
Modelling Physical Mechanisms Driving
Tissue Self-Organisation in the Early

Mammalian Embryo

Christopher Keith Revell

Department of Physics
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Gonville and Caius College May 2018

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Christopher Keith Revell
May 2018

Acknowledgements

Completion of this thesis would not have been possible without a small group of close
supporters. Most notably I am eternally grateful to Evelyn Boettcher for having more faith in
me than I could ever have in myself, and for always making me feel better when things were
hard. Countless walks, dinners of curry noodles and halloumi, coffees, and hugs made more
difference than I can fully express. I am also thankful for the constant digital presence of
Katie Davidson who, although often thousands of miles away, was always willing to listen. I
must also acknowledge the generosity and patience of my parents and grandfather, without
whom this project would never have been possible.

I have greatly appreciated the patience and input of my supervisors Raphael Blumenfeld
and Kevin Chalut, who managed to remain dedicated to the completion of this project despite
everything else happening in their lives. All experimental results from within the group cited
within this thesis were produced by Ayaka Yanagida and Sarra Achouri, and I am particularly
indebted to Ayaka for providing feedback on this manuscript.

The Santa Fe Institute made a huge contribution to my progress by reinvigorating my
belief in both science and myself during their Complex Systems Summer School, and it was
here that I met Marius Somveille, to whom I am extremely grateful for working with me on
the project, begun at the SFI, that resulted in my first publication.

Finally, I am grateful to all those at Gonville and Caius College, whether it be my tutor
Jonathan Evans, the porters, or many others, for providing the environment in which to
survive 9 years and 3 degrees at Cambridge, and to Caius Boat Club, for providing an escape
from those degrees, and the platform for my rowing endeavours.

Abstract

In the mammalian embryo, between 3.5 and 4.5 days after fertilisation, the cells of the
inner cell mass evolve from a uniform aggregate to an ordered structure with two distinct
tissue layers - the primitive endoderm and epiblast. It was originally assumed that cells
differentiated to form these layers in situ, but more recent evidence suggests that both cell
types arise scattered throughout the inner cell mass, and it is thus proposed that the tissue
layers self-organise by physical mechanisms after the specification of the two cell types.
We have developed a computational model based on the subcellular element method to
combine theoretical and experimental work and elucidate the mechanisms that drive this self-
organisation. The subcellular element method models each cell as a cloud of infinitesimal
points that interact with their nearest neighbours by local forces. Our method is built
around the introduction of a tensile cortex in each cell by identifying boundary elements and
using a Delaunay triangulation to define a network of forces that act within this boundary
layer. Once the cortex has been established, we allow the tension in the network to vary
locally at interfaces, modelling the exclusion of myosin at cell-cell interfaces and consequent
reduction in tension. The model is validated by testing the simulated interfaces in cell
doublets and comparing to experimental data and previous theoretical work. Furthermore,
we introduce dynamic tension to model blebbing in primitive endoderm cells. We investigate
the effects of cortical tension, differential interfacial tension, and blebbing on interfaces,
rearrangement, and sorting. By establishing quantitative measurements of sorting we produce
phase diagrams of sorting magnitude given system parameters and find that robust sorting in
a 30 cell aggregate is best achieved by a combination of differential interfacial tension and
blebbing.

Table of contents

List of figures xiii

1 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting 1
1.1 A Definition of Self-Organisation . 2
1.2 Blastocyst Formation . 2
1.3 Lineage Specification in the Inner Cell Mass 5
1.4 Physical Mechanisms of Tissue Self-Organisation 7

1.4.1 Sources of Differing Mutual Affinity 7
1.4.2 Energetic Mechanisms Driving Kinetics 14

2 Introduction to Tissue Modelling 17
2.1 Mathematical Modelling . 17
2.2 Agent-Based or Individual-Based Models 18

2.2.1 Biocellion . 19
2.2.2 PhysiCell . 19

2.3 CHaSTE . 20
2.4 Virtual Cell . 20
2.5 Finite Element Models . 20

2.5.1 FEM/DEM . 21
2.6 Immersed Boundary Model . 22
2.7 Cellular Automata . 23

2.7.1 Cellular Potts Models . 23
2.8 Vertex Methods . 25
2.9 Subcellular Element Method . 26
2.10 Models of the Blastocyst and Inner Cell Mass 27

3 The Sub-cellular Element Method 31
3.1 Theoretical Foundations . 31

x Table of contents

3.2 The SEM Program . 32
3.2.1 Data Structures . 32
3.2.2 Initialisation . 35
3.2.3 Sector Array . 38
3.2.4 Interaction Pairs . 39
3.2.5 Growth . 40
3.2.6 Division . 42
3.2.7 Interaction Potential . 45
3.2.8 Updating . 46
3.2.9 Data Output . 47
3.2.10 Auxiliary Scripts . 47

4 Implementation of a Model of Cell Sorting with the Subcellular Element
Method 49
4.1 Cell Lineages . 49
4.2 Boundary and External Pressure . 51
4.3 Interaction Potentials . 53
4.4 Defining a Cortex . 55
4.5 Introducing Tension in Cortex . 58

4.5.1 Delaunay Triangulation Over Cortex Elements 61
4.5.2 Applying Tension Forces Within Triangulation 65

4.6 Differential Interfacial Tension . 68
4.6.1 Decoupling Tension From Adhesion 72

4.7 Dynamic Tension and Blebbing . 75
4.8 Creating a Random Initial System . 79

5 Measures and Analyses 83
5.1 Quantitative Measures of Sorting . 83

5.1.1 Radius Sorting Measure . 85
5.1.2 Neighbour Sorting Measure . 87
5.1.3 Surface Sorting Measure . 89
5.1.4 Randomised Control Systems . 91
5.1.5 Displacement Measure . 98
5.1.6 Alternative Measures . 99

5.2 Visualisation of Simulation Results . 100
5.2.1 POV-Ray . 100

Table of contents xi

6 Results 109
6.1 Testing Doublet Interface Area . 109

6.1.1 Exploring Phase Space of Interface Proportion 111
6.1.2 Variation of Interface with Interfacial Tension Factor β 114

6.2 Testing Energetic Mechanisms Driving Dynamics 118
6.3 Testing Sorting By Differential Interfacial Tension 120

6.3.1 Exploring Extent of Sorting in Adhesion and Interfacial Tension Space120
6.3.2 Variation of Sorting with Interfacial Area 121

6.4 Effect of Dynamic Tension on Sorting in Adhesion and Interfacial Tension
Space . 123

6.5 Sorting Kinetics . 131

7 Conclusions 133
7.1 Conclusions . 133
7.2 Remaining Questions . 136

References 139

Appendix A Volume Conservation 155

List of figures

1.1 Simplified diagram of early mammalian embryogenesis. 3
1.2 Confocal microscopy image of 5 mouse embryos. 4
1.3 Confocal image of a blastocyst. 4
1.4 Blastocysts at 3.5 and 4.5 days after fertilisation. 5
1.5 Simplified diagram of fate acquisition and sorting in the inner cell mass. . . 6
1.6 Diagram of aggregate of cells sorted by differential adhesion. 8
1.7 Diagram demonstrating differential interfacial tension in cell doublets. . . . 10
1.8 Diagram outlining the linear force balance model of cell doublet contact angles. 12
1.9 Epi-Epi and PrE-PrE cell doublet images. 13
1.10 Time sequence of rearrangement due to cell division in C. elegans embryo. . 15
1.11 Time sequence demonstrating blebbing in a primitive endoderm cell. 16
1.12 Time sequence demonstrating lack of blebbing in an epiblast cell. Images

produced by Ayaka Yanagida in our group. 16

2.1 Visualisation of necrotic tumours simulated with Biocellion and PhysiCell. 19
2.2 Finite element method diagrams. 21
2.3 Diagram of the immersed boundary method. 22
2.4 Diagram of a cellular Potts model. 25
2.5 Diagram of a vertex model of the mouse visceral endoderm. 26
2.6 Cross section of a blastocyst resulting from the vertex model of Honda et al. 28
2.7 Simulated blastocyst resulting from the agent-based model of Krupinski et al. 29
2.8 Simulated inner cell mass from the agent-based model of Krupinski et al. . 29

3.1 Diagram of two SEM cells . 32
3.2 Plot of the basic Morse potential as a function of equilibrium radius. 34

4.1 Separate plots of the attractive and repulsive components of the Morse potential. 53
4.2 Sequence demonstrating the algorithm for allocating cortex elements. . . . 57
4.3 Cutaway PovRay image showing cortex and cytoplasm elements. 60

xiv List of figures

4.4 Visualisation showing the problem of naive cortical tension algorithm. . . . 61
4.5 Visualisation showing loss of elements from SEM cell. 62
4.6 Diagram of cortical tension forces as defined by a Delaunay triangulation. . 62
4.7 Visualisation of cortical tension forces defined by Delaunay triangulation. . 68
4.8 Diagram outlining algorithm for implementing differential interfacial tension. 69
4.9 Diagram of local adhesion normalisation 73
4.10 Diagram demonstrating our model of blebbing in primitive endoderm. . . . 77

5.1 Diagram demonstrating different patterns of self-organisation. 84
5.2 Diagram demonstrating the radius sorting measure. 87
5.3 Diagram demonstrating neighbour sorting measure. 89
5.4 Diagram demonstrating the surface sorting measure. 91
5.5 Diagram showing how fates are reassigned to produce mean, standard deviation. 92
5.6 Distributions of sorting measure over fate reallocations for 10 and 30 cells. . 94
5.7 Plot of values found against number of random fate reallocations 95
5.8 POV-Ray visualisation of an SEM cell, cut away to show internal elements. 102
5.9 Four cell system visualised with different POV-Ray methods. 105
5.10 POV-Ray visualisation of one cell isolated from a doublet. 106
5.11 POV-Ray visualisation of cortex and adhesive interactions in a cell doublet. 106

6.1 Visualisations of cell doublets in β and γm space. 110
6.2 Diagram calculating interface area as a fraction of total cell surface area. . . 111
6.3 Interface phase space plots at β = 0.50,0.75,1.00. 113
6.4 Plots of interface area against adhesion magnitude at β = 0.5,0.75,1.00. . . 115
6.5 Plots of interface against tension at α = 0.15 and β = 0.5,0.75,1.00. 116
6.6 Plots of interface proportion against β in the low adhesion regime 116
6.7 Plots of interface proportion against β in the high tension regime. 117
6.8 Sequence showing separation of daughter cells after division. 118
6.9 Phase space of mean cell cycle displacement in α and γm space. 119
6.10 Plot of cell cycle displacement against tension magnitude for ε = 0.0,0.1,0.2.119
6.11 Phase spaces of final sorting indices for 30 cell aggregates in α and β space. 122
6.12 Plots of final sorting index against epiblast doublet interface proportion. . . 124
6.13 Phase spaces of radius neighbour sorting index with ε = 0.1,0.2,0.3. 126
6.14 Phase spaces of final neighbour sorting index with ε = 0.1,0.2,0.3. 127
6.15 Phase spaces of final surface sorting index with ε = 0.1,0.2,0.3. 128
6.16 Phase space of sorting index in β and ε space at α = 0.2γm. 129
6.17 Plots of final sorting index against epiblast doublet interface with ε = 0.3. . 130

List of figures xv

6.18 Time series plot of neighbour sorting index 131
6.19 Time sequence showing visualisation of cells sorting. 132

A.1 Diagram demonstrating the Promayon volume conservation algorithm. . . . 156
A.2 Diagram demonstrating streamlined approximation of Promayon algorithm. 157
A.3 Diagram of one tetrahedron used to calculate the volume of a cell 160

Chapter 1

Introduction to Self-Organisation,
Embryogenesis, and Cell Sorting

The application of physics to embryology began over a century ago with Wilhelm Roux, who
coined the term “developmental mechanics” [1–3] and attempted to explain development
as a physical process. However, despite some interest from the great minds of 20th century
physics [4–6], it was not until recent years that physical processes and physical reasoning
came to prominence as an important consideration in understanding biological systems,
including development. The field of biological physics is now well established and is helping
to transform biology into a quantitative, predictive science [7–10].

Embryogenesis is one of the great mysteries in biology and a subject to which this
rising field of physical biology has recently begun to turn its attention. The purpose of
this project was to apply physical reasoning and computational modelling to shed light on
the self-organisation of stem cell tissue layers within the early mammalian embryo. It is
proposed that in this process, an initially random distribution of two cell types is produced
by stochastic transcriptional noise, and that physical differences in these cells then drive their
separation into two distinct tissue layers. We aim to show how this process is governed to a
large extent by physical mechanisms.

The background of inner cell mass development will be introduced in a manner that
is accessible to physicists. With this background understanding, a variety of theories that
have previously been proposed to lead to cell sorting by physical mechanisms are reviewed.
Theoretical modelling work on the mammalian embryo is limited, but examining past work
on modelling cellular systems demonstrates the limitations of most previous approaches,
which will, in turn, lead into a discussion of how modelling can be improved and applied to
cell sorting in the inner cell mass.

2 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting

1.1 A Definition of Self-Organisation

The concept of self-organisation arises in a great many different fields [11], from physics
and biology [12], to computing, or the social sciences. Self-organisation is typically the
result of non-equilibrium systems; biological cells being a classic example of such a system.
Self-organisation is a fundamental principle underlying much of biology. It can be seen
in systems ranging in scale from the folding of proteins [13], to the dramatic patterns in a
murmuration of starlings [14, 15].

Broadly, we can think of self-organisation as the formation of some macroscopic order
from disordered components by the action of simple rules defining the interactions between
these components. These interactions provide the local communication that can lead to
global order. Although we can form such an intuitive understanding of what the phrase
means, a precise definition of self-organisation can be difficult, and was addressed in detail
in W. Ross Ashby’s seminal work “Principles of the Self-Organizing System” [16]. Ashby
points out that most “organisations” that a system may produce are bad ones with respect
to some purpose, and that in biology we may think of self-organisation as “changing from
a bad organisation to a good one”. This again hinges on the definition of “good”, which
may depend on context, but could, for example, include the orientation of a set of cells that
allows normal development of an embryo. Thus, for our purposes, self-organisation is the
rearrangement of cells from an orientation in which development is not possible to one in
which development of the embryo can proceed correctly.

1.2 Blastocyst Formation

We are interested in an example of self-organisation that occurs in the mouse embryo
between 3.5 and 4.5 days after fertilisation (E3.5-4.5). The following section describes the
development of the embryo up to 3.5 days after fertilisation, specifically the formation of the
blastocyst structure. The early development of the mouse embryo has been well studied and
the physical mechanisms driving blastocyst formation are well understood [17].

Embryogenesis begins with the fertilisation of an oocyte (egg cell) to form a zygote, which
is a single, large cell containing all genetic material necessary to produce a full organism.
Soon after fertilisation, the zygote cleaves into two daughter cells. Subsequent division of
daughter cells forms an aggregate of 8 cells [18]. These divisions involve proliferation of
nuclei and separation of pre-existing cytoplasm - no growth occurs and the total size of the cell
aggregate does not change significantly from the size of the zygote but the nucleus/cytoplasm

1.2 Blastocyst Formation 3

Fig. 1.1 Simplified diagram of embryogenesis from the post cleavage stage to the
early blastocyst. a, Post-cleavage 2 cell stage. b, Morula, roughly 8 to 32 cells. c,
Early blastocyst, 32-64 cells [20].

ratio increases dramatically. This 8 cell aggregate undergoes a process of compaction to
reach a stage known as the morula [Figure 1.1] [19].

The cells in the morula continue to divide until, around 3.5 days after fertilisation, the
embryo consists of up to 32 cells and has entered the blastocyst stage [Figure 1.1 and Fig-
ure 1.2] [17, 21]. During the process of blastocyst formation, the cells begin to excrete a
fluid which forms multiple small fluid-filled cavities [22, 23] within the embryo. Over time,
these cavities coalesce to form a larger cavity known as the blastocoele, surrounded by a
tissue called the trophectoderm [24], formed from cells called trophoblasts [Figure 1.2]. The
membranes of these cells form tight junctions to create a boundary that seals and protects the
blastocyst, helping to maintain the blastocoele fluid at a higher pressure than the external
environment. If this seal is broken the blastocyst will collapse, indicating the importance of
the fluid pressure in maintaining the spherical structure [25]. The trophectoderm is the first
“extra-embryonic” tissue to develop. Embryonic tissues at this stage are pluripotent, meaning
their cells have the capacity to form any cell type in the foetus, but these extra-embryonic
tissues lose that pluripotency in their differentiation to a specific extra-embryonic cell type.
The formation of “extra-embryonic” tissues is characteristic of mammalian embryogene-
sis [26, 17].

Trophectoderm cells are allocated by polarised division along the radial axis of the
morula, with the outer daughter cells from such a division forming trophoblasts [27]. Those
daughter cells at the inner edge of the division axis do not lose their pluripotency and are
allocated to a tissue known as the inner cell mass (ICM) that forms an aggregate at one pole
of the blastocyst [Figure 1.2] [28]. It is this inner cell mass that will be of primary interest to
us.

4 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting

Fig. 1.2 Confocal microscopy image of 5 mouse embryos. Embryos A, B and
C are in the blastocyst stage, and the blastocoele, trophectoderm and inner cell
mass can clearly be seen. Embryos D and E are in the morula stage. Image
courtesy of Berenika Plusa.

Fig. 1.3 A confocal image of mouse blastocyst with membrane-localised mCherry
fluorescent protein. The empty fluid filled blastocoele, and the cells of the inner
cell mass are all clearly visible. Scale bar is 50µm. Image produced by Ayaka
Yanagida in our group.

1.3 Lineage Specification in the Inner Cell Mass 5

(a) (b)

Fig. 1.4 Blastocysts at 3.5 and 4.5 days after fertilisation in which PDGFRα

(characteristic of primitive endoderm) is labelled with green fluorescent protein.
a, E3.5, with primitive endoderm marker positive cells distributed throughout
ICM. b, E4.5, with primitive endoderm marker positive cells localised around
the boundary with the blastocoele. Images courtesy of Berenika Plusa.

1.3 Lineage Specification in the Inner Cell Mass

Once the ICM has formed, from about 3.5 days after fertilisation, its constituent cells
differentiate into two distinct cell lineages: the epiblast and the primitive endoderm. The
epiblast cells are those from which the foetus will develop, and are described as pluripotent
because they have the capacity to form any tissue of the final organism. The primitive
endoderm is the second extra-embryonic tissue. It forms a protective layer between the
epiblast and the blastocoele, and will eventually produce the yolk sac.

Lineage specification within the early embryo is characterised by differential expression
of transcription factors [29–31]. The precise function of these transcription factors is not
relevant to this project - for us they simply serve as markers for each lineage by virtue of
their expression being mutually exclusive. Specifically, epiblast cells are characterised by
expression of the pluripotency factor Nanog [32, 33], Sox2, and Oct4 [34], while primitive
endoderm cells are characterised by expression of PDGFRα [30], Gata4 [35], Gata6 [36, 37],
and Sox17 [38–40]. Most notable among these are Nanog for epiblasts and Gata6 for
primitive endoderm. It is also worth noting that the initial fate decisions made by cells in
the inner cell mass produce “precursor” cells that have been shown to retain some degree
of plasticity, such that if transplanted into another embryo they can switch to the other
type [41], lending further credence to the idea of cells moving within some continuous state
space between epiblast and primitive endoderm. However, this is also beyond the scope of
the current project, and once the blastocyst reaches 4.5 days after fertilisation, these fate
decisions are observed to be fully determined.

6 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting

Fig. 1.5 Simplified diagram of fate acquisition and sorting in the inner cell mass.
a, Ground state inner cell mass cells.
b, "Salt and pepper" distribution of epiblast and primitive endoderm precursors.
c, Self-organised epiblast and primitive endoderm layers.

The observed positions of the primitive endoderm and epiblast cells within the late stage
ICM [Figure 1.4b], when cell phenotypes are clearly visible, led to an initial assumption that
the two lineages differentiated in situ, driven by environmental cues such as proximity to
the blastocoele or trophectoderm [42]. More recently, it has been found that in the early and
mid-stage blastocyst, before observed formation of distinct primitive endoderm and epiblast
layers, expression of these transcription factors is distributed throughout the ICM in a mixed
but mutually exclusive manner [36] [Figure 1.4a]. This suggests that the process of lineage
specification is stochastic [43] and precedes the emergence of physically separated epiblast
and primitive endoderm. Thus it is proposed that the initial "salt and pepper" distribution [27]
of cells in the inner cell mass eventually evolves into distinct layers by self-organisation [44].

The evolution of the inner cell mass between 3.5 and 4.5 days after fertilisation is shown
in Figure 1.5. Figure 1.5a shows a blastocyst containing an aggregate of undifferentiated
blastomeres that make up the inner cell mass at E3.5. Figure 1.5b shows how an initial
disorganised "salt and pepper" distribution of two cell lineages is formed before the physically
segregated tissue layers become evident, as shown in Figure 1.5c. Note that the change from
diffuse to solid colours indicates that fate decisions are locked in by E4.5.

It has been proposed that the physical properties of epiblast and primitive endoderm cells
differ [45, 46]. We propose that it is these physical differences that lead to self-organisation
of the tissue layers by physical processes. This fits with the self-organising framework
proposed for earlier stages of embryo development [47]. The questions that remain are:
precisely what mechanisms drive this process, and how do we formulate these into a model
that will realistically describe the inner cell mass and help further our understanding of
embryogenesis? Although earlier processes described in Section 1.2 are well understood, the

1.4 Physical Mechanisms of Tissue Self-Organisation 7

precise mechanisms of inner cell mass self-organisation have not been well studied [17], so
this project was an initial attempt to formulate a hypothesis for what drives these processes.

It is worth noting that epiblast and primitive endoderm cells are observed to self-organise
as an aggregate, without extra-embryonic tissue. In this case, the cells form a spherical
aggregate with epiblast cells moving to the centre and primitive endoderm moving to the
outside [48]. For the purposes of our simulations we start out modelling this in vitro system.

1.4 Physical Mechanisms of Tissue Self-Organisation

The self-organisation of cells into distinct tissue layers can be regarded as analogous to the
separation of oil and water [49, 50]. However well oil and water are mixed, they will always
eventually separate into two distinct layers. The forces governing this behaviour are the
differing strengths of hydrogen bonding for oil and water molecules, and gravity, which
breaks the symmetry of the system. The analogy to primitive endoderm and epiblast cells,
which are seen to separate into distinct layers from an initial random distribution, is clear,
and we will now discuss the analogous forces that could drive the separation of primitive
endoderm and epiblast cells.

We identify two factors necessary for cell self-organisation: differing mutual affinities
between cells and one or more energetic mechanisms to drive the kinetics.

1.4.1 Sources of Differing Mutual Affinity

When Townes and Holtfreter [51] first demonstrated the spontaneous separation of mixtures
of embryonic cells in vitro, they proposed that such behaviour was driven by the cells’s
differing "affinity" for one another. We now understand that this is a critical component of
cell sorting; when cells are able to rearrange, a difference in mutual affinity between two
cell types will drive them to self-organise. Two primary mechanisms have been proposed to
change the mutual affinity of cells. These are differential adhesion and differential interfacial
tension.

Differential Adhesion

Malcolm Steinberg was first to propose that differing affinity could arise from differential
adhesion between the surfaces of cells [52–54]. This is now known as the Differential
Adhesion Hypothesis (DAH) and is a widely studied mechanism for cell sorting. The idea is
simple: that in a random distribution of cells, those with strongest mutual adhesion would

8 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting

Fig. 1.6 Diagram showing a mixed aggregate of cells of types A (blue), B (green),
and C (red), and the resulting sorted aggregate predicted by the differential
adhesion hypothesis where the mutual adhesion of type A is greater than that of
type B, which is itself greater than that of type C.

draw together and force the other cells with weaker mutual adhesion to the outside of the
ball of cells.

Steinberg describes the DAH as the "spontaneous progressions of motile and mutually
adhesive cell populations toward configurations of minimal interfacial (adhesive) free en-
ergy" [55] in which stronger adhesions will tend to displace weaker ones. He also explains
how, with further analogy to oil and water, sorting by differential adhesion should tend to
form clusters of more adhesive cells within an aggregate of less adhesive cells, and that these
clusters will steadily coalesce and move to the inside of the aggregate [55]. It is possible
to speculate that the process should be transitive such that if cell type A is more mutually
adhesive than cell type B, and B is more mutually adhesive than C, then tissue comprising
cells A, B and C should form with C on the outside, A in the centre and B between the two
[Figure 1.6]. Steinberg clarified that proposing this kind of transitivity does not assume an
identical physical or chemical means for adhesion between different cells or in different sys-
tems, but simply that there is a thermodynamic scale of adhesion intensity whose underlying
details are not relevant.

This process can be viewed from another perspective. Cell adhesion leads to an effective
surface tension for the tissue as a whole (note that this is not the same as cell surface
membrane tension but rather is analogous to the surface tension of a liquid arising from
the mutual attraction of its molecules). Lower cell adhesion leads to a lower tissue surface
tension and vice versa, so we can rephrase the sorting rules as: the tissue with lowest "surface
tension" will be found to envelope a tissue of higher "surface tension" [56, 57]. The DAH
model also predicts minimisation of the global surface area of cell aggregates, which is

1.4 Physical Mechanisms of Tissue Self-Organisation 9

observed in the tendency of irregularly shaped tissue fragments to steadily take on a more
spherical shape [58], as with liquid droplets.

Going beyond this simple explanation, it is possible to be more precise with the mathe-
matics of DAH. If there are two cell types in an aggregate, A and B, the manner of sorting
will depend on their relative adhesive strengths. If adhesion between A and B is stronger than
between A and A or between B and B (AB > AA > BB) then a mixed salt and pepper distri-
bution will be formed. If like cells adhere more strongly than unlike cells (AA > BB > AB)
then sorting will occur, with the cells with the stronger mutual adhesion (A) collecting on
the inside of the aggregate and those with the weaker mutual adhesion (B) moving to the
outside. We can also consider cases in which one type of cells may adhere to themselves
most strongly, but also to the other type of cell more strongly than that type of cells adhere to
themselves (AA > AB > BB). In this case if the average of like to like adhesion is greater
than the like to unlike adhesion then the cells will sort out, otherwise they will not. In other
words, sorting if (AA+BB)/2 > AB, no sorting if (AA+BB)/2 < AB [59].

Cell adhesion can be measured by atomic force microscopy. One cell is attached to the
probe tip and this cell is then brought into contact with another. The probe is then pulled
away and the force applied by each cell onto the other can be measured until the two cells
separate [60]. Cell adhesion can also be measured by observing the overall deformation of
an aggregate of cells when centrifuged.

Some have questioned the DAH, arguing that the analogy between adhesive cells and
liquid molecules, though appealing, is fallacious [61]. Most of the arguments raised are
technicalities concerning the precise nature of adhesion between cells compared to attraction
between molecules. For example, it is possible that "unsticking" two cells is not precisely
the inverse of sticking them together in the way that moving two molecules towards and then
away from each other is movement within a conservative potential. Such details may indeed
cause cells to behave differently from molecules in a liquid, and these may be factors that
need to be considered in the precise formulation of any modelling attempt. However, such
details do not necessarily make the general hypothesis that differential adhesion could lead
to cell sorting invalid.

Although the differential adhesion hypothesis is a widely established framework for
understanding cell sorting [18], it has been shown that differential adhesion is not sufficient
to explain in vitro sorting of epiblast and primitive endoderm cells [48] since the two cell
types adhere to one another equally.

10 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting

Fig. 1.7 Two dimensional diagram of cell doublets showing the effect of changing
interfacial tension on contact angle and interface area.

Differential Interfacial Tension

The Differential Interfacial Tension Hypothesis (DITH) or Differential Surface Contrac-
tion (DSC) Hypothesis was initially proposed as an alternative to the DAH [61]. We can
summarise the two basic postulates of the DITH as follows: the cell surface membrane is
differentially contractile, and can have different tension values in different regions over the
same membrane; secondly, the cell membrane is most contracted and has the highest tension
when in contact with the surrounding medium (not other cells) and least contracted when in
contact with other cells of the same type. Similarly to the DAH, inequalities to describe the
relative tensions for which sorting occurs can be formulated fairly straightforwardly [62].
Figure 1.7 shows how a reduction in interfacial tension between two cells in a doublet
results in an increased interfacial area, increased contact angle, and hence increased mutual
affinity. It is this mutual affinity that allows differential interfacial tension (DIT) to drive
self-organisation in a cell aggregate.

Cortical tension is the force generated within cells across their surface and parallel to
the surface, produced by the cell cortex. The cell cortex comprises a dense network of actin
microfilaments and myosin motors just inside the cell surface membrane [63, 64]. Tension
is produced by a number of processes, including myosin II activity, cross linking, network
structure, and active movements of the internal cell cytoskeleton, which transfer forces to
the cell surface membrane [65, 66]. Actin fibres attach to the cell surface membrane via
localised bundles of transmembrane proteins known as cadherins and integrins. The action

1.4 Physical Mechanisms of Tissue Self-Organisation 11

of myosin motors on the actin cortex changes the local tension of the fibre network [60],
and by pulling the cadherin and integrin transmembrane protein bundles together, changes
the effective tension of the cell surface in that local area. This allows cells to vary the local
tension in their surface membrane [67].

Cortical tension can be measured by cutting the cell membrane with a laser (laser ablation)
and measuring how quickly the cut edges of the membrane contract [68, 69], by probing the
cell surface with an atomic force microscope [60, 70], or by applying force-balance analysis
to 3D image stacks [71].

Cortical tension has already been shown to be important in critical cellular processes
such as shape changes [72], motility [73? , 74], tissue mechanics [75], and adhesion [76].
Notably for us, the importance of cortical tension has been widely claimed in studies of
morphogenesis [67]. These studies often focus on the importance of cortical tension in 2
dimensional epithelial tissues. Notable such systems are the maintenance of the dorsoventral
compartment boundary in the Drosophila wing imaginal disc [77, 78], Drosophila germ-band
extension [79], germ-layer organisation in zebrafish [80], and in Xenopus and C. elegans
gastrulation [81, 82]. Generally this work can be divided into three categories: boundary
formation, boundary maintenance, and shape changing. Sorting in the inner cell mass is an
example of boundary formation, but lessons from boundary maintenance can be illuminating.
For example, boundary maintenance in the Drosophila wing imaginal disc, where a boundary
between dorsal and ventral tissue layers is initially formed by a biochemical gradient, but
then maintained as a sharp boundary by tension forces [77]. This is a good example of the
differential interfacial tension hypothesis.

Experimentally, it has been shown that actin and myosin accumulate around the the dorso-
ventral boundary of the drosophila wing imaginal disk, and that this compartment boundary
fails in mutants with faulty myosin [78]. This suggests a role for actin and myosin, and hence
cortical tension, in the boundary maintenance. It has also been shown that treating cells with
blebbistatin, an agent that stops myosin motors from working, prevents cell sorting [66]. It is
now understood, on the basis of experimental and computational work [77], that the cortical
tension of cells in the wing imaginal disc increases at interfaces between unlike dorsal and
ventral cells, and it is this local increase in tension at unlike cell-cell interfaces that maintains
the boundary between the two tissue layers [78, 83, 84]. Local changes in cortical tension
at cell to cell interfaces change the area of those interfaces, and thus the relative mutual
affinity of the two cells. Increasing the tension at unlike cell interfaces in the Drosophila
wing imaginal disc minimises the contact area between the two cell types, resulting in spatial
segregation and a sharp boundary.

12 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting

Fig. 1.8 Diagram outlining the linear force balance model of cell doublet contact
angles, as presented in Maître 2012 [88]. Adhesion is reframed as a tension force
ω acting to pull the interface vertices apart.

Having considered the effects of DIT in a two dimensional system such as the Drosophila
wing imaginal disc, it is also illuminating to note its relevance and importance to systems
closer to the inner cell mass. Notably, it has been shown that local variation in cortical
tension is responsible for internalising the first set of internal cells in the morula [85], and
thus establishing the first distinction between cells that will produce the inner cell mass, and
those that will produce the trophectoderm. This work overturned previous assumptions that
oriented cell division established the inner cell layer [45], and showed that local variations in
tension act to organise the system after randomly oriented cell divisions. The parallels to the
inner cell mass are clear, and it seems reasonable to speculate that similar forces might be at
play.

Furthermore, it has also been shown how differential interfacial tension can drive com-
paction of the morula [86] and allocation of cells to the inner cell mass tissue [87] by reducing
tension at cell-cell interfaces. This work validates differential interfacial tension for processes
earlier in the embryo, and introduces a framework for testing the relative affinity of cell
types. This is done by measuring the the contact angles of cell doublets [Figure 1.7]. Such
measurements are contextualised within a theoretical model of cell doublet contact angles
presented in Maître et al. 2012 [88], and outlined below.

The two factors contributing to the equilibrium interface between two cells are their
mutual adhesion and their cortical tension. In the theoretical model, the complex statistical
mechanics problem of how adhesion affects this interface is simplified so that it can be treated
as a one dimensional problem of two points - the edges of the interface - acted upon by forces

1.4 Physical Mechanisms of Tissue Self-Organisation 13

(a) (b)

Fig. 1.9 In vitro cell doublet images. a, Epiblast-epiblast cell doublet. b, Primitive
endoderm-primitive endoderm cell doublet. Images produced by Ayaka Yanagida
in our group.

parallel to the interface [Figure 1.8]. The adhesion component is reframed as a tension force
ω acting to pull the points apart. Also considered are the effects of the cortical tension at the
cell-cell interface, γc, and the cortical tension away from the interface, γm. From Figure 1.8,
it is then straightforward to formulate Equation 1.1, which predicts the contact angle θ .

2γc = 2γm cos(θ/2)+ω (1.1)

It is then assumed, based on experimental results [89, 90, 88], that in the high tension
limit adhesion is insignificant and can be neglected, and thus Equation 1.1 can be simplified
to Equation 1.2.

θ = 2arccos(γc/γm) (1.2)

The reduction of tension is proposed to occur by the exclusion of myosin from the cortex
at cell interfaces, caused by the adhesion acting between the cells [88]. This suggests a passive
mechanism that allows morphogenesis to proceed without active movements by the cells
involved, and provides the coordination needed for complex morphogenesis [67]. Doublet
experiments done directly with inner cell mass embryonic cells support the existence of
conditions required for sorting by differential interfacial tension [Figure 1.9]. Specifically, it
is observed in experiments performed within our group by Dr. Ayaka Yanagida that epiblast-
epiblast doublets have a typical contact angle of 106°, primitive endoderm to primitive

14 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting

endoderm doublets have a typical contact angle of 77°, and epiblast-primitive endoderm
doublets have a typical contact angle of 67°. Thus we might expect epiblasts to have higher
mutual affinity than primitive endoderm, which have still higher mutual affinity than primitive
endoderm and epiblast pairs. We set out to investigate whether these conditions are sufficient
to explain sorting in the inner cell mass using a computational model. This model will be
calibrated using doublet experiment data, and compared to the linear force balance doublet
model for validation.

1.4.2 Energetic Mechanisms Driving Kinetics

Although it is always important to consider the timescales of any process, little exists in the
literature describing precise timescales for lineage specification, cell sorting, cell deformation
and so on. However, we have noted from movies of embryo development [Figure 1.10]
that thermal motion is not the major contributor to cell movement, but rather the cells seem
to move over much longer timescales. This begs the question: if thermal motion is not a
significant factor in the system, what provides the perturbation needed to force the system
out of equilibrium, leading to rearrangement and sorting? In order for cells to self-organise,
differing mutual affinities are necessary but not sufficient; there must be movement of cells
to rearrange the system. This can be achieved without active cell movement by introducing
energy into the system, which will drive the system to reorganise to a new steady state. In
our cell system, we hypothesise two mechanisms that could drive rearrangement.

Division

When two cells divide, their surface area to volume ratio is increased. This increase in
surface area brings with it a corresponding increase in surface energy arising from cortical
tension. This introduction of potential energy drives the system to rearrange to a new steady
state, with the cells in a new orientation. Thus we might expect that a high cortical tension
might be required in order to drive rearrangement. Division has been proposed as a driver of
rearrangement in other systems [91] and is something that can be tested with respect to the
inner cell mass in our model.

Figure 1.10 shows a C. elegans embryo, with images taken at intervals to show how cell
division in this system appears to coincide with cell rearrangement.

Blebbing

It has been shown in recent experiments within our group that primitive endoderm cells, but
not epiblast cells, bleb quite dramatically on a timescale of minutes [Figure 1.11, Figure 1.12].

1.4 Physical Mechanisms of Tissue Self-Organisation 15

Fig. 1.10 Time sequence of a C. elegans embryo showing rearrangement due to
cell division. Images courtesy of Magdalena Zernicke-Goetz.

This blebbing corresponds to local fluctuations in the cortical tension of the primitive endo-
derm cells [92]. we hypothesise that these fluctuations may also contribute to rearrangement
of the system, and thus facilitate or speed up the process of self-organisation.

Not only could blebbing increase the extent of rearrangement in systems, but since it
occurs only in primitive endoderm and not epiblasts, it also serves as an additional factor
that could affect mutual affinity, and thus is another potential driver of sorting. Blebbing is a
factor that we will include in our model, and its effects on self-organisation will be tested.

16 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting

(a) (b) (c)

(d) (e) (f)

Fig. 1.11 Time sequence demonstrating blebbing in a primitive endoderm cell
due to local fluctuations in cortical tension. Images produced by Ayaka Yanagida
in our group.

(a) (b) (c)

(d) (e) (f)

Fig. 1.12 Time sequence demonstrating lack of blebbing in an epiblast cell.
Images produced by Ayaka Yanagida in our group.

Chapter 2

Introduction to Tissue Modelling

Before approaching the problem of modelling self-organisation in the inner cell mass, it
is worth exploring previous modelling methods that have been applied to other systems.
There exists a broad literature of work using theoretical and computational techniques to
model a great variety of biological systems, with varying levels of success [93]. Many of
these techniques are summarised elsewhere [94–100]; what follows is an overview of those
that were considered for this project. This is by no means a complete list, but merely a
discussion of notable techniques and relevant features to enlighten and contextualise our
work. Some models discussed below are generalised techniques, such as vertex models
or cellular automata, for which we explain the theoretical foundations, whereas others are
branded, self-contained software packages made available for the research community, such
as CHaSTE and PhysiCell.

2.1 Mathematical Modelling

Mathematical modelling has a long history in biology, including the celebrated work of
Alan Turing [101], and the separate field of mathematical biology is now well established,
encompassing everything from morphogenesis to ecosystems and epidemiology. Typically,
mathematical modelling of morphogenesis involves formulating a set of differential equations
to describe a system, often reaction-diffusion equations [102], which must then be solved
computationally. However, such modelling is typically only appropriate where a system
can be treated in the continuum limit, such as treating a tissue as a continuous viscoelastic
material, or modelling the migration of a large number of cells as movement of a fluid.

Notable examples of effective work treating tissue as a continuous material include
explanations of folding in brain cortex tissue [103, 104], folding of epithelial tubes such
as gut and renal tubes [105], and inversion of volvox embryos [106]. Similarly, we can

18 Introduction to Tissue Modelling

find work attempting to solve partial differential equations to explain self-organisation in
developmental biology [107], collective migration of cells [108], long-range hydrodynamic
interactions of microswimmers [109], and material properties of cancerous tumours [110].
All of these systems share tissues or aggregates in which cell-level features are orders of
magnitude smaller than the system as a whole, which renders a continuum limit appropriate.
This is not the case in the inner cell mass, so we are not able to use these techniques.

2.2 Agent-Based or Individual-Based Models

Agent-based modelling is widely used throughout fields ranging from sociology and eco-
nomics to ecology, physics, and the study of complex systems [111–113]. In agent-based
modelling, the most fundamental unit of the simulation is the agent, which in tissue modelling
is typically a single cell. These agents interact, evolve, and move over time according to
some predetermined set of rules. Some of the other methods discussed in this chapter, such
as Biocellion and PhysiCell, are specific examples of agent-based models. Agents may exist
on a lattice or move continuously, in 2 or 3 dimensions. On a fundamental level, agent-based
models are driven by algorithms, not equations, which creates an important distinction with
mathematical modelling [114, 115].

In studying morphogenesis, agent-based modelling has been applied to development
of branching patterns in vasculature [116], C. elegans embryogenesis [117], collective cell
migration [118], epidermal morphogenesis [119], and cancerous tumour development [120,
121], to name but a few. The precise details of all of these systems vary, but in each case the
agent is an individual cell, and these cells form complex patterns over time by interacting
with each other and with some background environment according to a set of rules laid out
to simulate the details of the system in question. These interactions cause the cell to change
fate, experience forces, or otherwise evolve. Examples of typical agent-based model results
are shown in Figure 2.1.

Although agent-based individual cell models have proven successful in modelling mul-
ticellular systems with inter-cellular interactions, our assessment was that they did not
incorporate sufficient integration of macroscopic behaviour with intra-cellular processes for
our intended modelling of the inner cell mass, and thus we are unable to use these techniques.
However, agent-based models of the mammalian blastocyst have been proposed previously,
and these will be discussed later in this chapter [Section 2.10].

2.2 Agent-Based or Individual-Based Models 19

(a) (b)

Fig. 2.1 Visualisation showing the cross section of necrotic cancerous tumours as
simulated with PhysiCell and Biocellion. Images from Macklin et al. 2016 [126]
and Biocellion home page [123].

2.2.1 Biocellion

Biocellion is a self-contained software package originally developed for modelling cancerous
tumours at the University of Washington [122, 123]. It is a generalised individual, agent-
based model, treating each cell as a single object moving continuously within a background
lattice that models the external environment, such as diffusion of biochemical factors. Its
primary motivation was to provide parallelised simulations, allowing billions of cells to be
run quickly over many processor cores on a large cluster. Consequently, it focuses on the
wrong lengthscales for our systems and does not integrate subcellular physical processes
into macroscopic behaviour. An example of a necrotic cancerous tumour containing a large
number of cells and simulated with Biocellion is shown in Figure 2.1a.

2.2.2 PhysiCell

PhysiCell is another self-contained agent-based modelling tool released as open-source
software by Paul Macklin’s MathCancer group [124]. It was developed as a tool for modelling
cancerous tumours [125, 126]. It is strikingly similar to Biocellion and shares the same
advantages and disadvantages. Figure 2.1 shows a comparison between necrotic cancerous
tumours as simulated with Biocellion and PhysiCell.

20 Introduction to Tissue Modelling

2.3 CHaSTE

CHaSTE is an acronym that stands for Cancer, Heart, and Soft Tissue Environment [127]. It
was developed primarily at the University of Oxford as an attempt to bring industry software
development techniques to bear on tissue modelling in order to produce portable, reliable,
reusable software that could allow biologists with less background in physical sciences or
programming to contribute to computational biology, biological physics, and modelling
without needing to start from scratch and “reinvent the wheel” [128]. The code is written
primarily in C++ and is available to download on an open source license [129]. CHaSTE has
multiple libraries for different capabilities, and is able to run on- and off-lattice individual-
based models, in which each cell is represented by a single object or agent in the simulation,
partial differential equation solvers, and vertex models. Chaste has been widely used to model
a variety of different biological systems [130–132], but does not provide the integration of
intra-cellular and inter-cellular processes that we required for our system.

2.4 Virtual Cell

Virtual Cell is a modelling and analysis platform developed at the University of Connecticut
to solve stochastic partial differential equations and run agent based models of the inner
workings of a cell [133–135]. It is available as open source software [136] and has found
application in, for example, modelling calcium signalling in neurons [137]. However, since
this method focusses exclusively on intra-cellular processes, it is unsuitable for our work on
multi-cellular self-organisation in the inner cell mass.

2.5 Finite Element Models

The finite element method has existed for many years and is a mainstay of engineering and
applied physical sciences [138]. The method has been applied to everything from plate
tectonics [139] to studying the biomechanics of knee joints [140]. The finite element method
is a technique to find the solution for partial differential equations in continuous systems such
as elastic materials, soil, and so on. It involves dividing a continuous domain into smaller
parts, known as finite elements, which can be solved more easily in relation to each other
by eliminating spatial derivatives. This allows the equations describing the system to be
solved approximately at a number of points across an entire system. Essentially by using the
interactions between the elements of a body it is possible to model the behaviour of the body
as a whole whilst capturing local effects on a smaller scale than the whole system.

2.5 Finite Element Models 21

(a) (b)

Fig. 2.2 Diagrams of a single cell modelled with FEM and an FEM model of a
metastatic cell escaping from a cancerous tissue. Images from Brodland et al.
2009 [143] and Brodland et al. 2012 [141].

When applied to biological tissues, there are two broad categories of FEM models. Tissue
level models typically treat the tissue as a whole as a continuous body, whilst individual
cells form the finite elements into which the system is divided [141, 142] [Figure 2.2a].
These typically model a two dimensional system such as an epithelium, or a 2 dimensional
approximation of a more complicated system. Meanwhile, other cell-level models exist to
investigate the behaviour of a single cell, in which the cell itself is divided into finite ele-
ments [143, 144] [Figure 2.2b]. Although efforts have been made to add cell-cell interactions
into these models, the work remains limited [145]. We require inter-cell interactions in our
model, and thus will not emply a finite element model.

2.5.1 FEM/DEM

Drawing inspiration from granular matter research, it occurred to us that FEM/DEM might
be suitable for multicellular system modelling. FEM/DEM originated as an extension of
the more basic modelling tools FEM and DEM (Discrete Element Method). DEM is a very
general form of modelling in which a system is composed of discrete elements or particles,
each of which does not intrinsically change in time. Rather, the system as a whole evolves
in time as the interactions between these unchanging particles causes them to rearrange
with respect to each other and change their interactions with each other. This method is
suitable for modelling gases, granular materials etc, and is distinguished from agent-based
models by the passive nature of the elements. FEM/DEM or Finite-Discrete Element Method
was developed in the 1980s by Antonio Munjiza [146, 147]. The basic idea is to model
the behaviour of individual particles by DEM type methods while allowing each individual
particle to be discretised into smaller elements by FEM methods to allow for deformation
and changes in particle properties. The applicability of such a method to cell dynamics has,
to the best of our knowledge, not been investigated but could be promising.

22 Introduction to Tissue Modelling

Fig. 2.3 Diagram of the immersed boundary method, showing where elastic
boundaries apply elastic forces to an incompressible Newtonian fluid. Image
from Rejniak 2007 [148].

2.6 Immersed Boundary Model

The immersed boundary method [149] was originally developed as a numerical tool to study
blood flow around the heart [150, 151]. The method has since been adapted to model cells,
and has been applied to systems such as cancer development [152, 148], morphogenesis [153],
blebbing [154], endocytosis [155], and the formation of bacterial biofilms [156]. The
immersed boundary method considers cells to be regions of fluid bounded by an elastic
membrane within a continuous fluid, and simulates this system by solving the fluid behaviour
using the Navier-Stokes equation on a fine grid where an additional elastic force term is added
to the equation in regions of the fluid where a boundary is located. Thus the fluid itself is
not treated as discontinuous but it still affected by the presence of these elastic forces arising
from an immersed boundary. The movements of these fluid regions in which the elastic
force is applied correspond to shape changes and movement of the membranes, and thus
cells. This gives the method the great advantage over agent-based models of incorporating
intra-cellular fluid mechanics and cell shape changes into the behaviour of the system. The
method also allows spaces to exist between cells, resulting in discontinuous tissues, and
giving an advantage over vertex models or cellular automata. By also incorporating adhesive
forces between regions of fluids where cell boundaries exist, it is possible to model inter-
cellular interactions and multi-cellular systems [152] [Figure 2.3]. It is also possible to
model growth by introducing a fluid source into the centre of each cell, and division by
applying a contractile ring to the plane bisecting a dividing cell. These features make it a
strong contender for modelling tissue self-organisation in the inner cell mass. We could, for
example, introduce differential interfacial tension by changing the elastic force applied by the
immersed boundary when this boundary forms an interface with another. Whilst this seems
like a promising way forward, we have explicitly set out to produce a 3 dimensional model
of the inner cell mass, whereas most work with the immersed boundary method has been
carried out in 2 dimensions. Although there is no theoretical problem with extending the

2.7 Cellular Automata 23

method to three dimensions, the computational cost of solving the Navier-Stokes equation
over a reasonable number of cells in 3 dimensions would escalate rapidly, rendering these
simulations difficult to perform and raising questions over whether these computational costs
warrant the advantages that the immersed boundary method offers. We therefore chose not
to implement the immersed boundary method, and instead to find a more computationally
efficient technique.

2.7 Cellular Automata

Since they were first devised by the great polymath John von Neumann at the Los Alamos
National Loboratory in the 1940s [157], cellular automata have become perhaps of the most
widespread and established modelling technique of all, finding application in almost every
field, from Ising spin models [158] and Conway’s game of life [159], to the first forays into
“artificial life” [160, 161].

At its most fundamental level, a cellular automaton is a regular lattice in which each
point can have one of two or more states, such as “alive” or “dead”. Lattice points change
state according to a specified set of rules, and the system is allowed to evolve over discrete
time steps. Most early applications of cellular automata to biological systems treated a
single cell as occupying a single point within the lattice. A lattice point could then have two
states: occupied by cell or not occupied by cell. This allows coarse grained modelling of
morphogenesis in systems whose scale is much larger than that of an individual cell, such
as vessel morphogenesis and branching [162], slime mould formation [163], or boundary
maintenance [164]. It is also possible to treat cellular flows using lattice gas models, in which
each point in the lattice is occupied by a cell that has not only a location but also a velocity
through the lattice that can be maintained in time [165, 166]. Such models are comparable
to the agent-based models previously described, but rather more limited. Since these early
applications, most cellular automaton models applied to morphogenesis have been cellular
Potts models.

2.7.1 Cellular Potts Models

Cellular Potts models are an adaptation of the original Potts model, a cellular automaton
used to describe Ising spin systems [167, 168]. The number of spin states available at each
state is known as the Q number, with the simple ferromagnetic Ising model described by
q=2. The cellular Potts model is essentially a large-Q Potts model, meaning that each point
in the lattice has a large number of possible states. The method was developed by Graner and

24 Introduction to Tissue Modelling

Glazier precisely for the purpose of modelling cell sorting by differential adhesion [169–171].
The innovation of the cellular Potts model was to treat a connected region of lattice sites
with the same state as a single biological cell. Thus, changing the state of lattice sites does
not indicate a new cell or movement of an existing cell as in original cellular automata, but
rather represents a change of shape or growth of an existing cell. This feature allows cell
growth, shape, and subcellular structure to be included in a model, with these features arising
naturally from the rules established for a simulation. These rules define a Hamiltonian for the
system such that any state of the lattice corresponds to a global potential state. The system
evolves by a Monte Carlo method in which the state of a random lattice point is randomly
altered. This change of state causes a corresponding change in global potential, determined
by the Hamiltonian. The method then draws upon statistical mechanics by calculating the
Boltzmann factor of the new potential state, which results in a probability that can finally
be compared to a random number to determine whether or not the change of state to the
system is accepted. Thus, changes that significantly increase the potential are highly unlikely
to be accepted, whereas those that cause no change in potential are much more likely to be
accepted.

Given this framework, the critical component of a cellular Potts model is the precise defi-
nition of the global Hamiltonian. The Hamiltonian will vary from one system to another and
one study to another, but can include components for cell-cell adhesion, volume conservation,
gravity, biochemical interactions, or cortical tension [172]. Over subsequent years, the cellu-
lar Potts model has been used to study many systems, particularly cell sorting by differential
adhesion [173–176], but also systems outside of biology such as foams [177]. The technique
has also been developed into self-contained software packages such as CompuCell [178] for
easy implementation of simulations by biologists with less programming experience.

Despite the widespread use and success of the cellular Potts model, we felt that it was
not the right technique for our model of the inner cell mass. Cellular systems are active and
constantly producing energy in the form of ATP. The use of a global Hamiltonian is artificial
and seems unphysical such systems where energy is explicitly not conserved. Furthermore,
the global nature of the Hamiltonian is incompatible with small scale local effects, such as
blebbing and differential interfacial tension, which we believe to be critical components of
modelling tissue self-organisation in the inner cell mas. In order to avoid “reminiscence
modelling”, we intend to avoid energies and examine forces and dynamics in the system
directly, and thus will not use cellular automata or the cellular Potts model.

2.8 Vertex Methods 25

Fig. 2.4 A cellular Potts model of a multicellular aggregate of two differently
sized cell types. Image from Mombach et al. 1995 [173].

2.8 Vertex Methods

Vertex models are another widely used technique in tissue modelling, and can be thought of
as a special case of finite element methods [?]. The earliest application of vertex methods
described the use of Dirichlet domains to cover an entire tissue with polygonal cells [179].
This is the fundamental idea of vertex methods: a tissue is represented as a lattice of irregular
polygons in which each polygon represents a biological cell; movement of these cells and
morphogenesis of the tissue as a whole arises from the relative movement of the vertices of
these polygons.

The system evolves in time by randomly choosing a vertex and randomly altering it’s
position. A global Hamiltonian is defined for the system, typically including components
that are functions of edge length, corresponding to cortical tension, and cell volume or
area, corresponding to cell elasticity [83]. Some vertex models derive their dynamics from
differentiating the Hamiltonian as a function of all vertex positions. Other vertex models
employ Monte Carlo methods in which a change in the position of a vertex changes the global
potential defined by this Hamiltonian, and, as for the cellular Potts model, this potential
corresponds to a Boltzmann factor that defines a probability. This probability is compared to
a random number to determine whether or not the change in position is accepted. An increase
in the global potential, as defined by the Hamiltonian, corresponds to a small probability
that the change will be accepted, whereas a decrease in the global potential corresponds to a
higher probability that the change will be accepted.

26 Introduction to Tissue Modelling

Fig. 2.5 Vertex model of rosette formation in mouse visceral endoderm. Image
from Fletcher et al. 2014 [97].

Vertex models have been used extensively in modelling systems such as epithelial mor-
phogenesis [97, 99, 180], Drosophila wing boundary maintenance [83, 181, 78, 84], or
Drosophila germ band extension [182]. These systems all share three common properties that
render them suitable for modelling with vertex methods: the cells are tightly packed, forming
confluent tissues with no spaces; the systems are two dimensional; the cells in the system
have fairly regular shapes that can be well approximated by polygons. Although vertex
models have been extended to three dimensions [183], and advanced with the active vertex
model [184] and self-propelled voronoi models [185], they retain a number of significant
drawbacks that render them unsuitable for modelling tissue self-organisation, notably a
reliance on global Hamiltonians as discussed for the cellular Potts model, a requirement
for confluent tissue, and treating cells as polygons. Furthermore, vertex models start with
interfaces between cells as a fundamental component, whereas we wish to model inter-
faces emerging from underlying behaviour in our testing of differential interfacial tension.
Therefore vertex models were deemed inappropriate for our purposes.

Figure 2.5 shows a typical example of a vertex model.

2.9 Subcellular Element Method

The Subcellular Element Method (SEM) was developed by Timothy Newman in 2005 as
a technique to integrate sub-cell-scale processes into multicellular morphogenesis [186].
Although relatively new and not fully explored, SEM has since been applied to a number of
multicellular biological systems [187–190].

2.10 Models of the Blastocyst and Inner Cell Mass 27

SEM divides a cell into a number of discrete, point like ’elements’, which interact via
local forces that can be tuned based on the underlying physics of the system. Element
positions are updated based on these local forces using over-damped Langevin dynamics. By
also considering local forces acting between elements in different cells, SEM allows a very
straightforward extension from internal dynamics to external dynamics. Treating both inter-
and intra-cellular dynamics as fundamentally similar makes for a parsimonious approach,
unlike in some other techniques that require different mechanisms for inter- and intra-cellular
mechanics. Furthermore, it is straightforward to include properties such as cell growth - by
introducing new elements into cells and allowing the system to relax - and cell division - by
simply defining half of the elements in one cell as now being part of a different cell.

This basic framework can be extended easily, as was done previously to model the effect
of active cytoskeleton remodelling in response to strain on the behaviour of a cell stretched
between two plates [190]. New elements were added in areas of high strain and removed from
areas of low strain to model the formation and removal cytoskeleton filaments in response to
external strain. It has been shown in such studies that SEM correctly predicts properties such
as the microrheology of an individual biological cell [187].

The subcellular element method has a number of advantages for our attempts to model
self-organisation in the inner cell mass. Notably, the integration of intra-cellular and local
processes into multicellular aggregates, emphasis on local forces rather than global energies,
and ability to model growing aggregates on a scale of tens of cells are exactly what we were
looking for in our modelling technique. Thus, we decided to proceed with the subcellular
element method and will discuss it further in Chapter 3.

2.10 Models of the Blastocyst and Inner Cell Mass

Before proceeding, it is worth noting how some of the techniques outlined in this chapter
have previously been applied to the mammalian blastocyst and inner cell mass.

Honda et al. propose a noteworthy vertex model of blastocyst formation [23]. They show
that a simple model with cell surface elasticity, blastocoele growth and external pressure
from the zone pellucida are sufficent to recapitulate full blastocyst development from morula
stage to blastocyst with blastocoele and inner cell mass [Figure 2.6]. Their three dimensional
vertex model begins with a spherical morula into which spaces are introduced between cells
to model represent secretion of fluid into the interstitial space. As the volume of these
fluid-filled spaces is increased over time they coalesce to form a blastocoele. They show that
the formation of an asymmetrical structure with an inner cell mass at one pole is a better

28 Introduction to Tissue Modelling

Fig. 2.6 Cross section of a blastocyst resulting from the vertex model of Honda
et al. Image from Honda et al. 2008 [23].

minimisation of the free energy resulting from external and internal pressure than a simple
spherically symmetric shell of cells surrounding the blastocoele.

The model may not be entirely accurate since it requires external pressure from the
zone pellucida, and it has been shown experimentally that blastocyst formation can proceed
normally when the zone pellucida is removed [191]. However, it seems highly plausible that
the bulging shape of the ICM may indeed be formed in part by free energy minimisation due
to the pressure of the blastocoele. Nonetheless, although this model is extremely interesting,
it deals only with the system leading up to that with which we are concerned.

Meanwhile, Krupinski et al. present an agent-based model that attempts to explain not
only the formation of the blastocyst structure [Figure 2.7], but also, of more interest to us, the
self-organisation of the inner cell mass [192, 193]. Their model treats cells as spherical agents
interacting with their neighbours with elastic forces. Regarding the inner cell mass, they
set out to show how primitive endoderm and epiblast cells self-organise with the primitive
endoderm lying along the boundary of the blastocoele using differential adhesion. They find,
unsurprisingly, that differential adhesion can cause the two cell types to sort into separate
aggregates. However, they find that differential adhesion alone is insufficient to stabilise
the primitive endoderm alongside the blastocoele, and find that this is only achieved by
pressure from the blastocoele on the inner cell mass combined with adhesion of epiblasts to
the trophectoderm [Figure 2.8].

This is interesting work, but as discussed in Chapter 1, it has been shown experimentally
that differential adhesion cannot be the explanation of self-organisation in the inner cell
mass, and there is no experimental reason to suggest increased adhesion between epiblasts
and the trophectoderm. Furthermore, there is significant evidence to show that differential
interfacial tension is an active factor in blastocyst development, and that the conditions
required for self-organisation by differential adhesion exist in the cells of the inner cell mass.

2.10 Models of the Blastocyst and Inner Cell Mass 29

(a) (b)

Fig. 2.7 Simulated blastocyst resulting from the agent-based model of Krupinski
et al. Images from Krupinski et al. 2011 [192].

Fig. 2.8 Simulated inner cell mass resulting from differential adhesion in the
agent-based model of Krupinski et al., showing in d how adhesion of epiblasts
to the trophectoderm stabilises the primitive endoderm against the blastocoele.
Image from Krupinski et al. 2011 [192].

Thus, although we agree that the pressure from the blastocoele, perhaps combined with the
geometry of the inner cell mass, may contribute to breaking the symmetry of spherical sorting
to produce a primitive endoderm layer that lies alongside the blastocoele, we feel that it is
incorrect to propose sorting by differential adhesion. The true mechanisms are more subtle
and less obvious, and it is our intention in this work to elucidate those mechanisms.

Chapter 3

The Sub-cellular Element Method

3.1 Theoretical Foundations

The subcellular element method was devised as a multi-scale framework for modelling tissue
dynamics in three dimensions, incorporating both individual cell structures and sub-cellular
features to allow for adaptive shape changes and complex inter- and intra-cell behaviour [186].
The method treats each cell as a cloud of infinitesimal points that interact with their nearest
neighbours via local forces. Thus the behaviour of a cell emerges entirely from the behaviour
of underlying elements. Nearest neighbour interactions occur between elements in the same
cell and between elements in different cells, allowing both inter- and intra-cellular behaviour
to be modelled with the same mechanism. Figure 3.1 shows a 2 dimensional diagram of
two SEM cells. Elements are shown as green circles, with dotted black lines showing
nearest-neighbour interactions. The two dotted red lines show inter-cell nearest neighbour
interactions.

The nearest neighbour interactions between elements take the form of a Morse poten-
tial [194] [Equation 3.1], which is repulsive at short distances, attractive at longer distances
and approximately harmonic around an equilibrium position. For later work, it is worth noting
that the potential can be broken into an attractive component and a repulsive component.

V (r) = De

(
1− e−a(r−re)

)2

V (r) = De

(
e−2a(r−re)−2e−a(r−re)+1

) (3.1)

32 The Sub-cellular Element Method

Fig. 3.1 A 2D representation of two SEM cells, with intra-cellular interactions
shown in black, and inter-cellular interactions in red.

This potential form has historically been used to model inter-atomic forces in molecules
and materials [195]. Figure 3.2 shows the functional form of the Morse potential for radii
between 0 and 1.8 times the equilibrium radius. Basic values used in future simulations are
shown below.
re 12.9
a 30.5
De 2.29

3.2 The SEM Program

The basic SEM code was written in FORTRAN and comprises a total of 27 FORTRAN
modules and several supplementary scripts [Code block 3.1]. The following is a brief
description of the main features of the code.

3.2.1 Data Structures

The basic SEM program is a set of routines to manipulate and update two fundamental data
classes: element and cell. The element data structure is the basic unit of the simulation - the
elements with which a cell is modelled. These are the objects upon which all position update

3.2 The SEM Program 33

ScEM_0_arrays.f90
ScEM_0_input.f90
ScEM_0_ran_array.f90
ScEM_0_useful.f90
ScEM_1_inflexion.f90
ScEM_1_potential.f90
ScEM_1_types.f90
ScEM_2_ageing.f90
ScEM_2_com.f90
ScEM_2_deallocate.f90
ScEM_2_diffusion.f90
ScEM_2_division.f90
ScEM_2_flag_relist.f90
ScEM_2_growth.f90
ScEM_2_identity.f90
ScEM_2_initial_create.f90
ScEM_2_initial_exist.f90
ScEM_2_integrate.f90
ScEM_2_output.f90
ScEM_2_output_final.f90
ScEM_2_pairs.f90
ScEM_2_relist.f90
ScEM_2_resize.f90
ScEM_3_initialize.f90
ScEM_3_iterate.f90
ScEM_master.f90
ScEM_script_clear_data
ScEM_script_create_to_exist
ScEM_script_intel_compile
config_data
elements_config
rng.f90

Code Block 3.1 List of files in the original SEM program

34 The Sub-cellular Element Method

Fig. 3.2 Plot of the basic Morse potential as a function of equilibrium radius.

type element
integer :: label
integer :: parent
integer :: stage
integer :: type
real*8 :: age
real*8 :: strength
real*8, dimension(3) :: position
real*8, dimension(3) :: velocity

end type element

Code Block 3.2 Definition of the element data class in the original SEM code.

routines act. The original definition for the element class is shown in Code block 3.2. Each
element has a unique label that is used to identify that element in calculations. Also stored
within the data structure is the label of the element’s "parent" cell, which is the unique label
of the cell structure to which the element is allocated. The stage and strength components
control the interaction strength of the element, and are used to steadily increase the interaction
strength of an element from zero to full strength when a new element is inserted into a cell,
allowing for a more gradual relaxation to the new arrangement [Subsection 3.2.5]. The age

component stores the time that has elapsed in the simulation since the element was created,
while the position and velocity components are the crucial 3 dimensional arrays that hold
the position and velocity of that element at the current time. The type components allows
elements to be defined as different types but was not used in the original program. The set of
element structures is stored a one-dimensional array elements of type element, defined in
module ScEM_0_arrays.f90.

3.2 The SEM Program 35

type cell
integer :: label
real*8 :: age
real*8 :: rad_gyration
real*8, dimension(3) :: position
integer, dimension(0:4*ne_cell) :: c_elements

end type cell

Code Block 3.3 Definition of the cell data class in the original SEM code.

The cell data class is a secondary structure that organises sets of elements. A separate
cell structure is created for each biological cell simulated, and all are stored in a one dimen-
sional array cells, again defined in module ScEM_0_arrays.f90. The label component is
the unique identifier of this cell, and corresponds to the parent component of all elements
within this cell. The age component stores the smaller value of either the simulation time
that has passed since either the beginning of the simulation, or since the division event that
produced the cell. The position component is the centre of mass of all elements within the
cell. The c_elements component is a one-dimensional array that stores the unique identifying
labels of all element structures organised into this cell. The zeroth component of the array
is the number of elements within the cell, and all subsequent components are the labels of
these elements. The size of the array exceeds the number of elements it will ever need to
contain in order to prevent potential segmentation faults or the need to resize the array during
a run. A cell will divide [Subsection 3.2.6] when the number of elements it contains exceeds
double the original number of elements, but the buffer is built in to accommodate whatever
margin the number of elements exceeds this value by in the timestep immediately before
division is triggered.

Similarly, a significant buffer is built into the elements and cells arrays in order to
prevent dynamic updating of the array size during a run, which is a slow process. Updating of
the array sizes is triggered when the total number of elements or cells exceeds some fraction
of the array size. These array size updates are handled in module ScEM_2_resize.f90.

3.2.2 Initialisation

The first step in the program is to call the subroutine scem_input, from module
ScEM_0_input.f90, which defines all parameters and initial conditions for the simulation as
global variables. This includes setting the total time for the simulation, typical length scales,
the typical number of elements per cell, parameters for the defining the inter-element poten-

36 The Sub-cellular Element Method

tial, and basic values such as a value of pi and a 3-dimensional packing fraction. Also defined
are a number of control flags - flag_create, flag_diffusion, flag_growth, flag_division
- whose values control which subroutines are called in future iterations of the program. Once
these parameters are defined, the simulation is initialised by creating the initial system.

The original program incorporated two protocols for initialising the simulations. Both
protocols produce an arrangement of elements and cells that consitute the initial state
of the system to be simulated, and instantiate all necessary classes and arrays. The
module ScEM_2_initial_create.f90 is used to create a de novo system; the module
ScEM_2_initial_exist.f90 is used to initialise simulations with a pre-defined system, for
which all necessary information is read from a small set of files. Both modules are set
up in the original SEM program to create just one cell. Whether the program calls rou-
tines from ScEM_2_initial_create.f90 or from ScEM_2_initial_exist.f90 depends on
the value of integer flag_create, which is set to 0 to use scem_initial_exist and 1 to use
scem_initial_create.

The module ScEM_2_initial_create.f90 is built around Code Block 3.4. This block
is repeated within a while loop until the number of elements created equals the minimum
number of elements per cell. It calls ran_array to create a random 3D position within a
cube of side 2*r_cell where r_cell is the pre-defined typical cell radius. This position
is the possible location of a new element. Subsequently the code checks to ensure that
the new element position is within a radius of r_cell - effectively ensuring that elements
are only introduced within a sphere, not a cube, and that the new element position is not
within distance r_close of any previously created elements. If either of these conditions are
not met, the block starts again with a new random position, but if the conditions are met
an element is introduced at this location, all of its corresponsing data are instantiated, and
the process is repeated for the next element until all required elements have been created.
When this de novo creation routine is used, the time step for subsequent updates is reduced,
to accommodate any relaxation required by the newly created cell, which may not be in
equilibrium and will quickly adjust.

The module ScEM_2_initial_exist.f90 skips the process of creating a new cell de
novo by reading the initial system state from saved files. The file elements_config

stores the initial locations of all elements in the system, and is read with a loop within
ScEM_2_initial_exist.f90 as shown in Code block 3.5.

Reading the system state from file also requires the config_data file, which stores the
initial number of cells, initial number of elements, and initial number of inter-element
interaction pairs in the system, although the first two of those are technically redundant. The
data from config_data is read in ScEM_3_initialize.f90, which takes the initial number

3.2 The SEM Program 37

flag_success=1
call ran_array(ra,1,3,iseed)
pos_1(:)=r_cell*(2*ra(1,:)-1)
if (dim.eq.2) pos_1(3)=0.0
rad_sq=dot_product(pos_1,pos_1)
if (rad_sq.lt.r_cell_sq) then

icount_p=1
do while ((flag_success.eq.1).and.(icount_p.le.icount))

pos_2(:)=elements(icount_p)%position(:)
dx(:)=pos_1(:)-pos_2(:)
dist_sq=dot_product(dx,dx)
if (dist_sq.lt.r_close_sq) then

flag_success=0
end if
icount_p=icount_p+1

end do
else

flag_success=0
end if

Code Block 3.4 Loop that creates pseudo-randomly positioned elements for an
initial cell

open(unit=12,file=’elements_config’,status=’old’)
do n=1,ne

read(12,*)elements(n)%position(:)
elements(n)%label=n
elements(n)%type=1
elements(n)%stage=1
elements(n)%parent=1
elements(n)%age=establishment_time
elements(n)%strength=1.0
elements(n)%velocity(:)=0.0

end do

Code Block 3.5 Loop within ScEM_2_initial_exist.f90 to read element posi-
tion data from elements_config.

38 The Sub-cellular Element Method

of pairs, elements and cells from the file. If module ScEM_2_initial_create.f90 is used
instead, module ScEM_3_initialize.f90 does not read data from config_data, but instead
sets the number of cells to 1, the number of elements to ne_cell, and estimates the number
of interaction pairs as the total number of elements in the system (which for one cell will be
the same as ne_cell).

Regardless of how the initial system state is initialised, ScEM_3_initialize.f90 performs
a number of housekeeping tasks to set up the simulation. First, it allocates the size of a
number of important arrays according to the initial system size. It then call a sequence
of subroutines, each contained in a corresponding module, as follows: scem_relist(0)

to initialize the sector array (see Subsection 3.2.3), scem_pairs to find all inter-element
interaction pairs (Subsection 3.2.4), scem_identity to set the internal c_elements array of
the cell data structure, scem_com to calculate the centre of mass and radius of gyration of all
cells in the system, and scem_output to save the initial state of the system to file.

3.2.3 Sector Array

The sector array divides the space in which simulations run into an abstract three dimensional
grid. The grid elements have equal lengths of sector_size, which itself is equal to 1.1
times the maximum interaction range for inter-element potentials, r_interaction_max. The
sector array is mostly handled by module ScEM_2_relist.f90, which contains subroutine
scem_relist. This subroutine is initally called from ScEM_3_initialize.f90 with argument
0. The array head has one component for each grid element of the sector array, and in this
instance with argument 0, subroutine scem_relist begins by setting all components of head
to be 0. Subsequently there is a loop over all elements as shown in Code block 3.6. For
each element, the loop calculates the 3 dimensional array ixe, which corresponds to the
specific sector array grid element within which the element is located. ixe is then used to
identify the component of the head array corresponding to this sector array grid element,
and its value is updated to the label of the element. Thus when the loop is completed, the
each component of the head array stores the highest value label of all SEM elements located
within the corresponding sector array grid element. Furthermore, the component of the list

array corresponding to each SEM element is used to store the previous value of the head

array, which is the next highest value element label within this sector array location. Thus
by using the head and list arrays it is possible to find the full set of elements within each
sector array grid element, because head[a,b,c]=n where n is the highest label element in
sector abc, and list[n]=m where m is the next highest label element in sector abc, and so on
until list[m]=0, at which point m is the lowest lavel element in sector abc. This ability is
important for identifying nearest-neighbour interaction pairs [Subsection 3.2.4].

3.2 The SEM Program 39

do n=1,ne
ixe(:)=1 + int((elements(n)%position(:) + x_cen(:))*recip_sector_size)
list(n)=head(ixe(1),ixe(2),ixe(3))
head(ixe(1),ixe(2),ixe(3))=n

end do

Code Block 3.6 Loop over all elements to evaluate each component of the head
array. From ScEM_2_relist.f90.

do n=1,ne
if (list(n).eq.0) then

ixe(:)=1+int((xe_compare(n,:)+x_cen(:))*recip_sector_size)
head(ixe(1),ixe(2),ixe(3))=0

end if
end do

Code Block 3.7 Loop triggered to initiate relisting sector array. From
ScEM_2_relist.f90.

After the initial call of subroutine scem_relist with argument 0, every subsequent call
uses argument 1, and occurs when the flag_relist variable is set to 1 by the module
ScEM_2_flag_relist.f90. Within this module, the subroutine scem_flag_relist checks
whether any element has moved from its previous location by more than a sufficient distance
to warrant rechecking which sectors each element is located within. If this criterion is met,
flag_relist is set to 1 and scem_relist is called again with argument 1. This triggers
the loop shown in Code block 3.7, which for any element that was previously the lowest
label element in its sector, sets the head value for that sector to be zero. Subsequently the
subroutine contines through Code block 3.6.

3.2.4 Interaction Pairs

The module ScEM_2_pairs.f90 contains the subroutine scem_pairs, which is called to find
all inter-element nearest neighbour interaction pairs. These pairs are stored within the
pairs(:,:) array. The first index of this array gives the pair label, and the second index takes
values of 1 or 2, such that pairs(n,1) gives the label of the first element in the interaction
pair, and pairs(n,2) gives the label of the second element in the interaction pair. To avoid
double-counting, the labels are arranged such that the first label always has a lower value
than the second label.

40 The Sub-cellular Element Method

The subroutine is built around a loop over all elements in the system. Within this
loop, there are two main sections. The first, shown in Code block 3.8, handles the actual
identification of interaction pairs. The second resizes the pairs array to double its original
capacity if the number of pairs counted so far within the loop exceeds some fraction of the
current size of the pairs array.

For the identification of interaction pairs (Code block 3.8), the first step is to identify the
position of the element under consideration and hence calculate its grid position within the
sector array, ixe(:). Using the sector array avoids another loop over all elements within
the system, since the size of the sector grid is such that any element within interaction
range of the current element must lie within the same sector or the 26 surrounding sectors.
Consequently, the next step is to loop over these possible sectors, using the head and list

arrays to identify any elements located within these sectors, and testing each of these
elements to determine whether it falls within sector_size of the current element (where
sector_size=1.1*r_interaction_max). If this condition is met, the two elements are stored
as an interaction in the pairs array.

Following the loop that contains Code block 3.8, the number of pairs in the system is
updated to the total value of icount found in the loop: np=icount.

3.2.5 Growth

Cell growth is handled by the subroutine scem_growth within module ScEM_2_growth.f90.
This subroutine is built around a loop over all cells in the system, nc. For each cell, the
subroutine uses the radius of gyration of that cell to define the radius of an internal core region
within which new elements can be added: r_core=frac_growth*cells(k)%rad_gyration.
The use of a growth core ensures that cells grow from the inside rather than potentially
introducing new elements randomly to the outside of the cell. Once this region has been
defined, the code laid out in Code block 3.9 attempts to place a new element within it. The
first step is to call a random number generator and compare the result to the probability of
placing a new element in a given timestep, prob_new_element. This probability is defined by
the number of elements per cell and a predefined cell cycle time, giving the expected time
taken for one round of cell division prob_new_element=dt*ne_cell/cell_cycle_time. If
the random number is smaller than the probability of placing a new element, the program
begins attempting to place a new element within the cell. This process is controlled by
flag_success, which is set to 1 once an element has been placed. In order to place a new
element, the program randomly selects an existing element within the cell. If this element
is within 90% of the radius of gyration of the cell from the centre of the cell, it is accepted
for use as the "nucleation" point of a new element. A random direction is chosen, and the

3.2 The SEM Program 41

pos_1(:)=elements(n)%position(:)
ixe(:)=1 + int((elements(n)%position(:) + x_cen(:))*recip_sector_size)
do ix=-1,1

do iy=-1,1
do iz=-1,1

nn=head(ixe(1)+ix,ixe(2)+iy,ixe(3)+iz)
do while (nn.ne.0)

if (n.lt.nn) then
pos_2(:)=elements(nn)%position(:)
dx(:)=pos_1(:)-pos_2(:)
sep_sq=dot_product(dx,dx)
if (sep_sq.le.sector_size_sq) then

icount=icount+1
pairs(icount,1)=n
pairs(icount,2)=nn

end if
end if
nn=list(nn)

end do
end do

end do
end do

Code Block 3.8 Code to identify nearest neighbour inter-element interaction
pairs, from ScEM_2_pairs.f90

42 The Sub-cellular Element Method

new element is placed at 0.6*r_equi in this direction from the nucleation element, where
r_equil is the equilibrium distance of the inter-element interactions. This is followed by
a section of bookkeeping to update relevant components of the elements and cells arrays.
Finally, a block searches for all new inter-element interaction pairs for this new element,
before moving on to the next cell.

New elements are created with the strength and stage components of the element data
structure set to 0. The stage component can take values 0, 1 or 2, to indicate that the element
is "fading in", "steady state" or "fading out" (fading out is not used in the basic SEM).
For "steady state" elements (stage=1) the element will interact with its nearest neighbours
normally. Newly created elements are given stage=0, indicating that they are "fading in".
This causes the interaction potentials experienced by the element to be updated by a factor
given by the strength component of the element. The strength of an element is given by
(age/establishmenttime)2, where the establishment time is the time it takes to fully fade in a
new element. It is a coefficient used to slowly increase the potential interactions of an element
as it fades in. The value increases with time, from 0 to 1, so when an element initially starts
to fade in it does not interact with its neighbours and after the establishment time it interacts
normally. By using this modulation of inter-element interactions, new elements can be made
to steadily interact more and more strongly after they are created, starting with no interaction
and eventually behaving normally. This allows for a slower relaxation to equilibrium and
smoother growth.

3.2.6 Division

Cell division is handled by subroutine scem_division within module ScEM_2_growth.f90.
This subroutine is built around a loop over the number of cells in the system before division,
as shown in Code block 3.10. For each cell currently existing in the system, this loop checks
whether the number of elements in the cell is greater than or equal to double the baseline
number of elements per cell, ne_cell. If this is the case, division is triggered in this cell.

The first step in cell division is identifying the axis along which the cell will divide,
which is done by finding the longest possible displacement vector between any two elements
in the cell, thus identifying the longest axis of the cell. The cell is then divided by a plane
perpendicular to this axis and passing through the centre of mass of the cell. Elements
within the cell are identified as on either side of the plane by taking the dot product of their
displacement from the centre of mass with the long-axis vector. Elements on one side of the
plane are allocated to the new cell, while those on the other side of the plane remain part of
the old cell. Finally, some book keeping sets the age of each daughter cell to zero an resets
the internal element list, c_elements, for each cell.

3.2 The SEM Program 43

do while (flag_success.eq.0)
call ran_array(ra1,1,1,iseed)
rn=ra1(1,1)
m=1+int(rn*cells(k)%c_elements(0))
n=cells(k)%c_elements(m)
pos(:)=elements(n)%position(:)-cells(k)%position(:)
rad_sq=dot_product(pos,pos)
if (rad_sq.lt.r_core**2) then

flag_success=1
ne=ne+1
call ran_array(ra2,1,2,iseed)
phi=2*pi*ra2(1,1)
theta=acos(2*(ra2(1,2)-0.5))
d_pos(1)=0.6*r_equil*sin(theta)*cos(phi)
d_pos(2)=0.6*r_equil*sin(theta)*sin(phi)
d_pos(3)=0.6*r_equil*cos(theta)
if (dim.eq.2) d_pos(3)=0.0
elements(ne)%label=ne
elements(ne)%parent=k
elements(ne)%stage=0
elements(ne)%type=1
elements(ne)%age=0.0
elements(ne)%strength=0.0
elements(ne)%position(:)=cells(k)%position(:)+pos(:)+d_pos(:)
elements(ne)%velocity(:)=0.0
cells(k)%c_elements(0)=n_el_cell_k+1
cells(k)%c_elements(n_el_cell_k+1)=ne

end if
end do

Code Block 3.9 Protocol for placing a new element within cell k, from
ScEM_2_growth.f90

44 The Sub-cellular Element Method

do k=1,nc_old
if (cells(k)%c_elements(0).ge.2*ne_cell) then

nc=nc+1
do i=2,cells(k)%c_elements(0)

n=cells(k)%c_elements(i)
do j=1,i-1

nn=cells(k)%c_elements(j)
pos(:)=elements(n)%position(:)-elements(nn)%position(:)
max_sep=max(max_sep,dot_product(pos,pos))
if (max_sep.gt.max_sep_old) then

long_axis(:)=pos(:)
end if
max_sep_old=max_sep

end do
end do
x_com(:)=cells(k)%position(:)
c_el_temp1(:)=0
c_el_temp2(:)=0
do i=1,cells(k)%c_elements(0)

n=cells(k)%c_elements(i)
relative_pos(:)=elements(n)%position(:)-x_com(:)
epsilon=dot_product(relative_pos,long_axis)
if (epsilon.ge.0.0) then

c_el_temp1(0)=c_el_temp1(0)+1
c_el_temp1(c_el_temp1(0))=n
elements(n)%parent=k

else
c_el_temp2(0)=c_el_temp2(0)+1
c_el_temp2(c_el_temp2(0))=n
elements(n)%parent=nc

end if
end do
cells(k)%age=0.0
cells(nc)%age=0.0
cells(k)%c_elements(:)=c_el_temp1(:)
cells(nc)%c_elements(:)=c_el_temp2(:)

end if
end do

Code Block 3.10 Algorithm for cell division, from ScEM_2_division.f90.

3.2 The SEM Program 45

allocate(potential_deriv(0:n_bins-1,2))
allocate(pot_deriv_table(0:n_bins))
allocate(r_sq_table(0:n_bins))
do j=0,n_bins

sep_sq=j*d_r_sq
r_sq_table(j)=sep_sq
factor=exp(rho*(1.0-sep_sq/r_equil_sq))
pot_deriv_table(j)=force_amplitude*factor*(factor-1.0)

end do
do j=0,n_bins-1

potential_deriv(j,1) = (pot_deriv_table(j+1) -
pot_deriv_table(j))*d_r_sq_recip↪→

potential_deriv(j,2) = (pot_deriv_table(j)*r_sq_table(j+1) -
pot_deriv_table(j+1)*r_sq_table(j))*d_r_sq_recip↪→

end do
potential_deriv=potential_deriv/damping_element

Code Block 3.11 Defining Morse potential for inter-element interactions, from
ScEM_1_potential.f90.

3.2.7 Interaction Potential

In the basic SEM, only one potential is defined. This takes the form of a morse potential [194]
for diatomic interactions, with repulsion at small separation and steadily decaying attraction
for greater separation [Figure 3.2]. This potential is used for all interactions in the system:
both inter-cellular interactions and intra-cellular interactions. However, the magnitude of
these interactions is varied by means of a coefficient that differs for inter- and intra- cellular
interactions. Values for this coefficient are stored in the rel_strength array, defined in
scem_input. Initially value are set so that inter-cellular interactions have half the magnitude
of intra-cellular interactions.

Within the basic SEM program, the potential is defined by the subroutine scem_potential
in module ScEM_1_potential.f90 [Code block 3.11]. This subroutine is called once at the
beginning of the program and stored the potential data in the potential_deriv array, meaning
that the potential can be looked up rather than recalculated at later stages of the program.

Once potential_deriv has been defined it is used within subroutine scem_integrate.
This subroutine uses a loop over all pairs in the system to calculate the velocity of
each element in the system from its interaction pairs, position, strength value, and the
potential_deriv array [Code block 3.12]. Once this velocity has been calculated, it can be
used to update the position of the element, as discussed in Subsection 3.2.8

46 The Sub-cellular Element Method

if (sep_sq.le.r_interaction_max_sq) then
fadein_amp = elements(n)%strength*elements(nn)%strength
bin = int(sep_sq*d_r_sq_recip)
r_s = fadein_amp*rel_strength(1, 1, elements(n)%type,elements(nn)%type,

index_intra)↪→

pot_deriv_interp=r_s*(sep_sq*potential_deriv(bin, 1) +
potential_deriv(bin, 2))↪→

elements(n)%velocity(:) = elements(n)%velocity(:) +
dx(:)*pot_deriv_interp↪→

elements(nn)%velocity(:) = elements(nn)%velocity(:) -
dx(:)*pot_deriv_interp↪→

end if

Code Block 3.12 Code block within loop over all interaction pairs to interpolate
force and calculate velocities of elements n and nn, from scem_integrate.

3.2.8 Updating

The SEM elements exhibit over-damped Langevin dynamics [186]. Equation 3.2 shows the
Langevin equation [196] for particle dynamics, where x is the position of the particle, U is
the potential field experienced by the particle, γ is a drag coefficient, and ζ is the stochastic
component.

mẍ =−∇U(x)− γ ẋ+ζ (3.2)

In the over-damped regime, where m → 0, Equation 3.2 can be simplified to Equation 3.3.

γ ẋ =−∇U(x)+ζ (3.3)

Thus, the velocity of each element can be calculated by summing the gradients of each
inter-element potential that the element experiences. Note that for our purposes the magnitude
of ζ was found to not have a significant effect on system dynamics and was thus neglected in
our simulations.

Updating the system is handled by subroutine scem_iterate in module
ScEM_3_iterate.f90. This subroutine contains a while loop that performs a set of
commands and increments the system time until the max time is reached. The loop calls
subroutines scem_flag_relist, scem_relist, scem_pairs, scem_ageing, scem_growth,
scem_division, scem_resize, scem_com, and scem_output, which all update stored
information according to the movement of the elments. The loop also calls scem_integrate

3.2 The SEM Program 47

call scem_integrate
forall(n=1:ne) elements(n)%position(:) = elements(n)%position(:) +

0.5*dt*elements(n)%velocity(:)↪→

forall(n=1:ne) elements(n)%velocity(:) = 0.0
call scem_integrate
forall(n=1:ne) elements(n)%position(:) = xe_prev(n,:) +

dt*elements(n)%velocity(:)↪→

forall(n=1:ne) elements(n)%velocity(:) = 0.0

Code Block 3.13 Terms to implement a 2nd order Runge-Kutta and update
element positions, from the while loop in ScEM_3_iterate.f90

to calculate element velocities, and applies these velocities to update the element positions,
as shown in Code block 3.13.

Finally, the loop within scem_integrate calls scem_diffusion, which handles the
stochastic component of the Langevin equation by applying a random Gaussian change
to the position of each element.

3.2.9 Data Output

Outputting data from the simulation is handled by scem_output and scem_output_final in
modules ScEM_2_output.f90 and ScEM_2_output_final.f90.

scem_output outputs data as the simulation progresses. Data is written to file at specified
output time intervals, time_out_1 and time_out_2. The positions of all elements in the
system and the positions of all cells in the system are written to files, and a summary of the
current system state is printed to the command line. The elements file stores the positions of
all elements at all output intervals, while a separate file of the form fort.xx where xx is a
number between 30 and 40 is created for each output interval to store the element positions
at that point.

scem_output_final is called only once the simulation has finished, and saves the final
positions of all elements to the elements_final file and the number of cells, elements, and
pairs to the end_of_run_data file.

3.2.10 Auxiliary Scripts

The initial SEM program came with 3 auxiliary shell scripts to perform simple housekeeping
tasks. ScEM_script_intel_compile calls the fortran compiler to precompile all modules
separately and then combine into the ScEM_master binary. ScEM_script_create_to_exist

48 The Sub-cellular Element Method

takes the elements_final and end_of_run_data datafiles produced by a run of the program
and converts them to the elements_config and config_data files needed to run the final
state of this system as the initial state of a new system with the ScEM_2_initial_exist.f90

module. Finally, ScEM_script_clear_data removes all datafiles produced by a run of the
program.

Chapter 4

Implementation of a Model of Cell
Sorting with the Subcellular Element
Method

The basic SEM program is a powerful tool, and we have already seen how the program
has been adapted and augmented to model other systems [190]. However, it lacks specific
features required for our investigation of tissue self-organisation in the inner cell mass. This
chapter outlines updates made to the program as part of this project.

4.1 Cell Lineages

The first thing to consider is that we require two cell types in the system. This will allow us
to identify two separate populations of cells within the simulations and give them different
properties to study the effect on their organisation. To achieve this, we added another compo-
nent to the cell data structure, which we called fate [Code block 4.1]. This component can
takes integer values of 1 to indicate an epiblast cell or 2 to indicate a primitive endoderm
cell. The use of an integer value rather than boolean leaves open the potential for introducing
any number of additional cell types in future, such as trophoblasts. Adding this component
to the data structure was straightforward but required a significant number of downstream
alterations in the code before it became useful. Because of this, the relevance and use of the
fate component will be clearer after we have discussed additional augmentation of the code.

In order to allocate fates to new cells after division, Code block 4.2 was added to
subroutine scem_division. We also introduce flag_symmetric_division. If this variable is
equal to 1, division is symmetric, meaning cells of type 1 divide to produce two daughter

50 Implementation of a Model of Cell Sorting with the Subcellular Element Method

type cell
integer :: label
integer :: fate
integer :: triplet_count
real*8 :: rad_gyration
real*8 :: age
real*8 :: volume
real*8, dimension(3) :: position
real*8, dimension(3) :: original_position
integer, dimension(0:4*ne_cell) :: c_elements
integer, dimension(0:2*ne_cell) :: cortex_elements
integer, allocatable, dimension(:,:) :: triplets

end type cell

Code Block 4.1 Updated cell data structure definition. Contains a number of
updates to the original definition that will be outlined in subsections of this
chapter.

cells of type 1, and cells of type 2 divide to produce two daughter cells, also both of type
2. Otherwise, division is asymmetric, and an equal probability is given to producing two
daughter cells of the same type as the parent or of different types. It is never possible for a
parent cell to produce two daughter cells both of the other fate. The algorithm uses a random
number to choose between these two equally likely outcomes. This means that after division
there will always be at least one cell of the same fate as the parent, and an equal probability of
the other daughter cell having either fate. In real cellular systems these relative probabilities
for cell fates may be different, which in itself might naturally lead to a form of aggregation of
each cell type, but for the purposes of proving minimal requirements for sorting by physical
mechanisms, this 50:50 probability is an adequate starting point.

As a further level of detail, we could take into account the plasticity of cell fates in the
ICM [41] by treating fate as a vector in a 2D or 3D space. If the vector points along one axis
then a firm fate decision has been made, but anywhere in between would reflect the plasticity
of the cell fate, with the component of the vector in each dimension reflecting the extent to
which the cell is tending towards that fate. This would allow us to model factors influencing
the fate decisions of the cells in the inner cell mass, and how they might influence sorting,
but this was not implemented in the current project and will have to wait for later work.

4.2 Boundary and External Pressure 51

if (flag_symmetric_division.EQ.1.OR.intro) then
cells(nc)%fate=cells(k)%fate
cells(nc)%label=nc

else
CALL RANDOM_NUMBER(fate_decider)
if (fate_decider.GE.0.5) then

cells(nc)%fate=cells(k)%fate
else

cells(nc)%fate=MOD(cells(k)%fate,2)+1
endif

endif

Code Block 4.2 Algorithm for allocating fates to daughter cells after division,
with a 50:50 chance of symmetric or asymmetric division.

4.2 Boundary and External Pressure

The inner cell mass is bounded by trophoblasts and the blastocoele. This means it will be
necessary to introduce a boundary into our model so that the cells are contained within a
limited space. This will eventually allow us to study the effect of geometry on sorting.

After considering some other possible mechanisms, the method for introducing a bound-
ary to the system that we eventually implemented was to introduce a system-wide potential
field that acted on any element that strayed from a specific region, and applied a returning
force to these elements to keep them within the system boundary. This can be thought of
as a potential well, within which the elements do not directly experience a force from the
boundary.

The algorithm is implemented as subroutine scem_background1 within
ScEM_2_background.f90. This subroutine is shown in Code block 4.3. The first
step is to calculate the total volume of all cells in the system. This total volume is used to
define the volume of the spherical potential well. Once the total volume has been found,
the radius of the potential well is set to 120% of the radius of a sphere with the volume of
the sum of all cell volumes. This ensures that there is only just enough room within the
boundary for the system. Once this radius has been calculated, a loop is performed over all
elements to check whether any elements lie outside this radius from the centre of the system.
Any element that meets this condition experiences a constant force directed radially towards
the centre of the system. The magnitude of this force scales with the magnitude of other
forces in the system.

52 Implementation of a Model of Cell Sorting with the Subcellular Element Method

subroutine scem_background1
real*8 :: spherical_radius
real*8 :: volume_sum
integer :: n
volume_sum = 0
do n=1, nc

volume_sum = volume_sum + cells(n)%volume
enddo
spherical_boundary_radius =

1.2*(((3.0*volume_sum)/(pi*4.0))**(1.0/3.0))↪→

do n=1, ne
spherical_radius =

DOT_PRODUCT(elements(n)%position,elements(n)%position)↪→

if (spherical_radius.gt.spherical_boundary_radius) then
elements(n)%velocity(:) = elements(n)%velocity(:) - 0.1*

stiffness_factor*elements(n)%position(:)/spherical_radius↪→

endif
enddo

end subroutine

Code Block 4.3 Subroutine for applying external boundary pressure due to a
spherical boundary, from ScEM_2_background.f90

4.3 Interaction Potentials 53

Fig. 4.1 Separate plots of the attractive and repulsive components of the Morse
potential.

We also created a second background potential in the form of a spherical cap, to better
represent the shape of the inner cell mass, using a similar algorithm to that of the spherical
boundary. However, for most implementations of the model so far, we used the spherical
boundary, since sorting is also observed in spherical aggregates of inner cell mass cells that
have been removed from the blastocyst.

The boundary subroutine is controlled by the value of flag_background within module
ScEM_0_input.f90, which allows the boundary to be turned off as necessary.

4.3 Interaction Potentials

In order to more carefully control the behaviour of our simulations, we decided to expand
upon the standard nearest neighbour inter-cell potentials. The standard Morse potential
[Chapter 3] can be broken into an attractive component and repulsive component [Figure 4.1].

By defining these components separately, we are able to change the relative magnitudes
of the two components in interactions and thus tune the interactions between elements
depending on their type. For example, once a cortex has been defined [Section 4.4], we
can change the magnitude of the attractive component for inter-cell cytoplasm-cytoplasm
interactions to be zero, so that the internal elements of different cells are purely repulsive.
This helps to prevent cells from overlapping in space, a problem that was observed with the
basic SEM. To implement this splitting of potential components, we changed the definitions

54 Implementation of a Model of Cell Sorting with the Subcellular Element Method

!For attractive potential
do j=0,n_bins

sep_sq = j*d_r_sq
r_sq_table(j) = sep_sq
factor = exp(rho*(1.0-sep_sq/r_equil_sq))
pot_deriv_table(j) = -force_amplitude*factor

end do
do j=0,n_bins-1

potential_deriv1(j,1) = (pot_deriv_table(j+1) -
pot_deriv_table(j))*d_r_sq_recip↪→

potential_deriv1(j,2) = (pot_deriv_table(j)*r_sq_table(j+1) -
pot_deriv_table(j+1)*r_sq_table(j))*d_r_sq_recip↪→

end do
potential_deriv1 = potential_deriv1/damping_element
!For repulsive potential
do j=0,n_bins

sep_sq = j*d_r_sq
r_sq_table(j) = sep_sq
factor = exp(rho*(1.0-sep_sq/r_equil_sq))
pot_deriv_table(j) = force_amplitude*factor**2

end do
do j=0,n_bins-1

potential_deriv2(j,1) = (pot_deriv_table(j+1) -
pot_deriv_table(j))*d_r_sq_recip↪→

potential_deriv2(j,2) = (pot_deriv_table(j)*r_sq_table(j+1) -
pot_deriv_table(j+1)*r_sq_table(j))*d_r_sq_recip↪→

end do
potential_deriv2 = potential_deriv2/damping_element

Code Block 4.4 Definitions of attractive and repulsive potential components in
scem_potential.

4.4 Defining a Cortex 55

in subroutine scem_potential. Rather than defining one array potential_deriv, we now
define two arrays potential_deriv1 for the attractive component and potential_deriv2 for
the repulsive component [Code block 4.4]. A sum of these two arrays recreates the original
potential_deriv array, but we can now also combine them with different magnitudes.

Once these two components have been defined, we can use them to calculate a velocity
[Code block 4.15]. Note that we now use an expanded rel_strength array with 6 indices,
allowing a different value for each possible set of element types and cell types in the
interaction (indices 2, 3, 4, and 5), inter- and intra-cell interactions (index 6), and for
attractive and repulsive components (index 1). The rel_strength array is defined within
scem_input and its components are user-specified.

The number of parameters needed to specify all components in the array quickly drops
once we consider various symmetries of the possible combinations of indices. Some values
must by definition be zero, such as intra-cell interactions with different cell type values, which
is impossible. Others are defined to be zero, such as the adhesive components of all inter-cell
interactions involving internal cytoplasm elements. Both adhesive and repulsive components
of all intra-cell interactions (cortex-cytoplasm, cytoplasm-cytoplasm, cortex-cortex) are given
the same magnitude, specified in scem_input as stiffness_factor. This component also
vanishes as an input parameter when we consider that all components scale together, and thus
we can set it to be equal to one and treat all other components as ratios thereof. Meanwhile,
inter-cell repulsive components are simply given magnitudes high enough to reliably prevent
cells from overlapping in space. Finally, the interesting components are those three related
to inter-cell cortex-cortex adhesion. The 3 components relate to epiblast-epiblast, epiblast-
primitive endoderm, and primitive endoderm-primitive endoderm adhesion. By considering
that adhesion magnitude is related to the density of cadherin molecules on the surface of a
cell, we make the assumption that the epiblast-primitive endoderm adhesion has the same
magnitude as the weakest of epiblast-epiblast and primitive endoderm-primitive endoderm
adhesion. Thus we need only focus on two parameters, epi_adhesion and pre_adhesion.
Given experimental evidence concerning adhesion of epiblasts and primitive endoderm, we
can make the further assumption that both cell types have the same mutual adhesion, and
thus reduce the parameters further to only a single adhesion magnitude.

4.4 Defining a Cortex

The actomyosin cortex is one of the crucial structures that allow a cell to interact with its
environment; in Chapter 1 we discussed differential interfacial tension as a mechanism
that could drive cells to self-organise and its potential importance in the inner cell mass.

56 Implementation of a Model of Cell Sorting with the Subcellular Element Method

type element
integer :: label
integer :: parent
integer :: stage
integer :: type
integer :: DIT_factor
real :: adhesion_factor
real*8 :: age
real*8 :: strength
real*8, dimension(3) :: position
real*8, dimension(3) :: velocity
real*8, dimension(3) :: polar

end type element

Code Block 4.5 New element data structure definition.

Furthermore, we also proposed that creation of new cortex in cell division and variation in
tension due to blebbing could be significant factors in perturbing the system to facilitate
rearrangement. In order to include these mechanisms in our model, it is vital that there
be some force acting over the surface of SEM cells. This force must also allow for local
variation in its magnitude according to the local context. We decided to model the cortex as
an additional force acting between surface elements in each SEM cell.

The first step towards the objective of a cell cortex is to identify surface elements within
each cell, which is not entirely trivial. We require a distinct outer layer of elements with
different properties in each cell. For this we begin by using the type component of the
element data structure to define a type that labels the elements that make up the actin cortex.
This component can take values of 1, corresponding to cytoplasm or bulk elements, or 2,
corresponding to cortex elements. Once these elements have been suitably labelled, we
can distinguish them from other elements to alter their behaviour. Thus, the element data
structure is updated as shown in Code block 4.5. Note that there are a number of other new
components here to which we will return later.

After considering a number of possibilities for algorithms to identify cortex elements,
we settled on the procedure outlined below. We begin by calculating the spherical polar
coordinates of each element in each cell relative to the centre of mass of the parent cell. For
this we created a module ScEM_2_polar.f90 to apply this calculation to all elements in the
system whenever subroutine scem_polar is called [Code block 4.6]. These polar coordinates
are stored as a 3 vector in the newly defined polar component of the element data structure
[Code block 4.5].

4.4 Defining a Cortex 57

do i=1, ne
r_vector(:) = elements(i)%position(:) -

cells(elements(i)%parent)%position(:)↪→

r_squared = r_vector(1)**2 + r_vector(2)**2 + r_vector(3)**2
elements(i)%polar(1) = sqrt(r_squared)
cos_theta = r_vector(3)/elements(i)%polar(1)
elements(i)%polar(2) = ACOS(cos_theta)
elements(i)%polar(3) = pi+ATAN2(r_vector(2),r_vector(1))

end do

Code Block 4.6 Loop over all elements in the system to calculate and store their
polar coordinates relative to the cell centre of mass of their parent cell, from
ScEM_2_polar.f90

Fig. 4.2 Sequence demonstrating the algorithm for allocating cortex elements.

Once polar coordinates have been found, it is straightforward to divide the cell into 32
bins - 4 in the polar angle and 8 in the azimuthal angle - and allocate each element to a bin.
The element radially furthest from the cell centre of mass in each bin is allocated cortex type
(elements(n)%type=2). Any other elements in the bin with a radius greater than 80% are
also given cortex type. This radius corresponds to roughly 50% of the volume of the cell.

In order to store information about the cortex elements in each cell, we updated the cell

data structure as shown in Code block 4.7 by adding the cortex_elements array as a new
components of the data structure. cortex_elements is similar to the original c_elements
array in that the 0th components stores the number of cortex elements in the cell, and the
remaining elements of the array store the labels of the cortex elements within the SEM cell.
Note that there are other new additions to the cell data structure, to which we will return
later.

Cortex allocation is performed at each timestep by the subroutine scem_cortex in module
ScEM_4_cortex.f90. The main section of this subroutine is shown in Code block 4.8. The
subroutine begins by calling subroutine scem_polar [Code block 4.6] to calculate the polar

58 Implementation of a Model of Cell Sorting with the Subcellular Element Method

type cell
integer :: label
integer :: fate
integer :: triplet_count
real*8 :: rad_gyration
real*8 :: age
real*8 :: volume
real*8, dimension(3) :: position
real*8, dimension(3) :: original_position
integer, dimension(0:4*ne_cell) :: c_elements
integer, dimension(0:2*ne_cell) :: cortex_elements
integer, allocatable, dimension(:,:) :: triplets

end type cell

Code Block 4.7 Updated definition of the cell data structure, from
ScEM_1_types.f90.

coordinates of each element relative to the centre of mass of its parent cell. We then set the
type component of each element in the cell to 1. This refreshing of the state at each element
prevents a net accumulation of cortex elements over time. Subsequently, there is a loop over
all cells nc, within which the cortex elements for each cell are allocated. Within this loop
we introduce three new arrays, defined within module ScEM_0_arrays.f90: bin_counters,
bin_contents, and bin_max_radius. For each of these arrays, the first dimension has 32
elements, corresponding to the 32 pyramid bins of the cell. Arrays bin_counters and
bin_max_radius store the number of elements and the maximum radius of those elements
for each corresponding pyramid bin. Array bin_contents has a second dimension of size
100, and stores the full list of element labels within each bin. These three arrays are used in a
loop over all elements within a cell to determine the contents and maximum radius of each
polar bin. Finally, another loop over all polar bins determines which elements within the
corresponding slice of bin_contents have a radius greater than 80% of the maximum radius.
All such elements are allocated cortex type. This algorithm is summarised in Figure 4.2 and
an example of a single cell with cortex elements highlighted is shown in Figure 4.3

4.5 Introducing Tension in Cortex

Once the set of cortex elements has been established, it is necessary to introduce a force
that acts only between these elements. This will allow us to model cortical tension as a
tangential tension force acting throughout the boundary of each cell. The first attempt to do

4.5 Introducing Tension in Cortex 59

call scem_polar
FORALL(n=1:ne) elements(n)%type = 1
do i=1, nc

cells(i)%cortex_elements(:)=0
bin_counters(:) = 0
bin_contents(:,:) = 0
bin_max_radius(:) = 0
do l=1, cells(i)%c_elements(0)

n = cells(i)%c_elements(l)
j = int(elements(n)%polar(2)/(pi/4)) + 1
k = int(elements(n)%polar(3)/(pi/4))
bin_counters(j+k) = bin_counters(j+k) + 1
bin_contents(j+k,bin_counters(j+k)) = n
bin_max_radius(j+k) = MAX(bin_max_radius(j+k), elements(n)%polar(1))

end do
do k=1,32

do m=1, bin_counters(k)
n=bin_contents(k,m)
if (elements(n)%polar(1).GT.(0.8*bin_max_radius(k))) then

elements(n)%type = 2
cells(i)%cortex_elements(0)=cells(i)%cortex_elements(0)+1
cells(i)%cortex_elements(cells(i)%cortex_elements(0)) = n

end if
end do

end do
end do

Code Block 4.8 Algorithm for allocating cortex elements, forming the first
section of subroutine scem_cortex in module ScEM_4_cortex.f90.

60 Implementation of a Model of Cell Sorting with the Subcellular Element Method

Fig. 4.3 Cutaway PovRay image of one SEM cell showing cortex elements as
red spheres and cytoplasm elements as green spheres.

this involved simply identifying existing nearest-neighbour interactions that happen to act
between elements that are identified as cortex elements, and then increasing the magnitude of
these interactions. This did not work well at all, as it quickly became clear that the spacing
between cortex elements was such that very few were within the minimum distance for
standard nearest-neighbour interactions. This problem can be seen in Figure 4.4, which
shows the inter-element interaction pairs of one typical SEM cell. Those interactions acting
between two cortex elements are coloured red; all others are blue. Clearly this network of
cortex-cortex interactions is not adequate to span the surface of the cell.

This algorithm was particularly problematic immediately after division. A crucial factor
in our model is the introduction of energy by the creation of new cortex during division.
However, under this protocol, the separation of cortex elements over the flat cell surface
at the interface between the two daughter cells was significantly too large to produce any
cortex-cortex interactions across the surface. Thus, no energy could be introduced following
division, inhibiting the ability of the system to rearrange. Furthermore, occasionally boundary
elements could become detached from a cell. If they happened to move far enough away from
the other elements in the cell, they could exceed the maximum distance for inter-element
nearest neighbour interactions, and thus have no forces keeping them attached to the cell. An
example of this is shown in Figure 4.5, in which cortex elements are shown as red spheres,
cytoplasm elements are shown as green spheres, and nearest neighbour interactions are shown

4.5 Introducing Tension in Cortex 61

Fig. 4.4 Visualisation of a single SEM cell, showing all nearest-neighbour el-
ement interactions as cylinders, with those acting between cortex elements
coloured red. It can clearly be seen that the standard interactions between cortex
elements are insufficient to span the surface.

as blue cylinders. One highlighted element has no nearest neighbour interactions and is at
risk of being separated from the cell.

4.5.1 Delaunay Triangulation Over Cortex Elements

The issues with existing interactions as a means of producing cortical tension can be solved
by introducing a new set of interactions that act between cortex elements regardless of their
separation from one another. Thus the cortex network is guaranteed to span the surface of the
cell and it will be impossible for elements to be lost as there will always be a returning force.
To achieve this, we perform a Delaunay triangulation [197] over the set of cortex elements.
The triangulation identifies a network of nearest neighbour connections within the set of
cortex elements by dividing the elements into a network of triangles whilst maximising the
value of the minimum angle within each triangle. Thus the triangulation favours roughly
equilateral triangles with no unusually long edges, which produces a smooth surface across
the whole of the cell. Any nearest neighbour connection between cortex elements - an edge
of any triangle in the Delaunay triangulation - is used to introduce a constant force acting
between those two cortex elements, parallel to the triangle edge [Figure 4.6].

To implement this method, we began by introducing a new data structure, defined within
the module ScEM_1_types.f90: the cortexpair data structure [Code block 4.9], which
is used to store information about all cortex-cortex interactions defined by the Delaunay

62 Implementation of a Model of Cell Sorting with the Subcellular Element Method

Fig. 4.5 One SEM cell, showing an element that has moved too far from other
elements and lost its nearest neighbour interactions.

Fig. 4.6 Two dimensional diagram of cortical tension forces as defined by a
Delaunay triangulation in one SEM cell. Cytoplasm elements are green and
cortex elements are red; the Delaunay triangulation over the cortex elements is
shown, with one set of cortex forces indicated by arrows.

4.5 Introducing Tension in Cortex 63

type cortexpair
integer :: label1
integer :: label2
real*8 :: cortex_factor

end type cortexpair
type(cortexpair), allocatable, dimension(:) :: pairs_cortex

Code Block 4.9 Definition of the cortexpair data structure, and the
pairs_cortex array to store the newly defined data structures.

triangulation. This data structure has 3 components: the labels of the two elements involved
in the cortex-cortex interaction, and the cortex_factor value, to which we will return later.
We also added two components to the cell data structure: the triplet_count component
is an integer that stores the number of triangles in the Delaunay triangulation of this cell,
and the triplets array stores the labels of all three elements within each triangle of the
Delaunay triangulation [Code block 4.7]. So for example, cells(n)%triangles(3,i) is the
3rd element in the ith cortex triangle of the nth cell.

Having defined this new data type, the Delaunay triangulation is performed by calling
subroutine scem_delaunay in subroutine scem_cortex [Code block 4.10]. Thus the Delaunay
triangulation is refreshed at each timestep. Subroutine scem_delaunay [Code block 4.11]
performs the Delaunay triangulation with a loop over all cells in the system, for each cell
setting up a number of data arrays using the cortex_elements data from that cell. The x, y,
and z arrays store the x, y, and z Cartesian coordinates of all cortex elements relative to the
cell centre of mass, with the radius normalised to unity from the centre of mass, thus ensuring
that all values fall on a sphere. The fundamental calculations that produce the Delaunay
triangulation are performed using subroutines from the Stripack algorithm published by
Robert Renka [198]. These routines were tidied into several separate modules, and the
scem_delaunay subroutine acts as an interface between the SEM program and the Stripack
routines, passing data from the SEM in the format required by the Stripack subroutines. For
our purposes the significant subroutines are trmesh and trlist2. When these two subroutines
are called back to back, they produce two objects that are of use to us: the first is nt, which
is the number of triangles used to span the surface of the cell, and is immediately stored in
cells(j)%triplet_count=nt; the second is ltri, which is a two dimensional array listing
the elements in all triangles. So for example, ltri(1,i) gives the label of the 1st cortex
element in the ith surface triangle. However, the labels used in ltri are simply the indices of
these elements within the cells(j)%cortex_elements array, so in order for these to be useful

64 Implementation of a Model of Cell Sorting with the Subcellular Element Method

call scem_delaunay
if (allocated(pairs_cortex)) deallocate(pairs_cortex)
allocate(pairs_cortex(np_cortex))
pair_counter=0
do i=1, nc

do j=1, cells(i)%triplet_count
pair_counter = pair_counter+1
pairs_cortex(pair_counter)%label1 = cells(i)%triplets(1,j)
pairs_cortex(pair_counter)%label2 = cells(i)%triplets(2,j)
pair_counter = pair_counter+1
pairs_cortex(pair_counter)%label1 = cells(i)%triplets(2,j)
pairs_cortex(pair_counter)%label2 = cells(i)%triplets(3,j)
pair_counter = pair_counter+1
pairs_cortex(pair_counter)%label1 = cells(i)%triplets(3,j)
pairs_cortex(pair_counter)%label2 = cells(i)%triplets(1,j)

enddo
enddo
pairs_cortex(:)%cortex_factor = 1
if (.NOT.intro) call scem_dit

Code Block 4.10 Algorithm for creating the pairs_cortex arrary, forming the
second part of subroutine scem_cortex.

4.5 Introducing Tension in Cortex 65

we must convert them to the global labels of these elements. So for example, the global label
of the element referenced by ltri(1,i) would be cells(j)%cortex_elements(ltri(1,i)).

Once the Delaunay triangulation has been performed, the final step of the scem_cortex

subroutine is to fill the pairs_cortex array with details from the Delaunay triangulations of
all cells. This array is of data type cortexpair [Code block 4.9], meaning that each element
of the array is a 3 component data structure. For each cell, a loop over all triplets array
components fills the label1 and label2 components of 3 elements of the pairs_cortex

array with the two element labels for each edge of each surface triangle. In other words, each
surface triangle in each cell has 3 edges corresponding to 3 cortex-cortex interactions and thus
takes up 3 components of the pairs_cortex array. Thus, the pairs_cortex array contains
all cortex pairs from all cells, and the value of pair_counter tells us exactly how many such
edges there are across all cells. Note that because each cortex element pair defined by the
triangulation forms an edge of precisely two triangles, each pair is counted twice. In practice
this does not matter since we can simply compensate with a smaller tension magnitude,
which is easier and quicker than preventing double counting. The third component of each
element of the pairs_cortex array is the cortex_factor component, to which we will return
in Section 4.6.

Figure 4.7 shows the result of this algorithm: one SEM cell in which the edges of the
Delaunay triangulation over the surface elements are shown by red cylinders.

4.5.2 Applying Tension Forces Within Triangulation

Now that there is more than one inter-element interaction to consider, we need to
restructure the element velocity calculations previously handled by scem_integrate.
The machinery for calculating velocities due to nearest-neighbour inter-element
forces, as originally defined in the basic SEM, was moved into subroutine
scem_near_neighbour_update in module ScEM_3_near_neighbour_update.f90 [Code
block 4.15]. A new subroutine, scem_cortical_tension_update, was created in module
ScEM_3_cortical_tension_update.f90 to handle calculations related to cortical tension
forces. Due to the linearity of the overdamped Langevin equations used in SEM, we can
calculate velocity components due to these forces separately and then sum the components to
calculate a final velocity. Thus scem_integrate now contains nothing but 3 subroutine calls
to scem_near_neighbour_update, scem_cortical_tension_update, and scem_background,
the three subroutines that each calculate a velocity component for every element in the system
due to nearest neighbour interactions, cortical tension, and boundary pressure respectively.

The important details of the newly created subroutine scem_cortical_tension_update

are shown in Code block 4.12. The subroutine is built around a loop over all cortex-cortex

66 Implementation of a Model of Cell Sorting with the Subcellular Element Method

allocate(x(cells(j)%cortex_elements(0)))
allocate(y(cells(j)%cortex_elements(0)))
allocate(z(cells(j)%cortex_elements(0)))
do i=1, cells(j)%cortex_elements(0)

k = cells(j)%cortex_elements(i)
r_vector = elements(k)%position-cells(j)%position
radius_squared = DOT_PRODUCT(r_vector,r_vector)
radius = sqrt(radius_squared)
x(i) = r_vector(1)/radius
y(i) = r_vector(2)/radius
z(i) = r_vector(3)/radius

end do
allocate(list(6*(cells(j)%cortex_elements(0)-2)))
allocate(lptr(6*(cells(j)%cortex_elements(0)-2)))
allocate(lend(6*(cells(j)%cortex_elements(0)-2)))
allocate(near(cells(j)%cortex_elements(0)))
allocate(next(cells(j)%cortex_elements(0)))
allocate(dist(cells(j)%cortex_elements(0)))
allocate(ltri(3,(2*cells(j)%cortex_elements(0)-4)))
call trmesh (cells(j)%cortex_elements(0), x, y, z, list, lptr, lend,

lnew, near, next, dist, ier)↪→

call trlist2 (cells(j)%cortex_elements(0), list, lptr, lend, nt, ltri,
ier)↪→

if (allocated(cells(j)%triplets)) deallocate(cells(j)%triplets)
allocate(cells(j)%triplets(3,(2*cells(j)%cortex_elements(0)-4)))
do i=1, nt

cells(j)%triplets(1,i)=cells(j)%cortex_elements(ltri(1,i))
cells(j)%triplets(2,i)=cells(j)%cortex_elements(ltri(2,i))
cells(j)%triplets(3,i)=cells(j)%cortex_elements(ltri(3,i))

end do
cells(j)%triplet_count = nt
np_cortex = np_cortex + 3*nt

Code Block 4.11 Procedure within scem_delaunay for finding the Delaunay
triangulation over the cortex elements of one cell. This block is contained within
a loop over all cells, in module ScEM_3_delaunay.f90, and contains subroutines
trmesh and trlist2 from modules trmesh_module.f90 and trlist2_module.

4.5 Introducing Tension in Cortex 67

do m=1,np_cortex
n=pairs_cortex(m)%label1
nn=pairs_cortex(m)%label2
dx(:)=elements(n)%position(:)-elements(nn)%position(:)
sep_sq=dot_product(dx,dx)
dx(:)=dx(:)/sqrt(sep_sq)
if(cells(elements(n)%parent)%fate.EQ.1) then

elements(n)%velocity(:) = elements(n)%velocity(:) -
dx(:)*cortex_constant1*pairs_cortex(m)%cortex_factor↪→

elements(nn)%velocity(:)= elements(nn)%velocity(:)+
dx(:)*cortex_constant1*pairs_cortex(m)%cortex_factor↪→

else
bleb_factor_n = 1.0
bleb_factor_nn = 1.0
if (flag_pre_blebbing.EQ.1.AND..NOT.intro) then

if (elements(n)%DIT_factor.EQ.0) bleb_factor_n = 1.0 +
bleb_amp*SIN(10*2.0*pi*elements(n)%age/cell_cycle_time)↪→

if (elements(nn)%DIT_factor.EQ.0) bleb_factor_nn= 1.0 +
bleb_amp*SIN(10*2.0*pi*elements(nn)%age/cell_cycle_time)↪→

endif
elements(n)%velocity(:) = elements(n)%velocity(:) -

dx(:)*cortex_constant2*
pairs_cortex(m)%cortex_factor*bleb_factor_n

↪→

↪→

elements(nn)%velocity(:)= elements(nn)%velocity(:)+
dx(:)*cortex_constant2*
pairs_cortex(m)%cortex_factor*bleb_factor_nn

↪→

↪→

endif
end do

Code Block 4.12 Algorithm for calculating element velocity component due to
cortical tension, from module ScEM_3_cortical_tension_update.f90.

68 Implementation of a Model of Cell Sorting with the Subcellular Element Method

Fig. 4.7 PovRay image of one SEM cell, with elements shown as green spheres
and the Delaunay triangulation, and hence cortical tension forces, shown as red
cylinders.

interaction pairs stored in the previously defined pairs_cortex array. For each such pair,
first the label1 and label2 components are used to find the global labels of the two elements
involved, and then the unit vector parallel to the line between them. For cells of type 1, a
component is then added to the velocity of each element in the direction of the normalised
displacement vector between the two elements. The magnitude of this velocity component is
given by the value of cortex_constant1, a user-specified parameter for the cortical tension
of cell type 1, multiplied by the cortex_factor of the pair, to which we will return in
Section 4.6. A similar calculation is performed to find a velocity component for the two
elements if they are in cells of type 2, but this is complicated by the introduction of blebbing,
and will be discussed further in Section 4.7.

4.6 Differential Interfacial Tension

Once a cortex has been introduced into the system, we have the capacity to model differential
interfacial tension, another important hypothesis that we want to test as a mechanism of
self-organisation. The objective is to have the cortical tension of a cell vary locally over the
cell surface. The variation in local tension should be influenced by the surface with which

4.6 Differential Interfacial Tension 69

Fig. 4.8 Diagram outlining algorithm for implementing differential interfacial
tension between two cells. The cell-cell interface is defined by inter-cell inter-
actions, and those elements at the interface are labelled with a black dot. The
tension is altered for any cortex interaction between two elements both labelled
in this way.

it forms an interface. Changes in the local tension at interfaces can reduce or increase the
surface area of those interfaces, which effectively changes the mutual affinity for the two
objects and draws them together or forces them apart [Chapter 1]. Within our SEM system,
local changes in the cortical tension can be implemented by changing the value of the force
in some cortex interaction pairs within the cortical tension network defined by the Delaunay
triangulation. This is the purpose of the cortex_factor component of the cortexpair data
structure - allowing a different factor to be applied to the tension force in each cortex pair
interaction.

The first problem in introducing differential interfacial tension is to define an interface for
an SEM cell, and thus to identify which interactions within the cortical tension network will
have their tension magnitude changed. To do this, we added a new DIT_factor component
to the element data structure [Code block 4.5]. This component is used to label cortex
elements according to the type of interface at which they lie. We identify 3 different kinds
of interface: DIT_factor=0 for an external medium (not cell-cell) interface is the default
value; for homotypic interfaces, in which both cells at the interface are of the same type,
DIT_factor=1; for heterotypic interfaces, in which the cells at the interface are of different
types, DIT_factor=2. An interface is defined where the cortex elements of one cell share

70 Implementation of a Model of Cell Sorting with the Subcellular Element Method

standard nearest-neighbour interactions with the cortex elements of another cell. So cortex
elements are labelled according to whether they share nearest neighbour interactions with
elements in another cell, and by what the fate of that other cell is. For example, for a given
element in a cell of type 1, if this element shares a nearest neighbour interaction with a cortex
element in another cell of type 1, the DIT_factor for this element is set to 1. The cortical
tension magnitude is changed for any interaction pair in which both elements have the same
DIT_factor value.

This algorithm is summarised in Figure 4.8, in which elements at the cell-cell interface
are labelled with black dots. In Figure 4.8 there are two cortex elements in each cell labelled
in this way. This is because these elements share nearest neighbour interactions with elements
in another cell. An interface interaction is then defined between any two elements that both
have the black dot label. Such an interaction is seen in Figure 4.8 as a dotted black line. This
interaction is then given a different force from the other cortex interactions. Reducing the
force in this interaction will reduce the local tension at the interface between the two cells
and increase their mutual affinity; increasing the force will increase the local tension in the
interface and decrease their affinity.

The DIT algorithm described above is implemented as subroutine scem_dit in module
ScEM_2_dit.f90 [Code block 4.13]. The subroutine begins by refreshing the DIT_factor

for all elements in the system. There is then a loop over all standard nearest-neighbour
interactions. If both elements in the pair are within the same cell, the DIT_factor values
for the elements are not changed. If the two elements within the pair are in different cells,
the elements are considered part of an inter-cell interface. We then change the DIT_factor

values for both elements to a value of 1 if both parent cells are of the same fate, or a value
of 2 if the parent cells have a different fate. Once this loop has finished, all elements are
allocated a DIT_factor value that indicates what sort of interface they lie at. Note that this
loop can also change the DIT_factor for internal cortex elements, but this is irrelevant since
the DIT_factor is only used for cortex elements.

Subsequently a loop is performed over all cortex-cortex interaction pairs in the
pairs_cortex array as previously defined in subroutine scem_cortex. The pairs_cortex

array is of type cortexpair as defined in module ScEM_1_types.f90 [Code block 4.9]. The
cortexpair data structure contains not just the labels of both elements in the pair, but also
the cortex_factor component, which controls the magnitude of the force between the two
elements. The value of the cortex_factor component is the factor by which the baseline
cortical tension is multiplied for this interaction. The default value is 1, but if the DIT_factor

component is the same for both elements in the pair, the value is updated according to the
DIT_response array. This array introduces new user-specified parameters, and is defined in

4.6 Differential Interfacial Tension 71

FORALL(j=1:ne) elements(j)%DIT_factor = 0
do j=1,np

cell_1 = elements(pairs(j,1))%parent
fate_1 = cells(cell_1)%fate
cell_2 = elements(pairs(j,2))%parent
fate_2 = cells(cell_2)%fate
if (cell_1.EQ.cell_2) then

CYCLE
elseif (fate_1.EQ.fate_2) then

elements(pairs(j,1))%DIT_factor = 1
elements(pairs(j,2))%DIT_factor = 1

else
elements(pairs(j,1))%DIT_factor = 2
elements(pairs(j,2))%DIT_factor = 2

endif
enddo
do j=1, np_cortex

if (elements(pairs_cortex(j)%label1)%DIT_factor.EQ.
elements(pairs_cortex(j)%label2)%DIT_factor) then↪→

DIT_index1 = cells(elements(pairs_cortex(j)%label1)%parent)%fate
DIT_index2 = elements(pairs_cortex(j)%label1)%DIT_factor
pairs_cortex(j)%cortex_factor = DIT_response(DIT_index1,DIT_index2)

else
pairs_cortex(j)%cortex_factor = 1.0

endif
enddo

Code Block 4.13 Differential interfacial tension algorithm as implemented in
subroutine scem_dit.

72 Implementation of a Model of Cell Sorting with the Subcellular Element Method

subroutine scem_input. The array has 2 dimensions: the first dimension divides the compo-
nents into those for cell type 1 and those for cell type 2; the second dimension allows different
values for different interface types. Thus for a given cortex interaction pair, the corresponding
component of the DIT_response array is obtained by passing the fate of the parent cell as the
first index, and the DIT_factor of the two elements in the pair (remember that they must have
the same value) as the second index. These two indices are calculated in Code block 4.13 as
DIT_index1 and DIT_index2 before setting the corresponding cortex_factor value of this
pair to equal DIT_response(DIT_index1,DIT_index2).

Once we see how cortex_factor is defined in this way for all cortex-cortex interac-
tion pairs in the system, we can refer back to the use of pairs_cortex(m)%cortex_factor
in subroutine scem_cortical_tension_update [Code block 4.12] to understand how the
cortex_factor value is used to change the magnitude of the force applied to both elements
in the pair according to the type of interface at which those elements are located.

4.6.1 Decoupling Tension From Adhesion

Care is required when implementing the DIT algorithm described in Section 4.6 because
changes to the local cortical tension magnitude in cortex-cortex interaction pairs will change
the distance between elements in the pairs and thus result in changes to the local density
of elements. Since adhesion between cells is mediated by these elements, a change in the
element density will affect the local adhesion strength between neighbouring cells. This
could act to counteract the expected effects of differential interfacial tension. For example,
increasing the local tension at an interface, which should reduce the affinity between two cells,
will result in a higher density of elements and thus a stronger local adhesion between the
cells, thus increasing their affinity in opposition to the effect of the change in tension. In real
cellular systems, the density of adhesion molecules per unit surface area is constant regardless
of the tension in, or surface area of, the interface, so this problem must be addressed.

To solve this problem, we devised an algorithm to normalise the adhesion magnitude of
an element by the local element density. We begin by calculating the total area of all triangles
in the Delaunay triangulation of cortex elements that have the element under consideration
as one of their vertices. This is shown in Figure 4.9, where the local area around the element
labelled with a black dot is highlighted with grey shading. An interface between cells is
labelled with white dots on the corresponding cortex elements. The subfigure on the left
shows how the arrangement of these interface elements changes when interfacial tension is
reduced, and the subfigure on the right shows a possible orientation for increased interfacial
tension. We can see how the shaded area is inversely proportional to the local density of
elements. Thus, by making the adhesion magnitude of the element labelled with a black dot

4.6 Differential Interfacial Tension 73

Fig. 4.9 Diagram to explain how local area around an element is calculated to
produce a normalisation factor that decouples the local adhesion magnitude from
the local element density, and hence from the local cortical tension magnitude.

proportional to the grey area, the adhesion magnitude is normalised to a constant adhesion
per unit area.

The algorithm outlined above is handled by subroutine scem_decouple_adhesion [Code
block 4.14] in module ScEM_2_decouple_adhesion.f90, which is called from subrou-
tine scem_near_neighbour_update prior to calculating element velocities due to nearest-
neighbour interactions. For this routine, we introduce a new adhesion_factor component
to the element data structure [Code block 4.5]. This is used to store the total area of all
Delaunay triangles surrounding the element in question, divided by the equilibrium value,
area_normalisation_factor, which is calculated before the simulation begins [Section 4.8].

Subroutine scem_decouple_adhesion begins by refreshing the adhesion_factor com-
ponent of all elements in the system. There is then a loop over all cells in the system, and
within that a loop over all cortex elements within each cell. For each cortex element, there
is a loop over all triangles in the Delaunay triangulation for that cell. For each triangle,
we find the labels of all 3 of its vertex elements, given by cells(i)%triplets(:,k). If
any one of these labels is the same as the label of the cortex element under consideration,
given by element_label = cells(i)%cortex_elements(j), then we add the area of this
triangle to the local area of the cortex element under consideration. This area is found using
a cross product of displacement vectors between the triangle vertices: A = 1

2 |a×b|. The
adhesion_factor component of the element is then set to equal this local area sum divided
by a constant area_normalisation_factor. This area_normalisation_factor is the mean
baseline value of the local area around cortex elements of a single cell in a steady state. The
value can vary according to the parameters of the system, but is found to be constant as a cell
grows, justifying the use of a single value. This value is calculated before a run, as discussed

74 Implementation of a Model of Cell Sorting with the Subcellular Element Method

FORALL(i=1:ne) elements(i)%adhesion_factor=1
do i=1, nc

do j=1, cells(i)%cortex_elements(0)
element_label = cells(i)%cortex_elements(j)
local_area = 0
do k=1, cells(i)%triplet_count

t1 = cells(i)%triplets(1,k)
t2 = cells(i)%triplets(2,k)
t3 = cells(i)%triplets(3,k)
if (t1.EQ.element_label.OR.t2.EQ.element_label.OR.

t3.EQ.element_label) then↪→

a = elements(t1)%position - elements(t2)%position
b = elements(t1)%position - elements(t3)%position
c = CROSS_PRODUCT(a,b)
local_area = local_area + 0.5*SQRT(DOT_PRODUCT(c,c))

else
CYCLE

endif
enddo
if (nc.GT.1) then

elements(element_label)%adhesion_factor =
local_area/area_normalisation_factor↪→

else
area_normalisation_factor = area_normalisation_factor+local_area

endif
enddo
if (nc.EQ.1) area_normalisation_count =

area_normalisation_count+cells(i)%cortex_elements(0)↪→

enddo

Code Block 4.14 Algorithm for decoupling adhesion magnitude from local
cortical tension, as implemented in scem_decouple_adhesion.

4.7 Dynamic Tension and Blebbing 75

in Section 4.8. This normalisation allows adhesion magnitudes to be comparable across
parameter sets; otherwise an adhesion magnitude of, say, 1.0, would be relatively stronger
in a system with a cortical tension magnitude of 0.05 than a system with cortical tension of
0.20, due to the smaller local areas expected around cortex elements with a higher tension.

Once the adhesion_factor value has been found for all cortex elements within each
cell, it is used within scem_near_neighbour_update to normalise the magnitude of inter-cell
forces for changes in cortex element density. Code block 4.15 shows the main part of the
scem_near_neighbour_update subroutine. This is a loop over all elements of the nearest-
neighbour pairs array. After first checking that the separation of the two elements in the pair
are within the maximum interaction range, the first step is to find the relevant prefactors for
the attractive and repulsive components of the interaction potential according to the type of
elements and cells, and whether the pair is inter- or intra-cell. These prefactors are found
from the rel_strength array [Section 4.3]. Subsequently there is a test for whether the pair is
intra-cell, and whether either element is of type 1 (cytoplasm). If either of these criteria is met,
no update is applied to the adhesive component between the two elements. However, if both
elements are cortex elements (type 2) and are in different cells, the adhesive component of the
potential is updated in the potential_deriv_interp1 calculation. Note that the value used in
the calculation is MIN(elements(n)%adhesion_factor,elements(nn)%adhesion_factor),
meaning the minimum value of the adhesion_factor components for each of the two
elements. Since the adhesion strength between cells depends upon the density of cadherin
molecules that mediate the adhesion, it seems logical that the adhesion strength should depend
on whichever cell has the lowest density, corresponding to the lowest adhesion_factor
component. Finally, the values from these calculations are used to update the velocities of
both elements in the pair.

4.7 Dynamic Tension and Blebbing

As discussed in Chapter 1, it has been observed that primitive endoderm cells undergo
significant blebbing during the period over which self-organisation occurs in the inner cell
mass. This blebbing is not observed in epiblasts so it seems reasonable to ask whether it has
some effect on the self-organisation of the two cell types. Models of blebbing have been
proposed before [154], but for our purposes the exact mechanisms of the blebbing are less
important than the fact that it involves a local change in the cortical tension resulting in a
protrusion from the cell surface. To achieve this we devised a simple algorithm demonstrated
in Figure 4.10. For each cortex element on the surface of a primitive endoderm cell, the
cortical tension forces experienced by this element are varied sinusoidally in time, causing

76 Implementation of a Model of Cell Sorting with the Subcellular Element Method

if (sep_sq.le.r_interaction_max_sq) then
fadein_amp = elements(n)%strength*elements(nn)%strength
bin = int(sep_sq*d_r_sq_recip)
if (intro) then

r_s1 = fadein_amp*intro_rel_strength(1,cells(k)%fate,cells(kk)
%fate,elements(n)%type,elements(nn)%type,index_intra)↪→

r_s2 = fadein_amp*intro_rel_strength(2,cells(k)%fate,cells(kk)
%fate,elements(n)%type,elements(nn)%type,index_intra)↪→

else
r_s1 = fadein_amp*rel_strength(1,cells(k)%fate,cells(kk)%fate,
elements(n)%type,elements(nn)%type,index_intra)↪→

r_s2 = fadein_amp*rel_strength(2,cells(k)%fate,cells(kk)%fate,
elements(n)%type,elements(nn)%type,index_intra)↪→

endif
if (index_intra.EQ.1.OR.elements(n)%type.EQ.1

.OR.elements(nn)%type.EQ.1.OR.intro) then↪→

pot_deriv_interp1 = r_s1*(sep_sq*potential_deriv1(bin,1) +
potential_deriv1(bin,2))↪→

pot_deriv_interp2 = r_s2*(sep_sq*potential_deriv2(bin,1) +
potential_deriv2(bin,2))↪→

else
pot_deriv_interp1 = r_s1*MIN(elements(n)%adhesion_factor,
elements(nn)%adhesion_factor)*(sep_sq*potential_deriv1(bin,1) +
potential_deriv1(bin,2))

↪→

↪→

pot_deriv_interp2 = r_s2*(sep_sq*potential_deriv2(bin,1) +
potential_deriv2(bin,2))↪→

endif
elements(n)%velocity(:) = elements(n)%velocity(:) +

dx(:)*(pot_deriv_interp1 + pot_deriv_interp2)↪→

elements(nn)%velocity(:)= elements(nn)%velocity(:) -
dx(:)*(pot_deriv_interp1 + pot_deriv_interp2)↪→

endif

Code Block 4.15 Algorithm in scem_near_neighbour_update for calculating
velocities due to nearest-neighbour interactions, updated to include normalisation
of inter-cell adhesion for local element density.

4.7 Dynamic Tension and Blebbing 77

Fig. 4.10 Diagram demonstrating our model of blebbing in primitive endoderm.
Focussing on the cortex element labelled with a black dot, the cortical tension
forces experienced by this element from its neighbours are varied in magnitude
sinusoidally in time, causing the element to protrude from the cell surface before
being pulled back in.

the tension it experiences to oscillate and resulting in the element protruding from the cell
surface - modelling a bleb - before being pulled back in.

To implement the algorithm outlined in Figure 4.10, a few simple changes were made
to the code. We introduced flag_pre_blebbing to control the blebbing behaviour. If this
variable is equal to 1, blebbing occurs, otherwise it does not. Secondly we created the
user-specified parameter bleb_amp, which controls the amplitude of the sinusoidal variation
in cortical tension experienced by PrE cortex elements. So for example, if bleb_amp=0.1, the
cortical tension experienced by each PrE cortex element varies by factors between 0.9 and
1.1 of the baseline value. The time variation of this change in tension is controlled by the age
of the element. This required an update to scem_aging such that any newly created element
has a randomly determined phase added to its age [Code block 4.16]. Thus the age of the
element becomes the phase of the sinusoidal variation in cortical force that it experiences,
and increasing the age of the element corresponds to incrementing the phase. This variation
is calculated in the section of scem_cortical_tension_update shown in Code block 4.17.

The cortical tension force applied to each element n and nn in the cortex pair is multiplied
by bleb_factor_n and bleb_factor_nn respectively. These factors are calculated by adding
a sinusoidal component to 1.0. This sinusoidal component uses the age of the element as its
phase, with a period of cell_cycle_time/10.

78 Implementation of a Model of Cell Sorting with the Subcellular Element Method

do n=1,ne
elements(n)%age=elements(n)%age+dt
if (elements(n)%stage.eq.0) then

elements(n)%strength=(elements(n)%age/establishment_time)**2
if (elements(n)%age.gt.establishment_time) then

elements(n)%stage=1
elements(n)%strength=1.0
CALL RANDOM_NUMBER(age_ran)
elements(n)%age=elements(n)%age+age_ran*cell_cycle_time/10.0

end if
endif

end do

Code Block 4.16 Update to scem_ageing to show how when an element is newly
established its age is updated with a random phase.

bleb_factor_n = 1.0
bleb_factor_nn = 1.0
if (flag_pre_blebbing.EQ.1.AND..NOT.intro) then

if (elements(n)%DIT_factor.EQ.0) bleb_factor_n = 1.0 +
bleb_amp*SIN(10*2.0*pi*elements(n)%age/cell_cycle_time)↪→

if (elements(nn)%DIT_factor.EQ.0) bleb_factor_nn= 1.0 +
bleb_amp*SIN(10*2.0*pi*elements(nn)%age/cell_cycle_time)↪→

endif
elements(n)%velocity(:) = elements(n)%velocity(:) - dx(:)*

cortex_constant2*pairs_cortex(m)%cortex_factor*bleb_factor_n↪→

elements(nn)%velocity(:)= elements(nn)%velocity(:)+ dx(:)*
cortex_constant2*pairs_cortex(m)%cortex_factor*bleb_factor_nn↪→

Code Block 4.17 Application of a sinusoidal blebbing factor to cortical tension
for PrE cells in scem_cortical_tension_update.

4.8 Creating a Random Initial System 79

if (flag_random_init.EQ.1) then
call RANDOM_SEED
call RANDOM_SEED(size=seedarraylength)
allocate(seed_array(seedarraylength))
call RANDOM_SEED(get=seed_array)
print*, "seed_array", seed_array

else
allocate(seed_array(2))
seed_array(1) = 1591826533
seed_array(2) = 497
call RANDOM_SEED(PUT=seed_array)

endif

Code Block 4.18 Setting up random number sequence in scem_input.

4.8 Creating a Random Initial System

In the inner cell mass, differentiation of the cell aggregate into two cell types does not begin
until about 3.5 days after fertilisation, at which point the inner cell mass is formed from
at least 10 cells. Thus we require our systems to have many cells before parameters that
might drive sorting are introduced. To do this we made updates to the system initialisation
routines to grow an introductory system randomly to a predetermined number of cells. This
predetermined number of cells is specified by the user as nc_initial in scem_input, and
the new protocol is used so long as flag_create=1, otherwise the original protocol for
initiating a system from stored data is used. The creation of a new cell, and all aspects
of the code that require randomness, are controlled by the sequence of random numbers
generated within scem_input by an updated random number generator [Code block 4.18].
If flag_random_init is set to 1, the system creates a new random seed and a new random
number sequence for each run. This random number seed is stored and output to the user
so that in the event of a problem, we can set flag_random_init=0 to apply a user-specified
random number seed and exactly repeat a previous run.

The subroutine scem_initial_create for creating one random new cell at the very
beginning of a run was significantly streamlined. An important aspect of the redesigned
scem_initial_create subroutine is the line intro = .TRUE., which introduces the new
logical variable intro. This variable tells the system that it is currently running as an
introductory period to create a random initial system, from which the real simulation is then
started.

80 Implementation of a Model of Cell Sorting with the Subcellular Element Method

The value of intro controls a number of system operations within the scem_iterate

subroutine. This can be seen in Code block 4.19. Whilst intro is .TRUE., the system time
is not updated, meaning that the timer only starts once the system has grown to the pre-
specified size. Element velocities are calculated as normal, and in situations where growth
and division are turned off for the simulation itself, they are forced to be on while intro is
.TRUE. so that the intro system will still grow to the correct size. Subroutines related to data
output are not called whilst intro is .TRUE.. The intro variable also controls the behaviour
of other subroutines such as scem_cortical_tension_update [Code block 4.12], in which
blebbing does not occur whilst intro is .TRUE., scem_cortex, in which scem_dit is not called
whilst intro.EQ..TRUE., and scem_division, in which division is forced to be symmetric
whilst intro.EQ..TRUE.. Furthermore, within scem_near_neighbour_update, when intro

is .TRUE. the algorithm is altered to ensure that both cell types have the same adhesion, and
scem_decouple_adhesion is not called unless nc.EQ.1. This is because removing DIT from
the intro system removes the need to perform adhesion normalisation, and thus we can save
computation time by skipping this step. However, the routine is still called when there is only
one cell in the system because it allows us to calculate the area_normalisation_factor.

Within scem_decouple_adhesion, when intro.EQ..TRUE., rather than calculating the
adhesion_factor component for elements, the local area calculations are used to find the
mean value in this single steady state cell by summing areas and dividing by the total
number of cortex elements. This value is then used as the area_normalisation_factor

when intro.EQ..FALSE..
Thus setting intro.EQ..TRUE. removes all distinctions between cells, preventing dif-

ferential adhesion, differential interfacial tension and so on, and prevents the system from
outputting data or starting the timer until intro=.FALSE.. This switch from intro.EQ..TRUE.

to intro=.FALSE. occurs when the systems reaches the specified initial cell number, and
is handled by Code block 4.20 within scem_iterate. This algorithm begins with a test to
see whether the number of cells at which the simulation proper should be started has been
reached. If not, or if intro.EQ..FALSE. already, the whole block is skipped. If the current
number of cells nc has reached this value, and intro is still equal to .TRUE., this block is
accessed and we begin the process of initiating the simulation proper. Within the block, there
is first a line to set intro=.FALSE., thus allowing sorting parameters and differences between
cells to be implemented from this point onwards. There is then a loop to randomly reassign
fates to the cells within the newly created system, with a check to ensure that although the
fates are assigned randomly, only systems in which the number of epiblasts and primitive
endoderm cells are equal are accepted. Once this criterion is met, an update is printed to the
command line and the full simulation begins.

4.8 Creating a Random Initial System 81

if (.NOT.intro) time=time+dt
forall(n=1:ne) xe_prev(n,:)=elements(n)%position(:)
call scem_integrate
forall(n=1:ne) elements(n)%position(:) =

elements(n)%position(:)+0.5*dt*elements(n)%velocity(:)↪→

forall(n=1:ne) elements(n)%velocity(:) = 0.0
call scem_integrate
forall(n=1:ne) elements(n)%position(:) =

xe_prev(n,:)+dt*elements(n)%velocity(:)↪→

if (flag_diffusion.eq.1.OR.intro) call scem_diffusion
if (flag_conserve.eq.1) call scem_volume_conserve
call scem_flag_relist
if (flag_relist.eq.1) then

call scem_relist(1)
call scem_pairs

end if
call scem_ageing
if (flag_growth.eq.1.OR.intro) call scem_growth
if (flag_division.eq.1.OR.intro) call scem_division
if (flag_growth.eq.1.or.intro) call scem_resize
call scem_com
call scem_cortex
if (flag_volume_output.EQ.1.OR.flag_conserve.EQ.1

.OR.flag_background.NE.0) call scem_volume_calculate↪→

if (mod(time,output_interval).LT.dt.AND..NOT.intro) then
call SYSTEM_CLOCK(current_time)
total_system_time = (current_time-start_time)/count_rate
write(*,"(*(G0,:,1X))") time,total_system_time,ne,nc,n_snapshots

endif
if (mod(time,output_interval2).LT.dt.AND..NOT.intro) then

n_snapshots=n_snapshots+1
call scem_output_system
if (flag_povray.EQ.1) call scem_output_povray

end if
forall(n=1:ne) elements(n)%velocity(:)=0.0

Code Block 4.19 Updated routine of scem_iterate, showing how the value of
intro controls various aspects of the simulation.

82 Implementation of a Model of Cell Sorting with the Subcellular Element Method

if (intro.AND.nc.GE.nc_initial) then
write(*,’(A21,I2,A41)’) "Grew intro system to ",nc_initial," cells.

Initiating simulation parameters."↪→

intro = .FALSE.
fatesnotbalanced = .TRUE.
do while (fatesnotbalanced)

epi_counter = 0
pre_counter= 0
do n=1, nc

CALL RANDOM_NUMBER(fate_decider)
if (fate_decider.GE.0.5) then

cells(n)%fate = 1
epi_counter = epi_counter+1

else
cells(n)%fate = 2
pre_counter = pre_counter+1

endif
enddo
if (MOD(nc,2).EQ.0) then

if (epi_counter.EQ.pre_counter) fatesnotbalanced = .FALSE.
else

if (ABS(epi_counter-pre_counter).EQ.1) fatesnotbalanced = .FALSE.
endif

enddo
write(*,’(A29,I2)’) "Initial number of epiblasts: ", epi_counter
write(*,’(A30,I2)’) "Initial number of primitive endoderm: ",

pre_counter↪→

call scem_output_system
if (flag_povray.EQ.1) call scem_output_povray

endif

Code Block 4.20 Algorithm from scem_iterate controlling the transition from
introductory system growth to simulation proper.

Chapter 5

Measures and Analyses

In order to analyse the results of our model, several analytical measures were defined, and
routines developed to collect relevant data from simulations as they ran. In addition, routines
were included for outputting data in a form that allowed the systems to be visualised.

5.1 Quantitative Measures of Sorting

In order to objectively assess the effects of various mechanisms on the extent and speed
of self-organisation in a cell aggregate, we require numerical measures of sorting. To
achieve this objective, we created a number of subroutines to output information about the
cell aggregate as an SEM simulation progresses. Each of these subroutines is called from
the subroutine scem_output_system [Code block 5.1]. Subroutine scem_output_system is
called from scem_iterate at time intervals determined by some fraction of the total system
run time.

Subroutine scem_output_system performs 3 main tasks, each controlled by a flag whose
value is set in scem_input. Within the subroutine itself there are two simple measurements:
cell count and cell volume. The former outputs the number of each cell type in the system at
that time to file cell_count.txt, which is calculated as a global variable within scem_com

whilst calculating centres of mass [Code block 5.2]. The latter outputs the volume com-
ponent of the cell data structure for each cell in the system to the file cell_volumes.txt.
These volumes are calculated in subroutine scem_volume_calculate [Appendix A]. The
scem_output_system subroutine also contains calls to a number of other subroutines that
handle the quantitative sorting measures. Each of these is discussed independently in the
sections that follow.

It is worth noting that self-organisation can take more than one form. For example,
Figure 5.1 shows two ways in which a system of cells could sort. These two resulting arrange-

84 Measures and Analyses

if (flag_count_output.EQ.1) then
open(unit=28,file=output_folder//’/system_data/cell_count.txt’,

status=’unknown’)↪→

write(28,*) real(time), epicellcount, (nc-epicellcount) !epicellcount
calculated in scem_com↪→

close(28)
endif
if (flag_volume_output.EQ.1) then

open(unit=27,file=output_folder//’/system_data/cell_volumes.txt’,
status=’unknown’,position="append")↪→

do n=1, nc
write(27,*) time, cells(n)%label, cells(n)%volume

end do
close(27)

endif
if (flag_measure_radius.EQ.1) call scem_measure_radius
if (flag_measure_neighbours.EQ.1) call scem_measure_neighbours
if (flag_measure_surface.EQ.1) call scem_measure_surface
if (flag_measure_randomised.EQ.1) call scem_measure_randomised
if (flag_measure_displacement.EQ.1) call scem_measure_displacement
if (flag_measure_velocity.EQ.1) call scem_measure_velocity
if (flag_measure_com.EQ.1) call scem_measure_com

Code Block 5.1 Subroutine scem_output_system to take measurements of simu-
lations and output data.

Fig. 5.1 Diagram demonstrating different patterns of self-organisation.

5.1 Quantitative Measures of Sorting 85

if (.NOT.intro) then
epi_com(:) = 0
pre_com(:) = 0
sys_com(:) = 0
epielementcount = 0
epicellcount = 0
do n=1, nc

sys_com = sys_com + cells(n)%position(:)
if (cells(n)%fate.EQ.1) then

epielementcount = epielementcount + cells(n)%c_elements(0)
epicellcount = epicellcount + 1
epi_com(:) = epi_com(:) + cells(n)%position(:)

else
pre_com(:) = pre_com(:) + cells(n)%position(:)

endif
enddo
epi_com = epi_com/epicellcount
pre_com = pre_com/(ne-epicellcount)
sys_com = sys_com/nc

endif

Code Block 5.2 Code block added to scem_com to calculate epiblast, primitive
endoderm, and system centres of mass, as well as epiblast and primitive endoderm
cell counts.

ments would both be described as sorted, but have quite different properties. Using more
than one sorting measure allows us to better distinguish between such different arrangements.

5.1.1 Radius Sorting Measure

Since we will mostly be working with spherical aggregates, one option for measuring
sorting is to consider the average radius of each cell type from the centre of mass. This was
applied both relative to the system centre of mass, to give a measure of in-out sorting for the
system as a whole, and for each cell type relative to the centre of mass of that cell type alone,
giving a sense of whether each cell type tends to move closer together or not. So for example,
what is the mean radius of epiblast cells relative to the centre of mass of those epiblast cells?
A decrease in this value should indicate epiblast aggregation [Figure 5.2]. This measure
is handled by subroutine scem_measure_radius, shown in Code block 5.3. The centres of
mass for epiblast cells, primitive endoderm cells, and the sytem as a whole are calculated in
scem_com [Code block 5.2]. From these values, scem_measure_radius performs a loop over

86 Measures and Analyses

epimeanradius = 0
premeanradius = 0
sysepimeanradius = 0
syspremeanradius = 0
do i=1, nc

if (cells(i)%fate.EQ.2) then
cell_vector = cells(i)%position - pre_com
premeanradius = premeanradius + SQRT(DOT_PRODUCT(cell_vector,

cell_vector))↪→

cell_vector = cells(i)%position - sys_com
syspremeanradius = syspremeanradius + SQRT(DOT_PRODUCT(cell_vector,

cell_vector))↪→

else
cell_vector = cells(i)%position - epi_com
epimeanradius = epimeanradius + SQRT(DOT_PRODUCT(cell_vector,

cell_vector))↪→

cell_vector = cells(i)%position - sys_com
sysepimeanradius = sysepimeanradius + SQRT(DOT_PRODUCT(cell_vector,

cell_vector))↪→

endif
enddo
premeanradius = premeanradius/(nc-epicellcount)
epimeanradius = epimeanradius/epicellcount
syspremeanradius = syspremeanradius/(nc-epicellcount)
sysepimeanradius = sysepimeanradius/epicellcount
if (randomising) then

random_values_radius(ran_loop,:) = (/epimeanradius, sysepimeanradius,
premeanradius, syspremeanradius/)↪→

else
open(unit=35,file=output_folder//’/sorting_data/radius.txt’,

status=’unknown’,position="append")↪→

write(35,"(*(G0,:,1X))") time, epimeanradius, sysepimeanradius,
premeanradius, syspremeanradius↪→

close(35)
endif

Code Block 5.3 Algorithm for radius sorting measure.

5.1 Quantitative Measures of Sorting 87

Fig. 5.2 Diagram demonstrating the radius sorting measure, in which the mean
radius of epiblast cells (shown in green) is calculated from the system centre of
mass or epiblast cells centre of mass. This mean value is lower for the sorted
system on the right than the mixed system on the left.

all cells to calculate the mean radius of each cell type from both its centre of mass and the
system centre of mass. These values are written to file radius.txt in folder sorting_data.
Note the code block that is only accessed if the variable randomising is true. This will be
explained further in Subsection 5.1.4.

5.1.2 Neighbour Sorting Measure

In a self-organising system, we would expect a higher probability for the neighbours of any
given cell to be of the same type as that cell [Figure 5.3]. We decided to use this as another
sorting measure, implemented as subroutine scem_measure_neighbours [Code block 5.4].
For the purposes of this measure, we consider two cells to be neighbours if nearest-neighbour
inter-element interactions exist between an element in one cell and an element in the other.
Thus neighbouring cells are those that apply forces directly to one another. The algorithm
uses a loop over all np nearest-neighbour element-element pairs in the pairs array to create
a neighbours array that stores cell neighbour pairs. For each element-element interaction
pairs, if the parent cells of the two elements in the pair are different then the two parent cells
are added to the neighbours array. This array is of logical type, and for any pair of cells a
and b, if a and b are neighbours as defined above then neighbours(a,b)=.TRUE..

Once the neighbours array has been fully defined, there is a loop over all cells in the
system, and for each cell, there is another loop over all remaining cells in the system that
have a higher label value than the first cell, so that all possible combinations are tested

88 Measures and Analyses

neighbours(:,:) = .FALSE.
do n=1, np

parent1 = elements(pairs(n,1))%parent
parent2 = elements(pairs(n,2))%parent
dx(:) = elements(pairs(n,1))%position - elements(pairs(n,2))%position
if (parent1.NE.parent2.AND.DOT_PRODUCT(dx, dx).LT.r_interaction_max_sq)

then↪→

neighbours(parent1,parent2) = .TRUE.
endif

enddo
neighbour_counts(:,:) = 0
do i=1,nc

do j=i+1,nc
if (neighbours(i,j)) then

fate1 = cells(i)%fate
fate2 = cells(j)%fate
neighbour_counts(fate1,fate2) = neighbour_counts(fate1,fate2) + 1

endif
enddo

enddo
if (randomising) then

random_values_neighbours(ran_loop,:) = (/neighbour_counts(1,1),
neighbour_counts(2,2)/)↪→

else
open(unit=36, file=output_folder//’/sorting_data/neighbours.txt’,

status=’unknown’, position="append")↪→

write(36,"(*(G0,:,1X))") time, neighbour_counts(1,1),
neighbour_counts(2,2), neighbour_counts(2,1)+neighbour_counts(1,2)↪→

close(36)
endif

Code Block 5.4 Algorithm for neighbour sorting measure from
scem_measure_neighbours.

5.1 Quantitative Measures of Sorting 89

Fig. 5.3 Diagram demonstrating neighbour sorting measure. White arrows
indicate PrE-PrE neighbours, black arrows indicate Epi-Epi neighbours, and blue
arrows indicate Epi-PrE neighbours. The sorted system on the right shows more
black Epi-Epi pairs than white PrE-PrE pairs, compared to the mixed system on
the left.

without double counting. For each combination, if the corresponding component of the
neighbours array is .TRUE. we know that these two cells are neighbours. We then find the
fates of these two cells and update the corresponding components of the neighbour_counts

array. This is a 2 dimensional array with 4 components: neighbour_counts(1,1) stores the
number of epiblast-epiblast neighbour pairs, neighbour_counts(2,2) stores the number of
PrE-PrE pairs, and the sum of neighbour_counts(1,2) and neighbour_counts(2,1) gives
the number of unlike pairs. These pair counts are written to file neighbours.txt in folder
sorting_data, giving the total number of Epi-Epi, PrE-PrE, and Epi-PrE counts at every
output interval.

5.1.3 Surface Sorting Measure

In spherical inside-outside sorting, we would expect one cell type to occupy a greater
percentage of the external surface of the cell aggregate than the other [Figure 5.4]. We
used this as a measure of sorting, implemented in subroutine scem_measure_surface [Code
block 5.5]. To implement this technique, we relied upon the DIT_factor component of the
element data structure, introduced in Chapter 4. Recall that this component is set to equal
1 or 2 for any element that lies at a like-like or unlike cell-cell interface, but is otherwise
set to 0. Thus in a densely packed aggregate we can consider any region of a cell that has
cortex elements with DIT_factor components set to 0 to be part of the external surface of

90 Measures and Analyses

epi_area = 0
pre_area = 0
do i=1, nc

do j=1, cells(i)%triplet_count
factor1 = elements(cells(i)%triplets(1,j))%DIT_factor
factor2 = elements(cells(i)%triplets(2,j))%DIT_factor
factor3 = elements(cells(i)%triplets(3,j))%DIT_factor
if ((factor1.EQ.0).AND.(factor2.EQ.0).AND.(factor3.EQ.0)) then

a = elements(cells(i)%triplets(1,j))%position -
elements(cells(i)%triplets(2,j))%position↪→

b = elements(cells(i)%triplets(1,j))%position -
elements(cells(i)%triplets(3,j))%position↪→

c = CROSS_PRODUCT(a,b)
area = 0.5*SQRT(DOT_PRODUCT(c,c))
if (cells(i)%fate.EQ.1) then

epi_area = epi_area + area
else

pre_area = pre_area + area
endif

else
CYCLE

endif
enddo

enddo
if (randomising) then

random_values_surface(ran_loop) = pre_area/(epi_area+pre_area)
else
open(unit=43,file=output_folder//"/sorting_data/surface.txt",

status="unknown",position="append")↪→

write(43,"(*(G0,:,1X))") time, pre_area/(epi_area+pre_area)
close(43)

endif

Code Block 5.5 Algorithm for surface sorting measure, from
scem_measure_surface.

5.1 Quantitative Measures of Sorting 91

Fig. 5.4 Diagram demonstrating the surface sorting measure. The dotted red line
shows the amount of external surface occupied by PrE, whereas the dotted green
line shows the amount of external surface occupied by Epi. It is clear that in the
sorted system on the right, more of the external surface is occupied by PrE than
Epi.

the aggregate. Some regions within the aggregate will also meet this criterion, but we expect
the effect to be dominated by the external boundary of the system.

The surface sorting measure calculation is performed beginning with a loop over all
cells in the system, and then for each cell a loop over all surface triplets as defined by the
Delaunay triangulation of cortex elements. For each triplet, the DIT_factor is found for all
three elements in the triplet. If all three of these DIT_factor values is equal to 0, the triangle
is considered part of the external surface, and the area of the triangle is calculated. This value
is added to epi_area or pre_area depending on the fate of the parent cell. These final values
are written to file surface.txt in folder sorting_data as the primitive endoderm surface as
a proportion of the total surface.

5.1.4 Randomised Control Systems

It quickly became clear that interpreting raw data from the measures described above was
challenging without context. Thus it became necessary to have some controls against which
results could be compared. We also wished to present results as a "sorting index" that could
fall within a limited possible range, such as 0 to 1 or 0 to 100. Both of these objectives were
achieved by the introduction of randomised measures. The premise of this method is that at
every data output interval, the fates of all cells in the system are randomly reassigned (whilst
maintaining the same number of each cell type) and sorting measures are calculated again

92 Measures and Analyses

Fig. 5.5 Diagram showing how system fates are reassigned to produce mean,
standard deviation, maximum, and minimum values of each measure for a given
spatial configuration and epiblast-primitive endoderm ratio.

5.1 Quantitative Measures of Sorting 93

on this new system orientation. It is found that this procedure produces an approximately
Gaussian distribution of sorting measure values [Figure 5.6].

By repeating the fate reallocation procedure a large number of times, we are able to
calculate a mean value, maximum value, minimum value, and standard deviation of possible
values for any sorting measure given the current distribution of cell sizes and number of each
cell type. However, a 40 cell system with 20 cells of each type has almost 1.6×108 possible
different combinations of fates, and it is impossible to sample all such systems without
increasing the run time of a simulation beyond what is computationally feasible. Fortunately,
we were able to show that values quickly tend towards a limit over a much smaller number
of repetitions. Figure 5.7 shows how the mean, standard deviation, maximum, and minimum
values found vary with the number of random reallocations tested for typical systems of 10
and 30 cells. It can be seen that the mean and standard deviation values are found with very
little variation over fairly small numbers of reallocations, whilst the maximum and minimum
values have roughly found their limits after about 104 reallocations. Thus we chose to use
104 reallocations in our simulations.

Having found the mean, minimum, maximum, and standard deviation of a sorting measure
across these random reallocations, we are able to normalise a sorting measure as its difference
from the mean relative to a multiple of the standard deviation. Thus the sorting index for a
system, Si, is found from Equation 5.1, where X is a the value of a sorting measure for the
current system, E(X) is the mean of that measure across all random fate reallocations, and σ

is the standard deviation of all such random systems.

Si =
X −E(X)

3σ
(5.1)

By taking the range between the mean and 3σ , anomalously high maximum or minimum
values do not affect the index. However, in cases where the range between the mean and
maximum is smaller than the value of 3σ , this maximum range is used instead of 3σ .

To implement this algorithm, we created subroutine scem_measure_randomised,
which is called from scem_output_system at every data output interval if
flag_measure_randomised.EQ.1. Subroutine scem_measure_randomised begins with
the routine shown in Code block 5.6. The first step is the fill the stored_fates array,
which was defined in module ScEM_0_arrays.f90, with the fates of all nc cells in the
system. Storing this data will allow us to revert the system back to its original state at
the end of the randomised measures. It is then necessary to set the number of possible
random fate reallocations to be tested. We have already set a maximum value of 10000
tests, but for some small numbers of cells this may be larger than the total number of
possible combinations, so we use Stirling’s approximation for factorials [199] to calculate

94 Measures and Analyses

(a) Distribution of mean epiblast radius.

(b) Distribution of epiblast-epiblast neighbour pair count.

(c) Distribution of epiblast external surface proportion.

Fig. 5.6 Distributions of sorting measure over fate reallocations for 10 and 30
cells.

5.1 Quantitative Measures of Sorting 95

(a) 10 cell system

(b) 30 cell system

Fig. 5.7 Mean value of mean, minimum, maximum, and standard deviation of
epiblast-epiblast neighbour count found against number of random fate realloca-
tion tests.

96 Measures and Analyses

the number of possible combinations, given by n!
k!(n−k)! , where n is the number of cells

and k is the number of epiblasts. Whichever value is smallest is used as the number of
random reallocations to test. We then set randomising=.TRUE., which changes the behaviour
of the sorting measure subroutines. For example, in [Code block 5.3], we see that when
randomising=.TRUE., the subroutine does not write data to file, but instead stores the values
in the array random_values_radius. There are 3 such arrays, for the radius, neighbour, and
surface sorting measures. These are defined in ScEM_0_arrays and have a 0th dimension of
the same size as the total number of random reallocations. Thus they can be used to store
the result of each sorting measure at each random reallocation. The contents of each of
these arrays are refreshed at each output interval [Code block 5.6]. At this point we also
refresh the tested array, which also has a component for each random reallocation. This
array prevents testing the same orientation of fates more than once. To do this it stores an
integer representing the fate orientation of each reallocated system tested. For example, if we
have a 3 cell system in which cell 1 is of fate 2, cell 2 is of fate 2, and cell 3 is of fate 1, we
would add 221 as a component of the tested array. For any subsequent randomly produced
orientation we would then test whether its integer code, like 221, already exists in the tested

array, and if so we will not test this orientation again.
After the initial setup of necessary arrays, a loop is performed over values of ran_loop

from 1 to n_random [Code block 5.6]. The first part of this loop is similar to the routine for
setting an initial system configuration in scem_iterate. Logical variable fatesnotbalanced

is set to .TRUE., and is used to control a loop in which fates of all cells are randomly
reallocated until a configuration is found for which the number of each cell type matches the
original system and which does not already occur in the tested array. If these criteria are met,
fatesnotbalanced is set to .FALSE., the loop stops and the current configuration is tested.
The current configuration is stored in the tested array as an integer, as described above,
and sorting measure subroutines are called to calculate values for the current configuation.
Because randomising=.TRUE. these subroutines do not output their data directly but instead
store their results in arrays as described above. Whilst it would be possible to write all data
from all random tests to file and find the maximum, mean, and σ values in later processing of
the data, FORTRAN is slow to write to file, so it is vastly more efficient to find these values
within the routine and output only these values to file.

After all random reallocations have been measured, the next step is to calculate mean,
minimum, maximum, and standard deviation values. Code block 5.7 shows how this is
performed for radius sorting measures. The radius sorting measure has 4 components,
corresponding to the mean distance of each cell type from both the system centre of mass
and that cell type’s centre of mass, so we use the means array to calculate the mean of each

5.1 Quantitative Measures of Sorting 97

do n=1,nc
stored_fates(n) = cells(n)%fate

enddo
random_values_surface = 0
random_values_radius = 0
random_values_neighbours = 0
if (n_random.LT.n_random_max) n_random = MIN(n_random_max,

INT(0.95*(nc**(nc+0.5))/(SQRT(2*pi)*epicellcount**(epicellcount +
0.5)*(nc - epicellcount)**(nc - epicellcount + 0.5))))

↪→

↪→

randomising = .TRUE.
tested(:) = 0

do ran_loop=1, n_random
fatesnotbalanced = .TRUE.
do while (fatesnotbalanced)

epi_ran_counter = 0
do n=1, nc

CALL RANDOM_NUMBER(fate_decider)
if (fate_decider.GE.0.5) then

cells(n)%fate = 1
epi_ran_counter = epi_ran_counter+1

else
cells(n)%fate = 2

endif
enddo
if (epi_ran_counter.EQ.epicellcount) fatesnotbalanced = .FALSE.
configuration = 0
do n=1,nc

configuration = configuration + (2**(n-1))*(cells(n)%fate-1)
enddo
do n=1,ran_loop

if (configuration.EQ.tested(n)) then
fatesnotbalanced = .TRUE.
EXIT

else
CYCLE

endif
enddo

enddo
tested(ran_loop) = configuration
if (flag_measure_radius.EQ.1) call scem_measure_radius
if (flag_measure_neighbours.EQ.1) call scem_measure_neighbours
if (flag_measure_surface.EQ.1) call scem_measure_surface

enddo

Code Block 5.6 Randomly allocating fates and calling sorting measure routines
in the algorithm for randomised control measures.

98 Measures and Analyses

do n=1,4
means(n) = (1.0*SUM(random_values_radius(:n_random,n)))/n_random
squaremeans(n) =

(1.0*SUM(random_values_radius(:n_random,n)**2))/n_random↪→

maximums(n) = MAXVAL(random_values_radius(:n_random,n))
minimums(n) = MINVAL(random_values_radius(:n_random,n))

enddo
do n=1,4

stds(n) = SQRT(squaremeans(n) - means(n)**2)
enddo
open(unit=44, file=output_folder//’/randomised_data/radius.txt’,

status=’unknown’, position="append")↪→

WRITE(44,"(*(G0,:,1X))") time, means(1), minimums(1), maximums(1),
stds(1), means(2), minimums(2), maximums(2), stds(2), means(3),
minimums(3), maximums(3), stds(3), means(4), minimums(4),
maximums(4), stds(4)

↪→

↪→

↪→

close(44)

Code Block 5.7 Outputting data from the algorithm for randomised control
measures.

component by summing values in the random_values_radius array and dividing by the
number of reallocations, n_random. At the same time, we calculate the mean of the squares
of these values in squaremeans. These values are used, with the sorting measure means, to

calculate the standard deviation of each component using σ =

√
E (x2)−E (x)2. Maximum

and minimum values can easily be calculated by passing array slices to the intrinsic MAX

and MIN functions. Once all of these components have been calculated they are written to
a file within the randomised_data folder, leaving one line of data for each set of random
reallocations. This whole process is repeated for the surface and neighbour sorting measures,
but only the radius measure is shown in Code block 5.7 for simplicity.

The final step of scem_measure_randomised is to restore the fate configuration of the
original system from the stored_fates array with a loop over all cells, setting cells(n)%fate

= stored_fates(n), and to set randomising=.FALSE.. The simulation can then continue as
normal.

5.1.5 Displacement Measure

As a further test of our SEM systems, we decided to measure the displacement of cells
from their original position in order to compare the extent of rearrangement for different

5.1 Quantitative Measures of Sorting 99

open(unit=41,file=output_folder//"/sorting_data/displacement.txt",
status="unknown",position="append")↪→

do n=1, nc
displacement_vector(:) = cells(n)%position(:) -

cells(n)%original_position(:)↪→

displacement = SQRT(DOT_PRODUCT(displacement_vector,
displacement_vector))↪→

write(41,*) MIN(cells(n)%age,time), cells(n)%fate, displacement
enddo
close(41)

Code Block 5.8 Algorithm for displacement measurement, from
scem_measure_displacement.

parameters. For this we introduced a new original_position component in the cell data
structure [Code block 4.7], which stores the location of any cell at its original position
after division. We are then able to measure the displacement between each cell’s initial
location and its current location at every data output interval. The measurement is performed
by subroutine scem_measure_displacement [Code block 5.8]. This subroutine, called from
scem_output_system, performs a loop over all cells in the system, calculates the displacement
vector between the cells current position and original position, and then outputs this to
file displacement.txt along with the fate and current age of the cell in question. This
measurement will be useful for testing the extent of rearrangement in systems.

5.1.6 Alternative Measures

A number of other sorting measures were considered for our simulations. One such example
was the use of clustering analysis, as applied in astronomy to galaxies and so on [200].
However, it was eventually determined that such analysis was ineffective for a system on the
scale of our systems. Additionally, we considered alternative uses of the neighbour measure,
attempting to incorporate the counts for Epi-Epi, PrE-PrE, and Epi-PrE neighbour pairs into
one measure. For example, we could define M = NEE−NPP

NEP
, where NEE , NPP, NEP are the 3

neighbour counts respectively, producing values for M that include information from all 3
counts. However, despite the additional information in the calculation, this measure was not
found to produce any more stable results than the neighbour measure discussed above, and
was thus not developed further.

100 Measures and Analyses

5.2 Visualisation of Simulation Results

In order to help make sense of the output of the SEM code, it was necessary to find some
means of visualising the systems. With this achieved, it is possible to see growth, division
and movement occurring over time and clearly demonstrate how changing parameters in the
system affect its evolution and final state. These images of the evolution of a system will
complement the objective measures described in Section 5.1. After a brief attempt to use
Gnuplot [201] and a c++ routine implementing a Voronoi tessellation of elements within
a cell [202], we decided to visualise our systems using the freely available POV-Ray ray
tracing software.

5.2.1 POV-Ray

POV-Ray, or “Persistence of Vision Ray Tracer”, is an advanced visualisation method that
can create beautiful images [203]. The program uses ray-tracing to create shapes and surfaces
that allow 3 dimensional objects to be visualised in great detail with shadows and reflections.
Once it became clear that our Gnuplot visualisations were unsuitable, we began to implement
POV-Ray visualisations. We utilised the UberPov command line version of POV-Ray [204]
in our work.

In order to visualise SEM systems with POV-Ray, the first step was to output SEM data
in POV-Ray format. POV-Ray reads data files with a specific syntax for defining objects,
locations, colours, and so on. We decided to implement a routine within the SEM simulations
to produce these POV-Ray commands automatically from element, cell, and interaction
pair data. At each output interval, if flag_povray.EQ.1, the program calls new subroutine
scem_output_povray. The first part of this subroutine is shown in Code block 5.9. The
subroutine begins by opening a file of the form snap_xx.pov within folder povray_data.
This file is used to store POV-Ray commands to visualise a snapshot of the system at this
point in time. The subroutine writes commands to the beginning of this file in order to set up
the POV-Ray scene by importing necessary libraries, positioning the camera and creating
light sources. We then add a translucent shape to represent the system boundary, for example
a sphere with radius determined by the radius of the system boundary. The FORTRAN code
used to produce these initial scene-setting commands in each POV-Ray file is shown in Code
block 5.9.

After this initial setup, the remaining sections of the subroutine are controlled by a set
of flags in scem_input. Each of these flags switches a given type of output on or off. The
first possible visualisation is referred to as “volumes”, and draws a translucent sphere with
the same volume as a each SEM cell at the centre of mass of that SEM cell [Figure 5.9d].

5.2 Visualisation of Simulation Results 101

write(povray_filename,"(A18,I2.2,A4)") "/povray_data/snap_", n_snapshots,
".pov"↪→

open(unit=30, file=output_folder//povray_filename,status=’unknown’)
write(30,*) ’#version 3.5;’
write(30,*) ’#include "colors.inc"’
write(30,*) ’#include "textures.inc"’
write(30,*) ’background {White}’
write(30,*)
write(30,*) ’camera {’
write(30,*) ’ location <500, 0, 0>’
write(30,*) ’ angle 12’
write(30,*) ’ sky <0,0,1>’
write(30,*) ’ look_at<0,0,0>}’
write(30,*)
write(30,*) ’light_source { < -60, 60, 0 > color White }’
write(30,*) ’light_source { < 60, -60, 0 > color White }’
write(30,*) ’light_source { < 0, 0, 60 > color White }’
write(30,*) ’light_source { < 0, 0, -60 > color White }’
write(30,*)
if (flag_background.EQ.1) then

write(30,’(A16,F18.9,A77)’) ’ sphere {<0,0,0>’,
spherical_boundary_radius, ’ texture { pigment { color Blue transmit
.85}finish{phong .8} } } // boundary’

↪→

↪→

elseif (flag_background.EQ.4) then
write(30,’(A18,F18.9,A2,F18.9,A77)’) ’ sphere
{<0.2,0.2,’,(-cap_radius+h/2.0),’> ’, cap_radius, ’ texture { pigment
{ color Blue transmit .85}finish{phong .8} } } // boundary’

↪→

↪→

endif

Code Block 5.9 First section of subroutine scem_output_povray.

102 Measures and Analyses

Fig. 5.8 POV-Ray visualisation of an SEM cell, cut away to show internal green
cytoplasm elements and external red cortex elements.

This is useful for getting a simple overview of relative movement of cells. However, the
information about underlying cell behaviour that it provides is limited. The next visualisation
is “elements”, in which a small solid sphere is drawn at the location of each SEM element
[Figure 5.9b]. Cortex (type 2) elements are drawn as red; cytoplasm (type 1) elements are
made green [Figure 5.8. This visualisation is useful for a detailed demonstration of cell
behaviour, but becomes overwhelming to look at for more than one or two cells. We also
created the “triangles” visualisation that utilises the POV-Ray smoothed triangle object to
create a surface around an SEM cell [Figure 5.9c]. This utilises the Delaunay triangulation
over the cell’s cortex elements, using each triangle in the triangulation to specify a smoothed
triangle object in the POV-Ray output. For this visualisation, cells of type 1 (epiblasts) are
coloured green and those of type 2 (primitive endoderm) are coloured red. This visualisation
is perhaps the most useful since it gives a broad sense of the changing shapes of cells and their
relative motion, without overwhelming detail. Also using the Delaunay triangulation, the
“cortex pairs” visualisation creates a red cylinder wherever there is a cortex-cortex interaction
pair defined by the triangulation [Figure 5.9a]. This visualisation allows a detailed analysis
of cortical tension behaviour, but can be overwhelming for more than a couple of cells.
Additionally, we included a reference to differential interfacial tension in this visualisation
by colouring any cortex-cortex interaction pair for which the cortex_factor of the pair is
not equal to 1, and is thus part of an cell-cell interface, green rather than red [Figure 5.10].
This allows for detailed analysis of cell doublets. Finally, the “pairs” visualisation draws a
black cyclinder for each inter-cell adhesive interaction [Figure 5.10].

Code block 5.10 shows an example of how the system is transcribed to POV-Ray code,
in this case for the surface triangle visualisation. It can be seen how the loop over all

5.2 Visualisation of Simulation Results 103

surface triplets in all cells is used to draw each triangle separately, and that after writing all 3
dimensions of all 3 element position, a colour is added according to whether the cell is of
type 1 or type 2. For the sake of avoiding repetition we will not include the code for other
visualisations, but all exists within the same subroutine scem_output_povray.

Figure 5.9 shows the same system of 4 identical cells visualised with cortex pair [a],
element [b], surface triangle [c], and volume [d] POV-Ray visualisations. Figure 5.10 shows
the cortex interaction network of one cell isolated from a cell doublet in which the cortical
tension is reduced at the interface; interactions with this reduced tension are drawn in green
rather than red, and thus the green area shows the interface between the two cells. Such
visualisations allow us to better understand the effects of the differential interfacial tension
routine described in Chapter 4.

In order to simplify the FORTRAN routine, all POV-Ray commands for all visualisations
are written to the same file. Each command for each object in the POV-Ray file is labelled
with a comment containing the type of object and the cell to which it belongs. For example,
a surface triangle could be specified with a single-line command ending with // triangle

cell01 . This is a comment and is not read by the POV-Ray program, but labels the command
as a component of cell 1 and a surface triangle. Thus, such comments can be used to
manipulate the data produced by the simulations. In order to visualise exactly what we want
to see, we can process the original povray files to extract only the components we require,
identified by the labels within the comments at the end of each line. For example, this is
how Figure 5.10 was produced, isolating the data for one cell from files containing data for
two cells. To manipulate the data in this way we created Perl script extractor.pl [Code
block 5.11].

extractor.pl is called with arguments specifying the location of povray data on which to
operate and the components to be extracted. For example, to isolate the cortex pairs of cell 2 in
a simulation whose data is stored at path, one would call perl extractor.pl path cortex

cell02. This command would produce a new folder called extracted_cortex_cell02 within
the main data folder for the simulation. This folder would contain the same number of POV-
Ray files as the original set, but only containing those cortex interaction objects from cell
2.

The protocol outlined here allows the FORTRAN program to write all data for different
visualisations to the same file, since opening and closing multiple files would slow the
simulations down significantly, and to produce a large number of different files would be
confusing. Extracting different components by label allows us to, for example, visualise the
positions and movements of each cell type separately, or investigate the shape changes of a
single cell within a system.

104 Measures and Analyses

if (flag_povray_triangles.EQ.1) then
do i=1, nc

do j=1, cells(i)%triplet_count
write(30,’(A17)’,advance=’no’) "smooth_triangle {"
do k=1, 3

corner_element = cells(i)%triplets(k,j)
corner(:) = elements(corner_element)%position(:)
normal(:) = corner(:)-cells(i)%position(:)
write(30,’(A1,F18.9,A1,F18.9,A1,F18.9,A2)’,advance=’no’) "<", &

corner(1), ’,’, corner(2), ’,’, corner(3), ’>,’
write(30,’(A1,F18.9,A1,F18.9,A1,F18.9,A1)’,advance=’no’) "<", &

normal(1), ’,’, normal(2), ’,’, normal(3), ’>’
if (k.LT.3) then

write(30,’(A1)’,advance=’no’) ","
else

EXIT
endif

enddo
write(30,"(A23)",advance=’no’) " texture{pigment{color "
if (cells(i)%fate.EQ.1) then

write(30,’(A25,I2.2)’) "Green}}} // triangle cell",
cells(i)%label↪→

else
write(30,’(A23,I2.2)’) "Red}}} // triangle cell", cells(i)%label

endif
enddo

enddo
endif
write(30,*) ""

Code Block 5.10 Code from scem_output_povray that writes surface triangle
data to file in POV-Ray format.

5.2 Visualisation of Simulation Results 105

(a) (b)

(c) (d)

Fig. 5.9 The same 4 cell system visualised with 4 different povray outputs. a, cor-
tex pair visualisation. b, element visualisation. c. surface triangle visualisation,
d,volume visualisation.

106 Measures and Analyses

Fig. 5.10 Visualisation of cortical tension network of one cell isolated from a
doublet. Green area demonstrates the region in which an interface is defined and
cortical tension is altered.

Fig. 5.11 POV-Ray visualisation of a cell doublet showing cortex pair interactions
in red, or green for those with updated tension at an interface, and inter-cell
adhesive interactions in black.

5.2 Visualisation of Simulation Results 107

use strict;
use warnings;
defined($ARGV[0]) or die "No arguments - provide folder path in which to

find data and at least one criterion for extraction";↪→

defined($ARGV[1]) or die "Missing second argument - provide folder path
and at least one criterion for extraction";↪→

my $originalfolder = shift(@ARGV);
my $directoryname = join("_",$originalfolder."/extracted",@ARGV);
my @expressions = @ARGV;
system "mkdir $directoryname";
my $file_name_in;
my $file_name_out;
my $i = 0;
while (-e $originalfolder."/povray_data/snap_"

.sprintf("%02d",$i).".pov") {↪→

$file_name_in =
$originalfolder."/povray_data/snap_".sprintf("%02d",$i).".pov";↪→

$file_name_out = $directoryname."/snap_".sprintf("%02d",$i).".pov";
open(my $file_handle_out, ’>’, $file_name_out) or die "can’t open

output data file";↪→

open(my $file_handle_in, ’<’, $file_name_in) or die "can’t open input
data file";↪→

while (my $line = <$file_handle_in>) {
if (($line =~ /sphere/) or ($line =~ /cylinder/) or ($line =~

/smooth_/)) {↪→

if ($line =~ /boundary/) {
print $file_handle_out $line;

}
else {

my $switch = 1;
foreach my $expression (@expressions) {

if ($line =~ /$expression/) { next; }
else { $switch=0; }

}
if ($switch==1) { print $file_handle_out $line; }
else { next; }

}
}
else { print $file_handle_out $line; }

}
$i++; }

Code Block 5.11 Contents of extractor.pl for isolating specific components
from POV-Ray data.

108 Measures and Analyses

We also created a script to quickly compile all POV-Ray files produced by these proce-
dures, and thus produced an efficient workflow for visualising in detail any aspect of an SEM
system.

Chapter 6

Results

6.1 Testing Doublet Interface Area

A critical question of this project is how changes in cortical tension at cell interfaces can affect
the self-organisation of tissues. We expect this self-organisation to be driven by changes in
relative affinity due to changes in equilibrium interface area (or, analogously, contact angle).
Therefore, the first step in testing our simulations was to investigate how interface area varies
with differential interfacial tension factor, as handled by the differential interfacial tension
routines discussed in Chapter 4.

In order to straightforwardly compare experimental results to the results of these simula-
tions, we tested cell doublets with our simulations by growing a system to 2 cells, forcing
both cells to be of the same type, and then allowing the system to reach equilibrium with
growth and division switched off, thus creating doublets of two cells adhered to one another
and forming an interface [Figure 6.1]. The three relevant parameters to these systems are the
adhesive magnitude between the two cells, α , the baseline cortical tension for the cells, γm,
and the ratio of the tension at the interface to the baseline tension, β . For example, if the
interfacial tension is half of the baseline tension, β = 0.5.

For in vitro experiments, the measurement taken for such cell doublets is the contact
angle between the two cells, θ [Chapter 1]. In our simulations, this contact angle is relatively
difficult to measure. However, it is fairly trivial to measure the area of the cell-cell interface
by implementing a change to the scem_measure_surface subroutine [Chapter 5]. This
subroutine calculates surface exposed to the external environment by finding the area of
regions with DIT_factor=0. By instead calculating the total area of surface occupied by
those elements whose DIT_factor component is equal to 1, meaning they lie at a like-like
cell interface, we immediately obtain a measurement of the interface area between the two
cells. Using some straightforward trigonometry [Figure 6.2], it is fairly easy to relate the

110 Results

(a) γm = 0.01, β = 0.50 (b) γm = 0.01, β = 0.75 (c) γm = 0.01, β = 1.00

(d) γm = 0.10, β = 0.50 (e) γm = 0.10, β = 0.75 (f) γm = 0.10, β = 1.00

(g) γm = 1.20, β = 0.50 (h) γm = 1.20, β = 0.75 (i) γm = 1.20, β = 1.00

Fig. 6.1 Phase space of cell doublet visualisations showing variation of interfaces
for β and γm values.

6.1 Testing Doublet Interface Area 111

Fig. 6.2 Diagram to demonstrate how interface area (B) as a fraction of total cell
surface area (A+B) can be calculated from contact angle θ in a cell doublet.
B = πa2 = π (r sin(θ/2))2, A = 4πr2 −2πr (r−b) = 2πr2 (1+ cos(θ/2)).

interface areas obtained in simulations as a proportion of the total cell surface area, I, to the
contact angles obtained in experiments, θ [Equation 6.1].

I =
B

A+B
=

sin2 (θ/2)
2(1+ cos(θ/2))+ sin2 (θ/2)

(6.1)

We can further extend this relationship by taking the theoretical linear force balance model
of cell interfaces discussed in Chapter 1 to find a theoretical prediction of the relationship
between interfacial tension factor, β , and interface area [Equation 6.2], which can then be
compared to the relationship between these two factors in simulations [Subsection 6.1.2].

I =
sin2 (arccosβ)

2(1+β)+ sin2 (arccosβ)
=

1−β

3−β
(6.2)

6.1.1 Exploring Phase Space of Interface Proportion

The interface between two cells, I, in a doublet is a function of 3 variables: the adhesion
magnitude between the two cells, α , the cortical tension magnitude of the cells, γm, and the
cortical tension at the interface between the cells, γc. For simplicity we will refer in future to
the ratio, β , of the interfacial tension to the baseline cortical tension, γc/γm = β , rather than
the absolute interfacial tension.

Given the dependence of these 3 variables, we can construct phase spaces to investigate
the interface area of a cell doublet at different values of β , which is fundamentally the
parameter of interest. We produce the data for these phase spaces by simulating cell doublets
as described above, testing a wide range of values of α and γm for 3 noteworthy values of
β , specifically 0.5, 0.75, and 1.00. The linear force balance model predicts corresponding

112 Results

interface areas for these value of β of 0.20, 0.11, and 0. Phase spaces of simulation results
are shown in the following figures. Figure 6.3a shows the results for β = 0.50, Figure 6.3b
shows the results for β = 0.75, and Figure 6.3c shows the results for β = 1.00.

It is clear from these phase spaces that the highest I value achieved for any parameter set is
around 0.32, compatible with the theoretical limit for the interface between two hemispheres,
which is exactly 1/3 [Equation 6.3]. This is an encouraging first validation. The phase
spaces also clearly show that for each value of β , the measurement of I drops sharply with
increasing γm, tending to some limit. This limit is determined by the adhesion magnitude,
with very low adhesions producing little to no interface. Slightly higher interfaces produce
a sharp increase, and beyond a threshold adhesion the increase of interface with adhesion
magnitude has a much lower gradient.

Imax =
Acircle

Ahemisphere
=

πr2

(4πr2)/2+πr2 =
1
3

(6.3)

The results become clearer if we take slices through the phase space as shown in Fig-
ures 6.4 and 6.5. When considering variation of interface with adhesion magnitude, we can
roughly break the phase space into the low tension regime [Figure 6.4a] and the high tension
regime [Figure 6.4b].

As expected, in the low tension regime, all interfaces tend to around the theoretical limit
for two hemispheres - 0.33, and there is very little variation with β . Meanwhile, in the high
tension regime [Figure 6.4b], we see two regimes of adhesion magnitude. The low adhesion
regime has low interface values, and interface increases sharply with increasing adhesion.
In the higher adhesion regime, we see much shallower increase of interface with adhesion,
producing an approximately stationary phase. For each value of β , the value to which this
stationary phase tends is just slightly above the linear force balance model prediction for
that value. At the lowest adhesion point of the high adhesion regime, the fit between the
theoretical model and simulations is particularly good, as demonstrated in Figure 6.4b, which
shows a slice of the phase space across cortical tension magnitude for α = 0.15. We propose
that small difference between the simulations and theoretical model at higher interfaces are
due to the theoretical model’s neglection of adhesion. It is worth noting that for β = 1.0
the theoretical model predicts zero interface between cells, whereas in reality it is clear that
for anything but hard spheres the adhesion between the cells will produce some non-zero
interface. Therefore we suggest that differences between simulation results and theoretical
model predictions are due to the assumuption that adhesion can be completely ignored.

A visualisation of this phase space testing can be seen in Figure 6.1, showing a range of
doublet interfaces across γm and β values. Note that in our simulations, α is the peak value

6.1 Testing Doublet Interface Area 113

(a) β = 0.50.

(b) β = 0.75.

(c) β = 1.00.

Fig. 6.3 Phase space plots showing interface proportion variation in tension and
adhesion space. Linear force balance model predicts I = 0.20 for β = 0.50,
I = 0.11 for β = 0.75, I = 0.00 for β = 1.00.

114 Results

of adhesive inter-cell forces, γm is the value of linear tension force acting between cortex
elements in the Delaunay triangulation, and β is the factor by which this value is changed at
inter-cell interfaces. We also note that these phase diagrams demonstrate some noise due to
interpolation of a limited dataset. It is difficult to establish an interpolation that can smooth
over the noise without washing out structure from the phase diagrams, but we believe in the
absence of additional data the diagrams as shown are sufficient to demonstrate interesting
patterns in the results. This caveat applies similarly to all phase diagrams used in subsequent
results sections.

6.1.2 Variation of Interface with Interfacial Tension Factor β

After testing the full phase space of interface areas in tension and adhesion at 3 values of
β , we now investigate the variation of interface proportion I with interfacial tension factor
β in more detail. Once again the doublet method described above was used to simualate
systems and obtain measurements of I for values of β between 0.25 and 1. These tests were
performed for a representative set of adhesion, α , and tension, γm, values selected from the
phase spaces explored previously. The resulting I values were plotted and compared to the
theoretical predictions of the linear force balance model, remembering that the linear force
balance prediction is of the form shown in Equation 1.1.

Figure 6.6 demonstrates how in the high tension regime, the simulation results fit well
to the linear force balance theoretical model across all reasonable values of β , while in the
low tension regime interfaces are consistently higher. Within the moderate adhesion regime -
high enough to produce any interface at all - at no tension magnitude is is possible to produce
interfaces lower than those predicted by the theoretical model, which fits with our expectation
given the assumption that adhesion can be neglected in the theoretical model. Figure 6.7
shows how the adhesion magnitude can alter the interface area measurement, increasing or
decreasing it by a roughly constant value across β values, but not change the form of the
variation with β , which is instead dependent on tension magnitude, γm.

6.1 Testing Doublet Interface Area 115

(a) Low tension regime. γm = 0.01.

(b) High tension regime, γm = 1.20.

Fig. 6.4 Plots of interface area against adhesion magnitude at β = 0.5,0.75,1.00
in high and low tension regimes. Solid lines show simulation results; dotted
lines show linear force balance model predictions for comparison. Differences
between the linear force balance model and simulation results are proposed to
arise from the linear force balance model neglecting adhesion.

116 Results

Fig. 6.5 Plots of interface area against tension magnitude at α = 0.15 and β =
0.5,0.75,1.00. Solid lines show simulation results; dotted lines show linear
force balance model predictions for comparison. α = 0.15 is roughly the lowest
adhesion above the regime in which no significant interface is produced.

Fig. 6.6 Plots of interface proportion against β , varying γm in the low adhesion
regime, α = 0.17.

6.1 Testing Doublet Interface Area 117

Fig. 6.7 Plots of interface proportion against β , varying α in the high tension
regime, γm = 1.40.

118 Results

Fig. 6.8 Sequence showing how cortical tension drives the separation of daughter
cells immediately after division. 5 time points shown with time post-division
shown in units of cell cycle time.

6.2 Testing Energetic Mechanisms Driving Dynamics

In order to investigate the effect of simulation parameters on cell rearrangement we used the
displacement measurement described in Chapter 5 to investigate the mean displacement of
cells from their initial position for a range of different values of α , γm, and ε . We expect
cortical tension at the interface between daughter cells to force the daughter cells apart after
division [Figure 6.8] and thus predict that higher cortical tension, γm, should lead to increased
rearrangement. Furthermore, as discussed in Chapter 1, we propose that blebbing observed in
primitive endoderm cells may assist in system rearrangement, and thus expect displacement
to increase with increasing dynamic tension amplitude, ε .

For each set of parameters, we ran simulations from 10 to 30 cells and collected data on
all cells in each system to find the mean displacement of a cell over one full cell cycle from
birth at the division of the parent cell until eventual division into two daughter cells.

Figure 6.9 shows the mean displacement of cells after one full cell cycle in the space
of reasonable adhesion and tension values. It is clear that whilst there is little variation
with adhesion. This is to be expected since cells can move by sliding past one another
without necessarily being pulled apart. However, displacement, and hence rearrangement,
depends strongly on cortical tension, with systems below a threshold tension exhibiting little
displacement, and systems above the threshold tension reaching a stationary phase in which
further increasing tension has little effect. This limit may be due to system size.

We next investigated the effect on displacement of introducing dynamic tension into
primitive endoderm cells. To do this we simulated systems in the same space of tension and
adhesion values as for Figure 6.9, but with all systems having dynamic tension amplitude,
ε , not equal to zero. Since we showed in Figure 6.9 that there is almost no variation with
adhesion magnitude, we were able to neglect this parameter by averaging over all adhesions.

6.2 Testing Energetic Mechanisms Driving Dynamics 119

Fig. 6.9 Phase space of mean cell cycle displacement in α and γm space.

Fig. 6.10 Plot of cell cycle displacement against tension magnitude for ε =
0.0,0.1,0.2. Separate plots for the mean displacement over all cells and the mean
displacement over only PrE cells indicate that the effect of dynamic tension on
displacement is more significant for PrE cells than for the system as a whole.

120 Results

Figure 6.10 shows the results of this testing. Cell cycle displacement/typical cell radius,
D, is plotted against cortical tension magnitude for ε = 0.0, ε = 0.1, and ε = 0.2. This is
repeated for an average displacement over all cells, and for the average displacement over
primitive endoderm cells alone. These results indicate that dynamic tension does increase the
mean cell cycle displacement, albeit not dramatically, but isolating only the displacements of
primitive endoderm cells shows a more significant effect than for the mean displacement of
all cells.

6.3 Testing Sorting By Differential Interfacial Tension

The final step in this project was to put these pieces together to investigate how the parameters
of the system influence the self-organisation of two cell types within the system.

6.3.1 Exploring Extent of Sorting in Adhesion and Interfacial Tension
Space

The first test performed was to explore the variation of sorting in cell aggregates with adhesion
magnitude and interfacial tension factor. We selected a cortical tension, γm = 1.4, within the
high tension regime identified in Section 6.1, and ran simulations with this tension for a range
of parameters in the space of adhesion, α , and epiblast interfacial tension, β , values. Note
that in an aggregate of 2 cell types we can define 3 interfacial tension factors: for like-like
interfaces between both cell types (β1,1, β2,2) and unlike interfaces (β1,2). For simplicity in
all simulations we set β1,2 = β2,2 = 1.0 and vary β1,1, the interfacial tension factor between
epiblasts, henceforth simply referred to as β . The results of Section 6.1 indicated that a range
for α between 0.17 and 0.40 and a range for β between 0.5 and 1.0 should suffice to capture
interesting dynamics.

Each simulation ran from 10 cells the 30 cells, roughly the same range that occurs within
the inner cell mass between 3.5 and 4.5 days after fertilisation, calculating radius, neighbour,
and surface sorting measures at regular intervals. 4 separate simulations were performed for
each pair of α and β values in the parameter space, and the results from each set of four were
averaged. Each test was performed in systems with both symmetric division, meaning each
cell can only give rise to daughter cells of the same type, and asymmetric division, meaning
each cell has a 50% change of producing two daughter cells of the same type as the parent,
and 50% change of producing two daughter cells of different types. For simplicity, both
cell types were given the same cortical tension and the same adhesion magnitude, both to
themselves and to each other. Furthermore, differential interfacial tension was applied only

6.3 Testing Sorting By Differential Interfacial Tension 121

to epiblast cells. This assumption is a reasonable first approximation since in experiments
performed within our lab the area of PrE-PrE interfaces is approximately equal to that of
PrE-Epi interfaces, whereas Epi-Epi interfaces have a significantly larger interface area,
indicating that the difference in mechanics arises in epiblast interfaces.

Simulations were performed on the University of Cambridge Darwin HPC facility,
running one simulation per core independently, using the Intel FORTRAN compiler.

Having collected data for the full parameter space, we were able to take the mean value of
the sorting indices defined in Chapter 5 (sorting measures normalised by standard deviation
of randomised tests) at the end of each simulation, and plot these values in phase spaces
to show the variation of these final states within the α and β space. Any sorting index
calculated as greater than 1 was normalised to 1, indicating complete sorting. The resulting
phase spaces are shown in Figure 6.11.

It is immediately clear from the results of Figure 6.11 that there is good agreement
between sorting measures about the behaviour of the systems. In addition, we note that
symmetric division [Figures 6.11b, 6.11d, 6.11f] produces consistently more robust sorting
throughout the parameter space, although still retaining the same general pattern with respect
to α and β as for asymmetric division. This is to be expected since symmetric division
will produce a natural aggregation, whereas asymmetric division can introduce cells of the
opposite type into a region that has self-organised to a high density of one type.

Most importantly, these phase spaces show an interesting pattern with respect to α and
β . As predicted, the extent of sorting increases as β is reduced. However, it is clear that a
minimum adhesion is required in order for the β parameter to have any effect. For values
of α below about 0.25, little to no sorting is observed regardless of the value of β . This is
interesting for two reasons. Firstly, α = 0.25 is a larger adhesion than produced the best fit to
the linear force balance model, as tested in Subsection 6.1.2. Secondly, α = 0.25 corresponds
to α = 0.18× γm, which is in line with experimental observations of adhesion magnitude
around 0.2-0.25 times cortical tension magnitude in ICM cells.

6.3.2 Variation of Sorting with Interfacial Area

Having studied the variation of sorting in adhesion and tension space, we can go one step
further by combining the results of Section 6.1 with our sorting results to test the variation
of sorting with epiblast doublet interface area. In all simulations, only epiblast-epiblast
interfaces have altered interfacial tension, so we expect the interface of these doublets to be a
primary driver of the dynamics. Each set of parameters tested in the sorting phase space has
a corresponding epiblast doublet interface proportion as found by cell doublet testing. By
plotting the final sorting index values against these corresponding interface proportions we

122 Results

(a) Radius measure, asymmetric division (b) Radius measure, symmetric division

(c) Neighbour measure, asymmetric division (d) Neighbour measure, symmetric division

(e) Surface measure, asymmetricdivision (f) Surface measure, symmetricdivision

Fig. 6.11 Phase space plots of final sorting index for 30 cell systems in α and
β space. All cells have the same γm and all cell types adhere with the same
magnitude α . The tension at Epi-Epi interfaces is altered by factor β . Epi-PrE
and PrE-PrE interfaces are unchanged. Plots on each row show the values of a
different sorting measure, for systems with asymmetric and symmetric division.

6.4 Effect of Dynamic Tension on Sorting in Adhesion and Interfacial Tension Space 123

produce a scatter plot with which to look for a relationship. The results of this testing are
shown in Figure 6.12.

The plots in Figure 6.12 clearly show a strong positive correlation between epiblast
interface area and final sorting index for all sorting measures. This correlation is especially
strong for systems with symmetric division.

6.4 Effect of Dynamic Tension on Sorting in Adhesion and
Interfacial Tension Space

Having investigated the variation of sorting in α and β space, we can now introduce ε , the
final parameter of the model. ε is the amplitude of dynamic tension, allowing us to model
blebbing in primitive endoderm cells. We begin testing the effect of ε on sorting by running
the same α and β parameter space used in Section 6.3, again running each parameter set 4
times, from 10 to 30 cells. However, in this case, the full set of parameters was repeated
with different values of epsilon. As before, both cell types have the same cortical tension
and adhesion magnitudes, and differential interfacial tension is applied only to epiblasts.
However, dynamic tension is not applied to epiblasts since these are not seen to undergo
blebbing in experiments.

As in Section 6.3, the resulting data were used to construct phase spaces in α and β

space, with a different value of ε for each phase space. Figure 6.13 shows the set of these
phase spaces for the radius sorting measure, with ε increasing down the page. Similarly,
Figure 6.14 and Figure 6.15 show the set of phase spaces for the neighbour and surface
measures respectively. It is immediately clear that the action of dynamic tension increases
the extent of sorting throughout the α and β parameter space. The extent of this increase
in sorting is seen to increase with increasing values of ε . In most cases variation of sorting
extent with interfacial tension retains a similar pattern regardless of ε value, but for high
values, such as ε = 0.3 and symmetric division, near complete sorting is obtained for the
entire parameter space.

We note also that for high values of β , meaning that the effect of differential interfacial
tension is minimal, the extent of sorting with ε is reduced for higher adhesion magnitudes,
suggesting that the adhesion of cells together to some extent counteracts the effects of
dynamic tension.

Additionally, we constructed phase spaces in β and ε , taking α such that α = 0.2× γm,
in line with experimental observations. These phase spaces are shown in Figure 6.16. These
phase spaces indicate that for this ratio of tension and adhesion, without dynamic tension

124 Results

(a) Radius measure, asymmetric division (b) Radius measure, symmetric division

(c) Neighbour measure, asymmetric division (d) Neighbour measure, symmetric division

(e) Surface measure, asymmetricdivision (f) Surface measure, symmetricdivision

Fig. 6.12 Plots of final sorting index for 30 cell aggregates against the correspond-
ing epiblast doublet interface proportion found in doublet testing [Section 6.1]
for the same parameter set. Each row of plots shows values of a different sorting
measure for both symmetric and asymmetric division.

6.4 Effect of Dynamic Tension on Sorting in Adhesion and Interfacial Tension Space 125

sorting is unreliable unless the interfacial tension factor, β , is extremely low. However,
adding dynamic tension quickly makes this sorting far more robust.

Finally, we repeated the process of plotting final sorting index against interface area
obtained in doublet testing with sorting data obtained from systems with ε > 0. Although the
new results, shown in Figure 6.17, show a greater spread than those in Figure 6.12, we can
see how complete sorting can now be achieved with much lower interface areas than were
possible without dynamic tension.

126 Results

(a) Radius measure, asymmetric division,
ε = 0.1

(b) Radius measure, symmetric division,
ε = 0.1

(c) Radius measure, asymmetric division,
ε = 0.2

(d) Radius measure, symmetric division,
ε = 0.2

(e) Radius measure, asymmetricdivision,
ε = 0.3

(f) Radius measure, symmetricdivision,
ε = 0.3

Fig. 6.13 Phase spaces of final sorting index from radius measure for 30 cell
aggregates in α and β space. Dynamic tension is included in primitive endoderm
cells with amplitudes ε = 0.1,0.2,0.3. Plots on each row show the results for a
different ε value, for systems with asymmetric and symmetric division.

6.4 Effect of Dynamic Tension on Sorting in Adhesion and Interfacial Tension Space 127

(a) Neighbour measure, asymmetric
division, ε = 0.1

(b) Neighbour measure, symmetric
division, ε = 0.1

(c) Neighbour measure, asymmetric
division, ε = 0.2

(d) Neighbour measure, symmetric
division, ε = 0.2

(e) Neighbour measure, asymmetric
division, ε = 0.3

(f) Neighbour measure, symmetric
division, ε = 0.3

Fig. 6.14 Phase spaces of final sorting index from neighbour measure for 30 cell
aggregates in α and β space. Dynamic tension is included in primitive endoderm
cells with amplitudes ε = 0.1,0.2,0.3. Plots on each row show the results for a
different ε value, for systems with asymmetric and symmetric division.

128 Results

(a) Radius measure, asymmetric division,
ε = 0.1

(b) Surface measure, symmetric division,
ε = 0.1

(c) Surface measure, asymmetric division,
ε = 0.2

(d) Surface measure, symmetric division,
ε = 0.2

(e) Surface measure, asymmetricdivision,
ε = 0.3

(f) Surface measure, symmetricdivision,
ε = 0.3

Fig. 6.15 Phase spaces of final sorting index from surface measure for 30 cell
aggregates in α and β space. Dynamic tension is included in primitive endoderm
cells with amplitudes ε = 0.1,0.2,0.3. Plots on each row show the results for a
different ε value, for systems with asymmetric and symmetric division.

6.4 Effect of Dynamic Tension on Sorting in Adhesion and Interfacial Tension Space 129

(a) Radius measure, asymmetric division (b) Radius measure, symmetric division

(c) Neighbour measure, asymmetric division (d) Neighbour measure, symmetric division

(e) Surface measure, asymmetric division (f) Surface measure, symmetric division

Fig. 6.16 Phase space of final sorting index of 30 cell aggregates in β and ε space
at α = 0.2γm, corresponding to the adhesion magnitude observed in experiments.

130 Results

(a) Radius measure, asymmetric division,
ε = 0.30

(b) Radius measure, symmetric division,
ε = 0.30

(c) Neighbour measure, asymmetric
division, ε = 0.30

(d) Neighbour measure, symmetric
division, ε = 0.30

(e) Surface measure, asymmetricdivision,
ε = 0.30

(f) Surface measure, symmetricdivision,
ε = 0.30

Fig. 6.17 Plots of final sorting index for 30 cell aggregates with ε = 0.3 against
the corresponding epiblast doublet interface proportion found in doublet testing
[Section 6.1] for the same parameter set. Each row of plots shows values of a
different sorting measure for both symmetric and asymmetric division. Compare
to Figure 6.12 to see the impact of dynamic tension.

6.5 Sorting Kinetics 131

Fig. 6.18 Time series plot of neighbour sorting index in a system running from
10 to 30 cells with symmetric division and α = 0.2γm.. 4 curves are shown,
each with different β and ε values, with each parameter set averaged over 4
runs. Horizontal dotted line shows the 3σ threshold, beyond which sorting is
considered complete.

6.5 Sorting Kinetics

Having studied the behaviour of systems by comparing final sorting indices, we will now
examine the time series of sorting index data as simulations progress. Figure 6.18 shows a
plot of neighbour sorting index against time for 4 parameter sets, each averaged over 4 runs.
What we see is that whilst 3 of the 4 systems are capable of reaching the 3σ threshold, the
introduction of dynamic tension allows the systems to reach this threshold much more quickly.
To better understand these systems, a time series visualisation is shown in Figure 6.19.

132 Results

0.00τc

0.66τc

1.32τc

2.00τc

Fig. 6.19 Time sequence showing sorting in a system from 10 to 30 cells with
β = 0.7,ε = 0.3 and asymmetric division. Time since system initialisation shown
in units of τc. Moderately low β and moderately high ε lead to complete sorting
despite asymmetric division. Left column shows full cell aggregate. Epiblasts
coloured green, primitive endoderm coloured red. Middle and right columns
show each cell type visualised independently to highlight their relative positions.

Chapter 7

Conclusions

7.1 Conclusions

This thesis describes the first steps taken in an effort to form a comprehensive model
of tissue self-organisation in the early mammalian embryo, and in doing so introduce a
new computational model of cell sorting. We have discussed the basics of mammalian
embryogenesis as they are currently understood, highlighting gaps in our understanding of
development between 3.5 and 4.5 days after fertilisation [Chapter 1]. After explaining this
phase of development in the context of blastocyst formation and the formation of embryonic
and extra-embryonic tissues, we focussed in more detail on the inner cell mass of the
blastocyst over this E3.5-E4.5 period. We discussed how at 4.5 days after fertilisation, the
inner cell mass is seen to contain two spatially separate tissue layers, which were originally
assumed to differentiate in situ, but that more recent observations suggest that two cell types
differentiate in a mixed “salt and pepper” distribution throughout the inner cell mass. The
subsequent self-organisation of these two cell types is not well understood, and it is this
self-organisation we set out to study.

Before discussing our model, we introduced other techniques that have been used to
model cellular systems in the past, focussing in particular on the lengthscales and number
of dimensions to which each model was adapted, the integration of intra- and inter-cellular
mechanisms, and whether or not the method relied on a global Hamiltonian [Chapter 2].
We established that many techniques applied to cellular systems had significant drawbacks
that rendered them unsuitable for modelling the inner cell mass, and that the best option
for our purposes was the subcellular element method [Chapter 3]. The advantages of this
technique include the integration of intra- and inter-cellular mechanisms, ease of extension
to 3 dimensions, suitability for a scale of tens of cells, and focus on local forces rather than

134 Conclusions

global energy. Furthermore the technique was simple enough to make extending it fairly
straightforward.

We composed our model by defining a set of cortex elements at the boundary of each
cell. We introduced a tensile force tangential to the cell surface by performing a Delaunay
triangulation over this set of cortex elements and introducing a tension force between
all neighbouring elements in the triangulation, thus modelling cortical tension. This was
extended with an algorithm to locally vary the cortical tension between cortex elements
at interfaces between cells according to the types of cells involved, allowing us to model
differential interfacial tension. We also added dynamic tension to one cell type, varying the
tension forces experienced by cortex elements randomly across the surface of each cell to
model blebbing in primitive endoderm cells [Chapter 4].

With the model implemented, we created a further set of routines to calculate quantitative
measures of sorting based on the number of nearest neighbours of the same type, the radius of
each type from the centre of mass, and the proportion of each cell type at the system external
surface. These measures were contextualised relative to the mean and standard deviation
across a large number of random reorientations of the system in order to produce a sorting
index [Chapter 5].

Having defined this set of measures, we began to test the model. Our first test was
to simulate cell doublets, calculating the interface area formed between the two cells in a
doublet as a proportion of the total cell surface area [Chapter 6, Section 6.1]. We established
that these interface proportions depended on 3 variables of the model: baseline cell tension,
γm, adhesion magnitude, α , and the ratio of interfacial tension to baseline cortical tension, β .
By measuring interface proportions for a range of values in the space of these 3 variables, we
were able to show that interface decreases sharply with tension before reaching a stationary
phase in the high tension regime. We also showed that below some threshold value of
adhesion, no interface is formed at all, but above this threshold interface increases slowly
with increasing adhesion magnitude, with the gradient of this interface sharpest for low values
of β . We showed that in the high tension regime, and with adhesion at the low end of this
interface-forming adhesion regime, the variation of interface with β showed remarkably good
fit to the predictions of the previously proposed linear force balance model of cell interfaces,
which assumes low adhesion relative to tension. This was an extremely promising validation
and indicated that the model was capturing important aspects of the underlying mechanics.
We also showed, using the mean displacement of cells from their original position over one
full cell cycle as a proxy for cell rearrangement and hence energetic mechanisms driving the
system kinetics, that rearrangement is heavily dependent upon a minimum cortical tension,
but only weakly dependent on the amplitude of dynamic tension [Chapter 6, Section 6.2].

7.1 Conclusions 135

Having performed tests to validate that the model is capturing cell dynamics, and using
the quantitative measures defined previously, we tested the effect of model parameters on
self-organisation. We simulated systems growing from 10 to 30 cells, with both symmetric
and asymmetric cell division. Initially, we tested systems in adhesion, α , and interfacial
tension factor, β , space, with no dynamic tension. To do this we took the final values
of sorting indices to represent the final state of the system at 30 cells, and plotted these
values in phase spaces against α and β . These phase spaces demonstrated that differential
interfacial tension alone was sufficient to produce complete sorting for systems with low
β . The extent of sorting was greater for systems with symmetric division than asymmetric
division, but even in the case of symmetric division, little to no sorting occurred for systems
with α < 0.2γm. This is interesting since this adhesion is greater than that which produces
the best fit to the linear force balance model predictions, but is in line with the experimentally
observed adhesion magnitude in real cells. However, even with sufficient adhesion, quite low
values of β are required to produce sorting, lower than the value of about 0.75 observed in
measurements in our group. This is best exemplified when we plot the final sorting index for
these 30 cell systems against the corresponding interface proportion found in doublet testing
with the same parameters. Whilst we do observe an extremely strong correlation between
final sorting index and the interface proportion measured in doublets, these plots suggest that
the interface areas observed experimentally in our group are insufficient to reliably produce
complete sorting.

The next step in our testing was to introduce dynamic tension in primitive endoderm cells,
with the amplitude of this dynamic tension, ε , forming another variable of the model. We
reproduced the same set of simulations in α and β space, repeating each set with a different
value of epsilon. Plotting each of these phase spaces separately, we see that the effect of
dynamic tension in primitive endoderm is to increase the extent of sorting throughout the
parameter space. Apart from cases of very high values of ε and symmetric division, in
which case dynamic tension appears to produce sorting for all values of α and β , the extent
of sorting retains a similar pattern of dependence on adhesion and interfacial tension, but
complete sorting is more robustly achieved at a greater range of the parameter space. The
extent of this increase in sorting is seen to scale with the magnitude of ε . We also produced
phase spaces of final sorting index in ε and β space for systems with α = 0.2γm, as observed
in experiments, which further confirmed the pattern of dependence on β and ε .

Thus, in summary, we find that differential interfacial tension is sufficient to drive systems
to self-organise given high enough adhesion and low enough interfacial tension, but find that
this self-organisation is not robust for the parameters found experimentally in inner cell mass
cells. Furthermore, we find that the introduction of blebbing in primitive endoderm cells

136 Conclusions

produces far more robust sorting throughout the tension and interfacial tension parameter
space. We thus propose that whilst differential interfacial tension may have some role to play
in self-organisation in the inner cell mass, the blebbing observed in primitive endoderm cells
will have just as significant a role. The introduction of blebbing into a model of cell sorting,
and finding that it has a significant impact on the extent and speed of sorting is a novel result
and an important conclusion from this project.

7.2 Remaining Questions

Although we have tested our model extensively, the technique shows great promise and
warrants further work in future. In the first instance, we hope to acquire additional data
for the parameter spaces already tested in order to validate the patterns observed in phase
diagrams.

In all of the testing of sorting we performed in this project, both cell types were given
the same cortical tension and adhesion magnitudes. This is a worthwhile first assumption
but it may be interesting to test further differences between the two cell types. Furthermore,
we have assumed throughout that the tension at primitive endoderm-primitive endoderm
and primitive endoderm-epiblast interfaces is unchanged. As discussed previously, in any
multicellular aggregate there are 3 possible interfacial tension factors: β11, β12, β22. In our
systems β12 = β22 = 1 and only β11 is varied. Whilst this was also a valid assumption for
initial testing, it will be interesting in future to explore the effects of changing interfacial
tensions in both cell types, not just epiblast cells. It would also be worth testing systems to a
greater number of cells to investigate the effects, in principle, of the parameters on aggregates
of this size, even though they are larger than the inner cell mass.

All testing performed so far has been done on spherical cell aggregates. However, in
the inner cell mass in vivo, the cells are arranged in a geometry closer to that of a spherical
cap, with primitive endoderm cells organising to the flat edge of the cap and epiblast cells
organising to the curved edge. A natural extension would be to apply this geometry to the
simulations, restricting cells to move within a spherical cap-shaped boundary and analysing
the effects of parameters on the relative final positions of the two cell types.

Finally, the model could prove useful for other multicellular systems in which shape
changes, tension, and adhesion are important. For example, the metastasis is a critical process
in the development of dangerous cancers, and involves the movement of cancerous cells
through crowded multicellular environments. Such a system could potentially be investigated
using our model, as the movement of cancerous cells requires significant shape changes,
and is likely to be affected by tension and adhesion magnitudes. Furthermore, outside of

7.2 Remaining Questions 137

the realm of biological systems, our method could be used to study the sedimentation of
deformable colloids when centrifuged from syspension. Such systems are extremely difficult
to study with analytical methods or standard granular physics, so our method could provide
useful insights.

References

[1] Wilhelm Roux. Gesammelte Abhandlungen über Entwickelungsmechanik der Organ-
ismen, volume 1. Wilhelm Engelmann, 1895.

[2] Klaus Sander. Wilhelm roux and the rest: Developmental theories 1885–1895. Roux’s
Archives of Developmental Biology, 200(6):297–299, Nov 1991.

[3] S. J. Counce. Archives for developmental mechanics W. Roux, editor (1894–1924).
Roux’s Archives of Developmental Biology, 204(2):79–92, 1994.

[4] Erwin Schrodinger. What is life? Cambridge University Press, 1943.

[5] Christina Agapakis. Feynman on Biology. Scientific American, 2013.

[6] Max Delbrück. A physicist looks at biology. Connecticut Academy of Arts and
Sciences, 1949.

[7] Geoffrey B West. A theoretical physicist’s journey into biology: from quarks and
strings to cells and whales. Physical Biology, 11(5):053013, 2014.

[8] Tim Newman. Biology is simple. Physical Biology, 12(6):063002, 2015.

[9] Yuri Lazebnik. Can a biologist fix a radio? Or, what I learned while studying apoptosis.
Cancer Cell, 2(3):179–182, Sep 2002.

[10] Charles W Wolgemuth. Trend: Does cell biology need physicists? Physics, 4:4, 2011.

[11] Per Bak. How nature works: the science of self-organized criticality. Springer Science
& Business Media, 1996.

[12] Scott Camazine. Self-organization in biological systems. Princeton University Press,
2003.

[13] Christopher M Dobson. Protein folding and misfolding. Nature, 426(6968):884, 2003.

[14] Iain D Couzin and Jens Krause. Self-organization and collective behavior in verte-
brates. Advances in the Study of Behavior, 32:1–75, 2003.

[15] H. Hildenbrandt, C. Carere, and C.K. Hemelrijk. Self-organized aerial displays of
thousands of starlings: a model. Behavioral Ecology, 21(6):1349, 2010.

[16] W Ross Ashby. Principles of the self-organizing dynamic system. The Journal of
General Psychology, 37(2):125–128, 1947.

140 References

[17] Jean-Léon Maître. Mechanics of blastocyst morphogenesis. Biology of the Cell,
109(9):323–338.

[18] Gabor Forgacs and Stuart A Newman. Biological physics of the developing embryo.
Cambridge University Press, 2005.

[19] HPM Pratt, CA Ziomek, WJD Reeve, and MH Johnson. Compaction of the mouse
embryo: an analysis of its components. Development, 70(1):113–132, 1982.

[20] Minjung Kang, Anna Piliszek, Jérôme Artus, and Anna-Katerina Hadjantonakis.
FGF4 is required for lineage restriction and salt-and-pepper distribution of primi-
tive endoderm factors but not their initial expression in the mouse. Development,
140(2):267–279, 2012.

[21] Nicolas Dard, Manuel Breuer, Bernard Maro, and Sophie Louvet-Vallée. Morpho-
genesis of the mammalian blastocyst. Molecular and Cellular Endocrinology, 282(1-
2):70–77, 2008.

[22] Nami Motosugi, Tobias Bauer, Zbigniew Polanski, Davor Solter, and Takashi Hiiragi.
Polarity of the mouse embryo is established at blastocyst and is not prepatterned.
Genes & Development, 19(9):1081–92, 5 2005.

[23] H Honda, N Motosugi, T Nagai, M Tanemura, and T Hiiragi. Computer simulation of
emerging asymmetry in the mouse blastocyst. Development, 135(8):1407–1414, 2008.

[24] Hiroshi Sasaki. Mechanisms of trophectoderm fate specification in preimplantation
mouse development. Development, Growth & Differentiation, 52(3):263–273, 2010.

[25] Sueo Niimura. Time-lapse videomicrographic analyses of contractions in mouse
blastocysts. Journal of Reproduction and Development, 49(6):413–423, 2003.

[26] RM Schultz, J Rossant, and RA Pedersen. Experimental Approaches to Mammalian
Embryonic Development. Cambridge University Press, 1986.

[27] Claire Chazaud and Yojiro Yamanaka. Lineage specification in the mouse preimplan-
tation embryo. Development, 143(7):1063–1074, 2016.

[28] Yusuke Marikawa and Vernadeth B. Alarcón. Establishment of trophectoderm and
inner cell mass lineages in the mouse embryo. Molecular Reproduction and Develop-
ment, 76(11):1019–1032, 2009.

[29] Guoji Guo, Mikael Huss, Guo Qing Tong, Chaoyang Wang, Li Li Sun, Neil D Clarke,
and Paul Robson. Resolution of cell fate decisions revealed by single-cell gene
expression analysis from zygote to blastocyst. Developmental Cell, 18(4):675–685,
2010.

[30] B Plusa, A Piliszek, S Frankenberg, J Artus, and A K Hadjantonakis. Distinct
sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst.
Journal of Embryology and Experimental Morphology, 135(18):3081–3091, 2008.

References 141

[31] Yusuke Ohnishi, Wolfgang Huber, Akiko Tsumura, Minjung Kang, Panagiotis
Xenopoulos, Kazuki Kurimoto, Andrzej K Oleś, Marcos J Araúzo-Bravo, Mitinori
Saitou, Anna-Katerina Hadjantonakis, et al. Cell-to-cell expression variability fol-
lowed by signal reinforcement progressively segregates early mouse lineages. Nature
Cell Biology, 16(1):27, 2014.

[32] Kaoru Mitsui, Yoshimi Tokuzawa, Hiroaki Itoh, Kohichi Segawa, Mirei Murakami,
Kazutoshi Takahashi, Masayoshi Maruyama, Mitsuyo Maeda, and Shinya Yamanaka.
The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast
and ES cells. Cell, 113(5):631–642, 2003.

[33] Ian Chambers, Douglas Colby, Morag Robertson, Jennifer Nichols, Sonia Lee, Susan
Tweedie, and Austin Smith. Functional expression cloning of nanog, a pluripotency
sustaining factor in embryonic stem cells. Cell, 113(5):643–655, 2003.

[34] Jennifer Nichols, Branko Zevnik, Konstantinos Anastassiadis, Hitoshi Niwa, Daniela
Klewe-Nebenius, Ian Chambers, Hans Schöler, and Austin Smith. Formation of
pluripotent stem cells in the mammalian embryo depends on the POU transcription
factor Oct4. Cell, 95(3):379–391, 1998.

[35] Nicolas Pilon, Diana Raiwet, Robert S Viger, and David W Silversides. Novel pre- and
post-gastrulation expression of Gata4 within cells of the inner cell mass and migratory
neural crest cells. Developmental Dynamics, 237(4):1133–1143, 2008.

[36] Claire Chazaud, Yojiro Yamanaka, Tony Pawson, and Janet Rossant. Early Lineage
Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through
the Grb2-MAPK Pathway. Developmental Cell, 10(5):615–624, 2006.

[37] Nadine Schrode, Néstor Saiz, Stefano Di Talia, and Anna Katerina Hadjantonakis.
GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse
blastocyst. Developmental Cell, 29(4):454–467, 2014.

[38] Jerome Artus, Anna Piliszek, and Anna-Katerina Hadjantonakis. The primitive
endoderm lineage of the mouse blastocyst: Sequential transcription factor activation
and regulation of differentiation by SOX17. Developmental Biology, 350(2):393–404,
2011.

[39] Kathy K Niakan, Hongkai Ji, René Maehr, Steven A Vokes, Kit T Rodolfa, Richard I
Sherwood, Mariko Yamaki, John T Dimos, Alice E Chen, Douglas A Melton, et al.
Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating
extraembryonic gene expression and indirectly antagonizing self-renewal. Genes &
Development, 24(3):312–326, 2010.

[40] S A Morris, R T Y Teo, H Li, P Robson, D M GLover, and M Zernicka-Goetz. Origin
and formation of the first two distinct cell types of the inner cell mass in the mouse
embryo. Proceedings of the National Academy of Sciences, 107(14):6364–6369, 2010.

[41] J B Grabarek, K Zyzynska, N Saiz, A Piliszek, S Frankenberg, J Nichols, A K
Hadjantonakis, and B Plusa. Differential plasticity of epiblast and primitive endoderm
precursors within the ICM of the early mouse embryo. Development, 139(1):129–139,
2011.

142 References

[42] J Rossant. Investigation of the determinative state of the mouse inner cell mass.
Development, 33(4):979–990, 1975.

[43] Sebastian Wennekamp and Takashi Hiiragi. Stochastic processes in the development
of pluripotency in vivo. Biotechnology Journal, 7(6):737–744, 2012.

[44] J E Dietrich and T Hiiragi. Stochastic patterning in the mouse pre-implantation
embryo. Development, 134(23):4219–4231, 2007.

[45] Yojiro Yamanaka, Amy Ralston, Robert O Stephenson, and Janet Rossant. Cell and
molecular regulation of the mouse blastocyst. Developmental Dynamics, 235(9):2301–
2314, 2006.

[46] Anand Pillarisetti, Hamid Ladjal, Antoine Ferreira, Carol Keefer, and Jaydev P Desai.
Mechanical characterization of mouse embryonic stem cells. In Engineering in
Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference
of the IEEE, pages 1176–1179. IEEE, 2009.

[47] Sebastian Wennekamp, Sven Mesecke, François Nédélec, and Takashi Hiiragi. A
self-organization framework for symmetry breaking in the mammalian embryo. Nature
Reviews Molecular Cell Biology, 14(7):452–459, 2013.

[48] Robert Moore, Kathy Q Cai, Diogo O Escudero, and Xiang-Xi Xu. Cell adhesive
affinity does not dictate primitive endoderm segregation and positioning during murine
embryoid body formation. Genesis, 47(9):579–589.

[49] Ramsey A Foty, Gabor Forgacs, Cathie M Pfleger, and Malcolm S Steinberg. Liquid
properties of embryonic tissues: measurement of interfacial tensions. Physical Review
Letters, 72(14):2298, 1994.

[50] J B A Green. Sophistications of cell sorting. Nature Cell Biology, 10(4):375–377,
2008.

[51] Philip L Townes and Johannes Holtfreter. Directed movements and selective adhesion
of embryonic amphibian cells. Journal of Experimental Zoology, 128(1):53–120,
1955.

[52] Malcolm S Steinberg. On the mechanism of tissue reconstruction by dissociated cells,
I. Population kinetics, differential adhesiveness, and the absence of directed migration.
Proceedings of the National Academy of Sciences, 48(9):1577–1582, 1962.

[53] Malcolm S Steinberg. Mechanism of tissue reconstruction by dissociated cells, II.
Time-course of events. Science, 137(3532):762–763, 1962.

[54] Malcolm S Steinberg. On the mechanism of tissue reconstruction by dissociated
cells, III. Free energy relations and the reorganization of fused, heteronomic tissue
fragments. Proceedings of the National Academy of Sciences, 48(10):1769–1776,
1962.

[55] M S Steinberg. Adhesion-guided multicellular assembly: a commentary upon the
postulates, real and imagined, of the differential adhesion hypothesis, with special
attention to computer simulations of cell sorting. Journal of Theoretical Biology,
55(2):431–443, 1975.

References 143

[56] Ramsey A Foty, Cathie M Pfleger, Gabor Forgacs, and Malcolm S Steinberg. Surface
tensions of embryonic tissues predict their mutual envelopment behavior. Development,
122(5):1611–1620, 1996.

[57] Ramsey A Foty and Malcolm S Steinberg. The differential adhesion hypothesis: a
direct evaluation. Developmental Biology, 278(1):255–263, 2005.

[58] M S Steinberg. Adhesion in development: an historical overview. Developmental
Biology, 180(2):377–388, 1996.

[59] C Dahmann and K Basler. Compartment boundaries: at the edge of development.
Trends in Genetics, 15(8):320–326, 1999.

[60] Guillaume Salbreux, Guillaume Charras, and Ewa Paluch. Actin cortex mechanics
and cellular morphogenesis. Trends in Cell Biology, 22(10):536–545, 2012.

[61] A K Harris. Is cell sorting caused by differences in the work of intercellular adhesion?
A critique of the Steinberg hypothesis. Journal of Theoretical Biology, 61(2):267–285,
1976.

[62] G Wayne Brodland. The Differential Interfacial Tension Hypothesis (DITH): A
Comprehensive Theory for the Self-Rearrangement of Embryonic Cells and Tissues.
Journal of Biomechanical Engineering, 124(2):188–197, 2002.

[63] D Bray and JG White. Cortical flow in animal cells. Science, 239(4842):883–889,
1988.

[64] Jianwu Dai, H Ping Ting-Beall, Robert M Hochmuth, Michael P Sheetz, and Mar-
garet A Titus. Myosin I contributes to the generation of resting cortical tension.
Biophysical journal, 77(2):1168–1176, 1999.

[65] Carl-Philipp Heisenberg and Yohanns Bellaïche. Forces in Tissue Morphogenesis and
Patterning. Cell, 153(5):948–962, 2013.

[66] S A Safran, N Gov, A Nicolas, U S Schwarz, and T Tlusty. Physics of cell elasticity,
shape and adhesion. Physica A: Statistical Mechanics and its Applications, 352(1):171–
201, 2005.

[67] Thomas Lecuit, Pierre-François Lenne, and Edwin Munro. Force Generation, Trans-
mission, and Integration during Cell and Tissue Morphogenesis. Annual Review of
Cell and Developmental Biology, 27(1):157–184, 2011.

[68] D Umetsu and C Dahmann. Compartment boundaries: Sorting cells with tension. Fly,
4(3):241–245, 2010.

[69] Andrew G. Clark, Ortrud Wartlick, Guillaume Salbreux, and Ewa K. Paluch. Stresses
at the cell surface during animal cell morphogenesis. Current Biology, 24(10):R484 –
R494, 2014.

[70] Alexander X. Cartagena-Rivera, Jeremy S. Logue, Clare M. Waterman, and Richard S.
Chadwick. Actomyosin Cortical Mechanical Properties in Nonadherent Cells De-
termined by Atomic Force Microscopy. Biophysical Journal, 110(11):2528–2539,
2016.

144 References

[71] Jim H. Veldhuis, Ahmad Ehsandar, Jean-Léon Maître, Takashi Hiiragi, Simon Cox,
and G. Wayne Brodland. Inferring cellular forces from image stacks. Philosophical
Transactions of the Royal Society of London B: Biological Sciences, 372(1720), 2017.

[72] Raphaël Clément, Benoît Dehapiot, Claudio Collinet, Thomas Lecuit, and Pierre-
François Lenne. Viscoelastic dissipation stabilizes cell shape changes during tissue
morphogenesis. Current Biology, 27(20):3132–3142, 2017.

[73] Alba Diz-Muñoz, Michael Krieg, Martin Bergert, Itziar Ibarlucea-Benitez, Daniel J.
Muller, Ewa Paluch, and Carl-Philipp Philipp Heisenberg. Control of Directed Cell Mi-
gration In Vivo by Membrane-to-Cortex Attachment. PLoS Biology, 8(11):e1000544,
2010.

[74] Nils C Gauthier, Thomas A Masters, and Michael P Sheetz. Mechanical feedback
between membrane tension and dynamics. Trends in Cell Biology, 22(10):527–535,
2012.

[75] Pedro F Machado, Julia Duque, Jocelyn Étienne, Alfonso Martinez-Arias, Guy B Blan-
chard, and Nicole Gorfinkiel. Emergent material properties of developing epithelial
tissues. BMC Biology, 13(1):98, 2015.

[76] Rudolf Winklbauer. Cell adhesion strength from cortical tension - an integration of
concepts. Journal of Cell Science, 128(20), 2015.

[77] Maryam Aliee, Jens-Christian Röper, Katharina P Landsberg, Constanze Pentzold,
Thomas J Widmann, Frank Jülicher, and Christian Dahmann. Physical Mechanisms
Shaping the Drosophila Dorsoventral Compartment Boundary. Current Biology,
22(11):967–976, 2012.

[78] Jean-Paul Vincent and David Irons. Developmental Biology: Tension at the Border.
Current Biology, 19(22):R1028–R1030, 2009.

[79] Lucy C Butler, Guy B Blanchard, Alexandre J Kabla, Nicola J Lawrence, David P
Welchman, L Mahadevan, Richard J Adams, and Benedicte Sanson. Cell shape
changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension.
Nature Cell Biology, 11(7):859–864, 2009.

[80] M Krieg, Y Arboleda-Estudillo, P H Puech, J Käfer, F Graner, D J Müller, and C P
Heisenberg. Tensile forces govern germ-layer organization in zebrafish. Nature,
10(4):429–436, 2008.

[81] P Skoglund, A Rolo, X Chen, B M Gumbiner, and R Keller. Convergence and
extension at gastrulation require a myosin IIB-dependent cortical actin network. De-
velopment, 135(14):2435–2444, 2008.

[82] A C Martin and B Goldstein. Apical constriction: themes and variations on a cellular
mechanism driving morphogenesis. Development, 141(10):1987–1998, 2014.

[83] Ulrich S Schwarz and Carina M Dunlop. Developmental Biology: A Growing Role
for Computer Simulations. Current Biology, 22(11):R441–R443, 2012.

References 145

[84] Katharina P Landsberg, Reza Farhadifar, Jonas Ranft, Daiki Umetsu, Thomas J Wid-
mann, Thomas Bittig, Amani Said, Frank Jülicher, and Christian Dahmann. Increased
Cell Bond Tension Governs Cell Sorting at the Drosophila Anteroposterior Compart-
ment Boundary. Current Biology, 19(22):1950–1955, 2009.

[85] Chaminda R Samarage, Melanie D White, Yanina D Álvarez, Juan Carlos Fierro-
González, Yann Henon, Edwin C Jesudason, Stephanie Bissiere, Andreas Fouras, and
Nicolas Plachta. Cortical Tension Allocates the First Inner Cells of the Mammalian
Embryo. Developmental Cell, 34(4):435–447, 2015.

[86] Jean-Léon Maître, Ritsuya Niwayama, Hervé Turlier, François Nédélec, and Takashi
Hiiragi. Pulsatile cell-autonomous contractility drives compaction in the mouse
embryo. Nature cell biology, 17(7):849–855, 2015.

[87] Jean-Léon Maître, Hervé Turlier, Rukshala Illukkumbura, Björn Eismann, Ritsuya
Niwayama, François Nédélec, and Takashi Hiiragi. Asymmetric division of contractile
domains couples cell positioning and fate specification. Nature, 2016.

[88] J L Maitre, H Berthoumieux, S F G Krens, G Salbreux, F Julicher, E Paluch, and
C P Heisenberg. Adhesion Functions in Cell Sorting by Mechanically Coupling the
Cortices of Adhering Cells. Science, 338(6104):253–256, 2012.

[89] Michael J Susienka, Benjamin T Wilks, and Jeffrey R Morgan. Quantifying the kinetics
and morphological changes of the fusion of spheroid building blocks. Biofabrication,
8(4):045003, 2016.

[90] J. Youssef, A. K. Nurse, L. B. Freund, and J. R. Morgan. Quantification of the forces
driving self-assembly of three-dimensional microtissues. Proceedings of the National
Academy of Sciences, 108(17):6993–6998, 2011.

[91] Joao Firmino, Didier Rocancourt, Mehdi Saadaoui, Chloe Moreau, and Jerome Gros.
Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.
Developmental Cell, 36(3):249–261, 2016.

[92] J.-Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J.-F. Joanny, and E. Paluch. Role
of cortical tension in bleb growth. Proceedings of the National Academy of Sciences,
106(44):18581–18586, 2009.

[93] Ewa K Paluch. After the Greeting: Realizing the Potential of Physical Models in Cell
Biology. Trends in Cell Biology, 25(12):711–3, 2015.

[94] Simon Tanaka. Simulation Frameworks for Morphogenetic Problems. Computation,
3(2):197–221, 2015.

[95] Alexander Anderson and Katarzyna Rejniak. Single-cell-based models in biology and
medicine. Springer Science & Business Media, 2007.

[96] Alexander G. Fletcher, Fergus Cooper, and Ruth E. Baker. Mechanocellular models of
epithelial morphogenesis. Philosophical Transactions of the Royal Society of London
B: Biological Sciences, 372(1720), 2017.

146 References

[97] Alexander G. Fletcher, Miriam Osterfield, Ruth E. Baker, and Stanislav Y. Shvartsman.
Vertex models of epithelial morphogenesis. Biophysical Journal, 106(11):2291–2304,
2014.

[98] James M Osborne, Alexander G Fletcher, Joe M Pitt-Francis, Philip K Maini, and
David J Gavaghan. Comparing individual-based approaches to modelling the self-
organization of multicellular tissues. PLoS computational biology, 13(2):e1005387,
2017.

[99] L G Morelli, K Uriu, S Ares, and A C Oates. Computational Approaches to Develop-
mental Patterning. Science, 336(6078):187–191, 2012.

[100] Andrew C Oates, Nicole Gorfinkiel, Marcos Gonzalez-Gaitan, and Carl-Philipp
Heisenberg. Quantitative approaches in developmental biology. Nature Reviews
Genetics, 10(8):517, 2009.

[101] AM Turing. The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society of London. Series B, Biological Sciences, 237(641):37–72, 1952.

[102] Stuart A. Newman, H.L. Frisch, and J.K. Percus. On the stationary state analysis of
reaction-diffusion mechanisms for biological pattern formation. Journal of Theoretical
Biology, 134(2):183 – 197, 1988.

[103] T. Tallinen, J. Y. Chung, J. S. Biggins, and L. Mahadevan. Gyrification from con-
strained cortical expansion. Proceedings of the National Academy of Sciences,
111(35):12667–12672, 2014.

[104] Tuomas Tallinen and John S. Biggins. Mechanics of invagination and folding: Hy-
bridized instabilities when one soft tissue grows on another. Physical Review E -
Statistical, Nonlinear, and Soft Matter Physics, 92(2):1–8, 2015.

[105] Edouard Hannezo, Jacques Prost, and Jean François Joanny. Mechanical instabilities
of biological tubes. Physical Review Letters, 109(1):1–5, 2012.

[106] Stephanie Höhn, Aurelia R Honerkamp-Smith, Pierre A Haas, Philipp Khuc Trong,
and Raymond E Goldstein. Dynamics of a volvox embryo turning itself inside out.
Physical review letters, 114(17):178101, 2015.

[107] R E Baker, E A Gaffney, and P K Maini. Partial differential equations for self-
organization in cellular and developmental biology. Nonlinearity, 21(11):R251–R290,
2008.

[108] Deborah C. Markham, Ruth E. Baker, and Philip K. Maini. Modelling collective cell
behaviour. Discrete and Continuous Dynamical Systems, 34(12):5123–5133, 6 2014.

[109] A. Baskaran and M. C. Marchetti. Statistical mechanics and hydrodynamics of bacte-
rial suspensions. Proceedings of the National Academy of Sciences, 106(37):15567–
15572, 2009.

[110] Hermann B Frieboes. Overview: Modeling heterogeneous tumor tissue as a multiphase
material. bioRxiv, page 031534, 2015.

References 147

[111] Volker Grimm, Eloy Revilla, Uta Berger, Florian Jeltsch, Wolf M. Mooij, Steven F.
Railsback, Hans-Hermann Thulke, Jacob Weiner, Thorsten Wiegand, and Donald L.
DeAngelis. Pattern-oriented modeling of agent-based complex systems: Lessons from
ecology. Science, 310(5750):987–991, 2005.

[112] M. Wooldridge. Agent-based software engineering. IEE Proceedings - Software,
144:26–37(11), January 1997.

[113] Endre Somogyi, James P. Sluka, and James A. Glazier. Formalizing knowledge in
multi-scale agent-based simulations. Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems - MODELS ’16,
pages 115–122, 2016.

[114] W Brian Arthur. The nature of technology: What it is and how it evolves. Simon and
Schuster, 2009.

[115] Jack D Hywood, Kerry A Landman, and Emily J Hackett-Jones. Modeling biological
tissue growth: Discrete to continuum representations. Journal of Theoretical Biology,
259(3):541–551, 2009.

[116] Katie Bentley, Andrew Philippides, and Erzsébet Ravasz Regan. Do endothelial cells
dream of eclectic shape? Developmental Cell, 29(2):146–158, 2014.

[117] Zi Wang, Benjamin J. Ramsey, Dali Wang, Kwai Wong, Husheng Li, Eric Wang,
and Zhirong Bao. An Observation-Driven Agent-Based Modeling and Analysis
Framework for C. elegans Embryogenesis. Plos One, 11(11):e0166551, 2016.

[118] Tilo Beyer and Michael Meyer-Hermann. Modeling emergent tissue organization
involving high-speed migrating cells in a flow equilibrium. Physical Review E,
76(2):21929, 2007.

[119] Salem Adra, Tao Sun, Sheila MacNeil, Mike Holcombe, and Rod Smallwood. De-
velopment of a three dimensional multiscale computational model of the human
epidermis. PLoS ONE, 5(1), 2010.

[120] Dirk Drasdo and Stefan Höhme. A single-cell-based model of tumor growth in vitro:
monolayers and spheroids. Physical Biology, 2(3):133–147, 2005.

[121] Kerri-Ann Norton, Meghan M McCabe Pryor, and Aleksander S Popel. Multiscale
modeling of cancer. bioRxiv, page 033977, 2015.

[122] Seunghwa Kang, Simon Kahan, Jason McDermott, Nicholas Flann, and Ilya Shmule-
vich. Biocellion: Accelerating computer simulation of multicellular biological system
models. Bioinformatics, 30(21):3101–3108, 2014.

[123] Biocellion. http://biocellion.com.

[124] MathCancer. http://mathcancer.org.

[125] Ahmadreza Ghaffarizadeh, Randy Heiland, Samuel H Friedman, Shannon M Mumen-
thaler, and Paul Macklin. Physicell: An open source physics-based cell simulator for
3-d multicellular systems. PLoS Computational Biology, 14(2):e1005991, 2018.

http://biocellion.com
http://mathcancer.org

148 References

[126] Katarzyna A Rejniak. Systems Biology of Tumor Microenvironment, volume 936.
Springer, 2016.

[127] Joe Pitt-Francis, Pras Pathmanathan, Miguel O. Bernabeu, Rafel Bordas, Jonathan
Cooper, Alexander G. Fletcher, Gary R. Mirams, Philip Murray, James M. Osborne,
Alex Walter, S. Jon Chapman, Alan Garny, Ingeborg M.M. van Leeuwen, Philip K.
Maini, Blanca Rodríguez, Sarah L. Waters, Jonathan P. Whiteley, Helen M. Byrne,
and David J. Gavaghan. Chaste: A test-driven approach to software development
for biological modelling. Computer Physics Communications, 180(12):2452 – 2471,
2009.

[128] Gary R. Mirams, Christopher J. Arthurs, Miguel O. Bernabeu, Rafel Bordas, Jonathan
Cooper, Alberto Corrias, Yohan Davit, Sara Jane Dunn, Alexander G. Fletcher,
Daniel G. Harvey, Megan E. Marsh, James M. Osborne, Pras Pathmanathan, Joe
Pitt-Francis, James Southern, Nejib Zemzemi, and David J. Gavaghan. Chaste: An
Open Source C++ Library for Computational Physiology and Biology. PLoS Compu-
tational Biology, 9(3), 2013.

[129] CHaSTE Project. http://www.cs.ox.ac.uk/chaste/index.html.

[130] Robert J Tetley, Guy B Blanchard, Alexander G Fletcher, Richard J Adams, and
Bénédicte Sanson. Unipolar distributions of junctional myosin ii identify cell stripe
boundaries that drive cell intercalation throughout drosophila axis extension. eLife,
5:e12094, 2016.

[131] Alexander G Fletcher, Philip J Murray, and Philip K Maini. Multiscale modelling of
intestinal crypt organization and carcinogenesis. Mathematical Models and Methods
in Applied Sciences, 25(13):2563–2585, 2015.

[132] J. M. Osborne, A. Walter, S. K. Kershaw, G. R. Mirams, A. G. Fletcher, P. Path-
manathan, D. Gavaghan, O. E. Jensen, P. K. Maini, and H. M. Byrne. A hy-
brid approach to multi-scale modelling of cancer. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
368(1930):5013–5028, 2010.

[133] Ion I. Moraru, James C. Schaff, Boris M. Slepchenko, and Leslie M. Loew. The
Virtual Cell. Annals of the New York Academy of Sciences, 971(1):595–596, 2002.

[134] Diana C. Resasco, Fei Gao, Frank Morgan, Igor L. Novak, James C. Schaff, and
Boris M. Slepchenko. Virtual cell: computational tools for modeling in cell biology.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 4(2):129–140, 2012.

[135] Michael L Blinov, James C Schaff, Dan Vasilescu, Ion I Moraru, Judy E Bloom, and
Leslie M Loew. Compartmental and spatial rule-based modeling with virtual cell.
Biophysical Journal, 113(7):1365–1372, 2017.

[136] Virtual Cell Project. http://vcell.org.

[137] Nicholas Hernjak, Boris M. Slepchenko, Kathleen Fernald, Charles C. Fink, Dale
Fortin, Ion I. Moraru, James Watras, and Leslie M. Loew. Modeling and analysis of
calcium signaling events leading to long-term depression in cerebellar purkinje cells.
Biophysical Journal, 89(6):3790 – 3806, 2005.

http://www.cs.ox.ac.uk/chaste/index.html
http://vcell.org

References 149

[138] Olgierd Cecil Zienkiewicz. The Finite Element Method. McGraw-hill London, 1977.

[139] Wu-Ling Zhao and W. Jason Morgan. Injection of Indian crust into Tibetan lower
crust: A two-dimensional finite element model study. Tectonics, 6(4):489–504, 1987.

[140] M. L. Hull. A Finite Element Model of the Human Knee Joint for the Study of
Tibio-Femoral Contact. Journal of Biomechanical Engineering, 124(3):273, 2002.

[141] G. Wayne Brodland and Jim H. Veldhuis. The Mechanics of Metastasis: Insights from
a Computational Model. PLoS ONE, 7(9), 2012.

[142] G. Wayne Brodland, Denis Viens, and Jim H. Veldhuis. A new cell-based FE model
for the mechanics of embryonic epithelia. Computer Methods in Biomechanics and
Biomedical Engineering, 10(2):121–128, 2007.

[143] G Wayne Brodland, Justina Yang, and Jen Sweny. Cellular interfacial and surface
tensions determined from aggregate compression tests using a finite element model.
HFSP Journal, 3(4):273–81, 2009.

[144] Seyed Jamaleddin Mousavi, Mohamed Hamdy Doweidar, and Manuel Doblaré. 3D
computational modelling of cell migration: A mechano-chemo-thermo-electrotaxis
approach. Journal of Theoretical Biology, 329:64–73, 2013.

[145] S. J. Mousavi, M. H. Doweidar, and M. Doblaré. Computational modelling and analy-
sis of mechanical conditions on cell locomotion and cell-cell interaction. Computer
Methods in Biomechanics and Biomedical Engineering, 17(6):678–693, 2014.

[146] A Munjiza, DRJ Owen, and N Bicanic. A combined finite-discrete element method in
transient dynamics of fracturing solids. Engineering Computations, 12(2):145–174,
1995.

[147] Antonio A Munjiza. The Combined Finite-Discrete Element Method. John Wiley &
Sons, 2004.

[148] Katarzyna A Rejniak. An immersed boundary framework for modelling the growth
of individual cells: An application to the early tumour development. Journal of
Theoretical Biology, 247(1):186–204, 2007.

[149] Charles S Peskin. The immersed boundary method. Acta numerica, 11:479–517,
2002.

[150] Charles S. Peskin. Flow patterns around heart valves: A numerical method. Journal
of Computational Physics, 10(2):252–271, 1972.

[151] Alexandre M Roma, Charles S Peskin, and Marsha J Berger. An Adaptive Version of
the Immersed Boundary Method. Journal of Computational Physics, 153(2):509–534,
1999.

[152] Katarzyna A Rejniak. An immersed boundary model of the formation and growth of
solid tumors. Technical report, MBI Technical Report 19, Mathematical Biosciences
Institute, The Ohio State University, 2004.

150 References

[153] K Rejniak. A computational model of the mechanics of growth of the villous tro-
phoblast bilayer. Bulletin of Mathematical Biology, 66(2):199–232, 2004.

[154] Jennifer Young and Sorin Mitran. A numerical model of cellular blebbing: A volume-
conserving, fluid–structure interaction model of the entire cell. Journal of Biomechan-
ics, 43(2):210–220, 2010.

[155] Yu-Hau Tseng and Huaxiong Huang. An immersed boundary method for endocytosis.
Journal of Computational Physics, 273(Supplement C):143 – 159, 2014.

[156] Robert Dillon, Lisa Fauci, Aaron Fogelson, and Donald Gaver III. Modeling Biofilm
Processes Using the Immersed Boundary Method. Journal of Computational Physics,
129(1):57–73, 1996.

[157] John Von Neumann, Arthur W Burks, et al. Theory of self-reproducing automata.
IEEE Transactions on Neural Networks, 5(1):3–14, 1966.

[158] Gérard Y. Vichniac. Simulating physics with cellular automata. Physica D: Nonlinear
Phenomena, 10(1):96 – 116, 1984.

[159] Martin Gardner. Mathematical games: The fantastic combinations of John Conway’s
new solitaire game “life”. Scientific American, 223(4):120–123, 1970.

[160] Christopher G. Langton. Studying artificial life with cellular automata. Physica D:
Nonlinear Phenomena, 22(1-3):120–149, 1986.

[161] G B Ermentrout and L Edelstein-Keshet. Cellular automata approaches to biological
modeling. Journal of Theoretical Biology, 1993.

[162] M Markus, D Böhm, and M Schmick. Simulation of vessel morphogenesis using
cellular automata. Mathematical Biosciences, 156(1):191–206, 1999.

[163] N J Savill and P Hogeweg. Modelling morphogenesis: from single cells to crawling
slugs. Journal of Theoretical Biology, 184:229–235, 1997.

[164] R J Matela, R Ransomt, and M A Bowles. Computer simulation of compartment
maintenance in the Drosophila wing imaginal disc. Journal of Theoretical Biology,
103(3):357–378, 1983.

[165] Zoltán Csahók and Tamás Vicsek. Lattice-gas model for collective biological motion.
Physical Review E, 52:5297–5303, 1995.

[166] M Alber, M Kiskowski, Y Jiang, and S Newman. Biological lattice gas models. In
Gerhard Dangelmayr and Iuliana Oprea, editors, Dynamics and Bifurcation of Patterns
in Dissipative Systems, chapter 14, pages 274–292. World Scientific, 2004.

[167] F. Y. Wu. The potts model. Rev. Mod. Phys., 54:235–268, Jan 1982.

[168] M Krasnytska, P Sarkanych, and B Berche. Marginal dimensions of the Potts model
with invisible states. Journal of Physics A: Mathematical and Theoretical, 49(25):1–15,
2016.

References 151

[169] F Graner and J A Glazier. Simulation of biological cell sorting using a two-dimensional
extended Potts model. Physical Review Letters, 69(13):2013–2016, 1992.

[170] J A Glazier and F Graner. Simulation of the differential adhesion driven rearrangement
of biological cells. Physical Review E, 47(3):2128, 1993.

[171] James A Glazier. The Dynamics of 2D Cellular Patterns. PhD thesis, University of
Chicago, 1989.

[172] JA Glazier and A Upadhyaya. First steps towards a comprehensive model of tissues,
or: A physicist looks at development. In Dynamical Networks in Physics and Biology,
pages 149–160. Springer, 1998.

[173] J C M Mombach, J A Glazier, R C Raphael, and M Zajac. Quantitative comparison
between differential adhesion models and cell sorting in the presence and absence of
fluctuations. Physical Review Letters, 75(11):2244–2247, 1995.

[174] D A Beysens, G Forgacs, and J A Glazier. Cell sorting is analogous to phase ordering
in fluids. Proceedings of the National Academy of Sciences, 97(17):9467–9471, 2000.

[175] Noriyuki Bob Ouchi, James A Glazier, Jean-Paul Rieu, Arpita Upadhyaya, and Yasuji
Sawada. Improving the realism of the cellular Potts model in simulations of biological
cells. Physica A: Statistical Mechanics and its Applications, 329(3-4):451–458, 2003.

[176] Pavel Kraikivski. Trends in Biophysics: From Cell Dynamics Toward Multicellular
Growth Phenomena. CRC Press, 2013.

[177] Yi Jiang, Pieter J. Swart, Avadh Saxena, Marius Asipauskas, and James A. Glazier.
Hysteresis and avalanches in two-dimensional foam rheology simulations. Physical
Review E, 59:5819–5832, 1999.

[178] J A Izaguirre, R Chaturvedi, C Huang, T Cickovski, J Coffland, G Thomas, G Forgacs,
M Alber, G Hentschel, S A Newman, and J A Glazier. COMPUCELL, a multi-model
framework for simulation of morphogenesis. Bioinformatics, 20(7):1129–1137, 2004.

[179] H Honda. Description of cellular patterns by Dirichlet domains: The two-dimensional
case. Journal of Theoretical Biology, 1978.

[180] Tatsuzo Nagai and Hisao Honda. A dynamic cell model for the formation of epithelial
tissues. Philosophical Magazine Part B, 81(7):699–719, 2001.

[181] Christian Dahmann, Andrew C Oates, and Michael Brand. Boundary formation and
maintenance in tissue development. Nature Reviews Genetics, 12(1):43, 2011.

[182] Hisao Honda, Tatsuzo Nagai, and Masaharu Tanemura. Two different mechanisms
of planar cell intercalation leading to tissue elongation. Developmental Dynamics,
237(7):1826–1836, 2008.

[183] Hisao Honda, Masaharu Tanemura, and Tatsuzo Nagai. A three-dimensional vertex
dynamics cell model of space-filling polyhedra simulating cell behavior in a cell
aggregate. Journal of Theoretical Biology, 226(4):439–453, 2004.

152 References

[184] Daniel L Barton, Silke Henkes, Cornelis J Weijer, and Rastko Sknepnek. Active
vertex model for cell-resolution description of epithelial tissue mechanics. PLoS
Computational Biology, 13(6):e1005569, 2017.

[185] Dapeng Bi, Xingbo Yang, M. Cristina Marchetti, and M. Lisa Manning. Motility-
driven glass and jamming transitions in biological tissues. Physical Review X, 6(2):1–
13, 2016.

[186] Timothy J Newman. Modeling multicellular structures using the subcellular ele-
ment model. In Single-Cell-Based Models in Biology and Medicine, pages 221–239.
Springer, 2007.

[187] Sebastian A Sandersius and Timothy J Newman. Modeling cell rheology with the
Subcellular Element Model. Physical Biology, 5(1):15002, 2008.

[188] S A Sandersius, M Chuai, C J Weijer, and T J Newman. A ‘chemotactic dipole’
mechanism for large-scale vortex motion during primitive streak formation in the
chick embryo. Physical Biology, 8(4):45008, 2011.

[189] Sebastian A Sandersius, Manli Chuai, Cornelis J Weijer, and Timothy J Newman.
Correlating Cell Behavior with Tissue Topology in Embryonic Epithelia. PLoS ONE,
6(4):e18081, 2011.

[190] S A Sandersius, C J Weijer, and T J Newman. Emergent cell and tissue dynamics from
subcellular modeling of active biomechanical processes. Physical Biology, 8(4):45007,
2011.

[191] R.L. Gardner. The axis of polarity of the mouse blastocyst is specified before blastula-
tion and independently of the zona pellucida. Human Reproduction, 22(3):798–806,
2007.

[192] Pawel Krupinski, Vijay Chickarmane, and Carsten Peterson. Simulating the Mam-
malian Blastocyst - Molecular and Mechanical Interactions Pattern the Embryo. PLoS
Computational Biology, 7(5):e1001128, 2011.

[193] Pawel Krupinski, Vijay Chickarmane, and Carsten Peterson. Computational multiscale
modeling of embryo development. Current Opinion in Genetics & Development,
22(6):613–618, 2012.

[194] Philip M. Morse. Diatomic Molecules According to the Wave Mechanics. II. Vibra-
tional Levels. Physical Review, 34:57–64, Jul 1929.

[195] L. A. Girifalco and V. G. Weizer. Application of the morse potential function to cubic
metals. Physical Review, 114:687–690, May 1959.

[196] Tamar Schlick. Molecular Modeling and Simulation: an Interdisciplinary Guide,
volume 21. Springer Science & Business Media, 2010.

[197] Boris Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk, 7(793-800):1–2, 1934.

References 153

[198] Robert J Renka. Algorithm 772: Stripack: Delaunay triangulation and voronoi diagram
on the surface of a sphere. ACM Transactions on Mathematical Software (TOMS),
23(3):416–434, 1997.

[199] Jacob Stirling. Methodus Differentialis. Whiston and White, 1764.

[200] Edward J Groth and PJE Peebles. Statistical analysis of catalogs of extragalactic
objects. vii-two-and three-point correlation functions for the high-resolution shane-
wirtanen catalog of galaxies. The Astrophysical Journal, 217:385–405, 1977.

[201] Thomas Williams, Colin Kelley, and many others. Gnuplot 4.6: an interactive plotting
program. http://gnuplot.sourceforge.net/, April 2013.

[202] Chris H. Rycroft, Gary S. Grest, James W. Landry, and Martin Z. Bazant. Analysis of
granular flow in a pebble-bed nuclear reactor. Physical Review E, 74:021306, 2006.

[203] Persistence of Vision Pty. Ltd. Persistence of vision raytracer (version 3.7). http:
//www.povray.org/download/.

[204] Uberpov. http://megapov.inetart.net/povrayunofficial_mac/uberpov.html.

[205] Matthias Müller, Simon Schirm, Matthias Teschner, Bruno Heidelberger, and Markus
Gross. Interaction of fluids with deformable solids. Computer Animation and Virtual
Worlds, 15(3-4):159–171, 2004.

[206] Geoffrey Irving, Craig Schroeder, and Ronald Fedkiw. Volume conserving finite
element simulations of deformable models. In ACM Transactions on Graphics (TOG),
volume 26, page 13. ACM, 2007.

[207] Hongyuan Jiang and Sean X Sun. Cellular Pressure and Volume Regulation and
Implications for Cell Mechanics. Biophysical Journal, 105(3):609–619, 2013.

[208] Emmanuel Promayon, Pierre Baconnier, and Claude Puech. Physically-based de-
formations constrained in displacements and volume. In Computer graphics forum,
volume 15, pages 155–164. Wiley Online Library, 1996.

http://gnuplot.sourceforge.net/
http://www.povray.org/download/
http://www.povray.org/download/
http://megapov.inetart.net/povrayunofficial_mac/uberpov.html

Appendix A

Volume Conservation

In early iterations of our model, we were concerned at the possibility that cells could become
compressed by forces applied to them, rather than retaining their volume and transmitting
those forces to their neighbours. This could result in dissipation of energy introduced into
the system by division. Therefore, we decided to investigate how the simulations could be
updated to conserve the volume of cells in the system. However, once cortical tension was
introduced using a Delaunay triangulation, it became clear that compression and volume
variation was not a problem. Furthermore, the volume conservation routine discussed below
dramatically slowed the simulation run times. It was thus deemed unnecessary for the main
results of this thesis, but its implementation is discussed here for completeness.

Conservation of volume in a deformable object is a difficult problem best treated with
fluid dynamics or finite element modelling [205, 206]. Indeed, some work has been done
in the past using fluid dynamics to model cellular systems, notably the immersed boundary
method [Chapter 2]. Otherwise, mathematical models of cellular volume regulation have
focussed on how cells achieve this regulation [207], which is unsuitable for our purposes.

Fortunately, one method for conserving volume in particulate systems has been identified
in the literature. Promayon et al. [208] detailed their method in a 1996 paper, referencing
the possibility for modelling a system such as the effect of varying lung volume on the shape
of the chest cavity. The particle-based nature of this method made it suitable for application
to SEM cells. What follows is a description of their method and its implementation in SEM
simulations.

The volume of the system - in our case a cell - is defined by the position of a set of
n boundary particles. Changing the position of any one of these particles can change the
volume of the system. These particle positions define a state vector for the system. The state
vector has 3n components, each corresponding to one of 3 spatial dimensions for one of n

156 Volume Conservation

(a) State vector on the surface of constant volume.

(b) System perturbed by external forces; shifts the state vector off the surface of constant
volume.

(c) Find perpendicular from surface of constant volume to position of perturbed state vector.

(d) Move the system state vector along the perpendicular onto the surface of constant volume.

(e) Displacement of system now a combination of perturbation and adjustment to conserve
volume.

Fig. A.1 Diagram demonstrating the Promayon volume conservation algorithm.

157

(a) Vector perpendicular to surface of constant volume at original position is approximately
equal to that at the nearest point on the surface to the perturbed system position.

(b) By shifting system state by a vector found by projecting the original perturbation along
the gradient at the original position, the system is moved back approximately to the surface
of constant volume.

Fig. A.2 Diagram demonstrating streamlined approximation of Promayon algo-
rithm.

particles. With the state vector thus defined, there must be a surface in the state space upon
which all system states with a given volume lie [Figure A.1a].

When forces act upon the system, the resulting deformation changes the positions of
the boundary particles and can shift the state vector away from the surface of constant
volume [Figure A.1b]. The hypothesis of Promayon et al. is that from this point, the most
appropriate approximation to introduce in order to conserve the volume of this system whilst
allowing deformation is to artificially move the state vector back to the surface of constant
volume with the smallest possible adjustment. The smallest possible adjustment is that
which is perpendicular to the surface of constant volume in state space [Figure A.1]. Thus
we can find the final state of the system, Q after an adjustment to conserve the volume
by formulating a set of differential equations such that the 3n vector between Q and the
perturbed position P is some multiple of the gradient of the surface of constant volume at Q,
a∇Φ

(
Q
)

[Equation A.1].

Q−P = a∇Φ
(
Q
)

(A.1)

Unfortunately this algorithm is computationally heavy, and to apply it to a large number
of cells over an even larger number of time steps is not feasible, so we decided to try an
approximation. If we assume that curvature of the surface of constant volume is minimal,

158 Volume Conservation

D(:)=0
do i=1, cells(c)%cortex_elements(0)

P_1(3*(i-1)+1) = elements(cells(c)%cortex_elements(i))%position(1)
P_1(3*(i-1)+2) = elements(cells(c)%cortex_elements(i))%position(2)
P_1(3*(i-1)+3) = elements(cells(c)%cortex_elements(i))%position(3)

end do
do i=1, cells(c)%cortex_elements(0)

do j=1, cells(c)%triplet_count
do k=1, 3

if(cells(c)%triplets(k,j).EQ.cells(c)%cortex_elements(i)) then
if(k.EQ.1) then

P(:) = xe_prev(cells(c)%triplets(1,j),:) - cells(c)%position(:)
Q(:) = xe_prev(cells(c)%triplets(2,j),:) - cells(c)%position(:)
R(:) = xe_prev(cells(c)%triplets(3,j),:) - cells(c)%position(:)

elseif(k.EQ.2) then
P(:) = xe_prev(cells(c)%triplets(2,j),:) - cells(c)%position(:)
Q(:) = xe_prev(cells(c)%triplets(1,j),:) - cells(c)%position(:)
R(:) = xe_prev(cells(c)%triplets(3,j),:) - cells(c)%position(:)

else
P(:) = xe_prev(cells(c)%triplets(3,j),:) - cells(c)%position(:)
Q(:) = xe_prev(cells(c)%triplets(1,j),:) - cells(c)%position(:)
R(:) = xe_prev(cells(c)%triplets(2,j),:) - cells(c)%position(:)

end if
QcrossR = CROSS_PRODUCT(Q,R)
volume_fragment = DOT_PRODUCT(P,QcrossR)
D(3*i-2:3*i) = D(3*i-2:3*i) + SIGN(1.0,volume_fragment)*QcrossR
EXIT

else
CYCLE

endif
end do

end do
enddo
do l=1, cells(c)%cortex_elements(0)

F(l*3-2) = elements(cells(c)%cortex_elements(l))%position(1) -
xe_prev(cells(c)%cortex_elements(l),1)↪→

F(l*3-1) = elements(cells(c)%cortex_elements(l))%position(2) -
xe_prev(cells(c)%cortex_elements(l),2)↪→

F(l*3) = elements(cells(c)%cortex_elements(l))%position(3) -
xe_prev(cells(c)%cortex_elements(l),3)↪→

enddo

Code Block A.1 Identifying state vector and perturbation vector from cortex
element positions and calculating gradient vector.

159

D_magnitude_sq=0
do l=1, 3*cells(c)%cortex_elements(0)

D_magnitude_sq = D_magnitude_sq + D(l)**2
enddo
D_magnitude = SQRT(D_magnitude_sq)
E_magnitude = DOT_PRODUCT(F,D)/D_magnitude
E(:) = E_magnitude*D(:)/D_magnitude
P_2(:) = P_1(:) + E(:)
do l=1, cells(c)%cortex_elements(0)

elements(cells(c)%cortex_elements(l))%position(1) = P_2(3*(l-1)+1)
elements(cells(c)%cortex_elements(l))%position(2) = P_2(3*(l-1)+2)
elements(cells(c)%cortex_elements(l))%position(3) = P_2(3*(l-1)+3)

end do

Code Block A.2 Projecting gradient vector along perturbation.

then to first order the gradient of the surface of constant volume at the position closest to
that of the perturbed system, as found in the original method, is approximately equal to
the gradient of the surface of constant volume at the original position of the system. By
projecting the original perturbation vector along this direction, the system can be shifted to a
position close to that found by the original algorithm, approximately conserving its volume.

This method was implemented in the SEM program with subroutine
scem_volume_conserve. This subroutine performs a loop over all cells in the sys-
tem, and for each cell begins by constructing the 3n state vector of the cell, P_1, where n is
the total number of cortex elements in the cell on which the routine is currently operating.
Subsequently, a loop over all cortex elements in the cell and all triplets identifies non-zero
components of the gradient of the surface of constant volume, which are stored in vector D
[Code block A.1]. The code then calculates the perturbation vector, F from the difference
between previous and current element positions

Finally, the last part of the volume conservation routine [Code block A.2] projects F along
the direction defined by D, resulting in vector E. This vector E is then added to the perturbed
position P_1, to produce the state of the system after volume conservation, P_2. From this
state vector, the new positions of all cortex elements are extracted.

This routine ran quickly enough to be feasible, but still significantly slowed all simulations.
It seemed to perform volume conservation reasonably well, but it was quickly eventually
decided that this was unnecessary for the purposes of our model. However, the routine may
have some use in other systems, such as in modelling sedimentation in colloidal suspensions.

160 Volume Conservation

Fig. A.3 Diagram of one tetrahedron used to calculate the volume of a cell

volume_cell = 0
do i=1, cells(j)%triplet_count

volume_triplet=0
P = elements(cells(j)%triplets(1,i))%position - cells(j)%position
Q = elements(cells(j)%triplets(2,i))%position - cells(j)%position
R = elements(cells(j)%triplets(3,i))%position - cells(j)%position
volume_triplet = DOT_PRODUCT(P,CROSS_PRODUCT(Q,R))/6.0
volume_cell = volume_cell + ABS(volume_triplet)

end do
cells(j)%volume = volume_cell

Code Block A.3 Cell volume calculation from scem_volume_calculate

In addition to the routine for conserving volume, we also created a routine for simply
calculating the volume of each cell, scem_volume_calculate [Code block A.3]. This routine
uses all Delaunay triangles defined over the surface of each cell, for each triangle creating
a tetrahedron with the centre of mass of the cell [Figure A.3]. Taking 3 edge vectors of
this tetrahedron, P, Q, and R, the volume of the tetrahedron is then given by 1

2P · (Q×R).
Summing the volumes of each tetrahedron in the cell gives the volume of the cell, which can
then be stored in the volume component of the cells data structure.

	Table of contents
	List of figures
	1 Introduction to Self-Organisation, Embryogenesis, and Cell Sorting
	1.1 A Definition of Self-Organisation
	1.2 Blastocyst Formation
	1.3 Lineage Specification in the Inner Cell Mass
	1.4 Physical Mechanisms of Tissue Self-Organisation
	1.4.1 Sources of Differing Mutual Affinity
	1.4.2 Energetic Mechanisms Driving Kinetics

	2 Introduction to Tissue Modelling
	2.1 Mathematical Modelling
	2.2 Agent-Based or Individual-Based Models
	2.2.1 Biocellion
	2.2.2 PhysiCell

	2.3 CHaSTE
	2.4 Virtual Cell
	2.5 Finite Element Models
	2.5.1 FEM/DEM

	2.6 Immersed Boundary Model
	2.7 Cellular Automata
	2.7.1 Cellular Potts Models

	2.8 Vertex Methods
	2.9 Subcellular Element Method
	2.10 Models of the Blastocyst and Inner Cell Mass

	3 The Sub-cellular Element Method
	3.1 Theoretical Foundations
	3.2 The SEM Program
	3.2.1 Data Structures
	3.2.2 Initialisation
	3.2.3 Sector Array
	3.2.4 Interaction Pairs
	3.2.5 Growth
	3.2.6 Division
	3.2.7 Interaction Potential
	3.2.8 Updating
	3.2.9 Data Output
	3.2.10 Auxiliary Scripts

	4 Implementation of a Model of Cell Sorting with the Subcellular Element Method
	4.1 Cell Lineages
	4.2 Boundary and External Pressure
	4.3 Interaction Potentials
	4.4 Defining a Cortex
	4.5 Introducing Tension in Cortex
	4.5.1 Delaunay Triangulation Over Cortex Elements
	4.5.2 Applying Tension Forces Within Triangulation

	4.6 Differential Interfacial Tension
	4.6.1 Decoupling Tension From Adhesion

	4.7 Dynamic Tension and Blebbing
	4.8 Creating a Random Initial System

	5 Measures and Analyses
	5.1 Quantitative Measures of Sorting
	5.1.1 Radius Sorting Measure
	5.1.2 Neighbour Sorting Measure
	5.1.3 Surface Sorting Measure
	5.1.4 Randomised Control Systems
	5.1.5 Displacement Measure
	5.1.6 Alternative Measures

	5.2 Visualisation of Simulation Results
	5.2.1 POV-Ray

	6 Results
	6.1 Testing Doublet Interface Area
	6.1.1 Exploring Phase Space of Interface Proportion
	6.1.2 Variation of Interface with Interfacial Tension Factor

	6.2 Testing Energetic Mechanisms Driving Dynamics
	6.3 Testing Sorting By Differential Interfacial Tension
	6.3.1 Exploring Extent of Sorting in Adhesion and Interfacial Tension Space
	6.3.2 Variation of Sorting with Interfacial Area

	6.4 Effect of Dynamic Tension on Sorting in Adhesion and Interfacial Tension Space
	6.5 Sorting Kinetics

	7 Conclusions
	7.1 Conclusions
	7.2 Remaining Questions

	References
	Appendix A Volume Conservation

