Supporting Information for

Low defect and high electrical conductivity of graphene through plasma graphene healing treatment monitored with in situ optical emission spectroscopy

Mohammad Salehi¹, Parnia Bastani², Loghman Jamilpanah², Abbas Madani^{3,4} Seyed Majid Mohseni^{2,*}, Babak Shokri^{1,2,**}

¹Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839, Iran
²Department of Physics, Shahid Beheshti University, Tehran 19839, Iran
³AMO GmbH (Advanced Microelectronic Center), Aachen, Germany
⁴ Department of Engineering, The University of Cambridge, Cambridge UK

**corresponding author: Babak Shokri (<u>b-shokri@sbu.ac.ir</u>) *co-corresponding author: Seyed Majid Mohseni (<u>m-mohseni@sbu.ac.ir</u>)

1- Plasma Setup

In this study, a steel chamber was used in which the capacitor coupled plasma is generated by applying a voltage through an R.F. (13.56 MHz) power supply. This steel chamber has a diameter of 30 cm and a height of 40 cm and includes R.F. inlet ports, water inlet pipes for cooling the cathode electrode, and gas inlet ports installed in the lower part the chamber. There are Two electrodes in this chamber, to which one of them is connected to R.F. power. This electrode has a diameter of 15 cm. On this electrode, a negative bias voltage is induced. As this voltage increases, the energy of the ion bombardment surface increases so we could tune the ion energies for better results. The chamber body is grounded, with four other inlets for measuring the pressure inside the chamber and other plasma parameters and quartz windows for optical examinations on either side of the chamber.

Figure 1 Schematic of vacuum chamber and spectrometer

2- Plasma Spectroscopy

Plasma can separate methane molecules and form CH_x species (x <4). The generated CH_x species are so active that they can produce graphene at temperatures lower than normal graphene growth temperatures. The activation energy for direct growth of graphene on a dielectric substrate is 1.03 eV using 50 watts of R.F. plasma versus 2 - 2.6 eV with thermal CVD. Pure CH_4 plasma is likely to lead to the formation of amorphous carbon sp3, which inhibits the growth of graphene crystals. Plasma-produced H species can etch the edges of graphene and prevent the formation of graphene nanoclusters, thus creating the conditions for the growth of new graphene. Hydrogen plasma plays an essential role in controlling the structure, domains, and layers and removing oxidizing agents.^{1–}

7

Optical Emission Spectroscopy (OES) with 0.6 nm spectral resolution (AvaSpec 3648, Avantes) was performed for different conditions such as gas ratio (methane/hydrogen [15/45, 30/45, 45/45, 45/60, 45/90]). Different powers (40, 80, 120 watts) and also pressures between 40 and 120 mtorr. To detect the various kinds of species and ionized atoms and molecules that emerge within the plasma. The diagrams in Figure 2 show the OES of the plasma under different test conditions. In all experiments, the active species produced are almost the same. However, as it is obvious in the tables, the density of each active species and the ratio of the densities of the active species are different, which means that in some experiments, the plasma behavior and the result of the plasma interaction with the sample are different.

400 450 500 550 600 650 700 750 800 Wavelength (nm)

Intensity (arb. unit)

400 450 500 550 600 650 700 750 800 Wavelength (nm)

	Power = 80 Watts			
	Gas Ratio = $H_2/CH_4 - 45/15$			
	40 mtorr 80 mtorr 120 mtorr			
H_{α}/H_{β}	2.493828	2.88236	2.961714	
^н _{а/сн}	3.692995	4.046656	4.506163	
^Н _в / _{СН}	1.480854	1.403938	1.521471	

400 450 500 550 600 650 700 750 800

400 450 500 550 600 650 700 750 800 Wavelength (nm)

Wavelength (nm)

400 450 500 550 600 650 700 750 800 Wavelength (nm)

	Power = 40 Watts			
	Gas Ratio = $H_2/CH_4 - 45/30$			
	40 mtorr 80 mtorr 120 mtorr			
H_{α}/H_{β}	2.377841	2.577164	2.92352	
$H_{\alpha/CH}$	2.705703	3.078792	3.134722	
^н _{в/сн}	1.137882	1.194643	1.072242	

	Power = 80 Watts			
	Gas Ratio = H_2/CH_4 - 45/30			
	40 mtorr 80 mtorr 120 mtorr			
H_{α}/H_{β}	2.549179	2.999439	3.160668	
$H_{\alpha/CH}$	3.064359	3.535283	3.928776	
^{Н_β} / _{СН}	1.202097	1.178648	1.243021	

	Power = 120 Watts		
	Gas Ratio = $H_2/CH_4 - 45/30$		
	40 mtorr	80 mtorr	120 mtorr
H_{α}/H_{β}	2.570223	3.001444	3.278705
^н _{а/сн}	3.300948	3.874239	4.112615
^н _{в/} сн	1.284304	1.290792	1.254341

Wavelength (nm)

400 450 500 550 600 650 700 750 800 Wavelength (nm)

	Power = 40 Watts			
	Gas R	Gas Ratio = $H_2/CH_4 - 45/45$		
	40 mtorr 80 mtorr 120 mtorr			
H_{α}/H_{β}	2.412834	2.967231	3.018782	
$H_{\alpha/CH}$	2.445734	2.828979	2.831770	
$H_{\beta/CH}$	1.013635 0.9534	0.953406	0.938050	

	Power = 80 Watts			
	Gas Ratio = H ₂ /CH ₄ - 45/45			
	40 mtorr 80 mtorr 120 mtorr			
H_{α}/H_{β}	2.548668	2.951351	3.080724	
$H_{\alpha/CH}$	2.721887	3.119518	3.338201	
^Н _в / _{СН}	1.067964	1.056979	1.083576	

	Power = 120 Watts		
	Gas R	Gas Ratio = H_2/CH_4 - 45/45	
	40 mtorr	80 mtorr	120 mtorr
H_{α}/H_{β}	2.548572	2.998380	3.130369
^н _{а/сн}	2.858378	3.40466	3.734752
^н _{в/сн}	1.121560	1.135501	1.193071

400 450 500 550 600 650 700 750 800 Wavelength (nm)

400 450 500 550 600 650 700 750 800 Wavelength (nm)

400 450 500 550 600 650 700 750 800 Wavelength (nm)

	Power = 40 Watts			
	Gas Ratio = $H_2/CH_4 - 45/60$			
	40 mtorr 80 mtorr 120 mtorr			
H_{α}/H_{β}	2.392575	2.891311	3.218976	
$H_{\alpha/CH}$	2.262871	2.856544	2.783139	
^Н _{в/} СН	0.945789	0.987975	0.864604	

	Power - 80 Watte		
	rower = 80 watts		
	Gas Ratio = $H_2/CH_4 - 45/60$		
	40 mtorr	80 mtorr	120 mtorr
H_{α}/H_{β}	2.537264	2.987871	3.165252
$H_{\alpha/CH}$	2.53338	2.960386	3.304978
^н _в / _{сн}	0.998469	0.990801	1.044144

	Power = 120 Watts			
	Gas Ratio = H_2/CH_4 - 45/60			
	40 mtorr 80 mtorr 120 mtorr			
H_{α}/H_{β}	2.563479	2.969853	3.114959	
^н _{а/сн}	2.686225	3.353071	3.417763	
^Н _в /сн	1.047882	1.129036	1.097210	

Figure 2 Diagrams of active species generated in plasma under different conditions

References

- 1. Liu, D. *et al.* Two-step growth of graphene with separate controlling nucleation and edge growth directly on SiO2 substrates. *Carbon N. Y.* **72**, 387–392 (2014).
- 2. Sun, J., Zhang, Y. & Liu, Z. Direct chemical vapor deposition growth of graphene on insulating substrates. *ChemNanoMat* **2**, 9–18 (2016).
- 3. Wei, D. *et al.* Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. *Angew. Chemie* **125**, 14371–14376 (2013).
- 4. Van Der Laan, T., Kumar, S. & Ostrikov, K. K. Water-mediated and instantaneous transfer of graphene grown at 220 °c enabled by a plasma. *Nanoscale* **7**, 20564–20570 (2015).
- 5. Xie, L., Jiao, L. & Dai, H. Selective etching of graphene edges by hydrogen plasma. *J. Am. Chem. Soc.* **132**, 14751–14753 (2010).
- 6. Kim, Y. S. *et al.* Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis. *ACS Nano* **8**, 2230–2236 (2014).
- 7. Wei, D. *et al.* Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition. *ACS Nano* **9**, 164–171 (2015).