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Summary 
 
Ecophysiology, Morphology and Phylogeography of Insects 
in the Scotia Arc 
Author: Felipe Lorenz Simões 
The Scotia Arc, comprising southern South America, South Georgia and the South 

Orkney Islands and the Antarctic Peninsula, is home to a range of understudied insect 

species which are constantly exposed to extreme environmental conditions. To help 

reduce the amount of uncertainty surrounding insect taxa evolution in the region, we 

aimed to elucidate the evolutionary relationships and divergence times of non-biting 

midges (Diptera) and beetles (Coleoptera) naturally occurring in the lands around the 

Scotia Arc. The main objectives here were to learn how the evolution of select species of 

these two orders of insects is linked to the region’s geographical history, through the use 

of phylogeography, and what kind of adaptations (morphological and physiological) they 

have developed to deal with the environmental conditions and changes, such as osmotic 

stress and desiccation tolerance. There was also an intrinsic objective to ascertain the 

taxonomy of the midge Telmatogeton magellanicus, which potentially belongs to the 

genera Belgica or Halirytus. The individual studies in this thesis were carried out in the 

British Antarctic Survey (BAS) and in field stations in Navarino Island (Chile) and the 

South Shetland Islands (Antarctica), with additional field work in South Georgia Island. 

 

Habitat Characterisation and Ecophysiology: As a first step to enable the 

understanding of the physiological adaptations of the brachypterous midge T. 

magellanicus we first had to describe, in detail, its habitat. To that end, we made use of 

Permutational MANOVA and Similarity Percentages, through which we were able to 

identify the mid-tidal zone of the intertidal as its favoured habitat, while also providing 

details on their abundance and the fact they mostly need filamentous algae to thrive. 

Subsequentially, we exposed larvae of T. magellanicus to different physiological 

treatments and showed that they are very resistant to osmotic stress and temperature 

extremes, but that exposure to desiccation are one of the main dangers to their survival. 



 

In the meantime, larvae of Eretmoptera murphyi were also exposed to osmotic stress 

treatments, but were shown to struggle much more to deal with saline water. 

 

Morphology: We hypothesised that the South Georgian isolate of the diving beetle 

Lancetes angusticollis, could have changes to its hind wing morphology, potentially 

causing a loss of the ability to fly. However, the wings bear only minute changes that did 

not enable us to correlate that to specific environmental conditions. 

 

Phylogeography: By means of two genetic markers (COX1 and 28S) we were able to 

assess the phylogeographic structure of the winged Antarctic midge Parochlus steinenii, 

who is spread out across the Scotia Arc, with a clear split of its South American 

population. 

 

This thesis shows how insects can help us understand the development of a specific 

region in the globe, but also shows us how much more there is left to explore in terms of 

the biology and evolution of insect taxa in the Scotia Arc, specially in light of the current 

international debates on climate change, as these are among the organisms that are the 

most susceptible to sudden alteration of their habitat composition.  
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1. Introduction 
 
1.1 Regional context and evolution of Antarctic insects 
The relationship between South America, the Scotia Arc and Antarctica (Figure 1.1) has 

long been established from the point of view of geography, geology and glaciology 

(Eagles et al., 2005, 2006, Linse et al. 2006, Livermore et al. 2007, Convey et al. 2009, 

Griffiths et al. 2009). However, the biological relationships of terrestrial organisms, apart 

from a few studies on more well-known taxa, is still barely known, partly as a result of the 

difficulties of working in one of the most inhospitable places on Earth (Convey et al. 2018). 

Over the last few decades, researchers have begun to fill the gaps in this knowledge 

using a variety of different methods, including evolutionary reconstructions, morphological 

and physiological comparisons, and niche modelling (Gressitt 1964, 1970a, 1970b, 1971, 

Chown 1997, Allegrucci et al. 2006, Convey et al. 2009, Lee et al. 2012, Everatt et al. 

2014). Even though the number of studies on the region’s invertebrate fauna have 

increased significantly over the past decades, the few occurring insect species have only 

recently been considered as the main target for research 

 

The current geography and environment of the Antarctic continent (and South America) 

and its surrounding islands can largely be linked to consequences stemming from the 

fragmentation and subsequent movement of the elements of the supercontinent 

Gondwana (Lawver & Gahagan 2003, Scher & Martin 2006, Torsvik et al. 2008) (which 

started about 170 Mya). In particular, the isolation of Antarctica resulted in a fundamental 

cooling in its climate, which was intensified by the opening of the Tasmanian Gateway 

and the Drake Passage (45–30 mya) and formation of the Antarctic Circumpolar Current 

(ACC, which initiated around 20 mya) (Hambrey & Barrett 1993, Birkenmajer et al. 2005, 

Pful & McCave 2005, Whitehead et al. 2006, Livermore et al. 2007), so that 99.7% of the 

continental land mass is now covered by ice (Burton-Johnson et al. 2016). Since its 

isolation, the continent has undergone repeated cycles of ice expansion and contraction 

that are thought to have led to the almost complete extinction of terrestrial life on the 

continent (see Convey et al. 2008, 2009 for review). 
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Although not currently present in Continental (East) Antarctica, insects have been found 

in the Antarctic region from, at least, the early Palaeocene (~70mya) (Allegrucci et al. 

2006, Convey et al. 2008, Chown & Convey 2016). Nowadays, insects can be found in 

the maritime Antarctic (Antarctic Peninsula and associated Scotia Arc archipelagos) and 

the sub-Antarctic Islands (Fig. 1.1) (Convey & Block 1996, Chown & Convey 2016). 

Knowledge of their diversity, evolution and ecology, mostly results from studies carried 

out over the past 50 years, catalysed by the works by J. L. Gressitt (1964, 1970a, 1970b, 

1971) and most recently reviewed by Chown & Convey (2016). However, even with this 

increase in scientific effort, much remains unknown about the evolution and adaptations 

of insects from this region. 

 

The fauna of the Atlantic sector of the Antarctic region is closely related to South America, 

with intimate geographical, biological, geological and glaciological histories (Mercer 1976, 

Clapperton & Sugden 1988, Clapperton et al. 1989, Rodbell et al. 2009, Fernandez et al. 

2011), such as seen in the naturally occurring midges (Diptera: Chironomidae) and 

beetles (Coleoptera) of the region (Chown & Convey 2016). Even though much still 

remains to be resolved in clarifying the relationship of sub-Antarctic taxa to their sister-

groups in South America, the evidence already available (Chown et al. 1998, Chown & 

Convey 2006, 2007, Convey 2007) allows development of hypotheses and predictions 

relating to the temporal scale of species’ divergences and subsequent colonisation of the 

Antarctic region. Recent key findings have evidence demonstrating the long-term 

presence of Antarctic biota, perhaps through persistence of populations in ice-free areas 

(Convey et al. 2008), and the importance of dispersal in determining patterns of species 

distribution, as has been shown in Belgica antarctica (Allegrucci et al. 2012). 



 

22 

 
Figure 1.1 Map of the biogeographic regions of Antarctica and the sub- and peri-Antarctic 

(reproduced from Chown & Convey 2016). 

 

More recently, studies have examined the phylogeography and ecophysiology of some 

species of Antarctic and sub-Antarctic hexapods. Phylogeographical studies have 

concentrated on understanding the history and regional biogeographic structure of insect 

populations. For example, Allegrucci et al (2006, 2012), studying the midge Belgica 

antarctica Jacobs, 1900 and closely related species found a strong genetic structure in 
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the populations, suggesting long isolation of different populations. Collins et al. (2019), 

studying Antarctic springtails, found a strong impact of time since dispersal and isolation 

on distribution patterns. Papadopoulou et al. (2009), studying beetles in the families 

Carabidae and Curculionidae in the Falkland Islands, found that distribution patterns were 

related to a range of environmental factors, but that these differed from those in 

climatically similar areas of the Northern Hemisphere. In the meantime, ecophysiological 

studies have concentrated on the tolerance of Antarctic species to extreme conditions. 

For example, Everatt et al. (2012), studying the midge, Eretmoptera murphyi Schaeffer, 

1914, found that the species was pre-adapted to harsh conditions.  This tolerance and 

potential pre-adaptation to extremes has also been found in other species, such as B. 

antarctica (Lopez-Martinez et al. 2009, Teets et al. 2011) and the promecheilid beetle 

Hydromedion sparsutum (Müller, 1844) (Bale et al. 2000). 

 

Studies carried out over the last 30 years, have demonstrated the power of physiology 

and DNA-based studies in providing a better understanding of adaptations (Convey 1996, 

2010, Lee Jr. et al. 2006, Everatt et al. 2013a, 2013b, Bartlett et al. 2018a, b) and the 

evolution of insects and other terrestrial invertebrates. Molecular approaches in particular, 

have allowed an estimation of the timing of species’ divergences and colonisation on 

different land-masses (e.g. Allegrucci et al., 2006, 2012, McGaughran et al., 2010b, 

Collins et al. 2019). Taken together, these bits of information are particularly pertinent for 

assessing the biogeography (Convey 2011) of these taxa, through an assessment of the 

impacts of underlying ecological constraints on dispersal. A related aspect that has 

received much less research attention is an examination of the relationships between 

genetic differentiation and ecophysiological specialisation in independently evolving 

lineages (McGaughran et al. 2010a, b), especially when they occur across different 

environments, which could provide a setting to assess local adaptation (Moritz et al. 2012, 

Taylor et al. 2013). 
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1.2 Polar Entomology 
 

Even though other invertebrates, including nematodes, tardigrades, mites and springtails 

are present in Antarctica (Convey 2017) (Fig. 1.2), there are currently only two species of 

insects native to the continent, and neither are found beyond the Gressitt Line (Chown & 

Convey 2007, 2016, Convey & Stevens 2007), which marks a major biogeographic 

discontinuity that separates the Antarctic Peninsula and continental Antarctica. A few non-

native insects have also found their way into the region, mainly living within and around 

scientific stations (Hughes & Convey 2014, Bartlett et al. 2018a). However, these have 

not established beyond human occupation and have, so far, been unable to fully settle in 

the region. 

 

The two native insects (both midges of the family Chironomidae) have been present within 

the Antarctic for many millions of years, and in the case of the endemic and wingless 

Belgica antarctica for perhaps up to ~55 mya (Figs 1.2 and 1.4; Allegrucci et al. 2006). 

To date, there’s little evidence on how long the second chironomid, the winged Parochlus 

steinenii, has been established in its current Antarctic distribution with a single 

contribution being found in Allegrucci et al. (2006), where the authors found that the South 

American populations have been separate from the Maritime Antarctic ones for at least 

some millions of years. Both species, however, have been studied quite extensively, with 

research addressing aspects of their phenology, physiology, metabolomics and molecular 

biology (Sugg et al. 1983, Edwards & Usher 1985, Shimada et al. 1991, Hahn & Reinhardt 

2006, Michaud et al. 2008). In the case of B. antarctica, it has been demonstrated that 

the species possesses one of the smallest insect genomes known (Kelley et al. 2014), 

potentially related to their adaptation to the harsh conditions of this region (Kelley et al. 

2014, Cornette et al. 2015). 



 

25 

 
Figure 1.2 Summary of the presence and evolution of invertebrate taxa in the Antarctic  

Continent and South Georgia. The Gressitt line can be seen as a dashed brown line 

between the Antarctic Peninsula and West Antarctica (reproduced from Convey & 

Stevens 2007). 

 

Considering a wider area than the Antarctic Peninsula alone, much greater insect 

diversity is apparent in the sub-Antarctic region. This region mostly includes islands with 

more benign, though chronically cool climates (Convey 1996b) and relatively high 
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coverage of vegetation, thus creating a more suitable environment for invertebrates in 

general, and especially for insects. Species richness in some of these islands can be as 

high as 230 species [such is the case in the Auckland Islands (Chown & Convey 2016)], 

a number that is likely to be an underestimate given difficulties in accessing such areas 

for study and the increasing realization of the presence of cryptic species. 

  

Navarino Island, located at the very south of South America, where the Beagle Channel 

exits into the Atlantic Ocean, is part of the Magellanic sub-Antarctic ecoregion, hosting a 

wide variety of habitats and microhabitats over a short elevational range (Pisano 1977, 

Contador et al. 2015a). Its insect fauna is relatively poorly studied, apart from a recent 

increase in studies of aquatic species (Contador et al. 2015a, b, Gañán-Mora et al. 2015, 

Rendoll et al. 2019). The island is home to the dytiscid diving beetle, Lancetes 

angusticollis, which also occurs in South Georgia (Nicolai & Droste 1984), raising the 

question as to how long it has been present in these two relatively distant and isolated 

areas. Additionally, two species of Chironomidae are found in this region and live in two 

very distinct habitats on Navarino: Parochlus steinenii is restricted to high altitude lakes 

in the island’s mountain range, and the recently rediscovered intertidal Telmatogeton 

magellanicus is found in intertidal zones. The latter species was first described (as a 

member of the genus Belgica) early in the 20th century, but was subsequently not studied 

or collected again. Although currently thought to be endemic to Tierra del Fuego, no 

specific surveys have ever been conducted. The species is congeneric with two other 

species (T. amphibius and T. macquariensis) found on the remote sub-Antarctic Marion 

and Macquarie Islands (Gressit 1970, Nondula et al. 2004), raising intriguing questions 

about their evolutionary history and dispersal. 

 

Further along the Scotia Arc is the sub-Antarctic island of South Georgia, which is 

considered to be the connecting point between South America and Antarctica (Gressitt 

1970). The island is home to several insect species, with South American-derived species 

reaching their southern limits at this point, and Antarctic species their northern limits. 

Inhabitants include Parochlus steinenii and Lancetes angusticollis, and the endemic 

promecheilid beetles Hydromedion sparsutum and Perimylops antarcticus (Chown & 
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Convey 2016). There are also introduced and predatory carabid beetles, Trechisibus 

antarcticus (Dejean, 1831) and Merizodus soledadinus (Guérin-Meneville, 1830) which 

are potentially causing heavy declines in the populations of native insects (Laparie et al. 

2010, Chown & Convey 2016, Ouisse et al. 2017).  

 

In the northern maritime Antarctic, between South Georgia and the Antarctic Peninsula, 

lies the South Orkney Islands archipelago. Within this, Signy Island is a small but 

paradigmatic example of a maritime Antarctic terrestrial ecosystem (Smith 1990). It hosts 

a typical microarthropod and microinvertebrate fauna for the region (Convey 2017), but 

has no native insects. However, it is home to a single non-native insect species,the 

chironomid Eretmoptera murphyi Schaeffer, 1914, that was accidentally transported from 

its native habitat of South Georgia through plant transplant experiments in the 1960s 

(Block et al. 1984, Convey 1992, Convey and Block 1996, Bartlett et al. 2018a, b). Despite 

its generic positioning, this species has long been considered a sister species to the 

endemic Antarctic midge Belgica antarctica, with more recent genetic studies supporting 

this hypothesis (Cranston 1985; Allegrucci et al. 2006, 2012). 

 

1.3 Aims of the study and thesis outline 
 
1.3.1 Main objectives 
To clarify processes surrounding the evolution and adaptation of insects in the Scotia Arc 

region, this thesis uses a range of methodologies to investigate the evolutionary 

relationships and divergence times of non-biting midges (Diptera) and beetles 

(Coleoptera) naturally occurring in southern South America, South Georgia and the South 

Shetland Islands. It also investigates how their evolution is linked to the region’s 

geographical history, and the adaptations (morphological and physiological) that they 

have evolved in response to the environmental conditions and changes experienced 

across this region. 
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Figure 1.3 Reconstruction of biological colonisations and extinctions in Antarctica. The 

top row highlights evidence for the separation between South Georgian and Antarctic 

wingless chironomids in the Eocene and Miocene (reproduced from Convey et al. 2008). 

 

1.3.2 Outline and specific objectives 
This thesis makes use of a range of taxa to study the history and evolution of insects in 

the Antarctic region. By focusing on more than one species and carrying out surveys over 

a wide area, I aim to determine overarching patterns in evolutionary processes, 

physiological adaptations and biogeographic patterns. In particular, I will address the 

following key objectives: 

 

a) characterise the habitat of T. magellanicus; 

b) determine tolerance limits of T. magellanicus to temperature, salinity and desiccation 

extremes, comparing it to previously studied Antarctic and sub-Antarctic insects; 
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c) assess the salinity tolerance limits of Eretmoptera murphyi, expanding the available 

literature on its ecophysiological adaptations; 

d) identify phylogeographic patterns present in the contemporary distribution of 

Parochlus steinenii; 

e) assess potential specific morphological changes influenced by the environment 

through the comparison of wing morphology in ‘island’ and ‘continental’ populations of 

Lancetes angusticollis. 

 

Chapters 2 and 3 address the South American midge Telmatogeton magellanicus, and 

describe its habitat preferences and its physiological tolerances. Chapter 4 further 

develops the theme of ecophysiological adaptation in southern midges, complementing 

and expanding recent ecophysiological studies of Eretmoptera murphyi to consider its 

salinity tolerance. Chapter 5 presents a phylogeographic analysis of the Antarctic midge 

Parochlus steinenii, based on material obtained across its South American, sub- and 

maritime Antarctic distribution. Chapter 6 examines the possible consequences of the 

long-term isolation of two populations of the diving beetle Lancetes angusticollis, found in 

Tierra del Fuego and South Georgia, on detailed morphological adaptations. Finally, 

Chapter 7 integrates data from across the thesis with previously published data, to identify 

advances in the knowledge of polar entomology and future research directions. 

 

In addition to the chapters presented in this thesis, I have co-authored a book chapter on 

the interactions of Antarctic fungi and invertebrates (Appendix IV) and a scientific paper 

on the distribution shifts and ecophysiological characteristics of a winged midge 

(Appendix V), which have also led to a work-in-progress collaboration to study the fungal 

communities in the Antarctic midge Parochlus steinenii from King George Island, 

Antarctica. 
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CHAPTER 2 

 

Distribution and habitat of  

Telmatogeton magellanicus 
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2. Distribution and habitat preferences of Telmatogeton 
magellanicus (Diptera: Chironomidae) on Navarino Island, 
Chile  
 
2.1 Abstract 
 

The habitat of the intertidal flightless midge Telmatogeton magellanicus (Jacobs, 1900) 

is described for the first time from the northern coast of Navarino Island, Tierra del Fuego, 

Chile. Additionally, we report the first observations of adult behaviour in the wild. We 

delineate the species’ distribution across three tidal zones (high, mid and low), and 

identify substrate characteristics that favour the presence of the midge. The mid-tide zone 

was the key habitat utilized by T. magellanicus, with lower densities in the low-tide zone, 

and no presence in the high-tide zone. There was a strong association between the 

presence of larvae and filamentous algae, especially Bostrychia sp. and, to a lesser 

extent, Ulva spp., and between larvae and the presence of larger, more stable, boulders. 

As a result, the species’ overall distribution was widespread but patchy. We suggest that 

the main limiting factor was the relative humidity experienced in different habitats. One of 

the most striking features of behavioural observations during data collection was the 

extremely active adults, which suggests high energy expenditure over a very short period 

of time. This may be due to the limited time available to find mates in a single low tide 

period, when adults have about three hours after emerging from the pupa to complete 

mating and oviposition before inundation by the tide. The data presented here provide a 

baseline for future studies on this species’ ecology, phenology, physiology and general 

biology. 
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2.2 Introduction 
 
2.2.1 Terrestrial invertebrates in the Magellan Strait 
The Magellanic region of Tierra del Fuego is not strictly considered to be part of the sub-

Antarctic (Selkirk 2007, Chown & Convey 2016), which is defined by the almost complete 

absence of true terrestrial vertebrates and woody plants. However, because it shares 

many climatic and environmental features with this region it is often referred to as the 

Magellanic sub-Antarctic (Rozzi et al. 2012, Contador et al. 2015a, Morrone 2015). The 

Magellanic region is still largely unexplored, with recorded biodiversity increasing mainly 

through the discovery of cryptic species and the activity of new research projects working 

in little studied areas (Chown & Convey 2016). A major component of the plant life is 

endemic to the region [Rozzi et al. 2012, Contador et al. 2015a, Morrone 2015]), which is 

likely to have specific suites of associated invertebrates. There are no published 

syntheses of the invertebrate fauna of the region, either aquatic or terrestrial, although 

several authors have described endemic species of the latter: Coleoptera (Roig-Juñent 

1994, 1995, 2004, Morrone 1992, 1993, Morrone & Anderson 1995, Morrone & Roig-

Juñent 1995), Hymenoptera (Durante & Abramovich 2002), Lepidoptera (Angulo 1990) 

and Neuroptera (Monserrat 1997). 

 

Discovering and characterising invertebrate diversity, distribution and habitat preference 

is an extremely important part of understanding the ecology of high latitude southern 

ecosystems. Invertebrates living in these habitats often display adaptations that allow 

them to tolerate extreme conditions. Therefore, understanding the physiology of resident 

invertebrate species provides the basis for comparisons across species or environments 

(Convey 1996a, Gibbs et al. 1997, Gaston & Chown 1999, Hayward et al. 2004, Convey 

et al. 2014, 2018, Bartlett et al. 2018a, b). 

 

In the case of the Magellanic midge, Telmatogeton magellanicus (Jacobs, 1900), early 

taxonomic studies provided very little information about the species’ ecology or habitat 

requirements. Indeed, since the species’ original discovery and description, to our 

knowledge there have been no published studies addressing any aspect of its biology. 
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Yet follow-up studies on T. magellanicus are extremely timely, as it forms part of a small 

group of key sub- and maritime Antarctic chironomid midge species that may help to 

clarify the historical biogeography of this region. This group includes Belgica antarctica 

Jacobs 1900, endemic to the Antarctic Peninsula and South Shetland Islands (Allegrucci 

et al. 2006, 2012, Lee & Baust 1982), and Eretmoptera murphyi Schaeffer, 1914, 

originally described from and endemic to sub-Antarctic South Georgia and now 

introduced to maritime Antarctic Signy Island (Convey 1992a, Hughes & Convey 2010, 

2012, Hughes & Worland 2010, Worland 2010). Everatt et al. (2012) concluded that the 

latter species was pre-adapted to harsher conditions than currently prevail on its native 

South Georgia, where it is now known to be palaeoendemic (Allegrucci et al. 2006, 2012), 

and therefore has the potential to invade the Antarctic Peninsula region (Pertierra et al. 

2019). 

 

2.2.2 Telmatogeton magellanicus 
The brachypterous midge Telmatogeton magellanicus (Figure 2.1) was originally 

classified by Jacobs (1900), based on material collected on 19 December 1897, in the 

genus Belgica. This is a genus well-known for its type species Belgica antarctica, which 

is one of only two insect species currently native to parts of the Antarctic continent 

(Convey & Block 1996, Chown & Convey 2016). Rübsaamen (1906) transferred the 

species to a new genus, Jacobsiella, based on examination of the original material, and 

expanded its description significantly. Edwards (1926) synonymised Jacobsiella to 

Halirytus based on features of the tarsi and ovipositor, and raised the possibility of H. 

magellanicus and H. amphibius (Eaton, 1875) (a species from the sub-Antarctic 

Kerguelen archipelago in the Indian Ocean) being the same species; Edwards’ 

comparisons were based on examination of Eaton’s specimens of H. amphibius along 

with the description and images of H. magellanicus. Edwards (1928) further addressed 

the taxonomic position of Halirytus, placing it in the “Telmatogeton” group and 

commenting that the former is in fact a reduced form of the latter. He considered the 

status of the two then-described species of Halirytus [with the later addition of H. 

macquariensis Brundin (1962)] and concluded that there was no evidence to doubt the 

validity of H. magellanicus as a separate species. There appear to have been no 
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published reports of new collections of H. magellanicus since those originally examined 

by Jacobs (1900). Wirth (1949) and Sublette & Wirth (1980) further addressed taxonomy 

in the genus – with the latter considering Halirytus to be a brachypterous form of 

Telmatogeton, and synonymising it to the latter. None of these taxonomic studies 

provided information about the habitat in which the midge was found, although it might be 

assumed that the species would require similar habitats or conditions to T. amphibius, T. 

macquariensis and other Telmatogeton species, which are typically found among 

filamentous algae attached to hard substrates in the intertidal and supralittoral zones 

(Tokunaga 1935, Wirth 1947, Brundin 1962, Brodin & Andersson 2009). 

 
Figure 2.1. Specimens of Telmatogeton magellanicus: (a) Two larvae (2nd and 4th instars) 

and two pupae (one larger female and one smaller male); (b, c) An adult female [(c) by 

Gonzalo Arriagada]. (scale bar = 0.5 cm). 
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Until recently, T. magellanicus was known only from the region of the Beagle Channel, 

and more specifically the type locality on Navarino Island, recorded as the “Grand Glacier 

Bay, Tierra del Fuego, English Channel, Chile” by Jacobs (1900). In 2015, the species 

was rediscovered in several intertidal locations across the northern coast of Navarino 

Island, Chile, and in the Cape Horn Islands; there is also a possibility of it being found 

along the coastline around Punta Arenas, Chile (S. Rosenfeld pers. comm.). New 

observations and collections in January 2020 confirmed the species to be present in the 

same intertidal habitats in Argentinian Tierra del Fuego, in the locality of Puerto Almanza 

(T. Contador pers. obs.) and Stanley Harbour in the Falkland Islands (P. Convey pers. 

obs.). However, no formal attempt has been made to characterise the species’ preferred 

habitat or its potential distribution, other than that it is found in the intertidal zone. Other 

intertidal insects living in similar habitats have been found to have behavioral and 

physiological rhythms linked to the tidal cycle through either endogenous clock-like 

mechanisms or direct external factors, which can range from environmental cues (such 

as temperature or sunlight) to the presence of key habitat features, such as algal food 

sources and substrate type (e.g. [Neumann 1986, 1988, Soong & Leu 2005, Soong et al. 

2006, 2011]). 

 

In this study we document the distribution of T. magellanicus on the north coast of 

Navarino Island and describe aspects of the species’ behaviour in its natural habitat. We 

also categorise the local habitat and microenvironmental conditions where T. 

magellanicus is found. Through this survey we aim to better understand the biotic and 

abiotic drivers of T. magellanicus distribution across tidal zones. 

 

2.3 Materials & Methods 
 
2.3.1 Study site description 
Fieldwork took place along the northern coast of Navarino Island (Figure 2.2), Tierra del 

Fuego, from 23 October to 28 November 2017, and consisted of single day visits to 

selected bays (Figure 2.2), and several visits to Róbalo Bay (Figure 2.2G, 2.3). Additional 

monthly visits to the latter were made between late 2016 and early 2018. Air temperatures 
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in this area range from as low as -12°C in the winter, to 26°C during the summer (means 

of 6.0°C across the year, 9.6°C during the warmest month and 1.9°C during the coldest 

[DGAC 2020 – Meteorological Station 550001]). The region is relatively dry, with relative 

humidity (R.H.) averaging 69.3% but varying between 40.2% and 96.0%. Total 

precipitation for 2018 was 560.8 mm (a minimum of 23.2 mm in April and maximum of 

89.9 mm in June). The climate is heavily influenced by prevailing westerly winds that can 

reach average speeds of up to 39 kts (in 2018). The average tidal range is 1.40 m, ranging 

from 0.15 m to 2.51 m (DGAC 2020, SHOA 2020). At each visit, targeted searches were 

carried out to confirm the presence of adult T. magellanicus. We mapped the presence 

of T. magellanicus at each survey location in order to visualise the distribution of the 

species across Navarino Island. We also made opportunistic notes of any aspects of adult 

behaviour. 

 
Figure 2.2. Navarino Island with the bays surveyed, colour-coded for presence/absence 

of adults and larvae of Telmatogeton magellanicus. (A, Puerto Navarino; B, Honda Bay; 

C, ‘Bahia Linda’; D, Chicha de Pera; E, ‘Second’ Bay; F, Los Bronces; G, Róbalo Bay; H, 

Ukika; I, Puente Guanaco Bay; J, Punta Truco; K, ‘Seventh’ Bay; L, Amarilla Bay; M, 

‘Fifth’ Bay; N, Corrales Bay; O, ‘King Penguin’ Bay; P, ‘Third’ Bay; Q, ‘Casita’ Bay; R, 

Eugenia Bay; S, Puerto Toro) (*also Telmatogeton sp.; **survey time was very limited). 
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2.3.2 Habitat characterisation at Róbalo Bay 
We selected Róbalo Bay to carry out finer-scale measurements of environmental 

conditions influencing the abundance of T. magellanicus, owing to an abundant 

population being observed during initial field visits and to the site’s ease of access. 

 

 
Figure 2.3. The location of habitat transects at Róbalo Bay. Each transect included a 

quadrat (60 x 60 cm) deployed in the high tide, mid tide and low tide zones of the 

shoreline. (Satellite image edited from Google Earth, earth.google.com/web/) 

 

2.3.3 Environmental variability within low and high tide limits 
To describe the habitat of T. magellanicus at Róbalo Bay we divided the area into 28 

transects (Figure 2.3). Transects were separated by 50 m from each other along the 

shore, and each ran in a straight line, perpendicular to the coast, from low to high tide 

limits. At each transect, we randomly selected one area to deploy a 60 x 60 cm quadrat 

(sub-divided into 5 x 5 sub-quadrats – 25 squares in total) at each of three tidal heights 
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(low tide, mid tide and high tide) (Figure 2.4). The tide levels were determined by a 

combination of two factors: i) recording the water level at high and low tide as predicted 

from average levels taken from tide tables (Benedetti-Cecchi & Cinelli 1997), and ii) 

biological composition, as defined by Contador et al. (2015a). Thus, we defined the high 

tide level as the area between 2.5 m down to where molluscs (mainly bivalves) start to 

occur in abundance (around 1.5 m), the mid tide from ~1.5 m to ~0.8 m, which is where 

the low tide zone started with the presence of cirriped crustaceans and coralline algae. 

Upon starting the survey at each station, we measured air temperature, relative humidity 

(R.H.) and wind speed (1.5 m height) using a thermocouple logger (Hobo® 4-channel 

UX120-014M) and anemometer (Kestrel 3000 Environmental Meter), respectively. We 

also recorded substrate surface temperatures and R.H. We then searched the 25 sub-

quadrats for 1 minute each, recording, through visual inspection and manipulation of the 

top layer of the substrate, the presence/absence of T. magellanicus larvae of any stage. 

We chose larvae for this study because they are less mobile than adults and their 

presence demonstrates that breeding is occurring, making them a more reliable indicator 

of true habitat requirements for the species. 

 

Each quadrat was photographed for subsequent confirmation of the environmental 

components, namely, boulders (rocks larger than 26 cm in diameter), stones (rocks 

between 1 cm and 26 cm), gravel (crushed stone and any clustering of small stones up 

to 1 cm), sand, bivalves, water, as well as the marine algae: Bostrychia sp., Ulva lactuca, 

U. intestinalis, Adenocystis sp., Porphyra sp., and “other” (including Rhodophyta, U. 

prolifera, Nothogenia sp., Macrocystis sp., Scytosiphon lomentaria, and large patches of 

mixed dead algae). 

 

2.3.4 Statistical analyses 
We performed a Permutational MANOVA (PERMANOVA) with pair-wise tests to test for 

differences in the habitat composition of the 12 most frequent environmental variables 

between the three tide levels (low, medium, and high) (Anderson et al. 2008). These 

variables, acquired through the quadrat methodology, were: Boulder, Stones, Gravel, 

Sand, Bivalves, Water, Bostrychia sp., Ulva lactuca, U. intestinalis, Adenocystis sp., 
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Porphyra sp., and Other (which includes other minor features, such as sporadic algal 

species or clumps of decomposing organic matter). The procedure was performed using 

normalized data to construct a resemblance matrix based on Euclidean distances with 

9999 unique permutations, with “tide” as the only fixed factor included in the model. We 

calculated the contribution of each environmental variable at each tide level using the 

Similarity Percentages (SIMPER) procedure. The SIMPER procedure list was cut off 

when the accumulated contribution of each environmental variable reached 90%. Both 

analyses, PERMANOVA and SIMPER, were conducted using PRIMER-E v7 with 

Permanova+ add-on package (Anderson et al. 2008, Clarke et al. 2015). 

 

We also compared the air and substrate temperatures, air and substrate R.H., and 

average and maximum wind speeds between the three areas using Kruskal-Wallis tests. 

Post hoc paired Wilcoxon tests were used where significant differences were found. 

These tests and analyses were run with R (version 3.6.0) in RStudio (Version 1.2.1335). 

 

2.3.5 Presence of T. magellanicus across the three tidal levels 
Proportional occurrence data in quadrats were tested for normality using Kolmogorov-

Smirnov tests, but were non-normal, so we used a Kruskal-Wallis test, with post hoc 

paired Wilcoxon tests, to assess whether the occurrence of T. magellanicus differed 

between the tidal zones. 

 

2.3.6 Prediction of presence of T. magellanicus within the mid-tide zone 
As the vast majority of T. magellanicus were found in the mid tide zone, we carried out a 

more detailed analysis to assess how environmental factors influenced its presence in 

this zone. Here, we once again ran PRIMER-E v7 with Permanova+ add-on package 

(Anderson et al. 2008, Clarke et al. 2015), where abundances were transformed to 

presence/absence data and resemblance matrices created based on Euclidean distances 

(Clarke et al. 2015). Environmental data were normalized prior to generating Euclidean 

resemblance matrices. Then, the combined influence of the environmental variables on 

the habitat preference of T. magellanicus was investigated using Distance-based Linear 

Modelling (DistLM) in Permanova+, using the Best selection criterion and adjusted R2 
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values. The output for the Best selection procedure in DistLM aims to provide the best 1-

variable model, the best 2-variable model, and so on, on the basis of the chosen selection 

criteria (Anderson et al. 2008). DistLM seeks the most significant relationships between 

the similarity matrix and environmental variables by progressively modeling the matrix 

against the most influential variable, taking the residuals of that relationship, modelling 

the next most influential variable, and so on (Clarke et al. 2015, Pearson et al. 2019). 

 

 
Figure 2.4. The three tidal areas in Róbalo Bay, with representative quadrats (60x60 cm) 

used for the habitat characterisation. 
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2.4 Results 
 
2.4.1 Island-wide distribution 
Telmatogeton magellanicus was present in most of the bays along the northern coast of 

Navarino Island (Figure 2.2). In some places, such as the ‘Casita’ and ‘Fifth’ Bays (Figure 

2.2M and 2.2Q, respectively) there were lower abundances of both adults and larvae. T. 

magellanicus shared the habitat with an unidentified winged species of Telmatogeton in 

Puente Guanaco Bay (Figure 2.2I), but this species was not recorded at any other 

location. Adults were recorded in almost every month with the exception of July and 

August, as we could not survey the area during this time. Adults were very active, moving 

rapidly while searching for mates. While mating was easily observed, we did not observe 

oviposition in the field, although females would readily oviposit in containers after capture 

(either on algae or on the surface of the container). Adults actively avoided water, using 

surface tension to move rapidly across the water surface only when this was unavoidable. 

Either as a consequence of entrapment in water or as result of post-mating death, the 

beach became littered with corpses of dead adults at the end of the tidal cycle that were 

subsequently washed into the sea as the tide rose back again. 

 

2.4.2 Environmental variability within low and high tide limits 
There was a fairly even distribution of variables across the tidal zones (Figure 2.5), but 

the PERMANOVA procedure showed that there were significant differences in habitat 

composition within the three tide zones (Mean squares = 62.237; Pseudo-F = 5.7927; p 

= 0.0001). The post hoc tests indicated that significant differences existed between the 

high and low, the high and mid, and the low and mid tidal zones (Table 2.1). 

 

The SIMPER procedure identified the % contribution of the 12 environmental variables 

that contributed 90% of the habitat composition across the three tidal zones (Table 2.2). 
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Table 2.1. PERMANOVA post hoc tests for environmental conditions between the 

different tidal zones in Róbalo Bay, Navarino Chile. Asterisks indicate significant 

differences (* p < 0.05, ** p < 0.01, *** p < 0.001). 

Pair Wise test 
Environmental conditions (12 variables) 

t Unique perms p (perm) 

High vs. Low 2.7567 9939 0.0001*** 

High vs. Mid 2.8884 9925 0.0001*** 

Low vs. Mid 1.723 9934 0.0011** 
 

 
Figure 2.5. Stacked histogram with the distribution of the 12 measured environmental 

variables across the three tide zones (low, mid and high). 
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Table 2.2. Similarity Percentages (SIMPER) analysis of environmental variables that 

contributed 90% of the habitat composition within the three tidal zones studied in Róbalo 

Bay, Navarino Island, Chile (Contrib. % = percentage of variable contribution; Cum. % = 

cumulative contribution). 

Tide level Environ. variable Av. Value Sq.Dist/SD Contrib. % Cum.% 

Low 

Bostryichia sp.  0.04 0.20 0.01 0.01 
Adenocystis sp. 0.04 0.20 0.01 0.01 

Porphyra sp.  0.04 0.20 0.01 0.02 
Other 1.00 0.37 0.54 0.56 

Ulva intestinalis 0.93 0.26 1.19 1.75 
Water 6.26 0.50 7.12 8.87 
Gravel 10.80 0.57 13.95 22.82 

Ulva lactuca 6.63 0.49 14.22 37.04 
Stone 15.6 0.53 14.36 51.40 

Boulder 14.7 0.54 14.70 66.11 
Bivalves 9.7 0.55 15.62 81.73 

Mid 

Porphyra sp. 1.75 0.31 2.97 2.97 
Adenocystis sp.  2.18 0.28 4.45 7.41 

Water 5.43 0.44 5.41 12.82 
Bostryichia sp.  5.25 0.43 6.48 19.30 
Ulva lactuca 6.11 0.45 6.63 25.93 

Ulva intestinalis 4.68 0.42 7.67 33.60 
Stone 15.60 0.51 7.77 41.38 

Boulder 12.60 0.54 8.08 49.46 
Gravel 9.18 0.56 10.67 60.12 
Sand 10.10 0.55 12.42 72.54 

Bivalves 13.5 0.57 13.32 85.86 

High 

Porphyra sp.  0.036 0.19 0.01 0.01 
Bostryichia sp.  0.71 0.27 0.02 0.04 
Adenocystis sp.  0.71 0.19 0.05 0.09 

Water 0.11 0.19 0.12 0.21 
Ulva lactuca 1.18 0.31 3.10 3.31 

Stone 22.20 0.45 4.20 7.51 
Bivalves 2.00 0.26 8.93 16.43 

Sand 3.04 0.40 13.54 29.97 
Other 3.32 0.34 16.60 46.57 
Gravel 13.4 0.54 24.84 71.41 
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Differences in air temperature were significant between the three zones (χ2 = 10.814, d.f 

= 2, p = 0.002), with temperatures in the mid tide being significantly higher than the high 

tide (p = 0.002). Air R.H. was not significantly different between zones (χ2 = 4.457, d.f = 

2, p = 0.108). Substrate surface R.H. was significantly different (χ2 = 16.386, d.f = 2, p < 

0.001), with R.H. in the high tide zone being significantly lower than the low (p < 0.001) 

and mid zones (p = 0.020). Average wind speeds were significantly different between 

zones (χ2 = 9.301, d.f = 2, p = 0.010), being higher in the high tide zone than in the low 

zone (p = 0.011) (Figure 2.6). 

 

Figure 2.6. Air temperature, average wind speed, and air and substrate R.H. across the 

three tidal zones (low, mid, high). Means with the same letter are not significantly different 

at p < 0.05 (Pairwise Wilcoxon Rank Sum Tests). 
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2.4.3 Difference in presence of Telmatogeton magellanicus between the three tidal 
levels 
Larvae of T. magellanicus differed significantly in abundance between the three tidal 

zones (Kruskal-Wallis, χ2 = 23.138, d.f. = 2, p < 0.001), being more common in the mid 

tide zone (90% of all the sub-quadrats had confirmed presence) than the low tide (9.67%), 

and the high tide (0.33%) (Figure 2.7). 

 

 
Figure 2.7. Presence of larvae of T. magellanicus in quadrats (25 sub-quadrats per 

quadrat) across the three tidal zones (low, mid, high). Different letters indicate a 

significant difference at p < 0.05 (Pairwise Wilcoxon Rank Sum Tests). 

 

2.4.4 Prediction of presence of Telmatogeton magellanicus within the mid-tide zone 
Distance-based Linear Modelling (DistLM) analysis of the impact of the 12 environmental 

variables on the habitat preference of T. magellanicus indicated that, considered 

separately, boulders, sand, bivalves, Bostryichia sp., U. lactuca, U. intestinalis and 
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Adenocystis sp. were significantly positively associated with the presence of T. 

magellanicus (Table 2.3). However, when all combinations of variables were considered, 

the Best modelling procedure showed that presence of a combination of boulders (5%), 

gravel (2%), sand (9%), bivalves (12%), Adenocystis sp. (6%), Bostryichia sp. (27%), U. 

lactuca (12%), U. intestinalis (10%), and Porphyra sp. (2%) were the variables that best 

explained the presence of T. magellanicus (adjusted R2 = 0.52). 

 

Table 2.3 Marginal tests obtained from the Distance-based Linear Modelling procedure 

for the 12 environmental variables measured within the three tidal zones in Róbalo Bay, 

Navarino Island, Chile. Asterisks indicate significant associations with the presence of T. 

magellanicus (* p < 0.05, ** p < 0.01, *** p < 0.001), and values in bold the most highly 

associated variables. (Prop. = proportion of variability) 

Variable Pseudo-F p Prop. 

Boulder 4.39 0.03* 0.05 

Stone 0.02 0.91 0.00 

Gravel 1.78 0.16 0.02 

Sand 8.17 0.003** 0.09 

Bivalves 11.42 0.002** 0.12 

Water 1.52 0.24 0.02 

Bostryichia sp.  30.12 0.001*** 0.27 

Ulva lactuca  10.68 0.004** 0.12 

Ulva intestinalis   9.48 0.01* 0.10 

Adenocystis sp. 4.77 0.04* 0.06 

Porphyra sp.  1.74 0.13 0.02 

Other 0.03 0.86 0.00 
 

2.5 Discussion 
Our survey data confirm that T. magellanicus is distributed across the northern coast of 

Navarino Island. Although every bay along the coast could not be examined, our data 

suggest that the species is present throughout this area, while recent opportunistic 

observations in Argentinian Tierra del Fuego and the Falkland Islands support an as yet 

undocumented wider regional distribution. Across the surveyed bays, it was clear that the 
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favoured microhabitats for the larvae were locations where the algae Bostrychia sp. and 

Ulva spp. were present, but also where there was a combination of these algae with 

Porphyra sp., boulders, gravel, sand and bivalves. It is very likely that algae, especially 

the more filamentous taxa such as Bostrychia sp., desiccate more slowly than exposed 

substrata, maintaining higher R.H. levels during the low tide period. In some of the bays, 

instead of an abundant presence of Bostrychia sp., there was greater presence of U. 

intestinalis or U. prolifera, which were also good predictors for the presence of T. 

magellanicus. 

 

One of the most striking features of the adults was their extremely active behaviour, which 

suggests high energy expenditure in a very short period of time. This is likely driven by 

the limited amount of time they have to find mates in the period between successive high 

tides. This is similar to reports of the behavior of Pontomyia spp., another intertidal 

chironomid genus found in the Caribbean, north-eastern Brazil, Japan, south-east Asia 

and Australia (Soong & Leu 2005, Soong et al. 2006, 2011, Kao et al. 2010, Huang et al. 

2014), and which has one of the shortest known insect adult lifespans (maximum of three 

hours for the winged males and the vermiform females. Even though adults were seen 

mating in the field, we did not directly observe oviposition but, given the distribution of 

larvae, this is likely to take place on or within algal mats. 

 

The absence of both adults and larvae in the high intertidal zone is likely associated with 

the lack of suitable microhabitat to escape from extremes of microclimate in this area. 

Across all bays, this zone primarily consists of boulders and sand mixed with clay, making 

the substrate too hard for the larvae to burrow into, and thereby exposing them to 

dangerous stressors such as sunlight/UV exposure and wind, as well as potential 

predators (at least one species of insectivorous bird, Lessonia rufa (Gmelin, 1789), 

frequently forages in the intertidal zone of Róbalo Bay, and other bird species including 

Vanellus chilensis (Molina, 1782) and Xolmis pyrope (Kittlitz, 1830) are often also present 

in the area). It was unclear which variables directly restricted the presence of the species 

in the low tide zone, but this zone is covered by seawater for most of the time, being 

water-free for only 1–2 hours during low tide. This zone may, therefore, be hostile to the 
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adults due to the risk of drowning, a hypothesis that is consistent with our casual 

observations of the high mortality of adults when an area is inundated. A caveat for some 

of these hypotheses is that our environmental measurements of temperature, R.H. and 

wind speed were taken at different times of the day and across different days. However, 

these differences are likely to add noise to the data rather than leading to a systematic 

difference in readings being recorded between the different zones. 

 

The mid tide zone contained by far the highest numbers and density of T. magellanicus, 

whose larvae were abundant in filamentous algae growing on different substrates, such 

as bivalves and boulders. Within the mid zone, the variables that were most consistently 

associated with the presence of T. magellanicus were boulders, stones, Bostrychia sp. 

and U. intestinalis, consistent with the findings of the more general distribution study 

(Table 2.3). It is likely that these environmental features provide good shelter from 

extremes of temperature, irradiation and wind exposure, either by direct physical 

protection from these factors or by creating microclimates within, thereby reducing 

desiccation stress. 

 

The intertidal zone is the key habitat type for T. magellanicus, but within this zone certain 

conditions support higher larval population densities, namely large rocks (i.e. boulders) 

and filamentous algae (particularly Bostrychia sp. and Ulva intestinals). As a result, the 

species’ overall distribution is widespread but patchy. The data presented lay the 

foundation for future studies of this unusual insect’s distribution, ecology, phenology, 

physiology and general biology. With improved knowledge of the species’ preferred 

microhabitats we are better able to predict other locations where it may occur, and even 

to extrapolate the risk of it being transported elsewhere (e.g. in species distribution 

modelling, which can involve the direct use of GIS data or a combination of 

biogeographical, physiological and meteorological data (Gañán Mora et al. 2015, Fabri-

Ruiz et al. 2018, Pertierra et al. 2019, Vega et al. 2020). 
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CHAPTER 3 

 

Physiological limits of  

Telmatogeton magellanicus 
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3. Salinity, temperature and desiccation tolerance limits of 
Telmatogeton magellanicus (Diptera: Chironomidae) 
 
3.1 Abstract 
 

The recent rediscovery of the intertidal flightless midge Telmatogeton magellanicus on 

the shores of Navarino Island, south of the Beagle Channel in Tierra del Fuego, provides 

the opportunity to explore its biological characteristics and to establish what underpins 

this species’ resilience to the extreme temperatures and generally harsh environmental 

conditions of the region. We exposed larvae of T. magellanicus collected in Róbalo Bay 

to a series of laboratory treatments in order to assess their tolerance to low and high 

salinity, a gradient of temperatures ranging from -12ºC to ~38ºC, and exposure to three 

levels of relative humidity (50, 70 and 90%). The larvae had high resilience to salinity 

fluctuations and to high temperatures, surviving for at least 10 days in fresh water, 

seawater and brackish water, as well as at temperatures of up to 34ºC. Additionally, they 

were relatively resistant to lower temperatures, although survival decreased below -6ºC. 

It remains to be assessed whether the larvae are freeze-tolerant or freeze-avoiding. 

However, desiccation appears to be the main threat for the larvae of T. magellanicus and 

the main limiting factor to their distribution, as the larvae are very sensitive to low levels 

of relative humidity. 

 
3.2 Introduction 
 

Information on Antarctic and sub-Antarctic insect species is limited. However, gaining a 

better understanding of these species’ biology is crucial, especially given their restricted 

range and potential vulnerability to the impacts of climate change (Chown & Convey 

2016). Although not currently present in continental (East) Antarctica, insects have been 

present in the Antarctic region from at least the early Palaeocene (~70 mya) (Allegrucci 

et al. 2006, Convey et al. 2008). Nowadays, insects are found in the maritime Antarctic 

(Antarctic Peninsula and associated Scotia Arc archipelagos) and the sub-Antarctic 
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Islands (Convey & Block 1996; Chown & Convey 2016). Knowledge of their diversity, 

evolution and ecology is mostly based on studies undertaken in the past 50 years, 

catalysed by the works of J. L. Gressitt (Gressitt 1964, 1970a, 1970b, 1971) and most 

recently reviewed by Chown & Convey (2016). The historical isolation and specificity of 

insect taxa in the region can provide rich information on how long the fauna and flora of 

the continents and their related islands have been isolated. They also provide an 

important test case of how insects can adapt to extreme conditions (Allegrucci et al. 2006, 

2012, Convey et al. 2008, 2009).  

 

The terrestrial fauna and flora of the Antarctic Peninsula and Scotia Arc region is related 

to that of South America, with intimate geographical, biological, geological and 

glaciological histories (Mercer, 1976, Clapperton & Sugden, 1988, Clapperton et al., 

1989, Convey 2007, Rodbell et al. 2009, Fernandez et al., 2011), as seen in the naturally 

occurring midges (Diptera: Chironomidae) and beetles (Coleoptera) of the region. 

However, as Chown & Convey (2016) pointed out, the available literature is insufficient 

to properly determine the factors determining the current distribution and abundance of 

insect taxa in the region, which has consequences for any attempt to conserve them. In 

particular, little is known about their tolerance to changing temperature, humidity or 

salinity, although all of these factors may be influenced by climate change. 

 

Polar and sub-polar regions are constantly exposed to very low temperatures and other 

extreme conditions, such as low relative air humidity, high radiation, and exposure to 

strong winds (Walton 1982; Convey 1996; Convey et al. 2014). All of these factors are 

likely to impose strong selective pressures on the physiological tolerances of species in 

the region. The physiological tolerance of the brachypterous midge Telmatogeton 

magellanicus has not been studied, although its patchy distribution across the shoreline 

(Chapter 2) indicates that physiological tolerance to abiotic factors may be key to 

understanding its distribution. The lack of knowledge about its physiology contrasts with 

that of Belgica antarctica and Eretmoptera murphyi, two other brachypterous midges 

naturally occurring in the Antarctic and South Georgia, respectively (e.g Convey & Block 

1996, Worland 2010, Teets et al. 2011, Everatt et al. 2014a, Lee & Denlinger 2015). It is 



 

54 

appropriate to note that T. magellanicus was originally described within the genus Belgica 

(Rübsaamen 1906), implicitly sharing important morphological characteristics with this 

genus. 

 

In this chapter we assess the ability of T. magellanicus larvae to tolerate different levels 

of salinity, temperature and desiccation. In particular we address the following key 

questions relating to larval survival:  

1) What is the impact of changing salinity concentrations? 

2) What is the impact of different temperatures? 

3) What is the impact of changing relative humidity levels? 

 

3.3 Materials & Methods 
 
3.3.1 Sampling 
We manually extracted samples from the intertidal zone of Róbalo Bay (~4 km west of 

the city of Puerto Williams), Navarino Island, Chile, during October and November 2017 

(Fig. 2.2). We first collected adults using an entomological aspirator in order to document 

their reproductive activity, survival, oviposition pattern and egg batch sizes. 

Subsequently, substrate (sand + organic matter) was collected and taken to the laboratory 

at the Omora Field Station in Puerto Williams, whereupon we carefully extracted the 

larvae. Upon extraction, all larvae were placed in 6-well plates containing sea water 

[35ppt (parts per thousand) at 4ºC], with a small amount of substrate for food, for 24 h 

conditioning. In total, we extracted >1200 larvae. First (L1) and fourth instar larvae were 

not used in the experiments, as numbers were insufficient. 

 

3.3.2 Ecophysiological experiments 
3.3.2.1 Salinity tolerance 

We assessed survival and wet mass change in larvae under 5 different treatments: fresh 

water (0 ppt, parts per trillion), brackish water (17.5 ppt), seawater (35 ppt) and two 

hypersaline concentrations (52.5 and 70 ppt), with each treatment containing 30 larvae in 

individual tubes containing a small amount of substrate to avoid starvation. Preliminary 
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observations (not shown here) indicated that larvae tended to cluster together if left in a 

single tube. These treatments were applied to represent potential conditions that T. 

magellanicus is likely be exposed to in the collection environment, given the proximity of 

the Róbalo River (fresh water + river delta) on the one hand and the higher salinity 

concentrations of evaporated seawater during low tide periods on the other. We recorded 

survival of larvae (defined as spontaneous movement or movement in response to a 

gentle stimulus) in each sample at the end of the experiment and after a period of 72 h 

recovery at the end of the experiment in sea water at 4ºC. We measured wet mass change 

by gently drying individuals with a soft tissue and weighing them to the nearest 100 µg 

(using a Shimadzu AUX220 analytical balance) both before and immediately after 

treatment and following the recovery period. We obtained fresh water from Róbalo River, 

which discharges at Róbalo Bay and is one of the purest waters in the world, completely 

free of chemical contaminants (non-chlorinated) (Hedin, Armesto & Johnson, 1995, 

Weathers et al. 2000, Contador et al. 2015a, Mach et al. 2016, Rendoll et al. 2019). We 

prepared brackish water by mixing fresh water with seawater, and the highly saline 

treatments by reducing seawater through heat evaporation. Salinity was assessed using 

a Conductivity pH TDS Hanna Tester HI98130 salinity meter. 

 

3.3.2.2 Temperature tolerance 

We exposed 30 larvae of T. magellanicus in separate tubes to two experiments using 

heated and cooled test conditions respectively, to assess the upper and lower 

temperature limits of larvae. First, larvae were warmed at 0.1ºC min-1 from 4–37ºC in 1.5 

mL tubes containing 1 individual each that were placed in a thermoregulated water bath 

(Lab. Companion RW-0525G). In pilot experiments, we recorded no mortality until 30ºC. 

We therefore only began to assess mortality changes after this point, recording survival 

at 30, 31, 32, 33, 34, 35, 36, and 37 ºC. For the second experiment, larvae were cooled 

at 0.1ºC min-1 from 4ºC until -12ºC was reached (water bath antifreeze liquid limit). In this 

case, we recorded survival at 0, -3, -6, -9, and -12 ºC. The range of temperatures used in 

these experiments reflected those experienced in the natural environment at Navarino 

Island, where temperatures range from as low as -12ºC in the winter, up to 26ºC during 

the summer (yearly average of 6.0ºC; 9.6ºC during the warmest month and 1.9ºC during 
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the coldest) (DGAC 2019). We checked survival as described above. We also reassessed 

survival at 24 h and 48 h after recovery. Wet mass was not measured in this experiment. 

 

3.3.2.3 Desiccation tolerance 

We exposed individual larvae (n = 10) of T. magellanicus to a 50% relative humidity (R.H.) 

(~4ºC) treatment for 160 min to test their baseline tolerance to desiccation stress; larvae 

were spread individually on 2 cm2 aluminum foil tins. At 10 min intervals throughout the 

experiment, larvae were checked for survival and wet mass measured as described 

above. We followed up this low-humidity experiment with another experiment where 

individual larvae were exposed to 70 or 90% R.H. (n = 30 larvae for each humidity and 

time period) for 16 h and 84 h respectively. The differing lengths of times used across the 

different R.H. levels reflect the relatively longer survival times of larvae in high-humidity 

conditions. Across all treatments, desired R.H. levels were established using an electric 

humidifier and checked with a Kestrel 3000 anemometer in a closed temperature-

controlled vivarium. The R.H. levels chosen reflect the low but variable humidity 

conditions experienced on Navarino Island, where R.H. averages 69.3% but drop as low 

as 40.2% or increase to 96.0% (Meteorological Station 550001). 

 

3.3.3 Statistical analyses 
To test for normality in all data, Shapiro-Wilk tests were used. Data that were normally 

distributed underwent an analysis of variance (ANOVA), with Tukey’s post-hoc tests 

applied where an initial significant difference was found. Non-normally distributed data 

were analysed using Kruskal-Wallis (with pairwise Wilcoxon post-hoc) or Aligned Rank 

Transform (ARTool R package; Wobbrock et al. 2011, Harrar et al. 2019) tests. We tested 

for differences in percentage survival and mass of larvae between the five salinity 

concentrations and across five time periods (6 h, 1, 2, 5 and 10 d). We also specifically 

assessed the impact of being alive or dead on mass of larvae at 2 d and 10 d (survival 

gauged from after recovery period) across the five different salinity concentrations. We 

tested for differences in percentage survival across different temperature treatments at 

30, 31, 32, 33, 34, 35, 36, and 37 ºC for the heating experiment and at 0, -3, -6, -9, and -

12 ºC for the cooling experiment. Further we tested whether survival differed across time 
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periods separately between the three different relative humidity levels. Finally we 

assessed whether mass of dead and living larvae differed across the different time 

periods for each of the three relative humidity conditions (50% R.H.: 60, 80, 100, 120, 

140, and 160 min; 70% R.H.: 4, 8, 12, and 16 h; 90% R.H.: 12, 24, 48, 72, and 84 h). See 

Table 3.1 for a summary of statistical methods used and analyses conducted. 

 

Table 3.1. Summary of statistical analyses carried out across three ecophysiological 

experiments (ART, Aligned Rank Transform). 

Experiment Dataset Method Post-hoc Explanatory variables 

Salinity  

% Survival ART ART Concentration, time period 

Mass Change ANOVA Tukey Concentration, time period 

Alive/dead x 
Mass Change (2 

d) 
ART ART Alive/dead, concentration 

Alive/dead x 
Mass Change (10 

d) 
ART ART Alive/dead, concentration 

Temperature 
% Survival Heat 

Kruskal-Wallis Wilcoxon Temperature 
% Survival Cold 

Relative 
humidity 

Mass (R.H. 50%) ART ART Alive/dead, R.H. 

Mass (R.H. 70%) ART ART Alive/dead, R.H. 

Mass (R.H. 90%) ART ART Alive/dead, R.H. 
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3.4 Results 
 
3.4.1 Reproduction and oviposition 
Telmatogeton magellanicus reproduces sexually and, in laboratory conditions, lays egg 

batches (without egg sacs) containing 1–40 eggs, often in a chain or in a spherical 

‘globule’ shape, but also in random patterns. Eggs are yellow when deposited, 

transitioning to a brown or dark brown colour as they develop, hatching after ~14 d at 4ºC 

in seawater. 

 

3.4.2 Salinity tolerance 
Survival did not significantly differ across the different salinity concentrations, nor was 

there a significant interaction between treatment and time (Table 3.2). However, survival 

decreased over time in all treatments, except ambient seawater (Table 3.2; Fig. 3.1). 

Larval mass varied significantly across salinity concentrations and with time (Table 3.2). 

There was also a significant interaction between salinity and time, with inspection of the 

plots showing that this was driven by a sharper loss of weight in the 70 ppt treatment over 

time (Table 3.2, Figure 3.2). Mass loss did not differ significantly between living and dead 

larvae or across concentrations for samples exposed to the different salinity 

concentrations after 2 d (Table 3.2; Fig. 3.3). However, there was a significant interaction 

between living/dead larvae and concentration for samples exposed to concentration 

gradients for 10 d, with inspection of the data showing that this was driven by a lower 

mass in dead insects than living insects at 70 ppt (Table 3.2; Fig. 3.4). 
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Table 3.2. Summary of analyses for water salinity tolerance across five different 

concentration treatments from 6 h to 10 d (ART, Aligned Rank Transform) 

 Method Explanatory variable F Df  Chi-squared DF.res Pr(>F) 

Survival ART 

Time 18.794 4  98.760 <0.001 

Concentration     0.706 4  79.387 0.590 

Time:Concentration 0.515 16  223.047 0.938 

Mass Change ANOVA 

Time 7.115 4 8663 2165.7 <0.001 

Concentration 5.280 4 6429 1607.3 <0.001 

Time:Concentration 1.869 16 9103 568.9 0.020 

Alive/dead x 
Mass Change 
(2 days) 

ART 

Concentration 0.634 4  549.78 0.638 

Alive/dead 0.505 1  140.00 0.478 

Concentration:Alive/dead 0.158 4  140.00 0.959 

Alive/dead x 
Mass Change 
(10 days) 

ART 

Concentration   0.358 4  19664 0.838 

Alive/dead 0.061 1  138 0.805 

Concentration:Alive/dead 4.552 4  138 0.002 
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Figure 3.1. Survival (%) of Telmatogeton magellanicus 72 h after recovery from exposure 

to five water salinity concentrations (0 ppt, 17.5 ppt, 35 ppt, 52.5 ppt and 70 ppt) for a 

range of time periods (6 h, and 1, 2, 5 and 10 d) at 4°C. Means±SEM are presented for 

three replicates of 10 individuals. Means with the same letter are not significantly different 

within each concentration group at p < 0.05 (Tukey’s multiple range test). 
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Figure 3.2. Percentage wet mass loss or gain of Telmatogeton magellanicus after 

exposure to one of five water salinity treatments (0 ppt, 17.5 ppt, 35 ppt, 52.5 ppt and 70 

ppt) for a range of time periods (6 h and 1, 2, 5 and 10 d). The mean±SEM is presented 

for three replicates of 10 individuals. 
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Figure 3.3. Mass loss or gain of living and dead Telmatogeton magellanicus larvae 72 h 

after recovery from exposure to five water salinity concentrations (0 ppt, 17.5 ppt, 35 ppt, 

52.5 ppt and 70 ppt) for 2 d at 4°C. Means±SEM are presented for three replicates of 10 

individuals. 
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Figure 3.4. Mass loss or gain of living and dead Telmatogeton magellanicus larvae 72 h 

after recovery from exposure to five water salinity concentrations (0 ppt, 17.5 ppt, 35 ppt, 

52.5 ppt and 70 ppt) for 10 d at 4°C. Means±SEM are presented for three replicates of 10 

individuals. 

 

3.4.3 Temperature tolerance 
In the heating experiment (Table 3.3; Fig. 3.5B) larval mortality increased significantly at 

higher temperatures, with post hoc tests showing significant reduction in survival between 

all temperatures in the range 33–37ºC, at which point all larvae were dead. Similarly in 

the cooling experiment, larval survival decreased significantly with progression between 

-3, -6, -9, and -12ºC, when only 20% of larvae were still alive (Table 3.3; Fig. 3.5A), and 

only one larva recovered from the treatment. 
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Table 3.3. Analyses of survival against temperature 

Experiment Method Test Df  chi-squared  Pr(>F)   

Heated 
Kruskal-Wallis 

Temperature 7 158.48 < 0.001 

Cooled Temperature 4 71.652 < 0.001 

 

 

 
Figure 3.5. Survival of Telmatogeton magellanicus larvae 48 h after exposure to two 

temperature treatments in sea water (35 ppt). A: Progressively cooling temperatures; B: 

Progressively heating temperatures. Means±SEM are presented for 30 individuals. 

 

3.4.4 Desiccation tolerance 
Percentage survival differed significantly (Table 3.4) between the different time-periods 

at 50% relative humidity (time periods: 60, 80, 100, 120, 140, 160 min; Kruskal-Wallis, 

Chi-square = 26.818, d.f. = 5, p < 0.001), 70% humidity (time periods: 4, 8, 12, 16 h; 
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Kruskal-Wallis, Chi-square = 35.810, d.f. = 3, p < 0.001), but not 90% humidity (time 

periods: 12, 24, 48, 72, 84 h; Kruskal-Wallis, Chi-square = 9.321, d.f. = 4, p = 0.054) (Fig. 

3.6).  At 50% relative humidity (R.H.), mass change did not vary significantly between 

time periods or between living and dead individuals (Fig. 3.7). However, at both 70% (Fig. 

3.8) and 90% (Fig. 3.9) humidity mass was significantly lower in dead individuals than live 

individuals, but this did not vary with time and there was no interaction between time and 

living/dead status. 

 

Table 3.4. Summary of analyses investigating the impact of time and living/dead status 

on mass across three different relative humidity (%) treatments at 4ºC (ART, Aligned 

Rank Transform) 

Experiment Method Explanatory 
variable 

Df  DF.res F value    Pr(>F)   

Desiccation 50% ART 

Time 5 2656.5 0.118 0.988 

Alive/dead 1 49.0 4.020 0.051 

Alive/dead:Time 4 49.0 0.199 0.938 

Desiccation 70% ART 

Time 3 5105.2 1.121 0.339 

Alive/dead 1 112.0 51.336 <0.001 

Alive/dead:Time 3 112.0 1.803 0.151 

Desiccation 90% ART 

Time 4 38161.0 1.082 0.364 

Alive/dead 1 139.0 43.621 <0.001 

Alive/dead:Time 4 139.0 1.432 0.227 
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Figure 3.6. Survival of Telmatogeton magellanicus larvae after exposure to three relative 

humidity (R.H.) treatments at 4ºC: 50%, 70% and 90%. Means±SEM are presented for 

10 individuals for the 50% treatment, and three replicates of 10 individuals for the 70% 

and 90% treatments. Data were log-transformed for visualisation purposes. 
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Figure 3.7. Wet mass loss and survival of Telmatogeton magellanicus larvae after 

exposure to 50% relative humidity (R.H.) at 4ºC. Means±SEM are presented for 10 

individuals. 
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Figure 3.8. Wet mass and survival of Telmatogeton magellanicus larvae after exposure 

to 70% relative humidity (R.H.) at 4ºC. Means±SEM are presented for 30 individuals. 
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Figure 3.9. Wet mass and survival of Telmatogeton magellanicus larvae after exposure 

to 90% relative humidity (R.H.) at 4ºC. Means±SEM are presented for 30 individuals. 

 

3.5 Discussion 
 

The patterns of oviposition and egg development recorded here are the first for the sub-

Antarctic species of Telmatogeton. When the adults were put together in the collection 

tubs, they immediately started to mate and the females would oviposit as soon as possible 

in any available surface, even though they seem to favour algae, when available. We 

hypothesise that the random patterns observed are mainly a result of the stress caused 

by the collection procedures and being kept outside their natural habitat. Egg 

development time (~14 days) is not that different from Belgica antarctica (16 days)  

(Harada et al. 2014) and Eremoptera murphyi (30 days) (Bartlett 2019), but the absence 

of egg sacs, exposing the eggs to harsher conditions, is a possible limiting factor if T. 
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magellanicus were to be transported (artificially or naturally) to a more extreme location. 

Additionally, we understand that, being an intertidal animal, the speed with which the eggs 

develop is heavily affected by the tidal cycle, which we could not replicate in the available 

laboratory conditions. 

 

We recorded only limited effects of salinity on larval survival, with no differences in 

survival recorded across treatments, but a significant increase in mortality over time in all 

treatments but that of sea water (35 ppt). This higher mortality is an indicator of low or 

high salinity stress. Mass loss was higher in the 70 ppt treatment, but only after ten days. 

This is possibly driven by the higher mass loss recorded in dead versus live individuals 

at this time period. In contrast to salinity, temperature had a marked effect on mortality, 

with % mortality increasing with each temperature increment over 32ºC and all individuals 

being dead by 37ºC. Similarly, % mortality also increased as temperature was decreased 

below -3ºC, with 90% of individuals being dead by -12ºC. Finally, humidity also had a 

marked effect on survival, with mortality occurring much faster at 50% R.H. than at 70% 

or 90%. There was a general reduction in body mass through time, at 50% and 90% 

humidity, that was not statistically related to mortality. In contrast, mass did not vary 

significantly between each time period in any R.H., but was lower in dead than living 

individuals at both 70% and 90% R.H. These data demonstrate that T. magellanicus 

larvae are tolerant to changes in salinity, but in contrast are sensitive to changes in 

temperatures (both at high and low temperatures) and relative humidity levels. 

 

It may not be surprising to see larvae thriving in salinity conditions of 17.5 ppt or 52.5 ppt, 

as their intertidal habitat will experience natural fluctuations in exposure to sunlight and 

temperature, creating varied degrees of water evaporation, hence affecting salinity levels 

(Soong & Leu 2005). It is also worth noting that larvae are normally only exposed to these 

conditions over a limited time period within the tidal cycle, and in particular that the longer 

time intervals they were submitted to in this experiment would not normally occur and 

therefore represent extreme conditions. As can be seen by their wet mass changes, the 

larvae do not seem to be osmotically affected for up to five days, which is a long time 

period compared to exposure times likely to be experienced in the wild (Fig. 3). This 
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striking ability to withstand, for relatively long periods, exposure to both fresh water and 

more hypersaline solutions (70 ppt) also raises the question of whether the species could 

actively survive in a fluvial system or in briny pools, although we did not locate them in 

these habitats in our surveys (Chapter 2). Given their tolerance to salinity changes, it is 

more likely that other life cycle characteristics may be a more significant barrier to them 

invading these different types of environment than physiological constraints alone. 

 

To a greater degree than salinity, temperatures vary significantly over a full year at 

Navarino Island, to the point that the bay shorelines may become frozen during the winter, 

but reach 26ºC during the summer. Our data suggest that T. magellanicus larvae are pre-

adapted to even more extreme temperatures than those already experienced in its current 

habitat. However, it is also possible that the relatively rapid changes in temperature 

imposed in this experiment were not reflective of longer-term changes in the wild and 

therefore did not allow larvae to acclimate. For example, in some trial experiments, we 

have found that larvae can survive freezing for at least 24 hours, which opens up a 

window that can be explored in future studies, to test what cellular or extra-cellular 

strategies they employ. One such strategy might be freeze-avoidance as noted by its very 

patchy distribution in the wild, which suggests that the areas where they are found provide 

shelter from extreme conditions, such as where algae (mainly Bostrychia sp.) is present 

(Chapter 2). 

 

Desiccation seems to be, above all else, the main danger for the larvae of T. 

magellanicus, and we found much higher rates of mortality when the larvae were exposed 

to lower humidity conditions. The absence of the species on the high tide zone identified 

from our field surveys (Chapter 2) further suggests that desiccation could be a limiting 

factor. As well as being relatively drier, the high tidal zone also lacks major shelter spots, 

such as filamentous algae or even sand where the larvae could escape the low humidity 

conditions. 

 

Overall, the data discussed here suggest that temperature and humidity, but not salinity, 

are important factors in determining the local-scale distribution of T. magellanicus on 
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Navarino Island. Given that both of these factors are likely to change with climate 

warming, with the region predicted to become 1.5–2º C warmer over the next 80 years 

(Collins et al. 2013; Turner et al. 2014), it is likely that local distributions may alter in the 

future. Again, in this case the main barrier for potential transportation/migration to other 

areas would be desiccation. A profitable future area of research would be to investigate 

the natural ability of the species to disperse and also the potential of T. magellanicus to 

deal with colder temperatures and whether they could live in an even more extreme 

environment such as Antarctica. 
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CHAPTER 4 

 

Salinity tolerance of  

Eretmoptera murphyi  
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4. Salinity tolerance of the flightless midge Eretmoptera 
murphyi (Diptera: Chironomidae) on Signy Island 
 
4.1 Abstract 
 

Eretmoptera murphyi is a flightless midge native and endemic to South Georgia, but that 

has been introduced to Signy Island, in the maritime Antarctic South Orkney Islands. The 

species is known to be pre-adapted to extreme climatic conditions, but its tolerance to 

varying levels of salinity in water has not been studied. Here, we tested the survival limits 

of E. murphyi larvae to exposure to five different levels of salinity [from fresh water (0ppt) 

to briny water (70ppt)] over a 10 d period. The larvae were extremely tolerant to exposure 

to brackish water, with 50% surviving for 10 days, and, to a lesser degree, to freshwater 

and seawater submersion (falling below 50% survival after 2 days). The high tolerance to 

brackish conditions can be regarded as a further pre-adaptation to the naturally high 

salinity levels that may be experienced close to the coast on Signy Island, associated with 

seaspray and the presence of large numbers of marine vertebrates (seals) on land. 

Survival differed significantly between fresh or seawater and the two treatments led to 

very different mass change trends, likely a direct consequence of osmotic imbalance, with 

fresh water increasing the intake of water in larvae, and the opposite happening in 

seawater, but with both resulting in increased stress and decreased survival in the larvae. 

The data obtained further corroborate the pre-adaptation of E. murphyi to the harsh 

conditions of the maritime Antarctic, enabling it to colonise new habitats. 

 
4.2 Introduction 
 

The flightless midge Eretmoptera murphyi Schaeffer, 1914 (Chironomidae: 

Orthocladiinae) is palaeoendemic to sub-Antarctic South Georgia (Allegrucci et al. 2006, 

2012) and is thought to have been accidentally introduced in the 1960s to Signy Island, 

one of the South Orkney Islands of Antarctica, during a series of plant transplant 

experiments (Block et al. 1984, Convey and Block 1996, Bartlett et al. 2018a, b). Although 
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not formally confirmed, it has been suggested based on recent molecular phylogenetic 

studies that the species correctly belongs in the genus Belgica Jacobs, 1900 [Allegrucci 

et al. 2012], a genus that contains Belgica antarctica Jacobs, 1900, the only insect 

endemic to the Antarctic continent, and B. albipes, endemic to the sub-Antarctic Crozet 

archipelago. The species spends most of its two year life cycle as a larva living in and 

feeding on organic-rich peat soil, with a very short period as an adult, when it reproduces 

parthenogenetically (Cranston 1985, Convey 1992, Bartlett et al. 2018a).  

 

At Signy Island, E. murphyi is mostly found in peat soil, which also acts as its food source. 

Historically, the species was first introduced close to the coast on Signy island, but recent 

documentation shows the species’ distribution has been expanding away from the coast 

and to higher altitudes (Hughes & Worland 2010, Bartlett 2019). Hughes et al. (2013) and 

Bartlett (2019) suggest that the species is capable of considerable further range 

expansion even under contemporary conditions. It is therefore important to better 

understand the species’ physiological limits in order to allow better prediction of its future 

expansion. Furthermore, as an invasive species on the island, E. murphyi can be 

considered as a model for other invasive insect and invertebrate taxa both in the Antarctic 

and sub-Antarctic, with a greater understanding of their physiological limits perhaps 

leading to a better understanding of the limits to invasion in other species. 

 

Hayward et al. (2007), Worland (2010) and Everatt et al. (2014a) quantified desiccation 

tolerance in larvae of E. murphyi, with the latter contrasting it to the Arctic dipteran 

Heleomyza borealis (Boheman, 1865). Everatt et al. (2014a, b) have also determined its 

positive and negative temperature limits (Worland & Convey 2001, Worland & Block 2003, 

Worland 2010). However, to date no studies have assessed larval tolerance to salinity, 

although Bartlett (2019) measured egg sac survival rates under these conditions. 

Additionally, Convey (1992) and Bartlett et al. (2018b) investigated the impacts of heat 

and desiccation stresses on E. murphyi egg sac survival and its implications for the 

species’ reproductive success. 
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In this chapter we assess the ability of the larvae of Eretmoptera murphyi to tolerate 

exposure to different levels of salinity. In particular we assess the impact of salinity on 

larval survival and wet mass. 

 

4.3 Materials & Methods 
 
4.3.1 Sampling 
Substrate samples were obtained close to Signy Research Station, Factory Cove, Borge 

Bay, Signy Island in the austral summers of 2016 and 2017 (Figure 4.1). The substrate, 

which is mostly peat and is exposed to sea spray, was then stored in plastic tubs and 

taken back to the British Antarctic Survey (Cambridge, United Kingdom), whereupon 

larvae were extracted and immediately submitted to their respective treatments. In total, 

we extracted 150 larvae. First and fourth instar larvae were not used in the experiments, 

as the former are very difficult to handle and likely to be extremely susceptible to stress 

(Bartlett et al. 2018a), while the latter were only present in small numbers. 

 

The Signy field site was generally very stable throughout the 2016/2017 season (Bartlett 

et al. 2018a, b). The mean pH in the vegetation layer was 5.3 ± 0.13 SE, and underlying 

soil pH was 5.5 ± 0.11 SE (n = 7 in each layer). Salinity was also largely stable in the 

vegetation and soil, with only one spike during a week of high storm activity detected in 

the vegetation layer, when it rose to 27 ppt, from an average of 10 ± 2 μS SE. Salinity in 

the soil layer remained close to 4 ± 0.5 ppt (Bartlett et al. 2018). Soil temperatures on the 

island can fall below -10 ºC, but also frequently rise above air temperature, with records 

of moss or soil surface temperatures peaking as high as 38.5 °C (Walton 1982, Davey et 

al. 1992, Bokhorst et al., 2008, Bartlett 2019, Convey et al. 2018). 

 



 

77 

 
Figure 4.1. Map of Signy Island. In red is Signy Research Station, where the larvae of 

Eretmoptera murphyi were collected. 

 

4.3.2 Salinity tolerance 
We assessed the survival and wet mass change of larvae under 5 different salinity 

exposure treatments over 10 d (in five time steps: 6 h, 1 d, 2 d, 5 d and 10 d): fresh ‘field 

water’ (0 ppt), brackish water (17.5 ppt), seawater (35 ppt) and two hypersaline 

concentrations (52.5 and 70 ppt), with each treatment including 30 larvae in individual 
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tubes, as well as a small amount of substrate to avoid starvation. ‘Field water’ was created 

by adding local substrate (peat) to deionised water at a 1:3 ratio. This mixture was then 

left for 1 week at 5°C in the dark, to replicate the organic matter composition of the 

environment as per Bartlett et al. (2018b). Brackish water was prepared by mixing fresh 

‘field’ water with seawater to the required concentration, and the highly saline treatments 

by reducing seawater through heat evaporation. Salinity was assessed using a 

Conductivity pH TDS Hanna Tester HI98130 salinity meter. We recorded survival of 

larvae (defined as spontaneous movement or movement in response to a gentle stimulus) 

in each sample at each recording period and, for non-responsive larvae, after a further 

period of 72 h in wet substrate. The same larvae were used to measure wet mass change, 

by gently drying individuals with a soft tissue and weighing them to the nearest 100 µg 

(using a Shimadzu AUX220 analytical balance) both before and immediately after 

treatment and following the recovery period. Because of the limited number of specimens, 

and as dead larvae were removed from their respective treatments, numbers present in 

each treatment reduced over time. All experiments were carried out at a constant 

temperature of 4ºC. 

 

4.3.3 Statistical analyses 
To check for normality in all data, Shapiro-Wilk tests were used. Data that were normally 

distributed underwent an Analysis of Variance (ANOVA) with Tukey HSD post-hoc tests, 

while non-normally distributed data were analysed using Kruskal-Wallis tests, with 

pairwise Wilcoxon post-hoc tests. We tested for differences in % survival (including the 

72-h recovery period) and wet mass change of larvae between the five salinity 

concentrations and across the five time periods (6 h, 1 d, 2 d, 5 d, 10 d). Groups were 

included in statistical tests for wet mass change when there were at least 10 individuals 

present, reducing the number of comparisons at later time periods. 
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4.4 Results 
 
4.4.1 Salinity tolerance 
Survival did not differ between salinity treatments after 6 h exposure (X2 = 1.3263, d.f = 4, 

p = 0.857), but was significantly different after 1 d (X2 = 22.4, d.f = 4, p < 0.001), 2 d (X2 = 

31.475, d.f = 4, p < 0.001), 5 d (X2 = 42.086, d.f = 4, p < 0.001) and 10 d (X2 = 46.726, d.f 

= 4, p < 0.001) (Figure 4.2; post-hoc outputs in Table 4.1). Survival differed significantly 

between time steps for 0 ppt (X2 = 30.405, d.f = 4, p < 0.001), 35 ppt (X2 = 47.475, d.f = 4, 

p < 0.001), 52.5 ppt (X2 = 67.59, d.f = 4, p < 0.001) and 70 ppt (X2 = 105.59, d.f = 4, p < 

0.001), but not at 17.5ppt (X2 = 8.2493, d.f = 4, p = 0.083) (post-hoc outputs in Table 4.2). 

 

Table 4.1. Post-hoc test outputs for % survival between different salinity exposures at 

each sampled time step. Numbers in bold are statistically significant (p < 0.05). 

 
Salinity 

0 ppt 17.5 ppt 35 ppt 52.5 ppt 

1 d 

17.5 ppt 0.499 -        -        -       
35 ppt 0.611 0.286 -        -       

52.5 ppt 0.428 0.123 0.611 -       
70 ppt 0.002 <0.001 0.006 0.02 

2 d 

17.5 ppt 0.339 -        -        -       
35 ppt 0.445 0.106 -        -       

52.5 ppt 0.057 0.005 0.215 -       
70 ppt <0.001 <0.001 <0.001 0.011 

5 d 

17.5 ppt 0.024 -        -       -       
35 ppt 0.569 0.007 -       -       

52.5 ppt 0.003 <0.001 0.007 -       
70 ppt 0.003 <0.001 0.007 -   

10 d 

17.5 ppt 0.048 -        -       -       
35 ppt 0.019 <0.001 -       -       

52.5 ppt 0.005 <0.001 0.334 -       
70 ppt 0.005 <0.001 0.334 -      

 



 

80 

 

 

Table 4.2. Post-hoc test results for % survival at successive sampling times for each 

salinity exposure. Numbers in bold are statistically significant (p < 0.05). There was no 

significant difference through time at 17.5 ppt so Post-hoc tests were not conducted at 

this salinity. 

 
Sampling time 

6 h 1 d 2 d 5 d 

0 ppt 

1 d 0.101 -       -       -      
2 d 0.006 0.219 -       -      
5 d <0.001 0.010 0.149 -      

10 d <0.001 0.006 0.101 0.784 

35 ppt 

1 d 0.060 -        -       -      
2 d 0.001 0.141 -       -      
5 d <0.001 0.007 0.172 -      

10 d <0.001 <0.001 0.001 0.035 

52.5 ppt 

1 d 0.031 -        -      -  
2 d <0.001 0.021 -      -  
5 d <0.001 <0.001 0.007 -  

10 d <0.001 <0.001 0.007 -  

70 ppt 

1 d <0.001 -      -   - 
2 d <0.001 0.011 -   - 
5 d <0.001 0.011 -   - 

10 d <0.001 0.011 -   - 
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Figure 4.2. Survival (%) of Eretmoptera murphyi larvae 72 h after recovery from exposure 

to one of five salinity exposures (0 ppt, 17.5 ppt, 35 ppt, 52.5 ppt, and 70 ppt) for a range 

of time periods (6 h, 1, 2, 5, 10 d) at 4°C. Means ±SEM are presented for 30 individuals. 

Means with the same letter are not significantly different within each sampling time group 

(Wilcoxon post-hoc test). 

 

Wet mass (Figure 4.3) varied significantly between salinity exposures at all sampling 

times: 6 h (X2 = 97.413, d.f = 4, p < 0.001), 1 d (F = 206.5, d.f = 4, p < 0.001), 2 d (F = 

67.05, d.f = 2, p < 0.001), 5 d (X2 = 14.156, d.f = 1, p < 0.001) (post-hoc outputs in Table 

4.3). Survival also differed significantly between sampling times at all salinity exposures, 

0ppt (chi-squared = 9.2568, d.f = 3, p = 0.026), 17.5ppt (F = 4.804, d.f = 4, p = 0.001), 

35ppt (chi-squared = 45.921, d.f = 2, p < 0.001), 52.5ppt (chi-squared = 31.88, d.f = 1, p 

< 0.001) and 70ppt (chi-squared = 37.136, d.f = 1, p < 0.001) (post-hoc outputs in Table 

4.4) (Figure 4.3). 
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Table 4.3. Post-hoc test results for wet mass change between salinity exposures for each 

sampling time. Numbers in bold are statistically significant (p < 0.05). N.b. number of 

comparisons declines over time, owing to larval mortality. 

 
Concentration 

0ppt 17.5ppt 35ppt 52.5ppt 

6 h 

17.5ppt <0.001 -        -        -       

35ppt <0.001 <0.001 -        -       

52.5ppt <0.001 <0.001 0.006 -       

70ppt <0.001 <0.001 <0.001 <0.001 

1 d 

17.5ppt <0.001 - - - 

35ppt <0.001 <0.001 - - 

52.5ppt <0.001 <0.001 0.040 - 

70ppt <0.001 <0.001 <0.001 <0.001 

2 d 
17.5ppt <0.001 - - - 

35ppt <0.001 <0.001 - - 

5 d 17.5ppt <0.001 - - - 
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Table 4.4. Post-hoc test results for wet mass change at successive sampling times for 

each salinity exposure. Numbers in bold are statistically significant (p < 0.05). N.b. 

number of comparisons declines over time owing to larval mortality. 

 
Concentration 

6h 1d 2d 5d 

0ppt 

1d 0.080 -      -      -     

2d 0.350 0.750 -      -     

5d 0.030 0.240 0.240 -     

17.5ppt 

1d 0.300 -      -      -     

2d 0.008 0.580 -      -     

5d 0.064 0.922 0.974 -     

10d 0.994 0.251 0.011 0.062 

35ppt 
1d <0.001 -        -        -       

2d <0.001 0.001 -        -       

52.5ppt 1d <0.001 -      -      -     

70ppt 1d <0.001 -      -      -     
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Figure 4.3. Mean percentage wet mass loss or gain of Eretmoptera murphyi larvae under 

exposure to one of five salinity treatments (0 ppt, 17.5 ppt, 35 ppt, 52.5 ppt, 70 ppt) over 

time (6 h, 1, 2, 5, 10 d). Means ±SEM are presented for 30 individuals at the start of the 

experiment, with numbers declining over time as the experiment progressed, owing to 

mortality (* = n < 10 specimens). 

 

Over the first six hours of experimental exposures, there was no difference in larval 

survival across treatments, but there was a noticeble difference in larval behaviour, with 

those exposed to higher saline concentrations being extremely active, but those in lower 

concentrations (especially fresh water) being largely inactive. However, at all other time 

points survival was different between treatments, with survival declining more rapidly in 

freshwater and higher salinity concentrations than in brackish water. Wet mass was 

significantly different between treatments at all time-points, with the three most saline 

treatments having a lower mass and freshwater having a higher mass. These patterns 
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became more pronounced over time, with freshwater samples gradually gaining mass 

and higher saline concentrations losing mass. 

 

4.5 Discussion 
 

It is clear that survival was highest in brackish water, with only limited changes in mortality 

and wet mass over the entire experiment. This high tolerance to brackish conditions is 

most likely linked to the natural salinity levels that occur close to the coast at Signy Island 

[~4ppt to ~27ppt (Bartlett 2019)], associated with seaspray and also the presence of large 

numbers of marine vertebrates (seals) on land. Survival did differ in exposure to ‘field’ or 

seawater, and both treatments had very different mass change trends. The most 

immediate conclusion would be that this is a direct consequence of osmotic imbalance, 

with fresh water increasing the intake of water in larvae, with the opposite happening in 

seawater, resulting in increased stress and decreased survival in the larvae. However, 

with the limited data at hand we cannot know whether E. murphyi is an osmoconformer 

or osmoregulator and, therefore, exactly what is causing these patterns. To investigate 

this further, we would need to more deeply analyse other factors, such as haemolymph 

composition, respiration, water potential and use of metabolic water. 

 

Eretmoptera murphyi has already shown its potential to invade new habitats, being pre-

adapted to cold conditions (Worland 2010) and tolerant to desiccation (Everatt et al. 

2014a). In this study we have demonstrated that larvae of the species show some 

sensitivity to both high and low salinity exposures, at least over longer time-periods. This 

suggests that the potential of this species to invade more coastal or more inland areas 

may be limited, but not impossible. Assessing these physiological limits in more detail 

and correlating these data with available habitats will provide a greater insight into which 

areas the species may ultimately be able to occupy, including nearby regions. This 

includes the Antarctic Peninsula, where increasing temperatures and ice-free areas, 

provide new potential colonisation grounds and opportunities for the species (Hughes et 

al. 2005, Hughes & Convey 2014, Bartlett 2019). 
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CHAPTER 5 

 

Phylogeography of  

Parochlus steinenii 
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5. Parochlus phylogeography 
 
5.1 Abstract 
The chironomid midge Parochlus steinenii, one of only two holometabolous insects 

occurring in Antarctica, is also found around lakes in southern South America and in 

South Georgia. Previously published evidence, based on a small number of sequences 

of the 28S rDNA gene, inferred separation between South American populations and 

those in South Georgia and Antarctica, suggesting they diverged around 7 my. To further 

test the divergence hypothesis, we extracted the DNA from over 150 specimens of P. 

steinenii from 13 different lakes spread through most of the species known range. In 

addition to obtaining further 28S sequences, we expanded the analysis to include the 

mitochondrial COX1 gene. No variation was present among the new 28S sequences, in 

contrast to the previous study. However, sufficient variation was present amongst the 

COX1 sequences to permit phylogeographic analysis and the generation of a haplotype 

network and molecular phylogeny. These analyses corroborate the deep genetic 

separation of South American from South Georgian and Antarctic clades. A subsequent 

divergence was also apparent between the latter two clades, consistent with a later split, 

likely through a vicariance event. 

 

5.2 Introduction 
 
Insects have been linked to the Antarctic region from, at least, the early Palaeocene (~70 

Mya) (Allegrucci et al. 2006, Convey et al. 2008). Nowadays, insects can be found in the 

maritime Antarctic (Antarctic Peninsula and associated Scotia Arc archipelagos) and the 

sub-Antarctic islands (Chown & Convey 2016). Knowledge of their diversity, evolution and 

ecology mostly stems from studies in the past 50 years, catalysed by the works of J. L. 

Gressitt (1964, 1970a, 1970b, 1971) and most recently reviewed by Chown & Convey 

(2016). However, even with the increasing scientific efforts in the area, much remains 

unknown about the evolution and adaptations of the insect taxa currently found in the 

region. 
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The fauna of the Antarctic region is closely related to that of South America, with intimate 

geographical, biological, geological and glaciological histories (Mercer, 1976; Clapperton 

& Sugden, 1988; Clapperton et al., 1989; Rodbell et al. 2009; Fernandez et al., 2011). 

This can be seen in the naturally occurring midges (Diptera: Chironomidae) and beetles 

(Coleoptera) of the region. Even though much still remains to be resolved in clarifying the 

relationships of sub-Antarctic and Antarctic taxa to their sister-groups in South America, 

the evidence already available allows development of hypotheses and predictions relating 

to the temporal scale of species divergence and subsequent colonisation of the Antarctic 

region, such as the long-term presence of Antarctic biota and persistence of populations 

in ice-free areas (Convey et al. 2008), or the dispersal patterns in insect species such as 

Belgica antarctica (Allegrucci et al. 2012). 

 

One of the most tractable modern tools used to investigate species divergence in both 

micro- and macroevolutionary processes is phylogeography based on mitochondrial gene 

sequence (Avise 2000). Through its use, it is possible to infer regional patterns of 

biodiversity by analysing the genetic structure of populations. The Scotia Arc, the 

geological region extending from southern South America, through South Georgia, the 

South Sandwich Islands, South Orkney Islands and South Shetland Islands to the 

Antarctic Peninsula, has been the focus of many studies addressing the geographic 

evolution of the region through its terrestrial and marine flora and fauna (e.g. Bermingham 

& Moritz 1998, Linse et al. 2007, Sérsic et al. 2011, Gonzáles-Wevar et al. 2012, Sands 

et al. 2015, Levy et al. 2016, Biersma et al. 2018). However, many groups of microbes, 

plants and animals have yet to be studied in this context. 

 

Such work has yielded important insights into the long-term history of the region. For 

example, recent molecular phylogeographic studies, supported by classical biogeography 

have demonstrated that the fauna of the region may be of much longer persistence than 

previously thought. In particular, persistence times for many taxa, including microbial 

groups, has been estimated to range from hundreds of thousands to multi-million year 

timescales (e.g., Stevens et al. 2006, Convey and Stevens 2007, Convey et al. 2008, 
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2009a, De Wever et al. 2009, McGaughran et al. 2010a, Vyverman et al. 2010, Fraser et 

al. 2014, Pisa et al. 2014, Chong et al. 2015, Iakovenko et al. 2015). For some terrestrial 

invertebrates, this has resulted in deep phylogeographic population structure even across 

small spatial scales [Avise 2000 (p. 202), Collins et al. 2019). However, while some taxa 

have been well studied, little is yet known about many others in this region, making it 

difficult to establish an overall picture of evolutionary patterns in the region. 

 

One such poorly-studied taxon is Parochlus steinenii Gerke, 1889, known commonly as 

the Antarctic midge, and one of only two insect species native to the Antarctic. Unlike the 

other native species, Belgica antarctica, which is flightless and found on the Antarctic 

Peninsula and South Shetland Islands, P. steinenii is a winged midge which also occurs 

naturally in southern South America, the Falkland Islands and South Georgia. It was first 

found in the latter between 1882 and 1883 during the German Polar Expedition (1882/3) 

and later described by Gerke (1889). Later, Brundin (1966) redescribed the species from 

adults and pupae collected in Tierra del Fuego, along with the first description of 

Parochlus steinenii brevipennis, a sub-species found in the Andes of Central Chile, south 

of the Argentinian city of Bariloche (34ºS). Various aspects of the species’ biology have 

been researched, including its morphology, phenology and physiology (Edwards & Usher 

1985, Rauschert 1985, Shimada et al. 1991, Richard et al. 1994, Convey & Block 1996), 

but its genetic diversity has not yet been assessed (Convey & Block 1996) other than in 

the very preliminary data presented by Allegrucci et al. (2006). Very recently, however, 

the complete mitochondrial genome of the species (Kim et al. 2016, Shin et al. 2019) has 

been sequenced, as well as a draft for the complete genome (Kim et al. 2017, Shin et al. 

2019). 

 

The wide distribution of P. steinenii in the region, and its apparently highly conserved 

morphology, raises questions about how long regional populations have been isolated (if 

at all) from each other, and whether they are cryptically divergent. Thus, in this chapter, 

we use two genetic markers, mitochondrial Cytochrome c Oxidase subunit 1 (COX1) and 

nuclear ribosomal large subunit 28S, to test the following hypotheses: (1) that regional 

populations of P. steinenii are genetically isolated; and, (2) if so, whether levels of 
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divergence are sufficient to be regarded as cryptic speciation. The results of this work are 

important for understanding the long-term evolution of the species, and contribute to the 

debate surrounding evolutionary patterns in the sub-Antarctic fauna. 

 

5.3 Materials & Methods 
 
5.3.1 Sampling 
We collected specimens of P. steinenii in the Austral summer of 2017 (except Bird 

Island, which are from 2018) (Figs. 5.1 and 5.2). The adults were sampled from their 

natural habitats around lakes in the South Shetland Islands (Antarctica), South Georgia 

and Bird Island (Fig. 5.3), with the use of an entomological aspirator, while larvae were 

manually extracted from mosses in a lake near the summit of Cerro Bandera, Navarino 

Island, Chile (Table 5.1; Fig. 5.4). Unfortunately, it was not possible to obtain specimens 

of the Andean subspecies. 

 

Table 5.1. List of sites where adults or larvae of Parochlus steinenii were collected. 

Location Island Lake Latitude Longitude 

Chile Navarino Parochlus -54°58.42333' -067°38.72633' 

South Georgia 
South Georgia Lancetes -54°15.71417' -036°30.26567' 

Bird  -54°00.33333’ -038°03.00000 

South Shetland 

Islands 

Deception 
Crater -62°59.02500' -060°40.35833' 

Zapatilla -62°59.02500' -060°40.49667' 

King George 

Arctowsky -62°09.93333' -058°27.75667' 

Glubokoe -62°11.04333' -058°54.56833' 
Kitiesh -62°11.69500' -058°57.71167' 
Langer -62°12.24500' -058°58.15167' 

Las Estrellas -62°12.02000' -058°58.39500' 
Tern -62°13.26000' -058°57.44333' 

Unidad -62º11.57500’ -058º57.22300’ 

Livingston Limnopolar -62°38.74266' -061°05.81004' 
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Figure 5.1. Swarms of adults of Parochlus steinenii at Lake Kitiesh, Fildes Peninsula, 

King George Island, Antarctic (arrows indicate adults). 

 

 
Figure 5.2. Adult of Parochlus steinenii in an entomological aspirator (or pooter), 

Deception Island (arrows and elipse indicate adults). (Photo: Harry Díaz) 
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Figure 5.3. Collection sites of Parochlus steinenii across South America, South Georgia 

and the South Shetland Islands (Antarctica). 

 

 
Figure 5.4. Panoramic view of “Parochlus” lake near the summit of Cerro Bandera, 

Navarino Island, Chile, the only lake with confirmed presence of Parochlus steinenii in 

the island. 
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5.3.2 DNA Extraction and Sequencing 
DNA was extracted from collected individuals using the QIAGEN DNEasy Blood & Tissue 

and QiAMP Extraction Kits. Individuals were fully submerged into the proteinase K+ATL 

buffer solution for 4h at 56 ºC or overnight at 40 ºC; adults were not crushed in order to 

keep them as whole as possible (however, there was some loss in pigmentation on the 

abdomen), while the larvae were partially or fully crushed before extraction; the remaining 

steps were followed as per the manufacturer’s instructions. 

 

Table 5.2. Primers used for the Polymerase Chain Reaction. Novel primers designed with 

Geneious (28S). 

Gene Primer Name Sequence (5’-3’) Reference 

COX1 LCO1490 GGTCAACAAATCATAAAGATATTGG Folmer et al. 1994 

 HCO2198 TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. 1994 

 UEA5 AGTTTTAGCAGGAGCAATTACTAT Lunt et al. 1996 

 UEA10 TCCAATGCACTAATCTGCCATATTA Lunt et al. 1996 

28S rD1.2a CCCSSGTAATTTAAGCATATTA Whiting 2002 

 MK_3F TTTTGGTAAGCAGAACTGGYG 
Machida & Knowlton 

2012 

 28S_1609F ACCATGAAAGGTGTTGATTGCTG NOVEL 

 28S_1955R ACCATGAAAGGTGTTGATTGCTG NOVEL 

 rD7b1 GACTTCCCTTACCTACAT Whiting 2002 

 

Amplifications for the COX1 and 28S genes were carried out with the Qiagen PCR Core 

Kit with added Ultrapure Bovine Serum Albumine (BSA) [Cat #AM2616  50 mg/mL Lot 

#0911017] using a combination of forward and reverse primers (Table 5.2). For a more 

in-depth description of the protocol and techniques used in the Polymerase Chain 

Reaction, please refer to Appendix I. Finally, products were sent to LGC Genomics 
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(Germany) and Macrogen (South Korea) for Sanger sequencing. Outgroup sequences 

were retrieved from GenBank (Table 5.3). We selected Belgica antarctica as the primary 

outgroup, followed by Podonomus pepinelli and Podonums rivolorum, and stabilised the 

more basal nodes with more closely related species (Parochlus spp.) (see Felsenstein, 

1981). 

 

Table 5.3. Outgroup sequences obtained from GenBank. 

Gene Accession no. Species Reference 

COX1 JQ672717 Belgica antarctica Allegrucci et al. (2012) 

 FJ570668 Parochlus araucanus Cranston et al. (2010) 

 FJ570677 Parochlus chiloensis Cranston et al. (2010) 

 FJ570680 Parochlus kiefferi Cranston et al. (2010) 

 FJ570682 Parochlus kiefferi Cranston et al. (2010) 

 HQ105303 Parochlus kiefferi Ekrem et al. (2010) 

 HQ105307 Parochlus kiefferi Ekrem et al. (2010) 

 FJ570689 Parochlus trigonocerus Cranston et al. (2010) 

 FJ570690 Parochlus villarricensis Cranston et al. (2010) 

 JX860263 Podonomus pepinellii Trivinho-Strixino et al. (2012) 

 KT633471 Podonomus rivulorum Cranston & Krosch (2015) 

 

5.3.3 Data preparation and genetic analyses 
All sequences were manually examined, with forward and reverse sequences assembled, 

trimmed and aligned in Geneious 9.1.8 (Biomatters, LTD, Auckland, NZ). The alignment 

of COX1 sequences was carried out with the MUSCLE process (Edgar, 2004). Short, 

partially incomplete, sections at the ends of each alignment were excluded. 
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We first tested for genetic structure in our samples, through the use of phylogenetic 

methods and associated coalescent techniques. Thus, descriptive statistics (Table 5.4) 

were produced with DnaSP v5.0 (Librado and Rozas, 2009) — Tajima’s D, Fu’s Fs and 

RamosOnsins and Rozas’ R2 neutrality tests to distinguish randomly evolved sequences 

— significance was then assessed from 1000 coalescent simulations. Additionally, we 

used TRACER v1.6.0 (Rambaut et al. 2014) to check for the effective sample sizes of 

parameters. 

 

Because not all available outgroup sequences encompassed the entire length of the 

COX1 gene, we opted to use two different alignments with two non-overlapping partitions. 

The optimal model of nucleotide substitution for COX1 was determined with jModelTest 

2 (Darriba & Posada, 2016). Selection was based on the Akaike Information Criterion 

(AIC) and resulted in selection of the GTR+G model for the first partition and TIM2+I+G 

for the second partition. Both models have the same substitution parameters (nst = 6). 

Phylogenetic analysis was performed using MrBayes 3.2 (Ronquist et al. 2012), with 20 

million generations, and with RAxML v8.0.0 (Stamatakis 2014), where bootstrap values 

were acquired through the construction of a Maximum Likelihood tree. 

 

Finally, the phylogeographic structure within ingroup specimens for COX1 was examined 

with TCS networks (Clement et al. 2000) in the program PopART (Leigh and Bryant 

2015), using default settings. 

 

5.4 Results 
 
A total of 165 sequences for COX1 (summary in Table 5.4) and 34 sequences for 28S 

were obtained. However, there was no variation in the 28S sequences, so no further 

analyses were carried out using this locus. 
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Table 5.4. Summary statistics of molecular diversity for populations of Parochlus steinenii 

(n, Number of individuals; Prob, Probablility of having captured the deepest coalescent 

event; No. haplotypes, Number of haplotypes; HD, Haplotype diversity; S, Number of 

segregating sites; π, Nucleotide diversity; DT, Tajima’s D; Fs, Fu’s Fs statistic; R2, 

RamosOnsins and Rozas’ R2 statistic; Max K, Maximum number of nucleotide 

differences between any two sequences within the population). (*p < 0.05, **p < 0.01) 

Population n Prob No. 
haplotypes HD S pi DT Fs R2 Max. K 

Navarino Island (Chile) 18 0.8947 9 0.804 26 0.00437 -0.97220 0.001 0.1040 16 
South Georgia 36 0.9459 21 0.870 26 0.00177 -2.17686* -18.380** 0.0356** 7 
      Bird Island 7 0.7500 7 1.000 11 0.00312 -0.47530 -3.518 0.1174* 7 
      Lancetes lake 29 0.9333 14 0.798 16 0.00127 -2.02208* -10.217** 0.0485** 5 
South Shetland Islands 111 0.9821 25 0.662 27 0.00081 -2.36839** -29.062** 0.0209* 5 
   Deception Island 31 0.9375 3 0.127 2 0.00010 -1.50558 -2.397 0.1228 2 
      Crater lake 27 0.9286 1 NA NA NA NA NA NA NA 
      Zapatilla lake 4 0.6000 3 0.833 2 0.00076 -0.70990 -0.887 0.2500 2 
   King George Island 53 0.9630 14 0.789 16 0.00112 -1.80826* -8.205* 0.0448** 5 
      Arctowsky lake 5 0.6667 2 0.400 2 0.00061 -1.98018* 1.040 0.4000 2 
      Glubokoe lake 4 0.6000 2 0.500 1 0.00038 -0.61237 0.172 0.4330 1 
      Kitiesh lake 24 0.9200 5 0.710 16 0.00112 -0.30320 0.074 0.1183 4 
      Langer lake 5 0.6667 3 0.700 2 0.00061 -0.97256 -0.829 0.2449 2 
      Las Estrellas lake 5 0.6667 3 0.700 3 0.00092 -1.04849 -0.186 0.2667 3 
      Tern lake 4 0.6000 2 0.500 1 0.00038 -0.61237 0.172 0.4330 1 
      Unidad lake 5 0.6667 3 0.700 2 0.00076 0.24314 -0.475 0.2500 2 
   Livingston Island 27 0.9286 11 0.729 11 0.00083 -2.04482* -8.554* 0.0532** 4 
Total 165 0.9880 52 0.838 73 0.00370 -1.98018* -32.953** 0.0305 24 

 

Haplotype diversity (HD) was high in Chile, South Georgia (especially in Bird Island (HD = 

1) and in King George Island, and was markedly lower in Deception Island, as Crater 

Lake had a single haplotype for 27 individuals (Table 5.4).  Tajima’s D (DT) and Fu’s Fs 

were negative and significantly different from zero in South Georgia (and Lancetes Lake), 

the South Shetland Islands (and in King George and Livingston Islands), however only 

DT was significant in Arctowsky. RamosOnsins and Rozas R2  was significant in South 

Georgia (and Bird Island and Lancetes Lake), the South Shetland Islands (and in King 
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George and Livingston Islands). The statistical parsimony haplotype network (Fig. 5.5) 

showed three main splits in the population, with the Navarino Island population, being the 

most distinct, and the Antarctic population, also being distinct from the South Georgia and 

Bird Island populations. 

 

 
Figure 5.5. Haplotype network from COX1 sequences in populations of Parochlus 

steinenii across 13 localities in Antarctica, Chile, South Georgia and Bird Island. (DEC = 

Deception Island; KGI = King George Island) 
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Within the ingroup, the Bayesian phylogenetic reconstructions identified the Navarino 

component as a single strongly supported clade of geographically defined populations of 

P. steinenii in both fragments of the COX1 gene (Fig. 5.6–5.8). The analysis of the first 

fragment (barcoding region) identified a low-support clade for the South Georgian 

component (South Georgia + Bird Island); however, the same was not true in the analysis 

of the second fragment. Even so, visual inspection of pairings in the Bayesian consensus 

phylogeny suggests that such a distinction may exist (Fig. 5.6–5.8). 

 

5.5 Discussion 
 
Parochlus steinenii shows a high diversity of haplotypes across its populations for COX1, 

which is to be expected from a highly mutable gene. In contrast there was almost no 

variation for 28S; indeed we could not find any variation in the locus across all our 

samples collected from across the Scotia Arc. However, when we aligned our sequences 

to the four other available sequences (AY820932–35) from Allegrucci et al. 2006), we 

found some variation in five sites and also an insertion in two sequences (AY820932 and 

AY820933). The lack of presence of these variations was very surprising after comparing 

our own data, and this means that a deeper investigation on the matter is needed, but to 

do that we would need to obtain many more 28S sequences. 

 

The clear differences we identified between populations of Parochlus steinenii at the 

COX1 locus is a contrast to morphological studies that have found no clear differences 

between populations (Convey & Block 1996). This finding is intriguing and may indicate 

conserved selective pressure on populations, reducing morphological divergence 

between populations.  The clear genetic differences on the other hand suggest that 

populations have been isolated for a long time (particularly the South America and the 

Antarctic + South Georgian group) and that speciation may be in the process of occurring. 

The lack of any difference in the nuclear 28S gene versus the mithocondrial COX1 gene 

is likely to reflect lower mutation rates in the nuclear gene. It is intriguing to consider 

whether the divergence we have recorded in this study indicates that different sub-
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populations identified may be better considered as separate species. More work 

investigating whether these groups are reproductively isolated or differ in core aspects of 

their ecology would help to confirm this. 

 

The observations from the network are further supported by the phylogenetic analysis, 

which heavily supports the South American clade, and to a lesser extent a South 

Georgian clade. This most likely means that the population from Chile has been isolated 

from the others for a significantly longer time. Nevertheless, our data still shows that they 

have not diverged enough to be considered a completely different species. 

 

This study is the first one to identify the intriguing evolutionary history of P. steinenii 

through a comprehensive analysis of the genetic structure of the species since Allegrucci 

et al. (2006). Nevertheless, this is just the first step into fully understanding how the taxon 

has evolved, a question that can feasibly be tackled by increasing the number of loci 

analysed or by taking a look at microsatellites. Also, it would be interesting to learn how 

the Andean populations fit within the evolutionary context.  
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Figure 5.6. Bayesian consensus phylogeny of the first fragment of partitioned COX1 

sequences derived from populations of Parochlus steinenii from Chile, South Georgia and 

Antarctica (South Shetland Islands). Posterior probabilities are given under the line by the 

associated adjacent node and bootstrap values from the Maximum likelihood tree are 

given above the line (when nodes are exactly the same from the Bayesian analysis). No 

value is given if the bootstrap value was < 50%. Outgroups are not coloured, and the 

identifiers on their tips are GenBank system accession numbers for the individual 

sequences. 
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Figure 5.7. Bayesian consensus phylogeny of the second fragment of partitioned COX1 

sequences derived from populations of Parochlus steinenii from Chile, South Georgia and 

Antarctica (South Shetland Islands). Posterior probabilities are given under the line by the 

associated adjacent node and bootstrap values from the Maximum likelihood tree are 

given above the line (when nodes are exactly the same from the Bayesian analysis). No 

value is given if the bootstrap value was < 50%. Outgroups are not coloured, and the 

identifiers on their tips are GenBank system accession numbers for the individual 

sequences. 
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Figure 5.8. (previous page) Combined Bayesian consensus phylogenies of partitioned 

COX1 sequences derived from populations of Parochlus steinenii from Chile, South 

Georgia and Antarctica (South Shetland Islands). Posterior probabilities are given under 

the line by the associated adjacent node and bootstrap values from the Maximum 

likelihood tree are given above the line (when nodes are exactly the same from the 

Bayesian analysis). No value is given if the bootstrap value was < 50%. Outgroups are 

not coloured, and the identifiers on their tips are GenBank system accession numbers for 

the individual sequences. 
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CHAPTER 6 

 

Hind-wing morphology of   

Lancetes angusticollis 
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6. Does island-isolation cause a reduction in hind wing size in 
Lancetes angusticollis (Coleoptera: Dytiscidae)? 
 
6.1 Abstract 
 

The diving beetle Lancetes angusticollis is found in lakes in southern South America and 

in South Georgia. The geographical isolation of these populations suggests they have 

been separated on sufficiently long timescales to permit the evolution of adaptive changes 

in morphology. One of the more commonly reported morphological variations associated 

with island isolation is the reduction of wings, generally linked to different requirements in 

terms of energy reserves and lower predation pressure. Here, we tested the hypothesis 

that the South Georgian populations of L. angusticollis would have reduced hind wings in 

comparison with their mainland counterparts. To test this, we documented geometric 

morphometrics, analyzing the data with Principal Component Analyses, to assess body 

and wing size and shape. Beetles from South Georgia had significantly longer heads, 

elytra and hind leg lengths, and shorter pronotum length, although they did not differ in 

overall body length. The centroid size did not vary, meaning that the overall size of the 

wings was not different, but the calculated wing loads showed that hind wings were of 

different shapes, with the main differences being in the costal, jugal and posterior margins 

of the wings along with the cubital cells. However, all of these observed differences in 

wing shape were subtle and do not clearly link with the hypothesis being tested. Based 

on this study, we suggest the most likely reasons for the slight differences in morphology 

were due to founder effects and genetic drift, although more detailed studies of 

environmental factors and other selective factors driving differences, such as temperature 

and wind speeds, as well as of beetle behavior (particularly use of flight) would be 

required to confirm these interpretations. 
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6.2 Introduction 
 
6.2.1 Flightlessness in insects 
The evolution of flight is perhaps the single largest innovation that has enabled insects to 

become arguably the most successful higher taxon from the lower Carboniferous onwards 

(Wagner & Liebherr 1992). In particular, flight increased the extent to which insects can 

reach new habitats, food resources and breeding grounds (Dickinson, Lehmann & Sane, 

1999, Dudley, 2002), enabling them to disperse over large areas, migrate and colonise 

new habitats, while also avoiding inclement conditions. 

 

However, paradoxically, insects on islands commonly show reduced wings and the 

evolution of flightlessness (Danks 1990, Wagner & Liebherr 1992, Laparie et al. 2016). 

The incidence of flightlessness is particularly high in some areas of the world, such as the 

sub-Antarctic Islands (Gressitt & Weber 1959, Chevrier 1996, Vernon 1981, Chown & 

Convey 2016). For example, on the Kerguelen Islands in the Southern Ocean, 19 out of 

23 native insect species are wingless. The loss of wings has been hypothesized to be 

linked to specific environment characteristics, such as wind exposure and speed (Taylor 

1963) and low temperatures, that may limit wing development or provide an evolutionary 

disadvantage for insects with wings, such as being blown away from islands when in flight 

and therefore dying out at sea, or the high energetic costs that are involved in the 

development and maintenance of the related muscles (Laparie et al. 2016). For example, 

Vernon (1981, 1986) suggests that a reduction of wings and associated muscles may 

allow the expansion of energy reserves in the body which then facilitate higher starvation 

resistance. An additional factor favouring loss of wings on islands may be the relatively 

low levels of predation pressure on terrestrial invertebrates in these systems (Convey 

1996, Chevrier et al. 1997, Laparie et al. 2010, 2016, Lebouvier et al., 2011), reducing 

the evolutionary advantage of maintaining wings for escaping predators. Further to that, 

in flightless beetles, such as in the case of the promecheilid Perimylops antarcticus, also 

found in South Georgia, the elytra have a tendency to also be shortened, as they lose 

their function of protecting the hind wings, but in the specific case of diving beetles the 

elytra can still play an important role in the hydrodynamics of swimming. 
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Recently, Laparie et al. (2016) have tested if any particular evolution could be detected 

over time in the size and shape of the wings of Calliphora vicina, a cosmopolitan blowfly 

that invaded the Kerguelen Islands in the 1970s. By approximately knowing when the 

species arrived in the island, they were able to investigate real-time changes in ecological 

and evolutionary processes under novel selection regimes (Chevrier et al. 1997, Huey et 

al. 2005, Sax et al. 2007, Schermann-Legionnet et al. 2007, Lebouvier et al. 2011, Laparie 

et al. 2016). They questioned whether the flight characteristics of the species had 

changed over time, and found fingerprints of local adaptation in the invasive population, 

although they could not affirm if the changes had already incurred aerodynamic 

consequences. Though non-conclusive, this quick divergence in a relatively short period 

suggests that even bigger changes would happen in a sub-Antarctic species that has 

been isolated for a longer period. 

 

6.2.2 Lancetes angusticollis  
The diving beetle Lancetes angusticollis (Curtis, 1839) has long been recorded from the 

South American (Curtis 1839, Řiha 1961, Brancucci & Ruhnau 1985) mainland and 

remote islands such as South Georgia (Müller 1884, Brancucci & Ruhnau 1985, Arnold 

& Convey 1998). Most specimens described from South Georgia appear to have normal 

wing formation and associated musculature, although they have rarely been observed in 

flight (Arnold & Convey 1998). However, wing characteristics have not been mapped in 

South American specimens, so it is not yet known whether there are any differences in 

wing development between continental and island populations of this species. 

 

In this chapter, we aim to test the hypothesis that a long-term isolation has caused a 

reduction in the size of hind wings, comparing two different populations of Lancetes 

angusticollis in the southermost region of South America and South Georgia. We 

hypothesise that strong selective pressure from environmental conditions, coupled with a 

smaller presence of predators on the South Georgian population will have resulted in 

morphological differences in individuals compared to the mainland population. 
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6.3 Materials & Methods 
 
6.3.1 Sampling 
Adults (n = 96) of Lancetes angusticollis were collected using entomological nets from 

two lakes at Navarino (n = 65) (Laguna ‘Mejillones’ [-54°53.92417’, -067°57.96600’] and 

Laguna Zañartu [-54º55.93410’, -067°38.78700’]), a Chilean island only 50 km away from 

the Beagle Channel’s exit at the Atlantic Ocean, and one lake in South Georgia (n = 31) 

(Lancetes Lake [-54°15.71417’, -036°30.26567’]; Fig. 6.1), a remote sub-Antarctic island 

on the Scotia Arc and around 1,700 km away from the South American coast. All 

specimens were stored in 96% ethanol. 

 

6.3.3 Morphological measurements 
Wing size and shape must be analysed in comparison with the total body size and other 

body parts if flight ability is being tested (Laparie et al. 2016). To that end, we measured 

the following in all specimens for posterior wing load comparisons: maximum body length, 

maximum head length, maximum pronotum length, maximum elytrum length, and 

maximum hind leg length, the latter playing an important role in the biology of diving 

beetles, as it is heavily used in swimming. 

 

6.3.3 Wing mounting and landmark acquisition 
Left hind-wings were mounted in Chick’s Fluid Mountant on microscope slides, which 

were then sealed with glycerin. Photographs of the ventral side of each wing were 

captured using a Leica M165-C stereomicroscope with a Leica DMC5400 attached 

camera. Twenty-one landmarks were selected (Fig. 6.2) for subsequent digitisation with 

ImageJ. We excluded 11 specimens from Navarino Island as their wings were partially 

destroyed before or during mounting. 
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Figure 6.1. Sampling sites for adults of Lancetes angusticollis (in red on the top left map 

and indicated by arrows on the remaining maps). Red lines indicate main roads. 
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Figure 6.2. The 21 landmarks chosen for the left hind wing (ventral view) morphometric 

Procrustes Coordinate Analysis. 

 

6.3.4 Statistical analyses and morphometrics 
To test for normality in all data, Shapiro-Wilk tests were used. Body size data that were 

normally distributed were compared between Navarino Island and South Georgia using 

two-way t-tests, while data that were non-normally distributed were analysed using Mann-

Whitney U tests. We also visualized any differences in the overall body shape of 

individuals including all measurements, using a Principle Component Analysis (PCA). 

 

Hind wing landmark configurations were analysed in MorphoJ (Klingenberg, 2011), where 

we performed a generalized Procrustes analysis to remove variation in scale, position, 

and orientation, as well as to obtain the matrix of shape variables (Procrustes 

coordinates). Subsequently, a PCA was conducted on the Procrustes coordinates to 

explore the variation in wing shape and visualise shape changes associated with the 

principal components, which was then followed by a Canonical Variate Analysis (CVA), 
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used to discriminate shape differences between individuals from Navarino Island and 

South Georgia. The statistical significance of pairwise differences in mean shapes was 

tested using permutation tests (10,000 iterations) with Mahalanobis distances and 

Procrustes distances. We compared the centroid wing sizes between the two populations 

using Mann-Whitney U tests. 

 

Finally, we computed the ratio of centroid sizes to maximum body length and elytra length 

measurements (in mm) for comparison of wing loads, i.e. the inverse of wing load (Yeap 

et al., 2013, Laparie et al. 2016) and compared these between the two populations using 

Mann-Whitney U tests. 

 

6.4 Results 
 

Body length was not significantly different between the two populations (W = 1302.5, p = 

0.061). However, head (W = 714.5, p = 0.010), pronotum (W = 1787.0, p < 0.001), elytrum 

(W = 559.5, p < 0.001), and hind leg length (t = -9.1242, d.f = 65.395, < 0.001) were all 

significantly different between the two populations, with South Georgia specimens having 

shorter pronotum lengths, but longer head, elytrum, and hind leg lengths than specimens 

from Navarino (Fig. 6.3 and 6.4). 
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Figure 6.3. Body, elytrum and hind leg lengths (in cm) in populations of Lancetes 

angusticollis from Navarino Island and South Georgia. For each body part, means with 

the same letter are not significantly different at p < 0.05 (t and Mann-Whitney U tests). 

 



 

114 

 
Figure 6.4. Maximum head and pronotum lengths (in cm) in populations of Lancetes 

angusticollis from Navarino Island and South Georgia. For each body part, means with 

the same letter are not significantly different at p < 0.05 (Mann-Whitney U test). 

 

In the Principal Component Analysis (PCA) for body part measurements, PC1 

(accounting for 39.1% of variation) was positively associated with all five measurements. 

PC2 (27.2%) was positively associated with body and pronotum lengths, but was 

negatively associated with hind leg. PC3 (15.2%) was positively associated with head 

and pronotum, but negatively with body. PC4 (13.5%) was positively associated with body 

and head, but negatively with pronotum (Tables 6.1 and 6.2). There was a clear shift in 

the morphospace occupied by the two populations, with the population from South 

Georgia having generally higher PCA1 scores, but lower PCA 2 scores (Fig. 6.5). 
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Table 6.1. Summary of results from a Principal Component Analysis of body part 

measurements between the two study regions (Navarino and South Georgia). 

 PC1 PC2 PC3 PC4 

Standard deviation      1.398 1.166 0.873 0.822 

Proportion of Variance  0.391 0.272 0.152 0.135 

Cumulative Proportion   0.391 0.663 0.815 0.950 
 

Table 6.2. Scores for each variable from the Principal Component Analysis of body part 

measurements applied to the two study regions (Navarino and South Georgia). Numbers 

in bold are the three most relevant scores for each PCA axis. 

Length PC1 PC2 PC3 PC4 

Body     0.187 0.626 -0.435 0.611 

Head     0.479 -0.110 0.689 0.491 

Pronotum 0.121 0.690 0.450 -0.471 

Elytrum 0.606 0.086 -0.311 -0.395 

Hind leg 0.595 -0.337 -0.193 -0.089 
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Figure 6.5. Principal Component Analysis output of body measurement variables from 

four axes in the two regions (Navarino Island and South Georgia). Ellipses refer to each 

region: red, Navarino; and, green, South Georgia. Dots refer to each specimen and follow 

the same colour pattern of their respective ellipses. 

 

 
 

Figure 6.6. Hind-wing shape difference between two populations of Lancetes 

angusticollis based on Procrustes coordinates from 21 landmarks. 
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In the PCA for hind wing landmarks, PC1 was positively associated with y5, x6, y6 and 

x9, and y10, and negatively with x13. PC2 was positively associated with y6, x9 and y21, 

negatively with x5, x6 and y13. PC3 was positively associated with x3 and y11, negatively 

with x11, x13, y15 and y16. PC4 was positively associated with x6, y9 and x12, negatively 

with y1, y13 and x19. PC5 was positively associated with x5, x9, x19 and y19, negatively 

with y5 and y10. PC6 was positively associated with x9, y10 and x21, negatively with y9, 

y11 and x12 (Table 6.3 and 6.4; Fig. 6.7). 

 

Table 6.3. Summary of results from a Principal Component Analysis of hind wing 

landmark coordinates between two regions (Navarino Island and South Georgia). 

 PC1 PC2 PC3 PC4 PC5 PC6 

Eigenvalues 0.0008 0.0003 0.0002 0.0001 0.0001 0.0001 

Proportion of Variance %  36.774 14.582 10.172 5.643 5.248 3.365 

Cumulative Proportion   36.774 51.356 61.528 67.171 72.419 75.784 
 

Table 6.4. Scores for each variable from the Principal Component Analysis (PCA) from 

21 coordinates applied to the two study regions (Navarino Island and South Georgia). 

Numbers in bold are the six most relevant scores for each PCA axis (three per coordinate 

axis). 

Coordinate axis PC1 PC2 PC3 PC4 PC5 PC6 

x1 -0.063 0.041 0.092 -0.214 -0.051 0.041 

y1 -0.110 -0.032 -0.126 -0.321 0.109 0.072 

x2 -0.068 0.040 0.247 -0.012 -0.033 -0.014 

y2 -0.097 -0.037 0.036 -0.098 0.125 0.096 

x3 -0.038 0.083 0.284 -0.024 -0.106 -0.048 

y3 -0.087 0.034 0.036 -0.028 0.093 0.107 

x4 -0.047 0.062 0.275 -0.059 -0.053 -0.107 
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y4 -0.039 0.040 0.016 -0.027 0.084 0.158 

x5 0.149 -0.379 0.028 0.048 0.317 -0.133 

y5 0.541 0.107 0.053 -0.130 -0.521 -0.161 

x6 0.340 -0.573 -0.193 0.309 -0.080 0.058 

y6 0.333 0.234 0.206 -0.036 0.046 0.156 

x7 -0.065 0.090 0.213 -0.034 -0.091 -0.040 

y7 -0.140 -0.028 0.100 0.050 0.038 0.132 

x8 -0.077 0.148 0.048 0.047 -0.139 -0.046 

y8 -0.219 -0.032 0.098 0.135 -0.101 0.149 

x9 0.167 0.276 -0.151 -0.009 0.346 0.301 

y9 -0.103 0.027 0.112 0.289 0.064 -0.386 

x10 -0.154 0.057 -0.104 0.034 -0.180 0.047 

y10 -0.255 -0.161 0.064 0.172 -0.262 0.240 

x11 -0.009 0.241 -0.281 0.103 0.084 -0.189 

y11 -0.086 -0.073 0.212 0.239 0.093 -0.268 

x12 -0.014 0.236 -0.076 0.237 0.159 -0.306 

y12 -0.084 -0.117 0.167 0.083 0.078 -0.152 

x13 -0.214 0.135 -0.335 0.213 -0.076 0.115 

y13 -0.032 -0.224 0.091 -0.246 -0.015 0.050 

x14 -0.065 -0.024 -0.051 -0.143 -0.031 0.050 

y14 -0.026 -0.082 -0.177 -0.061 0.017 0.049 

x15 0.080 0.032 0.061 -0.082 0.012 0.056 

y15 -0.139 -0.030 -0.253 -0.054 -0.075 -0.032 

x16 0.083 -0.000 -0.009 0.066 -0.103 0.089 

y16 -0.060 0.018 -0.210 -0.114 -0.097 -0.129 

x17 0.054 -0.041 0.095 0.015 0.007 0.187 

y17 0.037 0.051 -0.174 -0.048 -0.080 -0.095 

x18 -0.065 -0.057 -0.027 -0.058 -0.090 0.096 
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y18 0.054 0.023 -0.176 -0.066 0.002 -0.139 

x19 -0.007 -0.112 -0.017 -0.405 0.182 -0.217 

y19 0.180 0.019 0.058 -0.058 0.357 -0.008 

x20 -0.061 -0.170 -0.161 -0.187 -0.097 -0.200 

y20 0.167 0.095 0.026 0.214 0.143 0.138 

x21 0.074 -0.085 0.062 0.153 0.023 0.259 

y21 0.167 0.168 -0.157 0.106 -0.098 0.022 
 

 

 
Figure 6.7. Principal Component Analysis output of 21 landmarks on the hind-wing of 

Lancetes angusticollis from six axes from two regions (Navarino Island and South 

Georgia). Ellipses refer to each region: blue, Navarino, and, red, South Georgia. Dots 

refer to each specimen and follow the same colour pattern of their respective ellipses. 
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In the Canonical Variate Analysis (Fig. 6.8), Mahalanobis distances among groups 

(8.0667) and the Procrustes distances (0.0458) were both significant (p-values from 

permutation tests < 0.001), indicating that the two populations differed in wing 

morphology. Inspection of images of the Procrustes coordinates from 21 landmarks 

suggested that this was due to the population in South Georgia having wider wings (albeit 

very slightly) than the Navarino population (Fig. 6.6). 

 

 
Figure 6.8. Canonical Variate Analysis frequency histogram of Lancetes 

angusticollis wing landmark configurations from canonical variate analysis separating the 

Navarino and South Georgia populations based on wing shape (variation among groups 

= 100%). 

 

Centroid size did not differ significantly between the two populations (W = 749, p = 

0.4244). The mean±SE of centroid size were 1735.06±9.138 (Navarino) and 

1746.55±7.253 (South Georgia) (Fig. 6.9). 
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Figure 6.9. Boxplot showing mean hind-wing centroid sizes in two populations of 

Lancetes angusticollis. Centroid sizes did not differ significantly (Mann-Whitney U test). 

 

Wing load based on maximum body length (W = 636.0, p = 0.067), did not differ between 

the two populations (Fig. 6.10), although wing load based on maximum elytrum length (t 

= 4.102, d.f = 64.6, p = < 0.001) did, with South Georgia having a higher wing load than 

Navarino (Fig. 6.11). 
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Figure 6.10. Boxplot showing mean wing loads (from maximum body length-centroid size 

ratio) in two populations of Lancetes angusticollis. Wing loads did not differ significantly 

(Mann-Whitney U test). 

 

6.5 Discussion 
 

We found clear differences in the morphology of Lancetes angusticollis between Navarino 

and South Georgia. In particular, beetles from South Georgia had significantly longer 

heads, elytra and hind leg lengths, and shorter pronota, although they did not differ in 

overall body length. Hind wing shape also differed between the two populations, with the 

South Georgia population having slightly wider wings. However, overall wing centroid size 

did not differ between the populations. Finally, wing loading based on maximum body 

length also did not differ significantly between the two populations, but loading based on 

maximum elytrum length was significantly different, with South Georgia populations 

having a higher wing-loading. 
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Figure 6.11. Boxplot showing mean wing loads (from maximum elytrum length-centroid 

size ratio) in two populations of Lancetes angusticollis. Wing loads differed significantly 

(Mann-Whitney U test). As this represents an inverse difference, this indicates that the 

South Georgia population has higher wing loading. 

 

Even though there was no significant difference in body length between populations, 

specimens from South Georgia had longer heads and elytra, but shorter pronota, which 

helps explain why there was no difference in total body length. However, this does not 

pinpoint exactly what causes these differences. For wings, although centroid size did not 

vary, meaning the overall size of the wings was not different, the results of the Canonical 

Variate Analysis (Fig. 6.8) and the wing loads (Figs. 6.10 and 6.11) showed that hind 

wings were of different shapes in Navarino and South Georgia. The main differences were 

in the coastal, jugal and posterior margins of the wings along with the cubital cells. 

However, all of these observed differences in wing shape were quite subtle and not 

sufficient to support our initial hypotheses that island isolation has caused a shortening 

of wings and consequential increase in flightlessness. Instead, the higher wing load 

present in South Georgian is suggestive of weaker selective pressures that may enable 

the beetles to make better use of their flight ability. We consider the most likely cause for 

the slight difference in shape and wing load to be from founder effect and genetic drift, 
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although environmental factors and selective factors driving differences, such as 

temperature and wind speeds, cannot be discounted without further study. 

 

It is clear there are differences in the two populations, however, we would need to 

compare genetic components or even ecological factors if we are to make any firmer 

assumption on the taxon’s evolution. Consequently, whether these morphological 

differences are a consequence of founder-effect, environmental factors or a combination 

of both, remains to be investigated. This can be achieved by undertaking further 

morphometric analyses on individual body parts, along with observations and 

experiments on their general biology, physiology and habitat characteristics, to fully 

understand the factors in play and determine whether these differences are functionally 

significant. It would also be interesting to investigate the beetle’s larval stages in detail to 

check for potential morphological and life history differences. A final detail that can be 

factored in future analyses, provided there is a sufficient sample size, is the effects of 

potential sexual dimorphism on body shape and size, as seen in other diving beetles 

(Hájek & Fikáček 2010), which we were not able to take into account in this study. 
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CHAPTER 7 

 

Final Discussion 
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7. Discussion and concluding remarks 
 
7.1 Summary 
 

Drawing on field studies, lab experiments and genetic analyses, this thesis provides novel 

information about the ecology, ecophysiology and phylogeography of Antarctic and Sub-

Antarctic insects. We present new data on the distribution of Telmatogeton magellanicus, 

showing that it is restricted to the mid and low tidal zones, where there is high coverage 

of filamentous algae (mainly Bostrychia sp.), which provides their larvae with cover from 

harsh environmental factors, such as low levels of humidity. In the lab, the same species 

are shown to be very sensitive to desiccation, but also have a robust tolerance to both 

low and high temperature and, especially, salinity variations. Additionally, larvae of 

another chironomid species, Eretmoptera murphyi, were found to be very resistant to 

brackish water, but not to heavy saline concentrations. In the meantime, we found a clear 

genetic split between South American Parochlus steinenii and populations of the species 

in South Georgia and Antarctica, indicating long isolation of different populations and 

significant genetic divergence. Finally, we also found no significant difference in wing size 

and loading in Lancetes angusticollis, although the populations have slight, thus not 

confirming the hypothesis of decreased flightlessness, even though we found significant 

differences in the size of specific body parts. 

 

7.2 Discussion 
 
7.2.1 Ecophysiology tracks with environmental distribution 
The distribution of T. magellanicus matches closely with its physiological tolerance as 

measured under laboratory conditions. The lack of resistance to desiccation underlies the 

species’ association with filamentous algae in the wild, which protect the insects from 

wind and have microhabitats within them that hold water, reducing evaporation and 

effectively buffering the insects from desiccation, which would be further exacerbated by 

the wind. It is possible that the patchy distribution of such microhabitat in other areas 
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hinders the species’ ability to disperse on a relatively local scale, and hence expand to 

other environments, especially given the strong winds and seasonally dry conditions that 

are typical of this region. 

 

7.2.2 Robust tolerance to variable conditions characteristic of Antarctic fauna 
The physiological characteristics and tolerance to salinity and temperature variation seen 

in T. magellanicus are not unlike those recorded in the more studied Antarctic insects (i.e. 

Belgica antarctica, Eretmoptera murphyi and Parochlus steinenii), even though they do 

not occupy the same type of habitat. Evidently, E. murphyi is less tolerant to higher saline 

concentrations, consistent with it not being an intertidal animal, although it is strongly 

resistant to lower (brackish water) salinity conditions. We can thus conclude that T. 

magellanicus is another chironomid species pre-adapted to variable conditions, a 

characteristic commonly seen among Antarctic insects and micro-arthropods (Convey 

1996, Peck et al. 2006). 

 

Intolerance of environmental variability is consistent with the previously reported pre-

adaptation of organisms in extreme conditions (Bergstrom et al. 2006, Worland 2010, 

Everatt et al. 2012), something which is yet to be fully understood. One possible 

explanation for pre-adaptations may relate to how long an organism has been present in 

a given region (McGaughran et al. 2010b, 2011). For instance, considering the midge E. 

murphyi, the species is thought to be paleoendemic to South Georgia, separating from its 

sister species B. antarctica (which is, as I previously stated, itself endemic to the Antarctic 

Peninsula and South Shetland Islands) ~45 mya (Allegrucci et al. 2006). Hence, over their 

evolutionary histories since divergence, both species have survived through multiple 

glacial cycles and, thus, periods of more extreme conditions than they currently 

experience. This evolutionary history may underlie the apparent pre-adaptation of E. 

murphyi in particular to the more extreme conditions experienced at its introduced location 

in the South Orkney Islands (Worland 2010, Everatt et al. 2012). Additionally, the current 

habitat of a species may have had the same conditions now present in a different 

geographical location, which could lead them to having kept the natural fit for both 

conditions. As noted above, many terrestrial invertebrates in polar regions, especially, 
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have a broader range of resilience than those found at lower latitudes. They experience 

different selective pressures, with biotic pressures such as competition and predation 

being more important at lower latitudes, while the primary selection pressures facing polar 

organisms are the abiotic features of their extreme environmental conditions (Convey 

1996, Hogg et al. 2006). 

 

7.2.3 Deep divergence between populations of Parochlus steinenii 
Allegrucci et al. (2006) presented a preliminary analysis proposing divergence between 

southern South American populations of P. steinenii and those in South Georgia and 

Antarctica that dated to around 7.6 mya, and a much closer relationship between the latter 

two locations, though no specific geological time was provided. The data presented in this 

thesis, resulting from analyses of COX1 gene sequences, confirmed these deep 

divergences, although further work is required in order to provide an estimate of the 

divergence times. However, our 28S data do not completely conform with the data 

presented by Allegrucci et al. (2006), as the sequences obtained here do not show any 

of the variations previously reported, and hence are not useful in advancing the 

discussion of the timing of population divergence. This adds further support to Allegrucci 

et al.’s (2006) conclusion that the species’ presence in the maritime Antarctic South 

Shetland Islands is not the result of a much more recent anthropogenic introduction 

associated with the sealing and whaling industries, which had been suggested as a 

possibility by Convey & Block (1996). 

 

Even though Chapter 5 provides a robust groundwork for genetic analyses with P. 

steinenii, we have barely scratched the surface of the taxon’s evolutionary history. 

However, in order to expand to further analysis, more resources will need to be obtained, 

which involves significantly higher costs, but then we would be able to make a clear 

assessment of potential glacial refugia and whether there are any traces of cryptic 

speciation (Ellis-Evans & Walton 1990, Carapelli et al. 2020, Convey et al. 2020). A good 

and very recent example of the potential detailed molecular studies have is the one by 

McGaughran et al. (2019) where they assessed population diversity and differentiation of 

the Antarctic springtail Cryptopigus antarcticus across the Antarctic Peninsula and some 
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Antarctic islands (spread across 1900 km). Through the use genome-wide single 

nucleotide polymorphisms (known as SNPs) data, they were able to infer that wind-

carried colonisation events, coupled with glacial refugia areas were most likely what 

allowed the species to thrive for a long period; a deeper look at the genetics of P. steinenii 

may provide a similar answer as highlighted in Contador et al. (2020).  

 

Beyond these more specific studies and analyses, there is an overarching question raised 

by Kelley et al. (2014) for Belgica antarctica regarding the impact of genome sizes on the 

evolution of insects in extreme regions, which was further acknowledged in Cornette et 

al. (2014) and Alfsnes et al. (2017). In this latter study, the authors highlight the broad 

range of fitness-related parameters which are affected by genome sizes in arthropods, 

such as growth and life history traits, though the latter is even more important among 

insects than crusteaceans (the other taxonomic group they used in their comparative 

study). The impacts of the reduction of the genome size in B. antarctica (this taxon has 

the smallest genome for an insect) can be seen in their suggested loss of sensory 

perception, which may be a reflection of the short-distance mating behaviour and the 

limited food availability in their environment (Kelley et al. 2014). Finding out if the pattern 

seen in this few studied organisms repeats in closely related species is one of the main 

questions for the future of genetics in the Antarctic. 

 

7.2.4 Morphological similarities suggest recent divergence times or similar 
selective pressures 
We found that South Georgian specimens of Lancetes angusticollis have slightly, but 

significantly, different body plans to those from Navarino Island in southern South 

America, and that their wings were slightly but consistently different in shape and wing 

loading. These relatively small differences do not permit the proposal of any specific 

selective factors, but suggest that both populations have been under relatively similar 

selective pressure or have not been isolated long enough for any major morphological 

change to take place. Such type of change is evidenced by other taxa such as the fast 

allochronic changes in invasive blowflies at the Kerguelen Islands (the invasion occurred 
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in the 1970s) (Laparie et al. 2016). The intriguing question of the timing of separation or 

isolation of the South Georgian population will require further genetic analyses to clarify. 

 

7.2.5 Work in progress and additional publications 
Both Parochlus steinenii and Lancetes angusticollis, though belonging to different insect 

orders, share a common distribution in southern South America and South Georgia. 

Although not included in this thesis, we have completed DNA extraction and collated 

sequence data that will permit a parallel analysis of COX1 in Lancetes angusticollis to 

that presented here for Parochlus steinenii, and will allow us to test the hypothesis that 

South Georgian populations of both species diverged from those in South America on a 

similar timescale. Similarly, we have also initiated a study on the phylogeny of 

Telmatogeton magellanicus (presented as unfinished work in Appendix II), in part in order 

to further confirm its true phylogenetic position. Furthermore, the very recent (February 

2020) discovery and collection of T. magellanicus on the oceanic cool temperate Falkland 

Islands raises the exciting possibilty of initiating regional phylogeographic studies of this 

species, which may help in clarifying its history in southern South America. 

 

7.3 Future directions 
 

There are still many gaps in our knowledge of Antarctic and sub-Antarctic insects, but 

there is good potential to address at least some of these in the near future. In this section 

I explore some clear and exciting opportunities relating to species that have potential to 

link studies of evolutionary history in souther South America, the wider sub-Antarctic and 

the Scotia Arc, both focusing on and expanding those studied in this thesis. 

 

As mentioned above, the taxonomic identity of Telmatogeton magellanicus is not fully 

resolved, and the same can also be said of the other species in the genus that occupy 

isolated island locations around the Southern Ocean. These include T. amphibius 

(Kerguelen/Crozet) and T. macquariensis (Macquarie), as well others, such as the winged 

Telmatogeton species recorded in the current study co-occurring in one location with T. 

magellanicus. The flightless sub-Antarctic species have been synonymised to their 



 

131 

current genus, but are endemic to very remote islands, suggesting a deep evolutionary 

divergence from their continental relatives. Specifically focusing on the identity of T. 

magellanicus, the first requirement is to compile genetic, morphological and ecological 

data on other species of Telmatogeton, in particular relating to shared traits, comparing 

their behaviour, physiological adaptations, morphology and genetic relatedness. Such a 

study would provide an important advance in understanding of the history and 

evolutionary relationships between the biota of the remote sub-Antarctica islands. An 

analogous question relates to the taxonomic status of Eretmotpera murphyi. Despite its 

original description in the genus Eretmoptera, both recent molecular studies and earlier 

morphological and ecological inferences strongly suggest that it should correctly be 

placed in Belgica, but to confirm the claims samples of E. browni (the type species of the 

genus) from California, USA, need to be obtained; however, as with T. magellanicus, no 

studies with E. browni appear to have been published since its original descripition. 

Acquiring sufficient genetic evidence from all these species will allow their relationship to 

be properly determined, facilitating later comparative studies. 

 

There is much further opportunity to investigate the ecology and ecophysiology of insects 

in the Antarctic region. Work in this thesis has shown that combining ecological and 

ecospysiological studies can lead to insights into factors influencing species’ distributions. 

Particularly for T. magellanicus, we have barely scratched the surface of understanding 

the species’ physiological adaptations, and further experiments investigating their ability 

to tolerate (or avoid) freezing conditions, as well as the limits to which they can deal with 

changes in pH (especially in the context of the growing threat of global ocean acidification) 

would help explain more about how these remarkable species can live in such harsh 

environments. By compiling baseline data on the habitat and behaviour of the insects 

such as those examined here we will also be able to more easily predict the patterns and 

impacts of future colonisation/invasion events through techniques such as species/niche 

modelling (Chown et al. 2009, Pertierra et al. 2019, Bartlett et al. 2020, Contador et al. 

2020). 
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This thesis intentionally set out to cover and integrate a broad range of subjects, rather 

than following a more traditional approach of focusing on the exploration of a single taxon 

(or group of taxa) or even a given methodology/technique. In part, this was to demonstrate 

the potential of combining studies and showing how much we can be learnt from 

approaching taxa or biogeographical regions from different angles. Historically, science 

has shown us that following a single thread may lead us to incomplete or unintentionally 

biased answers to our questions (Macleod et al. 2015, Rocca & Andersen 2017, 

Andersen et al. 2019). Above all, biology is characterised by a very complex network of 

interactions that are very hard to tease apart without taking into consideration particular 

areas of knowledge; by having a more thorough view of an area of the globe or a particular 

habitat we can have a more accurate understanding of how it has developed to its current 

situation and what may happen to it over different timescales into the future. (Contador et 

al. (2020) [shown here as Appendix V]) 

 

The main connecting factor between the geographic regions and taxa studied in this 

thesis is the geological continuity between the Andes of South America, the Scotia Arc, 

and the Antarctic Peninsula, an area also heavily influenced by contemporary climatic 

changes. As highlighted by Maldonado et al. (2015), the Drake Passage which it crosses 

is one of Earth’s major ocean gateways and extremely important for understanding the 

behaviour of the Antarctic Circumpolar Current (ACC) (see also Maldonado et al. 2003, 

Livermore et al. 2004, Scher and Martin 2006, and other references therein). Thus, 

understanding multiple features of the biology of organisms across this region (and how 

specifically they are affected by its conditions) will also help to connect the region to the 

others similarly affected by the ACC, such as Australia/New Zealand, southern Africa, 

and the sub-Antarctic and Antarctic islands. Taxa like the copepod Boeckella, which is 

recorded all around the Antarctic Circle (Bayly 1992, Pugh et al. 2002, Maturana et al. 

2019, 2020; and other references therein), will be key in filling the gaps of this field of 

research. 

 

In conclusion, this theses highlights once again how remarkably resistant and resourceful 

these small Antarctic and sub-Antarctic insects are. The wide variety of biological tools 
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employed by these animals to deal with extreme conditions itself generates the possibility 

of using more integrative research approaches and methods. While there is justifiable 

concern how these exceptional insects will cope with the predicted climatic and other 

environmental changes they may face over next century or so, but judging from what we 

have learned so far, it is quite likely they will be very capable of rising to the challenge! 
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9. Appendices 
9.1 Appendix I 
 
9.1.1 PCR protocol 
PCR amplification were performed using the Taq PCR Core Kit (Qiagen GmbH, Hilden, 

Germany) with addition of MgCl2 provided with the kit. In most reactions bovine serum 

albumin (BSA) was also added (Cat #AM2616 50mg 50mg/ml Lot #0911017). An 

overview of the quantities and concentrations used in the PCR reactions is given in Table 

9.1.1.1. All reactions were prepared on a cool-block and quickly spun down using a 

centrifuge before the reaction.  

 

Table 9.1.1.1. Volumes and concentrations of components used per PCR reaction 

Component Quantity (µL) 

Q solution 4 

dNTP (10 mM) 1.2 

Forward primer (10 mM) 1 

Reverse primer (10 mM) 1 

10x PCR Buffer 2 

Taq DNA Polymerase (5U/µL) 0.125 

ddH20 (nuclease-free water) 5.775 

MgCl2 (25 mM) 2.4 

BSA (10 mM) 1 

Template DNA (concentration variable) 1.5 

Total 20 

 

Primers were first tested using a gradient PCR, after which an optimal annealing 

temperature was chosen for each gene. All PCR cycles used variations of the Thermal 

Cycler conditions listed in Table 9.1.1.2 PCR products were inspected using gel 

electrophoresis (see next section). Forward and reverse sequencing was performed by 
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LGC Genomics (Berlin, Germany) and Macrogen (Seoul, South Korea), using the same 

primers as used for PCR. 

 

Table 9.1.1.2. Volumes and concentrations of components used per PCR reaction 

Process Time Temperature (º C) 

Initial denaturation 3 min 95 

3-step cycle (35 cycles)   

      Denaturation 30 sec 95 

      Annealing 40 sec 60 

      Extension 3 min 72 

Final elongation 10 min 72 

 

9.1.2 Gel electrophoresis 
Agarose gels (1.5%) were made by adding 0.75 g agarose (Bioline, London, UK) to 47.5 

ml of 1x TBE buffer (Tris Borate EDTA (TBE) or Sodium Borate buffer (SB) — SB was 

favoured in latter gels because is significantly cheaper and provides better results — 

made up of 20x solution, in an Erlenmeyer (eventual smaller and bigger gels with the 

same ratio). The mixture was heated in a microwave and then whirled until completely 

mixed and dissolved. It was then cooled down slightly and ~5 ml of GelRedTM (Biotium, 

Inc., Fremont, USA) was added to the mixture, which was again mixed well by whirling. 

The mixture was then poored into a gel holder and cooled down for ~45 minutes until it 

was polymerized to a matrix. The gel was put in a gel tank, covered by 1x TBE buffer or 

1x SB buffer, after which the PCR products could be added. Between 1.5–4 μl of each 

DNA sample was loaded with a total concentration of ca 40-100 ng. The sample was 

mixed with a small drop (1 μl) of loading dye (CoralLoad PCR Buffer; part of the Taq PCR 

Core Kit; Qiagen GmbH, Hilden, Germany) before being loaded into the gel. Before 

running the gel two ladders were added, typically HyperLadderTM I and II (Bioline, London, 

UK). The common running settings were 90V for 40–45 min with TBE and 200V for 25–

30 min with SB. 
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9.2 Appendix II 
 

The following is a work-in-progress manuscript dealing with the taxonomic identity of 

Telmatogeton magellanicus. With this study, we aim to define whether T. magellanicus 

belongs in Telmatogeton, Belgica (it’s original genus) or Halirytus. 

 
9.2.1 Telmatogeton magellanicus phylogeny 
9.2.2.1 Materials & Methods 
Sampling 

Adult specimens of Telmatogeton magellanicus were sampled by Prof. Peter Convey with 

an entomological aspirator, in the Austral summer of 2016–2017 at the Róbalo (-

54.93337º, -67.65699º) and Honda (-54.92262º, -68.2382945º) Bays, Navarino Island, 

Chile; subsequently they were stored in ethanol 96% and kept at 4ºC. Additionally, three 

specimens of Telmatogeton macquariensis were obtained from Macquarie Island 

(Garden Cove; -54.49863, 158.94092), collected by Melissa Houghton on 11.II.2018. 

 

Extraction and Sequencing 

DNA was extracted using the QIAGEN DNEasy Blood & Tissue and QiAMP Extraction 

Kits. Adults were fully submerged into the proteinase K+ATL buffer solution for 4h under 

56º C or overnight at 40º C; we didn’t crush them so that the insects were kept as whole 

as possible (there was some loss in pigmentation on the abdomen though); the remaining 

steps were followed as per the manufacturer’s instructions. 

 

Amplification for the COX1 and 28S genes was done using the Qiagen PCR Core Kit with 

added Ultrapure Bovine Serum Albumine (BSA) [Cat #AM2616 50mg 50mg/ml Lot 

#0911017]. Remaining outgroup sequences were retrieved from GenBank (Table 

9.2.2.1.1). 
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Table 9.2.2.1.1. Primers used. Novel primers designed with Geneious (28S) 

Gene Primer Name Sequence (5’-3’) Reference 

COX1 LCO1490 GGTCAACAAATCATAAAGATATTGG Folmer et al. 1994 

 HCO2198 TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. 1994 

 UEA5 AGTTTTAGCAGGAGCAATTACTAT Lunt et al. 1996 

 UEA10 TCCAATGCACTAATCTGCCATATTA Lunt et al. 1996 

28S rD1.2a CCCSSGTAATTTAAGCATATTA Whiting 2002 

 MK_3F TTTTGGTAAGCAGAACTGGYG Machida & Knowlton 
2012 

 28S_1609F ACCATGAAAGGTGTTGATTGCTG NOVEL 

 28S_1955R ACCATGAAAGGTGTTGATTGCTG NOVEL 

 rD7b1 GACTTCCCTTACCTACAT Whiting 2002 

 

All sequences were manually examined, with forward and reverse sequences assembled, 

trimmed and aligned with Geneious 9.1.8 (Biomatters, LTD, Auckland, NZ). The 

alignment of COX1 sequences was carried out with the MUSCLE process (Edgar, 2004), 

while the 28S sequences required the use of the MAFFT process (Katoh et al. 2002). 

Short, partially incomplete sections at the ends of each alignment were excluded. 

 

Extraction and Sequencing 

DNA was extracted using the QIAGEN DNEasy Blood & Tissue and QiAMP Extraction 

Kits. Adults were fully submerged into the proteinase K+ATL buffer solution for 4h under 

56º C or overnight at 40º C; adults were not crushed in order to keep them as whole as 

possible (however, there was some loss in pigmentation on the abdomen), while the 

larvae where partially or fully crushed before extraction; the remaining steps were 

followed as per the manufacturer’s instructions. 
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Amplifications for the COX1 and 28S genes were carried out with the Qiagen PCR Core 

Kit with added Ultrapure Bovine Serum Albumine (BSA) [Cat #AM2616 50mg 50mg/ml 

Lot #0911017] using a combination of primers (Table 2). Finally, products were sent to 

LGC Genomics (Germany) and Macrogen (South Korea) for Sanger sequencing. 

Outgroup sequences were retrieved from GenBank (Table 3). We selected Belgica 

antarctica as the most reasonable outgroup, followed by Podonomus pepinelli and 

Podonums rivolorum, and stabilised the more basal nodes with more closely related 

species (Parochlus spp.) (see Felsenstein, 1981). 

 

Data preparation and genetic analyses 

All sequences were manually examined, with forward and reverse sequences assembled, 

trimmed and aligned with Geneious 9.1.8 (Biomatters, LTD, Auckland, NZ). The 

alignment of COX1 sequences was carried out with the MUSCLE process (Edgar, 2004). 

Short, partially incomplete sections at the ends of each alignment were excluded. 

 

To deal with the acquired data, we first had to test for the genetic structure in our samples, 

through the use of phylogenetic methods and associated coalescent techniques. Thus, 

descriptive statistics (Table X) where produced with DnaSP v5.0 (Librado and Rozas, 

2009); significance was then assessed from 1000 coalescent simulations. Additionally, 

we used TRACER v1.6.0 (Rambaut et al. 2014) to check for effective sample sizes of 

parameters. 

 

Because not all available outgroup sequences encompassing the entire length of the 

COX1 gene, we opted to have two different alignments with two non-overlapping 

partitions. The optimal model of nucleotide substitution for COX1 was determined with 

jModelTest 2 (Darriba & Posada, 2016). Selection was based on the Akaike Information 

Criterion (AIC) and resulted in selection of the GTR+G model for the first partition and 

TIM2+I+G for the second partition. Both models have the same substitution parameters 

(nst = 6). Phylogenetic analysis was performed using MrBayes 3.2 (Ronquist et al. 2012), 

with 20 million generations, and boostrap values were acquired through a a Maximum 

Likelihood reconstruction with RAxML v8.0.0 (Stamatakis 2014). 
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9.2.2.2 Results 
The analyses (Fig. 9.2.2.2.1, next page) show a strongly supported clade for 

Telmatogeton magellanicus and Telmatogeton macquariensis for both genes. However, 

the relationship of both species with the remaining Telmatogeton cannot be confirmed 

with the available dataset. 
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9.3 Appendix III 
 
9.3.1 Belgica antarctica 
 

Taxonomy: Diptera – Chironomidae – Orthocladiinae 

 

The most famous of the two antarctic midges, Belgica antarctica, has been heavily 

studied over the last four decades (Convey & Block 1996, Allegrucci et al. 2006, 2012, 

Hayward et al. 2007, Kelley et al. 2014, Cornette et al. 2015, Kawarasaki et al. 2019; 

among many others). This brachypterous insect is the largest free-living land animal in 

the Antarctic Continent; their adult bodies, which range from 4 to 5 mm, are of a very dark 

tint, with slightly larger females, with a thicker abdomen as the most distinguishable 

characteristic (Jacobs 1900, Sugg et al. 1983). 

 

Belgica antarctica is a biennial insect, meaning that it takes two full years to complete its 

life cycle. The first comprehensive description of its phenology and life history dating back 

to the 1980’s (Sugg et al. 1983), even though Peckham (1971) made initial remarks about 

the taxon in that regard. From these studies, we know that copulation and oviposition are 

carried out through the first half of a summer, with most specimens reaching their second 

larval instar before overwintering in this stage (Figure 9.3.1 and 9.3.2). During the second 

summer, the larvae keep feeding and reach the 4th instar, whereupon they need to 

overwinter once again, before morphing into pupae and then adults in the third summer, 

when the cycle restarts (Figure 9.3.2). 
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Figure 9.3.1 Larvae and mating adults of B. antarctica (photos: Richard E. Lee Jr.). 

 

 
Figure 9.3.2 Adult of B. antarctica on moss (photo: Elise Biersma). 

 

9.3.2 Eretmoptera murphyi 
 
Taxonomy: Diptera – Chironomidae – Orthocladiinae 

 

Until very recently, the phenology and life history of E. murphyi (Figure 9.3.3) was known 

only from sporadic studies, with research done with the full cycle. Publications such as 

Block et al. (1984), Cranston (1985), Convey (1992), Gardiner et al. (1998), Worland 
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(2010), and Hughes et al. (2013) amassed data on egg and egg sac development times, 

and/or discussed specific larval stages, and the possible parthenogenecity of the species. 

 

Bartlett et al. (2018a) confirmed the latter and fully described the phenology of E. murphyi. 

What is now known is summarised in Figure 9.3.4, showing that eggs develop for around 

30 days, and akin to Belgica antarctica, larvae develop until they reach the second instar 

shortly before overwintering in this stage. In the following year, they complete their larval 

development through the fourth instar, when they need to overwinter once again before 

spending a 3-week period as pupae. Adults survive for around a week, but not all 

specimens completely transition from pupae though, as they sometimes oviposit from 

within their pupae. 

 

Larvae, pupae and adults (known only from females) of E. murphyi can reach up to 5 mm 

long. While the larvae have a yellow to light dark yellow body, adults have light brown 

colour, similar to that of the pupae. Though brachypterous as in B. antarctica, the 

remaining wings are longer than the Antarctic midge (Schaeffer 1914, Cranston 1985). 

 

 
Figure 9.3.3 Adult of E. murphyi (photo: Robert S. Key). 
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Figure 9.3.4 Life cycle of E. murphyi (Bartlett et al. 2018a). 

 

9.3.3 Parochlus steinenii 
 
Taxonomy: Diptera – Chironomidae – Podonominae 

 

The first, and most obvious, difference between Parochlus steinenii and the other midges 

studied here is the presence of functional and fully developed wings. Additionally, they 

have a thinner body and adults can be found mostly on the ground in clusters, but also 

flying or freely walking around. Edwards & Usher (1985) hinted that the apparent 

morphological flexibility of P. steinenii, through clear variations between populations in 

the same island, were evidence of a more flexible life history strategy, commonly seen in 

polar organisms (in comparison with temperate and, even more so, tropical species). 

 

Their bodies are a pitchy brown tint, extending up to 3 mm, with wings almost as long as 

their bodies (up to 2.63 mm); pupae are slightly longer, around 3.5 mm, with larvae (L4s) 

extending up to 6 mm, and both are of a very dark tint. One of the main characteristics of 

the Podonominae is the very thin and long abdomen, also seen P. steinenii (Wirth & 

Gressitt 1967). 
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Figure 9.3.5 Adult of P. steinenii (photo: Gonzalo Arriágada). 

 

 
Figure 9.3.6 Collection of P. steinenii with an entomological aspirator, King George 

Island. 

 

 
 
 
 
 



 

168 

9.3.4 Telmatogeton magellanicus 
 

Taxonomy: Diptera – Chironomidae – Telmatogetoninae 

 

Also a brachypterous species, T. magellanicus is slightly larger than B. antarctica and E. 

murphyi, with a gray body. Adult males are thinner and longer than the females, ranging 

from 0.4 to 0.6 mm (4th instar larvae can be up to 0.3 mm longer than that). 

 

As stated in Chapters 2 and 3, little was known about T. magellanicus until its very recent 

rediscovery and the first visual records are shown in Chapter 2, as well as partially 

reproduced in Figures 9.3.7 and 9.3.8. Here we can see part of the insect’s life cycle, 

including its 2nd and 4th larval instars, as well as two pupae and an adult. As of now, the 

only specific information we could acquire regarding the development of this species is 

that they take around 14 days to hatch from their eggs. A study with a full description of 

the species’ life cycle should be fairly straightforward to complete by taxonomists and 

phenologists along the shores of Navarino Island, Chile, where the species can be 

abundant. 

 

 
Figure 9.3.7 Specimens of T. magellanicus. From top to bottom: second larval instar, 

fourth larval instar, two pupae. (black bar = 0.5 cm) (photo: F. L. Simões) 
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Figure 9.3.8 Adult male of T. magellanicus (photo: Gustavo Arriágada). 

 

9.3.5 Lancetes angusticollis 
 

Taxonomy: Coleoptera – Dytiscidae 

 

Akin to other Antarctic or sub-Antarctic species, the diving beetle Lancetes angusticollis 

has a biennial cycle (Nicolai & Droste 1984, Arnold & Convey 1998). However, what is 

known about its life history is almost completely based on the South Georgian 

populations, and those from the South American mainland still need to be properly reared 

and studied. 

 

From eggs hatching, which takes around 21 days, larvae develop through to the third or 

fourth instars (depending on how late the eggs hatched during the first summer of 

development). This is when specimens of L. angusticollis spend their first inactive period 

for the winter, which is then followed by a second summer where they will complete 

morphing into pupae, or even all the way to adults in case of early-laid eggs, before 
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proceeding to a second, temperature-cued, overwintering phase (Arnold & Convey 1998). 

The cycle starts anew during the third summer. 

 

As with other dytiscids, the body of L. angusticollis is distinctively longer than wide 

(extending up to ~15 mm), mostly ochreous with inconsistent black stripes along their 

elytra (though the head is of a very dark brown) (Curtis 1839). Though there is no proper 

description of the larvae, Brancucci & Ruhnau (1985) fully described the pupae, which 

are 12–12.3 mm long and of a creamy-white colour. 

 

 
Figure 9.3.9 Adults of the diving beetle L. angusticollis (photos: Robert S. Key and Elise 

Biersma). 
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Figure 9.3.10 Collection of L. angusticollis at Lancetes Lake, Maiviken, South Georgia 

(photo: Elise Biersma).  
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9.4 Appendix IV 
 
9.4.1 Fungus-Invertebrate Interactions in Antarctica 
Chapter 9 (p. 201–219) in Rosa, L. H. (2019) Fungi of Antarctica: Diversity, Ecology and 

Biotechnological Applications. Springer, Cham, Switzerland. 345 pp. 
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9.5 Appendix V 
 
9.4.1 Assessing distribution shifts and ecophysiological characteristics of the only 
Antarctic winged midge under climate change scenarios 
 

Contador, T.; Gañan, M.; Bizama, G.; Fuentes-Jaque, G.; Morales, L.; Rendoll, J.; 

Simões, F.; Kennedy, J.; Rozzi, R.; Convey, P. (2020) Assessing distribution shifts and 

ecophysiological characteristics of the only Antarctic winged midge under climate change 

scenarios. Scientific Reports 10, 98076. DOI: 10.1038/s41598-020-65571-3 



 

 

 
 



 

 

 
 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 



 

 

 


