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Abstract

The optical and UV variability of the majority of active galactic nuclei may be related to the reprocessing of rapidly
changing X-ray emission from a more compact region near the central black hole. Such a reprocessing model
would be characterized by lags between X-ray and optical/UV emission due to differences in light travel time.
Observationally, however, such lag features have been difficult to detect due to gaps in the lightcurves introduced
through factors such as source visibility or limited telescope time. In this work, Gaussian process regression is
employed to interpolate the gaps in the Swift X-ray and UV lightcurves of the narrow-line Seyfert 1 galaxy Mrk
335. In a simulation study of five commonly employed analytic Gaussian process kernels, we conclude that the
Matern 1

2
and rational quadratic kernels yield the most well-specified models for the X-ray and UVW2 bands of

Mrk 335. In analyzing the structure functions of the Gaussian process lightcurves, we obtain a broken power law
with a break point at 125 days in the UVW2 band. In the X-ray band, the structure function of the Gaussian process
lightcurve is consistent with a power law in the case of the rational quadratic kernel while a broken power law with
a break point at 66 days is obtained from the Matern 1

2
kernel. The subsequent cross-correlation analysis is

consistent with previous studies and furthermore shows tentative evidence for a broad X-ray-UV lag feature of up
to 30 days in the lag-frequency spectrum where the significance of the lag depends on the choice of Gaussian
process kernel.

Unified Astronomy Thesaurus concepts: Accretion (14); Galaxy accretion disks (562); Active galaxies (17);
Gaussian Processes regression (1930); Bayesian statistics (1900); Galaxy nuclei (609)

1. Introduction

Active galactic nuclei (AGNs) show strong and variable
emission across multiple wavelengths. The UV emission from
an AGN is believed to be dominated by thermal emission from
an accretion disk close to the central supermassive black hole
(SMBH; e.g., Pringle 1981). The variability of optical and UV
AGN16 emission is stochastic and described by random
Gaussian fluctuations (e.g., Welsh et al. 2011; Gezari et al.
2013; Zhu et al. 2016; Sánchez-Sáez et al. 2018; Smith et al.
2018; Xin et al. 2020) with the autocorrelation functions of
such fluctuations adhering to the “damped random walk”
model. The X-ray emission from an AGN is often found to
show faster variability relative to emission at longer wave-
lengths (e.g., Mushotzky et al. 1993; Gaskell & Klimek 2003)
and originates from a more compact region (e.g., Morgan et al.
2008; Chartas et al. 2017).

The relationship between the UV and X-ray emission has
been well studied. For instance, correlations between the
variability in two energy bands have been seen in some
individual sources (e.g., Shemmer et al. 2001; Buisson et al.
2017) while others do not show significant evidence for similar
correlation (e.g., Smith & Vaughan 2007; Buisson et al. 2018).
In sources where correlation is found, lags that are related to
the light travel time between two emission regions are
frequently observed. These lags are often found to be on
timescales of days and are longer than those predicted by
classical disk theories (Shakura & Sunyaev 1973). Such lag
amplitudes indicate a disk of size a few times larger than
expected (e.g., Edelson et al. 2000; Shappee et al. 2014; Troyer
et al. 2016; Buisson et al. 2017). Alternatively, some modified
models have been proposed for the underestimation of lags by
the classical thin disk model, e.g., disk turbulence (e.g., Cai
et al. 2020), additional varying FUV illumination (e.g., Gardner
& Done 2017), a tilted or inhomogeneous inner disk (e.g.,
Dexter & Fragile 2011; Starkey et al. 2017), or an extended
coronal region (e.g., Kammoun et al. 2021). Much shorter lags,
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16 AGNs with UV and optical luminosity change of more than 1 mag, such as
changing-look AGNs, are not discussed in this work; see Jiang et al. (2021) for
details.
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e.g., hundreds of seconds, in agreement with the Shakura &
Sunyaev (1973) model, have been rarely observed by
comparison (e.g., in NGC 4395; McHardy et al. 2016).

The Neil Gehrels Swift Observatory has been monitoring the
X-ray sky in the past decade in tandem with simultaneous
pointings in the optical and UV band. In this work, we focus on
the X-ray and UVW2 (λ= 212 nm) lightcurves of the narrow-
line Seyfert 1 galaxy (NLS1; e.g., Gallo 2018) Mrk 335
obtained by XRT and UVOT, the soft X-ray and UV/optical
telescopes on Swift. Mrk 335 was one of the brightest X-ray
sources prior to 2007, before its flux diminished by 10×–50×
its original brightness (Grupe et al. 2007). The X-ray brightness
has not recovered since. During this low X-ray flux period, the
UV brightness remains relatively unchanged rendering
Mrk 335 X-ray weak (Tripathi et al. 2020). The behavior has
been explained as a possible collapse of the X-ray corona, e.g.,
Gallo et al. (2013, 2015; Parker et al. 2014), and/or increased
absorption in the X-ray-emitting region, e.g., Grupe et al.
(2012; Longinotti et al. 2013, 2019; Parker et al. 2019).

Mrk 335 has been continuously monitored since 2007,
making it one of the best-studied AGNs with Swift. Previous
studies from the Swift monitoring program can be found in
Grupe et al. (2007, 2012), Gallo et al. (2018), Tripathi et al.
(2020), and Komossa et al. (2020). The X-rays are constantly
fluctuating and regularly display large-amplitude flaring, e.g.,
Wilkins et al. (2015). The UV are significantly variable, but at a
much smaller amplitude than the X-rays. Gallo et al. (2018)
found tentative evidence for lags of ≈20 days based on cross-
correlation analyses, suggesting a potential reprocessing
mechanism of the more variable X-ray emission in the UV
emitter of this source. One challenge faced by the Swift
monitoring program is that the lightcurves are not continuously
sampled and hence standard Fourier techniques cannot be
applied. This uneven sampling of the lightcurves is imposed by
limited telescope time.

In the context of cross-correlation analysis, methods have
been developed to address the problem of unevenly sampled
lightcurves. In Reynolds (2000), the method of Press et al.
(1992) is extended to interpolate the lightcurve gaps using a
model of the covariance function, or equivalently the power
spectrum, of the lightcurve. In Bond et al. (1998), Miller et al.
(2010), and Zoghbi et al. (2013) a maximum likelihood
approach is taken to fit models of the lightcurve power spectra,
which accounts for the correlation between the lightcurves. In
this paper we focus on a relatively new approach to tackle
unevenly sampled lightcurves.

Gaussian processes confer a Bayesian nonparametric frame-
work to model general time-series data (Roberts et al. 2013; Tobar
et al. 2015) and have proven effective in tasks such as periodicity
detection (Durrande et al. 2016) and spectral density estimation
(Tobar 2018). More broadly, Gaussian processes (GPs) have
recently demonstrated modeling success across a wide range of
spatial and temporal application domains including robotics
(Deisenroth & Rasmussen 2011; Greeff & Schoellig 2020),
Bayesian optimization (Shahriari et al. 2015; Grosnit et al. 2020;
Cowen-Rivers et al. 2021; Grosnit et al. 2021), as well as areas of
the natural sciences such as molecular machine learning (Nigam
et al. 2021; Griffiths & Hernández-Lobato 2020; Moss & Griffiths
2020; Thawani et al. 2020; Griffiths et al. 2021; Hase et al. 2020,
Bartók et al. 2010), genetics (Moss et al. 2020), and materials
science (Cheng et al. 2020; Zhang et al. 2020). In the context of
astrophysics there is a recent trend favoring nonparametric models

such as GPs due to the flexibility afforded when specifying the
underlying data modeling assumptions. Applications have arisen
in lightcurve modeling (Luger et al. 2021a, 2021b), continuous-
time autoregressive moving average (CARMA) processes Yu &
Richards (2021), modeling stellar activity signals in radial velocity
data (Rajpaul et al. 2015), lightcurve detrending (Aigrain et al.
2016), learning imbalances for variable star classification (Lyon
et al. 2020), inferring stellar rotation periods (Angus et al. 2018),
estimating the dayside temperatures of hot Jupiters (Pass et al.
2019), exoplanet detection (Czekala et al. 2017; Jones et al. 2017;
Gordon et al. 2020; Langellier et al. 2021), spectral modeling
(Gibson et al. 2012; Nikolov et al. 2018; Diamond-Lowe et al.
2020), as well as blazar variability studies (Karamana-
vis 2015, 2017; Covino et al. 2020; Yang et al. 2021).
It has recently been demonstrated in lightcurve simulations

by Wilkins (2019) that a GP framework can compute time lags
associated with X-ray reverberation from the accretion disk that
are longer and observed at lower frequencies than can be
measured by applying standard Fourier transform techniques to
the longest available continuous segments. It is for this
principal reason that we choose to employ GPs for our timing
analysis. Further desirable facets of GPs include the fact that,
unlike parametric models, they do not make strong assumptions
about the shape of the underlying lightcurve (Wang et al.
2012). Additionally, we may perform Bayesian model selection
at the level of the covariance function or kernel allowing us to
quantitatively compare different models of the lightcurve
power spectrum. Finally in the cross-correlation analysis, we
may make a weaker modeling assumption than (Zoghbi et al.
2013) in treating the X-ray and UV lightcurves as being
independent (Wilkins 2019).
The paper is outlined as follows: In Section 2, we provide

the background on GPs including discussion of different
kernels as well as Bayesian model selection, the criterion used
to choose between kernels. In Section 3 we describe the
procedures used to fit GPs to the X-ray and UVW2 bands
including aspects such as identification of the flux distribution,
consideration of measurement noise, as well as a simulation
study to determine the appropriate kernels. In Section 4 we
compare the structure functions of the GP-interpolated light-
curves with the observational structure functions from Gallo
et al. (2018). In Section 5 we present a cross-correlation
analysis of the X-ray and UVW2 bands using the GP-
interpolated lightcurves. Finally, in Section 6 we provide
concluding remarks about the discrepancy between the
observational and GP-derived structure functions as well as
the implications of the cross-correlation analysis, namely that
the broad lag features suggest an extended emission region of
the disk in Mrk 335 during the reverberation process. All code
for reproducing the analysis is available at https://github.com/
Ryan-Rhys/Mrk_335.

2. Gaussian Processes

We may define a GP as a collection of random variables, any
finite number of which have a joint Gaussian distribution. When
the GP is used as a prior over functions, the aforementioned
random variables consist of function values f (t) at different
points in time t. In our setting f represents flux or count rate. The
GP is characterized by a mean function

= m t f t 1( ) [ ( )] ( )

2
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and a covariance function

¢ = - ¢ -k t t f t m t f t m t, . 2( ) [( ( ) ( ))( ( ) ( ))] ( )

The process is written as follows:

~ ¢f t m t k t t, , . 3( ) ( ( ) ( )) ( )

The mean function is set to the empirical mean of the
standardized observational data in the cases we consider.
Standardization, in this case, refers to the common practice of
subtracting the mean and dividing by the standard deviation of
the data when fitting the GP in order to facilitate the
identification of appropriate hyperparameters (Murray 2008).
The standardization is reversed once the fitting procedure is
complete in order to obtain predictions on the original scale of
the data. m(t)= 0 will be assumed henceforth for the sake of
the current presentation. The covariance function computes the
pairwise covariance between two random variables (function
values). In the GP literature, the covariance function is
commonly referred to as the kernel and is denoted as

¢ = ¢k t t f t f t, cov , . 4( ) ( ( ) ( )) ( )

Informally, the kernel is responsible for determining the
smoothness of the functions which the GP is capable of fitting.
The inductive bias created by the choice of kernel is an
important consideration in Gaussian process modeling.

2.1. Kernels

The most widely known kernel is the squared exponential
(SE) or radial basis function kernel:

s¢ =
- - ¢

k t t
t t

ℓ
, exp

2
, 5fSQE

2
2

2
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ∣ ∣ ( )

where s f
2 is the signal amplitude hyperparameter (vertical

lengthscale) and ℓ is the (horizontal) lengthscale hyperpara-
meter. For such hyperparameters, we will adopt the notation of
θ to represent the set of kernel hyperparameters. It has been
argued by Stein (2012) that the smoothness assumptions of the
SE kernel are unrealistic for many physical processes. As such,
kernels such as the Matern,
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are more commonly seen in machine learning literature. Here
Kν is a modified Bessel function of the second kind, Γ is the
gamma function, and ν is a nonnegative parameter of the
kernel, which is typically taken to be either 3

2
or 5

2
(Rasmussen

& Williams 2006). The lengthscale hyperparameter ℓ can be
thought of loosely as a decay coefficient for the covariance
between inputs as they become increasingly far apart in the
input space; the farther apart the inputs are, the less correlated
they will be. The final kernel used in this work is the rational
quadratic (RQ) kernel,

a
¢ = +

- ¢ a-

k t t
t t

ℓ
, 1

2
. 7RQ

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ∣ ∣ ( )

where α, ℓ> 0. The RQ kernel can be viewed as a scale
mixture of SE kernels with different characteristic lengthscales.
All kernels used in this work are stationary kernels, and as
such, it should be stated that this reflects a modeling
assumption that the underlying time series is stationary. The
extension of the current work to include nonstationary kernels
will be discussed in Section 6.

2.2. Prediction with GPs

To illustrate the homoscedastic (constant noise) GP pre-
dictive model we use X-ray timing as an example. We wish to
model the count rate f (t). We place a GP prior over f,

q = f t t tp K0, , , 8( ( )∣ ) ( ( )) ( )

where f denotes the vector of function values evaluated at the
set of times Î= t N,i i

N
1{ } . K(t, t) is a kernel matrix where

entries are computed by the kernel function as =K k t t,ij i j[ ] ( ).
θ represents the set of kernel hyperparameters. The GP prior is
written as

q s= +y t t tp K I0, , , 9y
2( ( )∣ ) ( ( ) ) ( )

where sI y
2 represents the variance of the Gaussian noise on the

observations y. The applicability of such a noise model, also
known as a Gaussian likelihood, will be discussed further in
Section 3.2. Once we have observed some data y, the joint
distribution over the observed data y and the predicted function
values f* at test locations t* may be written as

s

s
~

+

+


y
f

t t t t

t t t t

K I K

K y K
0,
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, 10y
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2*
*

* * *

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟

( ) ( )
( ) ( )

( )

where  is the multivariate Gaussian probability density
function. The joint prior may be conditioned on the observa-
tions through

=f y
f y

y
p

p

p

,
, 11

*
*( ∣ )

( )
( )

( )

which enforces that the joint prior agrees with the observed
target values y. The predictive distribution is thus given as

= f t y t f fp , , , cov , 12
* * * *

( ∣ ) ( ¯ ( )) ( )

with the predictive mean at test locations t* being

s= + -f t t t t yK K I, , 13y
2 1

* *
¯ ( )[ ( ) ] ( )

and the predictive uncertainty being

s

= -

´ + -

f t t t t

t t t t

K K

K I K

cov , ,

, , . 14y
2 1

* * * *

*

( ) ( ) ( )
[ ( ) ] ( ) ( )

Analyzing the form of this expression one may notice that
the first term K(t*, t*) in the expression for the predictive
uncertainty cov(f*) may be viewed as the prior uncertainty and
the second term s+ -t t t t t tK K I K, , ,y

2 1
* *( )[ ( ) ] ( ) can be

thought of as a subtractive factor that accounts for the
reduction in uncertainty when observing the data points y.

2.3. Bayesian Model Selection

One desirable property of GPs and Bayesian models in
general is the ability to carry out hierarchical modeling

3
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(MacKay 1992; van der Wilk 2019). The three tiers of the
modeling hierarchy are:

1. Model Parameters,
2. Model Hyperparameters,
3. Model Structures.

In the case of the nonparametric GP framework, parameters do
not have the same meaning as in parametric Bayesian models
and are instead obtained from the posterior distribution over
functions. Hyperparameters are typically parameters of the
kernel function such as signal amplitudes and lengthscales. An
important entity for hyperparameter optimization in GPs is the
log marginal likelihood or evidence (MacKay 1991):

q s

s p

= - +

- + -

q

q

-y t y t t y

t t

p K I

K I
N

log ,
1

2
,

1

2
log ,

2
log 2 , 15

y

y

2 1

encourages fit with data

2

control smodel capacity

( ∣ ) ( ( ) )

∣ ( ) ∣ ( ) ( )

  

  

where N is the number of observations and the subscript
notation on the kernel matrix Kθ(t, t) is chosen to indicate the
dependence on the set of hyperparameters θ. The two terms in
the expression for the marginal likelihood embody Occam’s
Razor (Rasmussen & Ghahramani 2001) in their preference for
selecting models of intermediate capacity. The first term in
Equation (15) acts as a term that penalizes functions that do not
fit the data well whereas the second term acts as a regularizer,
disfavoring overly complex models. In this work, kernel
hyperparameters are chosen to optimize the marginal like-
lihood. At the level of model structures, the fit achieved by
different kernels can be quantitatively assessed by comparing
the values of the optimized log marginal likelihood objective.

3. GP Modeling of Mrk 335

In this paper we consider the Swift X-ray and UVW2
lightcurves in time bins of one day. We refer the reader to Gallo
et al. (2018) for details of the data reduction processes. The
observational measurements used in this work run from 54327

to 58626 modified Julian days and comprise 509 data points for
the X-ray band and 498 data points for the UVW2 band. We
consider the latest UVOT sensitivity calibration file (“swusen-
scorr20041120v006.fits”) to account for the sensitivity loss
with time in the UVW2 band.17

3.1. Identifying the Flux Distribution

In order to assess the applicability of GPs in modeling the
flux distribution of the X-ray and UVW2 bands of Mrk 335, we
perform a series of graphical distribution tests to determine the
sample distribution. The histograms of the log count rates for
the X-ray, and flux for the UV bands, of Mrk 335 are shown in
Figure 1. The histograms show that the distribution of the
UVW2 flux is approximately Gaussian-distributed whereas the
X-ray count rate distribution appears to be log-Gaussian-
distributed, in line with the general observation of Uttley &
McHardy (2005) that fluxes from accreting black holes tend to
follow log-Gaussian distributions. We provide further graphical
distribution tests based on probability–probability (PP) plots
and empirical cumulative distribution functions (ECDFs) in
Appendix A.
Furthermore, following Wilkins (2019) we perform a

Kolmogorov–Smirnov test for goodness of fit where the null
hypothesis is that the sample was drawn from a Gaussian
distribution. For the UVW2 flux values we obtain a p-value of
0.164. We obtain a p-value of 1.017e−20 for the raw X-ray
count rates and a p-value of 0.028 for the log-transformed
X-ray count rates. As such, we cannot reject the null hypothesis
that either UVW2 flux or log-transformed X-ray count rates are
drawn from a Gaussian distribution at the 1% level of
significance. We may however reject the null hypothesis in
the case of the raw X-ray count rates, providing evidence that
the raw X-ray count rates should be log-transformed in order to
be well modeled by a Gaussian distribution. As such, we log
transform the raw X-ray count rates and leave the UVW2 flux
values unchanged.

Figure 1. Histograms of the observed Swift X-ray log count rate and UVW2 flux overlaid with Gaussian kernel density estimates. The raw UVW2 flux values have
been scaled by 1e14.

17 The most up-to-date calibration files may be found at https://heasarc.gsfc.
nasa.gov/docs/heasarc/caldb/swift. We consider only UVW2 data collected
by UVOT because the UVW2 filter was most frequently used in the archival
observations.
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3.2. Noise

As noted by Wilkins (2019) fitting a GP to the logarithm of
the count rate is appropriate only in the limit of a large signal-
to-noise ratio. In the case of Mrk 335, the Poisson (shot) noise
intrinsic to the photon detectors used to obtain the flux
measurements is over an order of magnitude smaller than the
flux measurement itself. As such the choice of the log-GP
would appear to be justified.

3.3. Simulations

We undertake a simulation study in order to quantitatively
assess the abilities of different kernels to interpolate gapped
simulated lightcurves. Observational power spectral densities
(PSDs) of AGNs are well described by (broken) power laws
(Mchardy et al. 2004). As such, our simulations employ a
power-law PSD with an index fit to the observational data. Our
goals with the study are twofold: first, although we cannot be
sure of the true PSD for the observational data, we hope that the
simulations may afford a good proxy for identifying performant
kernels based on the fact that AGNs typically exhibit power-
law-like PSDs, and second, we wish to test whether a kernel’s
ability to reconstruct the full simulated lightcurve correlates
with its marginal likelihood value for the gapped data on which
it is trained. If there is a correlation, we may use the marginal
likelihood as a metric for identifying the appropriate kernel on
the observational data.

One thousand simulated lightcurves with gaps are generated
for the Mrk 335 X-ray and UV bands using the method of
Davies & Harte (1987), first applied in astrophysics by Timmer
& König (1995). For each lightcurve we have access to the
ground-truth functional form of the lightcurve before the
introduction of gaps. Computationally, the ground-truth light-
curve is evaluated on a fine, discrete grid of 4390 time points
whereas the gapped lightcurves are evaluated on a coarser,
unevenly spaced grid of 498 time points for the UV simulations
and 509 time points for the X-ray simulations in line with the

number of observational data points. We then quantify how
well each GP kernel performs in recovering the ground-truth
lightcurve by measuring the normalized residual sum of
squared errors,

å= -
=N

f t yRSS
1

, 16
i

N

i i
1

2( ( ) ) ( )

where f (ti) is the GP prediction at grid point ti and yi is the true
simulated count rate value. The RSS values are averaged over
the 1000 simulated lightcurves. We provide an illustration of
the RSS metric in Figure 2. In addition, we compute the
averaged negative log marginal likelihood (NLML) for each
kernel:

s

s p

=

+ +

+ +

q

q
-

y t t

y t t

K

I K

I
N

NLML
1

2
,

1

2
log ,

2
log 2 . 17

y

y

2 1

2

( ( )

) ∣ ( )
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The NLML in this case is the negative of the quantity given
in Equation (15). Kernel hyperparameters were selected via
optimization of the NLML using the scipy optimizer of GPflow
(Matthews et al. 2017). The jitter level was fixed at 0.001, a
small positive number to ensure numerical stability. The output
values (flux or the logarithm of the count rate) were
standardized according to their empirical mean and standard
deviation. We use a constant mean function set to the empirical
mean of the data following standardization as discussed in
Section 2.
We report the results of this simulation study in Table 1. The

NLML values show correlation with RSS, thus providing
evidence that NLML is an appropriate metric for determining the
GP kernel for the real observational data (for which the ground-
truth lightcurve is of course not available). A paired t-test was
conducted to determine whether the RSS results were significant

Figure 2. Residual plot. The normalized RSS metric is the sum of squared residuals divided by the total number of discretized points (4390) comprising the simulated
lightcurve. A residual in this case represents the difference between the Gaussian process predictive mean and the ground-truth value of the simulated lightcurve.
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in terms of identifying the best kernel. For the X-ray simulations,
a t-statistic of 9 was obtained corresponding to a two-sided p-
value of 5−20. For the UVW2 simulations, a t-statistic of −22
was obtained corresponding to a two-sided p-value of 9−85. As
such, the null hypothesis that the performance discrepancy
between kernels on the RSS metric is due to chance variation
across 1000 simulations, may be rejected at the 1% level of
significance. We offer further rationalization in Appendix B for
why the top two performing kernels in the simulation study are
the Matern 1

2
and RQ kernels.

3.4. GP Fits

The fits to the observational data for the UVW2 and X-ray
bands are shown in Figures 3 and 4, respectively. In an
analogous fashion to the simulation experiments we evaluate
five stationary kernels: Matern 1

2
, Matern 3

2
, Matern 5

2
, RQ, and

SE. We choose to display the two kernels, RQ and Matern 1

2
,

which performed best in the simulation study in their abilities to
model power-law-like PSDs. These kernels also have the most
favorable values under the NLML metric for the observational
data. We again use a constant mean function set to the empirical
mean of the data following standardization. We optimize all

Table 1
Performance Comparison of Kernels Based on the NLML on the Simulated
Gapped X-Ray and UV Lightcurves and Normalized Residual Sum of Squared

Errors (RSS) on the Ground-truth Simulated Lightcurves

Kernel NLML RSS

X-Ray
Matern 1

2
180.2 ± 3.8 0.121 ± 0.002

Matern 3

2
420.7 ± 3.3 0.309 ± 0.003

Matern 5

2
523.5 ± 2.9 0.374 ± 0.003

Rational Quadratic 184.2 ± 3.6 0.117 ± 0.002
Squared Exponential 632.1 ± 1.5 0.554 ± 0.004

UVW2
Matern 1

2
−399.0 ± 5.2 2.9 ± 0.08

Matern 3

2
−298.3 ± 6.0 7.9 ± 0.25

Matern 5

2
−219.6 ± 6.5 17.0 ± 0.41

Rational Quadratic −349.2 ± 5.4 3.4 ± 0.09
Squared Exponential −65.0 ± 7.4 32.8 ± 0.55

Note. The mean NLML and RSS across 1000 simulations are reported with the
standard error. UVW2 RSS values have an exponent of −30. Bold values
indicate best performance.

Figure 3. GP lightcurves for the UVW2 band. The shaded regions denote the GP 95% confidence interval. We show both the GP mean and a sample from the GP
posterior in separate plots. The insets are included to highlight the variability of the fit.
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kernel hyperparameters under the marginal likelihood save for
the noise level which we fix to a constant value in the
standardized space. This constant noise value is computed by
dividing the mean output value in the standardized space by the
mean signal-to-noise ratio in the original space.

4. Structure Function Analysis

Ideally we would like to examine the PSD of the GP fits to
the observational data. The PSD characterizes the distribution
of power over frequencies of a given emission band and
properties of the PSD can be linked to underlying physical
processes in the accretion disk. Computation of the PSD, while
possible, can be complicated by the uneven sampling of the
observational data, leading previous studies to instead perform
a structure function analysis on the Mrk 335 data (Gallo et al.
2018). While it is possible to extract the PSD from the learned
kernel (Wilkins 2019), in this work we choose to perform a
structure function analysis of the GP lightcurves in order to
compare directly against the results of Gallo et al. (2018). We
follow the method described in Simonetti et al. (1985), Hughes
et al. (1992), di Clemente et al. (1996), Collier & Peterson
(2001), and Gallo et al. (2018). The binned structure function is

defined as

åt
t

t= - +
N

f t f tSF
1

, 18
i

i i
2( )

( )
[ ( ) ( )] ( )

where τ= tj− ti is the distance between pairs of points i and j
such that tj> ti. The structure function is binned according to τ

where the centers of each bin are given by t d= -ii
1

2
( ) . δ in

this instance is the structure function resolution. We use the
same δ as in Gallo et al. (2018), namely 5.3 days for the
structure function computation over both the X-ray and UVW2
bands. f (ti) gives the count rate value at time point ti and N(τ) is
the number of structure function pairs in each bin i with center
τi. Accounting for measurement noise by subtracting twice the
mean noise variance from each structure function bin, as
performed in Gallo et al. (2018), was found to have a negligible
effect on the GP structure functions and so we ignore it. As in
Gallo et al. (2018), we normalize the structure function values
by the global lightcurve variance.
The GP structure functions for the interpolated lightcurves

are shown in Figure 5. The 1σ GP error bars are obtained by
computing the structure function over 50 samples from the GP
posterior. Each sample gives rise to highly similar structure

Figure 4. GP lightcurves for the X-ray band. The shaded regions denote the GP 95% confidence interval. We show both the GP mean and a sample from the GP
posterior in separate plots. The insets are included to highlight the variability of the fit.
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functions and so the errors are not visible on the plot. The
structure functions computed from the observational data, 509
and 498 data points for the X-ray and UV bands of
Mrk 335, respectively, are included for reference. In contrast
to the GP structure function error bars, in the case of the
observational data the error bars are computed as si

N

2
i( ),

where σi is the noise standard deviation in bin i and Ni is the
number of pairs in bin i.

The GP structure functions are compared against the
observational structure functions in Figure 5. In addition, we
plot broken power-law fits to the GP structure functions, the
parameters of which are given in Table 2. In the UVW2 band,
both GP kernels yield structure functions possessing a
consistent break point at ca. 125 days. In the X-ray band the
Matern 1

2
kernel yields a break point at 66 days whereas the RQ

kernel fit yields an unbroken power law. Given the discrepancy
between GP kernels, we do not find definite evidence for a
break in the X-ray power law.

Of particular interest is whether the dip in the X-ray structure
function is an expected feature of the latent lightcurve or a

Figure 5. Comparison of observational and GP structure functions. The GP structure functions are consistent with those calculated from the observational data in the
non-noise-dominated regions. The dip at ca. 200 days in the observational X-ray structure function is potentially a sampling artifact as demonstrated by simulation in
Figure 6.

Table 2
Parameters for the Broken Power-law Fits to the GP Structure Function

Wave
Band Kernel α1 α2 τchar

UVW2 Matern 1

2
−0.72 ± 0.03 −0.26 ± 0.01 127 ± 8

UVW2 Rational
Quadratic

−0.62 ± 0.01 −0.28 ± 0.01 125 ± 5

X-ray Matern 1

2
−0.29 ± 0.03 −0.07 ± 0.004 66 ± 8

X-ray Rational
Quadratic

−0.21 ± 0.002 N/A N/A

Note. α1 and α2 are the indices for the power law before and after the break
point τchar. The break point τchar is reported in days. Errors are computed using
200 bootstrap samples of the data points corresponding to the GP structure
functions. The X-ray rational quadratic structure function is fit using a power
law and as such only has a single index as a parameter. The astropy library
(Astropy Collaboration et al. 2013, 2018) is used to compute the (broken)
power-law fits using the simplex algorithm and least- squares statistic for
optimization with the GP structure function uncertainties used as weights in the
fitting.
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measurement artifact arising from uneven sampling. In order to
assess the potential for the dip to be a sampling artifact, we
perform simulations using the Timmer and Konig algorithm
from Section 3.3. In this case we compute structure functions of
gapped lightcurves and compare against structure functions
derived from the ground-truth lightcurves with no gaps. One
representative simulation is depicted in Figure 6. In this
instance a similar dip to that found in the observational data is
observed in the X-ray band simulation. This highlights the
possibility that the dip seen in the observational X-ray structure
function is a sampling artifact arising from gaps in the
lightcurve.

5. Lag and Coherence

In this section, we calculate the coherence between the
UVW2 and X-ray emission from Mrk 335 in search of evidence
of lag features in the Fourier frequency domain. The coherence
and lag spectra are estimated from 1000 pairs of UVW2 and
X-ray GP lightcurve samples drawn from the GP posterior for
each kernel. The lags are defined as the phase lags divided by
the corresponding Fourier frequency. A similar approach has
been used in other disciplines (e.g., Fabian et al. 2009; Kara
et al. 2013). We consider both Matern 1

2
and RQ kernels. The

results are shown in Figure 7. Positive lags imply that the X-ray
variability leads the UVW2 variability. The error bars in the
figure are the standard errors of the corresponding measure-
ments for the 1000 samples.

The coherence between the UVW2 and X-ray emission
decreases with frequency, suggesting more coherent variability
at lower frequency. Positive lag features are shown at the low
frequencies in the range f= 0.005–0.025 day−1. The absolute
value of the lag at f= 0.0039± 0.0014 days−1 is estimated to
be 19± 22 days for the Matern 1

2
kernel applied to both

lightcurves and 29± 19 days for the RQ kernel; however, both
measurements are consistent with zero lag in the 2σ uncertainty
range.

Tentative evidence of a shorter time lag at a higher frequency
of f= 0.018± 0.006 day−1 is also found. The longer lag
feature at a lower frequency would correspond to a more

extended emission region while the shorter lag feature at a
higher frequency would correspond to a more compact region.
This could be explained by the presence of an extended UV
emission region on the disk where reverberation happens.
Given that the lags are consistent with zero lag within 2σ

uncertainty ranges, we conclude that only tentative evidence for
a broad lag feature is found by applying GPs to the UVW2 and
X-ray lightcurves of Mrk 335. Previous attempts to identify
lags between two wavelengths of Mrk 335 based on cross-
correlation analysis in the time domain suggest similar results
(e.g., Gallo et al. 2018).

6. Conclusions

Following the interpolation of the unevenly sampled light-
curves of Mrk 335 using GPs, tentative evidence for broad lag
features is found in the Fourier frequency domain. The
magnitude of the lags is consistent with previous cross-
correlation analyses. In addition, the broad lag features might
suggest an extended emission region, e.g., of the disk in
Mrk 335 during the reverberation processes. If the corona is
compact within 5 Rg in Mrk 335 (Wilkins et al. 2015), our data
suggest a possibly wide range of UVW2 emission radii.
The structure functions computed from the GP-interpolated

lightcurves are consistent with those derived from the
observational data and furthermore, illicit potential insights
into the properties of the latent lightcurves. In particular, we
show through a simulation study that it is possible that dips in
the X-ray structure function may be produced by sampling
artifacts arising from gaps in the lightcurve. In contrast, the GP
structure functions show no dips. While this is not proof that
the dip in the observational X-ray structure function is due to a
sampling artifact, it does allude to the possibility. The UVW2
GP structure functions do not exhibit strong dependence on the
choice of kernel with both Matern 1

2
and RQ showing up as a

broken power law with breaks at 139 and 155 days,
respectively. The X-ray structure functions however do show
up differences between kernels with the RQ kernel predicting a
power law and the Matern 1/2 kernel predicting a broken
power law.

Figure 6. Structure function simulations. Pseudo-observational lightcurves are produced by introducing gaps into the simulated lightcurves. The structure function for
the gapped lightcurve is shown in red in (a) whereas the structure function of the GP interpolation is shown in red in (b). Both structure functions are compared against
the ground-truth structure function obtained from the full simulated ground-truth lightcurve (no gaps). The dips at τ = 200 days and τ = 400 days in the structure
function derived from the gapped observational simulation in 6(a) are artifacts of the uneven sampling.
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From the GP modeling perspective, the ability to carry out
Bayesian model selection affords a quantitative means of
comparing analytic kernels under the marginal likelihood. It
may be possible to incorporate further flexibility into the fitting
procedure by making use of more sophisticated methods of
kernel design (Duvenaud 2014) in order to allow the assessment
of fits of sums and products of analytic kernels or by leveraging
advances in transforming GP priors via deep GPs (Damianou &
Lawrence 2013) or normalizing flows (Maroñas et al. 2020).
Such approaches could be validated using simulation studies.
Additionally, modeling the cross-correlation using multi-output
GPs (de Wolff et al. 2021) may be an interesting avenue for

comparison against the approach taken here. Lastly, Bayesian
spectral density estimation (Tobar 2018) may afford further
flexibility through nonparametric modeling of the power spectral
density in addition to nonparametric modeling of the lightcurve
in the time domain. These improvements in Bayesian modeling
machinery may help to minimize model misspecification and as
such, enable more robust inferences to be made about the
functional forms of the latent lightcurves.

J.J. acknowledges support from the Tsinghua Shui’Mu
Scholar Program and the Tsinghua Astrophysics Outstanding
Fellowship.

Figure 7. The coherence and lag spectra for Mrk 335. They are calculated by using 1000 pairs of GP lightcurve samples fit to the observed lightcurves. The error bars
are the standard errors of the corresponding measurements for the 1000 samples. Different panels are for different kernels. Positive lags imply that the X-ray band
leads the UVW2 band.
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Appendix A
Additional Graphical Tests for Identifying the Flux

Distribution

In Figure 8 we show P-P plots and ECDFs as graphical
distribution tests for Gaussianity. It may be observed

qualitatively that both X-ray band log count rates and UVW2
flux are well modeled by a Gaussian distribution.

Figure 8. P-P plots and ECDFs for X-ray log count rates and UVW2 flux. Graphical tests of Gaussianity. In the case of the P-P plots, proximity to the line is an
indicator of Gaussianity. In the case of the ECDF plots, resemblance to the cumulative distribution function of a Gaussian is indicative of Gaussianity.
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Appendix B
Kernels

In Figure 9, we show plots of analytic kernel autocorrelation
functions as well as their associated PSDs.
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