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Forbidden links are defined as pairwise interactions that are prevented by the biological 14 

traits of the species. Here, we focus on the neglected importance of intraspecific trait 

variation in the forbidden link concept. We show how intraspecific trait variability at 16 

different spatiotemporal scales, and through ontogeny, reduces the expected prevalence of 

forbidden interactions. We also highlight how behaviour can foster interactions that, from 18 

traits, would be predicted as forbidden. We therefore discuss the drawbacks of frameworks 

recently developed to infer biotic interactions using available trait data (mean values). 20 

Mispredictions can have disproportionate effects on inferences about community dynamics. 

Thus, we suggest including intraspecific trait variability in trait-based models and using 22 

them to guide the sampling of real interactions in the field for validation. 

 24 

What are forbidden interactions and why do they matter? 

Biotic interactions across trophic levels govern the dynamics of communities and the 26 

functioning of ecosystems [1-5]. Interspecies relationships not only determine energy 

fluxes [6], but also mediate key ecological functions such as mycorrhizal-mediated mineral 28 

nutrition [7], animal-mediated pollination and seed dispersal [8]. When sampling such 

interactions in the field, the norm is that certain pairwise interactions remain undetected, 30 

named the missing and forbidden links [9,10]. Missing links (see Glossary) are possible 

but hardly observable interactions, whereas forbidden links are pairwise interactions that 32 

are prevented by biological traits of the species [9,10], such as their size, morphology, 

phenology, physiology–biochemistry or habitat specificity. For instance, large-sized food 34 

items, like animal preys or fruits, can preclude consumption by small-gaped eaters [11-15], 

whereas non-overlapping phenologies impede the temporal encounter between potentially 36 

interacting species [10]. Indeed, both morphology and phenology explain a huge fraction of 

unobserved interactions in pollination and frugivory networks [10]. By constraining the 38 

number of possible interactions, forbidden interactions are of major importance for the 
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structure and functioning of ecological networks, including food webs and bipartite 40 

networks of mutualistic and antagonistic systems [16-22]. 

 Largely motivated by the ongoing biodiversity crisis, ecologists have recently 42 

stressed the need for inferring biotic interactions at wide geographical scales [15,23-26], 

acknowledging interactions are key for predicting species distributions in response to 44 

global change pressures [27-29]. To cope with this demand, Morales-Castilla et al. [24] 

have recently presented a new conceptual framework to infer pairwise interactions in 46 

unknown systems, that is, the elements that build up complex networks of ecological 

relationships. The framework is based on trait matching, particularly, on the use of 48 

available trait data (e.g. body size) to establish forbidden links [24]. A critical question that 

arises from such predictive attempts is: how accurately can we establish forbidden links 50 

using available trait information? In other words, how reliably can we infer different types 

of pairwise interactions using available trait data? 52 

 Here, we focus on the neglected importance of intraspecific trait variability in the 

forbidden link concept, which is usually considered as a categorical fact (forbidden or not) 54 

rather than as a trait-matching continuum. Matching traits can vary dramatically within a 

species across space (see Box 1), between individuals within populations and between 56 

populations within its whole distribution range [30-33]. But matching traits can vary even 

more in time (Box 1), between years and through the ontogenetic stages of individuals. We 58 

show how intraspecific trait variability at different spatiotemporal scales reduces the 

expected prevalence of forbidden interactions (Box 1), thereby increasing species degree 60 

and overall network connectance. We also highlight that behaviour can foster pairwise 

interactions that would rarely be expected from trait data. Consequently, we discuss the 62 

potential limits and drawbacks of using mean values available from trait databases [34-36] 

to infer pairwise interactions and community dynamics. Although the trait-matching 64 
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approach can be useful for elucidating general patterns within already sampled systems, we 

argue that it could fail to detect key interactions that allow species co-occurrences and drive 66 

critical ecological functions. 

 68 

How accurately can we assign forbidden links using available trait data? 

The forbidden link concept has proved useful to explain a posteriori interaction degree and 70 

some emergent properties of empirical networks [10,21,37]. In these analyses, forbidden 

links are regarded as immutable realities within the studied systems, i.e. as structural zeros 72 

in the adjacency matrices of interacting species [10,21,24]. This rigid view has probably 

been fostered by strong trait-matching evidence from networks in which interaction 74 

sampling was coupled with trait measurements [10,21,37]. However, it is widely 

recognized that empirical networks represent temporal snapshots (weeks, months, or at best 76 

a few years) of complex interactions sampled at a particular site [38]. Because traits are a 

suitable post hoc explanation of interaction patterns in these ‘well-known’ snapshots [37], 78 

can we then use traits to accurately infer pairwise interactions in unknown systems? 

 The framework proposed by Morales-Castilla et al. [24] relies on the use of available 80 

trait information (or phylogenetic distance as a surrogate for trait similarity if information 

on traits is unavailable). Global databases of functional traits are currently accessible for 82 

different taxonomic groups, including plants, birds, mammals, reptiles and amphibians [34-

36]. These data consist of trait mean values, which should ideally represent averages for all 84 

individuals of each species across its whole distribution range. The reality is that trait 

means usually account for a small number of individuals measured at a particular location 86 

in a certain moment. But more limiting than their representativeness is the fact that trait 

means neglect the existing intraspecific variation, thus, they underestimate the degree of 88 

trait matching by overestimating the incidence of forbidden interactions (Figure 1, Box 1). 
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The latter can lead to serious misinterpretations about the dynamics and functioning of the 90 

inferred ecosystems. 

 Conspecific individuals differ in the multiple traits that produce their phenotypes. 92 

Such variability was indeed the essence for the Darwin’s theory of evolution by natural 

selection and is considered to be crucial in many ecological and evolutionary processes [39-94 

41]. Intraspecific trait variability enhances average interaction degree of species and 

network connectance (Figure 1, Box 1), thereby robustness to secondary extinctions 96 

[42,43]. In the following sections, we address the role of different sources of intraspecific 

variation on the degree of trait matching between species. Moreover, we discuss the 98 

importance of behaviour in allowing interactions that would be predicted as forbidden on 

the basis of available traits. 100 

 

Matching traits vary in space and time 102 

The most pervasive cases of intraspecific trait variation are among-individual differences in 

age and sex [39,44]. We specifically focus on ontogenetic trait variation in the next section, 104 

since traits and interactions can vary tremendously between individuals of different age or 

life stage. Sexual dimorphisms typically entail differences in size or shape, which can lead 106 

each gender to interact with different species [45,46]. For instance, males and females of 

the purple-throated carib hummingbird (Eulampis jugularis) feed on two different 108 

Heliconia species whose flowers match to the shape and length of the bill of each gender 

[45]. In the Eurasian sparrowhawk (Accipiter nisus), the body size of females (185–342 g) 110 

is about double that of males (110–196 g) [47]. As a result, females prey on birds up to 150 

g (occasionally up to 500 g), mainly thrushes (Turdidae), starlings (Sturnidae) and pigeons 112 

(Columbidae), whereas males normally prey on birds up to 40 g, including tits (Paridae), 

finches (Fringillidae), sparrows (Passeridae) and buntings (Emberizidae) [48]. Both 114 

examples illustrate how sexual dimorphism increases intraspecific trait variability, thus, 
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interaction degree at the species level. Hence, some interactions can be forbidden for one 116 

gender but possible for the other. Yet, sex-dependent trophic niches with bimodal trait 

distribution are reduced to a single value in trait databases: the mean. 118 

 Furthermore, intraspecific trait variability can also be huge among individuals of the 

same sex and age. Species traits vary in space at different hierarchical levels or spatial 120 

scales [30,32,33], among individuals within populations and among populations across the 

species ranges (see Figure I in Box 1). In the case of plants, traits even vary within the same 122 

individual (see Figure II in Box 1), among leaves, flowers and fruits, organs that mediate 

several interactions with different types of feeding animals (herbivores, pollinators, 124 

florivores, seed dispersers and seed predators) [31,49]. Phenotypes result from the 

interaction between individuals’ genes and local environmental conditions, each source of 126 

variation having a specific relative weight in determining the expression of different traits 

[50]. Therefore, those traits that strongly depend on the local environment are prone to vary 128 

in time, between phenological events under different climate conditions (Box 1). For 

instance, water deficits reduce the size and alter the chemical composition of fruits [51]. 130 

Consequently, these traits can hugely vary between consecutive years even in the same 

individual plant, thus, in the same population, which increases uncertainty even when using 132 

local trait data to infer local interactions (Box 1). Despite its importance, intraspecific trait 

variability in time has been largely overlooked in community ecology [25,41]. 134 

 Regardless of whether the main source of variation is genetic or environmental, trait 

variability makes individuals of a given species (or plant organs) non-interchangeable from 136 

the perspective of their interacting partners (see Figure II in Box 1). Actually, different bird 

species have been reported to consume fruits of specific size distributions within the same 138 

plant species according to their gape widths [13,52]. Similarly, different flower visitors and 

herbivores have been documented to visit different individual plants according to their 140 
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flowering phenology, morphology and flower scent [53]. At the species level, the result of 

particular individuals (or plant organs) interacting with particular partner species is an 142 

increase in the possibilities of trait matching (see Figure II in Box 1), that is, a broader 

‘interaction niche’ generated by between-individual niche differences [39]. Whenever 144 

inheritable, such differences can also be the basis of evolutionary changes after the loss or 

gain of partner species [13]. 146 

 Conversely, a framework that uses trait means to infer biotic interactions assumes 

that all individuals, thereby all populations, are interchangeable. This assumption can lead 148 

to important predictive errors associated to (i) the representativeness of available trait data 

and (ii) the neglect of intraspecific variation. First, trait means account for individuals 150 

sampled in one or a few locations during a particular moment. How well do these subsets 

represent a species average across its entire distribution? For example, mean diameter in 152 

myrtle (Myrtus communis) fruits can range from 7.3 to 10.4 mm, depending on which 

population and year the fruits were sampled (see Figure I in Box 1). Hence, using a trait 154 

mean obtained at a particular ‘site–year’ combination to infer interactions at different 

locations can lead to under- or overestimation of forbidden links, depending on the sign of 156 

the extrapolation error (e.g. from population L to M or vice versa; Figure I in Box 1). 

Secondly, using trait means raises concerns about the predicted prevalence of forbidden 158 

interactions when neglecting intraspecific variability. In the same example, myrtle fruits are 

predicted as fully prevented for Sardinian warblers (Sylvia melanocephala) when using 160 

mean diameters as interaction threshold, but such interaction is expected across myrtle 

populations when using minimum values as threshold (see Figure I in Box 1). Accordingly, 162 

there is empirical evidence that, indeed, Sardinian warblers regularly consume myrtle fruits 

in different regions [10,54,55]. The myrtle and the Sardinian warbler are common and 164 

locally abundant species in the studied sites, and abundance is a critical factor promoting 
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both the establishment and strength of interactions through increasing interspecies 166 

encounter rates [25,56], even when such interactions are predicted to be unlikely from 

traits. 168 

 

Ontogeny enlarges intraspecific trait variability 170 

Traits can hugely vary between the life stages of one species, which promotes stage-

specific interactions [44,57]. The first life stage of most organisms (e.g. seeds in plants, and 172 

eggs or newborn in animals) is normally tiny compared to adults. Thenceforth, ontogeny 

normally entails an increase in body size, thereby an allometric shift of interacting partners 174 

[12,57-59]. Keeping species roles as predators and prey, ontogeny not only allows young 

prey individuals to be consumed by smaller predator species (e.g. Figure 2a), but also adult 176 

and young predator individuals to feed on different prey species according to their size 

[12,14,58,59]. Therefore, ontogeny generates a broader niche space for both consumers and 178 

resources, allowing interactions that would be assigned as forbidden if we only look at the 

adult traits. Besides, individuals of some species can increase in weight by several orders of 180 

magnitude during their life, shifting their role from being a prey of certain species to being 

a predator of another species (Figure 2b). These vast shifts can promote reciprocal 182 

predation among species of the same trophic level and even cannibalism [14,57,59,60]. For 

instance, an egg of Nile crocodile (Crocodylus niloticus) weights ~0.1 kg while an adult 184 

typically exceeds 200 kg, i.e. four orders of magnitude larger [61,62]. Ontogenetic variation 

allows animals of ca. 1–10 kg such as monitor lizards (Varanidae), herons (Ardeidae) and 186 

ravens (Corvidae) to prey on the eggs and juveniles of this apex predator (Figure 2a), with 

profound effects on its demography [61,63]. Interestingly, ontogeny can reverse the 188 

direction of predation when adult predators can feed on those species which predate on 

their early life stages, leading to feeding loops (Figure 3). Such loops are remarkably 190 

common and can be of major importance for community dynamics [14,57,59,60]. 
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 It is not difficult to envisage that ontogenetic variability can generate an enormous 192 

uncertainty when attempting to predict biotic interactions using available trait means of 

adult individuals, which might lead us to wrong inferences about community dynamics. For 194 

instance, reciprocal predation through life-stage-specific interactions promotes coexistence 

between native Mohave tui chub (Siphateles bicolor mohavensis) and invasive western 196 

mosquitofish (Gambusia affinis) [14]. Gravel et al. [26] have recently proposed 

distinguishing ‘subspecies’ by size (ontogenetic) categories to build trait-based networks, 198 

which would describe more accurately those pairwise interactions involving species with 

size structured populations. A major limitation to this approach is the lack of available trait 200 

data for species’ life-stages other than the adult [34-36]. 

 202 

Behaviour can allow ‘forbidden’ interactions 

Species interactions that initially appear unlikely can eventually be established at ecological 204 

timescales through changes in animal behaviour. Animal innovations (i.e. animals behaving 

in an innovative way) have been described in a number of taxa, particularly in resource-206 

poor or novel environments [64]. For example, Laland & Reader [65] found that food-

deprived guppies (Poecilia reticulata) are more likely to develop foraging innovations than 208 

non-food-deprived individuals. Tinker et al. [66] found analogous results in California sea 

otters (Enhydra lutris nereis) at a resource-limited site, where individuals specialized on 210 

different preys by acquiring specific behavioural skills. Birds are especially innovative in 

their foraging techniques [67] and recent experiments have demonstrated that the 212 

information can spread rapidly among individuals in the population through social network 

ties [68]. The kelp gulls (Larus dominicanus) at Peninsula Valdés provide an excellent 214 

example. In the 1970s, kelp gulls began to feed on skin and blubber of living southern right 

whales (Eubalaena australis) by pecking on their backs [69]. Since then, the percentage of 216 

living right whales (mothers and calves) with gull lesions has increased from 2% to 99% in 
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the 2000s, and wounding is now considered a major cause of whale mortality [70]. The gull 218 

population grew rapidly in the last decades parallel to the human population on the nearby 

mainland [69]. Rapid population growth is a common feature of biological invasions, and 220 

this example shows that the outcomes can be surprising in terms of interspecies 

interactions. Even more unexpected is the emergence of interactions between the sharp-222 

beaked finch (Geospiza difficilis) and different booby species (Sula spp.) on the small, 

isolated and food-limited islands of Wolf and Darwin (see Figure 2c). This finch feeds on 224 

insects and small seeds in the Galapagos Islands, but on Wolf and Darwin the so-called 

vampire finch also feeds on the blood and eggs of these seabirds [71]. Information on bill 226 

traits alone would rarely predict this strange but critical interaction for the sharp-beaked 

finch at the extreme of the archipelago. 228 

 Besides promoting interactions, behaviour can also modify the sign of pairwise 

interactions, from mutualistic (positive) to antagonistic (negative) or vice versa, leading to 230 

partner dualities. For instance, scatter-hoarding birds and mammals are seed predators but 

they also provide effective seed dispersal by moving caches that are eventually forgotten or 232 

released if the animal dies [72]. In the Neotropics, agoutis (Dasyprocta punctata) are 

actually claimed to have been responsible for the persistence of large-seeded species that 234 

were once dispersed by megafauna which went extinct more than 10,000 years ago [73] 

(Figure 2d). It is not always simple to foresee in which cases an animal species will behave 236 

as a mutualist or antagonist, but we must bear in mind that such changes in the sign of 

interactions can have important implications for community dynamics. 238 

 

Concluding Remarks and Future Directions 240 

The thresholds delimiting forbidden interactions are labile as a result of intraspecific trait 

variability, which can be substantial. We have illustrated that only using available trait data 242 
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(i.e. means) underestimates species degree (thus, network connectance) through 

overestimating the incidence of forbidden links. Also, that available trait means might not 244 

be representative across the species ranges, which can lead to both over- and 

underestimations of interactions inferred locally. Recently developed probabilistic models 246 

now allow incorporating intraspecific trait variability to predict interactions [26,56]. 

However, the challenge to accurately infer biotic interactions in unknown or novel 248 

ecosystems is to gather detailed trait data for multiple species, well replicated across their 

ranges and ontogenetic stages, and then, to make these data available alongside descriptive 250 

statistics of intraspecific trait variability. Although promising, this enterprise is clearly 

colossal. Alternatively, one could quantify intraspecific trait variability in well-sampled 252 

species (e.g. Box 1) and transfer an equivalent amount of variance to taxonomically or 

phylogenetically close species lacking such detailed data (see Outstanding Questions). In 254 

sum, we recommend incorporating intraspecific trait variability in models predicting 

networks of biotic interactions. 256 

 Even with detailed trait information available, there are still many sources of 

uncertainty affecting the establishment of pairwise interactions. On the one hand, predicted 258 

but not recorded interactions (false positives) could reflect mismatches in non-

morphological or phenological traits (such as physiology or biochemistry), or reflect 260 

cognitive constraints, which can block the formation of inferred interactions [e.g. 74]. On 

the other hand, in novel scenarios, behavioural innovation can promote interactions 262 

predicted as forbidden (false negatives). Evidence shows that these ‘outliers’ matter, 

especially when they affect common or keystone species with a disproportionate role in 264 

community dynamics and ecosystem functioning (see Outstanding Questions). 

It is therefore essential to be aware that reducing the enormous complexity behind 266 

biotic interactions to trait-matching models can critically limit our inferences. Yet, inferred 
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networks might serve as ‘maps’ to guide sampling of real interactions. Particularly, they 268 

could help to focus sampling effort on predicted links (included the forbidden ones) that 

seem to be key for the target communities, in order to validate network-model predictions 270 

(see Outstanding Questions). Novel techniques (e.g. DNA barcoding, GPS tagging, camera 

trapping) are now revolutionizing the sampling of biotic interactions, unravelling 272 

unprecedented information about the functions they entail [52,73,75]. We thus need 

synergies between trait-based models and empirical studies if we are to understand how 274 

interspecies relationships shape the fate of communities and ecosystems. 

 276 
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Figure 1. Frequency Distribution of Matching Traits (e.g. Body Size or Phenology) in a 

Consumer and a Resource Species. Interaction is possible whenever xconsumer ≥ xresource. (a) 

Mismatching between both trait means and intraspecific variability prevent interaction, leading to a 

totally forbidden link. (b) Mismatching occurs between trait means but intraspecific variability allows 

interaction, leading to a partially forbidden link. The difference between (a) and (b) – thus, our ability 

to infer interactions – may depend on how broadly intraspecific trait variability has been assessed in 

space and time (see Box 1). 

 

 

Figure 2. Examples of How Ontogenetic Variability and Behaviour Promote Interspecific 

Interactions or Change their Sign. (a) Small groups of golden jackals (Canis aureus), which are 

two orders of magnitude smaller than an adult blue wildebeest (Connochaetes taurinus), can hunt 

wildebeest calves [62]. (b) The Nile monitor (Varanus niloticus), three orders of magnitude smaller 

than an adult Nile crocodile (Crocodylus niloticus), is the main predator of crocodile eggs [61]. (c) 

The Galápagos sharp-beaked finches (Geospiza difficilis) mainly feed on insects and small seeds, 

but on the small and food-limited islands of Wolf and Darwin, they cut wounds on seabirds (boobies 

Sula spp.) to drink their blood; they also push and roll seabird eggs into rocks to break them and 

feed on them [71]. (d) The Central American agouti (Dasyprocta punctata), a seed predator 

(antagonist) of the black palm (Astrocaryum standleyanum), can effectively disperse its seeds 

through scatter-hoarding, acting as a mutualistic partner [73]. Photos reproduced with permission 

from Todd Gustafson (a), Anup Shah (b), Pete Oxford (c) and Christian Ziegler (d). 

 

 

Figure 3. Feeding Loop Generated by Ontogenetic Reversal of Predation. Arrows, from prey to 

predator, denote predation. (a) Species level diagram showing reciprocal predation between 

species j and k. (b) Life-stage level diagram showing how reciprocal predation is mediated by stage-

specific interactions between both predators during their ontogeny: species j is a prey of species k 

during its earlier life stages, but it becomes a predator of species k in the adult stage. We could 

hardly infer the role of species k as predator of species j using trait data of adult individuals (e.g. 

body size). 
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Box 1. Spatiotemporal variation in trait matching 

Assessing spatiotemporal variation in size matching between the fruits of the Mediterranean myrtle 

(Myrtus communis) and the gape of the five most abundant frugivore species in Circum-

Mediterranean woodlands during fruit ripening (see details in Appendix S1). We assess variation in 

fruit diameter among populations and years across the distribution range of the plant (Figure I), and 

among individual plants and between consecutive years within three of these populations (Figure II) 

(see sections A and B, respectively, in Appendix S1). A gape width smaller than a fruit diameter 

involves the incapability of the frugivore to swallow the fruit [11,13], and thus a forbidden interaction. 

However, different forbiddance thresholds in fruit diameter – mean, first quartile (Q25), 5th percentile 

(P05) or minimum – can lead to different prevalences of forbidden interactions. These thresholds 

represent the capability of an average individual of each frugivore species (mean gape width) to 

consume fruits of average size (mean), or to consume at least 25% (Q25), 5% (P05), or some 

(minimum) of available fruits. We use this mixed and conservative approach, using mean values for 

the frugivores but intraspecific variability for the plant [41], owing to the lack equivalent geographical 

variation for gape width data [10,76-78] (see section C in Appendix S1). We show how fruit diameter 

varies geographically and temporally, among populations and between years within populations 

(Figure I). Due to geographical variation (15% variance), some populations are predicted as 

forbidden for narrow-gaped frugivores while others do not (Figure I). But due to interannual variation 

(22% variance), some populations are predicted as forbidden some years but not others (e.g. 

populations D and M in Figure I). We also show how forbidden links largely drop when using less 

restrictive thresholds. For example, when using mean fruit diameter as threshold, S. melanocephala 

results a forbidden frugivore in 100% of population-year combinations, but only in 26% when using 

the minimum diameters (Figure I).  Accordingly, empirical information from different frugivory studies 

shows that all five species – even those with the smallest gape widths – actually consume myrtle 

fruits in different sites [10,54,55]. 

 

Figure I 
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Similarly, we show how fruit diameter varies among individuals within populations and between 

consecutive years (Figure II). Due to among-individual variation (56% variance), some plants are 

predicted as forbidden for narrow-gaped frugivores while others do not. But due to interannual 

variation (31% variance), some plants are predicted as forbidden some years while not in others 

(Figure II). Again, the prevalence of forbidden links depends on the forbiddance thresholds chosen 

(Figure II). 

 

Figure II 

 

Figure I. Geographical and Temporal Variation in Trait Matching. (a) Boxplot (median, quartiles 

and 5th/95th percentiles) showing variation in fruit diameter across 18 populations of Mediterranean 

shrub Myrtus communis, some of them sampled in different years (27 population-year 

combinations) (Appendix S1). Black dots denote means. White dots denote minimum values. 

Horizontal lines denote the mean gape width (mm) of the five most abundant frugivore species in 

Circum-Mediterranean woodlands during the winter (Er: Erithacus rubecula; Sa: Sylvia atricapilla; 

Sm: Sylvia melanocephala; Tm: Turdus merula; Tp: Turdus philomelos), period when M. communis 

ripe its fruits. (b) Map of the Mediterranean Basin with the location of the study M. communis 

populations. The distribution of M. communis is shown in dark-grey (redrawn from Migliore et al. 

[79]). 

 

Figure II. Intra- and Interindividual Variation in Trait Matching. Boxplot showing variation in fruit 

diameter among marked myrtle plants in two consecutive years (grey and white boxes, respectively) 

and in three different populations. Black dots denote means. Grey and white dots denote minimum 

values. Horizontal lines denote the mean gape width (mm) of the five most abundant frugivore 

species in Mediterranean woodlands during the winter (bird species acronyms as in Figure I). 
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Glossary 

Bipartite network: ecological network comprising two trophic levels (e.g. host and parasitoids, 

plants and pollinators, or plants and frugivores) with the links between species representing trophic 

interactions (i.e. fluxes of matter and energy) and ecological functions (e.g. pollination, seed 

dispersal) [8,9]. 

Connectance: the fraction of pairs of species that interact in an ecological network [42,80]. In food 

webs, C = L/S2, where L is the number of interactions (links) and S the number of species in the 

community. In bipartite networks, C = L/SrSc, where Sr and Sc are the number of species in each 

trophic level (resources and consumers; e.g. plants and pollinators). 

Food web: ecological network comprising multiple trophic levels (e.g. primary producers, 

herbivores, predators, detritivores) with the links between species representing trophic interactions 

(i.e. fluxes of matter and energy) [17]. 

Forbidden link: pairwise interaction that is prevented by the biological traits of the species [9,10]. 

Functional trait: any trait affecting, directly or indirectly, the performance and fitness of individuals 

[41]. 

Missing link: possible but hardly observable pairwise interaction (e.g. between rare species), thus, 

a result of under-sampling [10]. 

Species degree: the number of different species a certain species interacts with in an ecological 

network [9,42]. 

Trait: any morphological, physiological, phenological or behavioural feature measurable at the 

individual level [41]. 

Trait matching: phenotypic expression of functional traits that allow a particular interspecific 

interaction (Figure 1). 
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