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We analyse the rheology of gravity-driven, dry granular flows in experiments where individual
forces within the flow bulk are measured. We release photoelastic discs at the top of an incline to
create a quasi-static erodible bed over which flows a steady 2D avalanche. The flowing layers we
produce are dense (φ ≈ 0.8), thin (h ≈ 10d), and in the slow to intermediate flow regime (I = 0.1
to 1). Using particle tracking and photoelastic force measurements we report coarse-grained
profiles for packing fraction, velocity, shear rate, inertial number, and stress tensor components.
In addition, we define a quantitative measure for the rate of generation of new force chain networks
and we observe that fluctuations extend below the boundary between dense flow and quasi-static
layers. Finally, we evaluate several existing definitions for granular fluidity, and make comparisons
among them and the behaviour of our experimentally-measured stress tensor components. Our
measurements of the non-dimensional stress ratio µ show that our experiments lie within the local
rheological regime, yet we observe rearrangements of the force network extending into the quasi-
static layer where shear rates vanish. This elucidates why non-local rheological models rely on
the notion of stress diffusion, and we thus propose non-local effects may in fact be dependent on
the local force network fluctuation rate.

1 Introduction
Many studies of granular rheology have been developed by adapt-
ing classical fluid dynamics to granular-specific phenomena. In
particular, non-local rheological models1–3 aim to extend the flu-
idity observed in local regimes to regions in the non-local regime
whose kinematic behaviour differs from that expected according
to classical fluid dynamics. This reflects a need to better compre-
hend the physical mechanisms behind the transmission of forces
within granular media, and their relation to rheological models.
In this manuscript, we characterize the fluctuation rate of the
force network as a key factor that granular rheology models must
include, even though this feature is not present in classical flu-
ids. Specifically, we use quantitative experimental measurements
of inter-particle interactions to study how the stress tensor and
its fluctuations differ across the boundary between two regions of
the flow.

Granular systems have been classified based on the frequency
and duration of inter-particle contacts4–7. A quasi-static system
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is reminiscent of a solid, a dense inertial flow resembles a fluid,
and collisional (gas-like) states arise from the presence of highly
energetic particles. Using dimensional analysis, granular flows
can be classified into these three regimes via the dimensionless
inertial number8

I ≡ γ̇d√
P/ρ0

, (1)

where γ̇ represents the shear rate, d the particle diameter, P the
pressure and ρ0 the density of the particle material. It is useful
to interpret the inertial number as the ratio between a micro-
scopic timescale, d/

√
P/ρ0, related to the time taken by parti-

cles to fall into a gap of size d under pressure P, and the macro-
scopic timescale given by 1/γ̇ linked to the plastic deformation
of the material. Under these definitions, I is a local variable
and its value roughly specifies the state of a granular system
as being a quasi-static (I < 10−3), dense inertial or intermediate
(10−3 < I < 10−11), or collisional flow (10−11 < I)9,10. However,

the thresholds that define each regime depend strongly on the ge-
ometry and may also vary depending on the choice of definitions
for the constitutive variables8,11.

Local granular rheology models9,12 are based, as in classical
fluid dynamics, on a constitutive relationship between a local
stress tensor ¯̄σ , and the corresponding the rate of shear strain
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tensor, ¯̄T,
¯̄σ = P ¯̄I+

µP

|| ¯̄T||
¯̄T. (2)

The double-bar notation denotes second-order tensors and the
variable µ represents the ratio between shear and normal stress13

µ =
τ

P
, (3)

where τ represents the shear stress.

Local models make use of an interpretation of the stress ra-
tio µ as an effective friction coefficient depending solely on I 11.
This model would apply where the local shear stress is a function
only of the local shear rate. In addition, by drawing an anal-
ogy between the stress ratio and the particle friction coefficient,
local rheology models represent granular systems much like Bing-
ham fluids, with an incipient yield stress ratio, µs. One popular
model for the relationship µ(I) was successfully developed by Jop
et al. 12

µ(I) = µs +
µ2−µs

I0/I−1
, (4)

where I0 is a free parameter and µ2 is the maximum stress ratio
attainable by the system.

Local models have been shown to accurately describe a variety
of experimental observations9,12. However, other scenarios have
been identified where flow can exist in regions where the stress
ratio is below the yield threshold, µ < µs. The basic assumptions
of a local rheology fail to explain dynamic phase transitions2,14,
shear banding15 or observations of creeping zones3,16. A wide
range of phenomena, such as size-dependent flow thresholds17,
nozzle jamming at a finite opening18,19, and secondary rheol-
ogy20,21 have been associated with non-local effects. Motivated
by these shortcomings, non-local rheology theories aim to cap-
ture relationships between the stress tensor ¯̄σ and state variables
in addition to the shear rate γ̇. Three Several such models have
been proposed7,22–26, but for the moment there still lacks a uni-
versal theory that captures the fundamental physics behind the
vast variety of non-local phenomena27,28, and that is moreover
well-posed29,30. In this work we focus on a particular cluster of
models based on measures that are accessible to us.

Pouliquen and Forterre 31 proposed a description of non-
locality based on processes activated by force-chain fluctuations.
They suggested that the rate of rearrangements in the force net-
work plays a similar role to temperature in thermal systems,
rather than individual particle velocity fluctuations32. They pro-
posed that the rate of plastic deformation proportionally affects
the rate of generation of new random force networks within a
granular flow.

Kamrin and Koval 1 used this principle to introduce the no-
tion of local stress diffusion, whereby plastic events trigger other
plastic events near them, within a lengthscale ξ , called the coop-
erative length of the plastic deformation mechanism. They pro-
posed that the relevant variable was a fluidity, corresponding to
the classical definition of the inverse of viscosity, f ≡ γ̇/τ. Their
non-local, They additionally suggested that for granular materials
the constitutive relationship for the granular fluidity g should be

additionally rescaled by the pressure under the definition

g≡ γ̇

µ
, (5)

based on the argument that the collective, dynamic friction be-
tween particles that defines the shear stress between layers, τ, is
expected to be pressure-dependent.

Finally, Bouzid et al. 2,3 took a related approach to modelling
stress diffusion, noting that the cooperative motion of particles
is both facilitated in the presence of more fluid neighbors, and
suppressed when surrounded by a more solid neighbourhood. In
addition, tThey challenged the definition given in (Eq. 5), saying
added that the fundamental definition of fluidity should instead
be a state variable; , which the internal stresses are not. Instead,
g should be given by a coarse-grained field determined from the
state of the system, because otherwise it would not be continuous
across a stress discontinuity, for example when µ → 1. They sug-
gest several alternative definitions for g, including (1) the dif-
ference between the number of contacts vs. sliding contacts per
grain, and (2) the difference φc−φ where φ represents the local
volume fraction and φc the volume fraction at the limit I→ 0. In
the end, they argue for simply using the inertial number I, be-
cause it increases with their concept of fluidity and becomes zero
in the solid state. On the other hand, this choice requires the
assumption of a quasi-incompressible system, which may not be
satisfied for granular materials9,30,33.

Several different microscopic variables have been used to de-
scribe non-local effects. For examples, Pouliquen & Forterre
(2009)31 described stress diffusion through stress fluctuations,
Jop et al. (2012)34 connected granular fluidity (as the inverse of
viscosity) to the standard deviation of the strain-rate tensor, and
Zhang & Kamrin (2017)35 proposed and confirmed that granular
fluidity can be fundamentally described in terms of only velocity
fluctuations, δv, and packing fraction, φ , as

g =
δv
d

F(φ), (6)

where d is the particle diameter and F is a function that defines
the dependency of g with φ .

In this paper, we test the appropriateness of the definitions
made in these three models, using In this paper we make direct
observations of the forces that cause localised rearrangements
in areas where no motion would be expected according to lo-
cal rheology models. We aim to use our insight into the force
network to investigate the physical mechanisms that drive non-
local effects in experiments at low-intermediate values of I where
such non-local effects are becoming relevant. In addition, we test
whether the shear rate is an appropriate variable in the descrip-
tion of fluidity at all, given that even for static granular packings,
force chain configurations are not solely determined by particle
positions36,37. Instead, there is a force network ensemble (FNE)
which can fluctuate independent of, and in addition to, particle
rearrangements under shear. Therefore, we additionally consider
some alternatives for defining the fluidity g.

Our experiments are performed in the apparatus described in
Thomas and Vriend 38 , which is capable of making quantitative
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measurements of both the flow field and the stress field within
2D free-surface flows, using photoelastic discs as the granular
material. We examine the rheology of such flows at low to
intermediate-I, by taking high-speed video that allows for pho-
toelastic measurements of inter-particle forces39,40. The flows
consist of a ∼ 10d to 12d deep layer of particles flowing in a dense

inertial regime over a quasi-static layer that is ∼ 5d to 6d deep,
providing data in a regime close to the transition between quasi-
static and dense inertial flows.

We report coarse-grained profiles of each of the candidate rhe-
ological variables that characterise the state of the granular sys-
tem under investigation. We are thereby able to directly mea-
sure the force chain fluctuation rate and compare its behaviour
to the shear rate, allowing for experimental tests of the models
proposed in the three non-local rheologies1,2,31, as well as con-
firming whether the force chain fluctuations are able to identify
the value of µs

41. We conclude that the force-chain fluctuation
rate may provide a local representative of granular fluidity, an
effect beyond simply using stress diffusion to explain non-local
effects.

2 Experimental methods

2.1 Apparatus

Figure 1 shows a diagram of the experimental setup, in which
photoelastic discs are released to produce 2D avalanches. The
chute is bounded by two large acrylic panels with a fixed separa-
tion of 8 mm, providing enough space to allow the discs to roll
freely with minimal resistance but without toppling. Along the
base of this channel, we clamp a plastic strip with semi-discs of
alternating 12 and 21 mm diameters to provide basal roughness.
The complete setup is just over 3 m high and 3.5 m long, and
permanently inclined at an angle of 20◦ above the floor.

We cast photoelastic discs with diameters of 11, 12 and 13 mm
(equal numbers) and a thickness of 6 mm from Clear Flex 50
(polyurethane from Smooth-On, Inc.) using the technique devel-
oped by Barés 42 , Barés et al. 43 , Abed Zadeh et al. 44 . The discs
produced have density ρ0 = 1120 kg/m3, Shore A hardness 50,
and exhibit slight viscoelastic behaviour45. The photoelastic ma-
terial used is softer than is typically found in nature and industry,
but we assume particle stiffness does not have a significant effect
on the flow rheology46. By introducing a small (10%) polydis-
persity, we are able to suppress crystallisation47, without causing
size-segregation. In the following calculations, the average diam-
eter d = 12 mm is used.

At the start of each experiment, well-mixed discs are placed
into the hopper above the chute upper end and then released by
manually sliding a plastic gate at the base of the hopper. We
measured that the flow released from the hopper produces an
approximately a constant flow rate. The particles fall into the
channel formed by two 2 m-long and 0.5 m-high acrylic sheets,
and avalanche down the incline.

Releasing the gate simultaneously triggers a Phantom v2012
Ultrahigh-Speed Camera (Vision Research) to record the flow of
photoelastic discs at a downstream distance of 25 cm from the

hopper opening. Images are collected at 1000 frames per sec-
ond with a 1/8000 s exposure time, while backlit illumination is
provided by a TruOpto OSPM-R5030ETS Red LED. The imaging
region contains a pair of oppositely-polarized circular polarizers
for making photoelastic measurements of the interparticle forces.
A sample image, showing the force chains as light streaks against
a dark background, is shown in the central region of Fig. 1. After
an initial acceleration of the avalanche leading edge, and before
the depletion of the hopper, the flow is in a steady state. We
focus our attention on this interval, which is characterised by a
constant flow height and velocity profile. While we collect up to
3000 frames (3 s) of flow, due to the computationally-intensive
analysis (see §2.2) we only consider 500 frames (0.5 s of flow,
which satisfies a representativity test) for each of four experimen-
tal runs.

The experimental setup is designed so that the rolling discs
have on average 1 mm leeway on either side. In addition, the
discs are lightly coated in flour to lubricate the interaction with
the acrylic side-walls. Friction between the discs and side-walls
is large enough to affect the flow velocity profile, but not enough
to induce a visible photoelastic response38. As a result, side-wall
friction does not affect the photoelastic force measurements.

We determined the yield stress ratio µs of the particles using
the method described in Tang et al. 41 . This apparatus allows
both continuous shearing from the inner wall and simultaneous
measurement of τ and P. Because the stress ratio µ approaches
µs for very slow inertial numbers, the largest values of µ obtained
for a very slow rotation rate (10−3 d/s at the inner wall) provide
an estimate of µs. We found this to be approximately 0.26±0.01
for our particles, which is consistent with measurements of other
circular particles in the same apparatus.

2.2 Imaging particles and forces

The experimental technique applied in this study is based on the
material property of photoelasticity, by which certain materials be-
come birefringent to a degree sensitively dependent on the mag-
nitude of external loads48. As a consequence, light that travels
through a photoelastic material under stress experiences a change
in its polarisation. When placed between a pair of opposite polar-
ising sheets, the fringe patterns produced by the light transmitted
through the system can be related to the magnitude and direction
of the load applied to the material. Thus, the forces that would
produce a specific fringe pattern are determined via an iterative
optimisation algorithm (Levenberg-Marquardt). We use a force-
measuring code built on the open-source program PeGS39,40 but
without relying on particles being force-balanced, as this is not
applicable in our dynamic system.

We use the Matlab function imfindcircles (Hough transform) in
post-processing to find circles in each experimental image. Be-
cause of the high frame rate, the circles identified are easily
tracked throughout the experiment. Depending on the specific
particle edge visibility and the instantaneous photoelastic pat-
tern brightness, we estimate a location error of at most 1 mm,
or ≈ 10% of the mean diameter.

We determine, from the data collected during the particle track-
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ẑ

^

60 cm

50 cm

0.8 cm

Sliding panel 

Camera view

Photoelastic 

Basal roughness

x

fringe patterns gate

Fig. 1 Schematic of the experimental apparatus 38 used to create and monitor 2D flows of photoelastic discs. On opening the hopper gate, a 2D
avalanche of discs rolls down the incline. The resulting flow is recorded by a high-speed camera as it passes in steady state between a pair of opposite
polarizers, which allow the visualisation, and later quantification, of instantaneous inter-particle forces.

ing, that the coordination number of the system is 4.2±0.3. Only
a small proportion (< 30%) of the total particles take part in the
force network. The wide black gaps between force chains are
filled with “rattlers”; particles instantaneously not exhibiting an
obvious photoelastic response to any force. The proportion of
discs involved in the force network increases with depth, but in
the experimental frames analysed no less than 70% of discs fail
to produce a visible photoelastic pattern. Given that the average
disc mass is 0.78 g, only forces that are at least three times greater
than the average disc weight will produce a visible photoelastic
response38, which rules out a great majority of the contacts as
bearers of significant loads. On the other hand, discs that are
involved in force chains carry loads that are on average at least
an order of magnitude larger than the minimum. Henceforth, it
is important to be aware that a large number of small forces are
being neglected in the following analysis, as the technique sensi-
tivity sets a threshold to the contacts considered to form part of
the force-network.

For those discs that do exhibit a photoelastic response, we crop
out the fringe patterns from the experimental images to solve the
inverse problem using PeGS39,40. In Thomas and Vriend 38 we
evaluated the technique’s force measurement error and its de-
pendency on the number of forces acting on a disc, z. As reported
in that paper, we estimate that the sensitivity lower bound of our
photoelastic measurements is 0.02 N. This value depends on the
inherent photoelastic response of Clear Flex 50, the thickness of
the discs, and the image resolution. In addition, a systematic er-
ror of 0.05N exists for forces of magnitudes smaller than 0.5N. On
the other hand, the random error of the technique can be as large
as 20% between the lower bound of 0.02 N and a critical value
that depends on the number of forces acting on the disc, z. The
reliability of the force measurements drops significantly when the
loads on the discs exceed 2.5 N when z = 2, 1.6 N when z = 3 and

1.2 N when z = 4. The limits of the technique lie in the resolution
of the experimental images (due to camera resolution and diffu-
sion in the photoelastic material) and in the trade-off between
computational cost and accuracy.

The outcome of running the selected frames through PeGS is a
list per frame of tracked discs. Each disc is assigned a unique ID
number, its coordinates, radius, velocity magnitude and direction,
and a list of force vectors acting on the disc. Each force in this
vector is described in terms of its magnitude, direction, point of
application, and the ID of the adjacent disc that applies each load.

2.3 Coarse-graining
To obtain continuous profiles from the list of discrete experimen-
tal results, we applied a coarse-graining technique based on the
work of Goldhirsch 49 and Weinhart et al. 50 to create continuum
fields from discrete data. They propose coarse-graining expres-
sions for density profiles ρ(z), downstream velocity Vz(z), and the
four stress tensor components, σxx(z), σxz(z), σzx(z) and σzz(z).
The main technique is to define a coarse-graining function for
any such quantity W such that the contribution from a disc at any
point with coordinates r and a distance r from its centre, using a
coarse-graining length-scale w , is:

W(rr,w) =


C exp

[
−1

1−|(r−ri)ri/w|2

]
|r− ri|r < w

0 |r− ri|r ≥ w,
(7)

where C is a normalisation factor to obtain the total volume of W
over the whole domain, and ri are the coordinates of disc i.

This particular vector function was chosen because it ap-
proaches zero as r→ w and it provides an interpretation of the
coarse-graining length-scale based only on w. The function W

spans over an ellipse of height and width equal to the vertical and
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horizontal coarse-graining lengths. W depends on the distance to
the centre of each disc, |r− ri|, relative to a predefined coarse-
graining length-scale w. The length-scale w needs to be specified
for each system49,50, and may have different components in the
vertical and horizontal directions (here, wz and wx, respectively).

We notice that the flow does not change significantly in the
stream-wise direction (horizontal, x̂), while it does vary rapidly in
the cross-flow direction (vertical, ẑ), so we choose different values
for wz and wx. We use wx = 5d, as this defines the width of the sec-
tion of the experimental image where the circle finding is most ac-
curate (due to small changes in the background illumination close
to the viewing window edges). For the experiments described in
this paper, the optimal vertical coarse-graining length-scale was
found to be wz = 3d, selected by finding the smallest value that
obtains smooth packing fraction profiles. Note that these values
also place a limit on how close to the boundaries we are able to
make measurements. In the plots that follow, all values measured
within (3d) of the vertical boundaries of the images are shown
by either dotted lines or lighter colors. We estimate the location
of the free surface as the line that best fits the highest points of
the discs in the topmost layer, and then we truncate the profiles
below the base and above the free surface.

3 Flow characterisation
We measure the density profile ρ(z) according to Goldhirsch 49

from discrete particle tracking measurements using Eq. 7, and
use this to measure the packing fraction profile φ(z) = ρ(z)/ρ0.
As previously observed for this apparatus38, we find that φ(z) ≈
0.81± 0.07, which is a slightly lower than random close packing
(φRCP = 0.8451,52). is approximately uniform and constant within
the steady-state flows, in both the quasi-static and flowing layers.
Louge et al. 53 have reported low packing fractions in the upper
flowing layer, but the value we measure is uniform (within our
experimental error) along the whole profile, in both quasi-static
and upper flowing layers. This value is value slightly lower than
random close packing (φRCP = 0.84 51,52). Although we measure
no significant variations in φ with depth, we observe that all lay-
ers are equally spaced from each other by 0.9d 38,54, but that the
degree of layering becomes less pronounced closer to the free
surface. It is possible that the packing fraction indeed decreases
towards the free surface, but by an amount smaller than the ex-
perimental error or is dampened by coarse-graining.

For each of the four experimental runs, the flow thicknesses H
are between 17d and 20d, but differ primarily in the amount of
material that accumulates as a quasi-static basal layer. Therefore,
in the plots below we examine the properties of the flows as a
function of the vertical coordinate z, as measured with the origin
placed at the free surface55. As shown in Figure 2a, we observe
that the four downstream velocity profiles, Vz(z), are consistent in
their shape and magnitude.

A quasi-static layer forms below a depth of about 13d 12d.
In Figure 2a, we shade the area where the particles move up
to 100 times slower than their free surface counterparts. Along
the whole chute, this quasi-static layer forms a super-stable heap
that is thickest closest to the hopper, and decreases to zero thick-

(a) (b)

Fig. 2 (a) Coarse-grained downstream velocity profile Vz(z), and (b)
mean flow shear rate profile γ̇(z) of the steady flow measured at a dis-
tance 25 cm from the hopper opening, with individual runs aligned to
have z = 0 at the free surface. The gray shades denote regions of dif-
ferent observed behaviour. On (a) the shaded region contains quasi-
static particles, as opposed to the flowing layer above. On (b) the region
shaded in light gray shows shearing rates decreasing with particle ve-
locities, perhaps related to a decrease in packing fraction, too small to
measure directly.

ness at the lower, open end of the chute38. For our particular
system, the super-stable heap effectively increases the inclina-
tion of the steady-state flow above it by 5◦. As in other reports
of experiments where super-stable heaps form in narrow chan-
nels56–60, we observe quasi-linear velocity profiles in the flowing
layer, 0d < z < 12d.

Using the mean velocity profile, taken across all four runs, we
calculate the shear rate γ̇ = dVx/dz by taking second order central
finite differences. The resulting profile γ̇(z) is shown in Figure 2b.
We observe that it obtains near-zero values in the quasi-static bot-
tom layer, and gradually increases in the transition to the flowing
layer. A maximum value of γ̇ = 6 s−1 is reached at a depth of
approximately 6d. A decrease close to the free surface, in the re-
gion shaded light gray in Figure 2b, is surprising given that we
observe uniform packing fraction throughout the flow. However,
as the depth of maximum shear rate (z = 6d) is below the cut-off
of boundary effects on the coarse-graining (z = 3d), we accept it
as a physical phenomenon. However, it is possible that our mea-
surements of the packing fraction φ within this region are over-
estimated by an amount smaller than our experimental error. If
so, a slightly smaller φ can still cause significant differences in the
shear rate. Even though this region is not in the collisional state
where the packing fraction would be expected to decrease much
more dramatically, we interpret this region to be transitioning to
a high-I state.

We calculated the continuous stress tensor components σi j

from discrete force measurements according to the technique pro-
posed by Weinhart et al. 50 . The coarse-grained profiles σi j(z) are
shown in Figure 3a. The absolute values of the profiles have a
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Fig. 3 Analysis of the stress tensor coarse-grained according to Weinhart et al. 50 : (a) The solid coloured lines represent each of the four stress tensor
components, coarse-grained and averaged over the four experiments, while the dashed lines delimit the error bounds. The straight gray lines show the
gradients expected in the case of hydrostatic pressure and shear; (b) the shear ratio and (c) the principal orientation obtained from the profiles shown
in (a), for each experiment (coloured lines) and their mean (solid black line). Values within 3d of the free surface or base are plotted in dotted lines and
light colours as their measurements are affected by proximity to a boundary.

large systematic error38, particularly towards the top of the flow,
where the proportion of small forces below the experimental tech-
nique sensitivity is largest. However, the gradients in σi j coincide
with the expected hydrostatic increase with depth of the normal
and shear stresses. It follows that the stress ratio µ, as defined
by Equation 2, is constant in the dense flow region. In contrast,
we observe µ decreases with depth below the boundary with the
quasi-static layer. Interestingly, µ does not fall below the mea-
sured value of µs ≈ 0.26, which is observed to be reached only
at the base. Figure 3b raises the interesting question of whether
we do not observe non-local regions, where µ < µs, because the
quasi-static region is not deep enough to reach it. These results
are consistent with previous analyses59,61,62 on the impact of
side-wall friction on the rheology of flows in narrow channels.
As the pressure on the side-walls increases with depth, so do the
frictional forces at the walls. In consequence, µ is predicted to
decrease with depth from the free surface.

The principal stresses show a change of direction, measured
via the principal orientation, θp

38, shown in Figure 3c. The peak
in θp coincides in position with the transition between static and
flowing layers. This peak is on average 5◦ larger than the value
of θp measured close to the free surface and bottom boundary.
Incidentally, 5◦ is the angle the flowing layer velocities make to
the base, as the super-stable heap that forms at the chute base
effectively increases the inclination of the flowing layer by this
amount. In other words, we observe a 5◦ angle forms between the
velocity components Vx and Vz in our frame of reference aligned
with the setup inclination.

Since we now have experimental coarse-grained measurements
for the pressure P from the symmetric component of our mea-

sured ¯̄σ , we calculate a profile for the inertial number I, defined
in Equation 1, with depth. This plot of the experimental results
is shown in blue in Figure 4. We find that the inertial number
decreases steadily with depth from the free surface within the
flowing layer. However, in the quasi-static layer where the shear-
ing effect of the rough base is expected to be most important, the
shear rate approaches zero, and therefore so does I.

With profiles for both µ and I, we investigate the relationship
between them. By plotting them against each other in Figure 5,
we see a rapid increase of µ at low values of I, and a plateau
at the maximum value of µs. These are characteristics modelled
by Jop et al. 12 in Equation 4. A fit of this µ(I) model to the ex-
perimental data, fixing µs = 0.26 (measured separately using the
apparatus described by Tang et al. 41), is shown in red in Figure 4,
and obtains I0 = 0.004 and µ2 = 0.376.

4 Results

4.1 Force network fluctuations

It has previously been observed that spatial and temporal fluc-
tuations in the interparticle forces provide a measure of how
close/far a system is from the boundary between flowing/non-
flowing regions or regimes41,63,64. In order to identify whether
this effect is an important factor in the three nonlocal rhe-
ologyies1,2,31, we make similar measurements for our avalanch-
ing flows. To measure the duration of time that a particular point
in the flow maintains the same forces, we treat each pixel bright-
ness as an individual time series B(t). In our flows, the particles
only rarely have more than one photoelastic fringe. Therefore,
a growing or decaying brightness approximately quantifies the
growth or destruction of a force chain.
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Fig. 4 Profile I(z) of the inertial number, as defined in Equation 1. Data
collected at distances within a coarse-graining length wy = 3d of the free
surface and chute base are shown with a dotted line, as these points are
affected by proximity to the boundaries.

Fig. 5 Measured values of µ (Figure 3b) as a function of the correspond-
ing values of I (Figure 4), plotted in blue. The light gray dashed lines de-
note the experimental error margins. The red line shows the best fit of the
µ(I) model proposed by Jop et al. 12 (Equation 4), for a fixed µs = 0.26,
and fitted µ2 = 0.376 and I0 = 0.004. Data collected at distances within
a coarse-graining length wy = 3d of the free surface and chute base are
shown in dotted lines, as these points are affected by proximity to the
boundaries.

For each pixel, we measure the autocorrelation coefficient
C(∆t) across the entire time series:

C(∆t) =
∑t
[
B(t)− B̄

][
B(t +∆t)− B̄

]
∑t
[
B(t)− B̄

]2 . (8)

We observe that these are well-fit by a function of the form
C(∆t) ∝ exp[−∆t/T ], where T represents the typical lifetime of a
force chain at that depth. At each depth, we average all such mea-
surements of T to determine a typical lifetime of force chains, and
report these values as a fluctuation rate ω ≡ 1/T . The resulting
ω(z) observed for each of the four runs are shown in Figure 6,
along with their average. This analysis quantifies our visual ob-
servation that force chains are reconfiguring faster close to the
free surface of the flow (z = 0).

Fig. 6 Profile of the pixel brightness fluctuation frequency, representa-
tive of the force-chain rearrangement rate. Each colour represents the
coarse-grained result of a different individual experiments, and the thick
black line shows their average.

Several features of Figure 6 stand out. First, we bear in mind
that only forces that are about an order of magnitude greater than
the average disc weight produce a measurable photoelastic re-
sponse. For this reason pixels corresponding to discs in the top
few layers may not reach maximum intensities, and often will not
display intensity variations at all. Secondly, the location of the
free surface is measured by averaging the highest points of the
discs that we track on the free surface calculating an average flow
thickness H at 25 cm from the hopper opening throughout the
duration of the steady state flow. Occasionally the flow is thinner
than the mean flow thickness H, so at these times pixel intensities
do not vary significantly. For this reason ω is underestimated in
this region in Figure 6, as it is expected that force chains would
fluctuate faster closer to the free surface. The amplitude of the
fluctuation of H spans up to 3d, so We thus strongly suspect that
the results shaded in light gray in Figure 6, extending up to a
depth of 3d are therefore underestimated.

Below a depth of 3d, ω decreases with depth, which coincides
with the direct observation of force chains fluctuating faster at
the top of the flow. However, even within the quasi-static region,
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at depths of at least 13d 12d according to Figure 2a, ω remains
larger than zero. This implies that the force network rearranges
even when particle positions do not change at all, epitomizing the
ensemble of force configurations for a given configuration36,37.

Using the profile ω(z), combined with γ̇(z) reported in Fig-
ure 2b, we can now test the proposal by Pouliquen and Forterre 31

that the rate of plastic deformation is proportional to the rate
of generation of new random force networks within a granular
flow. As shown in Fig. 7, we observe that within the region in
intermediate-I regime (3d < z< 13d12d) the relationship between

γ̇ and ω is indeed approximately linear32. However, we also ob-
serve that for low shear rates (γ̇ < 2 Hz s−1), ω plateaus at a
minimum value of approximately 20 Hz s−1 rather than continu-
ing to decrease to zero. This result is linked to the previous ob-
servation that force chains fluctuate even within the quasi-static
region, where shear rates are practically zero. The force network
fluctuations36 decrease slowly with distance from the boundary
between flowing and static layers. We believe the lengthscale
where we measure force chain rearrangements in the quasi-static
region is indicative of the lengthscale at which non-local effects
may be observable.

Fig. 7 Parametric scatter plot of ω(z) and γ̇(z) using the data shown in
Figures 6 and 2b. The colour of each experimental point represents the
depth at which the data was taken. The light gray dashed lines denote
the experimental error margins. The dark gray dashed line separates the
points collected at depths larger than 12d, in quasi-static state (left of the
line), with those obtained in the flowing layer (right of the line). The solid
gray line shows a linear regression (correlation coefficient R = 0.97) for
3d < z < 12d, the region interpreted to be in the intermediate-I regime.

Tang et al. 41 observed that a sharp change in the force chain
fluctuations, quantified via δB (the standard deviation of B), iden-
tified the location in the flow at which µ dropped below µs. As
shown in Fig. 8, we compute how δB varies as a function of depth.
While we observe a distinct peak in δB(z), at a depth of 10d below
the free surface, this location does not coincide with the depth at

which µ = µs = 0.26. As recorded in Figure 3b, the µ threshold is
crossed quite close to the base, at a depth below 18d. Therefore,
this peak is therefore not the same feature reported in41. Instead,
this feature likely arises through two limiting effects: particles
near the top have low δB because they sustain only small forces,
while particles at the bottom have low δB because they are not
flowing (small ω). Between these two extremes, there is there-
fore is a peak value. Plots of δB/B(z) have also been considered,
and they show a peak at the same depth.

Intensity standard deviation, δB [au]
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Fig. 8 Profile of the horizontally-averaged pixel intensity standard devia-
tion, as defined by Tang et al. 41 . They interpreted the position of the peak
is indicative of µ = µs, but here the peak in δB is found at an approximate
depth of 10d, where µ > µs. Each colour represents the coarse-grained
result of a different individual experiments, and the thick black line shows
their average. Data collected at distances within a coarse-graining length
wy = 3d of the free surface and chute base are shown in light colours and
dotted lines, as these points will be affected by proximity to the bound-
aries.

4.2 Evaluating granular fluidity proposals
Several different proposals have been made for a granular fluidity
which describes the susceptibility of a granular material to flow.
Among these are g = γ̇/µ (Eq. 5) by Kamrin and Koval 1 or simply
the inertial number I by Bouzid et al. 2,3. In Figure 9, we compare
both of these quantities with the behaviour of (purple/darkest
line) the granular fluidity g = γ̇/µ (Eq. 5), defined in analogy to
classical fluids as the inverse of viscosity, with (blue/intermediate
shade line) that of the inertial number I, and finally with (or-
ange/lightest line) the quantity presented in the previous sec-
tion, the force fluctuation rate ω proposed by Pouliquen and
Forterre 31.

Each of the regimes introduced so far have been demarcated
by the grayscale background. From the bottom up: (1) quasi-
static from z> 13d12d (darkest shading) identified from the mean

downstream velocity Vx shown in Figure 2a; (2) intermediate-I,
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Fig. 9 Comparing three proposed definitions of fluidity: g, I, and ω. Each
shaded region distinguishes the four flow regimes described in the text,
from quasi-static (bottom) to nearly-collisional (top).

dense flow regime from 13d 12d > z > 6d identified from pack-
ing fraction and velocity measurements; (3) still intermediate-I
regime for 6d > z> 3d, but although we do not observe significant
variations in the packing fraction within the flowing layer, we no-
ticed a change in the behaviour of the shear rate, γ̇ (Figure 2b).
This may be due to a very slight change in the packing fraction
smaller than our experimental error, that may still affect γ̇. If so,
we interpret the flow within the range 6d > z > 3d to be slowly
transitioning to a collisional state. (4) nearly-collisional surface
flow from 3d > z> 0d (lightest shading) is the region within which
the free surface fluctuates in position and ω values are underesti-
mated.

Figure 9 illustrates how the level of agreement among the
three options for granular fluidity differ according to these four
regimes. Within the static heap at the bottom, motion occurs as
sporadic, localised rearrangements of small clusters of particles.
Under an assumption that this region should have zero fluidity be-
cause velocities are small and discontinuous, then g and I could
be considered as describing the granular fluidity within this re-
gion, since one might expect zero fluidity due to a lack of motion,
and both g and I are accordingly nearly zero for z> 12d. However,
we instead interpret that, because in our experiments the force
chains fluctuate within what is in fact a less not closely-packed

quasi-static flow, the fact that particles may move should imply a
fluidity that, like ω, is appropriately non-zero. Estep and Dufek 65

also reported significant force network rearrangements within a
small, confined erodible bed over which a similar 2D avalanche
of photoelastic discs flowed. Having studied a closely and tightly
packed substrate, they observed no particle rearrangements, but
their results had important implications for our understanding of
bed entrainment. In fact, in our experiments discrete particle re-
arrangement events66 are rare within the super-stable heap, but
they undeniably exist. The significance of this is that we measure
ω to be non-zero where there is creeping flow, even if no motion
is observable for the duration of a single experimental run.

As of yet, no definition of granular fluidity accounts for this
locally, and n Non-local models originally extended the fluidity to
regions where non-local effects awere empirically observed. Only
recently have microscopic definitions for granular fluidity been
proposed, including strain-rate34 and velocity fluctuations35. In-
deed, the photoelastic response we measure as pixel intensities
is due to strains both within the particles and at the contacts be-
tween two discs. This links the observed photoelastic responses to
displacements of order smaller than a millimetre, and ω is related
to fluctuations in particle velocities. As we interpret Figure 9, the
force network fluctuation rate would correctly capture where par-
ticles may flow, in both local and non-local regimes. Therefore,
we propose ω is a local indicator of the susceptibility of a gran-
ular system to flow, and the best an indicator of granular fluidity
in quasi-static state.

Nevertheless, wWe notice that within depths of 6d− 13d12d,

where the flow is in the dense inertial regime, all three variables,
g, ω and I are proportional to each other. They may therefore
be expected to be interchangeable as measures of fluidity in the
models for dense flows. However, I is easy to measure and a uni-
versally valid representation of fluidity for flows in dense inertial
regime.

On the other hand, In the flowing layer, we are faced with two
problems when interpreting Figure 9. First, up to a depth of 3d
below the free surface, besides involving forces that are mostly
weaker than the technique sensitivity, photoelastic pixel intensity
fluctuations are small at times where the flow thickness is smaller
than the average. In this region, measurements for ω based on
photoelasticity are therefore underestimated. Secondly, we need
to consider the effect of changes in packing fraction on ω. Be-
cause the shear rate decreases towards the free surface above
depths of 6d while µ is constant, so does g. Only I continues to
increase all the way up to the free surface, but we attribute this to
our underestimation of the pressure obtained from coarse-grained
photoelastic measurements. where the fluidity of the system is
expected to be high from the presence of high velocities. For
these reasons we deem I to be the best representative of fluidity
in intermediate flows. In the transition to a collisional state, we
suspect ω, I and g will no longer be proportional to each other.
While such measurements are not accessible to us in our current
set of data, Figure 9 raises the interesting question of how ω be-
haves in the dilute limit.

Therefore, w We propose that the force network fluctuation
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rate ω is a local indicator of the likelihood of flow. We suggest
ω is the most an appropriate descriptor of granular fluidity over
a wider range of in both quasi-static and dense inertial regimes.
In second place, we validate the use of the inertial number I as
fluidity only in dense flows in intermediate-I regime. Nonethe-
less, we suspect that ω should depend on the packing fraction,
so it would be interesting to investigate how it behaves in the
transition to the collisional regime.

5 Conclusions
In this paper we report results of an experiment in which we
applied photoelastic techniques to measure the dynamic inter-
particle forces within the bulk of a 2D avalanche. The flows inves-
tigated are in the dense, intermediate-I regime, flowing over an
inclined layer of quasi-static discs. This provides insight into the
dynamics near the boundary between dense inertial and quasi-
static regimes. We find that the stress ratio µ = τ/P is approxi-
mately constant within the dense flow, which is consistent with
our expectation for a steady regime based on momentum conser-
vation. The value of µ decreases slightly where the static layer
begins near the bottom of the flow, but does not drop below the
yield criterion µs. The resulting relationship between the µ and
the inertial number I can be described by the local rheological
model proposed by Jop et al. 12 (Eq. 4).

We use the experimental image pixel intensities forming the
photoelastic patterns to define the force chain average fluctua-
tion rate ω. Using these measurements we validate that there
is a monotonic relationship between γ̇ and ω 31 for flows in
intermediate-I regime. However, Figure 6 suggests this propor-
tionality breaks down for small shear rates. Because in a quasi-
static state rearrangement events66 are infrequent, velocity and
shear rate measurements may be underestimated, and so may the
definitions of fluidity based on Vx and γ̇. On the other hand, we
interpret that ω > 0 indicates regions where particles may flow,
so we observe ω > 0 even within the quasi-static layer. The force
network rearranges even where particles lie practically stationary,
although such rearrangements are less frequent further from the
boundary with the flowing layer.

This elucidates why non-local models1,3 relyied on the no-
tion of stress diffusion to empirically extend the granular fluid-
ity into regions where γ̇ = 0. In dense, intermediate-I flows, we
corroborate that I is a good descriptor of granular fluidity. On the
other hand, oOur results suggest that ω may provide a universal
local quantification of the susceptibility of flow, and therefore may
be a local representative variable that underlies granular fluidity,
especially for quasi-static and low-I regimes. This interpretation
complements the use of strain-rate and/or velocity fluctuations as
measures of granular fluidity in the quasi-static regime. In partic-
ular, the photoelastic response creates a measureable signal in re-
sponse to minuscule displacements (those fall smaller than could
be measured with confidence for velocity fluctuations, as charac-
terized by Xu et al. 67). In this way, ω provides an experimentally-
approachable measurement technique. Moreover, while a change
in particle positions will cause a change in the forces, there are
many valid configurations of forces for any one set of positions

(the “force network ensemble”36,37). Since the forces set the
yield criterion, we propose that their dynamics are an important
control on fluidity, beyond simply the fluctuations in particle po-
sitions or velocities. Furthermore, in the dense-inertial regime
where strain-rates and velocity fluctuations may be hidden in the
larger-scale motions of the flow, ω is still easily measurable and
scales with g and I.

A caveat against using ω is the sensitivity of the technique,
which causes measurements to be underestimated near the free-
surface. In addition, the results shown in this region raise the
question of how changes in packing fraction affect the force fluc-
tuation rate, and whether ω is a good descriptor of the suscep-
tibility of flow in the dilute limit at all. Moreover, it would be
interesting to further investigate how ω compares to the decou-
pled isotropic and anisotropic stress fluctuations, as well as the
correlations between ω, I, shear and strain rate and velocity fluc-
tuations in experiments where our discs can be observed at much
higher resolution.

Another important implication of our measurement of ω is the
potential use of the photoelastic technique to characterise the
depth into the super-stable heap to which the flow may creep.
If similar experiments were carried out over a deeper quasi-static
region, then we propose that the depth at which ω = 0 can be
related to the cooperative length used in nonlocal models.
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