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Abstract

While Gaussian processes (GPs) are the method
of choice for regression tasks, they also come
with practical difficulties, as inference cost scales
cubic in time and quadratic in memory. In this
paper, we introduce a natural and expressive way
to tackle these problems, by incorporating GPs
in sum-product networks (SPNs), a recently pro-
posed tractable probabilistic model allowing ex-
act and efficient inference. In particular, by using
GPs as leaves of an SPN we obtain a novel flexible
prior over functions, which implicitly represents
an exponentially large mixture of local GPs. Ex-
act and efficient posterior inference in this model
can be done in a natural interplay of the inference
mechanisms in GPs and SPNs. Thereby, each
GP is — similarly as in a mixture of experts ap-
proach — responsible only for a subset of data
points, which effectively reduces inference cost
in a divide and conquer fashion. We show that
integrating GPs into the SPN framework leads to
a promising probabilistic regression model which
is: (1) computational and memory efficient, (2) al-
lows efficient and exact posterior inference, (3) is
flexible enough to mix different kernel functions,
and (4) naturally accounts for non-stationarities in
time series. In a variate of experiments, we show
that the SPN-GP model can learn input dependent
parameters and hyper-parameters and is on par
with or outperforms the traditional GPs as well as
state of the art approximations on real-world data.
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1. Introduction

Due to their non-parametric nature, Gaussian Processes
(GPs) (Rasmussen & Williams, 2006)) are a powerful and
flexible principled way for non-linear probabilistic regres-
sion. In the past years, GPs have had a substantial impact
in various research areas, including reinforcement learning
(Rasmussen et al., [2003), active learning (Park et al., [2011),
preference learning (Chu & Ghahramani, 2005) and param-
eter optimization (Rana et al.l 2017). However, a limitation
of the GP model is that learning scales with O(N?) in the
number of observations /N and has a memory consumption
of O(N(N + D)) — where D is the number of dimensions —
making it unpractical for large datasets.

Several approaches to overcome the computational complex-
ity in GPs have been proposed, which can be categorized
into two main strategies. The first strategy employs sparse
approximations of GPs (Williams & Seeger, [2000; Candela
& Rasmussenl, |2005; Hensman et al., [2013};|Gal & Turner,
2015; Bauer et al. 2016), reducing the inference cost to
cubic (time) and quadratic (memory) in the number of so-
called inducing points, rather than the number of samples.
By doing so, sparse approximations allow to scale GPs up to
reasonably large datasets, comprising millions of samples,
while typically using only a few hundred inducing points.

Alternative to sparse approximations, the second strategy
aims to distribute the computations by using local models or
hierarchies of thereof (Shen et al., 2005; Ng & Deisenroth,
2014;|Cao & Fleet, 2014} |Deisenroth & Ng|, [2015). Those
approaches are usually related to the Bayesian Committee
Machine (BCM) (Tresp, 2000) or the Product of Experts
(PoE) (Ng & Deisenroth) 2014) approach. However, as dis-
cussed by Deisenroth and Ng (Deisenroth & Ng|[2015) these
approaches have either the shortcoming that with an increas-
ing number of local models the predictive variance vanishes
or that the posterior mean suffers from weak experts.

In this paper, we propose a natural and expressive framework
which falls in the latter strategy of hierarchically compos-
ing local GP models. In particular, we combine GPs with
sum-product networks (SPNs), an expressive class of proba-
bilistic models allowing exact and efficient inference. SPNs
represent probability distributions by recursively utilizing
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factorization (product nodes) and mixtures (sum node) ac-
cording to an acyclic directed graph (DAG). The base of
this recursion is reached at the leaves of this DAG, which
represent user-specified input distributions, each defined
only over a sub-scope of the involved random variables.
SPNs typically allow reducing the mechanism of inference
to the corresponding mechanisms at the leaves. For exam-
ple, marginalization in SPNs is performed by computing
the corresponding marginalization tasks at the leaves and
evaluating the inner nodes (sums and products) as usual.
Thus, marginalization in SPNs is performed in time linear
of the network size, plus the inference costs at the leaves.
So far, SPNs have mainly been applied to density estimation
tasks akin to graphical models, typically using Gaussian or
categorical distributions as leaves.

However, the crucial insight exploited in this paper is, that
SPNs are a sound language for any probabilistic model used
as leaves. In particular, it is no problem to use GPs as
the leaves of the SPN, immediately yielding an “SPN over
GPs”, or in other words a deep hierarchically structured
mixture of local GP experts. It is easy to see that this model
represent a prior over functions, which has, to the best of
our knowledge, not been considered before.

We show that in contrast to prior work our approach does
not suffer from vanishing predictive variances, allows for
exact posterior inference and is flexible enough to be used
for non-stationary data. Further, our model is able to mix
over different kernel functions weighted by their plausibility,
reducing the effect of weak experts.

The rest of the paper is structured as follows. After review-
ing related work and background information on SPNs and
GPs, Section []introduces our SPN-GP model. In Section[3]
we further introduce a generic structure learning approach
for SPN-GPs, discuss hyper-parameter learning and show
to perform exact posterior inference. We assess the perfor-
mance of our approach qualitatively and quantitatively in
Section E} And finally, discuss and conclude our work in
Section

2. Related Work
2.1. Sum-Product Networks

A sum-product network (SPN) (Darwichel 2003} [Poon &
Domingos| 2011} over a set of random variables (RVs) X is
a rooted DAG over three types of nodes, namely sums (de-
noted as S), products (denoted as P) and leaf distributions
(denoted as L). A generic node is denoted as N and the over-
all SPN as denoted as S. The leaves are distributions over
some subset of random variables U C X, pre-specified by
the user, where often univariate parametrized distributions
(e.g. Gaussians (Poon & Domingos, 2011} |Peharz et al.|
2014]))) are assumed. This, however, is no requirement, as in

fact any kind of leaf distributions might be used in the SPN
framework. In particular, we will use GPs as SPN leaves in
this paper.

An internal node (N) computes either a weighted sum or
a product, i.e. S(X) = > yeen(s) ws.N N(x) or P(x) =
[Ineen(py N(x), where ch(N) are the children of node N.
Note that each edge (S, N) emanating from a sum node S
has a non-negative weight ws n, where w.1.0.g. we assume
(Peharz et al., [2015)) that ZNECh(S) wsn = 1.

We require SPNs to be complete and decomposable, two
conditions which are naturally expressed via the scope of
nodes. For a leaf L, the scope is defined as the set of random
variables U the leaf is a distribution over, i.e. sc(L) = U.
For an internal node N (sum or product), the scope is de-
fined as sc(N) = Uncenvy SC(N'). An SPN is complete
if, for each sum node, all children of the sum node have
an identical scope. An SPN is decomposable if, for each
product node, all children have non-overlapping scopes.
These two conditions ensure that sum nodes are proper mix-
ture distributions (with their children as components) and
product nodes are factorized distributions (assuming inde-
pendence among their children). Thus, SPNs can be seen
as a hierarchically structured mixture model, recursively us-
ing mixtures (sum nodes) and factorization (product nodes),
where the recursion base is reached at the leaf distributions.
One can see that each node in an SPN represents a distri-
bution over its respective scope, but typically the root of
the SPN is used as the model. By this construction, SPNs
are both a flexible modelling language and allow exact and
efficient inference. Due to decomposability and complete-
ness, marginalization tasks reduces to the corresponding
marginalization tasks at the leaves, over their respective
smaller scopes. Conditioning can be tackled likewise.

Various ways for learning the parameters of SPNs, i.e. the
weights at the sum nodes and the parameters of the leaf
distributions, have been proposed. By interpreting the SPN
as a latent variables model, the parameters can be learned
using expectation-maximization (Poon & Domingos} 2011}
Peharz et al. [2017), Bayesian learning (Rashwan et al.|
20165 Zhao et al., [2016a} Trapp et al., 2016) or a concave-
convex procedure (Zhao et al.,|2016b)). Furthermore, Gens
and Domingos (Gens & Domingos, [2012) trained SPNs dis-
criminatively using gradient descent. Subsequently, Trapp
et al. (Trapp et al., 2017) introduced a safe semi-supervised
learning scheme for discriminative and generative parameter
learning, providing guarantees for the performance in the
semi-supervised case. A major challenge in SPNs is learn-
ing a valid structure of such networks. Besides handcrafted
approaches (Poon & Domingos| 2011} [Peharz et al., [2014),
several structure learners (Gens & Domingos| |2013} |Peharz
et al.,[2013; |Rooshenas & Lowdl 2014; Vergari et al., 2015}
Adel et al., 2015} Trapp et al., [2016; [Molina et al., 2018])
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which try to find good structures in a data-driven approach
have been proposed.

2.2. Gaussian Processes

A Gaussian process (GP) is defined as any collection of
random variables F', where any finite subset of F' is Gaussian
distributed, and whereof any two overlapping finite sets are
marginally consistent (Rasmussen & Williams), [2006)). In
that way, GPs can naturally be interpreted as distributions
over functions f, wherein this paper we assume f: R”
R. A GP is uniquely specified by a mean-function m(x) and
a covariance function k(x',x""). Given pairs of inputs x,,

and outputs f,,, the joint distribution of f = (f1,..., fx)T
is given as a joint Gaussian:
£~ N (m(X), k(X, X)), )

where the rows of X are given by x1, ..., Xy and mean and

covariance are given as

m(X)z = m(Xl)) kJ(X7 X)Lj = k(Xi)., Xj,.). (2)

For regression, we assume m = 0 and y = f(x) + €, where
€ ~ N(0,02) is i.i.d. Gaussian noise. Let § = {a, 0.}
denote the parameters of the GP for which o is the variance
of the noise model and « are kernel function specific hyper-
parameters, e.g. in case of a squared exponential kernel
function o« = {oy,l1,...,lp} consisting of the variance
of the latent function oy and the respective length-scales
l1,...,lp. Given hyper-parameters, a training set D =
{(%Xn,yn)}N_, and a test set X,, our main interest is in
the posterior predictive distribution of the corresponding
function value. First, we consider the joint distribution
of the training samples and the function values at the test
locations X, i.e.

2 R RRX) )

Therefore, for a single data point x, we arrive at the pos-
terior predictive with mean and variance which are given
by

E[f.]=k/C ly, 3)
V[f] = k(x.,x.) -k C 'k, €y
where C = K + 021, K = K(X,X) and we use k_ as

a shorthand notation to denote the vector of covariances
between the test point and the training data.

As the performance of GPs depend on the selected hyper-
parameters, these are typically optimized by maximizing
the marginal likelihood, which is given by

1 N
= —ilogdet(C)—i— 510g2ﬂ'.

&)

1 _
log p(y|X) §(yTC 'y)+

The main computational burdens in Equations (3)—(3) are
the inversion of C and in (3] additionally the computation of
the determinant. In a naive implementation using Gaussian
elimination, all three computations scales in O(N?3). These
computational burdens together with the memory require-
ments, which are O(N (N + D)), make GPs unpractical for
reasonable large datasets.

3. Deep Mixtures of Gaussian Processes

One common strategy to reduce the inference cost in GP
models is to perform the computations by independent ex-
perts, where each GP expert is responsible only for a small
subset of data points. First, let us consider the simple case
of a single input = and a single output y. A simple yet effec-
tive approach to reduce inference complexity is to select a
splitting point ¢ and define two local GPs, where one GP is
an expert for the data points x < ¢ and the other for x > ¢.
Thus, we have split an infinite collection of RVs into two col-
lections, one indexed by —oo < ¢ and the other by ¢ < co.
This can also be understood as a fixed gating network (Ras{
mussen & Ghahramani, |2001)), which assigns all data points
x < t to one GP expert and all other points to the other GP
expert. Instead of considering a single split point £, we can
generalize this idea to several split points, each yielding a
GP with a different independence assumption. Finally, by
taking a mixture over the different splitting positions, we
obtain a mixture of GP experts which replaces unconditional
independence with a conditional independence.

Incorporating the outlined idea into SPNs results in a natural
definition of SPNs with GP leaves. More precisely, an SPN-
GP (SPN with GP leaves) is a hierarchically structured
mixture model which recursively combines mixtures over
sub-SPN-GPs or GPs with subdivisions of the input space
at product nodes. First, let us consider an SPN consisting of
a single sum and M many product nodes, each splitting the
infinite collection of input RVs at C' different split points
into sub-collections. Further let all weights of the network
be uniform, i.e. w,, = M with 1 < m < M. Therefore,
the prior over latent functions f of an SPN-GP is,

p(f16) = Z mep FrmclOm.c) 6)

where f = {f1.1,..., fum,c} is the set of latent functions
of the GP experts and 8 = {61 1,...0r,c} denotes their
respective hyper-parameters. Clearly, the resulting model is
a mixture of GP experts.

More generally, we can express the prior over latent func-
tions of any SPN-GP in terms of a mixture over induced
trees (Zhao et al.| 2016a), i.e.

o= 11

t=1(5,0)€Ts,E

ws.c H (fulor),

LeT:,v
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Figure 1. [Best viewed in colour] Illustration of an SPN-GP model. Sum nodes represent mixtures and product nodes independence
assumptions between the output RVs as in classical SPNs. Split nodes (illustrated by a vertical line) represent independence assumptions
between the input RVs. Sub-collections of input RVs are colour coded and the symbols at leaf nodes indicate the kernel function of the

respective GPs, e.g. squared exponential, polynomial or periodic.

which is an exponentially large mixture efficiently repre-
sented by the hierarchical structure of the SPN. For better
distinguishability from product nodes which, as in classic
SPNss, partition the output variables, we call product nodes
that split a collection of input RV at split points split nodes
throughout the rest of the paper.

An illustration of an SPN-GP with split nodes, product
nodes and different types of kernel functions is shown in
Figure[I] As shown in the illustration, the SPN-GP model
is a very flexible probabilistic regression model which al-
lows to: (1) mix over different block-diagonal covariance
representations (cf. Sy in the illustration) (2) mix over GPs
with different kernel functions (cf. S2), (3) hierarchically
sub-divides the input space (cf. the hierarchy of Gs, G and
Gz, G4) and (4) partitions the dependent variables subject
to the covariates (cf. P5 in the figure). Further, this model
allows accounting for structure in the input and the output
space.

As an SPN-GP model is a deep structured mixture model
over GP experts, the computation of the mean and variance
for an unseen data point x, is given by

t=1(S,C)€T:,E

-y 10

t=1(5,0)eTi. i

ws c E[fi,. )l ®)

ws c((Elfi(,.7)] — E[f])* 9)

Vifie,ml) s (10)

where L(,, T¢) selects the GP expert of the induced tree 7;
responsible for x..

3.1. Exact Posterior Inference

In the Bayesian setting we wish to update the prior dis-
tribution over functions defined by an SPN-GP based on
an observed dataset D = {(X,, ¥ ) })_,. Under the usual
i.i.d. assumption, the posterior can be written as

N
p(f1D) o< [] pwn | fu) p(fuI%0).  (1D)

n=1
Here p(f, | x,,) is an SPN-GP, i.e. it can either be i) a mix-
ture over SPN-GPs / GPs (sum nodes), ii) a product over
SPN-GPs / GPs (product node), or iii) a GP (leaf). In the
first case we can write (T1) as

ps(f|D) H PYn | fn) Z ws,cpc(fn | %n)

n€Ns Cech(S)
(12)
Z ws,c H p(yn|fn)pC(fn|Xn)a
Cech(S) né€Nsg

i.e. we can “pull” the likelihood terms over the sum, where
Ny is the set of data point indices which are assigned to
node S. In case ii), we can write (IT)) as

pp(f|D) o H P(Yn | fr) H pc(fn|%n)

n€Np Cech(P)
(13)
= H <H p(yn|fn)pC(ann)>a
Cech(P) \neNc
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where |J Nc = Np with (] Nc = 0. Induc-
Cech(P) Cech(P)

tively repeating this argument for all internal nodes, we

see that we obtain an unnormalized posterior by multiply-

ing each GP leaf with its local likelihood terms. We can

therefore efficiently perform exact posterior updates in SPN-

GPs by application of posterior inference at the leaves and

re-normalization of the SPN (Peharz et al.| [2015)).

3.2. Hyper-parameter Optimization

As for GPs, we can find optimal hyper-parameters by max-
imizing the marginal likelihood of an SPN-GP. Due to de-
composability of valid SPN-GPs, cf. previous section, we
can pull down the integration over latent functions to the
leaf nodes of the network, i.e.

p(yIX,0)= [ > p(T) [ prolf, Xop(flXo)df

f t=1 L67—1,7V
=Y (7)) [[ rrX0),
t=1 LeT:, v

(14
where p(7:) = [I(s c)e7; , ws.c and (Xi,y, ) are the ob-
served points and function values at leaf node L. Therefore,
to find appropriate hyper-parameters for the GP experts in an
SPN-GP, we can maximize the marginal likelihood of each
expert independently or maximize the marginal likelihood
of the SPN-GP jointly, if hyper-parameters are tied.

3.3. Structure Learning

To learn the structure of SPN-GPs we extend the approach
introduced by Poon and Domingos (Poon & Domingos),
2011) to construct network structures for different regres-
sion scenarios. Our algorithm first constructs a region graph
(Poon & Domingos| 2011} Dennis & Ventura, [2012) which
hierarchically splits the input space into small regions. The
recursive subdivision stops if a constructed region contains
less than O many points or if a region cannot be split into
sub-regions anymore. Our approach constructs axis aligned
partitions at each level of the recursion with the dimension
in question being randomly select. Starting from the region
graph, each leaf region is equipped with multiple experts,
each of which has an individual kernel function. These
experts are combined in the network structure and combi-
nations of these experts, i.e. induced trees, are weighted ac-
cording to their plausibility. Therefore, the proposed model
naturally is a weighted mixture over local experts with each
component having multiple local experts with different ker-
nel functions. We refer to the appendix for further details
on the structure learning algorithm. Note that for uniformly
distributed observation and equally sized sub-regions under
split node, SPN-GPs constructed with our structure learning
algorithm reduce the computation complexity of GPs, i.e.

O(N3),t0 O(S x K ]QV—S) where S is the number of splitting
schemes (S = 1 in all experiments), K is the number of
kernel functions and D is the depth of the network, i.e. the
number of consecutive split nodes.

4. Experiments

To evaluate the effectiveness and investigate the properties
of SPN-GPs for probabilistic regression, we conducted a se-
ries of qualitative and quantitative evaluations. The first two
datasets, i.e. the motorcycle and the synthetic dataset, are
used to analyze the capacities and challenges arising in the
SPN-GP model. While we used three UCI datasets from the
UCI machine learning repository (Dheeru & Karra Taniski{
dou|, |2017) to quantitatively evaluate the performance of
SPN-GPs against linear models and traditional GPs and ad-
ditionally conducted an evaluation using the Kin40K dataset
to assess the performance of SPN-GPs against other models
which leverage hierarchies of local experts.

4.1. Qualitative Evaluation

To analyze the capacities and the challenges arising in SPN-
GPs, we qualitatively evaluated the SPN-GP model on the
motorcycle dataset (Silverman, |1985)) and on a synthetically
generated time series with non-stationarities. The synthetic
dataset was generated using the function demo_epinf
described in (Vanhatalo et al., |2013)) and has been used
in prior work to asses the performance of GP models for
non-stationary series, e.g. (Heinonen et al., 2016). We
used a minimum sub-region size of § = 10, linear and
squared exponential kernel functions for the motorcycle
dataset and linear and Matérn kernel functions for the syn-
thetic dataset. In both cases we optimized hyper-parameters
while for the motorcycle dataset we fixed the noise vari-
ance to o, = 0.37. For comparison, we used a traditional
GP with a squared exponential kernel function and opti-
mized the hyper-parameters as in the case of the GP-SPN
by maximizing the marginal log-likelihood.

Figure 2] shows the density region of the SPN-GP in grey
and illustrates the GP in red (mean and 95% confidence
interval). We can see that the independence assumptions
made be the SPN-GP result in discontinuities in the den-
sity region. In particular, the boundary around position 35
results in strong discontinuities due to the enforced inde-
pendence assumption and the change of kernel function.
However, as illustrated in Figure [2](right-hand side) those
discontinuities can be drastically reduced by accounting for
outlying data points close to a regional boundary during pos-
terior inference at the leaves. This approach lets us account
for dependencies of points spatially close to the boundary.
Note that care has to be taken to ensure the validity of the
SPN-GP, e.g. updates of the weights have to exclude the
additional boundary points. The approach is based on a
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Figure 2. [Best viewed in colour] (left) Density region of an SPN-GP, coloured in grey, in comparison to a traditional GP, indicated in red
(solid line shows the mean and the dotted line the 95% confidence interval). As shown, the subdivision of the input space can result in
discontinuities in the density region. (right) However, these discontinuities can be drastically reduced by allowing training points at region
boundaries to flow across the boundary. Note that the SPN-GP is able to select optimal kernel functions depending on the input.

similar approach recently used in a hierarchical model (Ng
& Deisenrothl 2014). We can observe that in both cases,
the SPN-GP is able to weight the different kernel functions
according to their plausibility for each region independently.
In particular, in regions with mostly linear dependencies,
the linear kernel function was selected as the most plausible
kernel, while in other regions the network prefers to use a
squared exponential kernel function.

Figure [3] shows the density region of the SPN-GP and
the mean and 95% confidence interval of a GP for non-
stationary data with conditional heteroscedastic noise. Even
for more complex functions, the SPN-GP is able to match
the general shape of the traditional GP. Further, we can see
on Figure [3] (right-hand side) that the SPN-GP model is
able to adjust the noise variance parameter depending on the
input (black line) approximately matching the true noise gen-
erating function (blue line). Even though the SPN-GP model
is not explicitly designed to work for non-stationary time
series, the subdivision of the input space allows the model
to naturally account for input dependent hyper-parameters.
We believe that this is an exciting side effect of the SPN-GP
model and illustrates the flexibility of the model.

4.2. Quantitative Evaluation

To quantitatively evaluate SPN-GPs we computed the root
mean squared error (RMSE) on different UCI datasets and
on the Kin40k dataset. On the UCI datasets, we assessed
the performance of the SPN-GP model against the mean pre-
diction (Mean), linear least squares (LLS), ridge regression
(Ridge) with a = 0.01 and a Gaussian process (GP) for
those datasets where the computation is feasible on a Mac-
Book Pro with 8 GB RAM. For the GP model, we used the
best performing kernel function (out of linear, Matérn and
squared exponential kernel) with fixed hyper-parameters.

We tried to optimize the hyper-parameters of the GP but ob-
tained worse results than using hand-picked parameters. We
suspect that the decrease in performance is due to overfitting
of the GP on the training examples. Therefore, we did not
optimize the hyper-parameters of the GP and the SPN-GP
model for fair comparisons. Note that the hyper-parameters
have been selected in favour of the traditional GP model.
We equipped the SPN-GP model with linear, Matérn and
squared exponential kernel functions and learned the struc-
ture with O = 500, S = 1 and a recursive subdivision of
the input space into four equally sized sub-regions. We ad-
ditionally evaluated the effect of overlapping, as discussed
in Section d.1] denoted as SPN-GP*.

The resulting RMSE and standard errors computed over
five independent runs are listed in Table[T} On the CON-
CRETE dataset the SPN-GP model achieves competitive
results compared to a GP regressor. While on the ENERGY
dataset our model outperforms traditional GPs when over-
lapping regions are used. Further, we found a positive effect
of reducing the discontinuities, cf. SPN-GP* in Table in
two out of three datasets indicating that the performance
of the SPN-GP sometimes suffers from the independence
assumptions made in the model architecture.

Additionally, we assessed the approximation error on the
Kin40K dataset as described in (Deisenroth & Ng|, |2015)).
The Kin40K dataset consists of 10, 000 training examples
and 30, 000 test points where each data point represents the
forward dynamics of an 8-link all-revolute robot arm. The
dependent variable in this dataset is the distance of the end-
effector from a target. We followed the approach described
in (Deisenroth & Ng| |2015) and used hyper-parameters of a
squared exponential kernel (with ARD) estimated using a
full GP and compared the RMSE against different numbers
of data points per expert. As our structure learning algorithm
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Figure 3. [Best viewed in colour] (left) Density region of an SPN-GP, coloured in grey, compared to a traditional GP, indicated using red
lines. The SPN-GP is capable of adapting the noise variance, the kernel hyper-parameters and weights the kernel functions depending on
the observations. (right) Comparison of the maximum marginal likelihood estimates (MMLE) for the noise variance of an SPN-GP (black
line) and a traditional GP (red line). The true noise generating function is shown in blue.

Table 1. Root mean squared errors (RMSE) and standard errors of
the SPN-GP model compared to mean prediction (Mean), linear
least squares (LLS), ridge regression (Ridge) and Gaussian process
regression (GP). SPNs with additional overlap are denoted as SPN-
GP”. Smaller is better.

METHOD ‘ ENERGY CONCRETE CCPP
MEAN 9.83£0.09 16.45+0.10 17.00=£0.05
LLS 3.08+0.02 10.33£0.25 4.63+0.04
RIDGE 3.08+£0.02 10.33+£0.25 4.63+0.04
GP 244+£0.17 6.25+£0.14 -
SPN-GP 2.23+0.11 6.27+£0.20 4.10+0.05
SPN-GP* | 2.07+0.04 6.25+0.14 4.11+0.04

does not guarantee to construct sub-regions with an equal
number of training points, we depict the average number of
training points per expert for SPN-GPs. The performance of
SPN-GPs compared to state of the art approaches is shown
in Figure ] Note that our model architecture used in this
experiment is comparable to prior work, i.e. only a single
kernel function but mixing over split positions is used, and
is not more expressive than a full GP. As shown in Figure ]
the RMSE of SPN-GPs rises only slightly with declining
number of training points per expert indicating that our
approach does not suffer from vanishing predictive variances
or the effect of weak experts.

5. Discussion and Conclusion

In this work, we have introduced sum-product networks
with Gaussian process leaves (SPN-GPs) as an efficient and
effective probabilistic non-linear regression model. In our
model, the inference cost is effectively reduced in a divide
and conquer fashion by recursively sub-dividing the input
space into small sub-regions and distributing the inference
onto local experts. We showed that SPN-GPs have a vari-
ety of appealing properties, such as (1) computational and

memory efficiency, (2) efficient and exact posterior infer-
ence, (3) the ability to weight different kernel functions
according to their plausibility, and (4) naturally account for
non-stationarities in data.

We found that the SPN-GP model is on par with or outper-
forms traditional GP models. Moreover, we could demon-
strate that our model does not suffer from vanishing pre-
dictive variances or the effect of weak experts. In addition,
we assessed the properties and challenges of our model
qualitatively. We found that SPN-GPs naturally account for
non-stationarities in time series and that SPN-GPs are able
to effectively infer the appropriate kernel function depend-
ing on the input. Our experiments indicate that the SPN-GP
model is a very promising model for non-linear probabilis-
tic regression not only in large-scale data domains. Further,
we believe that this work will lead to interesting new ap-
proaches for regression in high-dimensional data regimes,
e.g. hyper-parameter optimization. In future work, we will
investigate the application of SPN-GPs for large-scale real-
world problems and work on data-driven approaches for
structure learning. Further, we plan to investigate the effects
of parameter tying for regularization in SPN-GP models.
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Algorithm 1 Region Graph Construction

Algorithm 2 SPN-GP Structure Construction

I: Input: D = {(x,,y.)}Y_, (observations), § =
{84}, (subinterval sizes), O (minimum number of
samples).

2: R < new empty region graph
3: R < new empty region
4: @) < new Queue
5: insert R into () and R
6: while () is not empty do
7: R < pop region from )
8:  if number of samples in R larger then O then
9: d < random(l, ..., D)
10: P < new partitions of R in d with subintervals of
size 04
11: forall P € P do
12: connect R — P and insert P into R
13: R < split R in dimension d on position sp
14: for R € R do
15: if R ¢ R then
16: insert R into Q and R
17: end if
18: connect P — R
19: end for
20: end for
21:  endif

22: end while
23: Return: Region graph R

A. Structure Learning

To learn the structure of SPN-GPs we extended the approach
by Poon and Domingos (Poon & Domingos| 2011) to con-
struct network structures for different regression scenarios.
Our Algorithm [2] first constructs a region graph (Poon &
Domingos| 2011} |Dennis & Ventural |2012) by using Al-
gorithm [T] which hierarchically splits the input space into
small regions. In particular, our algorithm starts from the
root region and selects an axis at random. This axis is then
used to partition the input space into disjoint sub-regions.
Subsequentially, each sub-region is recursivelly processed
in the same way as the root region. The recursive subdivi-
sion stops if a constructed region contains less the O many
points or if a region cannot be split into sub-regions.

After constructing the region graph Algorithm2]equips each
leaf region with a set of GP experts, each using a different
kernel function. And equips the partitions with split nodes
and the internal regions with sum nodes resepectivelly. Note
that it is possible to mix over different partitions of the
input space by constructing partitions with different offsets
under the root region. However, this approach can lead to an
increase of computational complexity and the construction
therefore has to be done carefully.

I: Input: D = {(x,,y.)})_; (observations), § =
{84}%_, (subinterval sizes), O (minimum number of
samples), S (number of sum nodes), k € {kl}le (ker-
nel functions).

2: R < construct new region graph using Algorithm ]
3: § + empty SPN-GP

4: for R € R do

5:  if R has no child then

6: for k € k do

7: equip R with GP leaf L using kernel function k&
8: condition GP on (x,y) € R

9: end for
10:  else if R has no parent then
11: equip R with a sum node S
12:  else
13: equip R with S sum nodes S

14:  end if
15: end for

16: for P € R do
17: Ry, Ry < sub-regions of P
18: for S, € R1,S2 € Ry do

19: equip P with splitnode P = S; x Ss
20: R« find (R{ URy)in R

21: forall S € R do

22: connect S — P

23: end for

24:  end for

25: end for

26: Return: SPN-GP S

B. Quantiative Evaluation

To quantitatively evaluate SPN-GPs we evaluated the perfor-
mance of our model on the UCI datasets listed in Table 2l

Table 2. Statistics of UCI datasets used for quantitative evaluation.
The number of sample is depicted by N, the number of input
dimensions using Dx and Dy denotes the number of dependent
variables.

DATASET | N Dx Dy
ENERGY 768 8 2
CONCRETE | 1030 8 1
CCPP 9568 4 1
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