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- Updated evidence for O3-mortality associations from 25 cohorts has been provided

- Adjusting various O3 exposure metrics can provide more accurate risk estimations

- Long-term O3 exposure could be associated with increased multi-cause mortality
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Long-term ozone (O3) exposure may lead to non-communicable diseases
and increase mortality risk. However, cohort-based studies are relatively
rare, and inconsistent exposure metrics impair the credibility of epidemio-
logical evidence synthetization. To provide more accurate meta-estima-
tions, this study updates existing systematic reviews by including recent
studies and summarizing the quantitative associations between O3 expo-
sure and cause-specific mortality risks, based on unified exposure metrics.
Cross-metric conversion factors were estimated linearly by decadal obser-
vations during 1990–2019. The Hunter-Schmidt random-effects estimator
was applied to pool the relative risks. A total of 25 studies involving
226,453,067 participants (14 unique cohorts covering 99,855,611 partici-
pants) were included in the systematic review. After linearly unifying the
inconsistent O3 exposure metrics , the pooled relative risks associated
with every 10 nmol mol�1 (ppbV) incremental O3 exposure, by mean of
the warm-season daily maximum 8-h average metric, were as follows:
1.014 with 95% confidence interval (CI) ranging 1.009–1.019 for all-cause
mortality; 1.025 (95% CI: 1.010–1.040) for respiratory mortality; 1.056
(95% CI: 1.029–1.084) for COPD mortality; 1.019 (95% CI: 1.004–1.035)
for cardiovascular mortality; and 1.074 (95% CI: 1.054–1.093) for conges-
tive heart failure mortality. Insignificant mortality risk associations were
found for ischemic heart disease, cerebrovascular diseases, and lung can-
cer. Adjustment for exposure metrics laid a solid foundation for multi-study
meta-analysis, and widening coverage of surface O3 observations is ex-
pected to strengthen the cross-metric conversion in the future. Ever-
growing numbers of epidemiological studies supported the evidence for
considerable cardiopulmonary hazards and all-cause mortality risks from
long-term O3 exposure. However, evidence of long-term O3 exposure-asso-
ciated health effects was still scarce, so more relevant studies are needed
to cover more populations with regional diversity.

INTRODUCTION
Atmospheric ozone (O3) is a short-lived climate forcer.1 Besides warming the

global atmosphere, O3 in the stratosphere can abate the radiation hazards
from UV rays on organisms, while O3 in the ambient air has detrimental effects
on the ecosystem and human health,2–4 so health effects caused from exposure
to surface O3 have become a serious public concern. Short-term (i.e., hours to
days) exposure to high-level O3 can cause acute symptoms like asthma, respira-
tory tract infection, myocardial infarction, and cardiac arrest;5–8 and long-term
(i.e., over years) exposure can lead to chronic health conditions including but
not limited to preterm delivery, stroke, chronic obstructive pulmonary diseases,
and cerebrovascular diseases.9–12 Long-term ambient O3 exposure was esti-
mated to be responsible for over 0.36 million premature deaths globally in
2019, according to the Global Burden of Disease (GBD) report released by the
Institute for Health Metrics and Evaluation (IHME).13

Systematic reviews summarizing the associations between adverse health
outcomes and both short-term and long-term O3 exposure have been performed
in previous studies.14–16 Studies on short-term O3 exposure-induced morbidities
are comparatively more abundant than the long-term O3 exposure studies where
the epidemiological evidence is less congruous. Some deficiencies exist in the
ll
two reviews of long-term O3 exposure-associated mortality risk studies,15,16 the
primary issue being the inconsistent use of various O3 exposure metrics; how-
ever, no other reviews are found to remedy these flaws. As a secondary photolytic
gaseous air pollutant, the warm-season and diurnal concentrations of surface O3

will be much higher than cool-season and nocturnal concentrations,17,18 so the
average and peakmetrics of O3 concentrations have drastically different implica-
tions.19 Therefore, directly pooling the relative risks scaled with different metrics
may lead to biases.
Atkinson et al. (2016) explored six types of mortality causes, but searched the

literature only until 2015.16 Huangfu et al. (2019) updated the search to 2018, but
only three types of mortality causes were considered.15 We update the review of
the health effects of O3 to include more categories of mortality, together with
covering the most recent studies. Additionally, GBD estimations ascribed long-
term O3 exposure induced all-cause mortality for chronic obstructive pulmonary
disease,13 which might lead to underestimations without considering other
causes. It is reasonable to deduce that long-term O3 exposure will exacerbate
the severity of certain diseases given that short-term exposure increases the
morbidity risks of the same diseases, so scrutinizing epidemiological evidence
for multiple causes of mortality will provide more credible support to fill in
this gap.
The primary innovation of this updated review derives from taking full advan-

tage of global stationary observations to explore the feasibility of adjusting the
various exposuremetrics, and pooling themulti-study risks with the unified expo-
sure metric, the mean of warm-season daily maximum 8-h average, in response
to the recent suggestions from the Lancet global environmental health collabora-
tion.20 Through this updated systematic review and meta-analysis on long-term
O3 exposure-associated cause-specific mortality risks, we aim to present and
evaluate the epidemiological evidence for three major questions not fully ad-
dressed by the two previous reviews: (1) whichmortality causes can be ascribed
to long-term O3 exposure, (2) whether the risk associations have changed given
the latest studies, and (3) how to estimate the risk association strengths with the
suggested exposure metric. Both our methods and discoveries are expected to
inspire future O3 health studies, and support relevant policy-making to benefit
the global population.

METHODS
Search strategy

We searched three research databases (MEDLINE, Embase, and Web of Science) from

September 1, 2015 to February 1, 2022, to include the latest studies in our systematic review

and meta-analysis, updating the studies included in two previous reviews on long-term O3

exposure-associatedmortality.15,16 Search termswere similar to these two previous system-

atic reviewswithmodifications to enhance the inclusion of potentially relevant studies, as we

combined the keywords related with the cause-specific mortalities (i.e., “mortality,” “death,”

“premature death,” “all-cause,” “non-accidental,” “cardiopulmonary,” “respiratory,” “chronic

obstructive pulmonary disease,” “pneumonia,” “cardiovascular,” “lung cancer,” “cerebrovascu-

lar,” “stroke,” “ischemic heart disease,” “congestive heart failure”), the pollutant of research in-

terest (i.e., “ozone”), andqualified epidemiological study types (i.e., “long-term,” “cohort study,”

“prospective,” “retrospective,” “longitudinal study”). The detailed search strategies are listed in

Table S1. Health outcomes considered in the systematic review were as follows: mortality
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 from (1) all causes (AC, ICD9: 001–799, ICD10: A00–R99); (2) all respiratory diseases (RESP,

ICD9: 460–519, ICD10: J00–J98); (3) chronic obstructive pulmonary diseases andallied con-

ditions (COPD, ICD9: 490–496, ICD10: J19–J46); (4) all cardiovascular diseases (CVD, ICD9:

390–459, ICD10:I00–I98); (5) all cerebrovascular diseases (CEVD, ICD9: 430–438, ICD10:

I60–I69); (6) ischemic heart disease (IHD, ICD9: 410–414, ICD10: I20–I25); (7) congestive

heart failure (CHF, ICD9: 428, ICD10: I50); and (8) lung cancer (LC, ICD9: 162, ICD10:

C33–C34).

Study eligibility criteria
As an updated systematic review, studies identified in the previous two reviews were

examined together with the newly retrieved ones. Studies were included during screening

following the criteria as follows: (1) the epidemiological research should be conducted based

on cohorts; (2) the exposure should include O3 as an individual risk factor; (3) the health out-

comes should be all-cause or cause-specific deaths at individual level; (4) studies provided

hazard ratio (HR), risk ratio (RR), or odds ratio (OR) and their 95% confidence intervals (CIs)

clearly and reported per increased unit (e.g., 10-ppbV) of exposure concentration, assuming

linear risk relationships with adjustment of key confounders; (5) the study was published as

an original research article in peer-reviewed journals in English. For articles from the same

cohort, only one study covering the widest populations and the longest follow-up period

was reserved for meta-analysis, unless the subgroups of participants and study follow-up

periods were clearly stated to be ofmild overlap. We followed the Preferred Reporting Items

for Systematic Review and Meta-Analyses (PRISMA) guidelines to process the included

studies on ambient O3 exposure-induced mortality.

Study selection and scrutinization
All studies found from the literature search were archived in Clarivate Analytics Endnote

X9.3.1 reference manager software. Two literature review investigators (H.Z.S. and C.L.)

conducted title and abstract pre-screening independently for all web-searched records

and reviewed the full text for the pre-screened studies. Disagreements were resolved by dis-

cussions with a third reviewer (P.Y.).

Data extraction
Details from each selected study were extracted and labeled for the purpose of meta-

analysis, including (1) the authors with publication year as study labels of reference; (2)

basic descriptive information of the study cohort, including the cohort name, country,

follow-up periods, numbers of cases and total participants, population genders and

ethnicities, exposure metrics, health outcomes, and major confounders; (3) the risk asso-

ciation strengths (exchangeable with effect size or risk values in terminology) preferably

quantified in HR (and also RR/OR as substitute choices) per unit incremental exposure

with 95% CI.

Study quality assessment
All selected studies underwent quality evaluation using the Quality Assessment Tool of

Observational Cohort and Cross-Sectional Studies developed by the National Institute of

Health (NIH) (https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools), aim-

ing to ensure that the studies considered for meta-analysis were adequately reliable. The

assessments were cross-validated by two authors (H.Z.S. and C.L.) independently, with

the third author (P.Y.) adjudicating on any disagreements. Table S2 lists 14 assessment

items assigned with one score for each, and the tallied scores were translated into a litera-

ture-specific rating of quality. Studies scoring full marks, 14, were categorized to be “Good,”

with 10–13 as “Fair” and <10 as “Poor.”

Besides applying the quality assessment tool to determine which reviewed studies

should be included for meta-analysis, the epidemiological evidence quality of the included

studies for each cause of mortality was evaluated with the Grading of Recommendations

Assessment, Development, and Evaluation (GRADE) system21,22 to yield rating bands

“high,” “moderate,” “low,” and “very low.” This grading system by default rated “high-quality”

for cohort studies as the starting point of evaluation, and the rate was downgraded by five

limitations: the existence of (1) risk of bias examined by the quality assessment tool

(Table S2), (2) imprecision (i.e., studies did not report the central risk estimations with

CIs), (3) inconsistency (i.e., the directions of the estimated risks were controversial across

studies), (4) indirectness (i.e., studies did not include the desired population, exposure, or

health outcomes), and (5) publication bias (i.e., researchers tended to publish studies

with positive results). Studies could be upgraded by three strengths: reporting (1) expo-

sure-response trend, (2) residual confounding (i.e., adjusting the confounders highlighted

the risks), and (3) strong associations. Publication biases were graphically presented by

funnel plots,23 and statistically tested by the trim-and-fill method.24 The review was regis-

tered in PROSPERO (CRD42021270637).
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Exposure adjustment
Unit unification. There were two major units used to quantify the surface O3 concentra-

tions, nmolmol-1 (or parts per billion by volumemixing ratio, ppbV), more frequently used by

atmospheric modeling researchers,17,18,25 and milligram per cubic meter by mass concen-

tration (mg/m3) widely used by public health studies.12 These two units are interchangeable

based on the ideal gas law PV = nRT, if the air temperatures (T) and pressures (P) are given,

as presented in Equations 1, 2, 3, and 4.

1 ppbV O3 =
13 10� 9mol

1 mol
O3

air
(Equation 1)

1 mol air5
RT
P

3 1mol
�
m3

�
=
8:314 Pa,m3,K� 1 3T

P

�
m3

�
(Equation 2)

1 3 10� 9 mol O3 3 47:997 g,mol� 1 = 47:9973 10� 9g O3 (Equation 3)

1 ppbV O3 =
47:7793 10� 9g3106mg,g� 1

8:314 Pa,m3,K� 1 3T=P m3

O3

air
= 5:7733 10� 3 3

PðPaÞ
TðKÞ

O3

air
mg,m� 3

(Equation 4)

Assuming T = 298.65 K (25.5�C) and P = 101.325 kPa, the ppbV to mg/m3 conversion fac-

tor could be approximated as 1 ppbV �1.96 mg/m3. Though the surface air temperatures

and pressures would vary across seasons, this simplification was widely used in previous

studies,15,26,27 beingmore credible for long-term surface O3 studies that average the surface

air temperatures and pressures over longer periods. For example, even at the very low tem-

perature of 270 K, the conversion factor was 2.17, which corroborated the stability of linear

conversion.
Metric unification. Surface O3, as a secondary photochemical pollutant produced by

photolysis of NO2 to trigger chains of radical reactions, has concentrations that vary signif-

icantly between daytime and nighttime, and between warm and cool seasons, as discussed

by a number of studies.17,28–31 Various daily metrics to quantify the surface O3 concentra-

tions have emerged due to a series of considerations, which has led to greater difficulty

when assimilating various epidemiological evidence. The previous reviews simply pooled

the reported risk association strengths without adjusting the diverse metrics.15,16 We have

improved upon this approach.

We updated the meta-analysis by unifying the exposure metrics for pooled O3 exposure-

associated risks. As suggested by the US EPA final report ofAir Quality Criteria for Ozone and

Other Photochemical Oxidants,32 linear relationships were assumed to estimate the cross-

metric conversion factors using long-term reliable observations such as the Tropospheric

Ozone Assessment Report archive (TOAR, https://b2share.fz-juelich.de/communities/

TOAR)19 and China National Environmental Monitoring Center (CNEMC, http://www.

cnemc.cn/en/) in our review, and correlation matrix was used to validate that the assump-

tions of linearity were not violated. Both TOAR and CNEMC sites measured the surface O3

by means of the UV absorption technique with strict quality control to ensure the compara-

bility of the records across different countries and regions.33,34 We considered six complex

metrics for mutual conversion as (1) annual mean of 24-h daily average (ADA24), (2)

6-month warm-season mean of 24-h daily average (6mDA24), (3) annual mean of daily

maximum 8-h average (ADMA8), (4) 6-month warm-season mean of daily maximum 8-h

average (6mDMA8), (5) annual mean of daily maximum 1-h average (ADMA1), and (6)

6-month warm-season mean of daily maximum 1-h average (6mDMA1). Long-term aver-

aging-basedmetric conversion could smooth the temporal variations resulting from the sea-

sonal and geographic solar radiation variabilities. The linear conversion factors (k) were

mathematically defined by Equation 5, to adjust the original metric to the target one with irre-

ducible regression errors є. In principle, such a metric conversion method only adjusts the

regression-obtained RRs without altering the exposure-mortality associations.

CAdjusted = kOriginal/Adjusted 3COriginal + є (Equation 5)

Meta-analysis
We collectively named RR for HR/RR/OR throughout our meta-analysis. All literature-re-

ported RRswere converted into adjusted incremental risk ratios with a 10-ppbVO3-exposure

increase by target metric (i.e., 6mDMA8 in this study), following Equation 6 as shown below:

RRAdjusted = e

�
lnRROriginal

kOriginal/Adjusted

�
(Equation 6)

where ln is the natural logarithm, RROriginal is the originally reported risk estimates scaled into

10-ppbV incremental exposure, and kOriginal/Adjusted is the conversion factor for metric unifi-

cation. Multi-study pooled risks with 95%CI were calculated from the adjusted RRs by Hunt-

er-Schmidt random-effects meta-regression estimator. The random-effects model used the
www.cell.com/the-innovation
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Figure 1. Schematic flowchart of study assessment
and selection processes for literature review and
meta-analysis

Review
inverse variances of the risk association CIs to weight each study, assuming the reported

RRs conformed to an underlying distribution (Gaussian distribution by default). The Hunt-

er-Schmidt approach could provide an effective correction to the potential systematic errors

and biases caused from the diversity of study population andmethodologies, by subtracting

the relevant part of variances.35

We applied the Higgins I2 to quantify the heterogeneity across studies. The Higgins statis-

tics I2 is defined as

I2 =
Q � df

Q
3 100% (Equation 7)

where Q is the Cochran’s non-parametric heterogeneity statistic assessingwhether there are

any cross-study differences in risks based on c2 distribution, and df is the corresponding de-

grees of freedom.36 Low I2 values indicate no important heterogeneity observed, and high I2

values, especially >75%, indicate considerable heterogeneity.

Subgroup analyseswere conducted by grouping the selected studies upon the gender, re-

gions, O3 exposuremetrics, andmethodological reliability of individual exposure assignment,

together with the adjustment of ethnicity, body mass index (BMI), smoking history, lifestyle

features, and exposure to PM2.5 and NO2. Subgroups had to contain at least three studies.

Leave-one-out sensitivity analyses were also carried out to test the robustness of synthe-

sized overall risks by meta-analysis. All meta-analyses were performed in R 4.1.1 with pack-

ages meta, metafor, andmetainf.

The most widely recognized approach to construct the integrated exposure-response

(IER)37 relationships required sufficient epidemiological studies to comprehensively sample

the population exposure levels. However, studies on long-term O3 exposure health effects
ll Th
were relatively limited, under which circumstance we

made methodological modifications to make better

use of the variabilities in exposure levels by statistically

imputing the exposure distributions for each study from

the provided statistics (e.g., mean, standard deviation,

and percentiles) for curve fitting as described in supple-

mental information S1. Supplemental information S2

describes the detailed procedures of exposure distribu-

tion imputations, with a demonstration provided in sup-

plemental information S3, through which high uncer-

tainties were still observed in the fitted IER curves due

to insufficient epidemiological studies.

RESULTS
Study characters

From the three databases searched between
September 1, 2015 and February 1, 2022, a total
of 339 studies (77 fromMEDLINE, 102 from Em-
base, and 160 fromWeb of Science) were found;
and together with 34 additional studies added
manually from the two previous systematic re-
views,15,16 373 studies underwent duplication
censoring, deleting 101 duplicated studies. After
detailed scrutinization of the remaining 272
studies, a total of 25 studies concerning long-
term O3 exposure and multi-cause mortalities
were included for quality evaluation, meta-anal-
ysis, and further discussions (Figure 1).38–62 Ta-
ble 1 summarizes the basic information of the
25 included studies sorted by the publication
year and surname of the first author, and
Table S3 lists the key confounders adjusted in
each study.

Metrics and exposure assignments
Our updated systematic review focuses on the

exposure metrics and methodologies used to

obtain O3 exposure, as summarized in Table 2. Abbey et al. (1999),38 Jerrett
et al. (2013),46 and Lipsett et al. (2011)43 did not clearly state the metric they
used, but based on comparisons between the reported surfaceO3 concentrations
and TOAR observational archives, we reasonably assumed ADA24 for the first
study, and ADMA8 for the other two. Details of the metric matching are given
in supplemental information S4. Lipfert et al. (2006)39 used the highest 95th

percentile by hourly resolved O3 concentrations as the peak exposure metric,
which was only used in this one study, so it was approximated to DMA1. Krewski
et al. (2009)41 and Smith et al. (2009)42 were both studies on ACS CPS II, so the
same exposure assignment methodologies and metrics were assumed as Jer-
rett et al. (2009).40 Likewise, Cakmak et al. (2018)53 and Weichenthal et al.
(2017)52 were assumed to follow the methodology of Crouse et al. (2015)48 as
all three studies were on CANCHEC. Warm season was defined as the 6 months
from April to September for the northern hemisphere by default, except for three
studies due to the limited number of studies included: Zanobetti et al. (2011)44

usingMay to September, and Crouse et al. (2015)48 and Paul et al. (2020)57 using
May to October.
Across all included studies, multiple methods were applied to obtain gap-

free surface O3 concentrations for individual-level exposure assignment.
The most basic approach was to match nearest neighbors between partic-
ipant residential locations and in situ observation sites, which were more
frequently used in earlier studies.39,40 A comparatively more complicated
approach was statistical spatial interpolation, by inverse distance weight-
ing46 or ordinary kriging.41 Full spatial coverage products, such as
e Innovation 3(3): 100246, May 10, 2022 3



Table 1. Summary of cohort characteristics included for meta-analysis

Study Cohort Country
Follow-up
duration Population type Sample size Sex Age Mortality causes

Abbey et al. 199938 AHS USA 1977–1992 occupational 6,182 FM 27–95 AC, RESP, LC

Lipfert et al. 200639 WU-EPRI USA 1976–1996 general 67,108 M 51 (12)a AC

Jerrett et al. 200940 ACS CPS II USA 1977–2000 general 448,850 FM

R30

AC, RESP, CVD, IHD

Krewski et al. 200941 ACS CPS II USA 1982–2000 general 488,370 FM AC, IHD, LC

Smith et al. 200942 ACS CPS II USA 1982–2000 general 352,242 FM AC, RESP, CVD

Lipsett et al. 201143 CTS USA 1998–2005 occupational 124,614 F R20 AC, RESP, CVD, IHD, CEVD, LC

Zanobetti et al. 201144 Medicare USA 1985–2006 general 8,894,473 FM R65 COPD, CHF

Carey et al. 201345 CPRD UK 2003–2007 general 824,654 FM 40–89 AC, RESP, LC

Jerrett et al. 201346 ACS CPS II USA 1982–2000 general 73,711 FM 57 (11) AC, RESP, CVD, IHD, LC

Bentayeb et al. 201547 GAZEL France 1989–2013 occupational 20,327 FM 44 (4) AC, RESP, CVD

Crouse et al. 201548 CANCHEC Canada 1991–2006 general 2,521,525 FM R25 AC, RESP, COPD, CVD, IHD, CEVD, LC

Tonne et al. 201649 MINAP UK 2003–2010 MI survivorsb 18,138 FM 68 (14) AC

Turner et al. 201650 ACS CPS II USA 1982–2004 general 669,046 FM R30 AC, RESP, COPD, CVD, CHF, IHD, CEVD

Di et al. 201751 Medicare USA 2000–2012 general 60,925,443 FM R65 AC

Weichenthal et al. 201752 CANCHEC Canada 2001–2011 general 2,448,500 FM 25–89 AC, RESP, CVD

Cakmak et al. 201853 CANCHEC Canada 1991–2011 general 2,291,250 FM R25 AC, COPD, IHD, LC

Hvidtfeldt et al. 201954 DDCH Denmark 1993–1997 general 49,596 FM 50–64 AC, RESP, CVD

Kazemiparkouhi et al. 201955 Medicare USA 2000–2008 general 22,159,190 FM R65 AC, RESP, COPD, CVD, IHD,
CHF, CEVD, LC

Lim et al. 201956 NIH-AARP USA 1995–2011 general 548,780 FM 50–71 AC, RESP, COPD, CVD, IHD,
CHF, CEVD, LC

Paul et al. 202057 ONPHEC Canada 1996–2015 diabetes 452,590 FM 35–85 CVD

Shi et al. 202158 Medicare USA 2001–2017 general 44,684,756 FM R65 AC

Strak et al. 202159 ELAPSE six countriesc 1985–2015 general 325,367 FM 49 (13) AC, RESP, COPD, CVD, IHD, CEVD

Yazdi et al. 202160 Medicare USA 2000–2016 general 44,430,747 FM R65 AC

Bauwelinck et al. 202261 BC2001 Belgium 2001–2011 general 5,474,470 FM R30 AC, RESP, CVD, LC

Stafoggia et al. 202262 ELAPSE seven countriesd 2000–2017 general 28,153,138 FM R30 AC, RESP, CVD, LC

Cohort abbreviations: AHSMOG, Adventist Health Study of Smog; WU-EPRI,Washington University–Electric Power Research Institute; ACS CPS, American Cancer Society
Cancer Prevention Study; CTS, California Teacher Study; CPRD, Clinical Practice Research Datalink; GAZEL, GAZ de France and ÉLectricité; CANCHEC, Canadian Census
Health and Environment Cohort; MINAP,Myocardial Ischaemia National Audit Project; DDCH, Danish Diet, Cancer and Health; NIH-AARP,National Institute of Health, Amer-
ican Association of Retired Persons; ONPHEC, Ontario Population Health and Environment Cohort; BC2001, Belgian 2001 Census.
Key confounding adjustments were listed in Table S3.
aPopulation ages were reported by mean with standard deviation (in parenthesis).
bMI, myocardial infarction.
cSweden, Denmark, France, Netherlands, Germany, and Austria.
dBelgium, Denmark, England, Netherlands, Norway, Switzerland, and Italy.
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satellite-based remote sensing51 and chemistry transport models,56 were
used in some studies by supervised-learning-based data fusion techniques
including but not limited to universal kriging-embedded land use regres-
sion,47 Bayesian hierarchical model,50 and ensemble learning51 to enhance
spatial extrapolation accuracy, which were considered to be of higher cred-
ibility than the aforementioned basic ones. All basic interpolation methods
using merely the observations were rated as “Low,” applying chemical
transport model simulations without calibration from the observations as
“Moderate,” linearly coupling the observations with simulations as “Good,”
and multi-source data assimilation by means of more sophisticated ap-
proaches as “High.” In total, eight studies were rated “High,” five were
“Good,” two were “Moderate,” and 10 were “Low.” Methodological progress
with time was evident as shown in Table 2, indicating an explosion of pop-
ulation-based environmental health studies in the age of big data.

Based on the TOAR and CNEMC in situ observations, the cross-metric
non-intercept linear conversion factors were estimated with regression accu-
4 The Innovation 3(3): 100246, May 10, 2022
racies given in Figure 2. As suggested by relevant recent studies, the
6mDMA8 metric was typically recommended to highlight peak exposure. There-
fore, we chose to convert the originally reported RRs uniformly into the
6mDMA8 scale as standard. O3 exposure levels by the original and unified
metrics are listed in supplemental information S1. Demonstrations for the
conversion interpretation and procedures are presented in supplemental
information S5.

Meta-analysis results
We conducted meta-analyses for long-term O3 exposure-associated mortal-

ities across 8 categories: (1) all causes (AC), (2) all respiratory diseases (RESP),
(3) chronic obstructive pulmonary disease and allied conditions (COPD), (4) all
cardiovascular diseases (CVD), (5) all cerebrovascular diseases (CEVD), (6)
ischemic heart disease (IHD), (7) congestive heart failure (CHF), and (8) lung can-
cer (LC), with the exposure metrics adjusted to 6mDMA8. All selected studies
measured effect sizes based on time-to-event survival outcomes. Therefore,
www.cell.com/the-innovation
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Table 2. Data sources and statistical methods of O3 exposure assignment

Study Data sources Methods Resolution Rating Metrics

Level of
incremental
risk ratio

Abbey et al. 199938 monitoring station observations IDW interpolation N/Ra low ADMA8 12.03 ppbV

Lipfert et al. 200639 monitoring station observations nearest matching (assumed)b N/R low ADMA1 40 ppbV

Jerrett et al. 200940 monitoring station observations nearest matching (assumed) N/R low 6mDMA1 10 ppbV

Krewski et al. 200941 monitoring station observations ordinary kriging interpolation N/R low 6mDMA1 10 ppbV

Smith et al. 200942 monitoring station observations nearest matching (assumed) N/R low 6mDMA1 1 mg/m3

Lipsett et al. 201143 monitoring station observations IDW interpolation 250 m low ADA24 22.96 ppbV

Zanobetti et al. 201144 monitoring station observations nearest matching (assumed) N/R low 6mDMA8 5 ppbV

Carey et al. 201345 monitoring station observations interpolation (IDW assumed) 1 km low ADA24 3.0 mg/m3

Jerrett et al. 201346 monitoring station observations IDW interpolation N/R low ADA24 24.1782 ppbV

Bentayeb et al. 201547 monitoring station observations, model
simulation, other auxiliary predictors

universal kriging-embedded
land use regression

2 km good 6mDMA8 12.3 mg/m3

Crouse et al. 201548 monitoring station observations, model
simulation

linear data assimilation 21 km good 6mDMA8 9.5 ppbV

Tonne et al. 201649 KCLurban air dispersion model simulation N/Ac 20 m moderate ADA24 5.3 mg/m3

Turner et al. 201650 monitoring station observations, CMAQ
model simulation

hierarchical Bayesian
space-time data assimilation

12 km high ADMA8
6mDMA8

10 ppbV

Di et al. 201751 monitoring station observations, model
simulation, satellite remote sensing
observations, other auxiliary predictors

ensemble machine learning 1 km high 6mDMA8 10 ppbV

Weichenthal et al. 201752 monitoring station observations, model
simulation

linear data assimilation 21 km good 6mDMA8 10.503 ppbV

Cakmak et al. 201853 monitoring station observations, model
simulation

linear data assimilation 21 km good 6mDMA8 10 ppbV

Hvidtfeldt et al. 201954 AirGIS dispersion model simulation N/A 1 km moderate ADA24 10 mg/m3

Kazemiparkouhi
et al. 201955

monitoring station observations nearest matching (assumed) 6 km low 6mDMA1
6mDMA8
6mDA24

10 ppbV

Lim et al. 201956 monitoring station observations, CMAQ
model simulation

Bayesian space-time
downscaling

12 km high 6mDMA8 10 ppbV

Paul et al. 202057 monitoring station observations, model
simulation

linear data assimilation 21 km good 6mDMA8 6.4 ppbV

Shi et al. 202158 monitoring station observations, model
simulation, satellite remote sensing
observations, other auxiliary predictors

ensemble machine learning 1 km high 6mDMA8 10 ppbV

Strak et al. 202159 monitoring station observations, model
simulation, satellite remote sensing
observations, other auxiliary predictors

universal kriging-embedded
land use regression

100 m high 6mDMA8 10 mg/m3

Yazdi et al. 202160 monitoring station observations, model
simulation, satellite remote sensing
observations, other auxiliary predictors

ensemble machine learning 1 km high 6mDMA8 1 ppbV

Bauwelinck et al. 202261 monitoring station observations, model
simulation, satellite remote sensing
observations, other auxiliary predictors

land use regression 100 m high 6mDMA8 10 mg/m3

Stafoggia et al. 202262 monitoring station observations, model
simulation, satellite remote sensing
observations, other auxiliary predictors

universal kriging-embedded
land use regression

100 m high 6mDMA8 10 mg/m3

Methodological ratings were based on spatial interpolation andmulti-data assimilation approaches. Spatial resolutions, exposuremetrics, and levels of incremental risk
ratio were also listed.
aN/R, not reported.
bThe statistical methods were not clearly stated in literature, so the most basic method was assumed. The nearest neighborhood matching shall be the simplest way to assign
spatially sparse observations onto cohort participants, and the inverse distance weighting (IDW) is the simplest spatial interpolation approach.
cN/A, not applicable. The chemical transport model simulations were directly used for individual exposure assignment without further statistical processing.

Review
the reported RRs (generalized definition) were equivalent to the HRs (narrow defi-
nition), thus negating the need to consider any RR/HR/OR adjustment throughout
this meta-analysis study.
ll
All-cause mortality. A total of 23 studies were included into the O3 exposure-
associated all-cause mortality meta-analysis, pooling the overall risk into RR =
1.014 (95% CI: 1.009–1.019, I2: 97.8%) per 10-ppbV incremental exposure
The Innovation 3(3): 100246, May 10, 2022 5



Figure 2. Cross-metric linear relationships and con-
version accuracies The cross-metric linear relation-
ships were quantified by Pearson’s correlation
coefficients. The cross-metric conversion factors with
95% confidence intervals (95% CI) were estimated by
non-intercept linear regression models, accompanied
with fitting accuracies quantified by coefficient of
determination (R2) and root-mean-square error
(RMSE) in ppbV. The conversion factors were defined
as multiples from the original metric by column into
the target harmonized metric by row, e.g., ADMA8 =
1.6713ADA24, R2 = 0.9736, RMSE = 7.78 ppbV.
Note that by non-intercept linear regression, the
values of R2 should no longer be equal to the squared
Pearson’s linear correlation coefficients. As the cross-
metric conversion coefficients were estimated statis-
tically, indirect conversions were not recommended,
since regression noises restricted the validity of equa-
tion kA/B = kA/C,kC/B .
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increase in 6mDMA8, as presented in Figure 3. Subgroup meta-analysis by orig-
inally reportedmetrics concluded that risk significance varies acrossmetrics. The
metric 6mDMA8, which is characterized by high concentrations, had the highest
positive risk (RR = 1.022, 95% CI: 1.014–1.030), while the smoothed metric
ADA24 reported negative association (RR = 0.980, 95% CI: 0.960–1.001), as
shown in Figure S1. When grouped by study region, significant risk pattern dis-
crepancies were found (Figure S2). The studies in North America revealed posi-
tive associations, as RR = 1.019 (95% CI: 1.014–1.024), while European popula-
tions showed reversed risks, as RR = 0.910 (95% CI: 0.827–1.001), although
not statistically significant. The cross-region divergence did not necessarily indi-
cate differences in population vulnerability, because the European studies
involved (1) smaller and younger study populations, (2) shorter follow-up dura-
tions, and (3) use of smoothed exposure metrics, which could all potentially
obscure the risk associations. Subgroup analysis indicated that high inter-study
heterogeneities originated from metric inconsistency, methodological reliability
of individual exposure assignment, and population variabilities (Table S4). The
funnel plot was visually symmetrical (Figure S3), and studies reporting risks
below the pooled value were slightly greater in number, indicating no severe pub-
lication biases.

No significant inter-gender differences were observed, based on the limited
studies reporting gender-specific risk association strengths. Further subgroup an-
alyses were unfeasible due to the lack of reporting in the literature. Alternatively,
grouped RRs were estimated based on whether the original research had
adjusted for confounding effects from ethnicity, BMI, smoking history, lifestyle
features, and exposure levels of PM2.5 and NO2. No inter-group divergences
were observed (Table S4).

Respiratory mortality. Meta-analysis for O3 exposure-associated all respira-
tory mortality included 16 studies, which gave the pooled RR = 1.025 (95% CI:
1.010–1.040, I2: 83.9%) 10-ppbV incremental O3 exposure increase by
6mDMA8 (Figure 4). Based on subgroupmeta-analysis for different metrics (Fig-
ure S4), peak metrics showed more significant increasing risks than ADA24,
which exhibited most of the heterogeneities (I2 = 87.0%). Cross-metric diver-
gences were generally higher than intra-metric discrepancies. Studies on North
American populations showed better homogeneity in positive risks (RR =
6 The Innovation 3(3): 100246, May 10, 2022
1.029, 95% CI: 1.011–1.047, I2 = 71.1%,
Figure S5) than the European cohorts, pooling
from which the overall risks were congruously
insignificant (RR = 0.941, 95% CI: 0.856–1.036,
I2 = 91.2%). For O3-COPD mortality association,
the pooled RR was 1.056 (95% CI: 1.029–1.084,
I2 = 94.5%) per 10-ppbV incremental O3 exposure
increase by 6mDMA8 from seven studies. No
apparent positive publication biases were de-
tected for both respiratory and COPD mortalities
from the funnel plot (Figure S3).

Cardiovascular mortality. A total of 15
studies were included to pool the overall O3 expo-
sure-induced CVD mortality risks as RR = 1.019
(95% CI: 1.004–1.035, I2 = 97.6%) per 10-ppbV
additional O3 exposure by 6mDMA8 (Figure 5). Given that the lower uncertainty
bound was so close to the null hypothesis (i.e., RR = 1), the positive risk associa-
tion found in this reviewcould be controversial, so it would requiremorestudies to
support or refute the finding. Heterogeneities (I2> 79.2%) were observed through
all threemetric-grouped studies, as presented in Figure S6. Positive risk associa-
tions were found on 10 North American cohorts (RR = 1.036, 95% CI: 1.017–
1.056) but negatively for five European cohorts (RR = 0.934, 95% CI: 0.866–
1.008), as shown in Figure S7. There were no concerns with publication bias,
and no more inter-group divergences were spotted except for grouping by expo-
sure assignment methodological credibility (Table S4). The pooled risk for
congestive heart failure-induced mortality from four studies was RR = 1.074
(95% CI: 1.054–1.093, I2 = 85.8%) per 10-ppbV incremental O3 exposure increase
by 6mDMA8.
Other mortality causes. The other cause-specificmortality risks attributable

to long-term O3 exposure were not statistically significant (Figure 6), as IHD
mortality risk pooled from 10 studies was RR = 1.012 (95% CI: 0.987–1.039,
I2 = 98.7%), CEVD mortality risk pooled from six studies was RR = 0.993 (95%
CI: 0.979–1.008, I2 = 80.6%), and LC mortality risk pooled from 12 studies was
RR = 0.966 (95% CI: 0.926–1.007, I2 = 84.2%). For all eight studied mortality
causes, we also provide pooled risks by three more widely used metrics
(6mDA24, ADMA8, and ADA24) besides 6mDMA8, as listed in Table 3 for
reference.

Study assessment
All 25 studies included in our final meta-analysis were rated above “Fair”

(14 “Fair” and 11 “Good”) by the Quality Assessment Tool for Observational
Cohort Studies, as listed in Table S5. All studies met 10 out of 14 assess-
ment items. Nine studies did not sufficiently clarify the participant exclusion
criteria; two re-analysis study reports did not clearly state the O3 expo-
sures;41,42 two studies were of insufficient follow-up durations (e.g., less
than 5 years) to observe the outcomes resulting from long-term expo-
sure;45,63 and 10 studies were methodologically deficient in individual expo-
sure assignment,38–46,55 most of which were conducted before 2013 when
data assimilation techniques were not comprehensively developed to fuse
www.cell.com/the-innovation
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Figure 3. Pooled estimates of all-cause mortality risk associated with every 10-ppbV incremental O3 exposure by 6mDMA8 metric

Review
observations with other full spatial coverage products such as satellite-
based remote sensing and atmospheric mechanistic simulations. The satis-
factory assessment results overall indicated indiscernible risks of bias,
laying the reliable foundation for meta-analyses.

Table S6 displays GRADE epidemiological evidence assessment results for
each mortality cause from all involved corresponding studies. In brief, the overall
judgements for all-cause, respiratory, cardiovascular, ischemic heart disease,
congestive heart failure, and lung cancermortality risks were “High,”while the rat-
ing for the remaining two cause-specificmortality risks (COPDand cerebrovascu-
lar diseases) were both “Moderate.” Inconsistency of the risk directions (i.e., pos-
itive or negative associations) was the most common reason for downgrading,
except for CHF-inducedmortality. Therewere six studies that reported O3-mortal-
ity exposure-response trends to support the additional risks, thus upgrading the
pooled RRs of all-cause, respiratory, and cardiovascular mortality. Cakmak
et al. (2018) reported higher RRs after adjusting for confounders compared to
the crude values,53 which gave prominence to the positive risk associations
and hence upgraded the rating for all-cause, ischemic heart disease, and lung
cancer mortalities. No substantial positive publication biases were found based
on the collected evidences.

Sensitivity analysis
Leave-one-out successive elimination sensitivity analyses showed stable risk

estimates as summarized in Table S7, except for lung cancermortality risk after
eliminating Kazemiparkouhi et al. (2019), the only study reporting positive risk
association,55 while the other 11 studies concluded insignificant risks or even
protectiveeffects. Since themetric harmonization inour studywasan innovative
approach, we provided both metric-adjusted and unadjusted crude results for
ll
reference as presented in Table 3. The crude results were pooled from the orig-
inally reported relative risk valuesunified intoper 10-ppbV incremental exposure,
without being transformed into any metrics for congruity. Along with the meta-
analyses on all qualified studies, the RR were also pooled by retaining only the
latest studywith the largest population for eachseparate cohort, assummarized
in Table S8. With this approach, the pooled unit incremental mortality risks per
10-ppbV O3 exposure increase by 6mMDA8 metric were RR = 1.008 (95%
CI: 1.006–1.009, I2 = 82.6%) for all causes, RR = 1.034 (95% CI: 1.017–1.050,
I2 = 81.7%) for all respiratory diseases, RR = 1.060 (95% CI: 1.040–1.080,
I2 = 90.2%) for COPD, RR = 1.032 (95%CI: 1.010–1.055, I2 = 98.2%) for all cardio-
vascular diseases, RR = 1.008 (95% CI: 0.973–1.045, I2 = 99.2%) for ischemic
heart disease, and RR = 0.966 (95%CI: 0.931–1.002, I2 = 83.8%) for lung cancer.
Studies formortality risksbycerebrovascular diseasesandcongestiveheart fail-
ure were respectively conducted on different cohorts, so such supplementary
analysis was unnecessary.

DISCUSSION
Improvements as an updated review
This work improves on two previous high-quality reviews15,16 by covering up-

to-date peer-reviewed studies, and expanding theO3 exposure-associated causes
ofmortality into awider range of categories. To the best of our knowledge, it is the
first systematic review of the association between long-term O3 exposure and
cause-specific mortality that highlights the issue of inconsistent use of exposure
metrics. Since tropospheric O3 is a photochemical pollutant that largely depends
on solar radiation, surface O3 concentrations can vary drastically between day
and night, as well as warmer and cooler seasons. We point out that a 10-ppbV
increase in annual daily 24-h average concentration (ADA24) is more constrained
The Innovation 3(3): 100246, May 10, 2022 7



Figure 4. Pooled estimates of respiratory mortality risks associated with every 10-ppbV incremental O3 exposure by 6mDMA8 metric
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in magnitude than a 10-ppbV increase in warm-season daily 8-h maximum
average concentration (6mDMA8) owing to the wider variability in the range of
the lattermetric. Taking the observations by TOAR and CNEMC in situmonitoring
networks during 1990–2019 as an example, the surface O3 concentrations were
27.6 ± 6.1 (IQR: 24.1–31.0) ppbV by ADA24, while correspondingly 53.1 ± 10.6
(IQR: 47.7–61.4) ppbV by 6mDMA8, which indicated that a 10-ppbV change fell
below the IQR by the 6mDMA8, but it could exceed the IQR using the ADA24
metric. This was why exposure metric adjustment was necessary for O3 expo-
sure-attributable health risk meta-analysis.

We also put forward an approach tomutually convert the O3 exposure concen-
trations and corresponding risk strengths in various metrics by non-intercept
linear projections, following the operational guidelines from US EPA,32 but up-
dated the linear conversion factors using global in situ surface O3 observations
during 1990–2019. This methodological innovation took advantage of multi-
dimensional information from the original studies, which could inspire future
data collection and research for corroboration and improvements.

Metric relevant issues
Although linear coefficients were applied to the cross-metric conversions, irre-

ducible noises still existed given the high root mean squared errors (RMSE), as
shown in Figure 2. This exposed the limitation of risk strength adjustment into
the same exposuremetric by simple linear conversion, as the actual cross-metric
relationships are likely to be more complicated. However, the only appropriate
approach was to use linear conversion coefficients to unify the RRs reported
by different metrics in the original studies. Therefore, to avoid uncertainties
brought about by the conversion of metrics, future long-term O3 exposure epide-
miology studies should use a promissory consistent exposuremetric or estimate
the unit excess RRs in multiple metrics.

Such linear conversion of risk associations could be validated by Kazemipar-
kouhi et al. (2020),55 where multiple metrics were applied to estimate the mor-
8 The Innovation 3(3): 100246, May 10, 2022
tality risks. For COPD mortality, the RR was 1.072 (95% CI: 1.067–1.077) by
6mDMA1 for every 10-ppbV additional exposure. After converting into
6mDMA8 using the linear coefficient 0.831 (Figure 2), the estimated RR was
1.087 (95% CI: 1.081–1.093), where Kazemiparkouhi et al. (2020) reported
1.084 (95% CI: 1.079–1.089),55 which justified our linear conversion method.
Cross-metric linear conversions would not change the risk association direction,
but using different exposure metrics when estimating the O3 exposure-attribut-
able mortality risks could potentially cause discrepancies. For instance, Kazemi-
parkouhi et al. (2020) concluded excess hazards of long-term O3 exposure
on all-cause mortality using 6mDMA1 and 6mDMA8 as quantitative metrics.
However, 6mDA24 led to a specious prevention effect (RR = 0.990, 95% CI:
0.988–0.991), which should be attributed to the existence of a theoretical
exposure safety level for O3 below which no negative health effects should
occur. Under this circumstance, lower-level metrics (e.g., ADA24) that average
peak O3 exposures may obscure effective doses above the threshold,
and also reduce the signal-to-noise ratios, resulting in lower credibility for
recognizing hazardous population exposures than higher-level metrics (e.g.,
6mDMA8).
Datamining techniques are able to realize high-accuracy predictions of surface

O3 concentrations, but errors were never avoidable. Carey et al. (2013) used the
basic inverse distance weighting (IDW) spatial interpolation approach to obtain
surface O3 concentrations with R2 = 0.24–0.76,45 while years later, Di et al.
(2017) applied an ensemble learning approach, achieving R2 = 0.80, RMSE =
2.91 ppbV.51 Carey et al. (2013) reported the IQR of O3 exposure concentrations
as 3.0 ppbV, which was comparable to the RMSE of Di et al. (2017).51 Lower R2

values are typically accompanied by higher prediction errors, whichmay conceal
the highest and lowest quartiles, and lead to failures in distinguishing the popula-
tion-level exposures. This concern is reflected in our subgroup meta-analysis by
exposuremetrics, where lower-level metricsweremore inclined to report insignif-
icant risks. This also casts doubt on the reliability of studies covering narrow
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Figure 5. Pooled estimates of cardiovascular mortality risks associated with every 10-ppbV incremental O3 exposure by 6mDMA8 metric
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exposure variabilities. We therefore support the Lancet suggestions to use peak
metrics to quantify long-term O3 exposure, such as 6mDMA8, and the use of
state-of-the-art data techniques to reduce errors in O3 prediction, so as to
make a distinction between high- and low-exposure populations.

Rebuttal to a previous review
Numerous pathogenesis mechanisms have been at least partially ascertained

by laboratory experiments. Inhaled O3 can constrict muscles in the airways, lead-
ing to shortness of breath, and damage the lining via inflammation.64 Long-term
O3 exposure can increase oxidative stress in the cardiovascular system65 and
cause progressive thickening of the carotid arteries to restrict cerebral blood sup-
ply.66 Short-term O3 exposure has also been strongly associated with a variety of
cardiopulmonary symptoms, as reported by a number of observational epidemi-
ological studies.6 This also supports the long-term effects, presuming incremen-
tal risks by long-term exposure given the verified significant short-term effects.
We therefore approve of the opinion that long-term O3 exposure increases mor-
tality risks, in agreement with the GBD report.20

However, Atkinson et al. (2016) concluded insignificant pooled risks for long-
term O3 exposure-associated all-cause and respiratory mortality,16 which contra-
dicted with our results. It shouldmainly be ascribed to the heterogeneity between
the more recent studies and earlier ones. The majority of studies collected in At-
kinson et al. (2016) applied primitive statistical methods (i.e., nearest neighbor-
hood matching, IDW, and ordinary kriging interpolation) for individual exposure
assignment, which might have weakened the individual-level exposure distin-
guishment. In addition, some studies using ADA24 as the exposure metric could
have also oversmoothed the peak exposures so obscured the significance of as-
ll
sociations.43,45,46 In contrast, studies after 2016 more frequently applied
advanced numerical simulation models and data assimilation techniques to in-
crease the precision of population exposure assessment; most of these used
the 6mDMA8 metric to foreground high exposures.50,52,53,55–57 These recent
studies highlighted significant O3-mortality associations.
To alleviate the population health loss resulting from O3 exposure,

the US EPA appealed for optimizations in real-time accessibility of an air
quality index, with which residents could avoid unnecessary high pollution
exposure (https://www.epa.gov/ground-level-ozone-pollution/health-effects-
ozone-pollution). Appropriate diets and supplements including carotenoids,
vitamin D, and vitamin E were recognized to be preventive against air pollution-
induced respiratory damage, as a practical protective measure for vulnerable in-
dividuals.67 These emergent announcements and studies demonstrated a
growing number of researchers inclined to the view that long-term O3 exposure
should be considered a health hazard.

Concentration-response relationship
Few studies have examined the concentration-response curves between long-

term O3 exposure and mortality, so the threshold exposure level (also known as
theoretical minimum risk exposure level, TMREL), belowwhich no adverse health
effects would be assumed to occur, remains controversial. For all-cause mortal-
ity, Di et al. (2017) reported a safe exposure level as 30 ppbV by the 6mDMA8
metric,51 while Shi et al. (2021) suggested a more conservative level at 40
ppbV by 6mDMA8, both estimated from the Medicare beneficiary cohort.58 For
respiratory mortality, Jerrett et al. (2009) tested the concentration-response
relationships and estimated the threshold level as 60 ppbV by 6mDMA1
The Innovation 3(3): 100246, May 10, 2022 9
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Figure 6. Pooled estimates of ischemic heart disease, cerebrovascular diseases, and lung cancer mortality risks associated with every 10-ppbV incremental O3 exposure by
6mDMA8 metric
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(approximately 49.9 ppbV by 6mDMA8),40 while Lim et al. (2019) failed to identify
a significant threshold level.56 For cardiovascular mortality, Lim et al. (2019)
showed no apparent health hazards below 45 ppbV by 6mDMA8,56 and Paul
et al. (2020) prescribed a threshold level around 35 ppbV by the 6mDMA8metric
for diabetic patients.57 These evidence-based threshold exposure levels were all
within the current standards: 70 ppbV for daily maximum 8-h exposure under
NAAQS (The National Ambient Air Quality Standards regulated by the US
EPA)68 and 50 ppbV by warm-season DMA8 under WHO global air quality guide-
10 The Innovation 3(3): 100246, May 10, 2022
lines.69 However, further studies should determine whether stricter standard
guidelines are necessary.
To synthesize epidemiological evidence, Burnett et al. (2014) developed an in-

tegrated exposure-response (IER) function-based curve-fittingmethod topool the
risk associations from multiple studies.37 We constructed the IER for long-term
O3 exposure-associated mortalities in this review, with statistically reproduced
exposure levels to enhance the curve fitting, as illustrated in supplemental infor-
mation S1–S3. The exposure imputation revealed high reliability, but the high
www.cell.com/the-innovation
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Table 3. Pooled RRs for long-term 10-ppbV incremental O3 exposure-associated mortalities by four major metrics and crude risks without harmonization

Mortality causes 6mDMA8 6mDA24 ADMA8 ADA24 Crude

All causes (n = 23) 1.014 (1.009, 1.019) 1.023 (1.014, 1.032) 1.016 (1.010, 1.022) 1.027 (1.017, 1.037) 1.017 (1.011, 1.023)

Respiratory diseases (n = 16) 1.025 (1.010, 1.040) 1.042 (1.016, 1.069) 1.029 (1.011, 1.047) 1.049 (1.019, 1.081) 1.031 (1.017, 1.046)

Chronic obstructive pulmonary disease (n = 7) 1.056 (1.029, 1.084) 1.098 (1.050, 1.149) 1.066 (1.034, 1.098) 1.116 (1.058, 1.176) 1.055 (1.032, 1.078)

Cardiovascular diseases (n = 15) 1.019 (1.004, 1.035) 1.033 (1.006, 1.061) 1.022 (1.004, 1.041) 1.038 (1.007, 1.071) 1.024 (1.009, 1.038)

Ischemic heart disease (n = 10) 1.012 (0.987, 1.039) 1.021 (0.977, 1.067) 1.014 (0.984, 1.045) 1.024 (0.973, 1.078) 1.017 (0.994, 1.041)

Congestive heart failure (n = 4) 1.074 (1.054, 1.093) 1.130 (1.094, 1.168) 1.086 (1.063, 1.110) 1.155 (1.110, 1.198) 1.083 (1.059, 1.107)

Cerebrovascular diseases (n = 6) 0.993 (0.979, 1.008) 0.988 (0.964, 1.013) 0.992 (0.976, 1.009) 0.986 (0.958, 1.015) 0.992 (0.979, 1.006)

Lung cancer (n = 12) 0.966 (0.926, 1.007) 0.943 (0.878, 1.012) 0.960 (0.915, 1.008) 0.933 (0.859, 1.014) 0.960 (0.909, 1.013)

Review
uncertainties of the estimated IER curves could not be addressed. This is attrib-
uted to the limited availability of effective epidemiological evidence. Empirically,
this approach would require sufficient studies to cover a wide range of exposure
levels, as has been frequently adopted for particulate matter exposure
research,70–72 but seldom used for O3 health studies.20 The reason might be
that the population long-term O3 exposure levels are not as comparably distin-
guishable as those of particulate matter. In addition, a reasonable prescribed
TMREL would be necessary to establish the IER curves;37 the indeterminacy of
the threshold level could exacerbate uncertainties in the estimated concentra-
tion-response trends. Therefore, we urgently appeal for more relevant studies
on long-term O3 exposure-associated risks, and encourage in-depth discussions,
optimizations, or corrections on our enhanced exposure-response relationship
curve-fitting methodologies.

Hierarchical classification of diseases
The causes ofmortality analyzed in our study followed hierarchical subordinate

relationships, as the all-causemortality consisted of cardiovascular diseases, res-
piratory diseases, cancer, and other causes; chronic obstructive pulmonary dis-
ease belonged to the respiratory category; and ischemic heart disease, conges-
tive heart failure, and cerebrovascular diseases were all subordinated to
cardiovascular symptoms. On this occasion, estimating all O3 exposure-induced
mortalities could follow a bottom-up scheme by adding up subgroups of dis-
eases. However, for historical O3-associated mortalities, GBD attributed all O3-
associated mortalities onto COPD-induced premature deaths, which could be
erroneous20 Long-term O3 exposure has shown significant association with
excess cardiovascular mortalities, so mortality estimations in future studies
should also include CVD.

Applications for mortality estimation
The widest applications of estimated risk association strengths have

been to project how many people could be affected by long-term ambient
O3 exposure. For example, Malley et al. (2017) estimated 1.23 (95% UI:
0.85–1.62) million respiratory deaths attributable to O3 exposure in
2010,73 using the risk strength by Turner et al. (2016) as HR = 1.12 (95%
UI: 1.08–1.16).50 This estimation was much higher than the 2019 GBD re-
ported figure of 0.31 (95% UI: 0.15–0.49) million, as highlighted in another
recent study.25 This should be attributed to the use of high HR value among
all included studies. We also found other studies using a singular HR value
for population risk estimations17,74–77 but would encourage further relevant
studies to consider multi-study pooled RRs. This could effectively reduce
the potential biases from a single study. The adaptability of pooled RRs
could be verified from the coverage of exposure levels, as the 25 studies
identified in our review had embraced a wide range of exposure concentra-
tions (supplemental information S1) to encompass global surface O3 vari-
ability.25 On the other hand, the leave-one-out sensitivity analyses
(Table S7) revealed the robustness of the meta-analysis results when
including sufficient numbers of studies. This reflects the representativeness
of the synthesized risk association strengths. The annual GBD reports also
presumed generalizability of the synthesized epidemiological evidences, but
cohort-based research in unstudied regions remains a requirement for
more convincing conclusions.
ll
Limitations
Although the total number of study participants for risk poolingwas adequately

high to ensure statistical power, the cohort-basedO3 health studieswere factually
rare according to our literature search, so long-term follow-up studies are urgently
encouraged. Furthermore, few studies reported grouped RRs (gender, age, socio-
economic status, smoking and alcohol history, etc.), which made meta-analyses
by sub-categories unfeasible. High inter-study heterogeneities existed across all
mortality causes, which were not substantially alleviated by subgroup clustering.
This indicates that the causes for cross-study incongruity have not been fully
identified based on current evidence, so future studies are strongly encouraged
to help identify the causes of the heterogeneity. Scarcity of credible evidence
also restricted the effects of conventional approaches to construct exposure-
response curves, and our methodological innovation requires further relevant
studies for substantiation. The cross-metric linear conversion factors were esti-
mated using observations from available sites, which may not be sufficiently
representative of global residential areas, since observational sites in India, Africa,
and Latin America were still sparse. With ever-increasing deployment of in situ
monitoring networks, the cross-metric conversion factors could be calibrated
with more comprehensive observations; the pooled RRs should also be updated
accordingly. In principle, the meta-analysis pooled RRs with exposure metric
adjustment were reasonable estimations for the unknown true values of the ef-
fect size, requiring more relevant studies to support or correct. Prospective re-
searchers should be aware of this limitation and use the meta-analysis results
cautiously.

Further study suggestions
We suggest that further environmental epidemiology studies, especially long-

term O3 exposure-related research, clearly report (1) the methodologies used to
obtain ambient O3 concentrations, the spatiotemporal resolution, and prediction
accuracy of the database; (2) the exposure metrics used for risk estimation; and
(3) the statistical distribution of the O3 exposure concentrations. The data-ori-
ented methodologies used to accomplish full spatial coverage ambient air O3

concentrations for individual-level exposure assignment should be transparent
so that the construction credibility of air pollution concentration databases can
be rigorously assessed, thus forming the foundation of epidemiological follow-
up studies. We advocate the reporting of exposure metrics in future O3 health
studies to avoid confusion when comparing the risks with literature and con-
ducting meta-regression; according to recent consensus, warm-season average
(6mDMA8) is preferred for epidemiological studymetrics.19 We recommend that
future studies estimate risks with multiple O3 metrics for reference and describe
the statistical distribution of O3 exposure levels to assess the reliability of risk esti-
mation models. This can be useful in exposure-response tendency exploration.
We also propose that future cohort studies estimate subgroup-specific RRs,
which can help to identify vulnerable populations.
Our review highlights a deficiency in current environmental health

research literature: studies on long-term O3 exposure health effects are still
rather rare compared to particulate matter-based studies.78 Additionally, the
meta-analysis results may be geographically biased, since large-scale O3

exposure health risk studies up to 2022 did not cover Asian, African, or Latin
American regions. However, there are some thriving cohort projects such
as the Multi-Country Multi-City Collaborative Research Network covering
The Innovation 3(3): 100246, May 10, 2022 11
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 over 22 countries or regions,79 and the China Kadoorie Biobank enrolling

over 0.5 million people,80 enabling environmental exposure research. We
are optimistic that more research will fill the literature gap of multi-region
population-based studies.

CONCLUSIONS
Our updated systematic review has summarized cohort studies exploring the

associations between long-term ambient O3 exposure and multi-cause mortality
risks. Current studies support O3 exposure-attributable excess mortalities from
all causes, respiratory diseases, chronic obstructive pulmonary disease, cardio-
vascular diseases, and congestive heart failure, but no significant mortality risks
are found for ischemic heart diseases, all-type cerebrovascular diseases, and
lung cancer. Exposure metrics are crucial for health risk estimations of long-
term O3 exposure and meta-analysis to pool the multi-study risks, for which
we develop a linear conversion approach to harmonize the different metrics.
Further research on long-term O3 observations and exposure-induced mortal-
ities are encouraged to corroborate or contradict our linear conversion factors
and meta-analysis results by providing additional evidence to strengthen the O3

health literature.
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