

PhenoMeNal: Processing and analysis of Metabolomics data in the Cloud

Kristian Peters*.¹, James Bradbury*.², Sven Bergmann^{3,4}, Marco Capuccini^{5,6}, Marta Cascante⁷, Pedro de Atauri⁸, Timothy M D Ebbels⁹, Carles Foguet⁸, Robert Glen^{9,10}, Alejandra Gonzalez-Beltran¹¹, Ulrich L. Günther¹², Evangelos Handakas⁹, Thomas Hankemeier^{13,14}, Kenneth Haug¹⁵, Stephanie Herman^{6,16}, Petr Holub¹⁷, Massimiliano Izzo¹¹, Daniel Jacob¹⁸, David Johnson^{11,12},
Fabien Jourdan²⁰, Namrata Kale¹⁶, Ibrahim Karaman²¹, Bita Khalili^{3,4}, Payam Emami Khonsari¹⁷, Kim Kultima¹⁷, Samuel Lampa⁶, Anders Larsson²², Christian Ludwig²³, Pablo Moreno¹⁶, Steffen Neumann^{1,24}, Jon Ander Novella²², Claire O'Donovan¹⁶, Jake TM Pearce⁹, Alina Peluso⁹, Marco Enrico Piras²⁵, Luca Pireddu²⁵, Michelle AC Reed¹³, Philippe Rocca-Serra¹¹, Pierrick Roger²⁶, Antonio Rosato²⁷, Rico Rueedi^{3,4}, Christoph Ruttkies¹, Noureddin Sadawi⁹, Reza M Salek¹⁶, Susanna-Assunta Sansone¹¹, Vitaly Selivanov⁸, Ola Spjuth⁶, Daniel Schober¹, Etienne A.
Thévenot²⁶, Mattia Tomasoni^{3,4}, Merlijn van Rijswijk^{28,29}, Michael van Vliet³⁰, Mark R Viant², Ralf J. M. Weber², Gianluigi Zanetti²⁵, Christoph Steinbeck^{*,31}

*corresponding authors

¹Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany

²School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

³Department of Computational Biology, University of Lausanne, Lausanne, Switzerland

⁴Swiss Institute of Bioinformatics, Lausanne, Switzerland

⁵Division of Scientific Computing, Department of Information Technology, Uppsala University, Sweden

⁶Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden

⁷Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas

⁸Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Spain

⁹Department of Surgery & Cancer, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom

¹⁰Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB21EW, United Kingdom

¹¹Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, OX1 3QG, Oxford, United Kingdom.

¹²Department of Informatics and Media, Uppsala University, Box 513, 751 20 Uppsala, Sweden

¹³Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

¹⁴Netherlands Metabolomics Center, Leiden, 2333 CC, Netherlands

¹⁵Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug

¹⁶European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom

¹⁷Department of Medical Sciences, Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden

¹⁸BBMRI-ERIC, Graz, Austria

¹⁹INRA, University of Bordeaux, Plateforme Métabolome Bordeaux-MetaboHUB, 33140 Villenave d'Ornon, France

²⁰INRA - French National Institute for Agricultural Research, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France

²¹Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, W2 1PG, London, United Kingdom

²²National Bioinformatics Infrastructure Sweden, Uppsala University, Uppsala, Sweden Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden

²³Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

²⁴German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz5e, 04103 Leipzig, Germany

²⁵Distributed Computing Group, CRS4, Pula, Italy

²⁶CEA, LIST, Laboratory for Data Analysis and Systems' Intelligence, MetaboHUB, Gif-Sur-Yvette F-91191, France

²⁷Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence and CIRMMP, 50019 Sesto Fiorentino, Florence, Italy

²⁸ELIXIR-NL, Dutch Techcentre for Life Sciences, Utrecht, 3503 RM, Netherlands

²⁹Netherlands Metabolomics Center, Leiden, 2333 CC, The Netherlands

³⁰Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333 CC, The Netherlands

³¹Cheminformatics and Computational Metabolomics, Institute for Analytical Chemistry, Lessingstr. 8, 07743 Jena, Germany

ORCIDs:

Kristian Peters	kpeters@ipb-halle.de 0000-0002-4321-0257			
James Bradbury	j.bradbury@bham.ac.uk			
Sven Bergmann	sven.bergmann@unil.ch			
Marco Capuccini	marco.capuccini@it.uu.se 0000-0002-4851-759X			
Marta Cascante	martacascante@ub.edu 0000-0002-2062-4633			
Pedro de Atauri	pde_atauri@ub.edu 0000-0002-7754-7851			
Tim Ebbels timebb	pels@gmail.com			
Carles Foguet cfogue	t@ub.edu 0000-0001-8494-9595			
Robert Glen r.glen@	@imperial.ac.uk			
Alejandra N. Gonzalez 8262	-Beltran alejandra.gonzalezbeltran@oerc.ox.ac.uk 0000-0003-3499-			
Ulrich Guenther	u.l.gunther@bham.ac.uk			
Evangelos Handakas	e.chandakas@imperial.ac.uk			
Thomas Hankemeier	hankemeier@lacdr.leidenuniv.nl 0000-0001-7871-2073			
Stephanie Herman	stephanie.herman@medsci.uu.se 0000-0001-9382-3273			
Kenneth Haug kennet	ch@ebi.ac.uk 0000-0003-3168-4145			
Petr Holub petr.ho	olub@bbmri-eric.eu 0000-0002-5358-616X			
Massimiliano Izzo	massimiliano.izzo@oerc.ox.ac.uk 0000-0002-8100-6142			
Daniel Jacob djacob	Daniel Jacob djacob@u-bordeaux.fr 0000-0002-6687-7169			
David Johnson david.j	ohnson@im.uu.se 0000-0002-2323-6847			
Fabien Jourdanfabien	jourdan@gmail.com			
Namrata Kale namra	t@ebi.ac.uk 0000-0002-4255-8104			
Ibrahim Karaman	i.karaman@imperial.ac.uk 0000-0001-9341-8155			
Bita Khalili bita.kh	alili@unil.ch			
Payam Emami Khoons	sari payam.emami@medsci.uu.se 0000-0002-4137-5517			
Kim Kultima kim.ku	ltima@medsci.uu.se 0000-0002-0680-1410			

Samuel Lampa samuel.lampa@farmbio.uu.se 0000-0001-6740-9212

Anders Larsson	anders.larsson@icm.uu.se 0000-0002-2096-8102
Christian Ludwig	c.ludwig@bham.ac.uk
Pablo Moreno pmore	no@ebi.ac.uk 0000-0002-9856-1679
Steffen Neumann	sneumann@ipb-halle.de 0000-0002-7899-7192
Jon Ander Novella	jon.novella@farmbio.uu.se 0000-0002-2187-5426
Claire O'Donovan	odonovan@ebi.ac.uk 0000-0001-8051-7429
Jake TM Pearcejake.pe	earce@gmail.com 0000-0003-4637-3171
Alina Peluso a.pelus	so@imperial.ac.uk 0000-0003-2895-0406
Luca Pireddu luca.pi	reddu@crs4.it 0000-0002-4663-5613
Marco Enrico Piras	marcoenrico.piras@crs4.it 0000-0002-5207-0030
Michelle AC Reed	m.thompson@bham.ac.uk 0000-0002-0667-4490
Philippe Rocca-Serra	philippe.rocca-serra@oerc.ox.ac.uk 0000-0001-9853-5668
Pierrick Roger pierric	k.roger@gmail.com
Antonio Rosato	rosato@cerm.unifi.it 0000-0001-6172-0368
Rico Rueedi rico.ru	eedi@unil.ch 0000-0002-6713-2214
Christoph Ruttkies	ruttkies@web.de 0000-0002-8621-8689
Noureddin Sadawi	noureddin.sadawi@gmail.com0000-0002-2195-8264
Reza M Salek reza.sa	lek@ebi.ac.uk 0000-0001-8604-1732
Susanna-Assunta Sans	sone susanna-assunta.sansone@oerc.ox.ac.uk 0000-0001-5306-5690
Vitaly Selivanov	seliv55@gmail.com 0000-0002-7937-9249
Ola Spjuth ola.spj	uth@farmbio.uu.se 0000-0002-8083-2864
Daniel Schober Daniel	SawstMsi@gmail.com 0000-0001-8014-6648
Etienne A. Thévenot	etienne.thevenot@cea.fr 0000-0003-1019-4577
Mattia Tomasoni	mattia.tomasoni@unil.ch
Merlijn van Rijswijk	merlijn.van.rijswijk@dtls.nl 0000-0002-1067-7766
Michael van Vliet	m.s.vanvliet@lacdr.leidenuniv.nl 0000-0002-5034-5766
Mark Viant m.vian	t@bham.ac.uk 0000-0001-5898-4119

Ralf Weber r.j.weber@bham.ac.uk

Gianluigi Zanetti gianluigi.zanetti@crs4.it

Christoph Steinbeck

0000-0003-1683-7350

christoph.steinbeck@uni-jena.de

0000-0001-6966-0814

Abstract

Background: Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism's metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological and many other applied biological domains. Its computationally-intensive nature has driven requirements for open data formats, data repositories and data analysis tools. However, the rapid progress has resulted in a mosaic of independent – and sometimes incompatible – analysis methods that are difficult to connect into a useful and complete data analysis solution.

Findings: PhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into the cloud. PhenoMeNal seamlessly integrates a wide array of existing open source tools which are tested and packaged as Docker containers through the project's continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi and Pachyderm.

Conclusions: PhenoMeNal constitutes a keystone solution in cloud e-infrastructures available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud einfrastructures through easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and automating software installation and configuration and through ready-to-use scientific workflow user interfaces, PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible and shareable metabolomics data analysis platforms which are interfaced through standard data formats, representative datasets, versioned, and have been tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of the infrastructure to other application areas and 'omics research domains.

Keywords

Metabolomics, Data Analysis, e-infrastructures, NMR, Mass Spectrometry, Computational Workflows, Galaxy, Cloud Computing, Standardization, Statistics

Findings

Background

The field of metabolomics has seen remarkable progress over the last decade and has enabled fascinating discoveries in many different research areas. Metabolomics is the study of small molecules in organisms which can reveal detailed insights into metabolic biochemistry, e.g. changes in concentrations of specific molecules, metabolic fluxes between cells or compartments, identification of molecules that are involved in the pathogenesis of a disease, the study of the biochemical phenotype of animals, plants and even soil microorganisms [1–3].

The principal metabolomics technologies of mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) typically generate large data sets that require computationally intensive analyses [4]. Biomedical investigations can involve large cohorts with many thousands of metabolite profiles and can produce hundreds of gigabytes of data [5–8]. With such large data sets, processing becomes impracticable and unmanageable on commodity hardware. Cloud computing can offer a solution by enabling the outsourcing of calculations from local workstations to scalable cloud data centers, with the possibility to allocate thousands of CPU cores simultaneously. Furthermore, cloud computing allows for resources to be instantiated on-demand (CPUs, RAM, network, storage) and access to computational tools in the form of microservices that can dynamically grow or shrink.

MS and NMR data processing usually involve selection of parameters (which are often specific to the analytical instrumentation), algorithmic peak detection, peak alignment and grouping, annotation of putative compounds and extensive statistical analyses [9,10]. Many open source tools have been developed that address these different steps in data processing and analysis. These tools, however, usually come with their own software dependencies, resource requirements and scripting languages. As a consequence, configuring and running them is often complicated, especially for researchers who are untrained in computer science [4]. Furthermore, many tools require users to input parameters that can significantly affect results and performance, and reporting of these parameters is not always clear [11].

In the last five years, a number of infrastructures and integration efforts were initiated, including metabolomics data repositories with a global scope [6,12], platforms for reproducible workflow analysis [13,14], as well as initiatives to integrate and coordinate data standards [15]. Simultaneously, multiple networks of service centers such as the international Phenome Centers [16] and MetaboHub [17] have formed with the goal to facilitate the acquisition, processing and analysis of metabolomics data [6–8] at ever increasing scales.

Currently, several web-based metabolomics data processing platforms are available. XCMSOnline provides a platform based on XCMS for downstream data analysis, visualization, data sharing and access to Metlin to facilitate metabolite identification and pathway analysis [18]. MetaboAnalyst presents a wide variety of data processing and analysis tools including statistical analysis, time-series analysis, functional analysis and pathway analysis [19]. Workflow4Metabolomics is based on Galaxy and provides various metabolomics processing workflows, including NMR [13,20]. These common tools for analysing metabolomics data provide web-based graphical user interfaces (GUIs) with different functionality.

Here we present PhenoMeNal (Phenome and Metabolome aNalysis), a unique, easy-touse, complete, robust and performant cloud e-infrastructure that provides a large suite of standardized and interoperable metabolomics data processing tools as a complete data analysis solution. In contrast to current metabolomics processing platforms, PhenoMeNal provides Infrastructure-as-a-Service (IaaS) and seamlessly integrates a wide array of existing open source tools.

A major advantage over other platforms is that PhenoMeNal allows to instantiate many different services in the cloud and provides a number of standardized, automated and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi and Pachyderm (Fig. 1). Moreover, the PhenoMeNal e-infrastructure can be easily deployed onto public and private cloud environments and can be configured elastically to fit into any cloud-based environment, and thus enabling scalable and cost-effective high-performance metabolomics data analysis in a way that hides the technical complexity from the user. PhenoMeNal further facilitates reproducible analyses through automated, sharable and citable workflows.

Overview

The features of the PhenoMeNal e-infrastructure are encapsulated as a Cloud Research Environment (CRE). The PhenoMeNal CRE can be instantiated on major commercial public cloud providers, including Amazon Web Services (AWS) and Google Cloud Platform (GCE), as well as OpenStack-based private clouds and in custom environments. Technical complexity is hidden from the users, simplifying setting up the cloud infrastructure for administrators (Fig. 2).

From a web-based portal, users can deploy the CRE, which includes several web services and software tools (Fig. 2). Data can be processed directly in the e-infrastructure without the need to install additional software. Scientific workflows can be executed via user friendly webbased platforms such as Galaxy, as well as programmatic interfaces and notebooks. Each service has been supplied with a rich source of documentation and training material to assist researchers.

The PhenoMeNal Portal

The PhenoMeNal Portal [21], allows users to deploy, manage and delete PhenoMeNal CREs simply through a web interface. Deployments to major commercial cloud platforms (AWS and GCP) as well as OpenStack, an open source cloud platform, can be made using an easy to follow wizard (Fig. 2). OpenStack deployments can be deployed behind clinical firewalls, which is especially pertinent when dealing with sensitive (i.e. patient) data.

The PhenoMeNal public instance allows users to test-run a CRE without the need to deploy on a cloud platform. It can be deployed and accessed through the portal. Once credentials for users have been generated, analyses can be run through a Galaxy instance containing the tools and workflows present in any deployed CRE. The portal also includes user and developer documentation, workflow tutorials and links to training videos.

Scientific workflows

A scientific workflow is a set of computational steps that are carried out to process and analyze data [22]. Usually, a workflow is comprised of several linked software tools that are each executed during a particular step of the workflow. In order to manage and automate scientific workflows, in PhenoMeNal the well-established dedicated workflow management

system Galaxy can be deployed, which presents the user with an easy to use graphical user interface as well as providing a programmatic interface [20,23]. Galaxy facilitates collaborative exchange, reproducibility and traceability of data analysis by enabling users to share entire workflows and analysis histories [24]. In addition to Galaxy, programmatic executable notebooks (Jupyter) and the workflow tools exposed as programmatic interfaces Luigi and Pachyderm are also supported [25].

In order to cover typical use cases in metabolomics and to illustrate the usage and applicability of given analytical pipelines and software tools, five representative scientific workflows are available in the PhenoMeNal Galaxy (Table 1), each having different computational demands and purposes. More than 250 individual modules have been integrated in Galaxy (see section scientific workflows in Methods).

Software tools

The Portal App Library [26], shows the software tools packaged in PhenoMeNal that are available through the CRE deployment (Fig. 2). The range of software tools available cover several metabolomics domains, making PhenoMeNal relevant for use in a wide range of data analysis scenarios. The domains covered include clinical metabolomics, plant metabolomics, fluxomics and eco-metabolomics. Data from both targeted and untargeted analysis can be analyzed for metabolite profiling and fingerprinting approaches [1,2]. NMR and MS (LC/MS, GC/MS, DIMS) data can be processed.

PhenoMeNal also provides tools for data management (e.g. via the ISA format and API), metabolite feature detection (e.g. XCMS, CAMERA, nmrProcFlow), metabolite identification (MetFrag, BATMAN, MetaboMatching) and (bio)statistics (e.g. univariate, multivariate and power analyses) (Supplemental Table 1). Tools can be filtered for functionality, approaches and instrument (data) types to readily find the most appropriate software tools. Some tools that implement specific functionality (e.g. Rnmr1D which performs baseline correction of NMR spectra as part of nmrProcFlow) are available through dedicated Galaxy modules or through software containers (Supplemental Table 1).

Study Design

PhenoMeNal was designed to use standardized protocols, software tools and comply with state-of-the-art dedicated specifications and data formats across the entire project. Development was geared towards implementation of open standards for tracking provenance of both data and metadata generated by clinical phenotyping projects. In PhenoMeNal, the ISAmodel and specifications were implemented using the ISA format to generate, annotate, validate and deposit experimental metadata information of data sets and studies to public repositories such as MetaboLights [27,28]. ISA-based metadata tracking is used for the different analysis pipelines which are specific to the distinct metabolomics domains. PhenoMeNal reached native support for the ISA format by developing a dedicated Galaxy composite data type. Such component affords direct recognition of the ISA format by the Galaxy environment, thus ensuring seamless integration with downstream workflow component.

Data deposition

PhenoMeNal encourages the metabolomics data repository MetaboLights as a primary source of data deposition [29]. Private and public data sets are supported, as well as download and upload to MetaboLights. If the storage in a data repository such as MetaboLights is not

possible, data can be stored locally or in the cloud e-infrastructure. Access to the data is strictly controlled and secured. To support data deposition, ISA-based Galaxy modules are available allowing to publish and disseminate scientific results in standard compliant ways.

Reproducibility

One of the challenges of cloud computing is that analyses need to be run continuously and successfully in different environments [30]. Specifically, it has to be ensured that, given the same input, workflows and tools produce identical results regardless of the underlying environment [4,30]. When these requirements are fulfilled, end users can be confident that their data will be analyzed correctly. PhenoMeNal has implemented three major testing strategies to ensure technical reproducibility using a continuous integration framework [31]. Tests were implemented for the infrastructure components, individual software containers and for data involved in computational workflows.

Sustainability

PhenoMeNal is part of a number of initiatives (BioMedBridges, COSMOS and ELIXIR) to foster the role of metabolomics and to harmonize experimental data and metadata usage [15,32]. Collaborations were established with EGI [33] and Indigo Datacloud [34] infrastructure providers and initiatives [35,36], to ensure that PhenoMeNal uses technologies that are well-supported and assure their widespread usage, continuity and further development. For example, the development of KubeNow and contributions to the Galaxy and Workflow4Metabolomics community are essential for PhenoMeNal [37]. Core development will continue on GitHub and is fostered by collaborations with tool developers.

Dependencies on specific technologies and frameworks were avoided by focusing on open standards such as ISA-Tab / ISA-JSON, mzML and nmrML and widely accepted software [38]. By being able to deploy PhenoMeNal on multiple types of cloud environments, lock-in to specific computing resource providers are avoided. PhenoMeNal implemented continuous integration and delivery, validated by extensive testing and with clear maintenance responsibilities (see sections in Methods).

Privacy and security

With human or animal material the collection, storage and analysis of metabolomics data introduce a number of constraints due to Ethical, Legal and Social Implications (ELSI) [39]. In particular, data initially derived from human clinical studies may be identifiable and will require consent for use, usually for a defined objective such as diagnosis, or be related to a particular disease study. Where data is identifiable or pseudonymized, users can deploy PhenoMeNal on local secure resources, thus avoiding the export of data. In this scenario, access to the e-infrastructure should be strictly controlled through local access and authorization. It is recommended that clinical data is fully anonymized before analysis in PhenoMeNal [39,40].

The PhenoMeNal portal provides substantial guidance to enable users to comply with ELSI and General Data Protection Regulation (GDPR) requirements. Users must register in order to use the individual parts of the e-infrastructure. PhenoMeNal was implemented to use secured and encrypted transport and network communications.

Documentation and Training materials

Extensive user documentation and tutorials are provided via the PhenoMeNal Wiki page [41]. The Wiki includes detailed developer resources including information about the PhenoMeNal release schedule, guidelines for tool, workflow and portal developers, continuous integration and testing. Further documentation is also provided detailing, creating and managing PhenoMeNal CREs, tutorials for the Galaxy modules and pre-configured workflows, as well as Galaxy tours that provide step by step guidance for inexperienced users.

Community engagement

The PhenoMeNal project is open source, and is hosted on GitHub [42]. Developers can contribute tools to PhenoMeNal and are encouraged to do so. To add a tool to PhenoMeNal, it must be containerized using Docker, and then integrated into the build process. Detailed documentation is available in the project's Wiki for developers who wish to add their tools to PhenoMeNal.

Collaborations with other projects have been actively encouraged during the development of PhenoMeNal, including Workflow4Metabolomics [13] and the developers of both nmrML and nmrProcFlow [43]. These collaborations are essential to foster greater standardization within PhenoMeNal and to increase compatibility with other metabolomics data processing infrastructures.

Availability

Information on how to access PhenoMeNal can be found at <u>the project's website [44]</u>. The GitHub repository hosts the source code of all development projects [42]. The project container-galaxy-k8s-runtime contains all of the developments regarding Galaxy. The Wiki containing documentation is also hosted on GitHub_[41]. The PhenoMeNal Portal can be reached at_[21]. The public instance of Galaxy is accessible at_[45]. Source code and documentation are available under the terms of the Apache 2.0 license. Integrated open source projects are available under the respective licensing terms.

Conclusions

PhenoMeNal has succeeded in increasing the robustness and coverage of representative metabolomics data processing in scientific cloud e-infrastructures. The presented cloud e-infrastructure covers a wide range of analysis pipelines including data generation and download, data pre- and post-processing, (bio)statistics and result deposition in data repositories. A large effort has been made to introduce lower level changes to cloud e-infrastructures (e.g. the cloud deployment software KubeNow) to meet the demands of the biomedical domain. Furthermore, Galaxy has been enriched with metabolomics data standards, in particular the ISA format for study metadata and mzML and nmrML for acquired data files, as well as support for Kubernetes. PhenoMeNal has fostered the visibility of new metabolomics tools and has enabled the development of more sophisticated data analysis workflows. Our efforts were also guided by feedback from real life test scenarios collected at workshops with users from the clinical domain.

PhenoMeNal constitutes a keystone solution in cloud platforms available for metabolomics data analysis. The platform was designed to deliver optimal performance and functionality for typical use cases in the metabolomics domain. While the needs of clinicians and researchers in the biomedical and biochemical domains have been targeted, PhenoMeNal is not

limited to a specific domain as the cloud infrastructure, tools and workflows can be adapted to other use cases as demonstrated with the inclusion of the eco-metabolomics workflow. The technological advancements can be reused in other scientific cloud environments and could be integrated with solutions from other 'omics domains in the future.

Methods

Cloud e-infrastructure

The PhenoMeNal CRE is designed as a microservice architecture, with services being implemented as Virtual Machine Images (VMIs) and software containers. Containers are used to provision microservices for metabolomics data analysis tools and also long-running services such as workflow management systems. A container orchestrator runs containers on top of the scalable infrastructure. The orchestrator takes a group of machines that act as a distributed cluster and receives requests for tools as well as services executions. PhenoMeNal implements various layers to provision a container orchestrator on top of either bare metal hardware or Infrastructure-as-a-Service (IaaS) given by a cloud provider [46] (Supplemental Fig. 1).

During the setup process and while PhenoMeNal is deployed, data storage and cpu limits can be configured and dynamically scaled to fit any cloud environment. Deployments can be made to GCE, AWS and OpenStack-based private clouds from the PhenoMeNal portal. Deployments are also supported from the command line to Microsoft Azure [47], the European Science Cloud (EOSC) [48] and local servers (bare metal) [49], and we provide step-by-step instructions for these solutions.

PhenoMeNal provides IaaS for three different cloud environments:

- "local cloud": local workstations or bare metal clusters where data are not 1. 1. allowed to leave the facility.
- 2. 2. "public cloud": the flexible use of commercial cloud providers such as GCP and AWS.
- 3. 3. "shared cloud": using OpenStack - a free and open-source software platform for cloud computing, ideal for custom environments and research networks.

Software tools

The PhenoMeNal portal has an Application Library that allows users to deploy tools as microservices into the cloud infrastructure (Fig. 2, Supplemental Table 1). The portal is packaged into frontend and backend engines on top of Kubernetes.

Most software tools in PhenoMeNal are compiled from source code and use a variety of programming languages. Linux versions of software tools and user interfaces such as Galaxy are supported in dedicated encapsulated Docker containers which are implemented as minimumsized microservices. PhenoMeNal currently hosts 100 such projects in its GitHub repository (https://github.com/phnmnl/?q=container) (Supplemental Table 1). Projects are indicated by the trailing `container-` name and include a ruleset to build and run the containerized tools, as well as data sets for testing and other necessary files.

PhenoMeNal provides tutorials for developers who want to integrate their tools into our e-infrastructure [50].

Scientific workflows

In PhenoMeNal, a number of options are available for running reproducible and standardized workflows (Table 1).

Galaxy

The Galaxy workflow management system is widely regarded as one of the most popular scientific workflow platforms [20,51]. It provides a user-friendly web-based graphical user interface (GUI) to make it easy for the end-user to configure and run individual modules and entire workflows without programming experience. Command-line tools and scripts are encapsulated into modules that are launched via the web interface. Galaxy also supports more powerful features like programmatic access through a REST API and helper libraries to access the running instance of Galaxy [52].

PhenoMeNal has achieved to adapt Galaxy for use with a microservices based architecture [53]. To this end, modules are encapsulated into Docker containers that can be flexibly launched within the cloud e-infrastructure. Galaxy is available in all deployed PhenoMeNal CREs and contains more than 250 modules that have been implemented as part of PhenoMeNal.

Six representative metabolomics Galaxy workflows have been fully integrated into PhenoMeNal (Table 1) and more workflows (mzQuality, NMR-BATMAN) are available for testing.

Jupyter

Jupyter, which started its history as the IPython notebook, is the most popular among tools commonly referred to as executable notebooks or computational notebooks [54]. Jupyter lets users combine executable code with results from code executions such as text, tables and figures. Usually Jupyter notebooks are enriched with extended information that explain what the code does. As a result, they are often used for training material and for tutorials. Computational notebooks can also to some extent be used as a way to document code executions and to make executions more reproducible [55].

Luigi and Pachyderm

Luigi is a Python workflow programming library that was originally developed by the company Spotify. It manages pipelines of computations primarily on Big Data systems such as Hadoop and Apache Spark but also supports local execution [54,55]. Luigi is a very flexible library that facilitates building complex pipelines of batch jobs handling dependency resolution, workflow management and visualization.

Similarly, Pachyderm allows to process distributed data and to keep track of the data from every stage of the analysis pipeline [25]. With Pachyderm it is possible to track the provenance of results and to accurately reproduce scientific workflows. Luigi and Pachyderm are well suited for complex scientific tasks and are easy to use from the python-environment in Jupyter notebooks without additional integration tooling needed.

In PhenoMeNal, we have extended Galaxy, Jupyter, Luigi and Pachyderm in such a way that they can be orchestrated throughout the cloud infrastructure together with the data analysis tools themselves [53]. Six important metabolomics workflows have been fully integrated into PhenoMeNal (Table 1) and more (mzQuality, NMR-BATMAN) are available for testing (Fig. 6) [212].

Reproducibility

Three strategies are realized to ensure technical reproducibility. They are implemented in the continuous integration (CI) software development framework Jenkins [31] which is accessible at [64]. These strategies are implemented as tests in our Jenkins and a tutorial guide is available at [65].

- Infrastructure testing: Procedures were implemented to ensure that each individual component (e.g. the deployment process of software containers, resource management, APIs / ABIs) within the infrastructure is interacting correctly with the other components.
 - Container testing: Verification that tools, which are packaged into software containers, build and run correctly in the infrastructure. Dependencies within one container and across several interdependent containers are tested.
- Data testing: The output of tools, which process demonstration data, is checked against a data set that is known to contain the expected result. This is being done for both individual tools and for several tools running in a workflow using the workflow testing tool for Galaxy called wft4galaxy [66].

Standardization

PhenoMeNal has implemented several dedicated Galaxy modules that directly retrieve and store ISA-Tab data set descriptors from and to MetaboLights, and can convert between other formats. Native Galaxy composite data types to support ISA-Tab and ISA-JSON have also been integrated, building upon the ISA API [28,38]. The ISA data type allows for the upload of an ISA-Tab archive (a zip file containing the ISA set of files and raw data when available), which is displayed to the users as a single Galaxy history data set. The integrated Galaxy modules include a MetaboLights downloader and uploader (for ingestion and submission), an ISAcreate module for the creation of ISA compliant archives, modules to explore study metadata through queries on study factors, ISA-Tab "slicing" where queries are used to select subsets of data files of interest, as well as format conversion (export to ISA-JSON and W4M) and study metadata validation (Supplemental Table 1).

PhenoMeNal also advanced the specification of the nmrML standard data format [56] and contributed a dedicated composite data type for nmrML to Galaxy. nmrML is used extensively throughout the NMR 1D workflow and conversion from raw format into nmrML is supported via dedicated Galaxy modules (Table 1).

Throughout the entire analysis pipeline, modules of computational workflows were designed to accept standard formats such as mzML, XML or CSV whenever possible.

Standardized APIs/ABIs are being used for the programmatic interfaces as well as for deploying services. To this end, modern and standardized programming, scripting and meta languages were selected such as Go, HCL, Python, Shell, XML and YAML that are widely used in cloud computing.

Reusability

In an ongoing effort, PhenoMeNal is actively advancing the FAIR criteria for good data management and stewardship [67] to be applied not only to data, but also to software tools and computational workflows (Table 2).

Privacy

PhenoMeNal supports fully anonymized data, which cannot be traced back to individuals in any way [40] and treats pseudonymized data as identifiable. As pseudonymized data are anonymous to the investigator, third parties may be able to link pseudonymized data back to identifiable individuals through mappings such as a hash or code [39]. In these cases, e.g. in a hospital environment, users must deploy PhenoMeNal within a private cloud or bare metal cluster behind their institution's firewall.

PhenoMeNal provides guidance on ethical and technical frameworks to regulate and secure the use of private or sensitive data [39,40]. It is possible to combine data and metadata within an ELSI compliant framework [40] and in such cases users can follow the example of the European Genome Phenome Archive (EGA) [69]. In public installations of PhenoMeNal, the ELIXIR policy on privacy has been implemented within a technically secure environment to process data [32].

Security

Open source tools are used throughout the entire e-infrastructure and this promotes community efforts to discover and resolve bugs and security issues. The container build process is steered by the continuous integration (CI) service Jenkins, which continuously builds the containers and generates reports. On success and through authentication container images are pushed to the PhenoMeNal container registry which is publicly available but read only. Cloud provider credentials are not stored in the cloud, but only on the deployer host. The Kubernetes cluster running the Jenkins-CI and the container registry, as well as the portal, runs on a CoreOS container, which is a self-updatable, cluster-aware system with most portions being read-only. It reboots nodes sequentially to avoid lack of availability.

KubeNow is a key component that initializes the cloud infrastructure and configures access to it via Cloudflare [70], providing dynamic DNS services and encryption for all network communication. The flexible implementation of PhenoMeNal allows the user to decide to not use CloudFlare in which case encryption is disabled. KubeAdm, which manages the setup of Kubernetes, is not reachable at runtime by default. The only way to access it is by having access to the private key stored on the computer on which it was launched. PhenoMeNal only allows access to standard ports (ssh, http, https and port 44 for the Galaxy Downloader) and implements a cloud-specific firewall for all supported cloud providers.

Microservices are designed to be launched on-demand and terminated after completed analysis. If security issues are reported for the microservices, tools or dependencies, or incremental security patches are available, new builds are automatically triggered in the CI system and developers and the release manager are notified to take additional actions if required. Images are built on a daily basis and tested for deployment, to avoid security patches from introducing any abnormality in the deployment process.

User Resources

A great deal of user resources exist for both PhenoMeNal users and developers, in the form of documentation, tutorials and training videos. The PhenoMeNal Wiki [41] contains detailed documentation on all aspects of PhenoMeNal, including general user guides, workflow and tool tutorials, developer documentation and general information on topics such as security and the e-infrastructure landscape. The PhenoMeNal portal contains help pages generated from the Wiki [71], which are categorized as User Documentation, Developer Documentation and Workflow Tutorials. Interactive Galaxy tours are directly integrated in Galaxy_[72]. Training videos are available at the project's YouTube page [73].

Availability of supporting source code and requirements

Project name: PhenoMeNal,

Project home page: http://phenomenal-h2020.eu Operating system(s): Platform independent Programming language: Go, HCL, Java, JavaScript, Python, R, Shell, XML, YAML Other requirements: Linux, Docker, Kubernetes, Terraform, Ansible, Helm License: MIT license for all code written by the PhenoMeNal project. Individual, Open Source Foundation approved licenses for all containerized tools.

RRID:SCR_016605

Supporting data

The following MetaboLights datasets are integrated into PhenoMeNal and are used to demonstrate the cloud integration and reproducibility of Galaxy workflows: MTBLS1 (NMR1D), MTBLS404 (Uni- and multivariate statistics), MTBLS412 (Fluxomics), MTBLS520 (Eco-Metabolomics), MTBLS558 (MetFrag). Datasets are available at https://www.ebi.ac.uk/metabolights. Snapshots of the code and further supporting data are available in the *GigaScience* repository, GigaDB [74].

Abbreviations

ABI - Application Binary Interface

API - Application Programming Interface

AWS - Amazon Web Services

- **CI Continuous Integration**
- CRE Cloud Research Environment
- DIMS Direct infusion mass spectrometry
- ELSI Ethical, Legal and Social Implications
- FAIR Criteria for good data management and stewardship based on Findability, Accessibility, Interoperability and Reusability
- GC/MS Gas chromatography coupled with mass spectrometry
- GCP Google Cloud Platform
- GDPR General Data Protection Regulation
- GUI Graphical User Interface
- ISA Investigation, Study and Assay data model framework
- IaaS Infrastructure-as-a-Service
- LC/MS Liquid chromatography coupled with mass spectrometry
- MS Mass Spectrometry
- NMR Nuclear Magnetic Resonance Spectroscopy
- PhenoMeNal Phenome and Metabolome aNalysis
- VMI Virtual Machine Image
- W4M Workflow4Metabolomics

Competing interests

The authors declare that they have no competing interests.

Declarations

Human-derived samples in the data sets MTBLS404 and MTBLS412 were processed according to ELSI guidelines.

Author contributions

Writing original draft: KP and JB. Conceptualization: CS. Supervision: RG, ULG, KH, SN, AR, MvR, CS, OS, PR-S, RW. Project Administration: NK.

Technical lead: PM.

Review and editing: JB, MC, MCap, MCas, PdA, TMDE, RG, AG-B, KH, SH, DJa, DJo, FJ, KK, NK, PEK, AL, SL, PM, SN, COD, KP, LP, MEP, MACR, PR-S, PR-M, AR, RR, CR, MvR, NS, RMS, S-AS, DS, OS, VS, EAT, MT, TH, MvV, MRV, RJMW, GZ, CS.

Software: JB, MCap, MCas, PdA, AG-B, ULG, KH, SH, DJo, FJ, PEK, AL, CL, PM, SN, COD, KP, LP, MEP, MACR, PR-S, PR-M, AR, RR, CR, MvR, NS, RMS, S-AS, OS, VS, EAT, MT, TH, MvV, RJMW, GZ. External software: SB, CF, EH, SH, MI, DJa, BK, IK, KK, PEK, SL, JAN, JTMP, AP, LP, RR. Data curation: KH, S-AS, PR-S.

Funding acquisition: RG, ULG, KH, SN, AR, MvR, CS, OS, PR-S, RW.

All authors contributed to, read and approved the final manuscript.

Funding

The project was funded by European Commission PhenoMeNal Grant EC654241. The consortium members JB, Mcap, MCas, PdA, TMDE, RG, AG-B, KH, MI, DJo, FJ, NK, PEK, AL, PM, SN, COD, KP, LP, MACR, PR-S, PR-M, AR, RR, CR, TH, MvR, MvV, NS, RMS, S-AS, DS, OS, VS, EAT, MT, MRV, RJMW, CS received funding from the European Commission PhenoMeNal Grant EC654241.

Supplemental Material

Infrastructure layout

Starting from the IaaS, the first layer is a cluster of Virtual Machines (VMs) which are started and initialized with a defined operating system (from a base image). This is called infrastructure provisioning, and in PhenoMeNal VMs are executed through the Terraform framework [75]. Terraform deploys VM setups to a number of public and private cloud providers including OpenStack, GCE and AWS. The resulting VMs run with a clean install of an operating system including the relevant networking features. KubeAdm manages the setup of these VMs and the Ansible framework is used for the software provisioning layer which performs the deployment of the container daemon and the container orchestrator [76]. Google Kubernetes is used to run software on top of the provisioned VMs [25]. Docker is used as the orchestrator daemon for the containers [77].

The cloud infrastructure of PhenoMeNal is based upon containers that are deployed in a Kubernetes environment. Deployment is managed by KubeNow, which is developed by the PhenoMeNal team in order to simplify managing the deployment, including storage, network and other required services [25,37]. Orchestration is handled by using Helm charts. The storage subsystem is based on the cloud storage file system GlusterFS. Security is guaranteed via HTTPS encryption (SSL certificates issued by Cloudflare). This elastic implementation allows

PhenoMeNal to be instantiated on any Kubernetes-based cloud environment, including bare metal clusters [22]. We use a standardized REST API to operate and communicate between the different interfaces [78].

Standardization through ISA

The ISAcreate module enables the creation of ISA-compliant archives for deposition to repositories such as MetaboLights. The tool presents users with a graphical user interface (GUI) in which to specify study design information such as a treatment plan, sampling and assay plans, as well as QA/QC plans, critical for quality control. During the specification of these plans, the GUI enables semantic markup through the selection of terms chosen from multiple community-based, open ontologies for describing the different components, namely: UBERON ontology for anatomical parts, OBI for experimental protocols [79], MSIO for metabolomics-specific terms and quality control terminology developed by the PhenoMenal project [80,81], DUO for consent and data use terms [82] thereby addressing essential ethical requirements, and STATO for statistical terms (http://www.stato-ontology.org). Based on the combination of the treatment, sampling and assay, and QA/QC plans, the ISA API calculates the experimental graph relationships between subjects, samples, and data files, prospectively. The resulting output is made available as an ISA-Tab history item in Galaxy.

References

1. Gowda GN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn. 2008;8:617–33.

2. Bundy JG, Davey MP, Viant MR. Environmental metabolomics: a critical review and future perspectives. Metabolomics. 2009;5:3–21.

3. Peters K, Worrich A, Weinhold A, Alka O, Balcke G, Birkemeyer C, et al. Current Challenges in Plant Eco-Metabolomics. Int J Mol Sci. 2018;19:1385.

4. Weber RJM, Lawson TN, Salek RM, Ebbels TMD, Glen RC, Goodacre R, et al. Computational tools and workflows in metabolomics: An international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics 2017;13:12.

5. Joyce AR, Palsson BØ. The model organism as a system: integrating "omics" data sets. Nat Rev Mol Cell Biol. 2006;7:198–210.

6. Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, et al. MetaboLights—an openaccess general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013;41:D781–6.

7. Lindon JC, Nicholson JK. The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opin Drug Metab Toxicol. 2014;10:915–9.

8. Sumner LW, Hall RD. Metabolomics across the globe. Metabolomics. 2013;9:258-64.

9. Rosato A, Tenori L, Cascante M, De Atauri Carulla PR, Martins Dos Santos VAP, Saccenti E. From correlation to causation: analysis of metabolomics data using systems biology approaches. Metabolomics Off J Metabolomic Soc. 2018;14:37.

10. Vignoli A, Ghini V, Meoni G, Licari C, Takis PG, Tenori L, et al. High-throughput metabolomics by 1D NMR. Angew Chem Int Ed Engl. 2018;

11. Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, Beger R, et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics. 2007;3:231–41.

12. Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016;44:D463–70.

13. Giacomoni F, Le Corguille G, Monsoor M, Landi M, Pericard P, Petera M, et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics. 2015;31:1493–5.

14. Haug K, Salek RM, Steinbeck C. Global open data management in metabolomics. Curr Opin Chem Biol. 2017;36:58–63.

15. Salek RM, Neumann S, Schober D, Hummel J, Billiau K, Kopka J, et al. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics. 2015;11:1587–97.

16. IPCN. International Phenome Centre Network. http://phenomenetwork.org (2018). Accessed 25 Oct 2018.

17. French Ministry of Research, Higher Education and the National Agency for Science. MetaboHUB. http://www.metabohub.fr/metabohub.html (2018). Accessed 25 Oct 2018.

18. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data. Anal Chem. 2012;84:5035–9.

19. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–94.

20. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–10.

21. PhenoMeNal: The PhenoMeNal Portal. https://portal.phenomenal-h2020.eu (2018). Accessed 25 Oct 2018.

22. Hoffa C, Mehta G, Freeman T, Deelman E, Keahey K, Berriman B, et al. On the Use of Cloud Computing for Scientific Workflows. 2008 IEEE Fourth Int Conf EScience. Indianapolis, IN, USA: IEEE; 2008 [cited 2018 Sep 3]. p. 640–5. Available from: http://ieeexplore.ieee.org/document/4736878/

23. Digan W, Countouris H, Barritault M, Baudoin D, Laurent-Puig P, Blons H, et al. An architecture for genomics analysis in a clinical setting using Galaxy and Docker. GigaScience. 2017;6; doi:10.1093/gigascience/gix099/4557139

24. Goecks J, Nekrutenko A, Taylor J, Galaxy Team T. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11:R86.

25. Novella JA, Khoonsari PE, Herman S, Whitenack D, Capuccini M, Burman J, et al. Containerbased bioinformatics with Pachyderm. Wren J, editor. Bioinformatics. 2018; doi:10.1093/bioinformatics/bty699/5068160

26. PhenoMeNal. The Portal App Library. https://portal.phenomenal-h2020.eu/app-library (2018). Accessed 25 Oct 2018.

27. Rocca-Serra P, Salek RM, Arita M, Correa E, Dayalan S, Gonzalez-Beltran A, et al. Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics. 2016;12. doi:10.1007/s11306-015-0879-3

28. The OBI Consortium, Smith B, Ashburner M, Rosse C, Bard J, Bug W, et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007;25:1251–5.

29. Steinbeck C, Conesa P, Haug K, Mahendraker T, Williams M, Maguire E, et al. MetaboLights: towards a new COSMOS of metabolomics data management. Metabolomics. 2012;8:757–60.

30. Gil Y, Deelman E, Ellisman M, Fahringer T, Fox G, Gannon D, et al. Examining the Challenges of Scientific Workflows. Computer. 2007;40:24–32.

31. Moutsatsos IK, Hossain I, Agarinis C, Harbinski F, Abraham Y, Dobler L, et al. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform. SLAS Discov Adv Life Sci RD. 2017;22:238–49.

32. van Rijswijk M, Beirnaert C, Caron C, Cascante M, Dominguez V, Dunn WB, et al. The future of metabolomics in ELIXIR. F1000Research. 2017;6:1649.

33. EGI Foundation. EGI: Advanced Computing for Research. https://www.egi.eu (2018). Accessed 25 Oct 2018.

34. INIGO Datacloud. INtegrating Distributed data Infrastructures for Global ExplOitation. https://www.indigo-datacloud.eu (2018). Accessed 25 Oct 2018.

35. Viljoen M, Dutka Ł, Kryza B, Chen Y. Towards European Open Science Commons: The EGI Open Data Platform and the EGI DataHub. Procedia Comput Sci. 2016;97:148–52.

36. Salomoni D, Campos I, Gaido L, Donvito G, Antonacci M, Fuhrman P, et al. INDIGO-Datacloud: foundations and architectural description of a Platform as a Service oriented to scientific computing. ArXiv160309536 Cs. 2016; http://arxiv.org/abs/1603.09536

37. Capuccini M, Larsson A, Carone M, Novella JA, Sadawi N, Gao J, et al. On-Demand Virtual Research Environments using Microservices. ArXiv180506180 Cs. 2018; http://arxiv.org/abs/1805.06180

38. Rocca-Serra P, Brandizi M, Maguire E, Sklyar N, Taylor C, Begley K, et al. ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level. Bioinformatics. 2010;26:2354–6.

39. Sariyar M, Schluender I, Smee C, Suhr S. Sharing and Reuse of Sensitive Data and Samples: Supporting Researchers in Identifying Ethical and Legal Requirements. Biopreservation Biobanking. 2015;13:263–70.

40. Heatherly R, Rasmussen LV, Peissig PL, Pacheco JA, Harris P, Denny JC, et al. A multiinstitution evaluation of clinical profile anonymization. J Am Med Inform Assoc. 2016;23:e131–7.

41. PhenoMeNal. Wiki. https://github.com/phnmnl/phenomenal-h2020/wiki (2018). Accessed 25 Oct 2018.

42. PhenoMeNal. GitHub Project Repository. https://github.com/phnmnl/ (2018). Accessed 25 Oct 2018.

43. Jacob D, Deborde C, Lefebvre M, Maucourt M, Moing A. NMRProcFlow: a graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. Metabolomics. 2017;13; doi:10.1007/s11306-017-1178-y

44. PhenoMeNal. Phenome and Metabolome aNalysis. https://phenomenal-h2020.eu (2018). Accessed 25 Oct 2018.

45. PhenoMeNal. Public Galaxy Instance. https://public.phenomenal-h2020.eu (2018). Accessed 25 Oct 2018.

46. Mell PM, Grance T. The NIST definition of cloud computing. In: Gaithersburg, MD: National Institute of Standards and Technology; 2011. Report No.: NIST SP 800-145. Available from: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

47. PhenoMeNal. Deploy on Microsoft Azure. https://github.com/phnmnl/phenomenalh2020/wiki/Deploy-on-Microsoft-Azure (2018). Accessed 25 Oct 2018.

48. PhenoMeNal. Deploy on European Open Science Cloud (EOSC). https://github.com/phnmnl/phenomenal-h2020/wiki/Deploy-on-European-Open-Science-Cloud-(EOSC) (2018). Accessed 25 Oct 2018.

49. PhenoMeNal. Deploy on a local server (bare metal). https://github.com/phnmnl/phenomenalh2020/wiki/Deploy-on-a-local-server-(bare-metal) (2018). Accessed 25 Oct 2018.

50. PhenoMeNal. How to make your software tool available through PhenoMeNal. https://github.com/phnmnl/phenomenal-h2020/wiki/How-to-make-your-software-tool-available-through-PhenoMeNal (2018). Accessed 25 Oct 2018.

51. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet. 2012;13:667–72.

52. Sloggett Č, Goonasekera N, Afgan E. BioBlend: automating pipeline analyses within Galaxy and CloudMan. Bioinformatics. 2013;29:1685–6.

53. Emami Khoonsari P, Moreno P, Bergmann S, Burman J, Capuccini M, Carone M, et al. Interoperable and scalable data analysis with microservices: Applications in Metabolomics. 2018 [cited 2018 Sep 3]; Available from: http://biorxiv.org/lookup/doi/10.1101/213603

54. Thomas K, Benjamin R-K, Fernando P, Brian G, Matthias B, Jonathan F, et al. Jupyter Notebooks & ndash; a publishing format for reproducible computational workflows. Stand Alone. 2016;87–90.

55. Lampa S, Alvarsson J, Spjuth O. Towards agile large-scale predictive modelling in drug discovery with flow-based programming design principles. J Cheminformatics. 2016;8. doi:10.1186/s13321-016-0179-6

56. Schober D, Jacob D, Wilson M, Cruz JA, Marcu A, Grant JR, et al. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data. Anal Chem. 2018;90:649–56.

57. Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics. 2007;29:99–108.

58. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, et al. A roadmap for interpreting 13 C metabolite labeling patterns from cells. Curr Opin Biotechnol. 2015;34:189–201.

59. Niedenführ S, Wiechert W, Nöh K. How to measure metabolic fluxes: a taxonomic guide for 13 C fluxomics. Curr Opin Biotechnol. 2015;34:82–90.

60. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminformatics. 2016;8. Available from: http://www.jcheminf.com/content/8/1/3

61. Herman S, Khoonsari PE, Tolf A, Steinmetz J, Zetterberg H, Åkerfeldt T, et al. Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis. Theranostics. 2018;8:4477–90.

62. Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. J Proteome Res. 2015;14:3322–35.

63. Peters K, Gorzolka K, Bruelheide H, Neumann S. Computational workflow to study the seasonal variation of secondary metabolites in nine different bryophytes. Sci Data. 2018;5:180179.

64. PhenoMeNal. Jenkins-CI Instance. http://phenomenal-h2020.eu/jenkins/ (2018). Accessed 25 Oct 2018.

65. PhenoMeNal. Jenkins Guide. https://github.com/phnmnl/phenomenal-h2020/wiki/Jenkins-Guide (2018). Accessed 25 Oct 2018.

66. Piras ME, Pireddu L, Zanetti G. wft4galaxy: a workflow testing tool for galaxy. Bioinformatics. 2017;33:3805–7.

67. Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018.

68. Cohen-Boulakia S, Belhajjame K, Collin O, Chopard J, Froidevaux C, Gaignard A, et al. Scientific workflows for computational reproducibility in the life sciences: Status, challenges and opportunities. Future Gener Comput Syst. 2017;75:284–98.

69. Lappalainen I, Almeida-King J, Kumanduri V, Senf A, Spalding JD, ur-Rehman S, et al. The European Genome-phenome Archive of human data consented for biomedical research. Nat Genet. 2015;47:692–5.

70. Cloudflare Inc. Cloudflare. https://www.cloudflare.com/ (2018). Accessed 25 Oct 2018.

71. PhenoMeNal. Portal Help. https://portal.phenomenal-h2020.eu/help (2018). Accessed 25 Oct 2018.

72. PhenoMeNal. Interactive Galaxy Tours. https://public.phenomenal-h2020.eu/tours (2018). Accessed 25 Oct 2018.

73. PhenoMeNal. The PhenoMeNal YouTube page. https://www.youtube.com/channel/UCXGAvsVNQk-aUpckjRC8Ang (2018). Accessed 25 Oct 2018.

74. Peters K; Bradbury J; Bergmann S; Capuccini M; Cascante M; Atauri Pd; D Ebbels TM; Foguet C; Glen R; Gonzalez-Beltran A; Günther UL; Handakas E; Hankemeier T; Haug K; Herman S; Holub P; Izzo M; Jacob D; Johnson D; Jourdan F; Kale N; Karaman I; Khalili B; Khonsari PE; Kultima K; Lampa S; Larsson A; Ludwig C; Moreno P; Neumann S; Novella JA; O'Donovan C; Pearce JTM; Peluso A; Piras ME; Pireddu L; Reed MAC; Rocca-Serra P; Roger P; Rosato A; Rueedi R; Ruttkies C; Sadawi N; Salek RM; Sansone S; Selivanov V; Spjuth O; Schober D; Thévenot EA; Tomasoni M; Rijswijk Mv; Vliet Mv; Viant MR; Weber RJM; Zanetti G; Steinbeck C: Supporting data for "PhenoMeNal: Processing and analysis of Metabolomics data in the Cloud" *GigaScience* Database. 2018. http://dx.doi.org/10.5524/100528

75. Brikman Y. Terraform: Writing Infrastructure as Code. Sebastopol: O'Reilly Media; 2017. Available from: http://public.eblib.com/choice/publicfullrecord.aspx?p=4822376

76. Hanwell MD, de Jong WA, Harris CJ. Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application. J Cheminformatics. 2017;9. doi:10.1186/s13321-017-0241-z

77. Newman S. Building microservices: designing fine-grained systems. First Edition. Beijing Sebastopol, CA: O'Reilly Media; 2015.

78. Erl T, editor. SOA with REST: principles, patterns & constraints for building enterprise solutions with REST. Upper Saddle River, NJ: Prentice Hall; 2012.

79. Bandrowski A, Brinkman R, Brochhausen M, Brush MH, Bug B, Chibucos MC, et al. The Ontology for Biomedical Investigations. Xue Y, editor. PLOS ONE. 2016;11:e0154556.

80. Sansone S-A, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, et al. Toward interoperable bioscience data. Nat Genet. 2012;44:121–6.

81. Sansone S-A, Schober D, Atherton HJ, Fiehn O, Jenkins H, Rocca-Serra P, et al. Metabolomics standards initiative: ontology working group work in progress. Metabolomics. 2007;3:249–56.

82. Dyke SOM, Philippakis AA, Rambla De Argila J, Paltoo DN, Luetkemeier ES, Knoppers BM, et al. Consent Codes: Upholding Standard Data Use Conditions. Barsh GS, editor. PLOS Genet. 2016;12:e1005772.

83. Selivanov VA, Benito A, Miranda A, Aguilar E, Polat IH, Centelles JJ, et al. MIDcor, an R-program for deciphering mass interferences in mass spectra of metabolites enriched in stable isotopes. BMC Bioinformatics. 2017;18. doi:10.1186/s12859-017-1513-3

84. Hao J, Liebeke M, Astle W, De Iorio M, Bundy JG, Ebbels TMD. Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc. 2014;9:1416–27.

85. Rinaudo P, Boudah S, Junot C, Thévenot EA. biosigner: A New Method for the Discovery of Significant Molecular Signatures from Omics Data. Front Mol Biosci. 2016;3. doi:10.3389/fmolb.2016.00026/abstract

86. Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal Chem. 2012;84:283–9.

87. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci. 2015;112:12580–5.

88. Southam AD, Weber RJM, Engel J, Jones MR, Viant MR. A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics. Nat Protoc. 2017;12:255–73.

89. King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways. Gardner PP, editor. PLOS Comput Biol. 2015;11:e1004321.

90. Cottret L, Frainay C, Chazalviel M, Cabanettes F, Gloaguen Y, Camenen E, et al. MetExplore: collaborative edition and exploration of metabolic networks. Nucleic Acids Res. 2018;46:W495–502.

91. Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics. 2015;16. doi:10.1186/s12859-015-0562-8

92. González-Beltrán A, Neumann S, Maguire E, Sansone S-A, Rocca-Serra P. The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again. BMC Bioinformatics. 2014;15:S11.

93. Sansone S-A, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, et al. Toward interoperable bioscience data. Nat Genet. 2012;44:121–6.

94. Selivanov VA, Vizán P, Mollinedo F, Fan TW, Lee PW, Cascante M. Edelfosine-induced metabolic changes in cancer cells that precede the overproduction of reactive oxygen species and apoptosis. BMC Syst Biol. 2010;4:135.

95. Perez F, Granger BE. IPython: A System for Interactive Scientific Computing. Comput Sci Eng. 2007;9:21–9.

96. Ludwig C, Günther UL. MetaboLab - advanced NMR data processing and analysis for metabolomics. BMC Bioinformatics. 2011;12:366.

97. Wohlgemuth G, Haldiya PK, Willighagen E, Kind T, Fiehn O. The Chemical Translation Service--a web-based tool to improve standardization of metabolomic reports. Bioinformatics. 2010;26:2647–8.

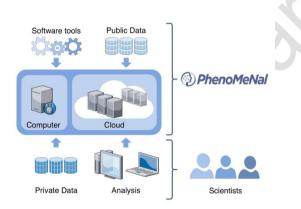
98. Rueedi R, Mallol R, Raffler J, Lamparter D, Friedrich N, Vollenweider P, et al. Metabomatching: Using genetic association to identify metabolites in proton NMR spectroscopy. Ouzounis CA, editor. PLOS Comput Biol. 2017;13:e1005839.

99. Helmus JJ, Jaroniec CP. Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J Biomol NMR. 2013;55:355–67.

100. Mohamed A, Nguyen CH, Mamitsuka H. NMRPro: an integrated web component for interactive processing and visualization of NMR spectra. Bioinformatics. 2016;32:2067–8.

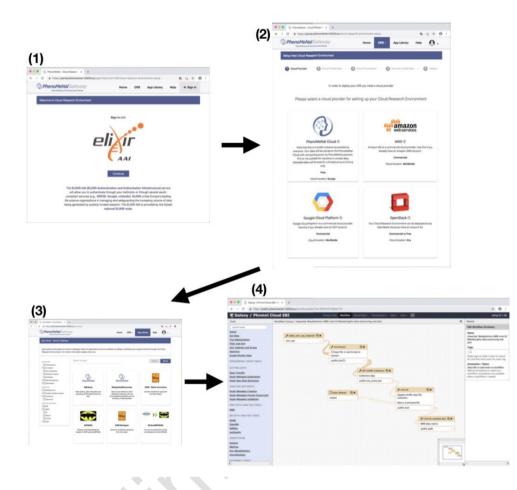
101. Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, et al. OpenMS – An opensource software framework for mass spectrometry. BMC Bioinformatics. 2008;9:163.

102. Blaise BJ, Correia G, Tin A, Young JH, Vergnaud A-C, Lewis M, et al. Power Analysis and Sample Size Determination in Metabolic Phenotyping. Anal Chem. 2016;88:5179–88.


103. Scheubert K, Hufsky F, Petras D, Wang M, Nothias L-F, Dührkop K, et al. Significance estimation for large scale metabolomics annotations by spectral matching. Nat Commun. 2017;8. doi:s41467-017-01318-5

104. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A crossplatform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.

105. Lewis IA, Schommer SC, Markley JL. rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Magn Reson Chem. 2009;47:S123–6.


106. Rodriguez N, Thomas A, Watanabe L, Vazirabad IY, Kofia V, Gómez HF, et al. JSBML 1.0: providing a smorgasbord of options to encode systems biology models: Table 1. Bioinformatics. 2015;31:3383–6.

107. Benton HP, Wong DM, Trauger SA, Siuzdak G. XCMS²: Processing Tandem Mass Spectrometry Data for Metabolite Identification and Structural Characterization. Anal Chem. 2008;80:6382–9.

Figure 1: Conceptual design of the PhenoMeNal cloud e-infrastructure, which brings compute to the data for any large number of data scientists.

Figure 2: Screenshots of creating and using the PhenoMeNal cloud e-infrastructure. First, login with ELIXIR to the Cloud Research Environment (CRE) portal. Second, selecting a public or private cloud provider. After entering cloud credentials and setting up parameters in the dedicated portal, the deployment of the PhenoMeNal e-infrastructure into the cloud environment can be made. Third, in the PhenoMeNal Portal App Library there are several services ready to be deployed and used in the set-up infrastructure. Fourth, dedicated web services such as Galaxy are readily available in the cloud e-infrastructure. All steps can be operated from an easy-to-use web interface which is accessible from any standard web browser.

Table 1: List of workflows which are representative for their respective metabolomics domains
 (Identification in NMR, Fluxomics, Annotation and identification in MS and eco-metabolomics).

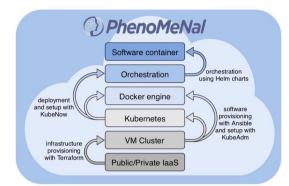

Workflow name	Description	References
1D NMR	Processes 1D NMR experiments from raw data to a data matrix required for visualisation and statistical analysis, building on nmrML and NMRProcFlow. The automatic workflow is based on the MTBLS1 data set, describing urinary changes in type 2 diabetes in humans.	[43,56,57]
Fluxomics	Quantifies steady state fluxes following ¹³ C Metabolic Flux Analysis. The workflow was first based on the analysis of the MTBLS412 data set with 13C tracer data of human umbilical vein endothelial cells (HUVEC) under hypoxia.	[58,59]
LC-MS/MS	Processes, quantifies and annotates/identifies features in mass spectra using MetFrag - a tool which annotates molecules from compound databases of tandem mass spectrometry (MS/MS) spectra. The workflow is based on MTBLS558.	[53,60,61]
Univariate and Multivariate Statistics	Applies univariate and multivariate statistical analysis, and illustrates how data sets may be explored enabling the identification of variables of interest and the construction of predictive models. The workflow is based on MTBLS404.	[13,62]
Eco- Metabolomics	Implementation of a resource demanding metabolomics use case in ecology, used in large field experiments to describe interactions between different species of organisms in remarkable detail. The workflow is based on MTBLS520.	[63]
ISA-Create- Validate- Upload	A workflow to create ISA compliant metadata files based on study design information, augmented with semantic markup as source, implementing UK Phenome center naming conventions. Following validation, the workflow also allows visualization of overall study design and deposition to EMBL-EBI	

Table 2: Overview of the most important FAIR criteria and implementations suggested for PhenoMeNal data, tools and workflows.

	Data	Tools	Workflows
(F)indability	Indexing in domain relevant databases (e.g. MetaboLights)	Indexing in domain relevant software repositories (e.g. the PhenoMeNal App Library, GitHub)	Indexing in workflow management systems such as Galaxy (e.g. PhenoMeNal, W4M), or libraries such as www.myexperiment.org
	Rich descriptions of metadata (e.g. ISA-Tab)	Tool descriptions follow the EDAM ontology	Persistent identifier (e.g. W4M ID, DOI) and intuitive naming patterns
(A)ccessibility	Data access and rights management based on e.g. data use ontology (DUO)	Accessible open source licenses	Access to workflow systems can be configured to be shared or restricted
(I)nteroperability	Standard formats for experimental metadata (ISA-Tab / ISA-JSON)	Standardized tool descriptions	Standardized workflow format (e.g. Galaxy GA format, Common Workflow Language CWL)
	Domain specific standards for raw data (e.g. mzML, nmrML)	Containerization of software tools	Execution in various software environments (e.g. through the use of containers)
25	OboFoundry vocabularies and established domain ontologies to annotate data	EDAM ontology to annotate tools	Workflow annotation ontologies (e.g. Ontology of workflow motifs for annotating workflow specifications [68])
(R)eusability	Deposition in data repositories (e.g. MetaboLights) and data indexing sites (e.g. OmicsDI)	Rich documentation and usage guides	Rich documentation and tutorials (e.g. Galaxy tours)

Supplemental Figure 1: PhenoMeNal implements various layers to provision containers on top of the e-infrastructure.

Supplemental Table 1: List of external software tools that were incorporated into PhenoMeNal.

Container Name	Description	URL	Refere nce
ArtiMID	Corrects mass isotopomer distribution (MID) for natural isotopes abundance, giving artificial MID	https://github.com/phnm nl/container-artimid	[83]
Batch Correction	Corrects intensities for signal drift and batch- effects	https://github.com/phnm nl/container- batch_correction	[62]
BATMAN	Bayesian Automated Metabolite Analyzer for NMR spectra (BATMAN)	https://github.com/phnm nl/container-batman	[84]
Bioconductor	Metabolomics flavors of Bioconductor	https://github.com/phnm nl/bioc_docker	
Biosigner	Discovery of significant signatures from 'omics data	https://github.com/phnm nl/container-biosigner	[85]
Bruker2BATMAN	Converts Bruker raw files into tabulated txt file for BATMAN	https://github.com/phnm nl/container- bruker2batman	[85]
CAMERA	Collection of annotation related methods for mass spectrometry data	https://github.com/phnm nl/container-camera	[86]
CSI:FingerID	A framework for performing metabolomics	https://github.com/phnm	[87]

	identification	<u>nl/container-csifingerid</u>	
DIMSpy	Processing, filtering and analyzing direct- infusion mass spectrometry-based metabolomics and lipidomics data	https://github.com/phnm nl/container-dimspy	[88]
EcoMet	Perform diversity and multivariate analyses for eco-metabolomics data	https://github.com/phnm nl/container-ecomet	[63]
Escher Web	A web-based visualization tool for biological pathways	https://github.com/phnm nl/container-escher- fluxomics	[89]
FingerprintCluste ring	Performs unsupervised clustering and automatically determination of the best number of clusters	https://github.com/phnm nl/container- fingerprintClustering	[90]
FingerprintSubne twork	Calculates distances between metabolites in a network	https://github.com/phnm nl/container- fingerprintSubnetwork	[90]
Galaxy	PhenoMeNal version of Galaxy as implemented as a container capable of running inside the Kubernetes container orchestrator	https://github.com/phnm nl/container-galaxy-k8s- runtime	
Generic Filter	Allows to remove all samples and/or variables corresponding to specific values regarding designated factors or numerical variables	https://github.com/phnm nl/container-tool- generic filter	[13]
IPO	A Tool for automated Optimization of XCMS Parameters	https://github.com/phnm nl/container-ipo	[91]
ISA Extractor	ISA data files extractor	https://github.com/phnm nl/container-isa-extractor	[92]
ISA-Tab Slicer	Using the ISA-API for slicing ISA-Tab metadata	https://github.com/phnm nl/container-isaslicer	[93]
ISA-Tab Validator	ISA-Tab validator	https://github.com/phnm nl/container-isatab- validator	[93]
ISA-Tab to JSON Converter	Converts ISA-Tab to JSON data	https://github.com/phnm nl/container-isatab2json	[93]
ISA-Tab to JSON Validator	Create, manipulate and convert ISA-Tab formatted content and produce validation reports on a ISA-JSON formatted document	https://github.com/phnm nl/container-isajson- validator	[93]

ISA-Tab to W4M	ISA to Workflow4Metabolomics converter	https://github.com/phnm nl/container-isa2w4m	[93]
Iso2Flux	Open source software for steady state ¹³ C Metabolic Flux Analysis	https://github.com/phnm nl/container-iso2flux	
IsoDyn	Simulating the dynamics of metabolites and their isotopic isomers in a central metabolic network using a kinetic model	https://github.com/phnm nl/container-isodyn	[94]
JSON to ISA-Tab Converter	Converts JSON to ISA-Tab format	https://github.com/phnm nl/container-json2isatab	[93]
Jupyter	Light-weight flavor (microservice architecture) of Jupyter	https://github.com/phnm nl/container-jupyter	[95]
LCMS matching	Annotation of MS peaks with matching on a spectral database	https://github.com/phnm nl/container- lcmsmatching	
Luigi	Building complex tasks for scientific notebooks and workflows	https://github.com/phnm nl/container-luigi	
MetaboLab	Non-GUI version of MetaboLab - software for processing and analyzing NMR data	https://github.com/phnm nl/container-metabolab	[96]
MetaboliteIDConv erter	Enrich metabolomic data sets with well-known databases identifiers such as InChIKey or ChEBI identifiers	https://github.com/phnm nl/container- MetaboliteIDConverter	[97]
Metabomatching	Identifies metabolites in NMR data using regression, correlation, or PCA spiking	https://github.com/phnm nl/container- metabomatching	[98]
MetExplore	Exploration of metabolic networks	https://github.com/phnm nl/container- MetExploreViz	[90]
MetFrag	Annotation of high precision tandem mass spectra of metabolites	https://github.com/phnm nl/container-metfrag-cli, https://github.com/phnm nl/container-metfrag-cli- batch, https://github.com/phnm nl/container-metfrag-vis	[60]
MIDcor	Correcting ¹³ C mass isotopomers spectra of metabolites for natural occurring isotopes and	https://github.com/phnm nl/container-midcor	[83]

	peaks overlapping		
CDF to MIDcor Converter	Converting CDF files into MIDcor to evaluate the mass spectra of ¹³ C-labeled metabolites	https://github.com/phnm nl/container-cdf2mid	[83]
ms-vfetc	Convert MS vendor export formats to a tabular format	https://github.com/phnm nl/container-ms-vfetc	
MSnbase	Basic plotting, data manipulation and processing of MS-based proteomics and metabolomics data	https://github.com/phnm nl/container-msnbase	
MetaboLights Labs Uploader	Facilities uploading data to MetaboLights Labs	https://github.com/phnm nl/container-mtbl-labs- uploader	[6]
MetaboLights ISA slicer	Selecting subsets of data files from ISA-Tab metadata, based on factor values	https://github.com/phnm nl/container-mtblisa	[93]
MetaboLights Downloader	Download a MetaboLights study and output an ISA-Tab data set. Partial downloading of the data is available through a slicing mechanism.	https://github.com/phnm nl/container-mtbls-dwnld	[13]
MetaboLights Factors Visualization	Create parallel sets plots to show factor values distributions in samples inside an ISA-Tab document or MTBLS study	https://github.com/phnm nl/container-mtbls- factors-viz	[93]
Multivariate	PCA, PLS(-DA) and OPLS(-DA) for multivariate analysis of 'omics data	https://github.com/phnm nl/container-multivariate	[13]
MWTab to ISA- Tab Converter	Generate ISA-Tab document from an NIH Metabolomics Workbench study	https://github.com/phnm nl/container-mw2isa	[12]
mzQuality	A tool to assess the quality of targeted mass spectrometry measurements	https://github.com/phnm nl/container-mzquality	
NMR Integrals	Compares specific metabolite levels in two NMR spectra of blood serum/plasma samples.	https://github.com/phnm nl/container-nmr- integrals	
nmrglue	A module for working with NMR data in Python	https://github.com/phnm nl/container-nmrglue	[99]
nmrML to BATMAN Converter	Convert zipped nmrML files into tabulated txt file for BATMAN	https://github.com/phnm nl/container- nmrML2BATMAN	[84]
nmrML to ISA- Tab Metadata	Convert nmrML metadata to ISA-Tab	<u>https://github.com/phnm</u> <u>nl/container-nmrml2isa</u>	[38]

nmrML Converter	Convert RAW vendor NMR files to nmrML	https://github.com/phnm nl/container-nmrmlconv	[27]
nmrPro	Processing and visualization of NMR data	https://github.com/phnm nl/container-nmrpro	[100]
nmrProcFlow + Rnmr1D	An efficient tool for spectra processing from 1D NMR metabolomics data	https://github.com/phnm nl/container- nmrprocflow	[43]
Normalization	Normalization (operation applied on each (preprocessed) individual spectrum) of preprocessed data	https://github.com/phnm nl/container- normalization	[13]
OpenMS	OpenMS open source software library for LC/MS data management and analyses	https://github.com/phnm nl/container-openms	[101]
Pachyderm	A distributed data-processing tool built on software containers that enables scalable and reproducible pipelines	https://github.com/phnm nl/MTBLS233-Pachyderm	[25]
РАРҮ	Estimation of statistical power and sample size in metabolic phenotyping	https://github.com/phnm nl/container-papy	[102]
Passatutto	Framework for converting metabolomics identification scores to posterior error probability	https://github.com/phnm nl/container-passatutto https://github.com/phnm nl/container- passatuttopep	[103]
PathwayEnriche ment	Predict pathway enrichment into a (human) metabolic network	https://github.com/phnm nl/container- pathwayEnrichment	[90]
ProteoWizard MSConvert	Conversion of mass spectrometry vendor formats to mzML	https://github.com/phnm nl/container-pwiz	[104]
Quality Metrics	Metrics and graphics to check the quality of the data	https://github.com/phnm nl/container- qualitymetrics	[13]
RaMID	Evaluate the mass spectra of 13C-labeled metabolites	https://github.com/phnm nl/container-ramid	
rDolphin	Automatic profiling of 1H 1D NMR data sets	https://github.com/phnm nl/container-rdolphin	
reshape2	Performing cast and melt transformation on data	https://github.com/phnm nl/container-reshape2-	

	matrices	cast	
		https://github.com/phnm nl/container-reshape2- melt	
rNMR	Identifying and quantifying metabolites in NMR spectra	https://github.com/phnm nl/container-rnmr	[105]
SBML to JSON Converter	Convert SBML files into JSON format useable in the MetExploreViz visualization module	https://github.com/phnm nl/container- SBML2MetexploreJsonGra ph	[106]
SCAMID	Extract MID (mass isotopomer distribution) from mass spectra time course of ¹³ C-labeled metabolites files	https://github.com/phnm nl/container-scamid	[83]
SIMID	Evaluate the mass spectra of ¹³ C-labeled metabolites	https://github.com/phnm nl/container-simid	[83]
SOAP-NMR	Perform 1H-NMR data pre-treatment	https://github.com/phnm nl/container-soap-nmr	
Stadyn	Performs simple statistics on individual samples preparing data for simulation with Isodyn	https://github.com/phnm nl/container-stadyn	[83]
tameNMR	Tools for Analysis of MEtabolomic NMR	https://github.com/phnm nl/container-tamenmr	
Transformation	Transform dataMatrix intensity values	https://github.com/phnm nl/container- transformation	[13]
Univariate	Univariate statistics	https://github.com/phnm nl/container-univariate	[13]
XCMS	Framework for processing and visualization of chromatographically separated and single- spectra mass spectral data	https://github.com/phnm nl/container-xcms, https://github.com/phnm nl/container-xcms-1.x	[107]