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Abstract

Migration of Anterior Visceral Endoderm (AVE) is a critical symmetry breaking event in the
early post-implantation embryo development and is essential for establishing the correct body
plan. Despite much effort, cellular and molecular events influencing AVE migration are only
partially understood. Here, using time-lapse live imaging of mouse embryos, we demonstrate
that cell division in the embryonic visceral endoderm is coordinated with AVE migration.
Moreover, we demonstrate that temporal inhibition of FGF signalling during the pre-
implantation specification of embryonic visceral endoderm perturbs cell cycle progression,
thus affecting AVE migration. These findings demonstrate that coordinated cell cycle
progression during the implantation stages of development is important for post-implantation

morphogenesis in the mouse embryo.

Keywords



61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

4D live imaging; mouse embryo; post-implantation morphogenesis; visceral endoderm

1. Introduction

The transition from pre- to post-implantation in mouse embryogenesis is marked by
remarkable morphological changes; the round implanting blastocyst is transformed into an
elongated egg cylinder with an Anterior-Posterior (AP) axis. During implantation, the polar
trophectoderm of the blastocyst transforms into the extra-embryonic ectoderm (ExE) which
signals posterior development to the epiblast (EPI). The primitive endoderm (PE) of the
blastocyst differentiates into parietal endoderm and the visceral endoderm (VE), which
constitutes the outer epithelial layer that surrounds the ExE and EPI. By embryonic day (E)5.5,
a Nodal gradient becomes established in the EPI leading to the emergence of the proximal-
distal axis (Arnold and Robertson, 2009). This signalling is distally inhibited by the Nodal
antagonists Lefty1 and Cerberus (Cerl), secreted by a specialized subpopulation of embryonic
VE cells known as the distal visceral endoderm (DVE) (Belo et al., 1997; Yamamoto et al.,
2004). A few hours after their specification, DVE cells acquire a migratory morphology and
together with the newly formed AVE (Takaoka et al., 2011; Morris et al., 2012) move
unilaterally towards the embryonic/extra-embryonic (Em/Ex) boundary (Srinivas et al., 2004),
the future anterior side of the embryo. The localization of AVE on one side of the embryo will
mark the future anterior side and the primitive streak will form on the posterior side (Brennan
et al., 2001). The cellular mechanisms that play a role in the asymmetric positioning of the
AVE are not well understood (Stower and Srinivas, 2014). Previous studies have revealed
that AVE cells actively migrate and change their shape through remodelling of the
cytoskeleton, which results in cell intercalation (Migeotte et al., 2010; Morris et al., 2012;
Omelchenko et al., 2014; Srinivas et al., 2004; Stower and Srinivas, 2014; Trichas et al.,
2012). However, how AVE migration relates to cell cycle progression in the VE has been a
matter of debate (Stuckey et al., 2011a; Yamamoto et al., 2004). Indeed, Stuckey and
colleagues did not observe any difference in the frequency of mitoses within VE by analysing

fixed samples stained for mitotic markers. They also proposed that cell proliferation in the EPI
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and its subsequent growth and expansion lead to the migration of AVE (Stuckey et al., 2011a).
By contrast, Yamamoto and colleagues proposed that AVE migration could be driven by
differential proliferation within the VE resulting from asymmetry in Nodal signalling (Yamamoto
et al., 2004). Both studies were based on analyses of fixed samples and none have analysed
the dynamics of cell divisions during AVE migration and whether there is any spatio-temporal
coordination between the two events. To address this, we use time-lapse imaging of visceral
endoderm cells in a cell cycle reporter mouse strain and show that AVE migration is
coordinated with progression through the cell cycle. Moreover, our results suggest that
coordinated cell cycle progression originates from signalling events in pre-implantation

development.

2. Results

2.1 Spatio-temporal correlation between AVE migration and coordinated cell division
As AVE migration commences around E5.5, we focused on analysing the dynamics of cell
cycle progression around this time. In order to relate cell cycle progression to AVE migration,
we first generated double transgenic embryos for the AVE marker Cerl (Cerl-GFP) (Mesnard
et al., 2004) and the cell cycle reporter R26Fucci2a (Fluorescent Ubiquitination-based Cell
Cycle Indicator) (Mort et al., 2014) (Fig. 1A). The bicistronic Fucci2a construct encodes
truncated versions of the Cdt1 and Geminin proteins that are degraded reciprocally during cell
cycle progression; mCherry-hCdt1(30/120) levels peak in G1, and mVenus-hGem(1/110)
levels peak in S/G2/M phases. Fucci2a thus allows assessment of cell cycle progression using
live imaging (Mort et al., 2014) (Fig. 1A). We were able to distinguish GFP and mVenus signals
and thereby identify Cerl-expressing cells and cells in S/G2/M (Fig. S1A). We assessed cell
cycle progression approximately 12 h and 24 h after implantation by recovering embryos at
E5.0 and E5.5, respectively. R26Fucci2a/Cerl-GFP or R26Fucci2a embryos recovered at
E5.5 or E5.0 respectively and imaged with multi-photon confocal microscopy both showed
mVenus-expressing cells (in S/G2/M phase) (Fig. 1B, upper and middle panels; Fig. 2E).

However, we could not detect mCherry labelled cells, most likely due to the short G1 phase
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characteristic of early post-implantation development, a similar finding to one described for
mouse embryonic stem cells (Mort et al., 2014). Indeed, we were only able to detect a few
positive mCherry labelled cells in the distal part of late E6.5 embryos when we applied higher
laser power, incompatible with live imaging experiments (Fig. S1B). This is in line with previous
findings that it is rare to detect G1 cells in Fucci embryos between E5.5 and E6.5 (Abe et al.,

2013).

To enable comparisons between embryos, we determined the number of mVenus* cells in
posterior and anterior embryonic parts of VE (emVE) of E5.5 embryos over time (Fig. S1C-E)
and normalised temporal progression relative to the time point with the highest number of
mVenus* cells. This revealed that within 4 h there was a 36.5% (n=5) decrease in the number
of mVenus* cells in the entire emVE indicative of a coordinated burst of cell division (Fig. 1C,
upper graph). When we analysed anterior and posterior emVE separately (Fig. 1C middle and
lower graphs), the decrease in the number of mVenus* cells appeared more striking in the
posterior than in the anterior part of the embryo (49.9% vs 19.6% respectively, n=5)
suggesting an element of coordinated cell division in the posterior emVE in a specific time
window. We also found a 3-fold difference between the rate of decrease of mVenus* cells in
the anterior versus the posterior (Fig. 1D). We measured AVE migration by measuring the
distance between the leading Cerl-GFP* migratory cell and the distal tip (Fig. 1A) over the
same interval (Fig. 1E, S1F; method for alignment of maximal value indicated in Fig. S1F).
We found that the AVE migration speed was significantly higher after cells divided in posterior
(2.2 ym/h £ 0.7 ym/h before the peak of mVenus* cells; 5.7 um/h £ 1.3 uym/h after the peak)
(Fig. 1F). These results indicate a spatio-temporal correlation between the timing of AVE
migration and cell division in emVE suggesting that coordinated cell cycle progression may

contribute to drive AVE migration.

To directly address whether AVE migration is dependent on coordinated cell cycle

progression, we recovered Cerl-GFP embryos from mothers prior to AVE specification at
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E5.25-E5.5 and cultured them in the presence of the reversible Cyclin-Dependent Kinase 1
inhibitor, RO-3306, that arrests cells at G2/M (Jang et al., 2014; Vassilev et al., 2006). We
chose to use a Cyclin-Dependent Kinase 1 inhibitor to arrest cells at G2/M instead of a
microtubule depolymerising agent, such as Nocodazole, because of the known requirement
for microtubules for cell migration (Baudoin et al., 2008). Following 8h of RO-3306 treatment,
we observed a reduction in the number of Gata4 positive emVE and Oct4 positive epiblast
cells (Fig. S2 A-C) confirming the efficacy of the drug. Afterwards, we washed out the inhibitor
and performed a 12 h live imaging (Fig. 2A). We verified that there was no difference in size
between control and RO-3306 treated embryos at the end of the experiment (Fig. S2D-E)
suggesting the growth of the embryos was not affected after treatment with the drug. We also
found that AVE migration was strongly reduced following RO-3306 treatment (Fig. 2B).
Indeed, 85.7% of treated embryos showed abnormal migration in which the Cerl-GFP

expressing cells remained in a predominantly distal position (Fig. 2C).

To ask whether the coordinated cell divisions may already take place before AVE specification
occurs, we carried out live imaging of early post-implantation E5.0 R26Fucci2a embryos (Fig.
2D-E) and analysed the number of mVenus* cells (Fig. S2F). We observed periodic
fluctuations in the number of mVenus* cells (Fig. 2F) and, similar to E5.5 R26Fucci2a/Cerl-
GFP embryos (Fig. 1C), the fall in the number of mVenus* cells took place over approximately
4 h, suggesting coordinated cell division took place in the emVE immediately following
implantation. Together, these results suggest that coordinated cell division contributes to the

migration of the AVE during early post-implantation development.

2.2 Perturbation of FGF signalling during PE specification affects cell cycle progression
in post-implanting embryos

We next wished to identify at which point in development cell cycle control might be imposed
upon the developing emVE. We therefore asked whether this might begin already before

implantation when the PE is first specified in response to fibroblast growth factor (FGF)
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signalling (Kang et al., 2017; Molotkov et al., 2017; Morris et al., 2013; Yamanaka et al., 2010).
This seemed possible because FGF has also been proposed to act as a mitogen (Ornitz and
Itoh, 2015; Turner and Grose, 2010). As growth factor stimulation generally drives cells from
a quiescent phase into S phase, we determined the effect of modulating FGF signalling during

PE specification by treating E3.5 embryos with the FGFR inhibitor SU5402 for 5 h and

assessing S-phase entry by following 5-ethynyl-2’-deoxyuridine (EdU) incorporation (Salic and
Mitchison, 2008) and mitosis by Phospho-Histone 3 (pH3) immunostaining, using Sox17 as a
primitive endoderm marker (Fig. 3A). Before the treatment, the majority of Sox17* cells were
in S-phase (83.23%) and no mitoses were detected in the newly specified PE (Fig. 3B). After
5 h, control embryos showed a burst of mitoses in around 9.3% of Sox17* cells and this was
reduced to 2.1% following FGF inhibition by the 5 h treatment with SU5402 (Fig. 3C).
Nevertheless, in contrast to a longer treatment with FGFR or MEK inhibitors (Krawchuk et al.,
2013; Yamanaka et al., 2010), this 5 h pulse of SU5402 did not affect lineage allocation

following a 19 h recovery period (Fig. 3D-E).

To address the potential effects of the 5 h SU5402 treatment upon development of the VE, we
treated E3.5 R26Fucci2a embryos with SU5402 for 5 h, transferred them to foster mothers
and subsequently recovered them at E5.5 for analysis by live imaging (Fig. 3F). Both groups
of embryos were indistinguishable in size (Fig. S3A-B) indicating that the pre-implantation
treatment and subsequent embryo transfer did not lead to differential growth. We then counted
the number of mVenus* cells over time in control and SU5402-treated embryos (Fig. S3C-D)
focussing on the 4 h interval we had earlier defined in which the numbers of mVenus* cells
dramatically decreased corresponding with the time of AVE migration (Fig. 3G-H). Although
all embryos showed a decreased number of mVenus* cells, the SU5402-treated embryos
showed much higher variability in this rate of decrease (Fig. 3l). These results indicate that

short perturbation of FGF signalling affects cell cycle progression during PE specification and
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has a subsequent impact on the spatio-temporal coordination of cell division at post-

implantation stages.

2.3 FGF signalling-mediated perturbation of the cell cycle affects post-implantation
morphogenesis

In the light of these results, we asked whether perturbing FGF signalling already at the
blastocyst stage would affect AVE migration. To this end, we treated Cerl-GFP E3.5 embryos
for 5 h with SU5402, transferred them to foster mothers and recovered them at E5.5 and
assessed the directionality and speed of AVE migration (Fig. 4A). As expected, in 100% of
control embryos, AVE cells migrated unidirectionally from the distal tip towards the ExE/EPI
boundary (Fig. 4B, n=4). However, amongst the SU5402-treated embryos only 63.6% (n=11)
of embryos displayed unilateral migration similar to controls (SU5402-treated - Class I; Fig.
4C). By contrast, the remaining 36.4% embryos (SU5402-treated - Class IlI) showed aberrant
migration, with AVE cells not fully reaching the Em/Ex boundary (Fig. 4D). Despite the different
phenotype between control and SU5402-treated embryos, there was no difference in their size
at the time of the recovery (Fig. S4A-B). In addition, all groups exhibited formation of filopodia
indicating that the short treatment with FGFR inhibitor performed 3 days earlier did not affect
the active cell migration machinery (Fig 4D). Despite the apparent unaffected migration path,
we investigated whether SU5402 - class | showed any difference in AVE migration speed. To
this end, we assessed AVE migration by measuring the distance between the leading Cerl-
GFP* migratory cell and the distal tip over time (Fig. S4C-D). We found that whereas the AVE
of control embryos displayed a migration speed of 5.4 um/h £ 0.5 um/h, the AVE of SU5402-
treated - Class | embryos migrated slightly faster (6.3 um/h £ 1.1 ym/h) and with a higher
variability (Fig. 4F). When we considered the AVE migration speed of individual SU5402-
treated - Class | embryos, we observed that 5/7 resided outside of the control interdecile range
(ID range shown in grey) (Fig. 4F). Interestingly, despite unidirectional migration of AVE,

SU5402-treated - Class | embryos displayed significant alterations in AVE migration, which,
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taken together with the aberrant AVE migration in SU5402-treated — Class Il embryos, indicate

that 81.8% of the embryos had abnormal AVE migration (Fig. 4G).

Given that inhibition of FGF signalling during pre-implantation resulted in abnormal AVE
migration, we next asked whether cell fate, AP patterning and later post-implantation
development were also affected. We found that at E6.5, SU5402-treated embryos stained for
Brachyury, an early mesodermal lineage marker expressed in the primitive streak, were
indistinguishable from control embryos (Fig. S4E-F) with both groups showing unilateral
formation of the primitive streak in all embryos (n=4 control and n=6 SU5402-treated
embryos). In addition, both groups showed formation of basement membrane (Fig. S4F,
bottom panels) that is known to be directly controlled by FGF (Costello et al., 2009). This
suggests that treatment with SU5402 acted specifically on cell cycle/AVE migration.

Together our findings demonstrate that the migration of AVE cells is coordinated with and

dependent upon the progression of VE cells through the cell division cycle.

3. Discussion

Mouse embryos undergo morphogenetic remodelling at the time of implantation during which
the VE shapes the AP patterning of the EPI (Brennan et al., 2001). This process is mediated
by a specialised population of VE cells, which following their specification at the distal tip of
the embryo, migrate towards the future anterior side (Morris et al., 2012). This is a highly
coordinated process requiring AVE cells to actively migrate (Migeotte et al., 2010; Morris et
al., 2012; Omelchenko et al., 2014; Srinivas et al., 2004) as the entire emVE undergoes
rearrangement in cell shape (Stower and Srinivas, 2014) whereas cell proliferation leads the
embryo to increase in size. We sought to address whether coordinated progression through
the cell cycle is required for AVE migration. To gain spatio-temporal resolution of cell division,
we carried out live imaging. This revealed that cell divisions are coordinated in the emVE
compartment during and before AVE migration and that AVE migration drastically increases

in speed as cells divide. Moreover, we find that proper migration of AVE is impaired when cell
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cycle progression is transiently perturbed. In embryos exposed to the G2/M reversible inhibitor
RO-3306, the AVE failed to migrate correctly even after release into fresh medium. It has
previously been proposed that AVE migration could be driven by differential proliferation within
emVE resulting from asymmetry in Nodal signalling (Yamamoto et al., 2004). In contrast, more
recent reports failed to detect significant differences in proliferation amongst different regions
of the emVE (Shioi et al., 2017; Stuckey et al., 2011a). However, these studies did not analyse
the dynamics of mitoses in the emVE at the time of AVE migration. Here by using transgenic
lines reporting both the AVE and specific cell cycle stages, we have been able to show that
cell migration speed changes following a coordinated wave of cell divisions in the posterior
side of the embryo, opposite to the site of AVE migration. We speculate that bursts of cell
division, in concert with the complex remodelling of the whole emVE due to cell intercalation
driven by PCP signalling (Trichas et al., 2012), generates sufficient force to enable the AVE

to migrate.

Our live imaging of peri-implantation embryos also revealed that coordinated cell divisions are
already present in the VE shortly after the embryo implants. While our results clearly
demonstrate that coordinated mitoses are required for the correct migration of the AVE, the
cellular underpinnings of this phenomenon remain to be fully characterised. Since we
observed coordinated mitotic events ex vivo shortly after implantation it is tempting to
speculate that regulated cell divisions have their origins before implantation at the time of PE
specification. This hypothesis is strengthened by the observation that a short perturbation of
FGF signalling does not affect lineage commitment but does alter cell cycle progression in PE

cells following transfer to foster mothers.

In addition to its role in the EPI/PE fate decision (Kang et al., 2017; Molotkov et al., 2017;
Morris et al., 2013; Yamanaka et al., 2010), the FGF signalling pathway has been described
to regulate cell proliferation or cell cycle arrest in a context-dependent manner (Ornitz and

Itoh, 2015; Turner and Grose, 2010). FGF has been shown to act via both FGFR1 and FGFR2
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(Kang et al., 2017; Molotkov et al., 2017) and hypothesised to control proliferation and survival
of the PE (Molotkov et al., 2017). Our findings of a decrease in the number of mitotic PE cells
after FGFRs inhibition are in agreement with a proliferative role of FGF signalling during pre-
implantation development (Fig.3C). The impact of FGFR inhibition on cell cycle progression
was also observed when embryos were transferred back to the mother and recovered at E5.5
(Fig. 3G-I). Strikingly, a pulse of FGFR inhibition in the blastocyst affected the speed (Fig. 4F)
and direction of AVE migration (Fig. 4B-D), even though Cerl-GFP* cells had a morphology

typical of cells able to be actively involved in migration (Fig. 4E).

Given the limitations of working with the mouse embryo system, it is difficult to pinpoint the
exact mechanisms underpinning cell cycle coordination in PE precursors. One possibility is
that cell-to-cell communication may be involved. Cell-to-cell communication plays an important
role in variety of biological phenomena, including cell migration and lineage specification. In
mouse development, communication between PE and EPI progenitors determines their
specification and relies on FGF signalling (Kang et al., 2017; Molotkov et al.,, 2017). We
surmise that the progeny of PE cells is able to maintain previously acquired coordination in
cell cycle during their differentiation into AVE. This does not exclude the contribution of cell-
to-cell communication to AVE migration, possibly in a cell cycle independent fashion. It has
been recently shown that exchange of information between cells via molecular diffusion and
transport processes helps guide their concerted movement in the presence of external
chemical cues during mammary gland development (Ellison et al., 2016). Since regionalisation
of AVE cells to the anterior side of mouse embryos relies on a gradient of Nodal signalling
(Yamamoto et al 2004), it is possible that a similar mechanism could also be at play during
AVE migration in mouse embryos. However, it is unclear whether the contribution of
intercellular interactions may be accompanied by or mediated by changes in cell cycle in

migrating cells.
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The AVE has a pivotal role in the positioning of primitive streak (Stuckey et al., 2011b). Indeed,
genetic mutations in signalling pathways or apical cell polarity affecting AVE migration display
defects in primitive streak positioning or expansion (Stower and Srinivas, 2014). In this study,
we report that short pharmacological perturbation of FGF signalling by disrupting cell cycle
coordination in the VE selectively impairs AVE migration but does not affect cell fate or
primitive streak formation. This discrepancy could be explained by the fact that following
SU5402 treatment, despite their aberrant migration, AVE cells primarily resided on the anterior
side of the embryo, thus enabling correct positioning of the primitive streak. Moreover, as we
observed formation of primitive streak and basement membrane deposition in SU5402 treated
embryos (Fig. S4F), the signalling pathways involved in these processes, such as FGF, Nodall,
Whnt and TGFb (Costello et al., 2009; Tam and Behringer, 1997), were most likely unaffected
by transient FGF inhibition. Therefore, we postulate that the long-term consequences of
SU5402 treatment may be cell-cycle specific. In addition to its effect on cell division, we cannot
exclude that inhibition of FGF signalling may affect cell migration directly, as FGFs have been
previously shown to act as chemoattractant (Bae et al., 2012; Kubota et al., 2000). Although
it is difficult to rule out this possibility, the fact that Brachyury* cells were specified and
underwent migration in treated embryos, as previously discussed, seems to suggest that FGF
signalling was functional post-implantation and that FGFR inhibition had its impact primarily

on cell division.

Taken together, our findings reveal that FGF signalling, known to be involved in EPI/PE
segregation, also facilitates coordination of the cell cycle within PE progenitors. Moreover, we
have demonstrated that coordinated cell division contributes to tissue remodelling and cell
movements necessary for AVE migration. To our knowledge, this is the first study showing the
requirement for FGF-mediated coordinated cell cycle progression in PE cells for proper AVE

migration and for morphogenetic events in mouse post-implantation embryos.
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4. Materials and methods

4.1 Animals

This research has been regulated under the Animals (Scientific Procedures) Act 1986
Amendment Regulations 2012 following ethical review by the University of Cambridge Animal
Welfare and Ethical Review Body (AWERB). The following mouse lines were used for the

study: R26Fucci2a (Mort et al., 2014), Cerl-GFP (Mesnhard et al., 2004), F1 (C57BL/6 x CBA).

4.2 Embryo recovery and culture

Pre-implantation embryos (E3.5 — E4.75) were flushed out from the uteri as described in
Bedhzov et al 2014. E3.5 embryos were cultured in drops of KSOM (Millipore, MR-020P)
supplemented with SU-5402 10uM (Abcam, ab146602) for 5 h and then KSOM only for 19 h.
Control embryos were cultured in KSOM supplemented with 0.1% DMSO (Sigma, D2650).
Post-implantation embryos (E5.0 - E5.25 - E5.5) were dissected at room temperature in M2
medium and then transferred in IVC2 medium (Bedzhov et al., 2014). Pharmacological
perturbation of cell cycle was performed culturing early E5.5 embryos in IVC2 supplemented
with the G2/M inhibitor RO-3306 10uM (Sigma, SML0569). Embryos were live imaged on
glass bottom dishes (MatTek Corporation, P35G-1.5-14-C). Embryos were cultured at 37°C

in 5% CO,.

4.3 Imaging

Embryos were live imaged using a Leica SP8 Multi-photon confocal microscope. The
wavelengths for confocal excitation were 514nm laser (for mVenus of R26Fucci2a), 488nm
(for Cerl-GFP) while for multi-photon excitation 1040nm was used for R26Fucci2a embryos
(when double-transgenic embryos R26Fucci2a/Cerl-GFP embryos imaged). Fixed embryos

were imaged on either Leica SP5 or SP8 confocal microscopes.

12
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4.4 Immunostaining and Edu labelling

Embryos were fixed in 4% paraformaldehyde for 20 min at room temperature and
permeabilized with 0.3% Triton X-100 / 0.1M Glycine in PBS for 20 (pre-implantation) or 30
(post-implantation) min at room temperature. The primary antibodies were added to the
Antibody solution (0.1% Tween-20 / 10% filtered FCS in PBS) and samples were incubated
at 4°C overnight. Embryos were then incubated for 2 h at room temperature with secondary
antibodies in Antibody solution. All washes were done in PBST (PBS + 0.1% Tween-20). DAPI
was used as a nuclear counterstain. EdU labelling was performed before fixation by culturing
E3.5 embryos in KSOM supplemented with EAU 10 uM for 20 min. EdU detection was
performed in according to manufacturer instructions (Thermo Fisher Scientific, C10339).
Primary antibodies used: anti-Sox17 (R&D system, af1924), anti-Gata4, anti-Nanog (Abcam,
ab80892), anti-Oct4 (Santa Cruz, sc-5279), anti-phospho-Histone-H3 (Millipore, 06-570), anti-

Brachyury (R&D system, AF2085).

4.5 Image processing and statistical analysis

Fiji software was used for image processing and Graphpad prism was used for graph design

and statistical analysis.
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Figure legends

Fig. 1. Concerted cell divisions occur during AVE migration (A) Schematic view of the
experimental design: double transgenic R26Fucci2a/Cerl-GFP E5.5 embryos were recovered
and live imaged. The R26Fucci2a cell cycle reporter was used to identify cells in S/G2/M
phase (labelled with mVenus-hGem(301/120) and termed mVenus* cells) and AVE migration
was evaluated as distance between leading Cerl-GFP* cell and distal tip of the embryo over
time. (B) Anterior and posterior view (upper and middle panels) of R26Fucci2a (mVenus signal
is shown as multi-coloured LUT Fire) in VE and migrating AVE cells (bottom panel). Extra-
Embryonic /Embryonic boundary is shown as dotted line. (C) mVenus* cells in total (upper
panel), anterior (middle panel) and posterior (bottom panel) embryonic VE. Number of cells
are shown in individual embryos (thin coloured lines) or as mean (thick black line). For
comparing all the embryos (raw values are shown in Fig. S1C-E) we considered time 0 h as
the time point before the peak (1 h) of mVenus* cells shown in total emVE (bottom panel). (D)
Decrease of mVenus* cells per h in the anterior or posterior emVE during time interval 1 h —
5 h. Data are shown as mean = sem (Unpaired t test, * p = 0.03). (E) AVE migration shown as
distance between leading Cerl-GFP* cell and distal tip of the embryo over time (1 h time
interval). Values are shown in individual embryos (thin coloured lines) or as mean (thick black
line). For comparing all the embryos (raw values are shown in Fig. S1F) we considered time
0 h as the time point before the peak (1 h) of mVenus* cells shown in total emVE. (F) AVE
migration speed shown as um/h before and after the peak of mVenus* cells. Data are shown

as mean = sem (Unpaired f test, * p = 0.03).

Fig. 2. Coordinated cell divisions are set already at implantation and required during
AVE migration. (A) Schematic view of the experimental design: Cerl-GFP embryos were

recovered at E5.25-E5.5 prior AVE migration, cultured in [VC2 medium supplemented with the
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reversible G2/M inhibitor RO-3306 for 8 h then live-imaged after drug withdrawal. (B) Migrated
AVE in control or RO3306-treated embryos 12 h after drug withdrawal. (C) Percentage of
embryos showing normal or abnormal AVE migration in control (n=5) or RO3306-treated (n=
5) embryos 12 h after drug withdrawal. Embryos were categorised as normal when AVE
migrated until Em/Ex boundary. Otherwise considered abnormal (2 test, ** p = 0.0098). (D)
Schematic view of the experimental design: R26Fucci2a embryos were recovered at E5.0 and
live imaged. (E) Snapshots of an imaged E5.0 R26Fucci2a (mVenus signal shown as multi-
coloured LUT Fire). (F) mVenus* cells in embryonic VE. Number of cells are shown in
individual embryos (thin coloured lines) or as mean (thick black line). For comparing all the
embryos (raw values are shown in Fig. S2C) we considered time 0 h as the time point before

the peak (1 h) of mVenus* cells shown in total emVE.

Fig. 3 Perturbation of FGF signalling during PE specification affects cell cycle (A)
Schematic view of the experimental design: embryos were recovered at E3.5 and treated with
SU5402 for 5 h and then released in KSOM medium without the drug. EdU labelling and
immunostaining for pH3 for assaying cell cycle was performed at 0 h and 5 h while lineage
analysis was performed at 24 h. (B) Distribution of G1 and S phases within SOX17* cells at 0
h (n=251 cells; 54 embryos). (C) Distribution of G1+S and M phases within SOX17* cells for
control (n=246; 34 embryos) or SU5402-treated embryos (n=96; 24 embryos) (y? test, * p =
0.0204). (D) Histograms show the number of Epiblast (Nanog*) and PE (Gata4*) cells in
control or SU5402-treated embryos (control n=13, SU5402 n=9). Unpaired t test, ns (Epiblast)
or ns (PE). (E) Histograms show the ratio PE/EPI. Unpaired t test, ns. (F) Schematic view of
the experimental design: E3.5 R26Fucci2a embryos were treated with SU5402 for 5 h and
then transferred to foster mothers. Embryos were recovered at E5.5 and live imaged. (G-H)
Plot of mVenus* cells in emVE of control (G) or SU5402-treated (H) embryos in the 4 h
following the highest number of cells shown in Fig. S3C-D. Number of mVenus* cells are

shown in individual embryos (each colour refers to an embryo and the same colour code is
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used in panel 1). (I) Decrease of mVenus* cells per h in control or SU5402-treated embryos.
Data are shown as mean + sd and the grey band represents the interdecile range (ID)

calculated on the control values: 10% Percentile = 2.25and 90% Percentile = 3.

Fig. 4 FGF signalling-mediated perturbation of cell cycle affects post-implantation
morphogenesis (A) Schematic view of the experimental design: E3.5 Cerl-GFP embryos
were treated with SU5402 for 5 h and then transferred to foster mothers. Embryos were
recovered at E5.5 and live imaged. (B-D) Anterior view (top panels) and lateral view (bottom
panels) of migrated AVE in Cerl-GFP embryos. Embryos were divided based on the
phenotype in control (B) and SU5402 treated embryos class | (SU - class I) (C) or class Il (SU
- class Il). (D) (Scale bar = 50 um). (E) Filopodia in migrating Cerl-GFP* cells showed in control
(left panel) and SU5402 treated embryos class | (middle panel) or class Il (left panel). Arrows
indicate filopodia. (Scale bar = 50 ym). (F) AVE migration speed shown as um/h in control or
SU - class | embryos. Data are shown as mean * sd (Unpaired ¢ test, ns). The grey band
represents the interdecile range (ID) calculated on the control values: 10% Percentile = 4.6
and 90% Percentile = 6.8. (G) Percentage of control or SU5402-treated embryos (class | and
class Il) showing normal or abnormal AVE migration in control (n=4) or SU5402-treated

embryos (n = 11) (y?test, ** p = 0.0042).
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Supplementary Figures legends

Fig. S1 (A) Example of live R26Fucci2a/Cerl-GFP E5.5 embryo scanned with live imaging
setting showing no overlap between Cerl-GFP and mVenus signal (Scale bar = 50 ym). (B)
Example of live R26Fucci2a E6.5 embryo where mCherry* cells are detectable at the distal tip
of the embryo only when higher laser power is applied (Scale bar = 100 ym).

(C-E) Number of mVenus* cells in total (C), anterior (D) or posterior (E) embryonic VE.
Individual embryos are shown and same colour code is used in Fig. 1C. (F) AVE migration
shown as distance between leading Cerl-GFP* cell and distal tip of the embryo over time.

Individual embryos are shown and same colour code is used in Fig. 1E.

Fig. S2

(A-C) Number of cells in individual embryonic VE (Gata4*), Epiblast (Oct4*) and embryonic
compartment (emVE + Epiblast) of control (n=5) and RO-3306 treated (n=5) embryos 8 hours
after the treatment. Data are shown as mean * sem (Unpaired f test). (D-E) Size of the control
(n=5) and RO-3306 treated (n=5) embryos at the end of the experiment (20h), 12 h after the
drug was washed out. Length and width were measured on the embryonic compartment (from
Distal tip to Extra-Embryonic/Embryonic boundary). Unpaired f test, ns. (F) Number of
mVenus* cells in embryonic VE of R26Fucci2a embryos live imaged from E5.0. Individual

embryos are shown and same colour code is used in Fig. 2F.

Fig. S3

(A-B) Size of the control (n=5) and SU5402-treated (n=6) embryos recovered at E5.5. Length
and width were measured on the embryonic compartment (from Distal tip to Extra-
Embryonic/Embryonic boundary). Unpaired t test, ns. (C-D) Number of mVenus* cells in
embryonic VE of Control or SU5402-treated embryos live when recovered at E5.5. Individual

embryos are shown and same colour code is used in Fig. 3G-I.

18



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

Fig. S4

(A-B) Size of the control (n=4), SU5402-treated class | (n=7) and SU5402-treated class Il (n
=4) embryos recovered at E5.5. Length and width were measured on the embryonic
compartment (from Distal tip to Extra-Embryonic/Embryonic boundary). Unpaired t test, ns.
(C-D) AVE migration in control (C) and SU5402-treated class | (D) shown as distance between
leading Cerl-GFP* cell and distal tip of the embryo over time. Individual embryos are shown
and same colour code is used in Fig. 4F. (E) Schematic view of the experimental design: E3.5
F1 embryos were treated with SU5402 for 5 h then transferred to foster mothers. Embryos
were recovered at E6.5-E6.75. (F) Immunofluorescence analysis of Brachyury and Laminin a-

1 in Control and SU5402-treated embryos. (Scale bar = 100 um).
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Fig. 4
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Suppl Fig 3
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