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C O N D E N S E D  M A T T E R  P H Y S I C S

Order and information in the patterns of spinning 
magnetic micro-disks at the air-water interface
Wendong Wang1,2*†, Gaurav Gardi1†, Paolo Malgaretti3, Vimal Kishore1,4, Lyndon Koens5, 
Donghoon Son1,6, Hunter Gilbert1,7, Zongyuan Wu2, Palak Harwani1,8, Eric Lauga9, 
Christian Holm10, Metin Sitti1,11,12*

The application of the Shannon entropy to study the relationship between information and structures has yielded 
insights into molecular and material systems. However, the difficulty in directly observing and manipulating at-
oms and molecules hampers the ability of these systems to serve as model systems for further exploring the links 
between information and structures. Here, we use, as a model experimental system, hundreds of spinning mag-
netic micro-disks self-organizing at the air-water interface to generate various spatiotemporal patterns with vary-
ing degrees of order. Using the neighbor distance as the information-bearing variable, we demonstrate the links 
among information, structure, and interactions. We establish a direct link between information and structure 
without using explicit knowledge of interactions. Last, we show that the Shannon entropy by neighbor distances 
is a powerful observable in characterizing structural changes. Our findings are relevant for analyzing natural 
self-organizing systems and for designing collective robots.

INTRODUCTION
The quest to seek the links between structure and information may 
be traced back to the idea of an “aperiodic crystal” as an information- 
carrying entity in living systems by Erwin Schrödinger (1), which 
portended the discovery of DNA (2,  3). In parallel, the Shannon 
entropy was introduced to quantify the amount of information in 
written texts in the 1940s (4). Since then, its application in character-
izing the structures of many systems, including organic molecules 
(5, 6) and crystals (7–10), has yielded fruitful insights. For example, 
the replication and the operation of living systems requires an enor-
mous amount of information, and the storage of this information 
necessitates molecules with very complex structures that are improb-
able to form under equilibrium conditions. This information-based 
argument on the molecular complexity suggests that the probability 
of life emerging under equilibrium is small (6), and therefore, life 
must have emerged under nonequilibrium conditions (11). As an-
other example, the application of the Shannon entropy in crystallog-
raphy has led to the notion of chaotic crystallography. It has created 
a continuous measure to quantify the degree of order/disorder in 
crystals (7). Similarly, the application of the Shannon entropy has 

also provided a precise quantitative answer to the question of which 
inorganic crystals are the most complex (8, 9). It has shown that the 
Shannon entropy contributes negatively to the thermodynamic 
configurational entropy of crystals (10). As a final example, the ap-
plication of Shannon entropy in characterizing out-of-equilibrium 
systems has borrowed the notion of algorithmic complexity pio-
neered by Kolmogorov (12) and Chaitin (13). It has led to using an 
information measure based on lossless data compression to quantify 
hidden order in simulated model systems such as absorbing state 
models and active Brownian particles (14).

Although the application of the Shannon entropy has yielded 
valuable insights for the systems mentioned above, much remains 
to be learned about the relationship between the abstract notion of 
information and its concrete manifestation in a structure. Those 
molecular and crystal systems have limitations as model systems 
because it is difficult to manipulate and directly observe the mutu-
al interactions of the atoms and the molecules. Although simula-
tions on these systems have provided valuable insights, a combined 
approach based on experiments, theory, and simulation to investi-
gate one model system in detail could provide an archetypical case 
study that sheds light on other systems. An ideal model system 
should consist of trackable objects whose mutual interactions are 
tunable and could be modeled and analyzed theoretically and 
numerically.

A self-organizing system at the micrometer scale and above 
could be an ideal model system to study the relation between infor-
mation and structure. The self-organization in many natural (15–19) 
and artificial (20–26) collective systems display spatiotemporal pat-
terns over the length scales of micrometers to meters and over the 
time scales of milliseconds to seconds. One distinguishing feature of 
these patterns is their spatiotemporal order. In particular, torque- 
driven spinning particles such as millimeter-sized disks (27,  28), 
magnetic colloids (29), micro-rafts (30), and biological systems such 
as spinning bacteria (31) and adenosine triphosphate (ATP) syn-
thase (32) often display two-dimensional (2D) hexagonally ordered 
patterns. The constituents of most of these 2D patterns can be directly 
observed and tracked by conventional light microscopy. However, 
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most of these microscopic systems form only a few patterns (typically 
two—ordered and disordered), so their patterns lack the diversity 
necessary for studying how information changes as patterns vary. 
This lack of diversity could be attributed to the lack of tunability in 
the mutual interactions among microscopic constituents.

Here, we use the diverse spatiotemporal patterns in the self- 
organization of hundreds of spinning micro-disks trapped at the 
air-water interface as a model system to demonstrate the relation 
between the information and the order of the patterns. We show 
how careful tuning of local pairwise interactions and local symme-
tries produces a wide range of global patterns with varying degrees 
of order. We apply the formulation of the Shannon entropy to the 
graphs corresponding to the patterns (6, 33, 34) and show how neigh-
bor distances (defined through Voronoi tessellation) arise naturally 
as the information-bearing variable for calculating the Shannon en-
tropy. Next, we use the distribution of neighbor distances to reproduce 
in silico patterns characterized by the same orientational orders, 

thereby highlighting a direct link between information and order. 
Last, we show that the entropy by neighbor distances is a more pow-
erful observable for detecting both spatial and temporal changes of 
the patterns than the orientational order parameters.

RESULTS
Balancing attractive and the repulsive interactions
To begin, we consider the balance of attractive and repulsive forces 
in  local interactions. The mutual interactions between a pair of 
spinning magnetic micro-disks at the air-water interface include mag-
netic, capillary, and hydrodynamic interactions (Fig. 1A). In our cur-
rent setup, the hydrodynamic lift force (27, 28) and the angle-averaged 
capillary force (30) produce the mutual repulsion, and the effective 
magnetic interaction between two synchronously rotating magnetic 
dipoles produces the mutual attraction (35). We use a custom-made 
two-axis Helmholtz coil to generate a rotating uniform magnetic field 

Fig. 1. The tunable balance of local pairwise interactions produces global patterns with varying degrees of order. (A) The scheme of pairwise interactions shows 
the three pairwise forces: the magnetic dipole-dipole force (whose average after one full rotation is attractive), the capillary force (whose average after one full rotation is 
repulsive), and the hydrodynamic lift force (always repulsive). (B) Three representative images of a pair of micro-disks showing the attached state (I), the orbiting state (II), 
and the decoupled state (III). (C) The center-center distance d and the orbiting speed o as functions of the rotation speed of the magnetic field  [in the unit of revolu-
tions per second (rps)]. The experimental curves are labeled with the direction of change in . The black (red) curve shows the assembling (decoupling) transition. The 
blue curves are based on the 2D numerical model of the equations of motion. (D) Experimental images of 218 micro-disks showing representative patterns. The back-
ground colors indicate regions (II) and (III) and show the correspondences between pairwise states and patterns of many micro-disks. (E) Averaged norm of the hexatic 
order parameters <|6|>N,t as a function of the rotation speed of the external magnetic field .



Wang et al., Sci. Adv. 8, eabk0685 (2022)     14 January 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 14

(fig. S1) and sputter thin films of cobalt on micro-disks to generate 
an in-plane magnetic dipole for each micro-disk. Under the rotat-
ing magnetic field and above a certain critical threshold rotation 
speed, individual micro-disks rotate around their own axes, and we 
approximate their mutual interactions with the angle-averaged 
interactions.

We first consider magnetic dipole-dipole interactions. It is solely 
responsible for mutual attraction between two micro-disks. Quan-
titatively, the angle-averaged magnetic dipole-dipole attraction is 
expressed as   F  mag   = − ¾     2     0     m  2   /  (d / R)   4  , where 0 is vacuum per-
meability, d is the center-center distance, R  is the radius of the 
disk, and m is the magnetic moment per unit area and depends 
on the thickness of the sputtered cobalt thin film. For a 500-nm-
thick film, we have m ≈ 0.1 A and Fmag ≈ − 33/(d/R)4 ∙ 1 nN. At 
a fixed d/R ~ 2 to 3, Fmag is a constant and is on the order of 1 nN 
(see the “Supplementary notes on the scaling relations” section 
for more details).

Next, we choose parameters of the micro-disks such that the 
capillary and hydrodynamic interactions are of the same order of 
magnitude as the magnetic interactions (~1 nN) to strike a balance 
between the attractive and repulsive interactions. The capillary in-
teraction is due to the cosinusoidal edge profiles (fig. S2) around the 
micro-disks (36, 37), and the hydrodynamic lift force is due to the 
fluid inertia at finite Reynolds number (27, 28). The capillary inter-
actions dominate in the near field (d < 2.5R), whereas the hydrody-
namic interactions’ relative influence increases as d increases. Both 
forces depend on radius R, but the capillary force can be independent-
ly adjusted by the amplitude and the arc angle of the cosinusoidal 
profiles. Quantitatively, by decomposing the edge profiles into a 
series of Fourier modes in bipolar coordinates (36, 37), we find sim-
ple numerical relations between the angle-averaged capillary force 
Fcap [N] and R [m] at fixed d/R’s. With the amplitude being 2 m 
and the arc angle being 30° (fig. S2A), Fcap~10−13N ∙ m ∙ R−1 for d ~ 
2.5R. Therefore, for R~10−4m, Fcap is ~1 nN (see the “Supplemen-
tary notes on the scaling relations” section for more details).

On the other hand, the hydrodynamic lift force follows a simple 
scaling relation: Fhydro ≈ 2R7/d3, where  is the fluid’s density and 
 is the spin speed. Using Reynolds number Re = R2/~1, where  
is the fluid’s kinematic viscosity, we recast the expression as Fhydro ≈ 
2Re2/(d/R)3 = Re2/(d/R)3 · 1 nN, where 2 [N] depends only on 
the properties of the water and is ~1 nN. Re can be adjusted either by 
changing the radius R during fabrication or by varying the rotation 
speed  during experiments. Because our coil system can produce a 
uniform rotating magnetic field of ~70 revolutions per second (rps) 
for a few minutes without overheating, we have chosen R = 150 m 
so that Re can reach ~10 in our experiments.

This system differs from the previous reports (27, 28, 30) in which 
a global magnetic potential provides the effective attraction toward 
the center of the potential. Because all the interactions between micro- 
disks can be considered as pairwise interactions in our current set-
up, the system of many micro-disks could have a richer collection of 
patterns. Moreover, we symmetrically position four to six cosinu-
soidal profiles around the edge of a micro-disk to produce different 
local symmetry in the deformation of the air-water interface around 
the micro-disk. The variation in the local symmetry does not affect 
the behaviors of spinning micro-disks as long as they can spin free-
ly around their own axes. It is only when they start to attach at low 
spin speeds ( ≤ 10 rps) that the local symmetry shows its effect. At 
first, we focus on micro-disks with sixfold symmetry.

Regions of pairwise interactions relate to different patterns 
of many micro-disks
Systematic study of pairwise interactions reveals three distinct re-
gions (Fig. 1, B and C, and movie S1): The two micro-disks (I) at-
tach to each other, (II) orbit around each other, and (III) move away 
from each other. Regions (I) and (II) have been observed previously 
in the case of a global magnetic potential (30), and the transition from 
(II) to (I) is due to the increased oscillation around mean steady-
state separation distance as the rotation speed decreases and the 
capillary torque locking the alignment of the micro-disks (36). Re-
gion (III) is previously unidentified and is due to the increase in the 
hydrodynamic lift force as spin speeds increase, as confirmed by a 
2D numerical pairwise model constructed with experimental values 
and without fitting parameters. The numerical result (fig. S3) shows 
that as the spin speed increases above 22 rps, the increasing hydro-
dynamic repulsion makes the sum of forces repulsive at all distances, 
thereby decoupling the pair of orbiting micro-disks.

Systematic study of the self-organization of hundreds of mi-
cro-disks reveals many visually distinct patterns. We first focus on 
patterns that appear at the spin speeds corresponding to regions (II) 
and (III) of the pairwise interactions (Fig. 1D and movies S2 and S3). 
At the spin speeds of region (II), the patterns of many micro-disks 
appear disordered, whereas, at the spin speeds of region (III), the 
patterns show hexagonal order. The appearance of the hexagonal 
order motivates the use of hexatic order parameter 6 (see Materials 
and Methods on the calculation of order parameters and fig. S4, A 
and B, for details) to quantify the orientational order (38). Specifi-
cally, we calculate an averaged norm of the hexatic order parameters 
<|6|>N,t, where the subscripts N and t denote the number average 
within one frame and time average over many frames, respectively. 
We find a sharp transition of <|6|>N,t at around 23 rps (Fig. 1E), 
which coincides with the pairwise transition from regions (II) to 
(III). Moreover, by assuming each micro-disk interacting with the 
rest of the micro-disks through pairwise interactions and with the 
physical boundary, we obtain a 2D numerical model of many micro- 
disks that also captures the transition of <|6|>N,t at around 23 rps 
(fig. S4, C to E, and movie S4; see the “Model for many-disk interac-
tions” section in Materials and Methods for details).

Hamiltonian approach
This close correspondence between the pairwise transition and the 
many-disk transition from regions (II) to (III) motivates us to seek 
a more fundamental link between them. Because all the interactions 
between two micro-disks can be assumed to be of pairwise nature 
(i.e., not produced from a global potential), we can construct an ef-
fective Hamiltonian as a function of the separation distance be-
tween a pair of neighboring micro-disks. Neighbors are defined 
by Voronoi tessellation. Specifically, we construct the 1D effective 
Hamiltonian of pairwise interactions H(d) as a function of the sep-
aration distance d between the pair of micro-disks. We introduce a 
mean-field energy term Emf to account for all the interactions of the 
pair with the rest of micro-disks and with the physical boundary. 
Therefore, the Hamiltonian can be written as

  H(d ) =  E  magdp  (d ) +  E  cap  (d ) +  E  hydro  (d ) +  ⋅  E  mf  (d)  (1)

where d is the pairwise distance, Emagdp is the angle-averaged mag-
netic dipole-dipole energy, Ecap is the angle-averaged capillary energy, 
Ehydro represents the effective energy associated with the hydrodynamic 
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interaction and is calculated from the integration of the hydrody-
namic lift force, and Emf represents the mean-field energy term. 
More specifically, Emf is calculated as the mean of interactions by all 
other micro-disks on the pair under consideration, with the as-
sumption of a uniform area density of other micro-disks. Last,  is 
a fitting parameter that accounts for all the discrepancies because of 
the simplifications used to construct the closed-form expression for 
the Ebd (see fig. S5, A and B, and the “Supplementary notes on the 
Hamiltonian approach” for more details). We found that  is 10 for 
all spin speeds.

From this 1D effective Hamiltonian H(d), we calculate the distri-
bution of pairwise distances, assuming (39) that they are distributed 
according to the Boltzmann factor p(d) ∝ exp(− H(d)), where  is 
an additional fitting parameter. The intuition behind this assump-
tion is that in regions (II) and (III), the angle-dependent capillary and 
magnetic interactions create a time-varying attraction/repulsion 
between a pair of micro-disks, which generates an effective fluctua-
tion along the radial direction of the micro-disk. As a result, for the 
degree of freedom along the radial direction, the effective fluctua-
tion enables the micro-disks to explore the full range of the 1D en-
ergy landscape. The calculated distributions are fitted with the 
experimental distributions of neighbor distances (Fig. 2A) to obtain 
the fitted values of . Because in equilibrium systems 1/ is the ther-
mal energy, we compare it with the variance of the pairwise dis-
tance (Fig. 2B). The variance of the neighbor distances is calculated 
as   2  NDist   =  ∑ ∀d     <  [d − <d>]   2 >  and correlates well with 1/, so we 
regard 1/ as the effective energy governing the fluctuations of the 
neighbor distance.

To compare the fitted probability distribution with the experi-
mental ones across all spin speeds, it is useful to have a single-valued 
observable. To this end, we calculate the Shannon entropy associated 
with the probability distribution of neighbor distances as

   H  NDist   = −  ∑ 
i
      p  i    log  2  ( p  i  )  (2)

where pi = Xi/X is the probability of a neighbor distance that falls 
within a distance interval (a bin) labeled by index i, X  is the total 
count of all neighbor distances of all micro-disks, and Xi is the count 
of the neighbor distances in bin i. We have found that the choice of 
bin size in the range of 0.1 to 0.8R does not affect the results, so we 
have chosen 0.5R as the bin size (see fig. S5C for more details). For 
steady states, HNDist is calculated from the distribution of all the 
neighbor distances for the whole duration of observation (see the 
“Supplementary notes on the Hamiltonian approach” section for 
more details). From the information-theoretic perspective, HNDist 
represents the average information content of an event that mea-
sures the distance between a random pair of neighboring micro- 
disks (40). Intuitively, the smaller the value of HNDist, the narrower 
the distribution of the neighbor distances. [To illustrate the idea of 
information content, consider rolling a die or flipping a coin: The 
information content of casting a die once is −log2(1/6) = log26, and 
the information content of flipping a coin once is −log2(1/2) = log2 2. 
Therefore, the Shannon entropy, or the average information content, 
of a single die casting is higher than a single coin flipping.]

Figure 2C shows the good agreement between the Shannon en-
tropies calculated from the experimental distributions and the fitted 
probability distributions. This good agreement suggests not only 
that the terms included in the effective Hamiltonian are enough to 
explain the variety of patterns but also that HNDist can characterize 
the structural changes in the patterns. The drop of HNDist around 
~20 rps captures the transition between regions (II) and (III) (Fig. 1E). 
Moreover, the increase of HNDist from 11 to 15 rps suggests an addi-
tional transition. This transition is not clearly distinguishable by 
<|6|>N,t (Fig. 1E), but the large change in HNDist suggests that the 
patterns at 11 to 12 rps are qualitatively different from the patterns 
at 15 to 20 rps. We observe that the patterns at 11 to 12 rps consist of 
a densely packed core surrounded by clusters of single or few micro- 
disks as if they were a mixture of condensed and dispersed phases. 
Additional experiments (to be reported elsewhere) indicate that it is 
possible to obtain a pure condensed phase, in which micro-disks are 
tightly packed but still able to rotate freely relative to each other. We 
also compare the HNDist of the experimental patterns with the pat-
terns obtained from the 2D numerical model (fig. S5D). The com-
parison shows that values of HNDist for the patterns obtained from 
the 2D numerical model are lower than the experimental values, 
probably because of the absence of noise in the model, and it also 
captures the two main transitions at ~12 to 15 rps and ~20 to 25 rps.

To quantify the information embedded in the patterns, we com-
pare the experimental distributions of neighbor distances with a 
reference distribution generated from randomly positioned non-
overlapping micro-disks (fig. S6). The Kullback-Leibler divergence 
(KLD) between the experimental distributions and the reference 
distribution represents the extra information embedded in the ex-
perimental patterns. Thus, the plot of this divergence as a function 
of the rotation speed of the external magnetic field (fig. S6C) is al-
most a mirror image of the corresponding HNDist plot (Fig. 2C): The 
more ordered the pattern is, the more the pattern deviates from 
a random pattern, and the more extra information it contains as 
compared with the random one. This perspective is similar to 
the maximum entropy principle advocated by Jaynes (41): The 
addition of new information changes the distribution of the ran-
dom variable that embeds the information. This line of thought 

Fig. 2. Neighbor distances as the variable for the calculation of the Shannon 
entropy to quantify the information content of the patterns. (A) Representa-
tive experimental steady-state distribution of nearest neighbor distances at 12, 20, 
30, and 60 rps and the fitted distribution using the effective Hamiltonian. (B) Vari-
ance of the neighbor distance (black line) and 1/ (red line) as a function of the ro-
tation speed of the magnetic field . (C) Experimental and fitted Shannon entropy 
as a function of the rotation speed of the magnetic field . The entropies are calcu-
lated from the experimental steady-state distribution of neighbor distances and 
the fitted distribution using an effective Hamiltonian. Letters A to D correspond to 
the representative patterns shown in Fig. 1D.
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leads us to explore a direct link between structure and information, 
as elaborated in the section on Monte Carlo simulation below.

Monte Carlo approach
The preceding analysis suggests that the pairwise interactions serve 
as an intermediate bridge between the order and the information of 
the patterns. We have seen that a simple extension of the 2D nu-
merical pairwise model to many disks reproduces the change of the 
order from regions (II) to (III) (Fig. 1, C and E, and fig. S4) and that 
the construction of an effective 1D Hamiltonian based on the pair-
wise interactions reproduces the change in the Shannon entropies 
by neighbor distances from regions (II) to (III) (Fig. 2C). Now, we 
ask: Are there any direct links between the order of a pattern and 
the distributions of its neighbor distances without resorting to ei-
ther the numerical pairwise model or the effective Hamiltonian?

To address the above question, we perform Monte Carlo simula-
tions to see whether it is possible to recreate the spatial order ob-
served in experiments from the information contained in the 
probability distribution of the neighbor distances. Specifically, we 
start from initially randomly distributed micro-disks and accept (or 
reject) the move of a micro-disk if the move decreases (or increases) 
the KLD (42, 43)

   D  KL  (P(d )‖Q(d )) = ∑ p(d ) ln   P(d) ─ Q(d)    (3)

where P(d) is the simulated distribution and Q(d) is the experimen-
tal distribution (see the “Supplementary note on the Monte Carlo 
simulations” section for details). Intuitively, KLD quantifies how 
different the two distributions are. We use the four representative 
patterns (Fig. 1E) from the experiments. With only local informa-
tion embedded in the distributions of neighbor distances, we are 
able to recreate all four representative patterns with orders that are 
comparable with the experimental values (Fig. 3 and table S1). More-
over, the simulated patterns also show the marginal distributions of 
x and y coordinates that match the experimental values. The radial 
distribution functions (Fig.  3E) also show a good match between 
experiments and Monte Carlo simulations. These agreements fur-
ther validate the choice of the neighbor distances as the information- 
bearing variable.

Extending Shannon entropy by neighbor distances 
to patterns formed by micro-disks with different  
local symmetries
Last, we extend our analysis of information and order to the pat-
terns of micro-disks with different local symmetries. Because the 
pairwise interaction in regions (II) and (III) can be treated in an 
angle-averaged manner, the resulting patterns do not differ for 
micro-disks of different symmetries. It is only when the micro-disks 
start to attach to each other to form 2D tiles that the local symme-
tries of the micro-disks start to affect the global patterns. Therefore, 
in the following tiling experiments, we gradually decrease the spin 
speeds of the magnetic field  and observe the patterns formed by 
hundreds of micro-disks with 4, 5, or 6 cosinusoidal profiles sym-
metrically distributed along the edge of the micro-disks.

For micro-disks with sixfold symmetry (Fig. 4A and movie S5), 
the patterns include a hexagonally ordered pattern at  > 22 rps, 
disordered patterns at  ~ 22 to 10 rps, and clusters at  ~ 10 to 1 rps 
and a crystal-like pattern for  < 1 rps. We found that mixing low 

magnetic field strengths (0.5 mT) at  = 0.25 rps with short bursts 
of high field strength (3 mT) at  ≥ 1 rps produces an effect similar 
to annealing in crystal growth. The sixfold symmetry of micro-disks 
generates a crystal-like pattern with local sixfold symmetry, so 6 
can be used to track the change in the structural order of the entire 
tiling process (Fig. 4B). Significantly, entropy by neighbor distances 
HNDist also displays high sensitivity in detecting subtle changes of 
structural order throughout the process: a drop in <|6|>N always 
corresponds to a rise in HNDist. The two observables are almost com-
pletely anticorrelated, with a Pearson correlation coefficient of −0.99 
(fig. S7A). Besides neighbor distances, the statistics of two other local 
variables, neighbor counts (44) and local densities (local volumes) 
(45), have been proposed to characterize the structures of packing 
in 2D. However, the Shannon entropy calculated on the basis of the 
distribution of neither neighbor counts nor local densities shows a 
good correlation with <|6|>N (fig. S7, B and C), thus highlighting 
the unique effectiveness of HNDist in distinguishing the order in the 
patterns.

For micro-disks with fourfold symmetry (Fig. 4C and movie S6), 
however, the tiling process started with a hexagonally ordered pat-
tern but ended with a crystal-like pattern with local fourfold rota-
tional symmetry. As a result, the quantification of the order requires 
two types of order parameters: The high hexagonal order at the be-
ginning of the process is identified by the large value of <|6|>N, and 
the high tetragonal order at the end of the process is identified by the 
relatively large value of <|4|>N. However, these two ordered pat-
terns with different local symmetries both show small values of HNDist, 
suggesting that HNDist is a more universal observable for the identi-
fication of order than <|6|>N or <|4|>N (Fig. 4D). Even for micro- 
disks with fivefold symmetry, which are only capable of forming 
“amorphous” tiling, HNDist is most sensitive to the periodicity in the 
Mix part of the tiling process (Fig. 4, E and F, and movie S6): The 
Fourier spectrum of HNDist shows the strongest signal-to-noise ratios 
with multiple clear high-order peaks than either <|6|>N or <|5|>N 
(fig. S8), showing the temporal structure of the patterns. Moreover, 
because HNDist is not symmetry specific, it can be used to compare the 
degree of orders in the tiling of different symmetries: Micro-disks 
with sixfold symmetry produce the lowest HNDist, because the hex-
agonal packing tolerates misalignment better than square packing 
(fig. S9).

Using these tiling experiments, we demonstrated the effective-
ness of the Shannon entropy by neighbor distances HNDist in char-
acterizing the structural orders and in detecting subtle structural 
changes. Compared with the Shannon entropies of other quantities 
like neighbor counts (44) and local densities (local volumes) (45), 
HNDist is particularly effective in distinguishing different patterns. 
We speculate that the particular effectiveness of HNdist is due to the 
intimate relations between the physics of the system and the neighbor 
distance. From this perspective, we expect that when used as feedback, 
HNDist could be helpful for the control of robotic swarms (46, 47), 
where a change in the internal driving force or the external bound-
ary results in a change of global patterns.

DISCUSSION
Our results show close relations among information, structures, and 
interactions (Fig. 5). We demonstrate direct links between each pair 
of them via different approaches. First, we reproduced the experimental 
patterns (structures) via the 2D numerical model based on pairwise 
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interactions and interactions with the boundary. This approach con-
nects the structures with detailed interactions. Second, we repro-
duced the distributions of neighbor distances using an effective 1D 
Hamiltonian based on pairwise interactions and a mean-field energy 
term. This approach connects the information to the interactions. 

Third, we reproduced the experimental patterns via Monte Carlo 
simulations using the distributions of neighbor distances. This ap-
proach connects the structure with the information without using 
any explicit knowledge of the interactions of the system. Therefore, 
it is particularly useful for systems where it is hard or impossible to 

Fig. 3. Reproducing disordered and ordered patterns using the distribution of neighbor distances only. (A) Patterns produced from Monte Carlo simulations at 
representative rotation speeds. The means and the SD of the simulated <|6|>N,t are calculated from seven simulations. The means and the SD of the experimental 
<|6|>N,t are calculated from 75 to 1500 frames (1 to 20 s). (B to D) Corresponding distributions of neighbor distances, x coordinates, and y coordinates from experiments 
and simulations. The distributions of x and y coordinates serve as one of the ways to compare the simulated patterns with those from the experiments. (E) Radial distribu-
tion functions of patterns from experiments and Monte Carlo simulations. The simulation data correspond to the average of 700 frames (100 frames × 7 simulations) at 
each rotation speed, and the experimental data were averaged over 75 to 1500 frames (1 to 20 s).
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Fig. 4. Pattern transitions of hundreds of micro-disks to illustrate the relationship between information and order for the micro-disks with four-, five-, and 
sixfold symmetries. (A) Representative patterns of the micro-disks with sixfold symmetry. The background color corresponds to regions (I) to (III) in the pairwise interac-
tions in Fig. 1C. (B) Number averages of the norms of hexatic order parameters <|6|>N and the entropies by neighbor distances HNDist as a function of time. The line color 
indicates the rotation speed  of the applied magnetic field. “Mix” denotes low speeds at a low field strength mixed with high speeds at a high field strength. (C) Repre-
sentative patterns of the micro-disks with fourfold symmetry. (D) Number averages of the norms of hexatic order parameters <|6|>N, tetratic order parameters <|4|>N, 
and entropies by neighbor distances HNDist as a function of time. (E) Representative patterns of the micro-disks with fivefold symmetry. (F) Number averages of the norms 
of hexatic order parameters <|6|>N, pentatic order parameters <|5|>N, and entropies by neighbor distances HNDist as a function of time. In the Mix region, the rotation 
speed and the strength of the external magnetic field were changed periodically. There are two types of mixtures, and both contain periods of 5 s. The first mixture con-
sists of 1 s of 1 rps at 3 mT and 4 s of 0.25 rps at 0.5 mT. The second mixture consists of 1 s of 5 rps at 3 mT and 4 s of 0.25 rps at 0.5 mT. See the “Detailed experimental 
protocols” section for full procedures. The Fourier spectra of the time series in the Mix region are in fig. S8.
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determine the effective interactions among the constituents. This 
situation is likely to occur for systems made of computing units, 
such as biological cells, animals, humans, and robots.

Although our current system is a planar 2D system, the method 
of calculating HNDist could extend to a 3D system. The increased 
degrees of freedom in 3D suggest that it is, in principle, possible for 
multiple configurations to satisfy one particular neighbor distribu-
tion. For example, both face-centered cubic packing (FCC) and 
hexagonal close packing (HCP) have 12 nearest neighbors of dis-
tance 2R, so their HNDist will be the same. Nevertheless, like the case 
in 2D where HNDist would be able to distinguish between imperfectly 
packed squares and hexagons, HNDist should be able to distinguish 
between imperfectly packed simple cubic lattice and HCP or FCC 
lattice because the body diagonal lattice point of a simple cubic lat-
tice is also a neighbor via Voronoi tessellation. The other challenge in 
the application of HNDist in 3D is perhaps the difficulty in measuring 
the positions of all the particles accurately and tracking them over 
time. Currently available techniques for tracking particles in 3D at 
the microscopic scale include spinning disk confocal microscope, 
light sheet fluorescent microscope (48), and digital holographic 
microscope (49). If the positions of particles can be measured and 
tracked over time, then a Voronoi tessellation in 3D could be used 
to define neighbors, and the calculation of HNDist could proceed as 
usual. Therefore, for these 3D microscopic cases, the method based 
on HNDist will work. Another possible scenario of the successful ap-
plication of the HNDist method in 3D is a robotic swarm in which 
individual robots can sense the distances to their neighbors without 
knowing the precise global coordinates of the neighbors. Data gath-
ered from these robots could feed directly into the calculation of 
HNDist and enable a subsequent analysis of self-organized patterns.

A limit of our experimental system is the necessity of a physical 
boundary in the formation of patterns of many micro-disks. We 
have chosen a square-shaped boundary specifically to highlight the 
two different patterns in region (III). If used constructively, however, 
this need for a physical boundary could be useful for designing ex-
periments that explore the interactions between the self-organizing 
patterns and their global environments.

A possible extension of the Monte Carlo simulation method is to 
replicate the pattern of a single frame. The target distributions in 
Fig. 3 are based on the neighbor distance data collected across multi-
ple frames and are, in this sense, the steady-state averages. If, however, 
we collect the neighbor distances from only one frame to calculate 

the distribution and try to reproduce the pattern using this distribu-
tion as the target, we could reproduce the order in transient states, 
such as the ones shown in Fig. 4. We have attempted to reproduce a 
few transient patterns using the distributions of neighbor distances 
from a single frame. The results are summarized in fig. S10 and ta-
ble S2. The most ordered pattern (0.25 rps after Mix) is the most 
difficult to simulate, probably because it has both long-range and 
short-range orders. Thus, the simulations often get trapped into 
many local minima while trying to reach the correct pattern. There-
fore, additional procedures like the equivalent of annealing (or mix 
in our experiments) may be required to reach a global minimum.

Last, we envision that our experimental system could be used for 
testing hypotheses such as nonequilibrium pressure (50) and noner-
godicity in hydrodynamic self-organization (51). In the long term, 
this system could be used to design collective robotic systems to 
process information and perform computations (52).

MATERIALS AND METHODS
Preparation and characterization of the micro-disks
Micro-disks were designed in Rhinoceros 3D with the aid of the 
Grasshopper plug-in. They were fabricated on Nanoscribe Photon-
ic Professional GT with a 25× objective and with IP-S photoresist in 
the dip-in mode. The slicing distance was set to be adaptive from a 
minimum of 0.5 m to a maximum of 3 m. The hatching distance 
was 0.3 m; the hatching angle was 45°; the hatching angle offset 
was 72°. The number of contours was three.

Thin films of ~500-nm cobalt and ~60-nm gold were sputtered onto 
the micro-disks using Kurt J. Lesker NANO 36. The base vacuum 
pressure before the sputtering was <5 × 10−7 Torr. Cobalt was sput-
tered at 100 W and under a sputtering pressure of ~4.2 × 10−3 Torr; gold 
was sputtered at 40 W and under a sputtering pressure of ~2.7 × 
10−3 Torr. The gold layer is to protect the cobalt layer from oxidation. 
The sputtering procedure could be finished within 1 day.

We increased the diameter of micro-disks from 100 to 300 m 
and increased the thickness of the cobalt layer from 50 to 500 nm, 
thereby increasing the magnetic moment ~100-fold compared with 
our previous reports. Consequently, the angle-averaged magnetic 
dipole force dominates in the far field (d > ~100 m), whereas the 
angle-averaged capillary force dominates in the near field (d < ~30 m). 
In the intermediate distances, the balance between the two main pair-
wise forces creates a coupled steady state: Two micro-disks orbit 
around each other at medium rotation speeds ( = ~10 to 20 rps).

Scanning electron microscope images of the micro-disks were 
taken on EO Scan Vega XL at 20 kV. Laser scanning confocal mi-
croscope images were taken on Keyence VK-X200 series with a 20× 
objective. The optical microscope images were taken on Zeiss Dis-
covery V12 using Basler camera acA1300-200uc. The magnetic hys-
teresis curves of 500-nm cobalt film sputtered on a 30-mm-diameter 
coverslip were measured on MicroSense Vibrating Sample Magne-
tometer EZ9. Digital holographic microscopy images were recorded 
and analyzed on Lyncée Tec reflection R2200 with a 5× or 10× 
objective.

Video acquisition
Experimental videos were recorded using Basler acA2500-60uc or 
Phantom Miro Lab140. The cameras were mounted on Leica man-
ual zoom microscope Z16 APO. A light-emitting diode (LED) light 
source SugarCUBE Ultra illuminator was connected to a ring light 

Fig. 5. The relations among information, structure, and interactions. 
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guide (0.83″ inside diameter, Edmund Optics #54-176), which was 
fixed onto the coil frame using a 3D-printed adapter.

The experimental videos were analyzed with a custom Python 
code using the OpenCV library. For pairwise data, the positions and 
the orientations of the micro-disks were extracted to calculate edge-
edge distances and angular orbiting speeds. For many-disk data, the 
positions of micro-disks were extracted. Voronoi diagrams were 
constructed to identify neighbors and to calculate 6, HNDist, and 
other parameters that characterize structural orders and informa-
tion content.

Fabrication and calibration of the custom electromagnetic 
coil systems
The custom-built Helmholtz coil system to generate uniform mag-
netic fields in the xy plane consists of two 5-cm-radius x coils and two 
8-cm-radius y coils. The enameled copper wire is 1.41 mm in diameter. 
The frames of the coil system were designed in Solidworks and 3D- 
printed by Stratasys Fortus 450mc. The material of the coil frame is Ultem 
1010, which has a high heat deflection temperature of 216°C. Each coil 
was driven by an independent motor driver acting as a current con-
troller (Maxon ESCON 70/10). The power for the current controllers 
was supplied by Mean Well, SDR – 960 – 48 (48 voltage DC at 20 A). 
The four motor drivers were connected to the analog output channels 
of a National Instruments USB-6363, which was controlled by a 
LabView program on a PC. The dynamic performance of the current 
controllers was tuned manually in the vendor’s software Maxon Stu-
dio, and the gain and integration time constants were adjusted so that 
the commanded currents were able to track signals up to 100 Hz with-
out noticeable roll-off in magnitude or phase delays.

Each coil was independently calibrated by measuring the B field in 
five locations in the workspace. The mapping was automated using a 
three-axis stage made of three linear stages (LTS300 Thorlabs). The 
measured B field was used to calculate the current–to–B field matrix. 
Inversion of the MIB gives the B field–to–current matrix MBI
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Simulation methods
The capillary force and torque for edge-edge distances below 50 m 
were simulated using Surface Evolver 2.7. A circle of 1 mm in diam-
eter was used as the outer boundary, and the two micro-disks were 
positioned along the x axis and separated by an edge-edge distance 
from 1 to 50 m. The orientations of the micro-disks were kept equal 
and varied from 0° to 60°. Total surface energy was obtained as a func-
tion of the edge-edge distance and the orientation of the micro-disks. 
The capillary force was obtained as the negative of the derivative of 
the energy over distance. The capillary torque was obtained as the 
negative of the derivative of the energy over the orientation angle.

The capillary force and torque for edge-edge distances above 40 m 
were computed according to equations in the “Capillary force and 
torque calculation” section in MATLAB. The simulation for pair-
wise interactions and the collective phases of many disks were per-
formed according to equations in the sections on the model for 
pairwise interactions and model for many-disks interactions in 
Python. In all simulations, the direction of the magnetic dipole is as-
sumed to coincide with one of the six peaks of the cosinusoidal edge 
profiles. The angle between the direction of the magnetic dipole and 
the x axis is considered as the orientation of the micro-disk.

In the pairwise simulations, the initial edge-edge distance of the 
two micro-disks was set to be 100 m, and the initial orientation 
angles of the two micro-disks were set to be 0. The time step is 1 ms, 
and the total time varies between 2 and 50 s. The analysis of steady 
states was based on the last 2 s of simulation data. The integration is 
solved using the explicit Runge-Kutta method of order 5 (4) in the 
SciPy integration and ODEs library. We observe that a steady state 
was usually reached within 1 s.

In the simulations of collective patterns, the initial positions of 
the disks were aligned along a spiral on a square lattice. The center 
of the spiral is the center of the arena. The spacing between micro- 
disks is 100 m. The time step is 1 ms, and the total time is 10 s. The 
integration is solved using the explicit Runge-Kutta method of or-
der 5 (4) in the SciPy integration and ODEs library. We observe that 
steady states were reached after 6 to 7 s.

Detailed experimental protocols
Pairwise experiments (Fig. 1, B and C) were performed in the arena 
of 8 mm diameter shown in fig. S1D. The air-water interface was 
kept flat by adjusting the amount of water. Videos were recorded in 
two sequences, one for each type of transitions: (i)  = 10 to 22 rps 
(decoupling transition), in steps of 1 rps (red curve in Fig. 1C), and 
(ii)  = 21 to 6 rps (assembling transition), in steps of 1 rps (black 
curve in Fig. 1C). The field strength was 10 mT for all sequences. 
There was a gap of about 60 s between two rotation speeds to al-
low the micro-disks to reach steady states. Two seconds of data were 
recorded for each rotation speed. The magnification of the zoom 
lens was ×2.5. We also performed pairwise experiments at other 
magnetic field strengths (1, 5, and 14 mT). These data will be re-
ported separately.

Experiments with 218 micro-disks (Fig. 1, D and E) were per-
formed in the square arena with an edge length of 15 mm, shown in 
fig. S1E. For both flat and concave air-water interfaces, videos of 1 s 
were recorded for  = 70 to 10 rps in steps of 1 rps, and then videos 
of 20 s were recorded for  = 70 to 10 rps in steps of 10 rps. There 
was a gap of at least 60 s between two video recordings to allow the 
micro-disks to reach steady states. The magnetic field strength was set 
to be 16.5 mT to prevent micro-disks from stepping out. This batch of 
micro-disks was produced in the summer, and its magnetic moment 
is not as high as those produced in the winter, so a higher- than-usual 
field was used. The magnification of the zoom lens was ×0.57.

The experiments for phase transitions were performed for a col-
lective of 251 spinning micro-disks of sixfold symmetry and for 267 
and 198 micro-disks of five- and fourfold symmetries, respectively 
(Fig. 4). Videos were recorded for 15 min continuously. The magni-
fication of the zoom lens was ×0.57. The rotation speed and field 
strength were set according to the list described below for micro-disks 
of sixfold symmetry. Field strength values in parentheses are for micro- 
disks of four- and fivefold symmetries.
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1.  = 30 to 20 rps in steps of 5 rps, B = 10 mT (14 mT), 10 s
2.  = 18 to 10 rps in steps of 2 rps, B = 10 mT (14 mT), 10 s
3.  = 9 to 1 rps in steps of 1 rps, B = 10 mT (14 mT), 10 s
4.  = 1 rps, B = 1 mT (10 mT), 30 s
5.  = 0.75 rps, B = 1 mT (10 mT), 30 s
6.  = 0.5 rps, B = 1 mT (5 mT), 60 s
7.  = 0.25 rps, B = 1 mT (1 mT), 60 s
8. Mix 1 [ = 1 rps and B = 3 mT (3 mT) for 1 s]
and [ = 0.25 rps and B = 0.5 mT (0.5 mT) for 4 s], 90 s
9. Mix 2 [ = 5 rps and B = 3 mT (3 mT) for 1 s]
and [ = 0.25 rps and B = 0.5 mT (0.5 mT) for 4 s], 400 s
10.  = 0.25 rps, B = 1 mT (1 mT), 60 s

Calculation of order parameters
The hexatic order parameter was calculated according to

     6   =   
 ∑ k     exp(i6  ϑ  k  )

  ─ K     (7)

where K is the number of one micro-disk’s neighbors, k is the neigh-
bor index, and ϑk is the polar angle of the vector from the micro-disk 
to its neighbor k.

Calculation of radial distribution functions
We consider each micro-disk in turn and count the number of micro- 
disks within a circular band of width R. Then, we sum the counts of 
all the micro-disks and divide the total count by the total area of the 
circular band and by the total number of micro-disks. We repeat 
this process from a radial distance of 2R to 100R.

Model for pairwise interactions
If the edge-edge distance d ≥ lubrication threshold (=15 m or 0.1R)
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where ri and rj are the position vectors of micro-disks; rji = ri − rj is 
the vector pointing from the center of micro-disk j to the center of 
micro-disk i; rji is the magnitude of the vector rji; hat vectors denote 
unit vectors; i and j are the orientations of micro-disks; d is the 
edge-edge distance; φji is the angle of dipole moment with respect to 
rji (it is assumed to be the same for both micro-disks, as φji = φi = φj 
in the “Magnetic dipole force and torque calculation” section);  is 
the instantaneous spin speed of micro-disks;  = t is the orienta-
tion of the magnetic field;  is the rotation speed of the magnetic 
field; R is the radius of micro-disk (150 m);  is the dynamic vis-
cosity of water (10−3 Pa·s);  is the density of water (103 kg/m3); m is 
the magnetic dipole moment of the micro-disks (10−8 A·m2); B is 
the magnetic field strength (10 mT); Fmag−on, i, j and Fmag − off, i, j are the 
magnetic dipole force on and off the center-to-center axis, respec-
tively, and they are functions of rji and φji (see the “Magnetic dipole 

force and torque calculation” section for details); Tmag−d, i, j is the mag-
netic dipole torque, and it is a function of rji and φji (see the “Magnetic 
dipole force and torque calculation” section for details); Fcap, i, j is 
the capillary force, and it is a function of rji and φji and embeds the 
symmetry of a micro-disk (see the “Capillary force and torque 
calculation” section for details); and Tcap, i, j is the capillary torque, and 
it is a function of rji and φji and embeds the symmetry of a micro-disk 
(see the “Capillary force and torque calculation” section for details).

If the edge-edge distance d < lubrication threshold (=15 m or 
0.1R) and d ≥ 0
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where the coefficients are defined as the following (53)
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Model for many-disk interactions
If the edge-edge distance dji ≥ lubrication threshold (=15 m, or 0.1R)
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where rcenter is the position vector of the center of the arena; Rarena is 
the radius of the arena; and dtoLeft, dtoRight, dtoBottom, and dtoTop are 
the distances of a micro-disk to the four sides of the arena.
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If the edge-edge distance dji < lubrication threshold (=15 m, or 
0.1R) and dji ≥ 0
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 d toRight  

3  
   )    ̂  x   +  (     1 ─ 

 d toBottom  3  
   −   1 ─ 

 d toTop  3  
   )    ̂  y   ) ,  i = 1, 2, …   (18) 

 

      d    i   ─ dt   = G (      d  smallest   ─ R   )  mB sin( −    i   ) +  ∑ 
j≠i

     G (     
 d  ji   ─ R   )   ( T  mag−d,i,j  ( r  ji  ,  φ  ji   ) + 

 
  T  cap,i,j  ( r  ji  ,  φ  ji   )) , i = 1, 2, …   (19)

If the edge-edge distance dji < 0, a repulsion term is added to the 
force equation

     d  r  i   ─ dt   =  ∑ 
j≠i

     A( )  (    F  mag−on,i,j  (2R,  φ  ji   ) +  F  cap,i,j  (2R,  φ  ji   ) +        2   R   7  ─ 
 r ji  

3  
   )      ̂  r    ji   + 

 
 ∑ 
j≠i

       
 F  wallRepulsion  

 ─ 6R     
−  d  ji   ─ R      ̂  r    ji   +  ∑ 

j≠i
     B( )  F  mag−off,i,j  (2R,  φ  ji   )    ̂  r    ji   ×   ̂  z  + 

 
 

 ∑ 
j≠i

     C( ) mB sin( −    i   )    ̂  r    ji   ×   ̂  z  +   
   i  

2   R   7 
 ─ 6R  ( (     1 ─ 

 d toLeft  
3  

   −   1 ─ 
 d toRight  

3  
   )    ̂  x   + 

 
 

  (     1 ─ 
 d toBottom  3  

   −   1 ─ 
 d toTop  3  

   )    ̂  y   ) , i = 1, 2, …   (20) 

     d    i   ─ 
dt

   = G( ) mB sin( −    i   ) +  ∑ 
j≠i

     G( ) ( T  mag−d,i,j  (2R,  φ  ji   ) +  T  cap,i,j  (2R,  φ  ji   ))  
 

  i = 1, 2, …  (21)

where  is a small number (10−10 m/R); FwallRepulsion is set to be 10−7 N.

Magnetic dipole force and torque calculation
The geometry of interaction between two magnetic dipoles is shown 
in fig. S3C.

The force by dipole j on dipole i (35)

   F  by j on i   =   
3    0    m  j    m  i   ─ 

4  r ji  4  
  (   ̂  r    ji  (   ̂  m    j   ∙    ̂  m    i   ) +     ̂  m    j  (   ̂  r    ji   ∙    ̂  m    i   ) +    ̂  m    i  (   ̂  r    ji   ∙    ̂  m    j   ) −  

 5    ̂  r    ji  (   ̂  r    ji   ∙    ̂  m    j   ) (   ̂  r    ji   ∙    ̂  m    i   ) )   (22)

   F  by j on i   =   
3    0    m  j    m  i   ─ 

4  r ji  4  
  (cos( φ  j   −  φ  i   )    ̂  r    ji   + cos( φ  i   )    ̂  m    j   +  

 cos( φ  j   )    ̂  m    i   − 5cos( φ  i   ) cos( φ  j   )    ̂  r    ji  )   (23)

where the hat denotes a unitized vector, rji = ri − rj is the vector pointing 
from disk j to disk i, 0 = 4 × 10−7N/A2 is the vacuum permeability, 
mi and mj are the magnetic moments of micro-disks, and i and j 
are defined in the scheme of the interaction in fig. S3C.

With the geometric relations

     ̂  m    i   = cos( φ  i   )    ̂  r    ji   + sin( φ  i   )    ̂  r    ji   ×   ̂  z     (24)

     ̂  m    j   = cos( φ  j   )    ̂  r    ji   + sin( φ  j   )    ̂  r    ji   ×   ̂  z     (25)

the force equation becomes

   F  by j on i   =   
3    0    m  j    m  i   ─ 

4  r ji  4  
  ((− 2cos( φ  i   ) cos( φ  j   ) + sin( φ  i   ) sin( φ  j   ) )    ̂  r    ji   +  

 (cos( φ  i   ) sin( φ  j   ) +  cos( φ  j   ) sin( φ  i   ) )    ̂  r    ji   ×   ̂  z  )   (26)

Set φi = φj = φji, then

   F  by j on i   =   
3    0    m  j    m  i   ─ 

4  r ji  
4  
  ((1 − 3  cos   2 ( φ  ji   ))    ̂  r    ji   + 2cos( φ  ji   ) sin( φ  ji   )    ̂  r    ji   ×   ̂  z  )    

  (27)

   F  mag−on,i,j  ( r  ji  ,  φ  ji   ) =   
3    0    m  j    m  i   ─ 

4  r ji  4  
  (1 − 3  cos   2 ( φ  ji  ))   (28)

   F  mag−off,i,j  ( r  ji  ,  φ  ji   ) =   
3    0    m  j    m  i   ─ 

4  r ji  4  
  (2cos( φ  ji   ) sin( φ  ji  ) )   (29)

The torque by dipole j on dipole i (54)

   T  by j on i   =   
   0    m  j    m  i   ─ 

4  r ji  3  
   [ 3(   ̂  m    j   ∙    ̂  r    ji   ) (   ̂  m    i   ×    ̂  r    ji   ) + (   ̂  m    j   ×    ̂  m    i   )]   (30)

   T  by j on i   =   
   0    m  j    m  i   ─ 

4  r ji  3  
   [ 3cos( φ  j   ) sin( φ  i   )   ̂  z   + sin( φ  i   −  φ  j   )   ̂  z  ]   (31)

Set φi = φj = φji, then

   T  by j on i   =   
   0    m  j    m  i   ─ 

4  r ji  3  
  (3cos( φ  ji   ) sin( φ  ji   )   ̂  z  )   (32)

Capillary force and torque calculation
The area of the air-water interface with two static micro-disks can 
be calculated analytically, and hence, the surface energy is just the 
area times the surface tension of water. The surface energy is a func-
tion of the separation distance and the orientations of two micro- 
disks. The capillary force and torque are calculated from the 
derivatives of this energy with respect to the separation distance and 
the orientation angle of the micro-disks, respectively.

In general, any edge undulation profile H(ϑ) can be expressed as 
the sum of its Fourier modes

  H(ϑ) =   ∑ 
n=0

  
∞

     A  n   sin(nϑ)   (33)

where An are the Fourier coefficients and ϑ is the polar angle.
For two micro-disks, the surface energy is the summation of all 

modes of both micro-disks. Each mode can be calculated exactly in 
bipolar coordinates (37)

    
 E  m1,m2   

 ─     =  H 1  2   S  m1   +  H 2  2   S  m2   −  H  1    H  2    G  m1,m2   cos( m  1    φ  1   +  m  2    φ  2  )   (34)

where  is the surface tension of water; Hi is the amplitude of the 
sinusoid on micro-disk i, and i = 1, 2 is the index of the micro-disk; 
φi is the orientation of the micro-disk i; mi is the mode of the 
micro-disk i; and Sn and Gn,m are given below
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       S  n   =   ∑ 
k=1

  
∞

      k ─ 2   coth(2kacosh (     d ─ 2R   + 1 )  )  Ξ   2 (k, n, acosh (     d ─ 2R   + 1 )  )    (35)

  G  n,m   =   ∑ 
k=1

  
∞

      
kΞ(k, n, acosh (     d _ 2R  + 1 )   ) Ξ(k, m, acosh (     d _ 2R  + 1 )  )    ───────────────────────────   

sinh(2k acosh (     d _ 2R  + 1 )  )
     (36)

  Ξ(n, m, υ ) = m  ∑ 
k=0

  
min(m,n)

      (− 1)   m−k (m + n − k − 1 ) !  ───────────────  (m − k ) !(n − k ) !k !    e   −(m+n−2k)υ    (37)

where acosh() is the inverse of the hyperbolic cosine function, R is 
the radius of the micro-disk, and d is the edge-to-edge distance.

If 1 = 2 = , the total energy then is

  E(d,  ) =   ∑ 
m1,m2

     E  m1,m2  (d, )   (38)

The capillary force and torques then are calculated as

  F(d,  ) = −   ∂ E ─ ∂ d     (39)

  T(d,  ) = −   ∂ E ─ ∂     (40)

Supplementary notes on the scaling relations
Magnetic dipole-dipole interactions
The angle-averaged magnetic force was calculated by averaging 
Eq. 28 with respect to ji as

   F  mag  (r ) = −   3    0    m   2      2  ─ 
4  d   4 

   = −   3 ─ 4       2     0     m  2   ×   (     1 ─ d / R   )     
4
   (41)

where m = mR2 is the total magnetic moment of each micro-disk; 
m is the magnetic moment per unit area of the disk and is estimat-
ed to be ~0.1A from fig. S2G, and we chose the thickness of 500 nm 
so that the sputtering process could be conveniently finished within 
1 day; R is the radius of the disk; and d is the center-to-center dis-
tance between micro-disks.

Because the magnetic moment is due to the cobalt thin film and 
scales with its surface area (m ∝ R2), the magnitude of interaction 
depends only on the factor of d/R.
Hydrodynamic interactions
The hydrodynamic lift force is calculated as

   F  hydro  (r ) =        2   R   7  ─ 
 d   3 

   =     (  R   2 )   
2
  ─ 

 (d / R)   3 
   =      2     Re   2  ─ 

 (d / R)   3 
    (42)

where  is the density of water,  is the spin speed in rad/s,  is the 
kinematic viscosity of water, and Re is the Reynolds number.  
It acts in direction rji.
Capillary interactions
The numerical values for the capillary forces were calculated 
using Eq. 39 (see the “Capillary force and torque calculation” 
section). The angle-averaged value of capillary forces were then 
calculated as

   F  cap  (d ) =   1 ─ 2   ∙   ∑ 
=0

  
2

    [  F  cap  (d,  ) ∙ ]  (43)

where  = 1o is the step size.

Micro-disks are assumed to have six cosinusoidal profiles of am-
plitude 2 m and an arc angle of 30° along the circumference. The 
numerical relations for the capillary forces at fixed d/R are as follows

   F  cap  (d = 2.25R ) =  10   −12.4  N ∙ m ∙  R   −1.0 , [ F  cap   ] = N, [R ] = m  

   F  cap  (d = 2.5R ) =  10   −13.5  N ∙ m ∙  R   −1.0   

   F  cap  (d = 2.75R ) =  10   −14.4  N ∙ m ∙  R   −1.0   

   F  cap  (d = 3R ) =  10   −15.2  N ∙ m ∙  R   −1.0   

From these relations, one can deduce a relation

   F  cap  (d ) =  10   −4.1−3.7 (    d _ R  )    ∙  R   −1.0    (44)

where d is the center-center distance between disks.

Supplementary notes on the Hamiltonian approach
The 1D Hamiltonian of pairwise interaction in the pattern of many 
disks is calculated as

  H(d ) =  E  mag−dp  (d ) +  E  cap  (d ) +  E  hydro  (d ) +  ∙  E  bd  (d)  (45)

where Ecap(d) is the angle-averaged capillary energy; Emag − dp(d) is the 
angle-averaged magnetic dipole-dipole energy;   E  hydro  (l ) = − ∫  F  hydro  (l ) ∙
 dl =    R   7      2  _ 

2  l   2 
    is the effective hydrodynamic energy; d is the center-center 

distance between micro-disks; and  is a fitting parameter, and its 
value is 10 for all the spin speeds.
Derivation of the mean-field energy term
The geometry of interaction between two micro-disks is shown in 
fig. S5A. All the micro-disks (except for the pair under consideration) 
are assumed to be uniformly distributed in   r ∈  [    3d _ 2  ,  r  thresh   ]    , where r is 
the distance from the center of mass of the pair of micro-disks. In 
fig. S5A, we consider an imaginary circle of micro-disks (the dotted 
circle). This circle is centered on the right micro-disk, and its radius 
is r′. According to our assumption, for  d ≤  r ′   ≤  r  thresh   −  d _ 2   , the micro- 
disks are uniformly distributed, and there are no micro-disks be-
yond rthresh. The interaction energies between the right (yellow) 
micro-disk with all the micro-disks whose centers are on the imag-
inary circle are the same (assuming angle-averaged interactions). 
Then, we map all the points on the circle to one point on r axis, r′ = 
r − d/2, the red dot in fig. S5A. We sum all the interaction energies 
from r′= d to   r ′   =  r  thresh   −  d _ 2     and consider this sum to be the mean-field 
energy acting on the yellow micro-disk on the right. Because energy 
is additive, we multiply this value by 2 and consider the product to 
be the effective boundary energy of the pair of micro-disks separated 
by a distance d.

The probability distribution as a function of r and d is given as

  P(r, d ) =   
2 (  r −  d _ 2   )  

 ─  

  ∑  
r=  3d ─ 2  

  
 r  

thresh
  
  2 

⎛
 ⎜ 

⎝
  r −  d _ 2   

⎞
 ⎟ 

⎠
   ∙ r

    (46)

It is normalized as

    ∑ 
r =  

 
3d

 
─

 2  

  
 r  

thresh
  
  P(r ) ∙ r = 1   (47)
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where N is the number of disks in the system and r is the step size.
The mean-field energy Emf(d) is calculated as the mean of all in-

teraction energies between the pair of micro-disks under consider-
ation and all other micro-disks in the arena

    E  mf   (d ) =   ∑ 
r=  3d ─ 2  

  
 r  thresh  

  2 ⋅ 
([

 E  cap   
⎛
 ⎜ 

⎝
  r −   d ─ 2   

⎞
 ⎟ 

⎠
   +  E  mag−dp    

⎛
 ⎜ 

⎝
  r −   d ─ 2   

⎞
 ⎟ 

⎠
   +   

 
 

 E  hydro    
⎛
 ⎜ 

⎝
  r −   d ─ 2   

⎞
 ⎟ 

⎠
   
]

 ⋅ P(r ) ⋅ r
)

   (48)

where the summation is performed in steps of 1 m.
The algorithm we use for fitting  is as follows:
1. Cost = KLD. For each rotation speed  in [12, 70] rps with a 

step size of 1 rps
2. Calculate the terms in the Hamiltonian (different energy 

contributions)
3. For  in [1, 10000) * 1011 with a step size of 1*1011 (unit of 

 is J−1)
a) Calculate the complete Hamiltonian using Eq. 45
b) Calculate the histogram of the probability distribution p( d; ) = 

e−H(d; rthresh)

c) Calculate KLD from the experimental neighbor distance 
distribution

d) If KLD is less than the previous minimum value, save the 
current KLD as the new KLD minimum

4. Return  and p(d; ) corresponding to the minimum value  
of KLD.
Implementation
We calculate the value of Hamiltonian for d ∈ [300,1500) m with a 
step size of 1 m. The reason for using this range of d is because, for 
the experimental neighbor distance distribution, we do the binning 
until d = 10R.
Capillary interaction calculations
The capillary interaction energy was calculated as mentioned in the 
“Capillary force and torque calculation” section, and angle-averaged 
values were calculated similar to Eq. 43.
Magnetic dipole-dipole interaction calculations
Magnetic dipole-dipole interaction energy was calculated by inte-
grating the force in Eq. 41 with respect to r.
Hydrodynamic lift force interaction calculations
Hydrodynamic lift force interaction energy was calculated by inte-
grating the force in Eq. 42 with respect to r. This was done for each 
 ∈ [12,70] rps.
Boundary energy calculations
For boundary energy calculations, Eq. 48 was used for each  ∈ 
[12,70] rps.
Function for calculating the histogram
A routine for calculating the histogram was written. It takes in the 
1D array containing the value of p(d; ) = e−H(d; rthresh) and returns 
the histogram of d. The bin size and bin edges used are the same as 
those used for the experimental neighbor distance distribution. Bin 
edges were [2R, 10R) with a bin size of 0.5R, and the last bin was 
from 10R to 100R.
KLD calculation
KLD is defined as

    D  KL   (  P∣∣Q ) = ΣP(x ) ln (     P(x) ─ Q(x)   )     (49)

where P(x) and Q(x) are two distributions.
It was calculated using the entropy function of the SciPy library in 

python. Histogram of neighbor distance from experiments was used 
as P(x), and the histogram calculated from p(d; ) = e−∙H(d; rthresh) was 
used as Q(x). A small value of 10−3 was added to the Q(x) to avoid 
division by zero problem.

Supplementary note on the Monte Carlo simulations

The algorithm used is as follows:
• Start with all N disks in randomly generated positions ensuring 

no overlap.
• For each time step:

• For each disk
1. Generate a random movement vector within the arena
2. Check if the new position of the disk overlaps with any other disks
3. Calculate KLD for the distribution(s)
4. Check if after the movement, the distributions converge
5. If the KLD decreases, accept the move
6. Else generate a random number, p in [0,1)

1. If p < e−MCKLDdiff, accept the move
2. Else reject the move

MC was chosen as the inverse of SD of KLD between experimental 
frames and was the same for all four representative patterns. KLDdiff 
is the KLD difference from experiments corresponding to the distri-
bution of neighbor distances. The simulations were run using only 
neighbor distances for each of the four spin speeds. The algorithms 
were for ~150,000 steps. Simulations were repeated at least seven 
times for each of the four spin speeds.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abk0685
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