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 Abstract      

Decision-making is a cognitive process of central importance for the quality of our lives. 

Here, we ask if a common factor underpins our diverse decision-making abilities. We 

obtained 32 decision-making measures from 830 young people and  identified a common 

factor that we call `decision acuity’, which was distinct from IQ  and reflected a generic 

decision-making ability. Decision acuity was decreased in those with aberrant thinking and 

low general social functioning. Crucially, decision acuity and IQ had dissociable brain 

signatures, in terms of their associated neural networks of resting-state functional 

connectivity. Decision acuity was reliably measured, and its relationship with functional 

connectivity was also stable when measured in the same individuals 18 months later. Thus, 

our behavioural and brain data identify a new cognitive construct that underpins decision-

making ability across multiple domains. This construct may be important for understanding 

mental health, particularly regarding poor social function and aberrant thought patterns. 

 

Key words: decision acuity, computational psychiatry, functional connectivity, adolescence, 

development.  

   



 

3 

 Decision making ability, psychopathology and brain 

connectivity  

 Introduction   

Effective decision-making underpins a range of activities that span economic 

performance and social adaptation. A computational characterization of decision-

making processes is also considered important in advancing an understanding of 

psychiatric disorders (Scholl and Klein-Flügge, 2018). Yet, unlike traditional cognitive 

constructs such as intelligence, the distribution and covariation of decision-making 

characteristics in the population is unknown, while the reliability of behavioral tasks 

typically used to measure these abilities has been questioned (Brown et al., 2020; 

Enkavi et al., 2019; Hedge et al., 2020). Likewise, although there is a growing 

knowledge regarding the neural underpinnings of decision-making ability, there is a 

relative dearth of knowledge in relation to adolescence and early adulthood, a crucial 

period for brain maturation (Giedd, 2004; Whitaker et al., 2016). Thus, there is an 

increasing urgency in understanding the neural basis of cognitive development  in 

young people, including its relationship with brain connectivity (Sripada et al., 2020). 

An added motivation here is the observation that  a high proportion of psychopathology 

emerges during adolescence and early adulthood (Paus et al., 2008).  

Decision-making reflects a complex interplay between multiple processes that bear on 

evaluating options and choosing a course of action.  These processes are well 

characterised within a reinforcement-learning framework  (Dolan and Dayan, 2013; 

Kable and Glimcher, 2009; Phelps et al., 2014; Sutton and Barto, 1998). Here a 

distinction is made between a reliance on learning how beneficial an action has been in 

the past, or alternatively the exploitation of an accurate model of an environment, in 

order to infer the consequences of each action. Computationally this encopasses model-

free control,  accurate model-learning (Feher da Silva and Hare, 2020) and model-based 

evaluation (Daw et al., 2005; Dolan and Dayan, 2013). Model based and model free 

influences trade off at different levels in different individuals  (Eppinger et al., 2017; 

Kool et al., 2017).  

 

A more subtle source of decision variability is the impact of Pavlovian heuristics, 

reflecting  a propensity to attach value to specific actions by mere association with 

whether they lead to reward or punishment (de Boer et al., 2019; Guitart-Masip et al., 

2012; Moutoussis et al., 2018). This conflict is also evident when individuals balance a 

need to harvest rewards against potential dangers inherent in acting within an  uncertain 

environment (Bach et al., 2020; Loh et al., 2017; O’Neil et al., 2015). This engenders a 

conflict between motivational drives (e.g. approach vs. avoidance) that need resolution 

in order to enact effective decisions. 

 

There is much variability in decision making across individuals. One source of this 

variability pertains to uncertainty in decision outcomes, where a tolerance of 

uncertainty can drive preferences for risky, but on average good, options (Christopoulos 

et al., 2009; Payzan-LeNestour et al., 2013). ). Likewise, individual variability in 

decision making is  seen also in the temporal domain, where individuals balance 

exploiting an immediately available safe option against the possibility of greater, 

possibly uncertain, future benefit (Badre et al., 2012; Sutton and Barto, 1998). Finally, 

as many decisions are enacted in a social context, understanding the intentions and 

https://www.zotero.org/google-docs/?4GxjJs
https://www.zotero.org/google-docs/?rrswXe
https://www.zotero.org/google-docs/?rrswXe
https://www.zotero.org/google-docs/?JYD1Zm
https://www.zotero.org/google-docs/?fPRKQi
https://www.zotero.org/google-docs/?UKU75Z
https://www.zotero.org/google-docs/?3rbU6h
https://www.zotero.org/google-docs/?pTBI4Z
https://www.zotero.org/google-docs/?pTBI4Z
https://www.zotero.org/google-docs/?l2Xvtl
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emotions of others is often crucial for making decisions, and impacts on characteristics 

such as one’s propensity to cooperate with others (Fett et al., 2012; Hula et al., 2015; 

Luo et al., 2018). 
 

Although the above emphasises discrete factors as influencing decision making, we 

hypothesised that there would also be covariation across decision-making abilities 

within the population, implying shared variance along latent dimensions. This is 

analogous to the structure of intelligence, where a cornucopia of abilities co-varies with 

latent dimensions such as general and domain-specific intelligence (Van Der Maas et 

al., 2006). On this basis we employed a broad ranging decision-making battery and 

administered it to 830 14-24 year olds living in the community (Kiddle et al., 2017). 

The battery included tasks tapping into  sensitivity to gains and losses (most tasks in 

Table 1), the extent to which model-based influences dominate choice evaluation 

(Table 1 task D, also C,E,F), a propensity to take risks and exhibit impulsivity (tasks 

B,C,E,G), and an ability to make beneficial social judgements (tasks E,F). We 

hypothesized that these four domains would correspond to latent dimensions of 

decision-making ability across tasks. We used computational modelling and key 

descriptive statistics to extract relevant metrics from the tasks (Bach et al., 2020; Fett 

et al., 2012; Moutoussis et al., 2011, 2016, 2018; Rigoli et al., 2016; Shahar et al., 

2019a). Submitting these component metrics to factor analysis (see Methods) allowed 

us to derive latent across-task cognitive constructs underlying decision-making and test 

for the presence of latent dimensions corresponding to the hypothesized cognitive 

domains.  

We assessed construct stability using the data of 571 of our participants who performed 

the decision-making battery a second time, at a follow up 18 months on average, by 

characterising the relationship between the inferred latent cognitive constructs and 

external measures such as age, IQ, and mental health characteristics. Here, we 

hypothesized that latent dimensions of decision-making would correlate with self-

reported psychological dispositions and mental health symptoms. To test this latter 

hypothesis, we availed of participants' derived scores for both general and specific 

disposition factors (Polek et al., 2018) as well as concurrent mental health symptoms 

(St Clair et al., 2017). 

Crucially, we characterised the neural circuitry underpinning latent decision-making 

factors. To achieve this, we analysed functional connectivity from resting-state fMRI 

data (rsFC), providing a metric of coupling between blood-oxygen-level-dependent 

(BOLD) time series from different brain regions or networks (nodes). Patterns of rsFC 

are known to behave as dispositions to a large degree (Finn et al., 2015), including 

predicting a subject's cognitive abilities in diverse domains (Dubois, J. et al., 2018; 

Kong et al., 2018; Rosenberg et al., 2015; Smith et al., 2015). Thus we could ask 

whether distinct connectivity networks predicted latent decision-making factors and 

whether identified connectivity networks had stability over time. 

We found evidence for a single dimension of covariation in the population to which 

multiple decision-making tasks contributed. This dimension, which we term 'decision 

acuity', reflected speed of learning, an ability to take account of cognitively distant 

outcomes, and low decision variability. We found that decision acuity has a reliability 

that was much higher than that reported for typical decision-making tasks (Moutoussis 

et al., 2018). In keeping with this, it was associated with distinct patterns of rsFC. 

Finally, decision acuity was characterized by a functional connectivity signature and a 

https://www.zotero.org/google-docs/?ehFL7L
https://www.zotero.org/google-docs/?ehFL7L
https://www.zotero.org/google-docs/?ehFL7L
https://www.zotero.org/google-docs/?ehFL7L
https://www.zotero.org/google-docs/?7I2wYh
https://www.zotero.org/google-docs/?7I2wYh
https://www.zotero.org/google-docs/?2XjMmh
https://www.zotero.org/google-docs/?36aa5Y
https://www.zotero.org/google-docs/?36aa5Y
https://www.zotero.org/google-docs/?36aa5Y
https://www.zotero.org/google-docs/?IRl5om
https://www.zotero.org/google-docs/?R3UsKF
https://www.zotero.org/google-docs/?srIuHE
https://www.zotero.org/google-docs/?9aV12D
https://www.zotero.org/google-docs/?9aV12D
https://www.zotero.org/google-docs/?yNJpeb
https://www.zotero.org/google-docs/?yNJpeb
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relationship to both psychological dispositions and symptoms that was distinct to that 

of IQ. 

 

 Results 

 'Decision acuity' is an important dimension of decision-making 

A total of 830 young people aged 14-24 were tested using a task battery assessing 

diverse components of decision-making (Table 1). 349 participants underwent brain 

functional magnetic resonance imaging at rest, on the same day as cognitive testing,  to 

assess resting-state functional connectivity profiles. Scanned participants had no history 

of neuropsychiatric disorder and no suspected psychiatric diagnosis on SCID interview. 

50 participants with DSM-5 major depressive disorder were included in the non-

scanned sample to compare the structure of their decision-making to the remaining, 

healthy group. The STAR Methods and Supplement provide further detail on this 

subgroup. 

We extracted 32 decision-making measures form the battery, which we subjected to 

factor analyses. Exploratory factor analysis was followed by confirmatory analysis and 

out-of-sample testing of the best factor model (see Methods for details of the factor-

analytic approach, including dimensionality estimation and stability analyses). 

[Table 1 here] 

Working with the larger, baseline sample, we discerned four stable decision-making 

factors. Importantly, only the first of these loaded on measures from multiple tasks. We 

named this factor 'decision acuity' or d, as it loaded negatively on decision variability 

measures, especially decision temperature, and loaded positively on measures 

contributing to profitable decision-making, such as low temporal discounting and faster 

learning rates (Figure 1 and supplemental table S1). Thus, participants with high d had 

low decision variability in economic-risk, information-gathering, Go-NoGo and Two-

Step tasks. They had fast reaction times and high learning rates in the Go-NoGo task. 

Note that a decision temperature parameter can always be re-written as the inverse of 

reward (and/or loss) sensitivity. Hence the prominent role of negatively-loading 

temperature parameters in d supports our a priori hypothesis that reward sensitivity 

constitutes an important shared characteristic across tasks.  

In the baseline sample, we confirmed that d correlated with profitable decision-making 

by estimating a measure of aggregate task performance, based on net points won across 

tasks, and separate from components of d (Pearson r=0.50, p <1e-10; see Supplement 

part C for details). Remarkably, d predicted this aggregate measure of performance 

independently from IQ, providing supportive evidence for convergent validity with 

directly measured task performance.  In fact, the effect of IQ on performance depended 



 

6 

on its shared variance with d (the caveat here being that performance in tasks and d 

share common-method variance). 

The other three factors derived from this analysis addressed within-task behaviour, 

rather than hypothesized global decision-making constructs, and were thus of 

peripheral interest here. The second selected the Delegated Inter-temporal Discounting 

task (D.), the third the Information Gathering task (E.) and the fourth the Economic 

Risk preference task (C; Figure S2). As expected given that each task had  a unique 

focus, constituent cognitive measures showed high uniqueness scores across all factors. 

22 of the 32 measures had uniqueness > 80% (Figure 1B).  

 Developmental features of Decision Acuity 

We first examined how d depended on age, a key indicator of development. We used 

linear mixed effects (LME) analysis with participant as random effect, two 

measurement timepoints of decision acuity and IQ, and one (baseline) score per 

participant for dispositions, self-reported sex and socioeconomic variables. LME 

analysis modeled age both longitudinally and cross-sectionally. This analysis showed 

that the d varied in the same manner with age within or across participants  (beta=0.24, 

SE=0.022, p ~ 0.0 (undetectable)), suggesting that d increased with development. d was 

stable from baseline to follow-up, although slightly less so than WASI IQ was (r=0.68, 

p~0.0 for d; 0.77, p~0.0 for WASI IQ; 95% CI for the difference =-0.135 to -0.044;  

Fig. 1B). These estimates give a conservative estimate of discriminant validity of d vs. 

IQ  D = 0.76, which is satisfactory (<0.85)(Voorhees et al., 2016). d increased with 

testing wave (effect size=0.38, p~0.0). We found no evidence here, or in subsequent 

analyses, for more complex models of age (curvilinear effects or interactions with sex).  

We confirmed that both matrix and vocabulary raw IQ subscores robustly correlated 

with d (fixed effect betas = 0.088, 0.179, SE= 0.008, 0.018, p ~ 0.0). However, inclusion 

of raw IQ scores did not affect the significance of age as a regressor (age beta=0.121, 

SE=0.020, p ~ 0.0). Therefore, not only did decision acuity increase with age in our 

sample, but so did the component that was independent of IQ abilities, suggesting that 

IQ and d developed in parallel with age. IQ subscores and age together accounted for 

r2
adj=0.31 of the variance in d at baseline.  

With respect to self-reported sex, d scores for males were higher than those of females 

at baseline (t-test p=8.6e-5, effect size = 0.27). However, if both IQ subscores and age 

were entered in LME, the correlation between  d and self-reported sex was no longer 

significant. Thus, any uncorrected sex dependence is likely to be due to participant self-

selection. That is, amongst males, more participants of higher IQ volunteered relative 

to amongst females. d showed no significant age x sex dependence (controlling for IQ, 

sex p=0.39, age x sex p=0.21).   

As to socioeconomic factors impacting the development of d, we noted an increase with 

parental education (p=0.0051, beta=0.19, SE=0.067), but no significant association 

with neighbourhood deprivation (p=0.09).   

https://www.zotero.org/google-docs/?Qek88z
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 Mental health factors and their association with Decision Acuity 

We next examined the relationship between d and both psychological dispositions and 

symptoms. Note that in our study, involving mainly healthy adolescents and young 

adults, symptomatology refers to the nature and extent of self-reported mental health 

symptoms, rather than diagnosable clinical disorders. Thus, we used factor scores 

validated specifically for our sample (Polek et al., 2018; St Clair et al., 2017), which 

indicated dispositions and symptoms in our sample were well described by bi-factor 

models. Each bifactor model comprises a superordinate 'general factor' and subordinate 

'specific factors'. Dispositions comprise a general social functioning factor (‘sociality’) 

and 4 specific factors, Social sensitivity, Sensation seeking, Effortful control, and 

Suspiciousness. Symptoms comprise a general distress factor, a.k.a. 'p-factor' (Caspi et 

al., 2014; Patalay et al., 2015),  and 5 specific factors: Mood, Self-confidence, Worry, 

Aberrant thinking and Antisocial behaviour.  

d was significantly predicted by dispositions, over and above its relationship with 

intelligence. We first regressed all symptom disposition factor scores against d, 

allowing all factors to compete in explaining variance in LME models with participant 

intercept as random effect. d was significantly and positively related to the general 

disposition factor, ‘sociality’ (p=0.0002, standardized beta, a.k.a bz=0.36, 

SE(bz)=0.096). In models that included raw IQ scores and age both these variables 

significantly predicted d, and improved model fit (BIC = 4873 vs. 5083 without IQ). 

Importantly, inclusion of IQ strengthened the significance of sociality (p=0.0001, bz 

=0.32, SE(bz)= 0.084; see Table 2). 

[Table 2 Here] 

Amongst symptom scores, d was most strongly associated with 'Aberrant thinking', 

which draws on schizotypy and obsessionality. Covarying for IQ but not dispositions 

showed that d significantly decreased with higher aberrant thinking (p=0.016, beta=-

0.16, SE=0.066), higher general distress (p=-0.048, beta=-0.12, SE=0.057) but lower 

worry (p=0.014, beta=0.16, SE=0.063).  However, covarying for sociality (with or 

without other dispositions) reduced the significance of ‘Aberrant thinking’, to trend 

level, p=0.074, beta=-0.10, SE=0.053) and abolished the relationship with other 

symptom dimensions (symptom general factor, 'Distress', p=0.82, others ranging from 

p=0.35 to 0.99). IQ was by itself significantly correlated to aberrant thinking (matrix 

p=0.013, vocabulary p=0.0001) and less so general distress (matrix p=0.012, 

vocabulary p=0.47). Again, all analyses linearly accounted for age, and did not benefit 

from more complex models of age. 

 [Figure 1 here] 

Patterns of brain Connectivity are associated with Decision Acuity differently 

from IQ 

Out of 313 healthy subjects who were scanned at baseline, we discarded baseline scans 

without acceptable imaging data quality (3), whose ME-ICA denoising did not 

converge (4), or who had excessive motion while scanning (8), leaving 298 baseline 

scans for analysis. A further three subjects were removed from analyses involving IQ 

scores as they did not complete the IQ tests, leaving 295 subjects for analysis. A 

population-average parcellation of brain data was obtained using independent 

https://www.zotero.org/google-docs/?2C8bg4
https://www.zotero.org/google-docs/?wpfRai
https://www.zotero.org/google-docs/?wpfRai
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component analysis in our sample, resulting in 168 networks (nodes) within each of 

which activity was highly correlated. Patterns of connectivity between nodes were then 

estimated as partial correlation values, or resting state functional connectivity (rsFC). 

We then used rsFC values as features in sparse partial least squares (SPLS) analyses, to 

predict decision acuity and composite IQ. We used cross-validation and out-of-sample 

predictive testing to prevent overfitting. Predictive accuracy was assessed as Pearson's 

correlation coefficient between true scores and model-predicted values. We report 

associations between predicted and observed decision acuity after correcting for 

scanner related and other covariates. This ensures that it is the information carried by 

the functional connectivity alone that predicts cognitive abilities. See STAR Methods 

for details (Figure 2 illustrates the structure of the predictive testing).   

 [Figure 2 here] 

Scores for d predicted on the basis of functional connectivity, dpr, significantly 

correlated with measured d controlling for demographic and imaging-related covariates 

(STAR methods for details), r=0.145, p<10-6. The correlation between measured IQ and 

IQ predicted on the basis of rsFC using all connections was lower but also significant 

(r=0.092, p=9e-5). 

To interpret the neuroanatomical structure of the predictive model, we first partitioned 

the nodes into anatomically meaningful 'modules' using a community detection 

algorithm (Blondel et al., 2008), and then asked how well each of these modules 

predicted d. The community detection algorithm clustered the nodes into disjoint 

communities or modules based on the strength of their intrinsic connectivity, to some 

extent analogous to large-scale functional networks. As shown in figure 2, we obtained 

the following modules: anterior temporal cortex including the medial temporal lobe 

(ATC); frontal pole (FPL); frontoparietal control network (FPN); left dorsolateral 

prefrontal cortex (LDC); medial prefrontal cortex (MPC); orbitofrontal cortex, medial 

and lateral (OFC); opercular cortex (OPC); posterior cingulate cortex (PCC); posterior 

temporal cortex (PTC); right dorsolateral prefrontal cortex (RDC); subcortical (SUB); 

salience network (SAN); somatosensory and motor areas (SMT); visual regions (VIS). 

We fitted a different SPLS model to the subset of connections involving the nodes in 

each module, including both intra- and inter-modular connections.  

 [Figure 3 here] 

The correlation between measured and predicted d scores was significant for the FPN, 

MPC, OFC, OPC, PCC,SMT, and VIS modules after correction for multiple tests 

(Figure 4A, Table 2), with the strongest correlations for OFC, PCC and SMT. For the 

PCC and SMT modules, the correlation coefficients exceeded to a small degree the 

correlation for a model employing all possible connections. This can best be explained 

as a result of feature selection. In the full model it is harder to select just the right 

features and protect against over-fitting, resulting in a greater penalty in predictive 

accuracy. On the other hand, the model trained on a smaller set of features alone is less 

https://www.zotero.org/google-docs/?FMTDKf
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likely to overfit. This paradoxical increase in accuracy for a model with less features is 

known to be stronger when the number of observations is small, relative to the number 

of features (Chu et al., 2012), which is the case in our dataset. The different modules 

comprised diverse numbers of nodes but there was no significant association between 

the number of model features and the correlation between observed and predicted 

scores (d: r=0.356, p=0.193; IQ composite scores: r=-0.158, p=0.574).  

Out of 235 subjects who were scanned at follow-up, adhering to the same criteria as for 

the baseline data, we discarded those without acceptable imaging data quality (4), 

whose ME-ICA denoising did not converge (5), and who presented with excessive 

motion (3), leaving 223 subjects available for analysis. We applied the model trained 

on the baseline data to the follow-up data (see STAR Methods) for the modules where 

the prediction was significant at baseline. Importantly, the prediction of a subject at 

follow-up did not involve their own rsFC baseline data, as this would inflate the 

estimate of predictive performance. The baseline model predicted significantly the 

follow-up d values based on the follow-up connectivity data when using either all the 

connections or those with networks in the FPN, MPC, OFC and SMT modules, 

controlling for demographic and imaging related covariates, and correcting for multiple 

tests (Figure 4B, Table 3).   

 [Figure 4 here] 

To assess whether d and IQ can be predicted by specific rsFC patterns, or alternatively 

whether both are underpinned by similar patterns of neural connectivity, we controlled 

for IQ the partial correlation coefficients between dpr and d, on top of the nuisance 

covariates previously included. In a complementary manner, we controlled for d the 

partial correlation between IQpr and IQ (on top of the nuisance covariates). After 

correction for IQ composite scores, and correcting for multiple comparisons, the 

correlation between d and dpr remained significant for OPC, PCC and SMT (Figure 5A, 

Table 2), suggesting that these modules reflect decision acuity over and above their 

relation to IQ. On the other hand, the correlation between IQpr and IQ was significant 

for OPC and PTC after controlling for d (Figure 5B, Table 3), suggesting that these 

modules reflect IQ over and above their relation to decision acuity. These analyses 

demonstrate that decision acuity and IQ have distinguishable and specific signatures in 

functional connectivity networks: decision acuity taps on the default mode, salience 

and sensorimotor networks, whereas IQ taps on the salience network but also on 

temporal networks associated with language processing.. 

 [Figure 5 here] 

  

 [Table 3 here] 

  

https://www.zotero.org/google-docs/?uxK60n
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Discussion 

This, to our knowledge, is the first study characterising a dimensional structure in core 

decision-making from an epidemiologically informed sample of adolescents and young 

adults. We found that decision-making performance could be described by a broad 

construct receiving contributions from multiple domains of cognition. We term this  

'decision acuity', d. In our sample, d showed satisfactory longitudinal stability, 

increased with age and with IQ. d also had specific associations with mental health 

measures, over and above IQ. Decision acuity was related to brain function, showing a 

temporally stable association with rsFC, involving networks previously implicated 

decision-making processes. Moreover, rsFC patterns associated with d and IQ were 

distinguishable and specific, despite showing a degree of overlap. 

Decision acuity had an interpretable structure, reflecting a facility for good decision-

making. Decision acuity increased as decision variability lessened, evidenced by its 

loadings on decision-noise-like parameters across all tasks that provided such 

measures. The most prominent loadings were inverse temperature parameters, also 

known as reward sensitivities. By definition, high temperature (a.k.a. reduced reward 

sensitivity) agents are less motivated about relevant outcomes, supporting our 

hypothesis that reward sensitivity loaded on an important common factor. However, d 

also received substantial contributions from measures that did not directly reflect 

reward sensitivity, but characterised good decision-making. These included low 

temporal discounting, fast reaction times, high learning rates, baseline trust in others, 

low propensity for retaliation, low propensity to show a Pavlovian bias and a low lapse 

rates. Such non-temperature constructs may also be linked to decision variability, albeit 

less directly. 

An interesting interpretation of this pattern is that lower-acuity participants may find it 

too costly to eliminate computational errors in the fast pace of many tasks. For example, 

the computations required to make decisions about outcomes far in the future may be 

hard to perform for low-d agents, resulting in discounting-like behaviour. Lapse rates 

may be understood as 'floor' error rates imposed by computational costs. That is, 

decision-making independent of the value of outcomes may take place when these 

values are too difficult to compute. Higher decision variability may also be driven by 

effective beliefs about the world, for example a belief that over-values exploration. If 

working out the correct action is too difficult, trial-and-error is a brute force alternative, 

providing a compensatory or adaptation strategy in the face of limited cognitive 

resources. Overall, the contrast of noise with precision-enhancing measures in this 

factor is reminiscent of the association between low ability to reach goals and low 

policy confidence in active inference (Friston et al., 2013). The agnostic derivation but 

interpretable nature of d can thus be seen as an example of data-driven ontology 

(Eisenberg et al., 2019). 

One remarkable result of our study is the relatively high reliability of our new construct. 

This is important because many behavioral tasks have low test-retest reliability (Enkavi 

et al., 2019), an issue that  applies  also to some of the decision-making measures used 

in our battery (Moutoussis et al., 2018; Shahar et al., 2019a). A discordance in reliability 

between the individual decision-making tasks and our decision acuity construct is likely 

to stem from the fact that the latter reflects shared variance across multiple independent 

measures. Similarly, self-report surveys previously shown to have high reliability 

https://www.zotero.org/google-docs/?iHgDiK
https://www.zotero.org/google-docs/?0Swnrt
https://www.zotero.org/google-docs/?45bGH0
https://www.zotero.org/google-docs/?45bGH0
https://www.zotero.org/google-docs/?AlIXAR
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typically involve multiple questions to assess underlying constructs (Enkavi et al., 

2019), suggesting that to obtain reliable decision-making measures  it is useful to use 

multiple tasks. d also showed satisfactory discriminant validity with respect to IQ, 

which is evidence that it provides distinct meaningful information. Nonetheless, it 

would be advantageous if individual decision-making measures were refined to 

improve their reliability and construct validity, and an important example here relates 

to the task assessing  model-basedness (Feher da Silva and Hare, 2020; Kool et al., 

2017). 

Developmentally, high decision acuity was robustly associated with age, increasing by 

0.37 SD from age 14 to 24. This is important, as component parameters have been found 

to have less robust relationships with age in this same sample (Moutoussis et al., 2018, 

2016). That d varied similarly with age across and within participants offers some 

reassurance that its age dependence here is not a practice effect. d also increased with 

parental education, a developmentally important socio-economic indicator (McDermott 

et al., 2019), again independently of IQ. These positive associations of d may reflect 

adolescents and younger adults getting more confident in the outcomes of their actions 

as a function of maturation but also of a supportive environment. 

Mental health indices were associated with d, over and above IQ. d decreased with ‘p-

factor’ (general distress factor) and an ‘aberrant thinking’ (schizotypy/obsessionality) 

specific factor and increased with a ‘worry’ specific factor but, perhaps 

counterintuitively, was not associated with the ‘mood’ specific factor.  d explained a 

small proportion of the variance in mental health, as is often the case for risk factors in 

community samples like ours (Pearson et al., 2015). Importantly, d was most strongly 

associated with the general disposition factor ‘sociality’, which statistically explained 

most of the relation between d and symptoms. Our finding that participants with lower 

decision acuity had higher residual symptoms (i.e., unrelated to general distress) within 

the domain of aberrant thinking is consistent with and existing literature (Ettinger et al., 

2015). 

Future mental health research can build on our evidence that  decision acuity may 

reflect a risk factor for schizotypy/compulsivity/obsessionality (‘aberrant thinking’) 

and general distress (‘p-factor’). Thus, decision acuity may confer (or indicate) 

vulnerability to specific psychopathologies. At the same time, we found that low 

decision acuity was robustly associated with poor social functioning. Further research 

is needed to trace the pathways between decision acuity, adaptive social function and 

psychiatric symptoms, especially as poor social functioning may confer a greater 

functional impact to psychiatric symptoms. Finally, a weak relationship with common 

mental disorder symptomatology, such as anxiety and depression, was a surprise and 

provides a challenge for the enterprise of identifying computational phenotypes. 

Replicating these results and establishing their causes beyond the goals of our study 

can provide new research directions for computational psychiatry, and this dovetail 

with recent work in related fields (Chen et al., 2020; Sripada et al., 2020).  

https://www.zotero.org/google-docs/?aOdoCF
https://www.zotero.org/google-docs/?aOdoCF
https://www.zotero.org/google-docs/?XdeGqu
https://www.zotero.org/google-docs/?XdeGqu
https://www.zotero.org/google-docs/?BLLdMa
https://www.zotero.org/google-docs/?BLLdMa
https://www.zotero.org/google-docs/?pbSKD0


 

12 

Decision acuity was also associated with specific, distributed patterns of resting-state 

brain connectivity (Dubois, J. et al., 2018; Smith et al., 2015). The whole brain, 

connectivity-based predictive model depended on connections spread across the entire 

brain, implying that d, like IQ, depends on more extensive systems than those typically 

observed for state-tapping tasks in functional imaging studies (e.g. medial prefrontal, 

dorsolateral prefrontal). Strikingly, the pattern of connections predicting d was 

structured, with connections involving nodes in FPN, MPC, OFC, OPC, PCC, SMT 

and VIS being most predictive of d, irrespective of age and sex. Furthermore, the 

models trained at baseline on all the features, as well as those restricted on features 

within FPN, MPC, OFC and SMT, were also predictive of d at follow-up, 

demonstrating the stability over time of the relationship between rsFC in these modules 

and d.  

Reassuringly, decision acuity was predicted by connections involving MPC and OFC, 

regions typically recruited by decision-making tasks. Circuits involving these regions 

receive highly processed sensory information and support instrumental behaviour by 

representing subjective value of stimuli and choices (Garvert et al., 2015; Padoa-

Schioppa and Assad, 2006; Rushworth et al., 2011). The OFC also supports credit 

assignment during reward learning (Jocham et al., 2016; Walton et al., 2010) probably 

by representing an association between stimuli and outcomes (Boorman et al., 2016; 

Padoa-Schioppa and Assad, 2006; Stalnaker et al., 2018). Finally, the OFC has also 

been suggested to support the representation of latent states necessary to navigate 

decision-making tasks (Schuck et al., 2016; Wilson et al., 2014). Similarly, 

involvement of the PCC, FPN and SMT is not surprising. Activity in the posterior 

cingulate cortex has been observed during decision-making tasks and it has been 

suggested that the PCC monitors the environment to detect transitions to new states 

(Pearson et al., 2011). Although the frontoparietal circuit has mainly been associated 

with working-memory task performance (Murray et al., 2017), it has been shown that 

working memory also contributes to learning in typical reinforcement learning tasks 

(Collins et al., 2017; Collins and Frank, 2018). Finally, connections involving motor 

and somatosensory areas may contribute to adaptive decision-making. For example, in  

our tasks, motor actions were orthogonalized with respect to choices, and recent work 

suggests that only the more capable decision-makers successfully uncouple motor 

action and option choice (Shahar et al., 2019b). Hence, SMT connectivity may be 

important to realise this decoupling. Similarly, active suppression of Pavlovian 

tendencies that can corrupt optimal decision-making may also involve optimal 

sensorimotor functioning (Cavanagh et al., 2013; Swart et al., 2018).  

Our ability to predict decision acuity at baseline when controlling for IQ, and IQ when 

controlling for decision acuity, based on particular connectivity modules supports the 

idea that both constructs have specific signatures in rsFC. This suggests that decision 

acuity has a neurobiological substrate distinct from that of IQ, and adds to the validation 

of their distinctiveness suggested by their differential association with psychological 

measures. Although IQ absorbed the predictive ability of the connections within the 

FPN, the MPC, and OFC, decision acuity tapped on modules within the default mode 

(PCC), opercular (OPC) and sensorimotor (SMT) networks independently of IQ. On 

the other hand, IQ tapped on the opercular network (OPC) too, but also on temporal 

networks associated with language processing (PTC), consistent with  the vocabulary 

subscale of IQ being heavily reliant on linguistic ability (Axelrod, 2002). Interestingly, 

connections within the OPC, which encompasses the insula, independently contributed 

to predicting both decision acuity and IQ at baseline. As part of a salience network, 

https://www.zotero.org/google-docs/?c1W20z
https://www.zotero.org/google-docs/?mQrBUB
https://www.zotero.org/google-docs/?mQrBUB
https://www.zotero.org/google-docs/?IV5diG
https://www.zotero.org/google-docs/?JhZPQb
https://www.zotero.org/google-docs/?JhZPQb
https://www.zotero.org/google-docs/?JuRWUY
https://www.zotero.org/google-docs/?LOvJS8
https://www.zotero.org/google-docs/?XapnPq
https://www.zotero.org/google-docs/?QX8KV7
https://www.zotero.org/google-docs/?LP7hT1
https://www.zotero.org/google-docs/?pTsp8V
https://www.zotero.org/google-docs/?SX6bth
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these regions may contribute to modulate the switching between internally and 

externally directed cognitions (Uddin, 2015). 

Important questions for future research include whether decision acuity is a 

superordinate latent trait of decision-making, and whether it relates to dimensions such 

as risk preference, model based choice, and aspects of social competence. Crucially, 

studies informed by the associations found here (aberrant thinking, sociality) can be 

extended to clinical populations to assess the generality of the findings, as well as 

determine if decision-acuity might inform diagnosis and treatment plans for individual 

psychiatric patients. Such clinical studies can profit from our finding that rsFC can 

predict (estimate) decision acuity, particularly as rsFC data can be acquired quickly, 

does not impose cognitive demands, and administered repeatedly to characterize 

patients through different phases of a disorder. This type of extension of our approach 

will benefit from advances in computational modelling of cognitive and behavioural 

data (Huys et al., 2016), as well as improvements in imaging data collection, processing 

and characterization (Ciric et al., 2018; Kundu et al., 2017; Todd et al., 2016; Vidaurre 

et al., 2017), including initiatives to acquire high quality large-scale datasets (Kiddle et 

al., 2017; Van Essen et al., 2013). 

We acknowledge limitations of the present study. We had a retention rate between 

baseline and follow up of  70%. Although this is acceptable, it meant that our follow-

up sample was smaller and we had reduced power to detect longitudinal effects. 

Although epidemiologically stratified, our sample was a volunteer one, introducing 

potential self-selection biases. Our sample did not allow for many-way (cognitive-

brain-developmental-clinical) analyses. Finally, the reliability and ecological validity 

of task-based measures would benefit from further improvement.  

 Conclusion 

We describe a new cognitive construct, decision acuity, that captures global decision-

making ability. High decision acuity prominently reflected low decision variability. 

Decision acuity showed acceptable reliability, increased with age and was associated 

with mental health symptoms independently of intelligence. Crucially, it was associated 

with distinctive resting-state networks, in particular in brain regions typically engaged 

by decision-making tasks. The association between decision acuity and functional 

connectivity was temporally stable and distinct from that of IQ.  

 

 Data and code availability statement 
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pseudo-anonymised raw and pre-processed data supporting this study is available upon 
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All code and processed data pertaining to the factor analyses of computational task 

measures  and longitudinal non-imaging analyses are found in 
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from m.moutoussis@ucl.ac.uk, while code pertaining to the functional connectivity 

analysis is available at https://github.com/benjamingarzon/FCPC or alternatively upon 

request from benjamin.garzon@ki.se . 
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 Figure Legends 

 

Figure 1. A. Decision Acuity common Factor over cognitive parameters, based on the 

validated 4-factor solution. Measure labels are shortened versions of descriptions in Table 1, 

and letters in brackets are task labels referring to Table 1 too. The top half of variables load 

positively, while grey vertical lines give a visual indication of which measures are important, 

being the thresholds used for inclusion of variables in the confirmatory analyses B. Decision 

Acuity was strongly correlated between baseline and follow-up, as expected for a 

dispositional measure. Mauve is the regression line, black is the identity line. 

Figure 2. Flow diagram of the nested cross-validation pipeline used to estimate how 

strongly decision acuity (similarly for IQ) could be predicted from brain data. 

Essentially, a predictive model was derived from training folds and then applied to the 

brain data from test folds to derive predicted values for the decision acuity for each 

individual. This could then be compared with the experimentally derived decision 

acuity. In our study, NB = 200, NF1 = 20, NF2 = 10, NR = 5, NP = 100, X corresponds 

to the rsFC features and y to the scores predicted (d or IQ).  

Figure 3. Modules detected by the community structure algorithm. The 168 nodes of 

the parcellation were clustered in 14 modules with high average rsFC among their 

nodes. ATC, anterior temporal cortex including the medial temporal lobe; FPL, frontal 

pole; FPN, frontoparietal control network; LDC, left dorsolateral prefrontal cortex; 

MPC, medial prefrontal cortex; OFC, orbitofrontal cortex, medial and lateral; OPC, 

opercular cortex; PCC, posterior cingulate cortex; PTC, posterior temporal cortex; 

RDC, right dorsolateral prefrontal cortex; SUB, subcortical; SAN, salience network; 

SMT, somatosensory and motor areas; VIS, visual regions.  

Figure 4. Model predictive performance for each of the functional modules. A. 

Coefficient for the correlation between observed d and dpr predicted by models 

trained on all connections, and the connections involving nodes in each module. B. 

Correlation between observed d and dpr predicted by models trained on the baseline 

data. Only modules for which the prediction was significant at baseline are shown 

here. All the models included as covariates demographic and imaging-related factors 

(brain volume, scanning site, head motion; see STAR Methods). The whiskers 

indicate the intervals containing the lower 95 % probability mass (corresponding to 

one-tailed tests) for the null distribution, obtained via permutation of the subjects to 

derive the significance of the correlation between predicted and measured scores (see 

STAR Methods). The correlation is significant (uncorrected) when it falls above the 

whisker. * significant uncorrected ** significant with FDR correction for the 15 tests. 

ATC, anterior temporal cortex including the medial temporal lobe; FPL, frontal pole; 

FPN, frontoparietal control network; LDC, left dorsolateral prefrontal cortex; MPC, 

medial prefrontal cortex; OFC, orbitofrontal cortex, medial and lateral; OPC, 

opercular cortex; PCC, posterior cingulate cortex; PTC, posterior temporal cortex; 
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RDC, right dorsolateral prefrontal cortex; SUB, subcortical; SAN, salience network; 

SMT, somatosensory and motor areas; VIS, visual regions.  

Figure 5. Predictive performance for d and IQ when correcting for each other. A. As 

in Figure 4A., correlation between observed d and dpr, but here additionally correcting 

for IQ in addition to demographic and imaging-related factors (brain volume, 

scanning site, head motion; see STAR Methods). B. Correlation between observed 

and predicted IQ, but correcting for imaging related factors and decision acuity. In all 

plots, the leftmost bar corresponds to the model which includes all connections.  The 

whiskers indicate the intervals containing the lower 95 % probability mass 

(corresponding to one-tailed tests) for the null distribution, obtained via permutation 

of the subjects to derive the significance of the correlation between predicted and 

measured scores (see STAR Methods). The correlation is significant (uncorrected) 

when it falls above the whisker. * significant uncorrected ** significant with FDR 

correction for the 15 tests. Abbreviations as per Figure 4. 

 

Table Legends 

Table 1. Decision Making battery 

 

Table 2. Key steps in regression analyses. 

 

 Table 3. Correlation coefficients between observed and predicted scores, 

corresponding to the plots in Figures 4 and 5. * significant uncorrected ** significant with 

FDR correction for the 15 tests. 

 

STAR METHODS 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources should be directed to and will be 

fulfilled by the Lead Contact, Michael Moutoussis (m.moutoussis@ucl.ac.uk). 

Materials availability 

Not applicable 
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Data and code availability 

Due to the wording of the consent that participants gave to the NSPN project, all 

pseudo-anonymised data supporting this study is available upon legitimate-interest 

request from openNSPN@medschl.cam.ac.uk . 

All code pertaining to the analysis of computational task measures and their factor 

analysis is available upon request from m.moutoussis@ucl.ac.uk, while code 

pertaining to the functional connectivity analysis is available upon request from 

benjamin.garzon@ki.se . 

EXPERIMENTAL MODEL AND SUBJECTS 

DETAILS 

Human subjects 

Participants were sampled from a pool of c. 2400 community-dwelling young people 

and formed a 'cognitive cohort'.  Participants were contacted at random from 5 age 

bins (14-16,16-18 etc.), until each recruited age bin had approximately equal 

proportions of females and males. The proportion of non-white-English youngsters in 

our study was within 10% of that of the most recent census. Significant 

neuropsychiatric problems were screened out by self-report, and recruitment sources 

were selected for the sample to be as representative as possible of the healthy 

population  (Kiddle et al., 2017).  We continued to invite people from the larger pool 

into the cognitive cohort, until our target number of 780 'cognitive' participants was 

completed. Of these, 300 were invited for MRI brain scanning. They were equally 

distributed in the 5 age bins  as above, and equal Female:Male ratio. At the time of 

registering with the study, participants were asked to tick: Sex: ‘Female’ or ‘Male’. 

All participants that gave data for decision acuity and imaging analyses ticked one or 

the other box. It was not clarified if some understood the question as ‘gender identity’, 

socially attributed or biological category. Due to the phrasing ‘Sex:’ we expect that 

most participants understood the question to mean ‘self-reported estimate of 

biological sex’, but this is a tentative interpretation.  

 In addition, they were screened for absence of a history or presence of mental health 

disorder, neurological or major health problem, or learning disability. Initial screening 

was by self-report but was confirmed by SCID-II interview and IQ testing.  

We supplemented this non-healthcare-seeking sample with 50 young people recently 

diagnosed with DSM-5 major depressive disorder. Of these, 38 gave decision-making 

battery data for decision-acuity analyses (M=11,F=27). Thus, the main sample was 

representative of the healthy wider population, but a smaller depression group was 

also analysed to test whether the structure of decision-making and the relevant brain 

measures identified in the healthy population also extended to this health-seeking 

group. The depressed cohort was excluded from MRI analyses reported here. 
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Participants (and their parents, if less than 16 years old) gave informed consent to 

participate in the study. The study was approved by the Cambridge Ethics Committee 

(12/EE/0250). 

METHODS DETAILS 

 Sample size estimation 

 Our key sample size estimation pertained to the neuroimaging sample, and 

resulted in the estimate of N=300. The cognitive-task sample was then as large as study 

resources allowed, including resources needed to re-telephone participants who had 

initially given consent but did not immediately respond to an invitation of follow-up, 

up to achieving a follow-up rate of at least 70%. In summary, estimation of the key, 

neuroimaging cohort sample size proceeded as follows. 

 At the time of study design, there were no specific studies to provide a rigorous 

analysis for rsFC developmental, longitudinal sample size estimation. We therefore 

relied on a roughly comparable study which allowed for imaging developmental effect. 

This study used a cohort of 387 participants, who provided 829 structural MRI scans 

(Giedd, 2004). We thus aimed for 300 participants, a number which was logistically 

accessible, and optimized power by selecting parameters (age minimum and width) of 

age-bins and follow-up intervals, using published grey-matter volume data as a proxy 

for the individual variation that we should have power to detect. Quadratic growth 

curves were fitted to the data from the published study above, and study parameters 

varied in silico to minimize variance of the estimated parameters of the growth-curves. 

Simulations showed a plateauing of efficiency if the overall age range was reduced to 

less than 10 years, or the width of age-bins to less than 2 years. Parameter accuracy 

improved with follow-up interval and deteriorated if the follow-up was shorter than 6 

months. Therefore, we aimed for 5 age bins times 2 years width, and selected a 

minimum interval of 12 months, aiming at about 18 month average. This was well 

above 6 months, reduced the chance of demographic loss (moving far away) and 

allowed adequate time to repeat invitations for participants that did not immediately 

respond to follow-up invitations.  

  

 Decision-making Task Battery 

We selected seven tasks tapping fundamental decision-making with evidence linking 

them to both mental health symptoms and neural mechanisms (table 1 in main text). 

First, a Go-NoGo task (Guitart-Masip et al., 2011) provided measures relevant to  

sensitivity to rewards and Pavlovian bias.  Second, an approach-avoidance task 

measured the balance of seeking rewards vs. avoiding losses (Bach et al., 2014). This 

is likely to be relevant to everyday risk-taking by young people. Third, a risk preference 

task (Symmonds, Wright, Bach, & Dolan, 2011)  complemented this, focusing on 

https://www.zotero.org/google-docs/?ShE61q
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widely accepted economic measures of risk-taking (Bach et al., 2020; Rigoli et al., 

2016). Fourth, we assessed inter-temporal discounting, learning about the preferences 

of others and finally peer influence (Moutoussis, Dolan, & Dayan, 2016; Nicolle et al., 

2012). Discounting has been shown to be important in a range of psychiatric disorders 

(Bickel, Jarmolowicz, Mueller, Koffarnus, & Gatchalian, 2012)  and so are issues of 

thinking about others (Sripada et al., 2009) and peer influence (Kerr, Van Zalk, & 

Stattin, 2012). Fifth, we included an information gathering task (Moutoussis, Bentall, 

El-Deredy, & Dayan, 2011)  as this has been consistently shown to be relevant to 

psychotic symptoms (Lincoln, Ziegler, Mehl, & Rief, 2010)  as well as the 

fundamentals of decision-making (Dayan, 2014). Sixth, a Trust Task was used as a 

measure of complex social cognition especially relevant to disorders of interpersonal 

function (Fett et al., 2012; King-Casas et al., 2008). Seventh, a two step task assessed 

the role of habitual vs. planful mechanisms in decision-making (Daw, Gershman, 

Seymour, Dayan, & Dolan, 2011). The battery was implemented using matlab 

(MATLAB, 2012) using the Cogent toolbox (see Acknowledgements). Trained 

research assistants directed the participants through the battery.   

In terms of remuneration, participants received a flat fee but were also (truthfully) told 

that they would be paid extra according to their earnings in the tasks. They were 

informed that there would be a substantial amount of luck in each task, but those who 

completed the tasks carefully would expect to earn about 2.5 pounds extra per task. 

Participants did not see earnings for each trial, because tasks differed greatly in their 

delivery and we did not want to display varying amounts of money to avoid additional 

Pavlovian motivational effects. Instead, participants were told that 'roughly, each good 

decision in each task is worth approximately the same', a statement which provided a 

reasonable reflection of the true state of affairs. The sole element of deception in the 

battery was that during the interpersonal tasks participants were told that their play 

partner was a peer, whereas in reality it was a computer agent. However these agents 

were simulating as closely as possible the performance of healthy people who had the 

same demographics as the participants. Participants were debriefed at the end of all 

testing. 

Earnings were added to their compensation for the day's testing, except for the 

Interpersonal-Discounting task. Here, participants were paid at one of their chosen 

delays, randomly chosen from all the trials in the task,  if they chose a larger but delayed 

payment. This was paid in Amazon vouchers. 

The order of the tasks was subject to constrained randomization. We first piloted the 

battery in 15 participants, of whom we asked detailed feedback as to how interesting 

and how tiring they found each task, as well as free-form comments. On the basis of 

this we avoided putting the more tiring or less interesting tasks near the end of the 

battery, in order to minimize the effect of fatigue. This resulted in eight different task 

sequences, one of which was given at random to participants. After the first 40 

participants were recruited we performed an interim analysis to compare performance 

in this battery of shortened tasks as compared to the full-length versions. Performance 

https://www.zotero.org/google-docs/?l32V1p
https://www.zotero.org/google-docs/?l32V1p
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in each task showed followed the pattern of performance in the original, except the 

Two-Step task. Here participants as a group showed only just-detectable goal-directed 

decision-making. As this would greatly reduce the task's usefulness we improved the 

pre-task training and instructions and discarded this first ~10% of data for this task, 

with satisfactory results. 

Tasks lasted 8-30 minutes each, giving an overall duration of 2 ½ – 2 ¾ hours, including 

one obligatory break and as many extra between-task breaks as the participant asked 

for. Good performance attracted proportionally greater fees in real money (see 

Supplement A).  

Key measures were first extracted from each task according to published 

methodologies. These key measures assess fundamental aspects of decision-making, 

namely sensitivity to rewards and losses, attitudes to risk, inter-temporal and reflection 

impulsivity, pro-sociality and model-basedness. 820 participants (including all scanned 

participants) yielded usable data across tasks. The approach-avoidance task, the 

information gathering task, and the trust task required some adaptations that are listed 

below. 

We were interested in whether common factors operated across domains of decision-

making. We therefore pre-processed the data to reduce strong correlations among 

measures within-task, which would otherwise dominate the factor analysis, as is 

described in the Supplement. In total we formed 32 measures, listed in table 1 and table 

Supplement S1. 

The approach avoidance task was originally described in Bach and coworkers (2014) 

was adapted for the purposes of this study. Because of time constraints we reduced the 

number of threat contexts from three to two, which we call two 'predators' 

corresponding to low and high threat. Also, different from the previous study, epoch 

duration did not depend on threat level. That is, an epoch ended after a random duration, 

independent of whether the predator woke up or not. Finally, the number of epochs was 

reduced to 1/3 of the original, so that the task took about 23 minutes to complete. 

Based on the previous work (Bach et al., 2014) , we collected a large number of 

behavioural descriptive measures and performed an exploratory factor analysis of these 

(substantially correlated) measures. We found that the first three factors could be 

meaningfully interpreted in decision-making terms, namely as sensitivity to the level of 

threat in the environment ('threat sensitivity'), sensitivity to features increasing 

probability of loss within an environment ('loss sensitivity') and measures of overall 

performance ('performance'). As might be expected, this third 'performance' factor 

loaded more highly in d (Figure 1) but still did not exceed the threshold of 0.25 that we 

used for inclusion in confirmatory analyses (below).  

The 'cover story' and graphics of the Information Gathering task were adapted from 

the work of Lincoln and coworkers (Lincoln, Peter, Schafer, & Moritz, 2010; Lincoln, 

Ziegler, et al., 2010). On the basis of previous work (Moutoussis et al., 2011) we 
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reduced the maximum number of samples of information per trial in order to increase 

the impact of the approaching end (urgency). We first presented participants with an 

uncosted-information gathering version of the task for 10 trials. This had deliberately 

non-specific instructions to maximise the chance that participants would bring their 

own, subjective cost structure to bear and because, somewhat unexpectedly, such 

uncosted, scarce-instruction versions of the task has produced some of the most 

consistent results in clinical and subclinical samples. We then presented them with 10 

trials with more specific instructions. Participants started with 100 points and had to 

pay 10 points for each item of information they requested. We employed a maximum-

likelihood fit of the bayesian-observer model from (Moutoussis et al., 2011). 

In order to analyse the Trust task we adapted the measures described by (Fett et al., 

2012). Following these researchers, we considered whether participants increased or 

decreased their offer at each move in response to observing their partner increase or 

decrease theirs. However we considered the fractional change in contribution, i.e. the 

change in the fraction of play-money that could have been given. This entails the 

hypothesis that each player considers the other as 'messaging' them from a baseline of 

their financial means, not in absolute terms. We then considered the vector in the 2-

dimensional space of (fractional-change-of-Investor  by fractional-change-of-Trustee) 

formed for each round of play. We classified this in the same way as Frett et al. 

(retaliating, repairing, honouring, disrupting) as the angle between the vector and the 

change-of-Investor axis increased from -180 to 180 degrees. Again using the (rather 

crude) approximation that strategy remains the same throughout the 10 rounds of the 

game, we added the vectors for each of the rounds to determine the character of the 

game as a whole. The orientation of the resultant vector characterises the whole 

exchange – both Investor (our participant) and Trustee (the computer). As all investors 

played the same computer program, this vector can be seen as the type of exchange that 

the participant elicited. 

In the event, orientations showed a clear bimodal distribution, either around zero 

degrees (an exchange based on coaxing the Trustee) or around -3π/4 . The latter 

represents an exchange where each party is responding to the other's reduction in 

contribution with their own reduction. We might speculate that participants attempt to 

signal 'if you won't be generous, I won't either'. The two-cluster distribution could in 

turn be fitted reasonably well with a single straight line spanning retaliatory to coaxing 

exchanges. The 'trust building' index in tables 1 and 2 corresponds to the participant's 

position along this line. 

 

MRI data acquisition 

MRI scans were acquired on three identical 3T whole-body MRI systems (Magnetom 

TIM Trio; VB17 software version; Siemens Healthcare): two located in Cambridge and 

one located in London. Reliability of the MRI procedures across sites has been 
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demonstrated elsewhere (Weiskopf et al., 2013). Structural MRI scans were acquired 

using a multi-echo acquisition protocol with six equidistant echo times between 2.2 and 

14.7 ms, and averaged to form a single image of increased signal-to-noise ratio (SNR); 

TR = 18.70 ms, 1.0 mm isotropic voxel size, field of view (FOV) = 256 x 256, and 176 

sagittal slices with parallel imaging using GRAPPA factor 2 in anterior-posterior phase-

encoding direction. Resting-state blood-oxygen-level dependent (BOLD) fMRI 

(rsfMRI) data were acquired using multi-echo acquisition protocol with three echo 

times (TE = 13, 31, 48 ms), TR of 2420 ms, 263 volumes, 3.8 mm isotropic voxel size, 

34 oblique slices with sequential acquisition and a 10% gap, FOV = 240 x 240 mm and 

matrix size = 64 x 64 x 34. The duration of the functional scan was approximately 11 

minutes. 

Connectivity Analysis 

The rsfMRI data were denoised with multi-echo independent component analysis (ME-

ICA) (Kundu et al., 2017). ME-ICA leverages the echo time dependence of the BOLD 

signal to separate BOLD-related from artifactual signal sources, like head motion. The 

functional images were normalized to MNI space by composing a rigid transformation 

of the average functional image to the participant’s structural image and a non-linear 

transformation of the structural image to the MNI template, and finally smoothed with 

a 5 mm full-width-at-half-maximum Gaussian kernel. Following (Smith et al., 2015), 

group-ICA was applied to the pre-processed fMRI baseline data to decompose it in 200 

nodes, 32 of which were identified as artefacts by visual inspection and excluded. The 

remaining 168 nodes are either confined brain regions or networks formed by regions 

where BOLD signal time-series are strongly correlated. Multiple spatial regressions 

against the group-ICA spatial maps were used to estimate time-series for each network 

and subject, for both baseline and follow-up scans. RsFC matrices (168 x 168 nodes) 

were then computed using partial correlation with limited L2 regularisation (Smith et 

al., 2011). All these preprocessing steps were conducted with the ME-ICA toolbox 

(https://afni.nimh.nih.gov/pub/dist/src/pkundu/README.meica) and the FMRIB 

Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl). 

The obtained rsFC values were used as features in a sparse partial least squares (SPLS) 

model to predict two outcome measures of interest (decision acuity and IQ composite 

scores). SPLS ((Chun & Keleş, 2010); 'spls' R library, https://cran.r-

project.org/web/packages/spls/) is a multivariate regression model that simultaneously 

achieves data reduction and feature selection. It has application in datasets with highly 

correlated features and sample size much smaller than the total number of features, as 

was the case in the present study. SPLS models are governed by two parameters 

(number of latent components and a threshold controlling model sparsity) that were 

adjusted using a nested cross-validation scheme (i.e. using data in the training dataset 

only) with 10 folds (Figure 2).  

Predicted scores were estimated by 20-fold cross-validation repeated 5 times. For each 

training-testing partition we performed the following steps. To elucidate whether the 

https://afni.nimh.nih.gov/pub/dist/src/pkundu/REAdecision-makingE.meica
https://afni.nimh.nih.gov/pub/dist/src/pkundu/REAdecision-makingE.meica
https://fsl.fmrib.ox.ac.uk/fsl
https://fsl.fmrib.ox.ac.uk/fsl
https://cran.r-project.org/web/packages/spls/
https://cran.r-project.org/web/packages/spls/
https://cran.r-project.org/web/packages/spls/
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predictions were driven by rsFC values independently of age, sex or covariates of no 

interest (see below), we fitted a linear model to the training dataset and regressed out 

from the target variable (in both training and testing datasets) age , sex and their 

interaction as well as brain volume, scanning site and head-motion-related parameters. 

Head motion is known to originate spurious correlations that bias connectivity 

estimates and therefore (besides the ME-ICA preprocessing explained above) we 

regressed out average framewise displacement (FD), a summary index of the amount 

of in-scanner motion (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), and the 

degrees of freedom resulting from the ME-ICA denoising, which may differ across 

subjects depending on how much nuisance variance is removed from their data. As an 

additional control for head motion, subjects whose mean FD was above 0.3 mm were 

not included in the analysis. We also standardized both training and testing data with 

respect to the mean and standard deviation of the training data (separately for each 

feature). As a first step to filter out uninformative features and speed up computations, 

only those significantly (p < 0.05) correlated with the outcome variable in the training 

dataset were entered in the SPLS model. We then used a bagging strategy where data 

were resampled with replacement 200 times and as many SPLS models were fitted to 

the resampled datasets, and their feature weights averaged to produce a final model. 

The purpose of this step was 1) to improve the generalizability of the final average 

model and 2) to allow estimation of the stability of the feature weights selected. The 

final, average model was used to compute the predicted scores for the testing partition. 

The same procedure was repeated for all folds to obtain one predicted score for each 

subject, where the predicted score for each participant depended only on data from other 

subjects in the sample. These procedures were implemented with R (https://www.r-

project.org/) and MATLAB (https://www.mathworks.com). 

Network node community structure 

To enhance our understanding of the anatomical distribution of the predictive 

connections, we performed a ‘virtual lesion’ analysis (Dubois, J. et al., 2018), which 

entails assessing the performance of the model when it is trained only on subsets of 

connections instead of the full ensemble. First, we partitioned the set of nodes into 

disjoint modules or communities (to some extent analogous to large-scale functional 

networks   (Smith et al., 2009)) formed by nodes which displayed high connectivity 

among them but lower connectivity with nodes in other modules. We obtained the 

community structure directly from our dataset instead of relying on previous partitions 

that have been derived from adult connectomes (Ito et al., 2017; Power et al., 2011) (Ito 

et al., 2017; Power et al., 2011), because brain connectivity of adolescents and adults is 

known to differ (Fair et al., 2009).  

To produce the partition, we averaged the baseline rsFC matrices across participants 

and removed negative entries. The resulting matrix was submitted to the Louvain 

community detection algorithm for weighted graphs (Blondel, Guillaume, Lambiotte, 

& Lefebvre, 2008)  and this partition was refined using a modularity fine-tuning 

http://../Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/A8F4A36D-2843-4370-A262-BF25D02C2A91/_top
http://../Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/A8F4A36D-2843-4370-A262-BF25D02C2A91/_top
https://www.mathworks.com/
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algorithm (Sun, Danila, Josić, & Bassler, 2009). Since the algorithm is not 

deterministic, it was applied 100 times and the results gathered in a nodes x nodes 

consensus matrix that indicates the frequency by which the corresponding node pair 

was assigned to the same module. The consensus matrix was partitioned repeatedly 

until convergence. The algorithm depends on a parameter γ that controls the resolution 

(which determines the ensuing number of modules). We adjusted this parameter to 

maximize the normalized mutual information between solutions at different resolutions. 

The optimal value of γ ensures the most stable partitioning and in our dataset (γ=2.7) 

led to a solution with 14 modules, a number that yielded interpretable modules and is 

on par with the cardinality used in previous studies. These analyses are similar to those 

reported in (Geerligs, Rubinov, Cam-CAN, & Henson, 2015)   and were performed 

with the Brain Connectivity Toolbox ( (Rubinov & Sporns, 2010), www.brain-

connectivity-toolbox.net) for MATLAB. Having parcellated the connectome in the 14 

modules, we trained the prediction model for each one of them using only connections 

implicating nodes in that module (i. e. either connections among nodes in the module 

or connections between nodes in the module and the rest of the brain). We employed 

the same module decomposition in the analysis concerning the follow-up dataset. 

QUANTIFICATION AND STATISTICAL 

ANALYSIS  

Derivation, validation and psychometric correlates of Decision Acuity 

We tailored analysis to test the hypothesis that a few (around three) dimensions of 

covariation would meaningfully load across decision-making measures, expecting 

reward sensitivity, risk preferences, goal-directedness and prosociality to be 

represented in these dimensions. We allowed, however,  the data to determine the 

number of factors in the model. We used an exploratory-confirmatory approach to 

establish the structure of the factor model using the baseline data. Then, we made use 

of the longitudinal nature of our sample to test the temporal stability and predictive 

validity of the key derived measure. 

Task measures at baseline only  were first transformed to near-normal marginal 

distributions using logarithmic or power-law transforms, imputed for the small 

percentage of missing values using the R package 'missMDA', then randomly divided 

into a 'discovery' and 'testing' samples. N=416 participants were used for exploratory 

common factor analysis (ECFA) and 414 were used for out-of-sample testing. We 

found  loadings on the first ECFA factor, likely to be most important, to vary smoothly 

across all parameters, and the great majority of loadings to be lower than the 

conventional threshold of 0.4 used to construct structural equation models for 

confirmatory FA (Muthén & Muthén, 2008). Items had high uniqueness, as expected. 

These results were much like the final total-sample FA illustrated in Figure 1. 

Therefore, rather than claim that certain decision parameters were important and others 

were not in providing a measure of the underlying latent variable, we allowed for all 

http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
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decision-making items to contribute, recognizing that individual item weights would be 

poorly estimated, but expecting that the resulting overall scores would be well 

estimated. We tested this by comparing (i) discovery vs. test samples and (ii) purposeful 

half-splits of the population with respect to sex and age (see Supplement B).  The 

exploratory analysis furthermore suggested that our objective need not be to determine 

a ground-truth number of factors, as higher order factors were dominated by single tasks 

and hence were of no interest here. Our criterion for including higher-order factors then 

was whether higher dimensional models were likely to result in better score estimates 

for the low-order factors, which were of interest.  

The maximum number of factors for the exploratory-confirmatory analysis was 8, 

estimated by parallel analysis (Figure S1). The R library ‘nFactors’, and specifically R 

functions ‘eigen’,’parallel’ and ‘nScree’ were used to estimate the scree-plot based 

number of exploratory factors to retain illustrated in Figure S1. Based on these, models 

from 8 down to 1 factors were derived with function ‘fa’, using ordinary least squares 

to find minimum-residual (minres) solutions. The models estimated from the ECFA 

were then tested on the confirmation dataset using structural equation modelling in R 

(Fox, 2006). Criteria of under-determination, Bayesian Information Criterion (BIC), 

and comparative fit index (CFI) were used to compare including an increasing number 

of factors. In the confirmatory factor analysis, a threshold of 0.25 was adopted as very 

few loadings on the first factor exceeded the conventional threshold of 0.4 (See Figure 

1 in the main text). Considering the test set of 414 participants only, we found that 

model fit as indexed by the BIC and CFI improved from 1 to 4 factors. However, 5 

factor and more complex model fits did not converge on the test set. According to these 

criteria we considered a model of four factors to be most parsimonious and robust, but 

we also considered the stability of the latent constructs derived to make a final choice 

of factor-analytic model. Within the range of three to five factors, d scores were not 

sensitive to the exact number of factors, scores being correlated with r > 0.9, p ~ 0, with 

the score obtained from the 4-factor solution. We thus opted for a 4-factor model for all 

subsequent analyses.  

 

We then tested whether decision acuity as a construct was stable with respect to (i) the 

random discovery/confirmation split (ii) median-split age and (iii) sex using the 

baseline data. We examined how closely scores for a certain subgroup ( below median 

age for (ii), ‘Male’ for (iii)) based on ECFA of the group itself agreed with scores for 

the same individuals based on FA weights derived from the opposite (i.e. above median 

age or ‘Female’) group, described in Supplement B. Finally, we tested for external 

validity of decision acuity in correlating with (iv) mental health scores for 

symptomatology and dispositions, using bifactor scores and (v) patterns of functional 

brain connectivity, as described in Results. 

 

The follow-up battery did not contain one of the baseline tasks, and had minor 

differences (but the same derived parameters) for two further tasks. In order to perform 

longitudinal analyses, we adopted a conservative approach, estimating a measure of 

https://www.zotero.org/google-docs/?jgypYK
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decision acuity based on the final stage of the baseline analysis, but retaining only the 

weights for the six tasks that were assessed longitudinally. We checked that this more 

approximate measure adequately captured individual variability of the baseline sample, 

which was the case (r=0.98, p undetectable) and therefore used in the longitudinal 

analysis baseline scores derived from these six tasks. We then derived the follow-up 

decision acuity estimates as follows. We first  applied the same approximate-

gaussianization transforms to each follow-up measure. Next, we z-scored each follow-

up measure using the mean and standard deviation of the respective (transformed) 

baseline measure. Finally, we applied the weights for these 6 tasks derived from the 

baseline factor analysis. Thus, we took the follow-up measures of decision acuity to 

have exactly the same structure as baseline, so that it could be used to compare absolute 

changes in this measure. Finally, in analyses correlating follow-up symptoms with 

decision acuity, and as decision acuity and IQ were measured typically six months after 

symptoms and hypothesized to be trait-like, we interpolated follow-up decision acuity 

and IQ measures to the time of symptom measurement. 

 

For the longitudinal analysis, we used a linear mixed effects approach. As the structure 

of decision Acuity was fixed by the procedure above, we did not split the follow-up 

sample into test and discovery sets. We used Bayesian Information Criterion to select 

the statistical models by which we tested for inter-relations between decision acuity and 

key psychometric variables. For all the following analyses, N=571 for the follow up 

sample. Developmental time in this accelerated longitudinal design is represented both 

by age-at-recruitment, and by the time interval between test waves. Both recruitment 

procedures and development itself may mean that these two measures of developmental 

age may in practice affect our dependent variables differently. We therefore first 

checked if LME modelling over baseline and follow-up with age as a random effect, in 

addition to a random intercept for each participant, improved model fit. In fact, it 

worsened model fit (BIC = 5974.5; logLik = -2965.512; vs. BIC=5960.0, logLik= -

2965.529), so we did not include age as random effect in further analyses.  In further 

analyses involving IQ, we used the raw matrix and vocabulary WASI IQ subscores and 

modelled age explicitly, rather than use standardized IQ subscores. This is because we 

noticed that the standardized WASI total IQ in our sample was associated with age (r 

Pearson=0.135, p=0.00011, r2=0.017) at baseline. This indicates that our sample had a 

different age dependence of IQ scores than the reference one (Axelrod, 2002). 

Therefore, we regressed d for raw IQ subscores while covarying for age, in effect 

accounting for variation in IQ ability independent of whether this was due to age or 

self-selection. 

 

Predictive performance of Connectivity Analysis 

We assessed predictive performance as the Pearson correlation coefficient r between 

measured d and (cross-validated) predicted d (dpr), averaged across repetitions of the 

cross-validation splits. After Fisher transformation, the null distribution of r should 

follow a zero-centered Gaussian distribution. In order to appraise significance, we 
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estimated the variance of this distribution by generating 100 random permutations of 

the target variable (Winkler et al., 2016) and repeating the model-fitting procedures 

mentioned above, separately for each fold. We then derived p-values for the observed 

r from the estimated null distribution. We assessed predictive performance for a model 

based on the full set of connections, as well as for models trained on the subsets of 

connections corresponding to the modules described in the previous subsection. 

To demonstrate that the relationships between connectivity and decision acuity were 

stable over time and replicate, we used the model estimated at baseline to predict d 

based on the follow-up rsFC data for modules that were significant at baseline. Given 

that the data at baseline and follow-up are not independent, we kept the same cross-

validation fold structure in both datasets, so that the prediction of a subject at follow-

up did not involve their own rsFC baseline data, as this would have inflated the 

estimates of predictive performance at follow-up. 

Connectivity patterns predictive of d vs IQ 

For imaging analyses, we derived a composite score of IQ by averaging standardized 

vocabulary and matrix IQ subscores, rather than using the standardized WASI score, 

because of two reasons. First, we wanted analyses involving both age and IQ to have a 

straightforward interpretation where IQ represents a measure of raw ability, as opposed 

to age-standardized ability, and explicitly test for age-dependence separately. Second, 

we found evidence (Results) that our sample was different from the original on which 

standardised scores were derived, and hence the standardisation procedure might be 

invalid. Next, we trained models both on the complete set of connections and the 

subsets corresponding to the individual modules to predict the IQ composite scores, as 

we had done previously to predict d, yielding IQpr, and assessed predictive performance 

for each of the modules separately. To compare the connectivity patterns that were 

predictive of d with those predictive of IQ, for each of the modules we assessed the 

partial correlation between d and dpr when controlling for IQ, and the partial correlation 

between IQ and IQpr when controlling for d. In all these analyses we corrected for age, 

sex and imaging-related confounds as above.  

  

 

 

ADDITIONAL RESOURCES 

  

 Not applicable. 

https://www.zotero.org/google-docs/?6zBcbk
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KEY RESOURCES TABLE 

REAGENT or 

RESOURCE 

SOURCE IDENTIFIER 

Deposited Data 

Processed 

connectivity matrices 

This paper https://github.com/benjamingarzon/FCPC/tree/master/data  

ICA maps and 

functional modules 

This paper https://github.com/benjamingarzon/FCPC/tree/master/data  

 Data for cognitive 

task factor analyses 

 This paper  https://github.com/mmoutou/decAc 

file AllD18.R 

 Data for Decision 

Acuity londitudinal 

analyses 

 This paper  https://github.com/mmoutou/decAc 

file symfacdeciq.csv 

 Scripts for cognitive 

task factor analyses 

and Decision Acuity 

longitudinal analyse 

 This paper  https://github.com/mmoutou/decAc 

R files CFA-decAc.R and decAclongi.R ; optional utilities file gen_ut.R 

Software and Algorithms 

MATLAB Mathworks RRID: SCR_001622 

https://www.mathworks.com/ 

R package The R Foundation RRID: SCR_001905 

https://www.r-project.org 

ME-ICA (Kundu et al. 

2017) 

https://afni.nimh.nih.gov/pub/dist/src/pkundu/README.meica 

FSL (Smith et al. 2004) RRID: SCR_002823 

https://fsl.fmrib.ox.ac.uk/fsl 

Key Resource Table

https://github.com/benjamingarzon/FCPC/tree/master/data
https://github.com/benjamingarzon/FCPC/tree/master/data
https://github.com/mmoutou/decAc
https://github.com/mmoutou/decAc
https://github.com/mmoutou/decAc
https://www.mathworks.com/
https://www.r-project.org/
https://afni.nimh.nih.gov/pub/dist/src/pkundu/REAdecision-makingE.meica
https://fsl.fmrib.ox.ac.uk/fsl
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SPLS R library (Chun and Keles 

2010) 

https://cran.r-project.org/web/packages/spls 

Brain Connectivity 

Toolbox 

(Rubinov and 

Sporns 2010) 

RRID:SCR_004841  

www.brain-connectivity-toolbox.net 

Functional 

connectivity analysis 

scripts 

This paper https://github.com/benjamingarzon/FCPC 

  

References to Key Resources Table  
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reduction and variable selection. J R Stat Soc. 72:3–25. 

Kundu P, Voon V, Balchandani P, Lombardo M V., Poser BA, Bandettini PA. 2017. Multi-echo 

fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. 

Neuroimage. 154:59–80. 

Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: Uses and 

interpretations. Neuroimage. 52:1059–1069. 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-berg H, 

Bannister PR, Luca M De, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, 

Zhang Y, Stefano N De, Brady JM, Matthews PM. 2004. Advances in functional and 

structural MR image analysis and implementation as FSL. 23:208–219. 

 

https://cran.r-project.org/web/packages/spls/
http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/


 

 

 

Table 1: Decision-making task battery. 

Task (with key reference) Broad (selected) 
psychological domains 

Computational constructs assessed Key individual parameters and descriptive measures. 

A. Go-NoGo task 

(Guitart-Masip et al., 2012) 

Default (Pavlovian) 
propensities for action and 
ability to modify them. 

 

Impact of gains and losses on 
choice. 

Pavlovian biases, i.e. propensity to 
engage in action in order to obtain 
rewards and to abstain from action 
to avoid losses;  

Reward sensitivity, equivalent to 
decision temperature. 

Instrumental learning rate in the 
appetitive and aversive domains. 

1. Pavlovian Bias; 

2.-3. Reaction times for action choices in the context of threat 
vs. opportunity. 

4. Sensitivity to outcomes. 

5. General bias for action rather than non-action; 

6. Motivation-independent, 'irreducible', variability in 
decision-making; 

7.-8. Learning rates in the appetitive and aversive contexts. 

B. Economic preferences 
task 

(Symmonds et al., 2011) 

 

(NB: administered at 
baseline only) 

 

Risk-taking  / impulsivity 

Impact of gains and losses on 
choice. 

 

 

Baseline taste for gambling 

Risk-avoidance (preference for 
outcome distributions of low 
variance). 

9. Overall preference for gambling over known returns. 

10.. Preference weight for variance, compared to the mean, 
of an outcome distribution, named 'Economic risk 
preference'; 

11.. Effect of outcome distribution asymmetry (skewness) on 
preferences. 

12. Sensitivity to expected value of outcomes. 

C. Approach-Avoidance 
conflict task 

(Bach et al., 2014) 

Risk-taking  / impulsivity 

Impact of gains and losses on 
choice. 

Ability for complex planning 

Willingness to expose oneself to 
different levels of risk for the sake of 
amassing rewards. 

Ability to learn about time-
dependent hazards and plan 
efficient sensorimotor sequences to 
minimize risk. 

13.-15. Factor-analytic scores summarizing variance over a 
comprehensive set of behavioural measures in the task. 
Approximately corresponding to sensitivity to overall level of 
threat, sensitivity to the time dependency of threat, and 
overall performance. 

D. Two-Step task 

(Daw et al., 2011) 

Ability for complex planning Strength of 'model-free' (i.e., based 
on directly learnt values of actions) 
vs. ‘model-based' (i.e., explicitly 

16. Model-basedness: tendency to shift in decisions as a 
consequence of a different decision being more advantageous 
according to the transition probabilities inherent in the task. 

Table 1



 

 

Impact of gains and losses on 
choice. 

estimating the future consequences 
of actions) decision-making 

17. Learning rate 

18. Perseveration tendency 

19. Reward sensitivity 

20. Eligibility trace (propensity of learning to affect not just 
the current state but also others related to it) 

E. Information Gathering 
task 

(Moutoussis, Bentall, El-
Deredy, & Dayan, 2011) 

Risk-taking  / impulsivity 

Ability for complex planning 

Impact of gains and losses on 
choice. 

Assessment of whether future 
decisions will on balance be more 
advantageous if one gathers more 
information. 

21. Information Sampling noise, which determines not only 
decision variability but also effective depth of planning. 

22. Subjective cost of every piece of information asked for 
when experimenter imposes no such price explicitly; 

23.-24. Ditto if a fixed, external price-per-step is imposed. 

F. Multi-round Investor-
Trustee task 

(Fett et al., 2012) 

Understanding the 
preferences of others (social 
cognition) 

Ability for complex planning 

Impact of gains and losses on 
choice. 

Overall strategies used to elicit 
cooperation and avoid being 
exploited by one's anonymous, task 
partner. 

25. Initial trust, i.e. the amount given by the investor to the 
Trustee before they have any specific information about 
them. 

26. Cooperativeness: Average degree to which Investor and 
Trustee tended to respond to reductions (or increases) in 
each other's contributions in kind. 

27. Responsiveness: Average magnitude of responding to the 
partner’s change in contribution. 

G. Interpersonal- 

Discounting task 

(Moutoussis et al., 2016) 

Understanding the 
preferences of others (social 
cognition) 

Risk-taking / impulsivity 

Baseline inter-temporal discounting; 
shift in discounting preferences upon 
exposure to peers' preferences. 

28. Basic hyperbolic temporal discounting coefficient; 

29. Relevance of others' observed preferences to the self; 

30. Discounting taste uncertainty, i.e. uncertainty about one's 
own tastes in this domain. 

31. Decision variability over choosing for others  

32. Irreducible decision noise. 

 



Table 2 

 

Independent variable A. Symptoms only  
(p-value for fixed 
effects beta; time-
dependent LME) 

B. Dispositions only  
(p-value for beta; 
baseline only) 

C. Symptoms and 
Dispositions (p-value for 
fixed effects beta; time-
dependent LME) 

General symptom factor: 
General distress 

0.048 - 0.390 

Self-confidence specific 
factor (SF) 

0.351 - 0.316 

Antisocial behaviour SF 0.381 - 0.912 

Worry SF 0.014 - 0.875 

Aberrant Thinking SF 0.016 - 0.074 

Mood SF 0.813 - 0.871 

General disposition 
factor: Adaptive sociality 

- 0.0018 0.0001 

Social Sensitivity - 0.656 - 

Sensation Seeking - 0.987 - 

Effortful control - 0.959 - 

Suspiciousness - 0.014 - 

Age <0.0001 0.0002 <0.0001 

Vocabulary IQ (raw score) <0.0001 <0.0001 <0.0001 

Matrix IQ (raw score) <0.0001 <0.0001 <0.0001 
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Prediction of d at baseline 
(Figure 3A) 

Prediction of d at follow-up 
(Figure 3B) 

Prediction of d at baseline 
controlling for IQ (Figure 3C) 

Prediction of IQ at baseline 
controlling for d (Figure 3D) 

Network r p value p value 
(FDR corr.) r p value p value 

(FDR corr.) r p value p value 
(FDR corr.) r p value p value 

(FDR corr.) 
All 0.145 < 1e-6 < 1e-6** 0.081 0.005 0.018** 0.021 0.241 0.651 -0.054 0.972 1.000 
ATC 0.038 0.116 0.158 0.052 0.048 0.102* 0.018 0.304 0.651 -0.169 1.000 1.000 
FPL -0.019 0.773 0.773 0.023 0.242 0.363 -0.016 0.712 1.000 0.036 0.130 0.488 
FPN 0.059 0.019 0.036** 0.085 0.002 0.012** -0.007 0.605 1.000 -0.045 0.979 1.000 
LDC 0.023 0.218 0.273 -0.055 0.943 0.985 -0.051 0.950 1.000 0.069 0.015 0.073* 
MPC 0.069 0.004 0.011** 0.118 9.38e-05 7.03e-04** 0.017 0.268 0.651 -0.052 0.960 1.000 
OFC 0.143 < 1e-6 < 1e-6** 0.083 0.006 0.018** 0.032 0.153 0.574 0.013 0.320 0.960 
OPC 0.123 6.79e-06 2.04e-05** 0.015 0.333 0.455 0.181 < 1e-6 < 1e-6** 0.170 < 1e-6 < 1e-6** 
PCC 0.199 < 1e-6 < 1e-6** -0.049 0.915 0.985 0.104 2.11e-04 0.001** -0.044 0.955 1.000 
PTC -0.023 0.769 0.773 0.167 < 1e-6 3e-06** -0.035 0.877 1.000 0.113 7.2e-05 5.4e-04** 
RDC 0.037 0.047 0.078* -0.072 0.985 0.985 -0.101 1.000 1.000 -0.019 0.727 1.000 
SAN 0.034 0.106 0.158 0.004 0.448 0.560 -0.138 1.000 1.000 -0.103 1.000 1.000 
SMT 0.159 < 1e-6 < 1e-6** 0.068 0.010 0.025** 0.107 2.77e-05 2.07e-04** -0.095 1.000 1.000 
SUB -0.006 0.577 0.666 0.022 0.229 0.363 -0.020 0.774 1.000 -0.061 0.980 1.000 
VIS 0.062 0.012 0.025** 0.033 0.178 0.334 -0.078 0.998 1.000 -0.008 0.606 1.000 
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Figure 1. Decision acuity

Figure 1



Figure 2. Structure of predictive testing

Figure 2



Figure 3. Brain networks

Figure 3



Figure 4. Observed vs. predicted decision acuity by testing wave.

Figure 4



Figure 5. Networks specific to decision acuity vs. specific to IQ

Figure 5
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Learning rate, Two -step task (transformed)

Perseveration parameter, Two-step task

Inverse temperature, Go-NoGo task (transformed)

Inverse temperature, Two -step task (transformed)

Initial investment in partner, Investor-Trustee task

Aversive learning rate, Go-NoGo task

Appetitive learning rate, Go-NoGo task

'Performance factor', Approach-Avoidance task

Degree of cooperative responding,  Investor-Trustee task

'Sensitivity to overall threat level',  Approach-Avoidance task

'Sensitivity to increasing hazard', Approach-Avoidance task

Model-basedness, Two-step task (transformed)

Subjective cost of samples, uncosted Info. Gathering (transf.)

Eligibility trace parameter,  Two -step task

Subjective cost of samples, costed Info. Gathering (transf.)

Bias towards action, Go-NoGo task (transformed)

Sensitivity to outcome skewness, Econ. preference task

Epistemic trust parameter, delegated discounting (transf.)

Overall preference for gambling, Econ. preference task

Variability of choices-for-other, delegated discounting (transf.)

React. time diff. between conditions, Go-NoGo task (transf.)

Risk aversion, Econ. preference task

Lapse rate, Go-NoGo task (transformed)

Reactiveness to other's offers,  Investor-Trustee task

Pavlovian bias, Go-NoGo task (transformed)

Taste uncertainty,  delegated discounting (transf.)

Decision temperature, costed Info. Gathering (transf.)

Lapse rate,  delegated discounting (transformed)

Temporal discounting, delegated discounting (transf.)

mean log-Reaction Time,  Go-NoGo task

Decision temperature, uncosted Info. Gathering (transf.)

Sensitivity to expected value of outcome,  Econ. preference task

Table S1, related to Figure 1. Key to the labels of cognitive measures, in the order of loading
onto decision acuity. Green - load positively; Blue - load negatively; Bold - exceed 0.25 in
loading. Letters in brackets refer to Table 1 in main text.



Supplementary Analyses
B. Factor analysis and validation of Decision Acuity

B1. Exploratory - Confirmatory analyses

Figure S1, Related to STAR Methods. Parallel analysis to determine optimal number of
factor-analytic components for the 'Discovery dataset', N =  416, and 32 variables.



Figure S2, Related to STAR Methods. Factor loadings for factors 2 to 4, exploratory
common factor analysis on the whole sample. loadings with absolute value over the
noise floor or over 0.25 (gray lines) are exclusively from A. Delegated Discounting task
for Factor 2 B. Information Gathering task for Factor 3 and C. Economic risk preference
task for Factor 4.



Specifically, as the threshold of 0.25 is not uniquely defined, and as splitting the
data set into discovery and testing means that a limited number of data was
available to test high-dimensional models in a confirmatory mode, we informed
our choice of factor-analytic dimensionality by the stability of the latent variable
scores to which different FA models gave rise to. This is described in the
'Stability analysis' below.

B2. Stability Analysis

We examined construct stability of decision acuity by correlating component d
scores on half the sample with the same scores derived from the first ECFA
component on the other half of the sample.

Figure S3, Related to STAR Methods. Stability of the construct of decision acuity with
respect to random variation in the data, age or sex. In each case, component factor
scores for half the sample based on ECFA of that same half-sample is predicted by
component scores for the same individuals, but based on the construct (i.e., factor
loadings) derived from the opposite half of the data. A. Exploratory-confirmatory split
gives a very high correlation (r=0.98, p ≅ 0.0) attesting to the reliability of the construct
B. Median split at age= 18.54 years. Very high correlation (r=0.98, p ≅ 0.0) attests to
the stability of the construct in young adults vs. teenagers. C. Female-male split shows
somewhat lower correlation (r=0.88, p ≅ 0.0), suggesting that the same 'average'
construct can be used in both sexes, but also that subtle sexual dimorphism exists.

Here we were not primarily interested in the factor structure of decision-making,
but in the stability of the construct of decision acuity. We thus divided the
sample into two subgroups either by age (at 19) or by sex. We argued that if the



construct itself was stable across age (and sex), then the decision acuity factor
score for each participant could be calculated either using the factor loadings
derived from the participant’s own group or indeed the opposite one. Individuals
with substantially differing scores would indicate that a different latent construct
organized decision-making across the subgroups. If, for example, d was an
invariant latent construct with respect to age, then the pattern of loadings
derived from older participants would give the same scores when applied to
younger participants as and ECFA on the young participant data themselves. d
was highly stable across the discovery-confirmation random split (0.99
confidence interval for r(exploratory based on confirmatory loadings, own
exploratory) = 0.976,0.985), as well as age CIr(young|old, own
young)=0.969,0.9811). Its stability across gender was satisfactory but
significantly lower, evidencing a small degree of sexual dimorphism
CIr(male|female, own male)=0.820,0.887, Figure S3. Fit indicators were similar
for the whole sample and for each split (e.g. RMSEA 90% CIs for females, males,
younger, older and all were 0.051-0.061,0.052-0.062,0.054-0.064,0.046- 0.056
and 0.052-0.058 respectively)

As mentioned above, none of the analyses reported here was materially affected
by excluding from the sample of 830 participants the 50 who had a diagnosis of
DSM5 depression.



C. Additional associations of d with performance, symptoms and IQ

C1. d, performance and IQ
In order to check the interpretation that d reflects better decision-making, we
first formed a performance measure across tasks. First, we excluded the
discounting and Roulette tasks, as these specifically probed the balance of
amounts won vs. other dimensions of the return, namely its delay and
uncertainty respectively. Second, we excluded the Approach-Avoidance conflict
task, as one of the measures by which it entered the estimation of d
(ApproachAvoid.F3 in Figure 1 and Supplement Table S1 ) was judged to be too
close to a performance measure already. Parenthetically, this measure loaded
modestly in the expected direction onto d, i.e. positively, with a weight of 0.24
and high uniqueness (Figure 1). We then t-scored winnings within each of the
Go-NoGo, Information Gathering, Investor-Trustee and Two-step tasks, and
averaged these scores across tasks. The Pearson raw and partial correlation
table between this task-performance measure, d and WASI total IQ had as
follows, confirming the interpretation of d as conducive to profitable
decision-making even above and beyond IQ.

d WASI IQ

task performance partial r=0.42, p <1e-10 r=0.05, p=0.14

raw r=0.50, p <1e-10 r=0.30, p<1e-10

d
partial - r=0.44, p<1e-10

raw - r=0.51, p<1e-10

Table S2, Related to Table 2. Relations of d and IQ with overall performance in
four key tasks.

C2. The association between d and symptoms is not explained by IQ

We tested whether each symptom factor was significantly associated with d ,
while controlling for age and IQ raw scores, and found that in no case could the
association of d with psychological scores be explained by IQ. First, 'Aberrant
thinking', remained significantly associated with d (bz=-0.14, SE(bz)=0.045 ,
p=0.0018) after controlling for the IQ sub-scores. Here, vocabulary IQ also
contributed (bz=-0.11, SE(bz)=0.044, p=0.016) but matrix IQ did not (p=0.96).
Second, the association of d with 'Worry' remained significant (bz=+0.12,
SE(bz)=0.044, p=0.0077) while in this regression matrix and vocabulary IQ
were not (p=0.27 and 0.82 respectively).  Third, 'Antisocial behaviour' remained
significantly associated with d, (bz=-0.12, SE(bz)=0.043, p=0.0046), with
matrix and vocabulary IQ not so (p=0.27 and 0.082).



Psych. factor r psy-IQ p psy-IQ r psy-d p psy-d
p-factor -0.06566 0.06878 -0.10516 0.00334
self-confidence -0.05557 0.12362 -0.08575 0.01681
misbehaviour -0.08504 0.01835 -0.152 2.0E-05
worry 0.07159 0.04718 0.13439 0.00017
aberrant thinking -0.15563 1E-05 -0.16718 < 1E-05
mood -0.01269 0.72524 0.01864 0.60389
Sociality -0.07832 0.02599 -0.13253 0.00014
social sensitivity 0.06021 0.08721 0.01161 0.74023
sensation seeking 0.03853 0.27396 0.01699 0.62744
effortful control 0.08922 0.01117 0.05352 0.12611
suspiciousness -0.10465 0.0029 0.01312 0.70782

Table S3, Related to Table 2. Raw correlations of total IQ and decision acuity
with symptom and disposition factors at baseline. The Bonferroni-corrected for
22 comparisons correlations at p<0.05 are shown in bold. IQ mostly correlates
with ‘aberrant thinking’ symptoms (schizotypal / obsessional) while decision
acuity additionally relates to ‘misbehaviour’, ‘worry’ and most importantly the
dispositional general factor ‘Sociality’.

D. Brain connectivity analyses

D1. Reliability of functional connectivity
For each connection, we computed the intraclass correlation coefficient (ICC)
with a two-way mixed-effects model (ICC3). ICC estimates ranged between
-0.19 and 0.87 with a mean value of 0.19 and a positively skewed distribution
with a long right tail (Figure S5). As shown in a recent meta-analysis of FC
reliability (Noble et al., 2019), overall reliability of FC is low, but a number of
connections display moderate to high reliability. Using a multivariate model
combining FC values from multiple connections, as we have done, is a strategy
to compensate for the low FC of individual connections.

https://www.zotero.org/google-docs/?UzB5MM


Figure S4, Connected to STAR Methods and Figures 3-5. Histogram of
intraclass correlation coefficients across functional connections.
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