-

ment of the Morel-Anderson pseudopotential, µ∗, [200] as an empirical parameter

with values between 0.1 and 0.15. The Fm3̄m result has been extended into the

region where it is dynamically unstable (shaded according to unstable fraction of

the phonon density of states) in order to facilitate comparison with the experimental

results of Refs. [62, 249]. This extension was achieved by removing the contribu-

tion of unstable phonon modes, in their entirety, to the Eliashberg function while

maintaining its normalisation.
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P63/mmc-LaH10 structure predicted in this work lies closer to the hull than the

P63/mmc-LaH9 structure of Ref. [148]. It is therefore likely that the hcp impurities

originate from our new P63/mmc-LaH10 phase.

To facilitate comparison with experiment, we have calculated powder X-ray

diffraction patterns for cubic and hexagonal LaH10 and hexagonal LaH9 at 150 GPa -

these are shown in Fig. 5.7. At 150 GPa, we find a c/a ratio of 1.526 for P63/mmc-

LaH10 and of 1.564 for P63/mmc-LaH9. At the same pressure, the volume per

formula unit for P63/mmc-LaH10 is 33.15 Å3 and for P63/mmc-LaH9 is 31.73 Å3.

We calculate Tc = 232-259 K for Fm3̄m-LaH10 at 269 GPa (PDFT=250 GPa),

which is lower than the previous theoretical result of Tc = 257-274 K [165]. However,

we observe an increase in Tc on reduction of the double-delta smearing parameter to

below our calculated optimal value, potentially explaining this discrepancy. Careful

choice of smearing has previously been noted as important in other hydride systems

[107]. We also note a previous calculation of Tc for this structure at 200 GPa

[213], however, in agreement with other calculations [164, 98] we find Fm3̄m to be

dynamically unstable at this pressure. This dynamical instability means we cannot

directly compare with experiment, which found Tc = 250 K at around 170 GPa [62]

and Tc = 260 K at 180-200 GPa [249]. However, ignoring the contribution of the

unstable phonon modes to the Eliashberg function at pressures ≤ 210 GPa allows

for a rough estimation of Tc in these regions; this is depicted as the faded-out section

in Fig. 5.5 and the results obtained are in agreement with experimental results. For

the C2/m phase, using an optimal value of smearing we calculate Tc = 205-225 K

at 262 GPa (PDFT=250 GPa), compared to Tc = 229-245 K in Ref. [164].

5.3.2 YH10

Low-enthalpy candidates for YH10 found using AIRSS include Fm3̄m, which had

been identified previously, a slight distortion of this phase, R3̄m, and structures

of P63/mmc and Cmcm symmetry. These structures are shown in Fig. 5.8. The

calculated YH10 phase behaviour is shown in Fig. 5.9 and the corresponding critical

temperatures are shown in Fig. 5.10. We do not predict any phase transitions within

the range of stability of the YH10 stoichiometry [213]. However, the difference in

Gibbs free energy between the Fm3̄m and R3̄m phases is exceedingly small (see

Fig. 5.9), reflecting their structural similarity.

Previous calculations for Fm3̄m-YH10 found Tc = 305-326 K at 250 GPa [165]

and Tc = 303 K at 400 GPa [213]. Here, we calculate Tc = 270-302 K at 324 GPa

(PDFT=300 GPa) and Tc = 250-280 K at 425 GPa (PDFT=400 GPa). Our more

conservative Tc results can again be explained by considering the smearing parameter

used to approximate the double-delta integral in Eq. 5.2. We were able to reproduce
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Figure 5.6: A convex hull for the La-H system at 150 GPa, accurately calculated

using castep, k-point spacing of 2π×0.03 Å−1 and a 700 eV plane-wave cut-off.

Default on-the-fly pseudopotential strings were used for H, but the inclusion of a frac-

tion of a 4f electron in the generation of the La pseudopotential was found to be cru-

cial leading to the modified string 2|2.3|5|6|7|50U:60:51:52:43{4f0.1}(qc=4.5)[4f0.1].

A pseudopotential without this addition was unable to reproduce the all-electron

Fm3̄m-LaH10 PV curve and led to a qualitatively different convex hull. In agree-

ment with Ref. [148], we find that LaH9 is not on the hull at this pressure. However,

we also find that LaH16 does not lie on the hull at 150 GPa, despite finding the

P6/mmm-LaH16 structure studied in that work.
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Figure 5.7: Simulated X-ray powder diffraction patterns for the Fm3̄m structure of

LaH10 and potential hexagonal impurities.

a) b) c)

Figure 5.8: Structures of YH10. (a) 2 formula unit/cell Cmcm, (b) 1 formula

unit/cell Fm3̄m, (c) 2 formula unit/cell P63/mmc. The R3̄m structure is, again,

not shown.
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Figure 5.9: The Gibbs free energy as a function of pressure for energetically com-

petitive phases of YH10, plotted and interpolated relative to a third-order Birch-

Murnaghan fit of the Fm3̄m data. Solid lines are at 300 K, dashed lines are at 0

K.
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Figure 5.10: Calculated Tc(P ) for dynamically stable phases of YH10 from direct

solution of the Eliashberg equations. µ∗ is, again, taken to have a value between 0.1

and 0.15.

98



the results of previous calculations by using the minimum default smearing employed

in quantum espresso, which in this case overestimates Tc by ∼30 K (see Fig. 5.1)

compared to optimal smearing. We note that our results agree with those obtained

using Wannier interpolation techniques [110]. Using the same method to calculate

an optimal smearing also provides results in agreement with recent experimental

measurements for Im3̄m-YH6 [265], as shown in Fig. 5.2.

5.4 Conclusions

We have identified a new hexagonal phase of LaH10 with P63/mmc symmetry. Our

calculations show a pressure-induced phase transition into this new phase from the

cubic phase believed to be observed in experiment [249, 62]. The overall phase

behaviour predicted within the harmonic picture is C2/m → Fm3̄m → P63/mmc

with all three of these phases predicted to be high-Tc superconductors. Making the

assumption that unstable modes can be neglected, however, gives the same picture

as the anharmonic calculations of Ref. [79] where Fm3̄m is the true ground state at

lower pressures. The new hexagonal phase predicted here offers a direct explanation

for the observation of hcp impurities in recent experiments [62].

We found that YH10 adopts very similar structures to LaH10, with one of P63/mmc

symmetry again amongst the most energetically competitive candidates. Over the

pressure range considered the Fm3̄m/R3̄m phase remains the most stable. The

difference in Gibbs free energy between these two structures is extremely small,

meaning synthesis of a pure sample of either could be difficult.

We found the double-delta smearing employed in superconductivity calculations

to be of particular importance. Its effect on calculated Tc changes from system to

system; in particular, in our calculations the default minimum smearing employed

by quantum espresso overestimates Tc for LaH10 by ∼20 K and YH10 by ∼30 K

when compared to optimal smearing.
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Chapter 6

Machine learning for novel

superconducting hydrides

6.1 Motivation

In the previous chapter, we demonstrated a methodology to investigate the stability

and superconductivity of a particular target system. In particular, we looked at

rare earth hydrides X in the stoichiometry XH10. However, in recent years, poten-

tial superconductivity has been investigated in many compressed hydrides, including

scandium [70], sulfur [65, 59, 76], yttrium [136, 162, 165, 213, 110, 265, 145, 243],

calcium [274], actinium [236], thorium [151], pnictogen [91], praseodymium [300],

cerium [231, 161], neodymium [298], lanthanum [165, 213, 249, 62, 243, 148] and

iron hydrides [184, 152, 107]. Several reviews summarising recent developments in

the field are available [66, 304, 87, 35, 218, 31]. Inspired by known superconduc-

tors, researchers have also attempted to increase Tc by chemical means; replacing

atoms in known structures and assessing stability and superconductivity [44], dop-

ing known binaries with more electronegative elements to make ternary hydrides

[255], and mapping alchemical phase diagrams [108]. However, the search for super-

conducting hydrides has, so far, largely focused on finding materials exhibiting the

highest possible critical temperatures (Tc). This has led to a bias towards materials

stabilised at very high pressures, which introduces a number of technical difficulties

in experiment.

In this chapter, we train machine learning models on a set of literature data

for superconducting binary hydrides. Machine learning has previously been used in

modelling hydride superconductors, with a focus on predicting the maximum obtain-

able critical temperature for a given composition [238]. However, on examination of

the literature (see Fig. 6.1), it becomes apparent that the pursuit of superconductiv-

ity close to ambient conditions is as much about reducing the required pressure as it
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Figure 6.1: The critical temperatures of binary hydrides at various pressures found

in the literature are shown as circles. Materials on the frontier towards ambient

conditions are labeled. Multiple points with the same stoichiometry arise from Tc

for a particular phase calculated at different pressures, or from different structural

phases of the same material. New structures found in this work, with Tc calculated

using DFPT (as reported in Table 6.1), are shown as translucent squares; of note is

Immm-RbH12 (labeled, see also Fig. 6.6), which extends the frontier significantly.

is about increasing the critical temperature. This is especially important given that

working at high pressure can often present a far greater experimental challenge than

working at low temperature. In this work, we therefore model critical temperature

and operational pressure on an equal footing. Our models are used to inform the

choice of composition for crystal structure searches and subsequent electron-phonon

calculations, with the aim of extending the operation of hydride superconductors

towards ambient conditions.

6.2 Trends in Hydrides

A large amount of computational - and some experimental - data for the binary

hydrides is available in the literature [98, 265, 79, 110, 145, 281, 297, 285, 178, 267,

236, 151, 274, 290, 149, 84, 106, 70, 82, 278, 300, 168, 239, 213, 165, 289, 242,

157, 147, 238, 171, 208, 45, 95, 302, 287, 251, 156, 152, 173, 171, 284, 245, 160, 77,

258, 123, 277, 121, 159, 257, 118, 171, 283, 303, 73, 163, 131, 164, 60, 249, 62, 162]
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(values from these references form our dataset, shown in Fig. 6.1). In some subsets

of hydrides certain material properties show a simple dependence on the properties

of the non-hydrogen element. For example, in the alkaline earth hydrides the van

der Waals radius of the ion is well correlated with the metallization pressure [291].

However, obtaining strong electron-phonon coupling at low pressures is, in general, a

more complicated process; simple correlations between composition and operational

pressure or critical temperature are therefore absent in the dataset as a whole. We

look at more complicated trends by constructing machine learning models of critical

temperature and operational pressure which take as input a set of easily-obtained

material descriptors. For a particular element E and corresponding binary hydride

EHn these descriptors are

• hydrogen content (n)

• van der Waals radius of E

• atomic number of E

• mass number of E

• numbers of s, p, d and f electrons in the (atomic) electron configuration of E

Once constructed, we apply the model to all materials with the chemical composition

EHn, where E is any element in the periodic table and n ∈ [1, 2, . . . , 32)1. From these,

the materials which are predicted to exhibit superconductivity closest to ambient

conditions serve as a guide for searches for new binary hydrides.

6.2.1 Neural network

We train a fully-connected neural network (using the Keras frontend to the Tensor-

flow machine-learning library [47, 189]), with the topology shown in Fig. 6.2, on the

dataset shown in Fig. 6.1. The squared absolute error |(∆Tc,∆P )|2 between the pre-

dicted and literature values serves as our cost function, which we minimize using the

Adam stochastic optimizer [137]. The input (and expected output) data is positive

definite and therefore has a non-zero mean and is not normally distributed, prompt-

ing the use of self-normalizing activation functions [140, 49] to improve training

behaviour. Since the number of data points is comparable to the number of pa-

rameters in our network, the risk of over-fitting becomes significant. To mitigate

this, we split the data into a randomly selected validation set (consisting of 25%

of the initial data points) and a training set (consisting of the other 75%). Once

the model starts over-fitting to the training data the validation set error starts to

increase, allowing us to choose the model parameters from the training epoch for

1A maximum of 31 hydrogens per atom was chosen to avoid over-extrapolation from the dataset

(where the maximum is 16).
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Figure 6.2: Topology of our neural network model. An input layer is fed to the

material descriptors for the hydride EHn, one per input node. This layer then feeds

two densely-connected intermediate layers (of 32 nodes each), the last of which feeds

the output layer with one temperature node and one pressure node.

which the validation set error is minimal. We cross-validate the results by repeating

this process 64 times and averaging the predictions - this is an approximation of

leave-p-out cross-validation with p = 25% of the dataset. We also apply L2 regular-

ization to the parameters in the intermediate dense nodes to decrease the propensity

for over-fitting, improving the convergence of this cross-validation scheme.

6.2.2 Model behaviour

The basic behaviour of the machine learning model is shown in Fig. 6.3. We see that

it achieves reasonable correlation with the literature values and predicts sensible

pressures and temperatures for unseen materials. To gain insight into properties

which favour ambient-condition superconductivity we define a measure of distance

D = |(P, Tc−293)|1. This distance decreases as we move towards ambient conditions

from the pressure-temperature region containing the known hydrides (see Fig. 6.1).

In Fig. 6.4 we plot the distribution of material properties for the 10% of hydrides

predicted to exhibit superconductivity closest to ambient conditions (i.e., the 10%

with lowest D). We can see that the model predicts the heavy alkali and alkaline

earth metal hydrides to be the best candidates, with the number of close-to-ambient

materials then decreasing as we go across each period. The distribution of the

number of hydrogen atoms is more uniform, suggesting it is necessary to consider

a range of different stoichiometries for each composition. These conclusions are
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reinforced by the construction of a generalised linear regression model (see Appendix.

A.3), which reproduces the general trends exhibited by the machine learning model

(but, unsurprisingly, exhibits worse correlation with the literature values). The

predicted optimal (minimum D) hydride compositions from the machine learning

model are shown for each element of the periodic table in Fig. 6.5.

We note that the points included in our dataset will be of varying quality, come

from different research groups, and are of both experimental and theoretical origin.

The majority are theoretical and calculated within the harmonic approximation.

Although it has been shown that anharmonicity can affect the calculated critical

temperature for hydrides [75, 76], there is insufficient data in the literature to build

a model exclusively from anharmonic results. However, since we only seek to ex-

tract general trends, which will serve simply to inform areas of focus for structure

searching, the dataset is sufficient for our purposes.

6.3 Structure searching

The models constructed in the previous section point towards the alkali and alka-

line earth metal hydrides as some of the best candidates for superconductivity near

ambient conditions. From these, we studied caesium and rubidium hydrides; these

systems were chosen due to their predicted proximity to superconductivity at ambi-

ent conditions (see Figs. 6.4 and 6.5) and the fact that they have not been studied

extensively in the past, unlike the hydrides of other elements in these two groups.

Caesium and rubidium polyhydrides have been studied previously using structure

searching methods in Refs. [240] and [117], respectively, although potential super-

conductivity was not investigated in either case.

Our structure searching calculations were performed using ab initio random

structure searching (AIRSS) [219, 203] and the plane-wave pseudopotential code

castep [48]. Since our models suggest that a wide range of stoichiometries should

be considered, convex hulls were constructed using AIRSS and qhull [23] in order to

identify those which are stable at 50, 100 and 200 GPa. The Perdew-Burke-Ernzer-

hof (PBE) generalised gradient approximation [215], castep QC5 pseudopotentials,

a 400 eV plane-wave cut-off and a k-point spacing of 2π×0.05 Å−1 were used in all

searches. The Cs-H convex hulls calculated in this work at 100 and 200 GPa both

partially agree with the hull calculated at 150 GPa in Ref. [240]. Once stable stoi-

chiometries had been identified, additional AIRSS searches for RbH3, RbH5, RbH9,

RbH11, RbH12, CsH5, CsH7, CsH13 and CsH15 using the same parameters and pseu-

dopotentials were performed at 100 and 200 GPa.
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Figure 6.3: Behaviour of our machine learning model of critical temperatures and

associated operational pressures for binary hydrides. The correlation between the

predicted and observed values for the data in the literature is shown, as well as the

resulting distribution of pressures and temperatures when the model is applied to

the set of all possible binary hydrides as defined in Section 6.2.
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Figure 6.4: Distribution of hydrogen atoms per non-hydrogen atom and atomic

number of the non-hydrogen element for the 10% of hydrides that our machine

learning model predicted to exhibit superconductivity closest to ambient conditions

(i.e., the 10% with lowest D). Black dashed lines indicate the atomic numbers of

alkali metals.
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Figure 6.5: The periodic table of optimal binary hydrides according to our machine

learning model. The predicted critical temperature, corresponding pressure and op-

timal hydrogen content is shown for each element. Elements are colored according to

the predicted distance from ambient-condition superconductivity D = |(P, Tc−293)|
(with pressure measured in GPa and critical temperature measured in K). Inset: the

distribution in pressure-temperature space of these predictions. We note that we

did not explicitly prevent the neural network from predicting negative critical tem-

peratures and it does so for MnH. However, in general, the machine learning model

has learned that critical temperatures should be positive (see the lower right panel

of Fig. 6.3).
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6.4 Selecting candidate structures

For each selected stoichiometry, the enthalpy was calculated as a function of pres-

sure for the most stable structures arising from the AIRSS search. These geometry

optimisations were performed using quantum espresso [100, 101], the PBE func-

tional, a 950 eV cut-off, ultrasoft pseudopotentials and a k-point spacing of 2π×0.02

Å−1. The electronic density of states (DOS) at the Fermi energy was also evaluated

for each structure at 50 GPa and 150 GPa in order to identify metallic structures.

We were then able to limit our interest to structures which were both energetically

competitive (according to the enthalpy plots) and had a considerable DOS at the

Fermi energy in the low-pressure region (25-125 GPa). The remaining candidates, for

which electron-phonon coupling calculations were performed, include C2/m-RbH12,

Immm-RbH12, and various CsH7 and RbH3 structures (see Table 6.1).

6.5 Electron-phonon coupling and superconduc-

tivity

Having selected promising Cs and Rb candidates according to stability and metallic-

ity, we go on to calculate their superconducting properties, using the same method

as in the previous chapter (chapter 5). In carrying out the necessary DFPT calcu-

lations of the parameters appearing in the Hamiltonian, we use the PBE functional,

the same ultrasoft pseudopotentials as in the stability screening, an 820 eV plane-

wave cut-off, and a q-point grid with a spacing of ≈ 2π × 0.1 Å−1 (e.g., a 2× 2× 2

grid for a 26-atom unit cell of RbH12). Two separate k-point grids are used (of 63

and 83 times the size of the q-point grid, respectively), allowing us to determine the

optimal double-delta smearing width necessary to calculate the critical temperature

following the method outlined in chapter 5.

The results of the critical temperature calculations are shown in Table 6.1. The

highest-Tc results arise from structures with a cage-like arrangement of hydrogen

atoms surrounding a central non-hydrogen element. The electronic states that orig-

inate from these cages are near the Fermi level, and are strongly coupled by cage

vibrations. This provides the phonon-mediated pairing mechanism necessary for

conventional superconductivity. Combined with a high average phonon frequency,

owing to the light mass of the hydrogen atoms, this results in a high critical temper-

ature (c.f the Allen-Dynes equation [11]). This can be seen directly by looking at

the Eliashberg function, shown in Fig. 6.6, for two illustrative structures from Table

6.1. The enhanced high-frequency portion of the Eliashberg function for the high-Tc

cage-like RbH12 structure is apparent. In contrast, strong electron-phonon coupling
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Figure 6.6: The Eliashberg function for Immm-RbH12 and Pmma-RbH3 found in

our AIRSS searches (see Table 6.1). It is clear to see the enhanced high-frequency

part of the Eliashberg function for Immm-RbH12, arising from the hydrogen cage.

In contrast, the Eliashberg function for the layered RbH3 structure does not extend

to such high frequencies. This effect can also be seen from the phonon linewidths,

plotted along the phonon dispersion in Figs. 6.7 and 6.8.

is absent at high phonon frequencies for states near the Fermi level in the layered

RbH3 structure, leading to a negligible Tc. This can also be seen by examining the

phonon linewidth broadening that arises due to electron-phonon coupling (see Figs.

6.7 and 6.8).

6.5.1 Limitations of the machine learning model

It is perhaps unsurprising that our machine learning model suggests low-hydrogen-

content compositions, such as RbH3, despite their resulting unfavorable structures

for superconductivity, as it is trained on mostly cage-like structures. As a result,

the model may implicitly assume that compositions it is given will behave as if

they adopt cage-like arrangements, leading to an overestimation of Tc. Despite

this, most of the structures found are high-Tc cage-like superconductors, of which

Immm-RbH12 is particularly interesting due to its location in Fig. 6.1.

In order to move beyond cage-like superconductors, it is necessary to generalize

the model by either using a more diverse training set or by incorporating physical

information that remains valid outside of the training set. Given the limited data

in the literature, we explore the latter option in chapter 7.
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Stoichiometry Space group Pressure (GPa) Tc (K)

RbH12 C2/m 50 108

RbH12 C2/m 100 129

RbH12 C2/m 150 133

RbH12 Cmcm 100 82

RbH12 Immm 50 115

RbH12 Immm 100 119

RbH12 Immm 150 126

CsH7 P1 100 90

CsH7 I4mm 100 34

CsH7 P4mm 100 33

CsH7 I4/mmm 100 10

CsH7 Cm 100 5

CsH7 Cmc21 100 89

RbH3 Pmma 100 0

RbH3 Cmmm 100 0

Table 6.1: Critical temperatures calculated using DFPT for promising hydride com-

positions - the structures listed here were found in this work using AIRSS and are

available in an online repository [3]. The data in this Table is also shown in Fig. 6.1

for comparison with previous results in the literature.
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Figure 6.7: Phonon dispersion of the Immm phase of RbH12 showing linewidths due

to electron-phonon coupling, calculated using DFPT. Note that the high-frequency

phonon modes due to vibrations of the hydrogen cage have large linewidths, resulting

in a high critical temperature.
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Figure 6.8: As Fig. 6.7, but for the Pmma phase of RbH3. Because of the layered

structure, there are no high-frequency phonon modes which display strong electron-

phonon coupling (in contrast to the case in Fig. 6.7).
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6.6 Testing potential screening techniques for high-

Tc candidates

In this work we also tested two potential methods for cheaply ranking potential

superconductors. Good superconductivity in hydrides generally requires hydrogenic

states close to the Fermi level, which (as exemplified by the findings of this work)

often means favouring cage-like structures and avoiding structures with molecular-

character H2 units. It is therefore possible that the hydrogen-derived DOS nor-

malised by the total DOS at the Fermi energy, NH(EF )/N(EF ), may give some

indication of whether a particular structure will exhibit high-Tc superconductivity.

Here we also consider the hydrogen-derived electron-phonon coupling estimates (ηH)

from Gaspari-Gyorffy theory [97] and test whether these two quantities could pro-

vide a method for ranking different structures (of the same stoichiometry and at

the same pressure) before performing expensive electron-phonon calculations. We

implemented Gaspari-Gyorffy theory within the elk code [1]. The basics of this

theory and its use here are explained in Appendix. A.9.

The calculated Tc values for the structures predicted and studied in this work

allowed us to directly assess these potential screening methods. We observe that

ηH correctly predicts the Tc ordering for the RbH12 structures at fixed pressure, as

was the case for the LaH10 and YH10 systems from the previous chapter, on which

preliminary tests were performed. The DOS ratio NH(EF )/N(EF ) also demon-

strates roughly the same general trends, but is cheaper to calculate since it can

be obtained using a pseudopotential code. Unfortunately, looking instead at CsH7,

NH(EF )/N(EF ) appears to be much less predictive and the performance of ηH is

also mixed. We will revisit the use of these quantities for screening applications for

a wider variety of systems in chapter 7.

6.7 Conclusions

Having identified the need to reduce the operational pressure of hydride supercon-

ductors, we searched for crystal structures which would exhibit superconductivity

in novel regions of pressure-temperature space. We found that guiding structure

searching techniques using a machine learning model allowed us to target the most

promising regions. Specifically, we constructed models of critical temperature and

operational pressure trained on the available theoretical and experimental results for

binary hydride superconductors. Several novel systems were identified as promis-

ing superconductors closer to ambient conditions; here we focused on Cs and Rb

hydrides, using AIRSS to identify stable stoichiometries and predict crystal struc-
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tures. Other promising candidates included Ca, Sr, Ba, Ra, Ac, Th, La and Sc

hydrides, most of which had already been theoretically studied to some extent [274,

258, 31, 118, 236, 151, 239, 165, 213, 164, 148, 70]. Critical temperatures of ener-

getically-competitive candidate structures were then calculated from first principles

using DFPT. A Tc of up to 115 K was calculated for RbH12 at 50 GPa, which repre-

sents a significant extension towards ambient-condition superconductivity from our

dataset.
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Chapter 7

High-throughput discovery of

superconductors

7.1 Introduction

Having discussed how to calculate the structural and superconducting properties of

hydrides in chapter 5 and investigated potential descriptors for screening candidate

structures in chapter 6, we are well placed to carry out searches for superconductors

on a larger scale. In order to apply these searches to as wide a range of materials

as possible, we will need to refine the screening methods and DFPT calculations.

In this chapter, we aim to develop a workflow that is capable of exploring the

structure and superconductivity of binary hydrides composed from elements across

the entire periodic table over a 10 to 500 GPa pressure range. Stable and metastable

structures are screened using a model trained to predict Tc from inputs including

electronic density of states (DOS) ratios and electron-phonon coupling estimates

from Gaspari-Gyorffy theory [97] (see Appendix. A.9). High-throughput electron-

phonon calculations are then performed for a large number of structures, selected

based on the predictions of this model. This provides more Tc results which can be

fed back into the model training set, allowing us to run the process iteratively. The

results of this high-throughput model-training stage allow us to identify the most

promising candidate systems at each pressure; more thorough structure searching

is then performed for each of these systems and fully converged electron-phonon

calculations are performed for the best predicted candidates. A large number of

high-Tc superconductors are efficiently identified, including several not reported in

previous work.
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7.2 Optimized Electron-phonon DFPT

In this chapter we employ the method discussed in chapter 5 to calculate the super-

conducting properties of candidate hydride structures. However, electron-phonon

calculations are extremely expensive, reducing the breadth of materials that can

be considered. One of the greatest assets of open-source code such as quantum

espresso is that it enables users to profile and optimise their specific use cases,

rather than relying on developers to predict where bottlenecks may arise. At several

stages of this study, we profiled the Quantum espresso code and implemented

optimizations1. For example, in order to evaluate the double-delta smearing, terms

of the form exp(−(ε1−εF )2) exp(−(ε2−εF )2) need to be evaluated (for a calculation

of Fm3̄m-LaH10, around 5 billion times). The exponentials were evaluated individu-

ally and via a lookup in a library of various smearing functions. By evaluating them

directly (and combined into a single exponential), the whole calculation is sped up

by around a factor of 4. We also found that the electron-phonon coupling calculation

spent a significant amount of time in symmetrising the matrix of electron-phonon

coefficients. Optimizing a single routine, called around one million times for the

LaH10 calculation, resulted in a 2 times speedup in the entire calculation. We also

extended the electron-phonon calculation to parallelise over phonon modes, allowing

better utilization of multi-node supercomputers. We emphasise that these modifi-

cations did not take a large amount of time to implement, and allowed us to study

many more materials than would otherwise be possible. We strongly encourage

other users of open-source code to profile their use cases, even if just to report bot-

tlenecks to developers. Once we have the electron-phonon coupling constants from

the expensive DFPT calculations, we obtain the superconducting critical temper-

ature either by direct solution of the Eliashberg equations using the elk code [1]

or using the Allen-Dynes equation [12]. Both of these methods are essentially free

(when compared to the preceding DFPT calculations) and we compare them in Sec.

7.6.6.

7.3 Automated electron-phonon calculations

An often-overlooked aspect of carrying out expensive calculations efficiently is the

human cost. Setting up an electron-phonon calculation for a particular material

is an involved process involving careful choice of parameters, accurate creation of

input files, selection of quantities to calculate and management of the resulting data

(which can be on the order of 100 GB/structure for electron-phonon calculations).

1The optimizations to quantum espresso resulting from the work for this chapter have been

submitted to the developers (see https://gitlab.com/miicck/q-e)
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During the work involved in chapters 5 and 6, I developed a python library [126]

to automate calculations using the Quantum Espresso code; an overview of its

structure is shown in Fig. 7.1. This library reduces the human input required to

carry out an electron-phonon calculation from several hours of fiddling with input

files and writing submission scripts to a few minutes of work at most, making the

current high-throughput study possible.

7.4 Initial structure searching

The structure searching calculations for this chapter were performed using ab initio

random structure searching (AIRSS) [217, 219] and the plane-wave pseudopoten-

tial code castep [48]. The Perdew-Burke-Ernzerhof (PBE) generalised gradient

approximation [215], castep QC5 pseudopotentials, a 340 eV plane-wave cut-off

and a k-point spacing of 2π×0.07 Å−1 were used. For the initial searches, sp-AIRSS

[198] was utilised and structures with 8-48 symmetry operations were generated.

This served the dual purpose of (1) reducing the computational cost of the searches

and subsequent calculations during the model training phase and (2) allowing us to

explore high-symmetry structures (which may be metastable or stabilised at non-

zero temperatures). For each element, X, in the periodic table, a convex hull was

produced at 10, 100, 200, 300 and 500 GPa in order to assess the stability of binary

hydrides of the form XnHm. Structures on or near these static-lattice convex hulls

were then selected for further investigation at the pressure of interest. In particu-

lar, in the training phase, stoichiometries within 80 meV/formula unit of the hull

were selected (for each of these stoichiometries just the lowest energy structure was

chosen). In order to discuss stability more clearly in this chapter, we will introduce

two quantities: Estoic, the distance of the given stoichiometry from the static-lattice

convex hull, and Estruc, the distance of the given structure from the lowest energy

structure of the same stoichiometry. Here, for example, we are selecting structures

with Estoic ≤ 80 meV/formula unit and Estruc = 0.

7.5 Tc model and training phase

Our Tc model is a Gaussian Process Regression (GPR) model, initially trained using

a set of 160 structures and corresponding Tc values from the literature (collected from

Refs. [237, 120, 92, 7, 286, 124, 182, 275, 230, 288, 109, 82, 94, 294, 67, 241, 68, 78,

292, 170, 295, 296, 148, 96, 299, 174, 301, 172, 183, 284, 132, 83, 303, 159, 153, 239,

149, 160, 293, 169, 158, 5, 238, 106, 243, 127]). The inputs to our Tc model are the

Gaspari-Gyorffy electron-phonon coupling estimates for hydrogen and element X
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Figure 7.1: The QET python library.
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(ηH and ηX), the mass of atom X in atomic units (MX), the total DOS at the Fermi

energy appropriately normalised by cell volume (N(EF )), and the hydrogen DOS

divided by the total DOS at the Fermi energy (NH(EF )/N(EF )). Throughout this

work, whether the structure originated from the literature or from our own searches,

these inputs were computed using the modified version of elk. For the literature

data, where the structure was not given at the same pressure as Tc was reported, the

structure was relaxed at the correct pressure using castep [48]. Refs. [32, 69, 88,

305] and the data tables within were found to be helpful for identifying additional

points to include in the original literature set.

The model was trained via optimisation of model parameters and hyperparame-

ters in matlab [4] and was tested using nested cross-validation, with an inner loop

used to optimise the parameters and an outer loop used to monitor the fit of the

resulting model to unseen data. The correlation was evaluated in this way, repeated

over several different random splittings of the data each time.

The overall process used in the training phase was iterative; structures at a given

pressure were selected for further study based on the predictions of the model, with

Tc values for the best predicted structures calculated explicitly using DFPT and

fed back into the model’s training set for use in the next iteration. The model

was then retrained and predictions were made for a set of search structures at the

next pressure until all pressures had been considered. To make the large number

of electron-phonon calculations feasible, a relatively sparse q-point sampling was

used in the training stage, chosen to reproduce the known result for Fm3̄m-LaH10

[64, 243]. This corresponds to a q-point spacing of 2π×0.15Å−1 (a 2 × 2 × 2 grid

for Fm3̄m-LaH10 at 200 GPa). The Allen-Dynes equation was used to estimate Tc

throughout the training phase.

Our method is summarised in Fig. 7.2. Fig. 7.3 shows the number of structures

considered in total at each stage of the training process - given the relatively large

cost of electron-phonon calculations (even in high-throughput operation), this figure

highlights the importance of the stability filtering and model-based screening steps

in our workflow. In total, 119 new DFPT data points were added to the training

set in this work. Predictions for all previously-considered search structures were

recalculated using the final model to ensure nothing of interest had been missed in

earlier iterations. Most of the electron-phonon calculations performed in the training

phase were for structures with a high predicted Tc according to our model, however,

occasionally these calculations were performed for structures with mid-range or low

Tc predictions in order to improve the behaviour of the model. The correlation of the

predicted Tc values with the calculated Tc values across the training set decreased

slightly on addition of more data to the training set. This is not surprising for two

main reasons: (1) the original (literature-based) training set contained 160 entries
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for binary hydrides of 45 different elements largely focused around 100-350 GPa,

whereas the training set for the final model contains 279 entries for binary hydrides

of 57 different elements from 10 to 500 GPa, and (2) as mentioned previously, the

results we add to the training set are computed in a high-throughput manner and

therefore will be somewhat under-converged compared to typical values found in the

literature.

During the training of our model, we were able to efficiently rediscover a number

of binary hydrides (with relatively high Tc values) which had been reported previ-

ously, including Im3̄m-H3S [68, 63, 78], Im3̄m-LaH6 [214], I4/mmm-AcH12 [237],

Im3̄m-SeH3 [292], R3̄m-SrH6 [32], R3̄m-LiH6 [282, 122], Fm3̄m-LaH10 [167, 214,

243, 64, 250, 148], Fm3̄m-YH10 [214, 243], Im3̄m-ScH6 [284, 6, 214], P63/mmc-

ThH9 [239], R3̄m-SrH10 [259], Pm3̄m-SiH3 [132], C2/m-LaH7 [148], Im3̄m-CaH6

[275], Im3̄m-MgH6 [85], Fm3̄m-ThH10 [153, 239], KH6 [296], LaH8 [167, 148], BaH12

[238], LaH5 [148], AcH10 [237], LiH8 [282], LaH11 [148], MgH12 [179], YH9 [214, 146]

and ScH12 [284]. Although found previously, only half of these 26 stoichiometries

were in our original literature data set, highlighting the capabilities of our method.

We also identified a number of other systems with the potential to exhibit high-Tc

superconductivity. The most promising systems overall are studied further in Sec

7.6.

7.6 Focused searches and final results

From the Tc results obtained during training, the most exciting candidate systems

could be identified and studied in more depth. More focused structure searches were

performed for hydrides of Na, Ca, La, Ac, and K at 100 GPa, hydrides of La, Ac,

S, Mg, and Na at 200 GPa, hydrides of Li, Sr, K, Mg, Na, and Sc at 300 GPa,

and hydrides of Li, Sr, Mg, Na, Yb, Y, and Ca at 500 GPa. For these calculations,

the earlier symmetry constraints were relaxed, but all other parameters remained

the same as in the initial searches. No particularly high Tc results were found at

pressures as low as 10 GPa at the training stage (a large proportion of the structures

were not even metallic), so no additional searches were performed at this pressure.

On completion of the focused searches, we again employed our modified version of

elk to calculate ηH , ηX , N(EF ), and NH(EF )/N(EF ) for the stable and metastable

structures found. In this phase, stoichiometries with Estoic ≤ 25 meV/formula unit

were selected. For the stoichiometries on the hull (Estoic = 0), 2-5 of the most stable

structures within were chosen. For the selected off-hull stoichiometries, only the

lowest energy structure (Estruc = 0) was chosen. The inputs were then fed into the

final Tc model trained in Section 7.5 and fully converged electron-phonon calcula-
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Figure 7.2: A flowchart summarising our methodology.
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tions were performed for the structures with the highest predicted Tc values at each

pressure (as well as the most promising candidates identified during training). These

results are shown in Fig. 7.4. Promising structures that remained dynamically stable

after convergence of the q-point grids are shown in Table 7.1. We find near room-

temperature superconductors at every pressure considered, which we elaborate on

in the following sections. Unless otherwise stated, all critical temperatures reported

in the following sections are from direct solution of the Eliashberg equations.
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Stoic. Symmetry P(GPa) Tc (AD, K) Tc (EL, K) λ Estoic Estruc

NaH6 Pm3̄m 100 228-267 248-279 2.54 28 0

CaH6 Im3̄m 100 150-179 216-253 5.81 9 137

Na2H11 Cmmm 100 127-156 134-161 1.28 0 0

KH10 C2/m 100 105-124 134-157 2.45 0 0

AcH5 P 1̄ 100 48-65 49-69 0.91 0 0

NaH16 Fmm2 100 47-60 61-75 1.10 0 0

NaH24 R3̄ 100 40-57 40-55 0.82 0 0

LaH5 P 1̄ 100 37-55 40-58 0.83 0 0

AcH11 C2/m 100 14-23 13-20 0.71 0 0

NaH6 Pm3̄m 200 235-275 260-288 2.06 39 16

AcH12 P63mc 200 197-231 245-280 3.92 11 0

MgH13 Fm3̄m 200 179-210 196-224 1.98 17 635

SH3 Im3̄m 200 173-203 196-219 1.77 0 0

NaH8 I4/mmm 200 146-171 152-175 1.63 26 124

AcH6 Fmmm 200 110-140 169-204 2.01 0 14

LaH7 C2/m 200 98-120 105-134 1.23 3 0

MgH4 I4/mmm 200 63-88 73-94 0.98 0 101

SH7 Fmmm 200 57-78 58-78 0.91 29 0

AcH4 Fm3̄m 200 35-54 42-58 0.99 19 0

Mg2H5 R3̄m 200 22-39 24-39 0.74 139 21

MgH6 Im3̄m 300 248-284 271-301 2.28 19 437

YH9 F 4̄3m 300 220-255 261-293 2.58 2 0

ScH8 Immm 300 185-217 212-233 2.06 3 0

LiH2 P6/mmm 300 162-193 177-207 1.45 40 75

Na2H14 C2/m 300 157-190 167-198 1.48 3 0

ScH12 P 1̄ 300 127-157 137-165 1.28 0 103

LiH6 R3̄m 300 121-152 130-161 1.30 0 0

ScH6 Im3̄m 300 118-150 135-161 1.26 0 0

NaH5 P4/mmm 300 121-144 138-164 1.92 1 0

LiH6 C2/m 300 109-142 130-163 1.16 0 14

Li2H6 Cmcm 300 104-137 112-140 1.06 1 0

ScH14 P 1̄ 300 87-109 91-115 1.20 6 0

MgH4 I4/mmm 300 53-81 59-84 0.76 0 0

MgH12 Pm3̄ 500 294-340 360-402 2.65 0 259

MgH13 P3m1 500 239-275 257-287 2.21 12 0

SrH10 Fm3̄m 500 239-275 285-319 2.22 8 †
Na2H18 P63/mmc 500 218-256 235-269 1.67 0 0

MgH10 C2/m 500 209-250 232-270 1.63 9 0

SrH24 R3̄ 500 195-227 218-245 1.88 9 0

YH18 P 1̄ 500 179-212 213-246 1.99 25 0

YH20 P 1̄ 500 176-205 212-244 2.21 39 0

SrH10 R3̄m 500 165-199 190-228 1.31 8 0

CaH10 R3̄m 500 155-187 184-220 1.51 3 0

Na2H11 Cmmm 500 132-166 141-180 1.12 0 0

CaH15 P 6̄2m 500 120-160 134-167 1.01 0 0

SrH15 P 6̄2m 500 100-136 110-139 0.93 0 0

MgH8 C2/m 500 82-110 91-121 0.96 0 0

Na2H11 I4/mmm 500 72-105 76-104 0.80 0 297

Table 7.1: Allen-Dynes and Eliashberg Tc values for dynamically stable supercon-

ductors found in this work, along with calculated λ and stability measures (in

meV/formula unit).
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7.6.1 100GPa

We start our discussion of the results with the structures at 100 GPa - a relatively

low pressure in the field of hydride superconductivity. Of particular note is a Pm3̄m

structure of NaH6, a stoichiometry which we find to be metastable in agreement with

Ref. [22] (where a P 1̄ structure is found to be more favorable until 150 GPa). The

structure consists of a cubic lattice of H octahedra with Na at the body-centred

positions (see Fig. 7.6). While experimental synthesis of sodium polyhydrides has

been demonstrated [253], superconductivity in the system seems under-studied given

its promise here with a calculated Tc of 248-279 K. This places the structure at a

crucial position in pressure-Tc space, strongly influencing the apparent low-pressure

trend of maximum Tc (see Figs. 7.4 and 7.5) and hinting at the exciting possibility

of other low-pressure high-Tc structures.

Also of interest at 100 GPa is an Im3̄m structure of CaH6 (shown in Fig. 7.7).

As was the case with NaH6, this structure is found to be metastable in agreement

with previous calculations [275]. However, despite strong electron-phonon coupling

(leading to an extremely high λ of 5.81), its critical temperature (216-253 K) is

found to be slightly lower than that of Pm3̄m-NaH6 (248-279 K), due to a lower

average phonon frequency. This result is comparable to the critical temperature of

220-235 K calculated for this structure at 150 GPa in Ref. [275], also via solution

of the Eliashberg equations. The Allen-Dynes equation is found to drastically un-

derestimate the critical temperature of this system as a result of electrons coupling

to soft phonon modes (see Fig. 7.9). This is unsurprising as the equation is known

to be sensitive to small changes in α2F (ω) at low frequencies (in particular, the

functional derivative δTc(AD)/δα2F (ω) diverges as ω → 0 [29], in this case towards

−∞).

Fig. 7.8 also demonstrates that whilst the next best structures, Cmmm-Na2H11

and C2/m-KH10, have similar average phonon frequencies to Pm3̄m-NaH6, they

do not exhibit such high coupling strengths. This leads to lower Tcs of 134-161 K

and 134-157 K, respectively. Superconductivity in the KH10 stoichiometry has been

studied previously [238]; it was found to be on the convex hull at 150 GPa (and

off-hull at 50 GPa) and a Tc of 148 K was estimated for an Immm structure based

on a regression model. Ref. [116] found KH10 to be above the convex hull at 100

GPa and instead found metastable metallic structures of other stoichiometries, but

superconductivity was not directly investigated. The calculated critical temperature

of KH10 at 100 GPa exceeds a previously calculated Tc for KH6 at higher pressure

(73 K at 166 GPa [256]).
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(a) (b)

Figure 7.6: The 100 GPa structure of Pm3̄m NaH6 viewed along the (a) [100] and

(b) [111] directions of the standardized cell.

(a) (b)

Figure 7.7: The 100 GPa structure of Im3̄m CaH6 viewed along the (a) [100] and (b)

[111] directions of the standardised cell. The Im3̄m structure of MgH6 investigated

at 300 GPa can be obtained by substituting the Ca atoms with Mg atoms.
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Figure 7.9: The Eliashberg function of Im3̄m CaH6 at 100GPa, demonstrating the

reduction of Tc from Allen-Dynes relative to that of solving the Eliashberg equations.

This reduction is due to the presence of electrons coupling to soft phonon modes.
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Figure 7.10: The 200 GPa Fm3̄m structure of MgH13. The structure consists of

Mg atoms and axis-aligned cuboctahedra of hydrogen in a checkerboard pattern.

Each cuboctahedra has an additional hydrogen atom at its centre to make up the

necessary 13.

7.6.2 200GPa

At 200 GPa, the Pm3̄m structure of NaH6 remains the highest Tc structure found,

with Tc rising slightly from its 100 GPa value to 260-288 K. However, as pressure

increases we find this stoichiometry to be less stable with respect to decomposition.

Similarly to Ref. [237], we find several actinium hydrides to be high-temperature

superconductors at this pressure, most notably a metastable P63mc structure of

AcH12 (see Fig. 7.11) with a critical temperature of 245-280 K.

200 GPa also marks the appearance of Mg hydrides, which become increasingly

prevalent with pressure. Of particular note is a cubic structure of MgH13 with the

space group Fm3̄m (see Fig. 7.10), which possesses a slightly higher calculated Tc

than that of the experimentally-verified Im3̄m-H3S [63] at the same pressure. In

agreement with Ref. [179], we find MgH13 to lie off of the convex hull at 200 GPa.

They report significantly lower critical temperatures for on-hull structures.

A notable absence from the 200 GPa results is LaH10. Several structures of

LaH10 (including the experimentally-verified Fm3̄m structure [64]) were found in

our structure searches and flagged as good candidates by our Tc model, but were

dynamically unstable at the harmonic level. This has been noted previously [99,

166, 243]. We elaborate on the consequences of dynamic instabilities on our results

and potential ways to deal with them in section 7.6.5.
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Figure 7.11: The 200 GPa P63mc structure of AcH12 viewed along the [001] direction

of the standardized cell.

7.6.3 300GPa

At 300 GPa an Im3̄m structure of MgH6 exhibits the highest critical tempera-

ture calculated with a Tc of 271-301 K (in agreement with previous calculations

[85]). This structure can be obtained by substituting Mg for Ca in the CaH6 struc-

ture investigated at 100 GPa (see Fig. 7.7). By instead substituting only half of

the Ca atoms at 200 GPa, it has been reported that one obtains an even higher

critical temperature ternary superconductor [254]. Hybridizing compatible binary

crystal structures in this way could provide an efficient method to design future

high-temperature ternary superconductors.

With a critical temperature of 261-293 K, an F 4̄3m structure of YH9 (shown

in Fig. 7.12(a)) is the next highest temperature superconductor found at 300 GPa.

This stoichiometry (although with P63/mmc symmetry) has been synthesised ex-

perimentally and was found to exhibit a critical temperature of 243 K at 201 GPa

[146]. Y-H systems have been extensively studied theoretically [111, 214, 243] with

critical temperatures in excess of 200 K calculated over large pressure ranges.

We find that an Immm structure of ScH8 with a similar motif to F 4̄3m-YH9

(see Fig. 7.12(b)) is also a high-temperature superconductor at this pressure with

a critical temperature of 212-233 K. However, this is significantly higher than the

value of ∼ 115 K (Allen-Dynes) obtained previously in Ref. [226] using a 16×16×16

k-point grid and norm-conserving pseudopotentials with 3 valence electrons for Sc.

In contrast, we use a 36× 36× 36 k-point grid and ultrasoft pseudopotentials with

11 valence electrons for Sc; a more substantial investigation into pseudopotentials is

needed to fully solve this discrepancy. Whilst the authors did not calculate Tc for

ScH8, critical temperatures of 213 K and 233 K were obtained at 300 GPa for ScH7

and ScH9, respectively, in Ref. [284] (remarkably close to our range for ScH8).

The next structure of note is a metastable P6/mmm structure of LiH2, which

is interesting both because of its relatively low hydrogen content and because its
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(a) (b)

Figure 7.12: (a) The 300 GPa F 4̄3m structure of YH9 viewed along the [110] di-

rection of the standardized cell. (b) The 300 GPa Immm structure of ScH8 viewed

along the [100] direction of the standardized cell.

Figure 7.13: The 300 GPa P6/mmm structure of LiH2 viewed with perspective

along the [001] direction of the standardized cell.

structure is analogous to the well-known ambient-pressure superconductor, MgB2

[202] (see Fig. 7.13). Superconductivity in Li-H systems has been investigated pre-

viously at lower pressures [282], where it was found that the LiH2 stoichiometry did

not exhibit superconductivity at 150 GPa. Whilst the LiH2 stoichiometry lies on the

convex hull at 300 GPa, in agreement with the previous calculations of Ref. [306],

the P6/mmm structure is not the most stable LiH2 structure and is instead found

to be metastable at static-lattice level. It appears that, in some systems, struc-

tures appearing slightly above the convex hull may have enhanced superconducting

properties.
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(a) (b)

Figure 7.14: (a) The 500 GPa Pm3̄ structure of MgH12 viewed along the [010]

direction of the standardized cell. (b) The 500 GPa Pm31 structure of MgH13

viewed along the [001] direction of the standardized cell.

7.6.4 500GPa

As we increase pressure further, hydrides with higher hydrogen content can be met-

allised. In particular, here, we see the appearance of several MgHn structures with

n > 10. The highest critical temperature of these belongs to MgH12, which we find

to be on the convex hull at this pressure, where an Pm3̄ structure (see Fig. 7.14(a))

exhibits hot superconductivity with a critical temperature of 360-402 K (87-129◦C).

Pm31-MgH13 (see Fig. 7.14(b)) exhibits a Tc of 257-287 K. Electron-phonon cou-

pling is boosted substantially in this system with increasing pressure; the MgH12

stoichiometry has been previously investigated at lower pressures [179], where it

was also found to lie on the convex hull, but has a much reduced Tc of 47-60 K at

140 GPa.

7.6.5 Comments - dynamically unstable structures

During a DFT geometry optimization, two properties of the crystal typically remain

fixed; the crystal symmetry and the number of atoms in the simulation cell. As a

result, phonon modes which either break crystal symmetry, or exist on length scales

larger than the simulation cell are implicitly prohibited, even in the case where they

might lower the energy of the system. In this case, the resulting crystal structure is

artificially stabilized and lies on a saddle point of the potential energy surface, rather

than a minimum. Locating such saddle-point structures is the goal of sp-AIRSS

[198] (we discuss some related methods in chapter 8), as they could be stabilized

by anharmonic or thermal effects, as is the case in Fm3̄m-LaH10 at 200 GPa [79,
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243, 64], and calculations on the saddle-point structures are cheaper to perform

thanks to increased symmetry (or reduced cell size). However, the unstable phonon

modes complicate electron-phonon calculations. In principle, one could allow the

appropriate breaking of crystal symmetry and/or increase in simulation cell size,

and follow the unstable phonon mode to a locally-stable structure (where it would

be possible to apply a harmonic theory of electron-phonon coupling). However, it

is not clear that this is the sensible thing to do given the (often drastic) increase in

the computational cost and neglect of anharmonic effects, which could be important

both for the stability and superconductivity of the unperturbed system. Indeed, the

competition (or, in more specific cases, co-operation [273, 128]) between structural

instability and strong electron-phonon coupling has been the subject of extensive

discussion [13, 222, 260]. To decide the correct treatment, one could explicitly

map the potential energy as a function of amplitude for the relevant modes. If

the resulting potential permits stabilization of the high-symmetry structure (for

example a shallow double-well potential) one can extract meaningful contributions

to electron-phonon coupling due to exited states within this potential [125, 193], or

by constructing a renormalized harmonic theory [81, 77]. Conversely, if the prospects

for stabilization are poor, then mode-following to a more stable structure seems

sensible. All of these approaches are currently too involved to permit application

in a high-throughput setting and so we do not pursue them in the current work.

However, for many hydrides, high-frequency phonon modes contribute most to Tc.

Therefore, one can roughly establish the promise of a saddle-point superconductor

by simply neglecting unstable modes in the calculation of the Eliashberg function

[273, 243]. The results of this procedure are plotted in Fig. 7.4 as empty circles,

where it can be seen that including the unstable results does not qualitatively change

the overall picture.

7.6.6 Comments - Allen-Dynes equation

Having a large number of superconductors for which the Eliashberg equations have

been solved directly (table 7.1) provides a unique opportunity to test the Allen-

Dynes equation. This comparison is made in Fig. 7.15 (a), where it is clear to see

that, whilst the Allen-Dynes result correlates well with the Eliashberg result, it sys-

tematically underestimates its value (at least for the binary hydride superconductors

studied in this chapter). We fit a modified version of the Allen-Dynes equation of

the form

Tc = T (AD)
c (a+ bλ) (7.1)

to the data given in table 7.1, which gives a = 1.0083 and b = 0.0654. As we can see

in Fig. 7.15 (b) This removes the systematic underestimation, and slightly reduces
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the variance of the Tc predictions. However, given access to α2F (ω), we recommend

that the Eliashberg equations be solved directly, to remove the need for approximate

Tc predictors entirely.

7.7 Comments - Structural motifs

In this work, the number of promising structures identified was a direct result of

the ability to screen an even larger number of candidates (see Fig. 7.2). In or-

der to do this, we required robust and quickly-calculable screening criteria. In the

present work, we used the hydrogen/non-hydrogen contributions to the electronic

density of states, proxy electron-phonon coupling constants from Gaspari-Gyorffy

theory and measures of structural stability (see Sec. 7.5). None of this information

is explicitly derived from the crystal structure - it all requires treatment of the struc-

ture with some form of quantum-chemistry method. A calculable, and preferably

interpretable, quantity derived purely from the structure would be invaluable for

screening, especially as it would likely be extremely cheap to calculate given the

structure.

Many of the most attractive hydride superconductors in the literature adopt a

clathrate “cage-like” structure. As a result, we investigated the construction of geo-

metrical quantities to describe how cage-like a given structure was, in the hope that

this would overcome issues from chapter 6, where it seemed that the machine learn-

ing algorithm was implicitly assuming a cage-like structure for every stoichiometry.

However, the regression model in the present work paid little attention to these in-

puts. By looking at the structures responsible for the most promising results from

Tab. 7.1, as shown in Figs. 7.16 and 7.17, it is clear to see why. Whilst cage-like

structures are present, many are not cage-like. Indeed, some of the most promis-

ing materials in our results (e.g Pm3̄m-NaH6 at 100 GPa) are better described

as containing supermollecular hydrogen clusters. For example, the 100 GPa NaH6

structure consists of octohedral clusters of hydrogen at the body-centred sites of a

cubic Na lattice. The tight packing of hydrogen into these clusters provides both the

high-frequency phonons and nearby high-density of electrons necessary for strong

electron-phonon coupling and resulting high-temperature superconductivity (as can

be seen in the Eliashberg function for NaH6 in Fig. 7.8).

As well as exhibiting strong electron-phonon coupling (ideally to high-frequency

phonons), electrons must also be sufficiently delocalised in order to allow bulk con-

ductivity. These concepts form the basis of recent attempts to understand hydride

superconductivity via the topology of the electron localization function [28]. It is

possible to achieve favorable electronic topology from a wide variety of structures,
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Figure 7.15: (a) Allen-Dynes critical temperatures, plotted against critical tempera-

tures from solution of the Eliashberg equations (data from table 7.1). (b) The same

as (a), but using the modified Allen-Dynes equation (Eq. 7.1).
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as can be seen in Figs. 7.16 and 7.17, making the construction of geometrical mea-

sures of suitability difficult (explaining why our initial attempts failed). Therefore,

it seems that the most promising approach for studies in the near future is to try to

correlate topological, or geometrical, properties of the electronic structure (rather

than the crystal structure) with the results of a full Eliashberg treatment. Such

considerations may lead to a more broadly-applicable model of hydride supercon-

ductors, capable of explaining why each of the wide variety of structures found

in this work are suitable. Such a model, when combined with existing physically-

motivated screening factors (such as those used in the present work), would allow

further extrapolation beyond the available literature data when evaluating the po-

tential of new structures - potentially providing a route to push these materials

towards ambient conditions.

7.8 Conclusions

In this chapter, we demonstrate a high-throughput method to efficiently discover

high-Tc binary hydrides. We construct a Tc model based on physically-motivated

descriptors, trained initially on superconductivity data from the literature and itera-

tively updated using the results of our own DFPT calculations. Following extensive

structure searching, a two-step screening process (based on stability criteria and the

predictions of our model) allows us to identify energetically-competitive high-Tc can-

didates from the large volume of search data. The best candidates include hydrides

of sodium, calcium, actinium, lanthanum, magnesium, yttrium, scandium, lithium

and strontium.

We have performed a total of 240 Tc calculations using DFPT, split roughly

equally between the training phase and final results. This was made possible by

optimizing the quantum espresso electron-phonon code. In the final results, we

identify 36 dynamically stable superconductors with Tc > 100 K of which 18 have

Tc > 200 K (see Table 7.1). To the best of our knowledge, superconductivity has not

been investigated previously in 27 of the 36 materials. These findings add consider-

ably to the known pressure-Tc behaviour of the binary hydrides. Of particular note,

we find a Pm3̄m structure of NaH6 to have a Tc of 248-279 K at 100 GPa, suggesting

the exciting possibility of other low-pressure high-Tc hydride superconductors. We

also identify Pm3̄-MgH12 and Fm3̄m-SrH10 as above-room-temperature supercon-

ductors at 500 GPa, as well as several near-room-temperature superconductors at

lower pressures.

Throughout the work carried out for this chapter, our aim has been to consider

as wide a range of binary compositions as possible; since our focus is on breadth,
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Figure 7.16: Structures from table 7.1, grouped in columns by pressure.
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Figure 7.17: Structures from table 7.1, grouped in columns by pressure (vertical

continuation of Fig. 7.16).
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we make no claim that this study is exhaustive. Despite this, we identify a large

number of high-Tc candidates, suggesting the binaries have more to offer in future,

more focused, studies. We also note that the highest critical temperature results

at each pressure arise from metastable structures or off-hull stoichiometries. Many

of these were introduced into the study during the training phase by focusing on

high-symmetry structures using sp-AIRSS. This suggests that the additional free-

dom afforded by allowing some degree of metastability can reveal higher critical

temperature superconductors. For example, in the case of SrH10 at 500 GPa we see

that the ground state R3̄m structure has a critical temperature nearly 100 K lower

than a metastable Fm3̄m structure. Exploring avenues such as metastability will

be important in future work in order to push the boundaries of high-temperature

superconductivity.

Future work on superconducting hydrides is likely to focus on ternary hydrides

and higher order systems. Given the increased complexity of these systems, high-

throughput screening approaches, such as the one presented here, are likely to be-

come increasingly important. Our high-throughput methodology could be extended

to ternary hydrides, although it may be desirable to redefine these systems as ef-

fective binaries in order make use of the extensive binary hydride literature data

during model training.
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Chapter 8

Saddle point searching

8.1 Introduction

The task of geometry optimization (finding minima in the Born-Oppenheimer sur-

face) is a well understood problem. Descent methods such as BFGS [205] are well

suited to this problem and are fast enough to allow high-throughput methods such as

AIRSS. However, there is another class of stationary points from which we may learn

valuable information: saddle points. Near a stationary point (where first derivative

terms vanish) the energy surface may be expanded as

E(xmin + δ) = E(xmin) +
1

2
δTHδ +O(δ3) (8.1)

Where H is the Hessian, defined by

Hij =
∂2E

∂xi∂xj
(8.2)

Writing the displacement δ in terms of the normalized eigenvectors, vi, of H (with

corresponding eigenvalues λi) as δ =
∑

i αivi, we have

E(xmin + δ) = E(xmin) +
λiα

2
i

2
+O(δ3) (8.3)

We see that the nature of the stationary point is determined entirely by the eigen-

values of H. Eigenvectors with +ve (-ve) eigenvalue correspond to directions along

which the stationary point is a minimum (maximum). In particular we are inter-

ested in first-order saddle points, with one negative eigenvalue and the rest positive.

These points are of interest for two reasons. Firstly, the lowest activation energy

transition path between two minima necessarily passes through a first order saddle

point. This point is known as the transition state and is the highest-energy point

along the path, corresponding to the activation energy. Secondly, first order saddle

points are the primary candidates for metastable states which are stabilised by ther-

mal effects. This can be seen by considering the quantum mechanics of a crystal in
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Figure 8.1: The potential V (αi) = α4
i − α2

i and the resulting particle densities at

different temperatures.

a double well potential V (αi) = α4
i −α2

i as shown in figure 8.1 (we assume quadratic

stability in all other directions). At low temperature, the particle density is centred

around the nearby minima, and observations of the crystal structure will usually

place it in, or near to, one of these minima. However, as the temperature increases

and we begin to occupy exited states, we see that the most probable state is actually

the higher-symmetry saddle-point phase (a phase that minima searching methods,

such as AIRSS, would miss). Locating these saddle-point structures could lead to a

better understanding of high temperature phases.

Algorithms to find saddle points exist, such as the nudged elastic band (NEB)

method [112]. However, these are often focused on finding transition states given

knowledge of both the initial and final states. The approach we pursue to find

saddle-points is to start at a minima and use a hill climbing algorithm to arrive at a

first-order saddle point, without knowledge of the final state. This choice was made

for a few reasons. Firstly, it provides us with a simple statement of the problem

and known starting conditions. Secondly, this allows us to associate saddle point

with a particular initial minima. We can then continue ‘over the hill’, performing

a subsequent geometry optimization, to find the final state for which this saddle

point is the transition state. Thirdly, by the same method, this allows application

to the problem of finding other nearby minima. Typically this problem is currently

solved via a ‘relax and shake’ algorithm, whereby random perturbations are made

to a stable structure, followed by geometry optimizations, in the hope that nearby

minima will result. Going via a saddle point, rather than a random displacement,

may increase the efficiency of this process as well as providing us with transition

state information.
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8.2 Hill climbing algorithms

In order to efficiently find saddle points, knowledge of the Hessian is extremely

useful. Hill climbing algorithms are typically split into two groups [210]; minimum

mode methods, which only require information about the eigenvector of the Hessian

with lowest eigenvalue and all mode methods which require information about the

complete Hessian. Because calculation of the exact Hessian for a crystal structure is

computationally expensive, we focus on minimum mode methods and approximate-

Hessian all mode methods. To best determine which information from the Hessian

is most useful, we start by analysing the failure modes of an algorithm that does

not use information from the Hessian at all.

8.2.1 Activation-relaxation

The activation-relaxation technique [185] employs only knowledge of the gradient

vector (the negative of the force) to approach saddle points. The steps are shown

in Algorithm 3. Essentially, we pick a direction (line 2) and attempt to minimize

the energy in the perpendicular direction whilst increasing the energy in the parallel

direction by inverting the parallel component of the force (line 8). We follow the

resulting force, with the only additional constraint being that the step size does not

exceed ∆max (line 9). The paths taken by this algorithm on a simple 2-D eggbox

potential are shown in figure 8.2(a). The algorithm performs well on this potential,

especially given the fact that it works without knowledge of the Hessian. However,

we can quickly find situations where it works less well. If the normal that the force

is projected along does not have a large component pointing up along the valley

leading to the saddle point, then the algorithm fails to reach the saddle point. This

situation appears when it is necessary to go ‘around a corner’ as shown in figure

8.2(b). Because the normal is directed away from the starting location at all times,

the component of the force that is inverted does not necessarily point in the rough

direction of the saddle-point. This causes the algorithm to fail to converge and, in

some cases, get lost entirely. Clearly, this is because of a lack of local information

about which directions are important. After all we only have two directions to work

with; the force and the displacement from starting point.

8.2.2 Choice of direction

Intuitively, the choice of direction that we wish to move along is simple; we wish to

walk ‘up the valley’. At a given point in the valley x, this direction will be a local

minimum of the energy change ∆E(δ) = E(x + δ)− E(x) for a fixed length vector

δ. This is shown in figure 8.3. In order to determine this direction we follow the
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Algorithm 3 Activation-relaxation
1: s = minima

2: x = s+ random step

3: repeat

4: f = force(x)

5: n = x−s
|x−s|

6: f‖ = n(n · f)

7: f⊥ = f − f‖
8: ∆ = f⊥ − f‖
9: if |∆| > ∆max then

10: ∆ = ∆∆max/|∆|
11: end if

12: x = x+ ∆

13: until |f | < tol

(a) Paths taken by the activation-relaxation

algorithm for a simple eggbox potential.

(b) Paths taken by the activation-relaxation

algorithm for an eggbox potential that has

been twisted.

Figure 8.2: Paths taken by the activation-relaxation algorithm. Low potential re-

gions are shown with blue contours and high potential regions as yellow. We can

see that the activation-relaxation algorithm performs well if the lowest-energy path

to the saddle point is always directed away from the origin (as in (a)), but poorly if

it is curved (as in (b)).
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(a) A potential with ‘valleys’ shown with dot-

ted black lines. At the point indicated by the

blue dot, the direction to move ‘up the valley’

is shown by a red arrow.

(b) The energy change as a function of θ for

a small step away from the blue dot in fig-

ure 8.3(a) in the direction dx = cos(θ), dy =

sin(θ). We see that the direction correspond-

ing to a step ‘up the valley’ (shown by a red

dot) is a local minimum.

Figure 8.3: Illustration of the optimal choice of direction for climbing up a valley in

a potential energy surface.

approach in Ref. [43] 1. First we Taylor expand the energy around x

∆E(δ) = ∇E · δ +
1

2
δTHδ +O(δ2) (8.4)

Note, we are no longer at a minimum in E, so we have a non-zero gradient term.

The direction we seek is an extremum of ∆E subject to the constraint that δ is

of fixed length S. This can be found by employing the lagrange multiplier λ and

instead extremizing

L = ∆E(δ) + λ(δT δ − S2) (8.5)

The resulting extremization conditions are

∂L
∂δ

= ∇E + (H − λ)δ
!

= 0 (8.6)

∂L
∂λ

= S2 − δT δ !
= 0 (8.7)

This gives us two equations

δ = (λ−H)−1∇E (8.8)

S2 = [(λ−H)−1∇E]T (λ−H)−1∇E (8.9)

1We note a small mistake in Ref. [43]. Equation 2.13a should read (in their notation) ∆2 =

(λ−K)−1D · (λ−K)−1D
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The first of these gives us an expression for the optimal step in terms of λ and the

second constitutes an algebraic expression for λ. Because this method is based on a

Taylor expansion of the energy surface it is known as a rational function optimization

(RFO) method. We choose the smallest (i.e safest) step size S for which there are

still solutions to Eq. 8.9 that increase the energy, leading to algorithm 4. Employing

this algorithm with the exact Hessian for the same example we had previously gives

the behaviour shown in figures 8.4(a) and 8.4(b). We see that this performs much

better than activation-relaxation, as we would expect. The task now is to try to keep

the performance of activation-relaxation, but to incorporate RFO-like information

to improve the convergence properties and success rate.

Algorithm 4 RFO
1: s = minima

2: x = s+ random step

3: repeat

4: g = − force(x)

5: H = Hessian(x)

6: S, λ = solution of Eq. 8.9 with minimal S

7: ∆ = (λ−H)−1g

8: if |∆| > ∆max then

9: ∆ = ∆∆max/|∆|
10: end if

11: x = x+ ∆

12: until |f | < tol

8.2.3 Improvements to activation-relaxation

Despite its flaws, the activation-relaxation algorithm is attractive because it only

uses gradient information which, in DFT, we can get relatively cheaply from the

Hellmann-Feynman theorem. Because of this we hope to find robust improvements

to the algorithm that also only use gradient information. In particular we hope to

improve the poor convergence shown in figure 8.2(b). Prompted by the ease at which

the RFO algorithm finds the best direction to search given the exact Hessian, we

look at constructing an approximate Hessian with the framework of the activation-

relaxation approach. We consider two nearby points in configuration space, x and

x+ δ. First, we take the Taylor expansion around these points,

E(x+ δ) = E(x) + δT∇E|x +
1

2
δTH|xδ +O(δ3), (8.10)

E(x) = E(x+ δ)− δT∇E|x+δ +
1

2
δTH|x+δδ +O(δ3). (8.11)
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(a) Paths taken by the RFO algorithm using

the exact Hessian for a simple eggbox poten-

tial.

(b) Paths taken by the RFO algorithm using

the exact Hessian for an eggbox potential that

has been twisted.

Figure 8.4: Paths taken by the RFO algorithm with the exact Hessian.

Summing these two equations we obtain

δT
[
H|x +H|x+δ

2

]
δ = δT (∇E|x+δ −∇E|x). (8.12)

Essentially this is a statement about the change in gradient induced by the Hessian.

If we take the points x and x + δ to be adjacent steps in our activation-relaxation

algorithm we have access to all of the terms in Eq. 8.12 except the term in square

brackets; the average of the Hessian evaluated at x and x + δ. Eq. 8.12 does not

have a unique solution for the term in square brackets, but solutions do exist; the

simplest of which is

H|x +H|x+δ

2
= δT (∇E|x+δ −∇E|x)

δδT

|δ|4
≡ Happrox|x+δ. (8.13)

Mixing Happrox across multiple iterations allows us to build up an approximation to

the current Hessian. Once we have an approximate Hessian, we wish to apply the

activation-relaxation algorithm to follow the minimum-mode up to the saddle point.

Our implementation is shown in algorithm 5 and its performance is shown in figures

8.5(a) and 8.5(b). We see that the convergence of the algorithm has improved dras-

tically over the activation-relaxation method for the twisted eggbox potential (com-

pare figures 8.2(b) and 8.5(b)). For this potential the normal activation-relaxation

algorithm failed to find a saddle point after 100 steps roughly half of the time.

In contrast, the improved activation-relaxation employing our approximate Hessian

never failed to reach a saddle point within 100 steps.
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Algorithm 5 Approximate Hessian activation-relaxation
1: s = minima

2: x = s+ random step

3: xl = s

4: fl = 0

5: M = 0.1 (Hessian mixing parameter)

6: H = 0

7: repeat

8: f = force(x)

9: if not first iteration then

10: δ = x− xl
11: δf = f − fl
12: Happrox = δT δfδδ

T/|δ|4

13: H = (1−M)H +MHapprox

14: end if

15: if H is diagonalizable then

16: n = eigenvector of H with minimum eigenvalue

17: else

18: n = x−s
|x−s|

19: end if

20: f‖ = n(n · f)

21: f⊥ = f − f‖
22: ∆ = f⊥ − f‖
23: if |∆| > ∆max then

24: ∆ = ∆∆max/|∆|
25: end if

26: x = x+ ∆

27: until |f | < tol
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(a) Paths taken by the approximate Hessian

algorithm for a simple eggbox potential.

(b) Paths taken by the approximate Hessian

algorithm for an eggbox potential that has

been twisted.

Figure 8.5: Paths taken by the approximate Hessian algorithm.

8.3 Limitations and future direction

The method developed in this work represents a straightforward improvement to

the activation-relaxation algorithm for finding saddle points of functions. In partic-

ular, it improves the success rate of the algorithm. In cases where both activation-

relaxation and the method described in this work succeed, the method described

in this work also required fewer function evaluations than activation-relaxation.

However, the number of function evaluations was still of roughly the same order-

of-magnitude for both methods, limiting the application of the present method to

problems of roughly the same size as could be attacked by activation-relaxation.

For example, in order to find transition states in a chemical reaction, the func-

tion to be evaluated is the quantum-mechanical energy of the system. Depending

on the quantum-chemistry method used to evaluate these energies, and the size of

the system under investigation, the number of function evaluations required may be

prohibitively expensive. However, preliminary testing indicates that small molecules

( 10 atoms) can be treated with this method using density functional theory in rea-

sonable timescales on a desktop computer. The use of more accurate quantum

chemistry methods such as coupled-cluster or configuration-interaction would re-

quire larger computers. On the other hand, treatment of large systems (potentially

hundreds of atoms) with classical potentials should be possible - but at these sys-

tem sizes the interpretation of particular saddle points becomes unclear, unless the

dynamics are restricted to a particular sub-system reaction pathway (e.g adsorption

of a molecule onto a small region of the surface of a large substrate). It is impor-

tant to note that, if both ends of the activation pathway are known (i.e reactants
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and products) then an algorithm such as nudged elastic band will be much more

appropriate. The application for the methods considered in this chapter is strictly

to finding transition states away from an arbitrary minimum, without knowledge of

the end state.

Besides chemical reactions, this method could be used to search for saddle point

crystal structures (of the kind that may be stabilized by anharmonic effects). How-

ever, in this case, the method would require some modification to properly deal with

periodicity. In particular, one would need to be able to consider perturbations to

the crystal structure that change the size of the unit cell (an additional degree of

freedom to the atom coordinates). One naive way to achieve this (at the cost of

increased expense) is to simply use a supercell of the system that is sufficiently large

to describe final-state crystal structures of interest. Alternatively, one could occa-

sionally increase the unit cell size by a random amount during the propagation of

the algorithm to see if the extra degrees of freedom were useful in moving towards

a saddle point - the unit cell resizing could then be accepted or rejected on this

criteria.

Alternative methods for saddle point searching typically require additional in-

formation beyond the function and it’s gradient. If the function evaluator being

employed efficiently produces information about the Hessian (e.g if a second-order

version of the Hellmann-Feynman theorem exists, or the same information is easily

accessible using perturbation theory), then the RFO approach should be employed

with the exact Hessian. In the intermediate regime, where evaluation of the exact

Hessian is expensive, but not prohibitively so, one could imagine a modification

of the method used in this work, whereby the approximate Hessian was updated

to the exact Hessian periodically. This would correspond to evaluating the exact

Hessian at some regular interval along the configuration-space trajectory as an ad-

ditional guide the evolution of the trajectory (and to double-check how successfully

the approximate Hessian is being constructed). Information from this exact Hessian

would naturally remain for a few subsequent steps of the trajectory, thanks to the

Hessian-mixing process employed by the algorithm.

8.4 Conclusion

By comparing the activation-relaxation and rational-function-optimization (RFO)

saddle-point-searching algorithms, an improved version of activation-relaxation is

developed that requires no additional information. By utilizing information from

previous steps of the algorithm, a mixing scheme is developed that provides access

to an approximate Hessian. This Hessian is used to decide the direction along
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which to perform the “activation” in an improved activation-relaxation algorithm.

The resulting algorithm is shown both to be more likely to converge and quicker

to converge than activation-relaxation for model potentials, in particular when the

path to a saddle point is non-trivial.
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Chapter 9

Conclusions

The work carried out in this thesis spans the full depth of in silico materials discovery

- from the methods used to tackle the fundamental quantum-mechanical problems

presented by materials, to the construction of workflows targeting specific properties.

It has shown that there are improvements to be made at every stage of the process,

particularly when looking at novel classes of materials. These improvements will

help theorists to lift more and more of the weight of discovery off of the shoulders

of experimentalists, allowing the latter to focus precious resources only on the most

promising candidates.

At several points throughout this thesis, novel computational methods are de-

veloped. The thesis begins with the development of a new quantum Monte Carlo

method that demonstrates that it is possible to treat fermionic systems without the

need for a trial wavefunction. This new method, along with several well-known lim-

iting cases, is shown to arise straightforwardly from the treatment of the variational

problem as a constrained optimization problem. During the thesis, optimizations

are made to existing density functional theory (DFT) methods and screening models

are developed from newly-available data. The thesis ends with the development of

a straightforward improvement to one of the cheapest available saddle-point search-

ing algorithms. These developments demonstrate progress is possible throughout

the computational toolset supporting the materials discovery process.

Given suitable computational methods, this thesis demonstrates that an atom-

istic model of materials can be leveraged to predict a wide variety material properties

accurately. It goes on to show that, when combined with crystal structure predic-

tion (CSP) methods, these techniques allow for the discovery of new materials, with

desirable properties, entirely in silico. In particular, it is shown that by combin-

ing CSP methods with density-functional perturbation theory (DFPT) calculations

of superconducting properties, it is possible to predict novel structures of super-

conducting hydrides. An investigation of LaH10 and YH10 demonstrates similar
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structural behaviour and provides an explanation for hexagonal impurities found

in high-pressure experiments. The practical limitations resulting from such high

pressures is emphasised and a machine-learning based screening approach is used

to identify low-pressure superconducting hydrides of Rb and Cs. This work demon-

strates that properly designed screening techniques can vastly reduce the amount of

computation required to identify materials with specific properties. Careful profiling

and optimization of the underlying DFPT calculations leads to a further order-of-

magnitude speed up, which is leveraged to carry out an entire-periodic-table search

for new superconductors on an unprecedented scale, elucidating general trends in hy-

dride superconductors and identifying numerous high-Tc candidates. In particular,

200 K+ superconductors are identified at pressures as low as 100 GPa, indicat-

ing that, in the low-pressure limit, critical temperatures in the hydrides might be

significantly higher than the highest conventional superconductors to date.

9.0.1 Directions for future research

Throughout this thesis directions for further research, or follow-up work, have been

identified. Chapter 3 presented a mathematical framework for the construction of

fermionic QMC methods and demonstrated a particular implementation. However,

there are an infinite number of possible methods that satisfy the requirements for

obtaining a fermionic state. In many ways the implementation presented in chapter

3 represents the simplest possible way to include the additional walker propagation

channels arising from the antisymmetry constraint. Whilst the resulting exchange

moves cannot modify the exchange symmetry of the overall state, the diffusive moves

can. If symmetry is not preserved on a per-timestep basis, the bosonic component

introduced at a particular timestep, however small, has the potential to grow into

the dominant component - correct results were obtained in chapter 3 only when the

rate of introduction of bosonic components was exceeded by the rate of their removal

by a cancellation process. It seems likely that any method that relies on a cancel-

lation process to overcome the appearance of bosonic components will eventually

succumb to the sign problem (unless the rate of cancellation can be made to scale

exponentially with system size). Therefore, it would be interesting to investigate if

the exchange and diffusive moves could be combined in some way so that exchange

symmetry was preserved on a per-timestep, rather than on-average, basis. In such

future methods, the “second-quantized” walkers of Umrigar [270] might serve as the

basic entities, to be combined with a symmetry-preserving propagation scheme. The

re-introduction of a trial wavefunction for this purpose, or even just as a guide for

importance sampling, should also not be overlooked in future work.

The study of the structure of Lithium in chapter 4 demonstrated that AIRSS
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was an invaluable tool in identifying the constituents of a low-temperature mixed

phase. The resulting mixed close-packed phase model accurately reproduced the

experimental neutron pattern when the contribution from BCC remnants was in-

cluded manually. However, the more straightforward method of simply thermody-

namically weighting the structures and patterns from the AIRSS search reproduced

many of the features of the experimental pattern, despite the relatively small scale

of the search. This hints at the possibility of using more extensive AIRSS searches

to construct mixed-phase structure models automatically - something that crystal

structure prediction is already capable of for single-phase materials. This certainly

holds promise for explaining diffraction patterns (as can be seen for Lithium in chap-

ter 4), but one can imagine that this might be extended to generate grain structure

and defect patterns with a more careful treatment of phase tessellation within the

crystal. The extension of the quasi-harmonic treatment of vibrations to include an-

harmonic vibrations was also explored in chapter 4. The effect was not found to

be of central importance to the phase behaviour, despite the small mass of Lithium

atoms. However, high-temperature hydride superconductors have been the subject

of increased interest in recent years and contain a large amount of hydrogen - the

lightest element of all. Given that anharmonicity has already been shown to be of

crucial importance for the pressure-dependence of the structure of LaH10 [80], and

that the goal is to obtain superconductors that operate at room temperature, the

quasi-anharmonic treatment of finite-temperatures demonstrated in chapter 4 may

well find use in future work on hydride superconductors. Indeed, as more hydrides

are synthesised in experiment, and neutron (or partial x-ray) patterns become avail-

able, the general approach presented in chapter 4 will undoubtedly inform future

structural studies.

As more (both theoretical and, crucially, experimental) data on hydride super-

conductors becomes available, the screening methods developed in chapters 6 and 7

will become more powerful. They already proved invaluable for screening the com-

positional space of binary materials but will likely become an absolute necessity if we

are to explore the space of ternary materials with any degree of completeness. Given

the recent discovery of room temperature superconductivity in the C-S-H ternary

system [248], broad searches of ternary space will likely appear soon. Such studies

will also passively benefit from the optimizations carried out to open-source DFT

software during this thesis. As well as looking ahead to ternary systems, the work

presented in chapter 7 will directly serve as a guide in future experimental studies

of binary hydride systems. Several compositions are suggested as synthesizable with

the promise of high-temperature and/or low-pressure superconductivity; in partic-

ular synthesis of NaH6 at 100 GPa and RbH12 at 50 GPa would provide important

data points to probe the low-pressure limit of obtainable critical temperatures, and
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therefore, the potential for superconductivity under ambient conditions.
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Appendix A

Appendix

A.1 The Green’s function of diffusion Monte Carlo

In this section, we derive the small-timestep (δτ � 1) approximation of the imaginary-

time Green’s function

G(x, x′, δτ) = 〈x′| exp(−δτ(H − ET )) |x〉 = 〈x′| exp(−δτH) |x〉 exp(δτET ) (A.1)

With the partitioning of H given by Eq. 2.23 (H = T + V ), we can use the Suzuki-

Trotter [264] expansion of the operator exp(−δτH) for small δτ :

exp(−δτH) = exp(−δτ(T + V )) ≈ exp(−δτV/2) exp(−δτT ) exp(−δτV/2). (A.2)

Then

G(x, x′, δτ) ≈ 〈x′| exp(−δτV/2) exp(−δτT ) exp(−δτV/2) |x〉 exp (δτET )

= exp (−δτ [V (x′) + V (x)]/2) 〈x′| exp(−δτT ) |x〉 exp (δτET )
(A.3)

where we have used the fact that the operator V is Hermitian in order to operate

with it to the left to obtain V (x′). We denote the factor containing the potential

related terms as GV and that containing the kinetic terms as GD:

GV (x, x′, δτ) = exp (−δτ [V (x′) + V (x)]/2)

GD(x, x′, δτ) = 〈x′| exp(−δτT ) |x〉 .
(A.4)

The kinetic term is best evaluated in momentum-space;

GD(x, x′, δτ) = 〈x′| exp(−δτT ) |x〉 =

∫
〈x′| exp(−δτT ) |p〉 〈p|x〉d3Np

=

∫
〈x′| p〉 exp(−δτ |M−1p|2/2) exp (ip · x)d3Np

=

∫
exp (−ip · x′) exp(−δτ |M−1p|2/2) exp (ip · x)d3Np

= exp

(
−|M(x− x′)|2

2δτ

)∫
exp (−z2)d3N(

√
2/δτMz)

(A.5)
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where the second to last line comes from completing the square using the variable

substitution z =
√
δτM−1p/

√
2− iM(x− x′)/

√
2δτ and we have used the fact that

momentum states 〈p|x〉 = exp(ip · x) are eigenstates of the kinetic energy with

eigenvalue |M−1p|2/2 (see Eq. 2.23). The remaining integral is simply a constant;

all dependence on x and x′ is contained within the prefactor:

GD(x, x′, δτ) ∝ exp

(
−|M(x− x′)|2

2δτ

)
(A.6)

A.2 Phonon coordinates

Here we show that the Hamiltonian in the regime of harmonic vibrations,

H(2)
nuc =

∑
Ri

− 1

2mi

∇2
Ri

+
1

2

∑
i,j

δiδj∂i∂jV (R)|R(0) (A.7)

can be written in terms of phonon coordinates,

pq,σ =
∑
i

√
mi exp(−iq ·R(0)

i )δiPi(q, σ) (A.8)

as

H
(2)
vib =

∑
q,σ

−1

2

∂2

∂pq,σ
+

1

2
p2
q,σω

2
q,σ (A.9)

We begin by noting that H
(2)
vib can be written as

H
(2)
vib =

∑
Ri

− 1

2mi

∇2
Ri

+
1

2

∑
i,j

√
mimjδiδjDi,j(q) exp [−iq · (R(0)

j −R
(0)
i )]

(A.10)

which, if we define ∆i =
√
mi exp [−iq ·R(0)

i ]δi, can be written as

H
(2)
vib =

∑
Ri

− 1

2mi

∇2
Ri

+
1

2
∆†D∆ (A.11)

The dynamical matrix, D, is diagonalized by our eigenvectors Pi(q, σ) via P †DP =

Ω, where Pσ,i = Pi(q, σ) and Ωσ,σ = ω2
q,σ. This allows us to write ∆†D∆ =

∆†PΩP †∆. We then see that

(P †∆)σ =
∑
i

P †σ,i∆i =
∑
i

Pi(q, σ)
√
mi exp [−iq ·R(0)

i ]δi = pq,σ (A.12)

These are our phonon coordinates (compare to Eq. A.8). Our Hamiltonian can then

be written as

H(2)
nuc =

∑
Ri

− 1

2mi

∇2
Ri

+
1

2

∑
q,σ

p2
q,σω

2
q,σ

=
∑
i

− 1

2mi

∂2
i +

1

2

∑
q,σ

p2
q,σω

2
q,σ

(A.13)
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We now turn our attention to the kinetic energy term. Using the chain rule we have

∂i =
∂

∂δi
=
∑
q,σ

∂pq,σ
∂δi

∂

∂pq,σ
(A.14)

Noting that
∂pq,σ
∂δi

= Pi(q, σ) exp [−iq ·R(0)
i ]
√
mi (A.15)

We then have∑
i

1

mi

∂2
i =

∑
i,q,σ
q′,σ′

Pi(q, σ)Pi(q
′, σ′) exp [−i(q − q′) ·R(0)

i ]
∂2

∂p2
q,σ

(A.16)

Using the fact that
∑

i exp [−i(q − q′) ·R(0)
i ] = δq,q′ and that our eiegnvectors are

normalized, we arrive at ∑
i

1

mi

∂2
i =

∑
q,σ

∂2

∂p2
q,σ

(A.17)

which allows us to write, finally,

H(2)
nuc =

∑
q,σ

−1

2

∂2

∂pq,σ
+

1

2
p2
q,σω

2
q,σ (A.18)

A.3 Generalized linear regression

The goal of generalized linear regression is to make a linear model of the relationship

On︸︷︷︸
Observable

= On(f1,n, f2,n, . . . , fN,n︸ ︷︷ ︸
Features

) (A.19)

The linear model looks like

Pn︸︷︷︸
Prediction

=
∑
i

cifi,n︸ ︷︷ ︸
Linear model

+ εn︸︷︷︸
Residual

(A.20)

Where ci are the linear coefficients of the features. In matrix notation this looks like

P = fc + ε, where we call f the feature matrix. We pick the coefficient vector c by

minimizing the modulus of the residual vector; c = argminc|ε|2. In order to simplify

the model, we may bias the coefficient vector using Tikhonov regularization. This

involves adding a cost function, |Tc|2, which is large when the coefficient vector has

many significant entries. The matrix T is known as the Tikhonov matrix. This

results in the minimization

c = argminc |ε|2 + |Tc|2

= argminc |fc− P |2 + |Tc|2

≡ argminc L(c)

(A.21)
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Using implied summation our objective function can be written as

L(c) = (fijcj − Pi)(fikck − Pi) + TilclTimcm (A.22)

Minimizing with respect to cn we require

∂L
∂cn

= 2[fin(fikck − Pi) + TinTijcj]
!

= 0 (A.23)

In matrix notation this reads

fT (fc− p) + T TTc = 0 =⇒ c = (fTf + T TT )−1fTp (A.24)

which gives us the optimal feature coefficients c for the model in Eq. A.20.

A.4 Neutron patterns

The neutron patterns in the main text were derived by fitting

I(2θ) = aIBCC(2θ) + b
∑
i

Ii(2θ)
wi

exp
(
Ei−µ
kBT

)
− 1

(A.25)

to the experimental data, where IBCC(2θ) is the remnant BCC pattern and {Ii(2θ)}
are the close packed patterns. The variables a, b, µ and T are treated as fitting

parameters. Different, equivalent, close packed structures are included via a multi-

plicity ωi, described in the main text. In order to derive this form we consider the

system as a mixed phase, consisting of mi atoms in the ith phase. We then write

the energy as

E =
∑
i

miEi (A.26)

where Ei is the per atom energy of the ith phase. In order to write this we neglect

the energetic contributions of defects. The resulting partition function in the grand

canonical ensemble can be written as;

Z =
∑
{mi}

exp

(
−β
∑
i

mi(Ei − µ)

)
(A.27)

Where µ is a lagrange multiplier fixing the number (or density) of atoms and the

sum is over possible sets of phase occupation numbers mi. Assuming an infinite
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system, we can manipulate this into a nicer form:

Z =
∑
{mi}

exp

(
−β
∑
i

mi(Ei − µ)

)
(A.28)

=
∑
{mi}

∏
i

exp (−βmi(Ei − µ)) (A.29)

=
∏
i

∞∑
mi=0

exp (−βmi(Ei − µ)) (A.30)

=
∏
i

1

1− exp (−βmi(Ei − µ))
(A.31)

From Eq. A.27 it is clear to see that

〈mi〉 = − 1

β

∂ ln (Z)

∂Ei
=

1

exp (β(Ei − µ))− 1
(A.32)

which we use to weight our ith pattern.

A.5 Variation of the Lagrangian L

Given a Hamiltonian H, we define the effective Hamiltonian

HX = H − ET +
∑
i

µi(x)(Pi + 1) (A.33)

and look for extrema of

L[ψ] = ET + 〈ψ|HX |ψ〉 (A.34)

with respect to variation of ψ and ψ∗. Variations in ψ∗ are straightforward

L[ψ∗ + δψ∗] = ET +

∫
(ψ∗ + δψ∗)HXψdx

= L[ψ] +

∫
δψ∗HXψdx

!
= L[ψ] ∀ δψ∗︸ ︷︷ ︸

Extremization

=⇒ HXψ = 0.

(A.35)

Variations in ψ are more involved

L[ψ + δψ] = ET +

∫
ψ∗HX(ψ + δψ)dx

= LL[ψ]+[ψ] +

∫
ψ∗HXδψdx

= L[ψ] +

∫
ψ∗

[
T + V +

∑
i

µi(1 + Pi)

]
δψ.

(A.36)
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We can shift the kinetic term to instead operate on ψ∗ by using integration by parts

twice: ∫
ψ∗
∂2δψ

∂x2
i

dx

=
��

�
��

��*
0[

ψ∗
∂δψ

∂xi

]
∞
−
∫
∂ψ∗

∂xi

∂δψ

∂xi
dx

= −
�
��

�
��
�*0[

∂ψ∗

∂xi
δψ

]
∞

+

∫
∂2ψ∗

∂x2
i

δψdx

(A.37)

where we have assumed that ψ → 0 as |x| → ∞ to cancel the boundary terms. We

can also act with permutation operators to the left within the integral because∫
f(x)Pig(x)dx

=

∫
f(x)g(Pix)dx

let z = Pix→

=

∫
f(Piz)g(z)dz

relabel z → x

=

∫
f(Pix)g(x)dx.

(A.38)

Putting this together we can write

L[ψ + δψ] = L[ψ] +

∫
δψ

[
T + V +

∑
i

(1 + Pi)µi

]
ψ∗dx (A.39)

where the permutation operators act to the right. Note that µi now appears after the

permutation operators. If we assume µi is symmetric with respect to permutations

(in the main text it is a constant because we take the exchanges to be equiprobable)

then we can pull it back through the permeation operators and write

L[ψ + δψ] = L[ψ] +

∫
δψHXψ

∗dx

!
= L[ψ] ∀ δψ︸ ︷︷ ︸

Extremization

=⇒ HXψ
∗ = 0.

(A.40)

A.6 The Green’s function of HX

For small timesteps, we derive the form of the Green’s function

G(x, x′, δτ) = 〈x| exp (−δτHX) |x′〉 . (A.41)

157



Writing H = T +V where T is the kinetic energy operator and V is a local potential

we can apply the Suzuki-Trotter [264, 90] expansion of the Green’s function to obtain

G(x, x′, δτ) ≈ GV (x, x′, δτ)×

〈x| exp(−δτ [T +
∑
i

µi(x)(Pi + 1)]) |x′〉 . (A.42)

For small timesteps, the exponential can be factorized, allowing us to write

〈x| exp(−δτT )[1−
∑
i

δτµi(x)(Pi + 1)] |x′〉

≈
[
1−
∑
i

δτµi(x
′)
]
GD(x, x′, δτ)

−
∑
i

δτµi(Pix
′)GD(x, Pix

′, δτ)

(A.43)

where we have introduced the diffusive Green’s function

GD(x, x′, δτ) = 〈x| exp(−δτT ) |x′〉 , (A.44)

whos form is derived in appendix A.1. Noting that

|x− Pix′| = |Pi(x− Pix′)| = |Pix− x′|

=⇒ GD(x, Pix
′, δτ) = GD(Pix, x

′, δτ)
(A.45)

and that, because Pi corresponds to exchanging identical particles,

V (Pix) = V (x) =⇒ GV (Pix, x
′, δτ) = GV (x, x′, δτ), (A.46)

we can finally write the Green’s function as

G(x, x′, δτ) =

[(
1−

∑
i

δτµi(x
′)

)
−
∑
i

δτµi(Pix
′)Pi

]
×GV (x, x′, δτ)GD(x, x′, δτ)

(A.47)

where Pi now acts on the unprimed (pre-propagation) coordinates.

A.7 Maximum-separation propagation

In order to encourage the formation of nodal pockets, we seek the form of P±(x)

that maximizes the expected separation of +ve and -ve walkers, given by

〈|x+ − x−|〉 =

∫
P+(x+)P−(x−)|x+ − x−|dx+dx−. (A.48)

This is equivalent to extremizing

S =

∫
S2

+(x+)S2
−(x−)|x+ − x−|dx+dx−

+

∫
λ(x)[S2

+(x)− S2
−(x)− ψD(x)]dx

(A.49)

158



with respect to S2
±(x) = P±(x) (introduced to ensure P±(x) ≥ 0) and the Lagrange

multiplier λ(x) which enforces the constraint ψD(x) = P+(x)−P−(x). Extremization

of S leads to

δS
δS+(y)

=

∫
2S+(y)S2

−(z)|z − y|dz + 2S+(y)λ(y)
!

= 0, (A.50)

δS
δS−(y)

=

∫
2S−(y)S2

+(z)|z − y|dz − 2S−(y)λ(y)
!

= 0. (A.51)

Now, if we assume that both S+(y) 6= 0 and S−(y) 6= 0, Eqs. A.50 and A.51 read

1

2S+(y)

δS
δS+(y)

=

∫
S2
−(z)|z − y|dz + λ(y) = 0, (A.52)

1

2S−(y)

δS
δS−(y)

=

∫
S2

+(z)|z − y|dz − λ(y) = 0. (A.53)

Adding these equations gives∫
[S2

+(z) + S2
−(z)]|z − y|dz = 0 =⇒ S2

+(z) + S2
−(z) = 0, (A.54)

a contradiction. This means that at most one of S2
+(y) = P+(x) and S2

−(y) =

P−(x) is non-zero (i.e the distributions of +ve walkers and -ve walkers are mutually

exclusive). Combined with the condition ψD(x) = P+(x)− P−(x), we must have

P±(x) =

|ψD(x)| if sign(ψD(x)) = ±1,

0 otherwise.
(A.55)

Note that this derivation does not depend on the form of ψD(x). It also results in

the same distributions P±(x) for any measure of separation that is symmetric in x+

and x−, not just |x+ − x−|.

A.8 Form of cancellation functions

Here, we show that

P±(x) =

|ψD(x)| if sign(ψD(x)) = ±1,

0 otherwise.
(A.56)

can be written as

P±(x) = ψ±(x)f±(x) (A.57)

where
ψ+(x) =

∑
wi>0

wiGD(x, xi(τ), δτ) ≥ 0,

ψ−(x) =
∑
wi<0

|wi|GD(x, xi(τ), δτ) ≥ 0
(A.58)
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and

f±(x) = max (1− ψ∓(x)/ψ±(x), 0) ∈ [0, 1]. (A.59)

Examining the form of ψD(x), we have

ψD(x) =ψ+(x)− ψ−(x) (A.60)

=ψ+(x)

[
1− ψ−(x)

ψ+(x)

]
︸ ︷︷ ︸

= f+(x) if ψD(x) > 0

(A.61)

= −ψ−(x)

[
1− ψ+(x)

ψ−(x)

]
︸ ︷︷ ︸

= f−(x) if ψD(x) < 0

(A.62)

and
0 ≤ f+(x) ≤ 1 if ψD(x) > 0,

0 ≤ f−(x) ≤ 1 if ψD(x) < 0.
(A.63)

Using Eq. A.61 when ψD(x) > 0 and Eq. A.62 when ψD(x) < 0 allows us to combine

both into the compact form of Eq. A.57. The form of Eq. A.57 then allows us to

interpret f±(x) as a weight cancellation function. In certain limits, this function

leads to cancellation-based schemes proposed in the past [195, 14]. The prefactor of

f±(x) in Eq. A.57 is simply the diffused wavefunction for the corresponding sign,

ψ±(x). This means we can diffuse a walker with weight w from x → y normally

according to GD(y, x, δτ) so long as we then apply the weight update

w →


f+(y)w if ψ+(y) > ψ−(y) & w > 0,

f−(y)w if ψ+(y) < ψ−(y) & w < 0,

0 otherwise.

(A.64)

Where we evaluate ψ±(x, τ + δτ) directly via Eq. A.58.

A.9 Gaspari-Gyorffy theory

McMillan [192] showed that for strong-coupled superconductors the electron-phonon

coupling constant, λ, can be expressed as

λ = 2

∫
dωα2(ω)F (ω)

ω
=
N(EF ) 〈I2〉
M 〈ω2〉

(A.65)

λ can also be reformatted as

λ =
η

M 〈ω2〉
where η is the so-called Hopfield parameter. Hopfield was one of the first to stress

the importance of the local environment in determining λ [119]. In situations where
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we have nearly perfect separation of vibrational modes into those of different atomic

character (such as we may see in hydrides) we can write

λ =
∑
j

λj =
∑
j

ηj
Mj 〈ω2

j 〉
(A.66)

where j is the atom type.

The quantity 〈I2〉 appearing in Eq. A.65 can be approximated using Gaspari-Gyorffy

(GG) theory [97]. Recent work has emerged using this theory for metal hydrides

under high pressure [212, 44] despite it originally being designed for elemental transi-

tion metals. The theory, based on the rigid muffin-tin approximation (RMTA), relies

on several approximations [212] and allows us to reformulate the electron-phonon

interaction in terms of phase shifts for a scattering potential. A self-consistent DOS

calculation is thus all that is required to calculate 〈I2〉 for each atom type and hence

obtain ηj. The GG equation is

〈I2〉 =
EF

π2N2(EF ) ∑
l

2(l + 1) sin2(δl+1 − δl)Nl(EF )Nl+1(EF )

N
(1)
l N

(1)
l+1

(A.67)

where N
(1)
l is the free-scatterer DOS given by

N
(1)
l =

√
EF
π

(2l + 1)

∫ RMT

0

R2
l (r, EF )r2dr (A.68)

and the δl are the scattering phase shifts. Here RMT is the muffin-tin radius associ-

ated with atom type j and Rl is the scattering solution of the Schrödinger equation.

The phase shifts, which characterise the long-distance behaviour of the wavefunc-

tion, can be written in terms of the logarithmic derivative of the radial wavefunction

tan(δl(RMT , EF )) =

j′l(kRMT )− jl(kRMT )Ll(RMT , EF )

n′l(kRMT )− nl(kRMT )Ll(RMT , EF )
(A.69)

where k =
√
EF , Ll = R′l/Rl is the logarithmic derivative, jl are spherical Bessel

functions and nl are Neumann functions. We can therefore directly calculate the

logarithmic derivative and use Eq. A.69 to obtain the phase shifts [229].

Since Mj 〈ω2
j 〉 is often considerably smaller for hydrogen than for the other compo-

nents, it is clear from Eq. A.66 that the hydrogen atoms can provide a considerable

fraction of λ even if the Hopfield parameter of the other atom type is similar in

magnitude. Calculating ηH can therefore, in some cases, provide a cheap screening
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method for identifying potential high-Tc hydrides. In particular, the average phonon

frequencies for different structures are often similar when considering the same sto-

ichiometry at the same pressure. If the average phonon frequencies are assumed to

be exactly equivalent in such cases, we then arrive at a potential way of estimating

Tc ordering between structures, simply by considering ηH . It is in this context that

we assess the utility of GG theory in this work.
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