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Abstract

Deep learning has in recent years come to dominate the previously separate fields of
research in machine learning, computer vision, natural language understanding and
speech recognition. Despite breakthroughs in training deep networks, there remains a
lack of understanding of both the optimization and structure of deep networks. The
approach advocated by many researchers in the field has been to train monolithic
networks with excess complexity, and strong regularization — an approach that leaves
much to desire in efficiency. Instead we propose that carefully designing networks
in consideration of our prior knowledge of the task and learned representation can
improve the memory and compute efficiency of state-of-the art networks, and even
improve generalization — what we propose to denote as structural priors.

We present two such novel structural priors for convolutional neural networks, and
evaluate them in state-of-the-art image classification CNN architectures. The first
of these methods proposes to exploit our knowledge of the low-rank nature of most
filters learned for natural images by structuring a deep network to learn a collection
of mostly small, low-rank, filters. The second addresses the filter/channel extents of
convolutional filters, by learning filters with limited channel extents. The size of these
channel-wise basis filters increases with the depth of the model, giving a novel sparse
connection structure that resembles a tree root. Both methods are found to improve
the generalization of these architectures while also decreasing the size and increasing
the efficiency of their training and test-time computation.

Finally, we present work towards conditional computation in deep neural networks,
moving towards a method of automatically learning structural priors in deep networks.
We propose a new discriminative learning model, conditional networks, that jointly
exploit the accurate representation learning capabilities of deep neural networks with the
efficient conditional computation of decision trees. Conditional networks yield smaller
models, and offer test-time flexibility in the trade-off of computation vs. accuracy.
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Introduction

“A general tabula rasa network is a fine subject for the abstract, formal studies,
but one should not try to use it to solve practical problems. . . . One should
pre-program the network with all available information about the structure of the
problem, especially information about the symmetry and topology of the data.”

– John Denker et al., Large Automatic Learning, Complex Systems, 1987

Deep learning has in recent years come to dominate the previously separate fields
of research in machine learning, computer vision, natural language understanding and
speech recognition. The fact that these fields would have been considered relatively
distinct less than five years ago belies the power of the theses methods. Deep learning
is only the latest in a long history of connectionist learning research, and while the
breakthroughs in training DNNs are real, and the research community has continued
to discover an increasing number of applications for deep learning, many relatively
simple questions of learning in neural networks remain unanswered.

1.1 End-to-End Learning

Classic computer vision approaches depended on hand-designing problem-specific
features — salient representations of the input — requiring expert knowledge of the
domain, thus limiting the scalability and effectiveness of the approach. Early computer
vision research, for example, depended on finding prominent edges in images. The
often cited appeal of deep learning, as compared to classic feature-driven approaches
in computer vision (and speech recognition, etc), is that neural networks are trained
‘end-to-end’, i.e. without needing manual design of internal representations. Whereas
in classic computer vision, more salient representations of the input must be hand-
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Fig. 1.1 A comparison of classic feature-based approach to computer vision,
and deep learning approaches. Although both methods require hand-tuned hyper-
parameters and design, deep learning methods avoid much of the hand-engineering of
classic approaches. Deep networks are far from automatic however, for every application
hyper-parameters must be tuned and significant thought has to be put into the design
of the structure of the network.

designed for each problem, DNNs can be trained directly on the original data itself,
and have been shown to learn better representations of the data.

Glossed over in this description of deep learning, as it is often in the field itself, is
that this learning ability does not come for free, and is far from automatic. It relies on
very specific assumptions that are mostly encoded in the design of the neural network
architecture itself — which, for the sake of brevity, in this dissertation we will denote
as structural priors1.

Structural priors require some knowledge of the domain to design but, unlike
hand-designed features, are higher level and have relatively broad applicability. In
real-world applications, fully-connected neural networks are seldom used. In fact almost
every practical application of deep learning has relied on some form of structural prior.
Figure 1.1 illustrates, at a high level, the amount of learning vs. design in deep learning
as compared to traditional feature-based computer vision.

For example, CNNs are a broad class of neural network architectures that encode
assumptions based on our prior knowledge about learning with natural image inputs.

1I. Goodfellow, Y. Bengio, and Courville (2016) denote this concept “infinitely strong regularization”.
Unfortunately regularization is often a broadly-used and ill-defined term, in many cases seemingly
falling under the definition of ‘anything that improves generalization’. Indeed, other recent work (C.
Zhang et al., 2017) has struggled with a the general lack of clarity on what regulariation means, given
its broad usage. Instead, we define regularization more narrowly (see Glossary).
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RNNs are another broad class of architectures that encode our prior knowledge about
learning sequence inputs, such as natural language sentences. Neural networks designed
with problem-salient structural priors have fewer parameters, are faster, and have
better generalization — better accuracy on data outside the training set — than the
fully-connected equivalent.

1.2 Understanding the Effect of
Structure on Learning

Although it has been proven that a neural network with an infinitely wide single
hidden layer is a universal approximator (Cybenko, 1989; Hornik, Stinchcombe, and
White, 1989), theoretically able to learn any function, in practice the architecture of
a neural network has an unreasonably large affect on the generalization of a trained
network. For example, it has been well demonstrated that for image classification, a
reasonably designed CNN as proposed by LeCun, Bottou, et al. (1998), will outperform
a fully-connected network, even when that fully-connected network has many more
parameters, as will be shown in section 3.2.3. This is despite the fact that, as explained
in chapter 2, any CNN can be represented exactly in a (larger) fully-connected network
where shared parameters are replaced by duplicated weights and filter connectivity is
simply represented by zeroed out weights.

Novel work on optimization algorithms used to train neural networks is considered
research progress, while novel structural changes made in DNNs are often dismissed as
‘engineering’, but this is to fundamentally misunderstand the importance of structure.
If a structural change results in lower test loss for the same objective and dataset, then
it is moving towards understanding the black box internal representation learned in
DNNs.

This lack of understanding in both the optimization and structure of DNNs has
meant that contemporary deep network architectures for image classification have
high computational and memory complexity. This is a direct result of the inability
to identify the optimal architecture for datasets. The approach advocated by many
researchers in the field has been to train monolithic networks with excess complexity,
and strong regularization — an approach that has found success in practice for accuracy,
but leaves much to desire in efficiency.

In this dissertation, we propose that carefully designing networks in consideration of
our prior knowledge of the task can improve the memory and computational efficiency
of state-of-the art networks, and even increase accuracy through structurally induced
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regularization. This is not a completely new idea, and had received focus in an earlier
iteration of connectionist research progress, in the late 8́0s and early 9́0s — CNNs are
perhaps the most successful example of this approach.

1.3 Contributions

While this philosophy defines our approach, deep neural networks have a large number
of degrees of freedom, and there are many facets of deep neural networks that warrant
such analysis. In this dissertation, we will look at several interrelated aspects of DNN,
for each of which we have made a novel contribution:

(i) Spatial connectivity (chapter 4): a novel spatial structural prior for CNNs,
by structuring the network to learn a mixed low/full rank basis for filters,

(ii) Inter-filter connectivity (chapter 5): a novel inter-filter structural prior for
DNNs, by structuring the network to learn a reduced inter-layer filter/neuron
connectivity,

(iii) Conditional connectivity (chapter 6): a novel method of learning conditional
routing inside a DNN, and using this conditional routing to reduce computation
at test time.

So as to not conflate the methods and results, we have presented each of these
in isolation in this dissertation. However, the methods address different aspects of
sparsity in DNNs, and we believe them to be complementary.

1.4 Organization

This dissertation is organized as follows:

Chapter 2 gives the necessary background on neural networks, and contemporary
deep learning architectures with particular emphasis on image classification, in
order to understand our work and motivation.

Chapter 3 explores the effect of structure on learning in neural networks, in particu-
lar machine learning theory and early empirical results towards understanding
the effect of the size and structure of neural networks on their generalization,
motivating the focus of this dissertation.
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Chapter 4 addresses the spatial extents of convolutional filters, proposing to exploit
our knowledge of the low-rank nature of most filters learned for image recognition
by structuring a deep network to learn a mixed full and low-rank basis for filters.

Rather than approximating filters in previously-trained networks with more
efficient versions, we learn a set of small basis filters from scratch; during training,
the network learns to combine these basis filters into more complex filters that
are discriminative for image classification. To train such networks, a novel weight
initialization scheme is used. This allows effective initialization of connection
weights in convolutional layers composed of groups of differently-shaped filters.

We validate our approach by applying it to several existing CNN architectures
and training these networks from scratch using the CIFAR, ILSVRC and MIT
Places datasets. Our results show similar or higher accuracy than conventional
CNNs, while requiring much less computation, and many fewer parameters.

Chapter 5 addresses the filter/channel extents of convolutional filters, by learning
filters with limited channel extents.

A new method is proposed for creating computationally efficient and compact
CNNs using a novel sparse connection structure that resembles a tree root. This
allows a significant reduction in computational cost and number of parameters
of state-of-the-art deep CNNs without compromising accuracy. We validate our
approach by using it to train more efficient variants of state-of-the-art CNN
architectures, evaluated on the CIFAR-10 and ILSVRC datasets. Our results
show similar or higher accuracy than the baseline architectures with much less
computation and many fewer parameters.

Chapter 6 presents work towards conditional computation in deep neural networks,
allowing for faster inference by understanding the connections between two
state-of-the-art classifiers: DNNs and random decision forests.

We propose a new discriminative learning model, conditional networks, that
jointly exploits the accurate representation learning capabilities of deep neural
networks with the efficient conditional computation of decision trees and directed
acyclic graphs (DAGs). Conditional networks can be thought of as a way to learn
a block-diagonal sparsification of a DNN, and we show how they can be trained
to cover the continuous spectrum between DNNs and decision forests/jungles.

In addition to improving test and training efficiency, conditional networks yield
smaller models, and offer test-time flexibility. Validation is performed on stan-



6 | Introduction

dard image classification tasks. Compared to the state-of-the-art, our results
demonstrate superior efficiency for at-par accuracy both on the ImageNet and
CIFAR datasets.

Chapter 7 summarizes the contributions made in this dissertation, reviews the results,
and looks at the research questions that arise from the work presented in this
dissertation. In particular the importance of the significant hand-design still
present in “end-to-end” learning, the effectiveness of structural priors, and the
ineffectiveness of current optimization methods are discussed. Proposals are
made for future research directions which are pertinent given our results.
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Background

“One thing that connectionist networks have in common with brains is that if
you open them up and peer inside, all you can see is a big pile of goo.”

– Mozer et al., Using Relevance to Reduce Network Size Automatically, 1989

Somewhat like their biologically inspiration, artificial neural networks (or simply
neural networks) are easier to understand at the low-level — the individual neuron itself
lacks in complexity — it is in the whole that it becomes hard to understand. While we
will focus on the latter in the remainder of this dissertation, here we will present the
basics behind the structure and training of neural networks and contemporary DNNs.

2.1 Neural Networks

Neural networks are a broad range of statistical models characterized by consisting
of a set of inter-connected nodes with non-linear activation functions with learnable
parameters, or weights. Although initially biologically inspired, neural networks within
the field of machine learning have moved away from biologically-plausible models and
towards entirely practical models guided by empirical results. Neural networks are now
the most popular statistical model used for learning applications in a diverse set of
fields including computer vision, speech recognition, and medical imagery.

We will not cover the long and colourful history of neural networks (for this
we recommend reading the introduction of I. Goodfellow, Y. Bengio, and Courville
(2016)), but attempt to instead provide the foundations, and thereafter an overview of
contemporary models and methods directly relevant to this work. For a comprehensive
overview of the basics of neural networks we refer the reader to the excellent reference

https://yani.io/thesiseasteregg.html
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Fig. 2.1 An illustration of a typical artificial neural network neuron. The neu-
ron is composed of output y, a set of inputs, tx0, . . . , xN u, input weights tw0, . . . , wN u,
bias b and activation function f . Here the bias b is considered the weight of a fixed
unit input.

of Bishop (1995), and for a more recent in-depth overview of the field of deep learning,
we refer the reader to I. Goodfellow, Y. Bengio, and Courville (2016).

2.1.1 The Neuron

A neuron is a function of the weighted aggregation of its many inputs: tx0, . . . , xN u,

y “ f

˜

N
ÿ

i

wixi ` b

¸

, (2.1)

where wi is the weight of the input xi, f is an activation function, and b is the bias.
This is usually expressed more simply in matrix notation, where each neuron consists
of an input vector x “ px0, . . . , xN q, weights w “ pw0, . . . , wN q and a bias b, the output
of which is,

y “ f
´

wT x ` b
¯

. (2.2)

If we assume the function f to be a variant of the Heaviside step function,

fpxq “

$

&

%

1 if x ě 0
0 (or ´1) if x ă 0,

(2.3)

then the neuron is also called a perceptron, a simple binary classifier, and one of the
earliest connectionist learning methods, invented by Rosenblatt (1958) in 1957. A
perceptron network is a single-layer neural network (i.e. a linear classifier), such as
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Fig. 2.2 An illustration of a simple single-layer neural network, such as a
perceptron network.

that illustrated in fig. 2.2, and should not to be confused with a MLP (Multi-layer
Perceptron) — an unfortunate, but common, misnomer of any multi-layer neural
network. The perceptron also has a geometric interpretation (Bishop, 1995), as shown
in fig. 2.3. In 2D, for example, this is equivalent to the equation of the line. Assuming
our perceptron only has a single input, i.e. N “ 1, if we define a ” w0, x ” x0, c ” b,
and fpxq “ x,

y “ ax ` c. (2.4)

In general a perceptron defines a hyperplane, a separating manifold of dimension d ´ 1
for an input space of dimension d, a line in two dimensions, or plane in three dimensions.
Neural networks are a discriminative classifier, and each neuron can be visualized as a
hyperplane functioning as a single decision boundary.

2.1.2 The Limitations of Single-Layer Networks

A single-layer neural network, such as the perceptron, is only a linear classifier, and
as such is ineffective at learning a large variety of tasks. Most notably, in the 1969
book Perceptrons (Minsky and Papert, 1988), the authors showed that single-layer
perceptrons could not learn to model functions as simple as the XOR function, amongst
other non-linearly separable classification problems. As shown in fig. 2.4, no single
line can separate even a sparse sampling of the XOR function — i.e. it is not linearly
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Fig. 2.3 The interpretation of a perceptron as a oriented hyperplane, i.e. a
line, in R2.

Fig. 2.4 An illustration of the inability of a single line (i.e. a perceptron)
to correctly classify the XOR function. Instead, the composition of two lines is
required to correctly separate these samples, i.e. multiple layers.
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Fig. 2.5 Detailed illustration of a single-layer neural network trainable with
the delta rule. The input layer consists of a set of inputs, tx0, . . . , xN u. The layer has
weights twj0, . . . , wjN u, bias bj, net neuron activation aj “

ř

i wji, activation function
f , and output yj. The error for output yj, ej, is calculated using the target label tj.

separable. Instead, only a composition of lines is able to correctly separate and classify
this function, and other non-linearly separable problems.

At the time, it was not obvious how to train networks with more than one layer
of neurons, since the methods of learning neuron weights, the perceptron learning
rule (Rosenblatt, 1961) for perceptrons or the delta rule (Widrow and Hoff, 1960) for
general neurons, only applied to single-layered networks.

2.1.3 Training Single Layer Networks: The Delta Rule

The delta rule for single-layered neural networks is a gradient descent method, using
the derivative of the network’s weights with respect to the output error to adjust the
weights to better classify training examples.

Training is performed on a training dataset X, where each training sample xn P X

is a vector xn “ pxn
0 , . . . , xn

N q. Assume that for a given training sample xn, the ith
neuron in our single-layer neural network has output yn

j , target (desired) output tn
j ,

and weights w “ pwj0, . . . , wjM q, as shown in fig. 2.5. We can consider the bias to be
an extra weight with a unit input, and thus we can omit the explicit bias from the
derivation.

We want to know how to change a given weight wji given the output of node j for
a given input data sample xn,

yn
j “ f

´

an
j

¯

, (2.5)
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where the net activation an
j is,

an
j “

ÿ

i

wjix
n
i . (2.6)

To do so, we must use the error of our prediction for each output yj and training
sample xn as compared to the known label tj,

en
j “ yn

j ´ tn
j . (2.7)

For this derivation, we assume the error for a single sample is calculated by the sum
of squared errors of each output. In fact, the derivation holds as long as our error
function is in the form of an average (Bishop, 1995),

En
“

1
2

ÿ

j

´

en
j

¯2
. (2.8)

The chain rule allows us to calculate the sensitivity of the error to each weight wji in
the network,

BEn

Bwji

“
BEn

Ben
j

Ben
j

Byn
j

Byn
j

Ban
j

Ban
j

Bwji

. (2.9)

Differentiating eq. (2.8) with respect to en
j ,

BEn

Ben
j

“ en
j , (2.10)

eq. (2.7) with respect to yn
j ,

Ben
j

Byn
j

“ 1, (2.11)

eq. (2.5) with respect to an
j ,

Byn
j

Ban
j

“ f 1
´

an
j

¯

, (2.12)

and finally eq. (2.6) with respect to wji,

Ban
j

Bwji

“
B

Bwji

˜

ÿ

i

wjixi

¸

“ xi,
(2.13)
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since only one of the terms in the sum is related to the specific weight wji. Thus the
sensitivity is,

BEn

Bwji

“ en
j f 1

´

an
j

¯

xi. (2.14)

Typically what is variously called the local gradient, error, or simply delta, is then
defined,

δn
j ”

BEn

Ban
j

“
BEn

Ben
j

Ben
j

Byn
j

Byn
j

Ban
j

“ en
j f 1

´

an
j

¯

,

(2.15)

such that eq. (2.14) can be rewritten,

BEn

Bwji

“ δn
j xi. (2.16)

The delta rule adjusts each weight wji proportional to the sensitivity,

∆wji “ ´γ
BEn

Bwji

, (2.17)

where γ is a constant called the learning rate or step size. Using the delta defined in
eq. (2.15), this is simply written,

∆wji “ ´γδn
j xi. (2.18)

2.1.4 Backpropagation

The credit-assignment problem was solved with the discovery of backpropagation (also
known as the generalized delta rule), allowing learning in multi-layer neural networks.
It is somewhat controversial as to who first ‘discovered’ backpropagation, since it is
essentially the application of the chain rule to neural networks, however it’s generally
accepted that it was first demonstrated experimentally by Rumelhart, Geoffrey E.
Hinton, and Williams (1986). Although it is “just the chain rule”, to dismiss this first
demonstration of backpropagation in neural networks is to understate the importance of
this discovery to the field, and to dismiss the practical difficulties in first implementing
the algorithm — a fact that will be attested to by anyone who has since attempted.

The following is a derivation of backpropagation loosely based on the excellent
references of Bishop (1995) and Haykin (1994), although with different notation. This
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Fig. 2.6 Detailed illustration of a neural network with a single hidden layer.
The input layer consists of a set of inputs, tx0, . . . , xN u. The hidden layer has weights
twi0, . . . , wiN u, bias bi, net neuron activity aj “

ř

i wji and activation function f . The
output layer with output yk, has weights twk0, . . . , wjN u and bias bj. The error for
output yk, ek, is calculated using the target label tk. Note that xn

kj ” yn
j .

derivation builds upon the derivation for the delta rule in the previous section, although
it is important to note that, as shown in fig. 2.6, the indexing we will use to refer to
neurons of different layers differs from that in fig. 2.5 for the single-layer case.

We are interested in finding the sensitivity of the error E to a given weight in
the network wij. There are two classes of weights for which we must derive different
rules, (i) those belonging to output layer neurons, i.e. neurons lying directly before
the output, such as wkj in fig. 2.6, and (ii) weights belonging to hidden layer neurons,
such as wji in fig. 2.6.

(i) Output Layer The output weights are relatively easy to find, since they corre-
spond to the same types of weights found in single-layer networks, and have direct
access to the error signal, i.e. en

j . Indeed the derivation in section 2.1.3 also describes
the sensitivity of the weights in the output layer of a multi-layer neural network. With
some change of notation (now indexing by k rather than j to match fig. 2.6), we can
use the sensitivity found in eq. (2.14),

BEn

Bwkj

“
BEn

Ban
k

Ban
k

Bwkj

“ δn
kxn

kj

“ δn
kyn

j .

(2.19)

(ii) Hidden Layer We will first derive the partial derivative BEn{Bwji, for a single
hidden layer network, such as that illustrated in fig. 2.6. Unlike in the first case, the
weights belonging to hidden neurons have no direct access to the error signal, instead
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we must calculate the error signal from all of the neurons that indirectly connect the
neuron to the error (i.e. every output neuron yk).

Following from the chain rule we can write the partial derivative of a hidden weight
wji with respect to the error En,

BEn

Bwji

“

˜

ÿ

k

BEn

Ben
k

Ben
k

Byn
k

Byn
k

Ban
k

Ban
k

Byn
j

¸

loooooooooooooomoooooooooooooon

output neurons

Byn
j

Ban
j

Ban
j

Bwji
looomooon

hidden neuron

,
(2.20)

where the sum arises from the fact that, unlike in eq. (2.13) where the weight wkj

affects only a single output, the hidden weight wji affects all neurons in the subsequent
layer (see fig. 2.6).

We already know how to calculate the partials for the output layer from the
derivation of the delta rule for single-layer networks, and we can substitute these from
eq. (2.19) for the output neuron and error partial derivatives,

BEn

Bwji

“

˜

ÿ

k

δn
kyn

j

Ban
k

Byn
j

¸

Byn
j

Ban
j

Ban
j

Bwji

. (2.21)

Recall from eq. (2.6), the net activation a is a sum of all previous layer weights. Thus,

Ban
k

Byn
j

“
B

Byn
j

¨

˝

ÿ

j

wkjy
n
j

˛

‚ “ wkj, (2.22)

and substituting from eq. (2.12) and eq. (2.13) into eq. (2.21),

BEn

Bwji

“

˜

ÿ

k

δn
kyn

j wkj

¸

f 1
´

an
j

¯

xi. (2.23)

This bears some resemblance to the derived expression for a single-layer, and just as in
eq. (2.15), we can use our definition of the delta to simplify it. For hidden layers this
evaluates as

δn
j ”

BEn

Ban
k

“

˜

ÿ

k

BEn

Ben
k

Ben
k

Byn
k

¸

Byn
k

Ban
k

“

˜

ÿ

k

δn
kyn

j wkj

¸

f 1
´

an
j

¯

.

(2.24)
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This leaves us with the more convenient expression (as we will see in section 2.1.4),

BEn

Bwji

“ δn
j xi. (2.25)

Arbitrary Number of Hidden Layers

The derivation above was based on the specific case of a single hidden layer network,
but it is trivial to extend this result to multiple hidden layers. There is a recursion in
the calculation of the partial derivatives in eq. (2.24) which holds for a network with
any number of hidden layers, and which we will now make explicit.

The delta is defined,

δn
i “

$

’

&

’

%

f 1

´

an
j

¯

en
j when neuron j is output

f 1

´

an
j

¯ ´

ř

j δn
j yn

i wji

¯

when neuron j is hidden,
(2.26)

for any adjacent neural network layers i, j, including the output layer where the outputs
are considered to have an index j. The sensitivity is then,

BEn

Bwji

“ δn
j yi. (2.27)

2.1.5 Learning with Backpropagation

Learning with backpropagation is much like the delta rule; sensitivities are used to
correct weights proportional to a constant learning rate or step size parameter γ.
Although the correction is proportional to the sensitivity, we wish to reduce the error
En, and so we move the weight in the opposite direction of the gradient 1. Formally,
the weight change rule is given by,

∆wn
ij “ ´γ

BEn

Bwji

“ ´γ δn
j yi,

(2.28)

where δn
j is as defined in eq. (2.26), and yi is the output of neuron i. Backpropagation is

a method of steepest descent. This is illustrated in fig. 2.7, where the backpropagation
learning rule, eq. (2.28), specifies a step size in the form of the learning rate. The
learning rate parameter scales the step size, or the magnitude of the weight change

1Note that, rather than optimizing the error function directly, usually a surrogate loss that is easier
to optimize is used, e.g. negative log-likelihood for classification.
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Fig. 2.7 An illustration of the effect of step size (learning rate) and learning
policy on convergence with backpropagation. This example is of a symmetric
2D error surface, where the parameters are initialized to one of the symmetrically
identical surface points xi where i “ 0 . . . 4. For each of the different initial learning
rates γi, the learning rate is decreased by 10% each iteration.

vector. Figure 2.7 also illustrates the effect of learning rate on gradient descent. Too
small a learning rate can result in very slow learning such as for γ0, while too large a
step size can result in bouncing around the minima (γ2, γ3), or missing it altogether.

In order to settle into a local minima, the learning rate must also be decreased as
training progresses. However, too fast a rate of decrease and it may never reach the
basin of attraction of the local minima, as with γ0, while if the rate of decrease is too
slow it will take a very long time to enter the basin of attraction, such as with γ3.

The balance of trying to find an appropriate learning rate and learning policy
is unfortunately part of the ‘black magic’ behind training DNNs which comes from
experience, but Bottou (2012) and I. Goodfellow, Y. Bengio, and Courville (2016)
are excellent references on some of the common approaches taken to make this task
simpler.

2.1.6 The Problem with First-Order Optimization

The underlying reason learning rate and learning policy has such a large effect is that
gradient descent is a first-order optimization method, and only considers the first-order
partial derivatives, i.e. for a 2D error surface Epx, yq, gradient descent moves in the
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(a) Gradient descent (b) Momentum

Fig. 2.8 Pathological curvature. An error surface Epx, yq exhibiting a narrow valley,
and the optimal path from the starting point to the minima shown by the red arrow. In
a pathological error surface such as this, first-order methods cannot use the information
provided by the Hessian on the surface curvature to avoid bouncing along the walls
of the valley, slowing descent. Momentum alleviates this somewhat in damping the
change in direction, by preserving information on previous gradients, allowing a quicker
descent. Inspired by a similar diagram by Martens (2010).

opposite direction of the gradient,

∇Epx, yq “

ˆ

BE

Bx
, BE

By

˙

. (2.29)

This gradient tells us the direction of maximum increase at a given point on the error
surface, but it does not tell us any information about the curvature of the surface at
that point. The curvature of the surface is described by higher-order derivatives such as
the second-order partial derivatives, e.g. B2E

Bx2 , and mixed partial derivatives, e.g. B2E
Bx2By2 .

These second-order partials give important information about the curvature of the error
surface E. For example, in fig. 2.7, the error surface takes on an elliptical shape, which
causes problems when we only consider the direction of maximum decrease ´∇E. The
classic example of such a pathological error surface for first-order methods is an error
surface that looks like a narrow valley, as shown in fig. 2.8(a). With an initialization
outside the bottom of the valley, gradient descent will bounce along the walls of the
valley, leading to a very slow learning convergence.

For well-behaved surfaces where the scaling of parameters is similar, basins of
attraction around a minima are roughly circular, and thus avoid this problem, since
the first-order gradients will point almost directly at the minima for any location on
the error surface.
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There are second-order optimization methods based on Newton’s method, however
the issue is that they do not scale to the size of any practical DNNs. The matrix of
second-order partial derivatives for a scalar-values function, the Hessian H, is required
for any full second-order optimization method, however the Hessian is square in the
number of parameters in the network. For networks of millions of parameters this
means storing the Hessian is infeasible.

There are a whole slew of optimization tricks for gradient descent, often attempting
to compensate for the shortcomings of first-order optimization without using the
Hessian, or using some approximation to it. We will not cover those here, since none
of these were used in our experiments. A full background of the issues of optimization
in DNNs is outside the scope of this dissertation, however interested readers should
refer to I. Goodfellow, Y. Bengio, and Courville (2016) to learn more about these
methods, and Martens (2010) for an excellent introduction to the problems of first and
second-order optimization in DNNs.

2.1.7 Momentum

A common improvement to gradient descent is momentum (Polyak, 1964; Rumelhart,
Geoffrey E. Hinton, and Williams, 1986), a trick for minimizing the effect of pathological
curvature on gradient descent, which also helps with variance in gradients. The name
comes from the analogy of the update to physical momentum ρ for a moving particle,
p “ mv, where we assume unit mass, m “ 1.

In momentum, the gradients over multiple iterations are accumulated into a velocity
gradient,

vt`1 “ αvt ´ γ∇Epwq

∆w “ wt ` vt`1,
(2.30)

where γ is the learning rate, t is the iteration, ∇E is the gradient of the error surface
Epwq being minimized, and w is the weight vector optimized. Momentum in effect
stores some information on the gradients found in past iterations, and uses this to damp
the effect of a new gradient on the search direction, as illustrated in fig. 2.8(b). For
error surfaces with pathological curvatures, this can dramatically speed up learning.

2.1.8 Batch and Stochastic Gradient Descent

Although the backpropagation weight change rule, eq. (2.28), tells us how to change the
weights given a single training sample xn, in practice this method is rarely used. The
reason is simply that the gradients from a single sample are too biased, or noisy, and
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they are not representative of the dataset in general; ∆wn
ij is only an approximation to

the true gradient we want — it is only from one sample, xn, of the training dataset X.

Batch Gradient Descent

At the opposite end of the spectrum there is batch training where the gradient is
computed over all data samples in the training set,

∆wij “ ´γ
1
N

N
ÿ

n“0

BEn

Bwji

, (2.31)

where N is the number of training samples in X. Batch training gives us the true
gradient, however it is also very expensive, since it requires us to perform the forward
pass of the network over all training samples for every update.

Stochastic Gradient Descent

Instead of computing the gradient on only one training sample, or over the entire
training set, we might instead use a significant subset of the training set — a mini-batch.
This approach is called SGD.

When using SGD, we randomly sample (without replacement) a subset of the
training set Xmb Ă X, such that

∆wij “ ´γ
1

|Xmb|

ÿ

tn| xnPXmbu

BEn

Bwji

, (2.32)

where the size of the mini-batch |Xmb| should be significant enough to represent the
statistics of the training set distribution, i.e. for a classification problem the mini-batch
should capture a significant number of the classes in the training set. Using a mini-batch
size of one, i.e. a single sample as shown in eq. (2.28), is a special case of SGD.

It has been observed in practice that adding noise to the gradient by using stochastic
gradient descent often helps generalization compared to batch gradient descent, perhaps
by preventing overfitting. Note that even if we use the true gradient for the training
dataset, the training set X is only a sampling of the population distribution we want
our network to generalize to.
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2.1.9 Activation Functions

As we have seen with the perceptron, the activation function for a single-layer net-
work can provide a means of pushing the outputs of each neuron towards a binary
classification. However the activation function has a much more important function in
multi-layer neural networks. Without a non-linear activation function, even a large
multi-layer neural network would only have the representational power of a linear
classifier — the composition of linear functions is a linear function. For this reason,
the activation function f is a non-linear function applied to the output of a neuron to
allow multi-layer networks to learn complex non-linear functions,

y “ f
´

wT x ` b
¯

. (2.33)

In the field of neural networks, activation functions have classically been chosen to be
a sigmoid function, i.e. a function mapping negative inputs to negative outputs and
positive inputs to positive outputs with a smooth transition around a “ 0. This is a
nice property to have, since the function is still pushing the outputs of the network
towards a binary classification, the function is non-linear (so composition of functions
are non-trivial), and the function has well-defined gradients. Examples of sigmoid
functions commonly used include the logistic function,

fpaq “
1

1 ` e´a
, (2.34)

and they hyperbolic tangent,
fpaq “ tanhpaq. (2.35)

An issue with sigmoidal activation functions however, is that the gradients are very
small in a large part of the domain of the function. For this reason, and improved
empirical results, modern neural networks tend to use the ReLU activation function,
as described in section 2.2.1.

2.1.10 Deep Vs. Shallow Neural Networks

Neural networks with at least one (infinitely wide) hidden layer have been proven to
be a universal approximator — i.e. such a neural network can theoretically represent
any function (Cybenko, 1989; Hornik, Stinchcombe, and White, 1989). This is in stark
contrast to the limitations of neural networks without hidden layers, as explained in
section 2.1.2.
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In practice however we do not find that a network with only a single hidden layer,
of even a very large width, can learn to represent complex functions as well as networks
with many hidden layers. Indeed the observation that networks with many hidden
layers, or deep networks, empirically achieve better accuracy than networks with few
hidden layers, or shallow networks, represents some of the progress made in learning
with neural networks in recent years.

2.1.11 Convolutional Neural Networks

The earliest work on what are now termed CNNs was by Fukushima, on the Neocog-
nitron (Fukushima, 1980, 2013). The Neocognitron was a biologically motivated
architecture, motivated by what are typically called simple and complex cells in the
primary visual cortex (V1). To model simple cells; cells whose response correlated with
simple oriented edges in a translation invariant manner, the Neocognitron used shared
weights which were connected to local image patches of the input image (and were not
simply described as convolution of a filter). Complex cells were modelled by a “blurring”
operation, what we now term more generally as pooling. The Neocognitron network
consisted of alternating layers of simple and complex cells, i.e. alternating convolution
and pooling layers, much as seen in state-of-the-art convolutional networks. In an
era in which fully-connected networks were used to learn any input type Fukushima
showed that for structured inputs a drastically different architecture could make a big
difference in generalization.

Despite the pioneering novelty of the work on Neocognitron, it was only following
the simplification and improvement of LeCun, Bottou, et al. (1998) in both the
description of the network and its operation that it gained wider acknowledgement
as a breakthrough for image recognition. In their work the local shared weights of
the Neocognitron are put in the context of convolution, and the averaging operation
replaced with max-pooling. The application to handwritten digit recognition gave
state-of-the-art results, and would result in the LeNet5 network, still used today in
some commercial applications.

The application of the LeNet-style CNN architecture to more complex problems,
however, proved infeasible (I. Goodfellow, Y. Bengio, and Courville, 2016). These
problems required a deeper hierarchy of representation, which implied a large number
of layers. Networks with a large number of layers proved to be un-trainable due to
numerous issues with the model itself, notably vanishing gradients (Hochreiter, 1991),
and the lack of large datasets and computational power at the time. Convolutional
neural networks fell out of favour, and were passed over in favour of the more successful
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Fig. 2.9 Convolution with c2 filters of shape h1 ˆ w1 ˆ c1. Convolutional filters
(yellow) have the same channel dimension c1 as the input feature maps (gray) on which
they operate, while the feature map spatial dimensions H and W are typically larger.
Each filter is convolved across the entire set of input feature maps to produce a single
output feature map. With c2 filters, this gives an output feature map with c2 channels.
In this illustration we assume padding appropriate to preserve the spatial dimensions.

paradigm of using hand-crafted local features, such as SIFT (Lowe, 2004) for many
tasks, and in particular the problem of object instance recognition was well addressed
by such solutions. Meanwhile object class recognition remained a difficult problem, for
which the best solutions were deformable parts models, also based on local features.

Convolutional Layers

Figure 2.9 illustrates a typical convolutional layer. If we denote the dth feature map for
the given layer as hd, where the associated filter has weights Fd, bias bd, and activation
function f , then the single pixel of the feature map hd at spatial location i, j is given
by,

hd
i,j “ f

ˆ

´

Fd˙x
¯

i,j
` bd

˙

, (2.36)

where ˙ is the convolution operator. The discrete convolution operator pf˙gq is
defined (Damelin and Miller Jr, 2012) for two 1D sequences f , g as,

pf˙gqrns “

8
ÿ

i“´8

f ris grn ´ is. (2.37)

This can be extended to 2D sequences,

pf˙gqrm, ns “

8
ÿ

i“´8

8
ÿ

j“´8

f ri, js grm ´ isrn ´ js. (2.38)
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Convolution in Practice

While we have described the mathematical convolution operator, when performing
convolution on feature maps/images in neural networks, we do not exactly adhere to
this definition. In practice the input images or feature maps are multi-dimensional
finite arrays, i.e. tensors; 3D for RGB colour images inputs (2 spatial + 1 colour
dimension). CNN layers perform a 2D convolution2 with a 3D filter over each channel
of the input image, and stack the response images into an output tensor, where the
number of output channels is the same as the number of convolutional filters in the
layer. Each of the channels of the input and output tensors we will call an image.

We will here adopt a similar notation to I. Goodfellow, Y. Bengio, and Courville
(2016, chapter 9)3, and denote the incoming feature map X, outgoing feature map
Y, and convolutional filter, or kernel F. The scalar elements of each feature map
are Xi,j,k, Yi,j,k, where i “ t0, . . . , cu is the feature maps channel (i.e. colour for an
input image), and j “ t0, . . . , hu, k “ t0, . . . , wu are the spatial coordinates, rows and
columns respectively, of the channel i image. The filter’s scalar elements are Fi,j,k,l,
where i is the filter’s index in the convolutional layer’s filter bank and the output
channel in Y to which the filter’s result is written, j is the input channel in X over
which the filter’s spatial elements are convolved, and pk, lq are the row and column
offset between the output and input images.

A convolutional layer then convolves across the layer such that,

Yi,j,k “
ÿ

l,m,n
Xl,j`m,k`n Fi,l,m,n, (2.39)

for all valid indices l, m, n, depending on the padding of the input image. We only use
zero padding as detailed in our experiments, please see Szeliski (2011, §3.2) for a more
in-depth discussion on alternative forms of padding.

Pooling Layers

Another key aspect of convolutional architectures is pooling, a form of non-linear
spatial sub-sampling of the feature maps of a given layer. Pooling layers were designed
to add translation invariance to CNNs by making the network less sensitive to small
local changes in the spatial location of input pixels/convolutional responses, and also
to reduce feature map spatial sizes with network depth. Reducing the feature map

2this is typically called a 2D convolution rather than 3D, since there is no ‘sliding’ of the filter in
the channel dimension.

3note we use zero-based indices, unlike I. Goodfellow, Y. Bengio, and Courville.
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spatial size serves both to save computation, and to increase the size of the receptive
field of successive convolutional layers. This allows successive convolutional layers to
operate on progressively larger scales.

Pooling layers divide the image into non-overlapping pooling regions, in which the
spatial extents of the input image/feature map are aggregated into a single scalar.
LeNet used the average to aggregate the pooling regions, i.e. average pooling (LeCun,
Bottou, et al., 1998). More modern networks have typically used max to aggregate
pooling regions, i.e. max-pooling, which empirically has been found to work better.
Some even more recent networks do not use pooling at all, but simply use a strided
convolution to reduce the feature map sizes (He et al., 2016a).

Strided Convolution

Convolutional layers are memory intensive since they must store the output feature
maps and, during training, the backpropagated gradients. The largest feature map is
typically that of the first convolutional layer, since the input image has relatively large
spatial dimensions, and pooling reduces the spatial size of feature maps exponentially
with depth. Due to the memory limitations of current GPUs, this means that many
contemporary network architectures cannot be trained on even modestly sized input
images without using strided convolution. When using strided convolution, a given
number of input feature map/image pixels are skipped in both the row and column
directions, producing a smaller output feature map and reducing computation, at the
sacrifice of a coarser output feature map, and scale. For a stride of s pixels in both the
row and column directions, the strided convolution operation can be defined,

Yi,j,k “
ÿ

l,m,n
Xl,sj`m,sk`n Fi,l,m,n. (2.40)

2.2 Contemporary Methods of Training
Neural Networks

Here we will outline the most relevant differences in training contemporary DNNs as
compared to before the work of Krizhevsky, Sutskever, and Geoffrey E. Hinton (2012),
less than 10 years ago.
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Fig. 2.10 Common activation functions used in neural networks.
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Fig. 2.11 Vanishing gradients. For networks with many layers, even small deviations
from a unit gradient are quickly geometrically magnified by propagation through all
layers.

2.2.1 Rectified Linear Activation Function

An integral part of any useful neuron in a neural network is a non-linear activation
function. With a linear activation function, even the deepest network would only be
able to represent a linear function. Historically, neural networks have used sigmoidal
activation functions, as explained in section 2.1.9.

A major issue with sigmoidal activation functions however, is that gradients outside
of a relatively narrow region of the function domain (close to a “ 0) are very small.
When training with backpropagation, this means that most gradients are of very
small magnitude, and training can take a very long time, or even stall altogether

— a situation that is often called the vanishing gradient problem, first identified by
Hochreiter (1991). This term has also been conflated with numerical precision issues
caused by incorrect initialization, as identified by Glorot and Y. Bengio (2010).

ReLUs were proposed as a solution, first for restricted Boltzmann machines (Nair
and Geoffrey E. Hinton, 2010), and later for neural networks (Glorot and Y. Bengio,
2010), where empirically they were shown to allow easier training with backpropagation.
These neurons have a piece-wise activation function, plotted in fig. 2.10(b),

fpaq “ maxp0, aq. (2.41)

ReLUs do not exhibit the ‘saturation’ of sigmoidal functions, always giving a gradient
of either 0 or 1. In practice this can greatly speed up training with backpropagation,
or even allow training networks that are not otherwise trainable in practice with
sigmoidal activation functions, such as the deep network of Krizhevsky, Sutskever, and
Geoffrey E. Hinton (2012).
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2.2.2 Methods of Network Initialization

Until relatively recently, pre-training was considered necessary for the feasibility of
training deep neural networks (Geoffrey E. Hinton and Salakhutdinov, 2006). The
vanishing gradient problem was first addressed through better methods of random
initialization which considered the geometric effect of propagating gradients through
very DNNs. Without careful initialization, gradients can either surpass numerical
representation (exploding gradients) or be reduced to close to zero (vanishing gradients).
This effect is further exacerbated by the use of the softmax function at the end of the
network, containing the exponential function.

For example, consider a deep network consisting of L identical layers as shown in
fig. 2.11, and assume that our initialization results in the first pass through the network
scaling the signal (i.e gradients) by a factor of β for each layer.

After propagating through L layers, this becomes a scaling of βL, exponentially
magnifying the effect of the discrepancy. For example, the output of a trivial deep
network, where each layer l only maps the identity function, flpxq “ x, with L layers,
and each layer is initialized such that the output response is scaled by β, will be:

fLpxq “ pf1˝f2 . . . ˝fLqpxq

“ x
L

ź

l

β “ x βL,
(2.42)

where pf˝gqpxq is the composition fpgpxqq. This problem has two distinct outcomes
determined by the effective scaling of each layer’s initialization β:

lim
LÑ8

fLpxq “

$

&

%

8 if β ą 1, training loss diverges

0 if β ă 1, training loss stalls.

Thus we want a random initialization of layers such that β « 1 to minimize the
‘vanishing gradient’ effect. For sigmoidal activation functions, such an initialization
was proposed by Glorot and Y. Bengio (2010). For random Gaussian initialization, and
given the number of outgoing/incoming connections to each neuron, we can carefully
choose the standard deviation σ such that the expected value,

E rβs “ 1. (2.43)

In practice however, most networks have layers of different numbers of neurons. In
this case, since there are different numbers of incoming connections and outgoing
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connections for each neuron, there are two possible initializations, one for the expected
forward pass (response) scaling, and one for the backwards pass (gradient). As a
compromise, Glorot and Y. Bengio (2010) proposed to use the average number of
outgoing and incoming connections to the neuron:

σforwards “
1

?
nout

σbackwards “
1

?
nin

σaverage “
1

a

pnout ` ninq{2
.

(2.44)

For the more typically used rectified linear unit, a variation of this initialization was
proposed by He et al. (2015):

σforwards “
2

?
nout

σbackwards “
2

?
nin

σaverage “
2

a

pnout ` ninq{2
.

(2.45)

2.2.3 Batch Normalization

Some network architectures are sufficiently complex, i.e. networks with neurons with
drastically different number of outgoing/incoming connections, that even careful ini-
tialization will not prevent exploding/vanishing gradients. Instead, Ioffe and Szegedy
(2015) proposed a more direct approach of maintaining the desired zero-mean, unit
Gaussian response distribution. Batch normalization proposes to use batch statistics
to whiten the responses of layers it is applied to during training.

Full whitening (i.e. de-correlating the responses) is prohibitively expensive however,
instead batch normalization calculates the mini-batch mean and variance, and prevents
vanishing gradients by normalizing responses/gradients according to the batch statistics.
Using batch-normalization during training can make a dramatic difference, in many
cases networks that would previously not converge, will converge, and it can sometimes
even speed up training.
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The batch statistics calculated by batch normalization are,

µb “
1

M

M
ÿ

i“0
xi

σ2
b “

1
M

M
ÿ

i“0

x̂i “
xi ´ µb

a

σ2
b ` ϵ

,

(2.46)

where for mini-batch b, µb is the mean, σ2
b is the variance, ϵ is for numerical stability,

tx0, . . . , xi, . . . xM u are the mini-batch responses for a particular parameter of the layer,
and x̂i is the normalized response for that parameter.

Batch normalization then uses these statistics, along with two parameters learned
across mini-batches, γ and β, to scale and shift the responses,

yi “ γx̂i ` β. (2.47)

Most state-of-the-art supervised DNNs now use batch normalization along with the
initialization, as presented in section 2.2.2, to train.

2.2.4 Dropout

Geoffrey E. Hinton, Srivastava, et al. (2012a) and Srivastava et al. (2014) introduced
dropout, a method of preventing overfitting in large networks during training. The
implementation of dropout is to, during training, effectively zero out a set of neurons,
sampled randomly from each layer with a fixed probability p. At test time all the
neurons are active, and to maintain the expected responses, a multiplicative factor of
p is used.

The mechanism of the effect of dropout is explained several different ways, and
notably different explanations are given by Geoffrey E. Hinton, Srivastava, et al. (2012a)
and Srivastava et al. (2014)4. The explanation by Geoffrey E. Hinton, Srivastava, et al.
(2012a) is that dropout is a form of regularization by noise, preventing ‘co-adaption’
of neurons (see chapter B). The main explanation given by Srivastava et al. (2014) is
that dropout is a form of model integration, averaging over a large number of random
‘thinner’ model architectures at training time in order to improve generalization. At
training time however, averaging over all the models considered during training would

4we have found some empirical evidence to suggest it is an optimization trick rather than a form
of regularization, see section B.3.
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be extremely computationally expensive, since there are an exponential (2n) number
of possible models considered during training.

Empirically dropout improves generalization of networks with very large layers,
in particular the large fully-connected layers to be found at the end of the AlexNet
and VGG architectures. It has less effect on models train with batch normalization
however, as observed by the authors (Ioffe and Szegedy, 2015), and in practice is not
used in more recent deep network architectures such as ResNet.

2.3 Deep Neural Network Architectures

An exhaustive list of every novel deep learning architecture would be infeasible, and
outside the scope of this dissertation, however here we have made an effort to cover
the recent architectures which have both inspired our work and formed the basis of
many of our results.

2.3.1 AlexNet

Training DNNs, that is neural networks with many (i.e. two or more) hidden layers, had
proven difficult due to the high computational complexity, and the so called ‘vanishing
gradient’ problem (Y. Bengio, Simard, and Frasconi, 1994). Krizhevsky, Sutskever,
and Geoffrey E. Hinton (2012) showed that a deep CNN (the specific architecture
since referred to as AlexNet) trained on a very large dataset (Russakovsky et al.,
2015), with the appropriate initialization (Sutskever et al., 2013), weight decay ReLU
activation functions (Nair and Geoffrey E. Hinton, 2010) and dropout (Geoffrey E.
Hinton, Srivastava, et al., 2012b) could beat state-of-the-art methods on large scale
object class recognition methods, based on hand-crafted features, by a large margin.
This single paper introduced or motivated many of the recent advances in training
neural networks, as covered in section 2.2.

AlexNet notably used training-time and test-time augmentation to achieve its
state-of-the-art accuracy. During training random 224 ˆ 224 crops of a 256 ˆ 256
image are used, along with random mirroring of these crops. In addition relighting
augmentation is used, where the PCA components over all RGB pixels in the image are
used to perturb the “brightness” of the image, and give some robustness to photometric
variations in the test images. At test time “10ˆ oversampling” is used, that is for
each 256 ˆ 256 test image, and its mirrored image, four corner and one centre crop are
pushed through the network, and the prediction is simply the averaged over these 10
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Fig. 2.12 LDE. Introduced in the NiN architecture, a LDE consists of learning a 1ˆ1
convolutional layer after a normal convolutional layer. The pairing of 1ˆ1 filters and
a non-linearity (i.e. ReLU) can effectively learn a non-linear transformation into a
different space. If c3 ă c2, then a transformation into a lower-dimensional space is
learned, and potentially a more compact embedding of the learned representation.

crops. Finally, for the best results reported (Top-5 error of 15.4%), an ensemble of 7
models is used, where the prediction is the average of all of these models.

AlexNet uses two filter groups throughout most of the layers of the model in order
to split computation and model parameters across two GPUs, the motivation being that
at the time GPUs did not have enough memory to fit such a large model. The authors
observed that the filters on each GPU appeared to specialize to learn fundamentally
different features regardless of initialization (Krizhevsky, Sutskever, and Geoffrey E.
Hinton, 2012). This interesting observation has mostly been ignored in subsequent
networks where GPU memory has increased enough that such a split of the network is
not required, but the original observation is a fundamental motivation of our work.

2.3.2 Network in Network

Lin, Q. Chen, and Yan (2014) introduced NiN (Network in Network), in which the
main contribution was the use of so-called ‘micro networks’, consisting of increased
non-linearity between convolutions using 1ˆ1 convolutions. The authors claimed the
extra non-linearities introduced allow the network to capture more complex functions.
These 1ˆ1 convolutions, illustrated in fig. 2.12, have since been referred to as LDE
(Low-Dimensional Embeddings). If the number of 1ˆ1 filters is lower than the number
of normal convolutional filters, then the 1ˆ1 layer learns a non-linear transformation
of the input feature map into a smaller space, i.e. a reduction in the number of filters
by a mapping of a high-dimensional feature map onto a lower-dimensional feature map.
This can be used to reduce the computation and parameters of convolutional layers
significantly, while potentially learning a more compact and efficient representation.
The full NiN architecture is shown in fig. 2.13.
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Lin, Q. Chen, and Yan (2014) also introduced GAP, in which the spatial extents at
the end of the convolutional layers (i.e. pool5 for NiN/AlexNet) are aggregated such
that there is only a single scalar output response for each filter in the pooled layer.
After GAP of a layer with f filters/feature maps, the input to the classification layer is
simply a vector of f responses, as illustrated in fig. 2.13. This reduces the parameters
of the network dramatically since the majority of the parameters in the network are
typically between the last convolutional layer and the fully-connected classification
layer. Lin et al. showed that on CIFAR-10 GAP by itself achieved a lower error than
having a fully-connected layer with dropout.

2.3.3 VGG

Since AlexNet, there have been many improvements to the state of the art on the
ILSVRC challenge, every one of which has been an improved CNN architecture. One
particular architecture that has lent itself to both high accuracy and being a natural
extension of the original network has been that proposed by Simonyan and Zisserman
(2015) of the Visual Geometry Group (VGG) at Oxford. The primary contributions
of the VGG network are (i) showing that very deep networks improve generalization,
and (ii) learning stacked small filters, i.e. three 3ˆ3 convolutional layers is more
computationally efficient than learning a single convolutional layer of 7ˆ7 filters, and
also improves generalization.

VGG is an evolution of the AlexNet models, with the same number of max-pooling
layers, however using very small convolutional filters (3ˆ3) in the convolutional layers,
and many more of these convolutional layers between pooling, instead of the relatively
large single-layers of convolutional filters in AlexNet (7ˆ7). In addition VGG uses small
non-overlapping max-pooling (2ˆ2), and the fully convolutional trick introduced by
Sermanet et al. (2014) to do test-time oversampling more efficiently. VGG uses extensive
training augmentation, extending the augmentation used in AlexNet (Krizhevsky,
Sutskever, and Geoffrey E. Hinton, 2012) by adding scale augmentation, where crops
are taken from images of different rescaled sizes.

2.3.4 Inception

The winner of the ILSVRC2014 challenge, as measured by classification accuracy, was
the Inception architecture, or GoogLeNet (Szegedy, Liu, et al., 2015). The Inception
architecture is particularly interesting, in that it was created explicitly to minimize
computation and learn a more efficient representation. Although it uses the LDE of
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Fig. 2.14 Inception unit. The building block of the Inception/GoogLeNet architecture.
Learns a limited number of large filters (7ˆ7, 5ˆ5), and a great number of small filters
(3ˆ3, 1ˆ1), followed by a LDE (1ˆ1) layer.

NiN, this is combined with a novel combination of filters of different spatial size, within
what is called an Inception unit, illustrated in fig. 2.14.

The motivation of the architecture is that most of the important correlations in
natural images are very localized, so much so that even 3ˆ3 filters can learn most of the
important features, for example image gradients and edges — as demonstrated by the
VGG networks (Simonyan and Zisserman, 2015). However, a few of the correlations are
less localized, more complex, and better captured by 5ˆ5 or even 7ˆ7 filters. Instead
of learning a lot of large and computationally expensive 7ˆ7 filters, the Inception unit
learns mostly 1ˆ1, and 3ˆ3 filters, with fewer 5ˆ5 and even fewer 7ˆ7 filters. This
represents a balance between representation and efficiency.

The authors explain this as learning ‘factorized’ filters, however we disagree, and
understand this architecture instead as learning a basis for filters. Ignoring the non-
linearity between the two layers in fig. 2.14, heterogeneous filters on the same layer are
concatenated into a single feature-map, which is then linearly combined by the 1ˆ1
filters of the subsequent layer. This linear combination of smaller filters in order to
represent a minimally parameterized, but effective filter of full-size (7ˆ7), is similar to
representing a complex function as a parameterization of simpler basis functions.

2.3.5 Residual Networks

He et al. (2016a) introduced residual networks, which provide an important insight
on a problem with the training of very deep networks. While deeper networks have
been found to improve generalization, especially with large datasets; at a sufficiently
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(a)

(b) (c)

Fig. 2.15 Residual networks. (a) A convolutional network, where the mapping
between the final two layers is F pxq, (b) learning an additional layer with the mapping
Hpxq, and (c) learning an additional residual layer with the mapping Hpxq ` x.

large depth training becomes difficult, even with batch normalization and the correct
initialization, and generalization begins to level off, or even decline.

The important insight of He et al. (2016a) into this problem can be summarized in
fig. 2.15. Having trained a deep network with good generalization (i.e. fig. 2.15(a)),
with N layers, a training loss of L1 is observed. On adding a single-layer to the
otherwise identical deep network architecture (i.e. fig. 2.15(b)), and re-training from
random initialization, the new training loss of the network with N ` 1 layers is found
to be L2 ą L1, i.e. the training loss has increased.

Yet from an optimization standpoint it is not clear why this should be so. We can
observe that there is a trivial set of parameters defining a transformation that will
maintain the training loss of the shallower network, i.e. L1 “ L1 — that is the identity
transformation Hpxq “ x.

He et al. (2016a) proposed that in order to aid the optimization, a residual connection
(as in fig. 2.15(c)) is added to the convolutional layers, allowing the trivial identity
solution to be easily learned. This residual connection can be thought of as a shortcut,
bypassing the previous layer. Assuming our desired, but difficult to optimize, mapping
from one layer to the next is Hpxq, the residual function learned is simply:

Hpxq ` x. (2.48)
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In practice these residual layers greatly help the training of very deep networks, and
have pushed state-of-the-art accuracy in many datasets. All current state-of-the-art
models for image classification use residual layers.





3

The Effect of Structure on Learning

“Everything, but the data itself, is an assumption.”
– Zoubin Ghahramani, Microsoft Research AI Summer School, 2017

It is well known that the design of a neural network architecture can have a large
effect on the generalization of a learned model; and yet network design itself remains
poorly understood, with intuition and experience being the cited motivation behind
most common architectures, rather than theory. This, more than perhaps any other
factor, has been a barrier to access for the practical use of neural networks by people
who are not experts in the field.

Beyond hyper-parameters used for tuning the optimization method, such as learning
rate, momentum and weight decay, the architecture of a network has a profound effect
on the learning. Nowhere is this effect more pronounced than in the case of using
neural networks with highly structured inputs, such as natural images. Although neural
networks are usually posed as general learning machines, time and again it has been
demonstrated that neural networks only truly stand out as a learning method when we
encode our prior knowledge of the task in the architecture itself — a concept that we
will, throughout this work, refer to as structural priors. Examples of structural priors
include common network architectures for images (CNNs), and sequences (RNNs).

Neural Networks with structural priors still differ significantly from hand-tuned
local features, as popularized in computer vision in the early 2000s, such as SIFT (Lowe,
2004). As compared with neural networks, such local features are rigidly defined in
terms of structure and weights, and the learning system is restricted to finding and
cataloguing the pre-determined features in images. Neural networks with structural
priors on the other hand, while restricting the structure of the network somewhat,
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still allow the network to learn more fine-grained structure, and have no effect on the
latitude given to learning weights.

The history of understanding the role of neural network architecture in learning
is long, arguably going back to the Hebbian rule of learning (Hebb, 1949), and yet
our understanding is still far from complete. In this section we will review a select
number of the most important previous works relevant to understanding the role that
structural priors play, and how they emerged to dominate the practical use of neural
networks today.

3.1 Network Architecture

A persistent question in training artificial neural networks has been in the design of the
networks. Specifically the question of how many parameters should be learned, and in
what way they should be connected, so as to be suitable for good generalization from
a given size dataset. Notable steps in the theoretical answers to this question include
findings showing the limitations of single-layer networks (Minsky and Papert, 1988),
information-theoretic measures of the representational capacity of a network (Vapnik
and Chervonenkis, 2015), the proof that single hidden-layer networks are universal
approximators (Hornik, Stinchcombe, and White, 1989), and the theoretical number
of nodes required for generalization from a dataset of given size (Baum and Haussler,
1988).

Empirical results have, however, shown that generalization of neural networks
is not fully explained by our current theory. Deep networks of many hidden layers
have been shown time and again to out-perform shallow networks (He et al., 2016a,b;
Krizhevsky, Sutskever, and Geoffrey E. Hinton, 2012; Simonyan and Zisserman, 2015),
perhaps due to our limited method of optimization (Ba and Caruana, 2014). Networks
with many more parameters than training samples1, that use early-stopping or are
regularized strongly, generalize better in practice than networks with the theoretically
sufficient capacity (Caruana, Lawrence, and Giles, 2000; Geoffery E. Hinton, 2015;
Krizhevsky, Sutskever, and Geoffrey E. Hinton, 2012). Networks designed with a
specialized connectivity structure closer reflecting the underlying representation being
learned have consistently generalized better than fully-connected networks with higher
learning capacity (He et al., 2016b; LeCun, Boser, et al., 1989). In fact these design
strategies, so poorly explained by theory, can claim to have been responsible for

1although it should be noted, these training samples often have high dimensionality, i.e. 256ˆ256
images in Imagenet.
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Fig. 3.1 Possible labellings of 3 points in R2. All possible labellings of 3 points in
R2 can be separated by a oriented line (2D hyperplane). This is not possible for all
labellings of 4 points in R2 however, and thus the VC dimension of oriented hyperplanes
in R2 is 3. Inspired by figure in Burges (1998).

recent breakthroughs in generalization on previously difficult tasks such as image class
recognition (Geoffery E. Hinton, 2015; Krizhevsky, Sutskever, and Geoffrey E. Hinton,
2012).

3.2 Model Capacity and Representational Power

The information-theoretic notion of capacity, that is the expressive power of a classi-
fication algorithm, gives important insights to the learning ability of a classification
algorithm. Analysis is typically based on the Vapnik–Chervonenkis (VC) dimen-
sion (Vapnik and Chervonenkis, 2015) of the class of functions used as discriminators,
e.g. hyperplanes in the case of neural networks. Intuitively, for a discriminative classifier,
the VC dimension measures the largest number of points that can be classified without
error. In such a case, the set of points is said to be shattered by the classifier. A good
overview of VC dimension is given by Burges (1998).

3.2.1 Vapnik-Chervonenkis Dimension

More formally, a classification model fpθq, parametrized by θ is said to shatter a set of
data points px0, x1, . . . , xhq if for all possible labellings of the points, the classification
model can perfectly learn the points. The VC dimension is the largest number of (any)
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points that can be shattered by such a classifier. For a classifier of VC dimension h,
it is sufficient that there exists a single set of h points which can be shattered. It
is important to note that in general a classifier with a VC dimension of h will not
necessarily shatter every possible set of h points.

For example, in fig. 3.1, the function class of oriented hyperplanes, i.e. lines in 2D,
can separate all possible labellings of 3 points in R2 — oriented hyperplanes in R2

shatter 3 points. However, for 4 points, this is no longer true. It can be proven (Burges,
1998) that in general for Rn, the set of oriented hyperplanes shatters any set of n ` 1
points.

The VC dimension gives us a measure of the theoretical learning capacity of a
classifier, however it can also be somewhat counter-intuitive. While models with large
numbers of parameters usually will have a higher VC dimension, there are examples
of small single parameter models with infinite VC dimension for more specific sets of
points. For example, if we have a set of evenly spaced points in 2D, a simple sinusoidal
curve with the appropriate phase can shatter any labelling of an infinite number of
such points. However, such a classifier would be poor at classifying more general sets
of points, despite the impressive theoretical VC dimension.

3.2.2 VC Dimension of Neural Networks

In the case of neural networks, early work showed the capacity of neural networks to
be quite large (Baum and Haussler, 1988; Hornik, Stinchcombe, and White, 1989).
Baum and Haussler (1988) looked at feed-forward networks of threshold units, i.e.
perceptrons.

The authors prove a lower bound on the VC dimension for a single hidden layer
network of k units and n inputs,

dVC ě 2tk{2un, (3.1)

where t u is the floor operation, i.e. largest integer less than or equal to the operand,
and d is the number of inputs. For a single hidden layer network with a large number
of n inputs and k units, the authors make the assumption that kn « w, i.e. the number
of weights in the first layer alone is approximately that of the whole network w,

dVC ě w. (3.2)
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Baum and Haussler (1988) use this lower bound on the VC dimension of a hidden
layer to bound the number of training samples required to achieve an error rate of ϵ,
showing that for a network with w weights, and a desired error rate ϵ the minimum
number of training samples required is given by,

Nmin « w{ϵ. (3.3)

For an error rate of ϵ “ 0.1, this gives the rule of thumb that for a network with a
total of w weights, approximately 10 ˆ w, or 10 times the number of training samples
as weights in the network, are required to guarantee an error rate of 10%.

At first glance this work may seem to have solved a major problem in the design
and training of neural networks, however the work of Baum and Haussler (1988) is
to show a worst-case lower bound on the number of training samples required — in
practice this can be far from what is empirically required. Baum and Haussler (1988)
themselves point out that this is likely be far more than necessary in networks where
the learning algorithm seeks to minimize the number of non-zero weights (such as
networks using weight decay, pruning, etc). Indeed, in practice neural networks were
found to generalize much better than this worst case bound would indicate, to the
point where modern deep neural networks are trained with far fewer samples than
weights, in the case of AlexNet (Krizhevsky, Sutskever, and Geoffrey E. Hinton, 2012)
approximately 250ˆ fewer training samples than weights allows good generalization
on the ILSVRC (Russakovsky et al., 2015) dataset. It should be noted however, that
each of these samples have a high dimensionality, each image has around 65,000 pixels.

Bartlett (1996) later showed that rather than capacity being based solely on the
number of weights, a bound more in-line with empirical results could be found by using
the number of large weights. To show this, they moved to a scale sensitive form of the
VC dimension: the fat-shattering dimension. The author shows that the error rate for
an ℓ-layer sigmoidal (rather than threshold unit) neural network with n inputs and m

training samples,
ϵ « pcAq

ℓpℓ`1q{2
a

plog nq{m, (3.4)

and c is a constant factor, and the ℓ1 norm of each unit’s weight vector w is bounded
by A,

}w}1 “
ÿ

i

|wi| ď A. (3.5)

Surprisingly there is no term for the number of units for any layer in this equation, but
rather it is the bounds on the weights themselves that determine ability of the network
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to generalize. In general, for a network where the inputs x are also bounded,

}x}8 “ maxp|x0|, |x1|, . . . , |xn|q ď B, (3.6)

Bartlett (1996) show that for a given error ϵ, the number of training samples m required
grows roughly as,

m «
B2 Aℓ2

ϵ2 . (3.7)

For a single hidden layer network, i.e. ℓ “ 2, and an error rate of ϵ “ 0.05,

m « 400 B2 A6. (3.8)

This result, while surprising given the analysis based on the VC dimension of neural
networks, supports empirical results in using contemporary training methods such as
weight decay (Geoffery E. Hinton, 1987), early stopping (Bishop, 1995), and even more
recently batch normalization (Ioffe and Szegedy, 2015), all of which can keep weight
magnitudes low.

3.2.3 Model Size

J. Denker et al. (1987) explored the relationship of network architecture to generalization
in a more empirical manner. The work was particularly motivating in the later design
of CNNs (LeCun, 1989; LeCun, Boser, et al., 1989). The authors make the intuitive
analogy between the effect of the size of a neural network on its generalization, and a
simple least-squares polynomial fit. Figure 3.2 shows various polynomial fits to samples
from a 3rd-order polynomial function. When using a 3rd-order polynomial to fit even a
small number of samples (fig. 3.2(a)), the fit extrapolates, i.e. is closer to the desired
function outside the range of training samples, better than when we use a 20th-order
polynomial to fit the same data (fig. 3.2(b)). While the number of samples can help
the fit of the higher-order function, even with a large number of samples the 20th-order
polynomial fit (fig. 3.2(d)) will not extrapolate as well as the polynomial with a more
appropriate lower number of parameters (fig. 3.2(c)). Similarly, a neural network with
a large number of parameters may not generalize as well as a neural network with
fewer, more salient, parameters.

More recently Caruana, Lawrence, and Giles (2000) further explored the analogy
by training neural networks to fit polynomials, showing that overfitting in neural
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(a) 3rd-order polynomial fitting 3 points
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(b) 20th-order polynomial fitting 3 points
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(c) 3rd-order polynomial fitting 10 points
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(d) 20th-order polynomial fitting 10 points

Fig. 3.2 Polynomial fits of samples from a 3rd order function. Polynomials of
high order, like neural networks of many parameters, easily overfit a small number of
samples as compared to polynomials of a more suitable order for the sampled function.
While generalization is helped by more data, the higher-order polynomial still tends to
overfit.
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001111100
001110000
000010000

(a) Binary sequences with one clump

001101100
001010100
001110100

(b) Binary sequences with two-or-more
clumps

Fig. 3.3 Two-or-more clumps predicate. The two-or-more clumps predicate asks for
the network to classify (padded) binary input sequences as having one or two-or-more
contiguous strings of ones.

networks does not seem to be as serious a problem as in polynomials. The greatly
over-parametrized neural networks still found relatively good fits. The authors suggest
that neural networks trained with backpropagation may be biased towards “smoother
approximations”.

3.2.4 Generalization and Parameters in Neural Networks

There has been a lot of research into the relationship between the number of parameters
of a network and its generalization, aside from theoretical work presented in section 3.2.2,
there were many empirical studies, especially in the earlier years of connectionist
research (Ahmad and Tesauro, 1988; J. Denker et al., 1987; Giles and Maxwell, 1987;
Hanson and Pratt, 1988; Geoffery E. Hinton, 1987; LeCun, 1989).

J. Denker et al. (1987) and Giles and Maxwell (1987) explore the relationship
between network architecture and generalization by evaluating networks for solving the
two-or-more clumps predicate (truth statement). The two-or-more clumps predicate
asks for the network to classify binary input sequences as having one or two-or-more
contiguous strings of ones, some examples of which are shown in fig. 3.3. The predicate
is largely based on the more general predicate of connectedness explored by Minsky and
Papert (1988), and is shown to be a problem not linearly separable, or more specifically,
solvable by a locally connected perceptron.

The authors illustrate some surprising properties of the generalization of fully-
connected neural networks learned with backpropagation. First, a human-preferred
‘geometric’ solution is manually hard-coded into the weights of a fully-connected
network. While this weight configuration is a valid solution, and is intuitive to humans,
the authors show that it is not a solution that the network would ever settle upon when
trained with backpropagation. By using the geometric solution as an initialization,
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and training the network further, the authors show that the error-surface around the
region is not stable.

In fig. 3.4 we show the learning curves for this problem, using contemporary training
methods. The small CNN converges quicker than a much larger, fully-connected network
that contains the super-set of weights not present in the sparser CNN due to weight
sharing and missing weights. Something not observed in the original paper however
is that the class imbalance due to the numbers of samples for the two classes in
a fixed-length binary string seems to cause instability in the convergence of both
networks.

Work on trying to understand generalization of neural networks is not the domain
of the past, and is still an active area of research. One of the more interesting recent
papers on generalization in DNN highlights that DNNs may not always be learning
the type of representations we assume. C. Zhang et al. (2017) looked at the effect of
training DNNs where they replaced the labels of the ILSVRC dataset with random
labels. Surprisingly, DNNs can learn the randomly labelled datasets perfectly (i.e.
zero training error), despite the intrinsic relationship between the labels and images
being destroyed. This flies in the face of the commonly accepted explanation that the
network is learning to represent the natural data in a low-dimensional manifold in a
higher dimension, random labels are unlikely to be learned this way. Instead it seems
that DNNs are doing a lot more memorization of training data than previously thought.
The authors also show that many forms of regularization currently used, including
weight decay and dropout, are less effective than expected.

On the subject of the importance of structure for learning DNNs, these results show
that structural priors may be more important than previously thought for generalization
than even strong forms of regularization.

3.2.5 No Free Lunch Theorem

The No Free Lunch theorem (NFL) (Wolpert, 1996) states that no algorithm performs
better than any other when averaged over all possible problems (i.e. all possible data-
generating distributions) of a particular type, as each algorithm makes assumptions
which will bias it towards different types of data distributions. Intuitively, if you are
tasked with predicting the unobserved members of a large set, only from a few samples,
and without using any assumptions whatsoever, you cannot do better than random
on average. Any assumptions you do make on the pattern or relationship between
members of the set will give you better performance for some data types, and worse
for others. The NFL theorem simply formalizes the notion that we cannot infer a rule
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describing an entire set without either information or assumptions on every member of
the set.

Formal Definition

Here we present a formal definition of the theorem specialized for supervised learning,
as described by Lattimore and Hutter (2013): Let X and Y be the input and label sets
representing the input and outputs space of the classification problem, respectively.
The classification itself is defined as a mapping f : X Ñ Y , where y “ fpxq is the
desired class label of input x. Let the training set Xm be the subset of the input
space X, on which our classification algorithm is trained, and the unseen input space,
Xu “ X ´ Xm. Let the classification algorithm be defined ApfXm , xq, where for x P Xu,
ApfXm , xq is the guess for the class label of input x, and fXmpxq “ fpxq where x P Xm.
Let the loss function be defined,

LApf , Xmq “
1

Xu

ÿ

xPXu

1ApfXm ,xq‰fpxq, (3.9)

where 1t is the indicator function, returning 1 when t is true, and 0 otherwise. The
loss function measures the number of misclassifications on the training data of the
classification algorithm. The expected loss on all functions M : X Ñ Y is then,

E
“

LA pP , Xmq
‰

“
ÿ

fPM
P pfqLApf , Xmq (3.10)

where P is a probability distribution on M.

Theorem 1 (No Free Lunch). Let P be a uniform probability distribution on M. For
any algorithm A and training data Xm Ď X,

E
“

LA pP , Xmq
‰

“ |Y ´ 1|{|Y |, (3.11)

i.e. no algorithm can do better than random on all possible problems, given only
the training data with no other biases.

The NFL theorem leads many to claim that there is no such thing as a universal
learner, however it is important to note that in practice the data distributions that we
are interested in represent a small number of all possible data distributions, so it’s not
inconceivable that a learning algorithm with assumptions may be able to do well on
many different real world datasets. Formalizing this argument, Lattimore and Hutter
(2013) claim that without contradicting NFL, biased learning algorithms may exist
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that do well on universal problems. Their main insight is that the assumption of a
uniform probability function P on data distributions may be unrealistic, and under
other distributions, a biased learner may do well even averaged over all distributions.

No Free Lunch and Structural Priors

The NFL theorem highlights the need to focus on designing learning algorithms that
work well for the real-world data distributions of interest. At first this may be seem to
be the raison d’être of structural priors, however this discounts the generality of the
theorem. All neural networks make implicit assumptions even without structural priors.
For example, using a single hidden layer neural network assumes that the problem
being learned is not linear. If the problem is linear, instead a single-layer network
would suffice, and likely generalize better. The NFL is, however, important in pointing
out that structural priors in neural networks are not a ‘hack’. In fact well-informed
assumptions are the reason machine learning works in practice.

3.3 Bayesian Model Selection

Model selection is the problem of choosing, with generalization in mind, between several
model architectures with different numbers of layers, neurons, etc. MacKay (1991,
1992, 1995) proposed a Bayesian approach to model selection. MacKay points to the
relationship of Occam’s razor to Bayesian approaches and, rather than performing
model selection by using cross-validation, MacKay proposes to compute the likelihood
of models given only the training data. Assume we have several trained models Mi,
and a training dataset X. In the problem of model selection we are interested in
solving:

argmax
i

ppMi|Xq, (3.12)

where ppMi|Xq is the probability of the model conditioned on the training data.
The basic principle behind Bayesian model selection is explained by Bayes’ rule.

For a neural network model Mi with parameters θ,

ppθ|Mi, Xq “
ppX|θ,Miq ppθ|Miq

ppX|Miq
, (3.13)

where ppθ|Mi, Xq, or the posterior , is what we commonly attempt to solve for using
gradient descent when training a neural network. The prior , ppθ|Miq, are the proba-
bilities on what values we expect the weights of the model to be. The normalization



3.3 Bayesian Model Selection | 51

term, ppX|Miq, is the probability of the data given the model, or ‘evidence’, for the
model.

In the case of model selection, we are interested in,

ppMi|Xq “
ppX|Miq ppMiq

ppXq
, (3.14)

where ppMiq is the prior (subjective) probability we assign to model Mi. If all models
are considered to be of equal probability, then inference is based wholly on the evidence.

The evidence itself is given by the marginalization,

ppX|Miq “

ż

ppX|θ,Miq ppθ|Miq dθ. (3.15)

MacKay (1992) proposes to use the Hessian to evaluate the curvature of the error
surface around the point on the error surface represented by the parameters learned
in the model, in order to gain knowledge of the uncertainty of the parameters, i.e.
p

`

θ|X,Mi

˘

, however as explained in section 2.1.6, the computation or storage of the
Hessian for contemporary deep networks is infeasible.

3.3.1 Occam’s Razor

Of particular interest to the question of the effect of structure and regularization on
generalization, are MacKay’s empirical results showing that Occam’s razor is very
much a principle on which neural network design should be structured. MacKay (1991,
§3.4), shows that regularization is not enough to make an over-parameterized network
generalize as well as a network with a more appropriate parameterization.

In fact, MacKay makes the argument that the Bayesian approach naturally encodes
the Occam’s razor approach, since given two models that predict the training data,
the simpler model with fewer parameters will have less flexibility. This means that
the model will explain only a more narrow range of data points (and probably only
those), as compared to a more complex model which, with more parameters, will be
able to explain a wider range of data. Given that both of these models are assigning
probabilities, the simpler model will necessarily assign higher probability to the narrow
range in which the data of interest lies2.

2Figure 1 in MacKay (1995) explains this concept particularly well
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3.3.2 Practical Implementation

The practical implementation of this method is rather more difficult (Chipman, George,
and McCulloch, 2001) than might be expected. In particular, like all Bayesian ap-
proaches, having the correct prior probabilities for both the models and weights is
important, and yet this is practically difficult in large neural networks.

Besides the difficulty of assigning correct priors, MacKay (1992) proposes to use
the Hessian to evaluate the curvature of the error surface around the point on the error
surface represented by the parameters learned in the model, in order to gain knowledge
of the uncertainty of the parameters, i.e. ppθ|X,Mi. As explained in section 2.1.6, the
Hessian is difficult to represent for even reasonably-sized contemporary DNNs.

3.4 Constructive Neural Network Algorithms

Given the effect of structure and network design on generalization, what if instead of
designing a neural network before training, we could build networks from the ground
up based on data? This appealing direction of research was prominent in the late 80’s
and early 90’s.

Constructive approaches to binary classification neural network architectures were
the approach taken by Fahlman and Lebiere (1989), Frean (1990), and Mezard and
Nadal (1989) among others. A survey of such methods is presented by Parekh, Yang,
and Honavar (2000). These methods share one issue however, they present algorithms
to build neural networks that can classify a binary training set perfectly, as pointed out
by Bishop (1995). Rather, our interest is usually in a classifier that generalizes well —
neural networks that classify the training set perfectly are likely instead to have overfit
the training set.

Tiling Algorithm

The earliest proposals for building neural network structures from the data itself
were proposed for boolean classification networks, i.e. classifying binary patterns and
returning a binary result. The tiling algorithm (Mezard and Nadal, 1989) is guaranteed
to build a network that can achieve perfect classification of the training set. For each
layer in the network, a master neuron is first used to provide the best linear separation
of the data (trained using the pocket algorithm (Gallant, 1986)), and then ancillary
neurons are added until perfect classification of the training data is achieved.
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Cascade Correlation

Cascade correlation (Fahlman and Lebiere, 1989) is a constructive algorithm for building
general neural networks from only a basic two-layer network of input and output nodes.
It is based on two key ideas, a cascade where hidden units are added to the network
one at a time, and correlation3 where the output of the new hidden unit is learned
such that it is highly correlated with the error residual being minimized in the existing
network.

At the beginning of training, only the input and output layers exist, and since this
is a single-layer network with no hidden units, any of the simpler perceptron training
rules can be used. After sufficient training, which is heuristically determined, the
network is expanded by a single new hidden unit at a time. Each new (candidate)
hidden unit that is added to the network is connected to all of the network inputs,
in addition to all of the outputs of the previous hidden units. The candidate unit
is treated as a new hidden layer, and since all other connections are frozen, can be
trained as if it was a single layer — i.e. with the delta rule, or other similar single-layer
training algorithm, rather than backpropagation. The candidate unit’s input weights
are adjusted so as to maximize the covariance of the candidate unit’s output with the
error output of the network:

C “
ÿ

o

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

p

pypo ´ yoqpEpo ´ Eoq

ˇ

ˇ

ˇ

ˇ

ˇ

, (3.16)

where ypo is the output of the output unit o with input pattern p, and Epo is the error.
The trained unit’s input weights are then frozen after training, and if an error threshold
hasn’t been met, a new layer is again added.

Since each new neuron produces a new layer, cascade correlation leads to very large
DNNs with low throughput, since each layer is only one neuron wide, making them very
inefficient computationally. Due to their greedy training strategy, cascade correlation
networks are trained to perfectly fit the training data, and thus typically overfit. This
means they are not likely to generalize as well as standard neural networks trained
with backpropagation, and where no weights are frozen during training.

3In fact it is covariance that is used rather than correlation, since no normalizing factors are used,
as noted by Fahlman and Lebiere (1989).
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Upstart Algorithm

The upstart algorithm is a method for building binary classification networks, and is
guaranteed to find an architecture with perfect training classification. At a high level it
sounds like the tiling algorithm of section 3.4, but instead of building up layers from the
input, in the upstart algorithm all of the neurons in the network are connected directly
to the inputs, and new ‘child’ neurons are added to compensate for the misclassification
errors of existing ‘parent’ neurons.

Initially the network consists of one neuron that is trained with the pocket algo-
rithm (Gallant, 1986). This ‘parent’ neuron, now frozen, will misclassify some of the
training samples and, to correct these, two ‘child’ neurons are added. Since the neurons
in the upstart algorithm are binary threshold units, the ‘parent’ neuron will either
misclassify samples as negative or positive. The two ‘child’ neurons are then trained
(also by the pocket algorithm) to provide enough of a negative/positive signal to cause
the parent neuron to give correct classifications for one or more of the misclassified
samples. The ‘child’ neurons become ‘parents’, and their offspring also learn to correct
their mistakes. Empirical results showed that the upstart algorithm produces networks
with fewer neurons than the tiling algorithm.

3.5 Pruning Algorithms

Rather than the progressive construction of networks, an alternative approach to
learning efficient networks is pruning, the removal of unimportant network weights
after training.

Amongst the earliest work4 on pruning was by Sietsma and Dow (1988), who
investigated the effect of pruning weights in very small perceptron networks. The
pruning rules were summarized as “If the output of a unit does not change for any
input pattern that unit is not contributing to the solution. If the outputs of any two
units are the same or opposite across all patterns the two units duplicate and one can
be removed.” (Sietsma and Dow, 1988). Even in these small networks, the complexity
of pruning emerges. The authors propose removing weights close to zero, or weights
that similarly do not affect the output of the neuron, and removing complementary
but opposite (i.e. duplicate) weights.

There have been many proposals of methods of pruning network connections
since (Castellano, Fanelli, and Pelillo, 1997; Gorodkin et al., 1993; Han, H. Mao, and

4Rumelhart is noted by Hanson and Pratt (1988) to have worked on a similar, albeit unpublished,
method.
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Dally, 2016; Han, Pool, Narang, et al., 2017; Han, Pool, Tran, et al., 2015; Hanson
and Pratt, 1988; LeCun, J. S. Denker, and Solla, 1989; Mozer and Smolensky, 1988,
1989; Setiono, 1997; Ullrich, Meeds, and Welling, 2017) differing mostly on the method
of evaluating the saliency of weights, i.e. how important each weight is to maintaining
generalization. Here we will cover only a small selection of the most relevant methods.

As demonstrated even in the early approach of Sietsma and Dow, a naive saliency
measure, such as weight magnitude, is overly simplistic in practice since it does not
account for the larger distributed representation learned in neural networks and can
lead to a large reduction in accuracy if used for pruning.

In a typical pruning algorithm, after having trained the network, a saliency measure
for each network weight is calculated. The weights are then sorted by saliency, and
the lowest saliency parameters are deleted. After this pruning step, the network must
again be re-trained from scratch. This iterative re-training means that such pruning
methods do not scale well to contemporary neural networks where training times can
be measured in weeks.

The simplest saliency measure would be to directly measure the effect of removing
a weight on the training error of the network. For each weight in the network, the
training error can be evaluated, and the difference in error used as the saliency measure
for that weight. In practice this straight-forward method is infeasible however, since
we must evaluate over the training set for each weight of the network. For a network
with n weights, and p training samples, calculating the saliencies for the whole network
in this manner is Opnpq (Hanson and Pratt, 1988).

3.5.1 Optimal Brain Damage

LeCun, J. S. Denker, and Solla (1989) proposed OBD to iteratively remove neurons
after training based on a saliency measure that judges the parameters that have the
least effect on training error. The authors point out that simply using the magnitude
of the weights themselves is equivalent in the limit to having trained with a form
of non-proportional weight decay. Instead the authors propose a more theoretically
justified saliency measure — they propose measuring the change in the objective
function caused by removing a parameter. Rather than performing the computationally
intensive task of re-evaluating the objective for every possible parameter deletion, the
second derivative of the objective with respect to the weights is instead used. The
authors approximate the derivative of an objective function with respect to the weights
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using the 2nd-order Taylor series expansion, fpaq “
ř2

n“0
f pnqpaq

n! px ´ aqn, of the error:

δE “
ÿ

i

BE

Bwi

δwi `
1
2

ÿ

i

B2E

Bw2
i

δw2
i `

1
2

ÿ

i‰j

B2E

BwiBwj

δwiδwj ` Op}δw}
3
q, (3.17)

where E is the objective function, wi is the ith weight, and here δ represents a finite
difference rather the ‘delta’ defined in section 2.1.3. We can write this more compactly
in matrix notation,

δE “

ˆ

BE

Bw

˙T

δw `
1
2δwT H δw ` Op}δw}

3
q, (3.18)

where w is the vector of network weights, and H is the Hessian matrix of 2nd-order
derivatives.

This approximation is infeasible to calculate in practice, mostly due to the size
of the Hessian matrix which is square in the number of weights. The authors use
several assumptions to approximate this in a more computationally efficient manner.
Most importantly they use the “diagonal approximation” of the Hessian, using only
the diagonal terms, hi,i “ B2E{Bw2

i . Further, the “extremal approximation” assumes
that pruning is only done once the training has converged, and so it can be assumed
that the first term is zero. Finally they assume that the function is approximately
quadratic, and thus higher-order terms (i.e. Op}δw}3q) can be ignored. In all, the final
approximation of the objective function’s change is simply:

δE «
1
2

ÿ

i

B2E

Bw2
i

δw2
i . (3.19)

To calculate the second derivative, the chain rule is used, and the second derivatives
are back-propagated through the network. This approximation is used directly as the
saliency measure for each network weight wi, and after having trained the network,
the weights are sorted by saliency, and the lowest saliency parameters are deleted.

3.5.2 Learning both Weights and Connections

Han, Pool, Tran, et al. (2015) begins by pruning a trained model using a naive weight
magnitude saliency, and then re-training the network in a layer-wise manner. Although
the novelty of this method is arguable given the past work on pruning, it presents
results on contemporary deep networks. Despite using a naive weight magnitude-based
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saliency the results are reasonable with a 9-fold decrease in parameters, with only a
small loss in accuracy. However, the experiments were performed on AlexNet which
had a very large fully-connected layer composing most of its parameters.

3.6 Compression & Quantization

In order to use DNN on embedded devices, and in many applications, first a more
compact representation and perhaps even faster inference is often required. Although
mostly a matter of engineering, compression of neural networks also tells us something
about the information-theoretic capacity of the models we train, and therefore gives
us hints about the internal representation learned in DNNs. There have been many
papers on the topic (Han, H. Mao, and Dally, 2016; Han, Pool, Narang, et al., 2017;
Han, Pool, Tran, et al., 2015; Kim et al., 2016; Rastegari et al., 2016; Ullrich, Meeds,
and Welling, 2017), here we will only cover a few of the most relevant papers.

3.6.1 Deep Compression

Han, H. Mao, and Dally (2016) extends the method of Han, Pool, Tran, et al. (2015)
with both quantization and Huffman coding. The quantization uses a look-up table
to store a limited number of weight values (within each layer) which are indexed
by multiple weights — in effect a form of weight sharing. Interestingly the model
is further trained after the quantization, using backpropagation with the quantized
weights. Finally, the resulting quantized model is compressed losslessly using a Huffman
encoding. The results are impressive, a large VGG-16 model of 552MB parameters is
reduced in size to 11.3MB, a decrease by a factor of 40.

3.6.2 Deep-Sparse-Dense Training

One of the most interesting recent papers on pruning is that of Han, Pool, Narang,
et al. (2017) who do something quite different. The authors propose to train a model
in distinct initial, sparse and dense steps:

Intial Train a DNN as normal,

Sparse Next prune the network, as in Han, Pool, Tran, et al. (2015), with the difference
that a different threshold is learned for each layer. The network is then retrained
with the pruned connections removed, recovering the original accuracy of the
initial network. The authors claim this is akin to a ‘regularization’ of the network,
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Dense Finally the pruned connections are re-introduced and initialzed to zero5, and
the network is finetuned at 1{10 the original learning rate.

The results of this training method are that, even in an efficient large-scale deep
network trained on ILSVRC such as GoogLeNet, the top-5 error is decreased by almost
1%, which is significant.

3.6.3 XOR-Net: Binary Convolutional Neural Networks

Rastegari et al. (2016) proposed two methods, one in which filter parameters were
quantized to binary values, from the typical 16-bit floating point representation.
Surprisingly even when the method was applied to models trained on ILSVRC, such
as AlexNet, the accuracy was little effected.

A further method, XNOR networks, is proposed where both the filter parameters
and feature maps are reduced binary representations. XNOR networks claim to be 58ˆ

faster and have 32ˆ smaller convolutional layers. The evaluation for ILSVRC is based
on the AlexNet architecture however, which does not represent a good accuracy/model
size tradeoff compared to more recent deep network architectures.

3.7 Structural Priors

Chapters 2 and 3 have shown that the concept we have denoted ‘structural priors’ is not
new, and has varied interpretations. Here we will attempt to summarize the concepts
related to regularization, network architecture, and generalization covered by this large
body of work in a compact nomenclature, much like C. Zhang et al. (2017) attempted
to define types of regularization. While, like with any compact nomenclature, there is
a danger of overly simplifying the details, it can also help in seeing the big picture.

To return to the example of fitting a polynomial curve presented in section 3.2.3,
in practice when fitting such a curve, we have little idea of which order polynomial
would best fit the data. Necessarily, we must use a relatively higher-order curve to fit
the data. Similarly, with a neural network, we rarely have knowledge of the underlying
structure of the solution (but when we do, we should use it to parametrize our models
appropriately (Jain et al., 2016)). Instead we must use networks with more parameters
than necessary to ensure that there is enough capacity to learn the underlying, but

5This is considered to be a bad initialization when training neural networks from scratch due to
the requirement to break symmetry, yet the authors do not explain the use here. Presumably, because
there are already non-zero weights in the network however, symmetry is not as big of an issue.
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likely sparse solution. The problem with this approach is that over-parametrization
of a model generally leads to poor generalization due to overfitting. To prevent this,
there are two general types of methods in which we can relate our prior knowledge
that the model is over-parametrized to the optimization:

Weak Structural Prior: Regularization Knowing only that our model is over-
parametrized is a relatively weak prior, however we can encode this into the fit by
using a regularization penalty. This restricts the model to effectively use only a
small number of the parameters by adding a penalty, for example on the ℓ2 norm
of the model weights. For polynomial regression, this is called ridge regression,
while for neural networks it is called weight decay (Geoffery E. Hinton, 1987). In
neural networks, early stopping during training is another method for doing this.

Strong Structural Prior: Restricted Connectivity With more prior information
on the task, i.e. when fitting a polynomial, we may ascertain that a certain order
polynomial is more appropriate from the convexity of the polynomial, and restrict
learning to that order. For example, given that samples from a polynomial appear
to be convex, we can surmise that the polynomial is likely to be of an even or
2nd-order, and restrict our fit to be of that order.

In neural networks, as we have seen in section 2.1.11, a similar effect can be
achieved by removing parameters that we know are not needed (i.e. in CNNs,
using filters with local connectivity), or sharing parameters we know are redundant
(i.e. in CNNs, using the same filters for all pixels).

Although neural networks are usually posed as general learning machines, time and
again it has been demonstrated that they only truly stand out as a learning method
when we use strong structural priors, encoding our prior knowledge of the task in the
architecture itself. As observed by J. Denker et al. (1987) this may be considered closer
to modifying the problem to be solved, rather than changing the learning method. For
example, by asking a CNN to learn to classify a dataset, we are asking the network
to “classify these images”, whereas by asking a fully-connected network to classify the
same dataset, we are asking the network “classify this data”. The first task is inherently
easier because of the assumptions it makes.
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“Classical work in visual pattern recognition has demonstrated the advantage of
extracting local features and combining them to form higher-order features. Such
knowledge can be easily built into the network by forcing the hidden units to
combine only local sources of information. Distinctive features of an object can
appear at various location on the input image. Therefore it seems judicious to
have a set of feature detectors that can detect a particular instance of a feature
anywhere on the input plane.”
– Yann LeCun, Backprop. Applied to Handwritten Zip Code Recognition, 1989

CNNs (see section 2.1.11) are a highly specialized form of neural network for
learning image representations. Their use of convolutional filters allows CNNs to learn
much more efficient representations, from a memory and computational efficiency
standpoint, than a full connected network. Such filters usually have limited spatial
extents (i.e. width and height, as opposed to channels) and their learned weights are
shared across the image’s spatial domain to provide translation invariance (Fukushima,
1980; LeCun, Bottou, et al., 1998). Thus, as illustrated in fig. 4.1, in comparison
with fully-connected network layers (fig. 4.1(a)), convolutional layers have a much
sparser connection structure and use fewer parameters (fig. 4.1(b)). This leads to faster
training and inference, better generalization, and higher accuracy.

This chapter focuses on reducing the computational complexity of the convolutional
layers of CNNs by further sparsifying their spatial connection structures. Specifically,
we show that by representing convolutional filters using a basis space comprising groups
of filters of different spatial dimensions (examples shown in fig. 4.1(c, d)), we can
significantly reduce the computational complexity of existing state-of-the-art CNNs
without compromising classification accuracy.
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Our contributions include a novel method of learning a set of small basis filters that
are combined to represent larger filters efficiently. Rather than approximating previously
trained networks, we train networks from scratch and show that our convolutional
layer representation can improve both efficiency and classification accuracy. Unlike
methods that approximate previously-trained models (as listed in sections 4.1 and 4.1)
this allows us to reduce training time, and even increase accuracy over the original
model. We further describe how to initialize connection weights effectively for training
networks with composite convolutional layers containing groups of differently-shaped
filters, which we found to be of critical importance to our training method1.

4.1 Related Work

There has been much previous work on increasing the test-time efficiency of CNNs. Some
promising approaches work by making use of more hardware-efficient representations.
For example Gupta et al. (2015) and Vanhoucke, Senior, and M. Z. Mao (2011) achieve
training- and test-time compute savings by further quantization of network weights that
were originally represented as 32-bit floating point numbers. However, more relevant to
our work are approaches that depend on new network connection structures, efficient
approximations of previously trained networks, and learning low rank filters.

Efficient Network Connection Structures There has been shown to be significant
redundancy in the trained weights of CNNs (Denil et al., 2013). LeCun, J. S. Denker,
and Solla (1989) suggest a method of pruning unimportant connections within networks.
However this requires repeated network re-training and may be infeasible for modern,
state-of-the-art CNNs requiring weeks of training time. Lin, Q. Chen, and Yan (2014)
show that the geometric increase in the number and dimensions of filters with deeper
networks can be managed using low-dimensional embeddings. The same authors show
that global average-pooling may be used to decrease model size in networks with
fully-connected layers. Simonyan and Zisserman (2015) show that stacked filters with
small spatial dimensions (e.g. 3ˆ3), can operate on the effective receptive field of larger
filters (e.g. 5ˆ5) with less computational complexity.

Low-Rank Filter Approximations Rigamonti et al. (2013) approximate previ-
ously trained CNNs with low-rank filters for the semantic segmentation of curvilinear

1note that much of this work was done before the widespread use of batch normalization, however
inititalization still plays an important role.
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structures within volumetric medical imagery. They discuss two approaches: enforcing
an ℓ1-based regularization to learn approximately low rank filters, which are later
truncated to enforce a strict rank, and approximating a set of pre-learned filters with a
tensor decomposition into many rank-1 filters. Neither approach learns low rank filters
directly, and indeed the second approach proved the more successful.

The work of Jaderberg, Vedaldi, and Zisserman (2014) also approximates the
existing filters of previously trained networks. They find separable 1D filters through
an optimization minimizing the reconstruction error of the already learned full rank
filters. They achieve a 4.5ˆ speed-up with a loss of accuracy of 1% in a text recognition
problem. However since the method is demonstrated only on text recognition, it is not
clear how well it would scale to larger data sets or more challenging problems. A key
insight of the paper is that filters can be represented by low rank approximations not
only in the spatial domain but also in the channel domain.

Both of these methods show that, at least for their respective applications, low rank
approximations of full-rank filters learned in convolutional networks can increase test-
time efficiency significantly. However, being approximations of pre-trained networks,
they are unlikely to improve test accuracy, and can only increase the computational
requirements during training.

Learning Separable (Factorized) Filters Mamalet and Garcia (2012) propose
training networks with separable filters on the task of digit recognition with the MNIST
dataset. They train networks with sequential convolutional layers of horizontal and
vertical 1D filters, achieving a speed-up factor of 1.6ˆ, but with a relative increase
in test error of 13% (1.45% vs. 1.28%). Our approach is different than this, allowing
both horizontal and vertical 1D filters (and other shapes too) on the same layer and
avoiding issues with ordering. We also demonstrate a decrease in error, and validate
on more challenging datasets.

4.2 Using Low-Rank Filters in CNNs

4.2.1 Convolutional Filters

The convolutional layers of a CNN produce output ‘images’ (usually called feature
maps) by convolving input images with one or more learned filters. In a typical
convolutional layer, as illustrated in fig. 4.2(a), a c-channel input image of size HˆW

pixels is convolved with d filters of size hˆwˆc to create a d-channel output image.
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(a) A standard convolutional layer.

(b) Sequential separable filters (Jaderberg, Vedaldi, and Zisserman, 2014).

(c) Our method, a learned basis space of filters that are rectangular in the spatial domain
and oriented horizontally and vertically.

(d) Our method, a learned basis space of vertical/horizontal rectangular filters and square
filters. Filters of other shapes are also possible.

Fig. 4.2 Methods of using low-rank filters in CNNs. Methods from literature
and our proposed methods for learning low rank filters. The activation function is not
shown, coming after the last layer in each configuration.
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Each filter is represented by hwc independent weights. Therefore the computational
complexity for the convolution of the filter with a c-channel input image is Opdwhcq

(per pixel in the output feature map).
Here we will use our existing mathematical description of convolution from sec-

tion 2.1.11, where the incoming feature map is denoted by X, outgoing feature map
Y, and convolutional filter, or kernel F. The scalar elements of each feature map
are Xi,j,k, Yi,j,k, where i “ t0, . . . , cu is the feature maps channel (i.e. colour for an
input image), and j “ t0, . . . , hu, k “ t0, . . . , wu are the spatial coordinates, rows and
columns respectively, of the channel i image. The filter’s scalar elements are Fi,j,k,l,
where i is the filter’s index in the convolutional layer’s filter bank and the output
channel in Y to which the filter’s result is written, j is the input channel in X over
which the filter’s spatial elements are convolved, and pk, lq are the row and column
offset between the output and input images.

A convolutional layer, as illustrated in fig. 4.2(a), then convolves across the layer
such that,

Yi,j,k “
ÿ

l,m,n
Xl,j`m,k`n Fi,l,m,n, (4.1)

for all valid indices l, m, n, depending on the padding of the input image. We will
express this in shorter terms using the convolution operator ˙ and allowing considering
only a single pixel (i.e. fixed j, k) output spatially for simplicity,

Yi “
ÿ

l

Xl˙Fil. (4.2)

In what follows, we describe schemes for modifying the architecture of the con-
volutional layers so as to reduce computational complexity. The idea is to replace
expensive, full-rank spatial convolutional filters, with modified versions that represent
the same number of effective filters by a linear combinations of smaller basis vectors.

4.2.2 Sequential Separable Filters

An existing scheme for reducing the computational complexity of convolutional lay-
ers (Jaderberg, Vedaldi, and Zisserman, 2014) is to replace each one with a sequence
of two regular convolutional layers but with filters that are rectangular in the spatial
domain, as shown in fig. 4.2(b).

The first convolutional layer has m horizontal filters Fi, l“0,...,m of size wˆ1ˆc,
producing an output feature map with m channels. The second convolutional layer



4.2 Using Low-Rank Filters in CNNs | 67

has d vertical filters Fi, l“0,...,d of size 1ˆhˆm, producing an output feature map with
d channels.

Mathematically, the seperable convolution illustrated in fig. 4.2(b) can be expressed,

Yi “
ÿ

l

Yh
l ˙Fv

il

“
ÿ

l

´

Xh
l ˙Fh

il

¯

˙Fv
il,

(4.3)

where Xh and Xv are the input feature maps convolved with the horizontal and vertical
filters Fh and Fv respectively.

By these means the full rank original convolutional filter bank is represented by a
low rank approximation formed from a linear combination of a set of separable wˆh

basis filters. The computational complexity of this scheme is Opmcwq for the first layer
of horizontal filters and Opdmhq for the second layer of vertical filters, with a total of
Opmpcw ` dhqq.

Note that Jaderberg, Vedaldi, and Zisserman (2014) use this scheme to approximate
existing full rank filters belonging to previously trained networks using a retrospective
fitting step. In this work, by contrast, we train networks containing convolutional
layers with this architecture from scratch. In effect, we learn the separable basis filters
and their combination weights simultaneously during network training.

4.2.3 Filters as Linear Combinations of a Basis

We introduce a novel method for reducing convolutional layer complexity by training
with low-rank filters. This works by representing convolutional filters as linear combi-
nations of basis filters as illustrated in fig. 4.2(c). This scheme uses composite layers
comprising several sets of filters where the filters in each set have different spatial
dimensions (see fig. 4.4). The outputs of these basis filters may be combined in a
subsequent layer containing filters with spatial dimensions 1ˆ1.

This configuration is illustrated in fig. 4.2(c), and can be expressed as,

Yi “
ÿ

l

Ybasis
l ˙Fweights

il

“
ÿ

l

fweights
il Ybasis

l (since Fweights
il is a scalar)

“

m{2
ÿ

l“0
fweights

il Xl˙Fh
il `

m
ÿ

l“m{2
fweights

il Xl˙Fv
il,

(4.4)
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where Fh and Fv are the horizontal and vertical filters respectively.
Here, our composite layer contains horizontal wˆ1 and vertical 1ˆh filters, the

outputs of which are concatenated in the channel dimension, resulting in an intermediate
m-channel feature map. These filter responses are then linearly combined by the next
layer of d 1ˆ1 filters to give a d-channel output feature map. In this case, the filters
are applied on the input feature map with c channels and followed by a set of m 1ˆ1
filters over the m output channels of the basis filters. If the number of horizontal and
vertical filters is the same, the computational complexity is Opmpwc{2 ` hc{2 ` dqq.

The effective filters learned in our models are low-rank in that, although we only
learn mostly basis filters much smaller than the original networks (e.g. 1ˆh, wˆ1), the
effective filter size when also using only a few full wˆh basis filters is still a full 3ˆ3.
Necessarily, some of the parameters in our effective filters are linear combinations of
others, since the effective filter is a learned linear combination of the low-rank basis
filters.

Interestingly, the configuration of fig. 4.2(c), where we only use horizontal and
vertical basis filters, gives rise to linear combinations of horizontal and vertical filters
that are cross-shaped in the spatial domain. This is illustrated in fig. 4.3 for filters
learned in the first convolutional layer of the ‘vgg-gmp-lr-join’ model that is described
in section 4.4, where it is trained using the ILSVRC dataset.

Note that, in general, more than two different sizes of basis filter might be used in
the composite layer. In the more general case, for a set of heterogeneous filter groups
Fg“0,...,G, we can express this as

Yi “
ÿ

l

fweights
il

ÿ

g

Xl˙Fg
il. (4.5)

For example, fig. 4.2(d) shows a combination of three sets of filters with spatial
dimensions wˆ1, 1ˆh, and wˆh. Also note that an interesting option is to omit the
1ˆ1 linear combination layer and instead allow the connection weights in a subsequent
network layer to learn to combine the basis filters of the preceding layer (despite any
intermediate non-linearity, e.g. ReLUs). This possibility is explored empirically in the
section 4.4.

In that our method uses a combination of filters in a composite layer, it is similar to
the ‘GoogLeNet’ of Szegedy, Liu, et al. (2015) which uses Inception modules comprising
several (square) filters of different sizes ranging from 1ˆ1 to 5ˆ5. In our case, however,
we are implicitly learning linear combinations of less computationally expensive filters
with different orientations (e.g. 3ˆ1 and 1ˆ3 filters), rather than combinations of
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(a) 3 ˆ 1 filters.

(b) 1 ˆ 3 fil-
ters.

(c) Learned linear combinations.

Fig. 4.3 Learned Cross-Shaped Filters. The cross-shaped filters (c) learned as
weighted linear combination of (b) 1ˆ3 and (c) 3ˆ1 basis filters in the first convolutional
layer of the the ‘vgg-gmp-lr-join’ model trained using the ILSVRC dataset.

filters of different sizes. Amongst networks with similar computational requirements,
GoogLeNet is one of the most accurate for large scale image classification tasks (see
fig. 4.6), partly due to the use of heterogeneous filters in the Inception modules, but
also the use of low-dimensional embeddings and global pooling.

4.3 Training CNNs with Mixed-Shape
Low-Rank Filters

To determine the standard deviations to be used for weight initialization, we use an
approach similar to that described by Glorot and Y. Bengio (2010) (with the adaptation
described by He et al. (2015) for layers followed by a ReLU). In section 4.3.1, we
show the details of our derivation, generalizing the approach of He et al. (2015) to the
initialization of composite layers comprising several groups of filters of different spatial
dimensions (see section 4.3.1, fig. 4.4).

At the start of training, network weights are initialized at random using samples
drawn from a Gaussian distribution with a standard deviation parameter specified
separately for each layer. We found that the setting of these parameters was critical to
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the success of network training and difficult to get right, particularly because published
parameter settings used elsewhere were not suitable for our new network architectures.
With unsuitable weight initialization, training may fail due to exploding gradients, where
back-propagated gradients grow so large as to cause numeric overflow, or vanishing
gradients where back-propagated gradients diminish such that their effect is dwarfed
by that of weight decay such that loss does not decrease during training (Hochreiter
et al., 2001).

The approach of Glorot and Y. Bengio (2010) works by ensuring that the magnitudes
of back-propagated gradients remain approximately the same throughout the network.
Otherwise, if the gradients were inappropriately scaled by some factor (e.g. β) then
the final back-propagated signal would be scaled by a potentially much larger factor
(βL after L layers) (see section 2.2.2).

4.3.1 Derivation of the Initialization for Composite layers

In what follows, we adopt notation similar to that of He et al. (2015), and follow their
derivation of the appropriate standard deviation for weight initialization. However,
we also generalize their approach to the initialization of composite layers comprising
several groups of filters of different spatial dimensions (see fig. 4.4).

Forward Propagation The response of the lth convolutional layer can be represented
as,

yl “ Wlxl ` bl, (4.6)

where yl is a dˆ1 vector representing a pixel in the output feature map, and xl is a
whc ˆ 1 vector that represents a wˆh sub-region of the c-channel input feature map.
Wl is the dˆn weight matrix, where d is the number of filters and n is the size of a
filter, i.e. n “ whc for a filter with spatial dimensions wˆh operating on an input
feature map of c channels, and bl is the bias. Finally xl “ fpyl´1q is the output of the
previous layer passed through an activation function f (e.g. the application of a ReLU
to each element of yl´1).

Backward Propagation During backpropagation, the gradient of a convolutional
layer is computed as,

∆xl “ Ŵl∆yl, (4.7)

where ∆xl and ∆yl denote the derivatives of loss L with respect to input and output
pixels. ∆xl is a cˆ1 vector of gradients with respect to the channels of a single pixel
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in the input feature map and ∆y represents hˆw pixels in d channels of the output
feature map. Ŵl is a cˆn̂ matrix, and n̂ “ whd. Note that Ŵl can be simply reshaped
from WJ

l . Also note that the elements of ∆yl correspond to pixels in the output image
that had a forward dependency on the input image pixel corresponding to ∆x. In
backpropagation, each element ∆yl of ∆yl is related to an element ∆xl`1 of some
∆xl`1 (i.e. a back-propagated gradient in the next layer) by the derivative of the
activation function f :

∆yl “ f 1
pylq∆xl`1, (4.8)

where f 1 is the derivative of the activation function.

Weight Initialization Now let ∆yl, ∆xl and wl be scalar random variables that
describe the distribution of elements in ∆yl, ∆xl and Ŵl respectively. Then, assuming
f 1pylq and ∆xl`1 are independent,

Er∆yls “ Erf 1
pylqs Er∆xl`1s. (4.9)

For the ReLU case, f 1pylq is zero or one with equal probability. Like Glorot
and Y. Bengio (2010), we assume that wl and ∆yl are independent. Thus, eq. (4.7)
implies that ∆xl has zero mean for all layers l, when wl is initialized by a distribution
that is symmetric around zero. Thus we have Er∆yls “ 1

2Er∆xl`1s “ 0 and also
Erp∆ylq

2s “ Varr∆yls “ 1
2Varr∆xl`1s. Now, since each element of ∆xl is a summation

of n̂ products of elements of Ŵl and elements of ∆yl, we can compute the variance of
the gradients in eq. (4.7):

Varr∆xls “ n̂VarrwlsVarr∆yls

“
1
2 n̂VarrwlsVarr∆xl`1s.

(4.10)

To avoid scaling the gradients in the convolutional layers (and so avoid exploding
or vanishing gradients), we set the ratio between these variances to 1:

1
2 n̂Varrwls “ 1. (4.11)

This leads to the result of He et al. (2015), in that a layer with n̂l connections
followed by a ReLU activation function should be initialized with a zero-mean Gaussian
distribution with standard deviation

a

2{n̂l.
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Fig. 4.4 A composite convolutional layer. Composite layers convolve an input
feature map with N groups of convolutional filters of several different spatial dimensions.
Here the ith group has drgs filters with spatial dimension wrgs ˆ hrgs. The outputs are
concatenated to create a d channel output feature map. Composite layers require
careful weight initialization to avoid vanishing/exploding gradients during training.
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Weight Initialization in Composite layers The initialization scheme described
above assumes that the layer comprises filters of spatial dimension wˆh. Now we
extend this scheme to composite convolutional layers containing N groups of filters of
different spatial dimensions wrgs ˆ hrgs (where superscript rgs denotes the group index
and with g P t1, . . . , Nu). Now the layer response is the concatenation of the responses
of each group of filters:

yl “

»

—

—

—

—

–

Wr1s

l xr1s

l

Wr2s

l xr2s

l

. . .

WrNs

l xrNs

l

fi

ffi

ffi

ffi

ffi

fl

` bl. (4.12)

As before yl is a dˆ1 vector representing the response at one pixel of the output feature
map. Now each xrgs is a wrgshrgscˆ1 vector that represents a different shaped wrgs ˆhrgs

sub-region of the input feature map. Each Wrgs

l is the c
rgs

l ˆ n̂rgs weight matrix, where
d is the number of filters and n̂rgs is the size of a filter, i.e. n̂rgs “ wrgshrgscrgs for a filter
of spatial dimension wrgs ˆ hrgs operating on an input feature map of cl “ dl´1 channels.

During backpropagation, the gradient of the composite convolutional layer is
computed as a summation of the contributions from each group of filters:

∆xl “ Ŵ
r1s

l ∆yr1s

l ` Ŵ
r2s

l ∆yr2s

l ` ¨ ¨ ¨ ` Ŵ
rNs

l ∆yrNs

l , (4.13)

where now ∆yrgs represents wrgs ˆ hrgs pixels in drgs channels of the output feature map.
Each Ŵ

rgs

l is a cl ˆ n̂rgs matrix of weights arranged appropriately for backpropagation.
Again, note that each Ŵ

rgs

l can be simply reshaped from Wrgs

l .
As before, each element of ∆yl is a sum over n̂ products between elements of Ŵ

rgs

l

and elements of ∆yrgs

l and here n̂ is given by:

n̂ “
ÿ

wrgshrgsdrgs. (4.14)

In the case of a ReLU non-linearity, this leads to a zero-mean Gaussian distribution
with standard deviation:

σ “

d

2
ř

wrgshrgsdrgs
. (4.15)

In conclusion, a composite layer of heterogeneously-shaped filter groups, where
each filter group i has wrgshrgsdrgs outgoing connections should be initialized as if it
is a single-layer with n̂ “

ř

wrgshrgsdrgs. Thus in the case of a ReLU non-linearity,
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we find that such a composite layer should be initialized with a zero-mean Gaussian
distribution with standard deviation given in eq. (4.15).

4.4 Results

To validate our approach, we show that we can replace the filters used in existing
state-of-the-art network architectures with low-rank representations as described above
to reduce computational complexity without reducing accuracy. Here we characterize
the computational complexity of a CNN using the number of multiply-accumulate
operations required for a forward pass (which depends on the size of the filters in each
convolutional layer as well as the input image size and stride).

4.4.1 Multiply-Accumulate Operations and
Caffe CPU/GPU Timings

We have characterized the computational complexity of a CNN using the number of
multiply-accumulate operations required for a forward pass (which depends on the size
of the filters in each convolutional layer as well as the input image size and stride), to
give as close as possible to a hardware and implementation independent evaluation
the computational complexity of our method. However, we have observed strong
correlation between multiply-accumulate counts and run-time for both CPU and GPU
implementations of the networks described here (as shown in fig. 4.5). Note that the
Caffe timings differ more for the initial convolutional layers where the input sizes are
much smaller (3-channels), and BLAS is less efficient for the relatively small matrices
being multiplied.

4.4.2 Methodology

We augment our training set with randomly cropped and mirrored images, but do
not use any scale or photometric augmentation, or over-sampling. This allows us to
compare the efficiency of different network architectures without having to factor in
the computational cost of the various augmentation methods used elsewhere. During
training, for every model except GoogLeNet, we adjust the learning rate according to
the schedule,

γt “ γ0p1 ` γ0λtq´1, (4.16)
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Fig. 4.5 Multiply-Accumulate Operations and Caffe CPU/GPU Timings. For
the forward pass of each convolutional layer in the ‘vgg-gmp-lr’ network. Caffe CPU
timings were well correlated with multiply-accumulate operations for most layers. GPU
timings in some cases are relatively slower however. Please see section 5.4 for an
explanation of this discrepancy.

where γ0, γt and λ are the initial learning rate, learning rate at iteration t, and weight
decay respectively (Bottou, 2012). When the validation accuracy levels off we manually
reduce the learning rate by further factors of 10 until the validation accuracy no longer
increases. Unless otherwise indicated, aside from changing the standard deviation of
the normally distributed weight initialization, as explained in section 4.3, we used
the standard hyper-parameters for each given model. Our results use no test-time
augmentation.

4.4.3 VGG-11 Architectures for ILSVRC Object
Classification and MIT Places Scene Classification

We evaluated classification accuracy of the VGG-11 based architectures using two
datasets, ILSVRC (Jia et al., 2014) and MIT Places (Zhou et al., 2014). The ILSVRC
dataset comprises 1.2M training images of 1000 object classes, commonly evaluated by
top-1 and top-5 accuracy on the 50K image validation set. The MIT Places dataset
comprises 2.4M training images from 205 scene classes, evaluated with top-1 and top-5
accuracy on the 20K image validation set.

VGG-11 (‘VGG-A’) is an 11-layer convolutional network introduced by Simonyan
and Zisserman (2015). It is in the same family of network architectures used by He
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Table 4.1 VGG ILSVRC Results. Accuracy, multiply-accumulate count, and number
of parameters for the baseline VGG-11 network (both with and without GAP) and
more efficient versions created by the methods described in this chapter.

Network Stride FLOPS
ˆ109

Param.
ˆ107

Top-1 Acc. Top-5 Acc.

vgg-11 1 7.61 13.29 0.649 0.862
gmp 1 7.51 3.22 0.685 0.887
gmp-sf 1 6.53 2.97 0.673 0.879
gmp-lr-join-wfull 1 6.34 3.72 0.704 0.897
gmp-lr-join 1 3.85 2.73 0.675 0.880
gmp-lr-2x 1 3.14 3.13 0.693 0.889
gmp-lr 1 2.52 2.61 0.676 0.880
gmp-lr-lde 2 1.02 2.64 0.667 0.875

Table 4.2 MIT Places Results. Accuracy, multiply-accumulate operations, and
number of parameters for the baseline ‘vgg-11-gmp’ network, separable filter network
as described by Jaderberg, Vedaldi, and Zisserman (2014), and more efficient models
created by the methods described in this chapter. All networks were trained at stride
2 for the MIT Places dataset.

Network Stride FLOPS
ˆ108

Param. ˆ107 Top-1 Acc. Top-5 Acc.

gmp 2 18.77 3.22 0.526 0.830
gmp-sf 2 16.57 13.03 0.517 0.824
gmp-lr-join 2 9.64 2.73 0.512 0.821
gmp-lr 2 6.30 2.61 0.520 0.825

et al. (2015) and Simonyan and Zisserman (2015) to obtain the state-of-the-art accuracy
for ILSVRC, but uses fewer convolutional layers and therefore fits on a single GPU
during training. During training of our VGG-11 based models, we used the standard
hyperparameters detailed by Simonyan and Zisserman (2015) and the initialization of
He et al. (2015).

VGG-derived Model Table

Table 4.3 shows the architectural details of the VGG-11-derived models used in sec-
tion 4.4.3. In what follows, we compare the accuracy of a number of different network
architectures detailed in table 4.3. Results for ILSVRC are given in table 4.1, and
plotted in fig. 4.6. Results for MIT Places are given in table 4.2, and plotted in fig. 4.7.
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Baseline (Global Max Pooling) Compared to the version of the network described
by Simonyan and Zisserman (2015), we use a variant that replaces the final 2ˆ2 max
pooling layer before the first fully-connected layer with a global max pooling operation,
similar to the global average pooling used by Lin, Q. Chen, and Yan (2014) and
Szegedy, Liu, et al. (2015). We evaluated the accuracy of the baseline VGG-11 network
with global max-pooling (vgg-gmp) and without (vgg-11) on the two datasets. We
trained these networks at stride 1 on the ILSVRC dataset and at stride 2 on the larger
MIT Places dataset. This globally max-pooled variant of VGG-11 uses over 75% fewer
parameters than the original network and gives consistently better accuracy – almost 3
percentage points lower top-5 error on ILSVRC than the baseline VGG-11 network
on ILSVRC (see table 4.1). We used this network as the baseline for the rest of our
experiments.

Separable Filters To evaluate the separable filter approach described in section 4.2.2
(illustrated in fig. 4.2(b), we replaced each convolutional layer in VGG-11 with a se-
quence of two layers, the first containing horizontally-oriented 1ˆ3 filters and the
second containing vertically-oriented 3ˆ1 filters (vgg-gmp-sf). These filters applied
in sequence represent 3ˆ3 kernels using a low-dimensional basis space. Unlike Jader-
berg, Vedaldi, and Zisserman (2014), we trained this network from scratch instead of
approximating the full-rank filters in a previously trained network. Compared to the
original VGG-11 network, the separable filter version requires approximately 14% less
computation. Results are shown in table 4.1 for ILSVRC and table 4.2 for MIT Places.
Accuracy for this network is approx. 0.8% lower than that of the baseline vgg-11-gmp
network for ILSVRC and broadly comparable for MIT Places. This approach does
not give such a significant reduction in computational complexity as what follows, but
it is nonetheless interesting that separable filters are capable of achieving quite high
classification accuracy on such challenging tasks.

Simple Horizontal/Vertical Basis To demonstrate the efficacy of the simple low
rank filter representation illustrated in fig. 4.2c, we created a new network architecture
(vgg-gmp-lr-join) by replacing each of the convolutional layers in VGG-11 (original
filter dimensions were 3ˆ3) with a sequence of two layers. The first layer comprises
half 1ˆ3 filters and half 3ˆ1 filters whilst the second layer comprises the same number
of 1ˆ1 filters. The resulting network is approximately 49% faster than the original
and yet it gives broadly comparable accuracy (within 1 percentage point) for both the
ILSVRC and MIT Places datasets.
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Full-Rank Mixture An interesting question concerns the impact on accuracy of
combining a small proportion of 3ˆ3 filters with the 1ˆ3 and 3ˆ1 filters used in
‘vgg-gmp-lr-join’. To answer this question, we trained a network, vgg-gmp-lr-join-
wfull, with a mixture of 25% 3ˆ3 and 75% 1ˆ3 and 3ˆ1 filters, while preserving
the total number of filters of the baseline network (as illustrated in fig. 4.2(d)). This
network was significantly more accurate than both ‘vgg-gmp-lr-join’ and the baseline,
with a top-5 center crop accuracy of 89.7% on ILSVRC, with a computational saving
of approximately 16% over our baseline. We note that the accuracy is approx. 1
percentage point higher than GoogLeNet.

Implicitly Learned Combinations In addition, we try a network similar to vgg-
gmp-lr-join but without the 1ˆ1 convolutional layer (as shown in fig. 4.2(c)) used to
sum the contributions of 3ˆ1 and 1ˆ3 filters (vgg-gmp-lr). Interestingly, because
of the elimination of the extra 1ˆ1 layers, this gives an additional computational
saving such that this model is only 1{3 of the computation of our baseline, with no
reduction in accuracy. This seems to be a consequence of the fact that the subsequent
convolutional layer is itself capable of learning effective combinations of filter responses
even after the intermediate ReLU non-linearity.

We also trained such a network with double the number of convolutional filters
(vgg-gmp-lr-2x), i.e. with an equal number of 1ˆ3 and 3ˆ1 filters, or 2c filters as
shown in fig. 4.2(c). We found this to increase accuracy further (88.9% Top-5 on
ILSVRC) while still being approximately 58% faster than our baseline network.

Low-Dimensional Embeddings We attempted to reduce the computational com-
plexity of our ‘gmp-lr’ network further in the vgg-gmp-lr-lde network by using a
stride of 2 in the first convolutional layer, and adding low-dimensional embeddings, as in
Lin, Q. Chen, and Yan (2014) and Szegedy, Liu, et al. (2015). We reduced the number
of output channels by half after each convolutional layer using 1ˆ1 convolutional layers,
as detailed in tables 4.3 and 4.3. While this reduces computation significantly, by
approx. 86% compared to our baseline, we saw a decrease in top-5 accuracy on ILSVRC
of 1.2 percentage points. We do note however, that this network remains 2.5 percentage
points more accurate than the original VGG-11 network, but is 87% faster.

4.4.4 GoogLeNet for ILSVRC Object Classification

GoogLeNet, introduced by Szegedy, Liu, et al. (2015), is the most efficient network for
ILSVRC, getting close to state-of-the-art results with a fraction of the computation
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Table 4.4 GoogLeNet ILSVRC Results. Accuracy, multiply-accumulate count, and
number of parameters for the baseline GoogLeNet network and more efficient versions
created by the methods described in this chapter.

Network FLOPS ˆ109 Test Param. ˆ106 Top-1 Acc. Top-5 Acc.
GoogLeNet 1.59 5.97 0.677 0.883
lr 1.18 3.50 0.673 0.880
lr-conv1 0.84 3.42 0.659 0.870

and model size of even VGG-11. The GoogLeNet Inception module is a composite layer
of 5 homogeneously-shaped filters, 1ˆ1, 3ˆ3, 5ˆ5, and the output of a 3ˆ3 average
pooling operations. All of these are concatenated and used as input for successive
layers (see section 2.3.4).

For the googlenet-lr network, within only the Inception modules we replaced each
the 3ˆ3 filters with low-rank 3ˆ1 and 1ˆ3 filters, and replaced the layer of 5ˆ5 filters
with a set of low-rank 5ˆ1 and 1ˆ5 filters. For the googlenet-lr-conv1 network, we
similarly replaced the first and second layer convolutional layers with 7ˆ1 / 1ˆ7 and
3ˆ1 / 1ˆ3 layers respectively.

Results are shown in table 4.4, and fig. 4.8. GoogLeNet uses intermediate losses and
fully connected layers only at training time, at test time these are removed. Test-time
model size is thus significantly smaller than training time model size. Table 4.4 also
reports test-time model size. The low-rank network delivers comparable classification
accuracy using 26% less compute. No other networks produce comparable accuracy
within an order of magnitude of compute. We note that although the Caffe pre-trained
GoogLeNet model (Jia et al., 2014) has a top-5 accuracy of 0.889, our training of the
same network using the given model definition, including the hyper-parameters and
training schedule, but a different random initialization had a top-5 accuracy of 0.883.

4.4.5 NiN for CIFAR-10 Object Classification

The CIFAR-10 dataset consists of 60,000 32 ˆ 32 images in 10 classes, with 6000
images per class. This is split into standard sets of 50,000 training images, and 10,000
test images (Krizhevsky, 2009). As a baseline for the CIFAR-10 dataset, we used
the NiN architecture (Lin, Q. Chen, and Yan, 2014), which has a published test-set
error of 8.81%. We also used random crops during training, with which the network
has an error of 8.1%. Like most state-of-the-art CIFAR results, this was with ZCA
pre-processed training and test data (I. J. Goodfellow et al., 2013), training time mirror
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Fig. 4.8 GoogLeNet ILSVRC Results. Multiply-accumulate operations vs. top-5
error for GoogLeNet-derived models on ILSVRC object classification dataset.

Table 4.5 NiN CIFAR-10 Results. Accuracy, multiply-accumulate operations, and
number of parameters for the baseline NiN model and more efficient versions created
by the methods described in this chapter.

Network FLOPS ˆ108 Param. ˆ105 Accuracy
NiN 1.93 9.67 0.9188
nin-c3 1.43 7.74 0.9186
nin-c3-lr 1.04 4.38 0.9178

augmentation and random sub-crops. The results of our CIFAR experiments are listed
in table 4.5 and plotted in fig. 4.9.

This architecture uses 5ˆ5 filters in some layers. We found that we could replace
all of these with 3ˆ3 filters, with comparable accuracy. As suggested by Simonyan
and Zisserman (2015), stacked 3ˆ3 filters have the effective receptive field of larger
filters with less computational complexity. In this nin-c3 network, we replaced the
first convolutional layer with one 3ˆ3 layer, and the second convolutional layer with
two 3ˆ3 layers. This network is 26% faster than the standard NiN model, with only
54% of the model parameters. Using our low-rank filters in this network, we trained the
nin-c3-lr network, which is of similar accuracy (91.8% vs. 91.9%) but is approximately
54% of the original network’s computational complexity, with only 45% of the model
parameters.

4.4.6 Comparing with ILSVRC State-of-the-Art Networks

Figures 4.10 and 4.11 compare published top-5 ILSVRC validation error vs. multiply-
accumulate operations and number of model parameters (respectively) for several
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Fig. 4.9 NiN CIFAR-10 Results. Multiply-accumulate operations vs. error for NiN
derived models on CIFAR-10 object classification dataset.

state-of-the-art networks (He et al., 2015; Simonyan and Zisserman, 2015; Szegedy, Liu,
et al., 2015). The error rates for these networks are only reported as obtained with dif-
ferent combinations of computationally expensive training and test-time augmentation
methods, including scale, photometric, ensembles (multi-model), and multi-view/dense
oversampling. This can make it difficult to compare model architectures, especially
with respect to computational requirements.

State-of-the-art networks, such as MSRA-C2, VGG-19 and oversampled GoogLeNet
are orders of magnitude larger in computational complexity than our networks. From
fig. 4.10, where the multiply-accumulate operations are plotted on a log scale, increasing
the model size and/or computational complexity of test-time augmentation of CNNs
appears to have diminishing returns for decreasing validation error. Our models without
training or test-time augmentation show comparable accuracy to networks such as
VGG-13 with training and test-time augmentation, while having far less computational
complexity and a smaller model size. In particular, the ‘googlenet-lr’ model has a much
smaller test-time model size than any network of comparable accuracy.

4.5 Discussion

This chapter has presented a method to train CNN from scratch using low-rank filters.
This is made possible by a new way of initializing the network’s weights which takes into
consideration the presence of differently shaped filters in composite layers. Validation
on image classification in three popular datasets confirms similar or higher accuracy
than the state-of-the-art models, with much greater computational efficiency.

2at the time of these experiments.
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Table 4.6 State-of-the-Art Single Models with Extra Augmentation. Top-5
ILSVRC validation accuracy, single view and augmented test-time FLOPS (multiply-
accumulate) count, and number of parameters for various state-of-the-art models with
various training and test-time augmentation methods. A multi-model ensemble of
MSRA-C is the current state-of-the-art network.

Real Name FLOPS ˆ109 FLOPS w/ Aug. ˆ109 Param. ˆ107 Top-5 Acc.
MSRA-C 53.46 107.17 33.06 0.943
MSRA-B 23.22 46.54 18.33 0.937
MSRA-A 19.06 38.20 17.80 0.935
VGG-E 19.63 39.30 14.37 0.910
VGG-D 15.47 30.97 13.84 0.912
VGG-C 11.77 23.57 13.36 0.906
VGG-B 11.31 22.64 13.30 0.901
VGG-A 7.61 15.24 13.29 0.895
GoogLeNet 1.59 15.91 1.34 0.909
GoogLeNet 1.59 229.11 1.34 0.921
ResNet-50 3.86 3.86 2.55 0.916
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It is somewhat surprising that networks based on learning filters with less represen-
tational ability are able to do as well, or better, than CNNs with full kˆk filters on the
task of image classification. However, a lot of interesting small-scale image structure
is well-characterized by low-rank filters, e.g. edges and gradients. Our experiments
training a separable (rank-1) model (‘vgg-gmp-sf’) on ILSVRC and MIT Places show
surprisingly high accuracy on what are considered challenging problems — approx.
88% top-5 accuracy on ILSVRC — but not enough to obtain comparable accuracies to
the models on which they are based.

Given that most discriminative filters learned for image classification appear to
be low-rank, we instead structure our architectures with a set of basis filters in the
way illustrated in fig. 4.2(d). This allows our networks to learn the most effective
combinations of complex (e.g. kˆk) and simple (e.g. 1ˆk, kˆ1) filters. Furthermore, in
restricting how many complex spatial filters may be learned, this architecture prevents
overfitting, and helps improve generalization. Even in our models where we do not use
square kˆk filters, we obtain comparable accuracies to the baseline model, since the
rank-2 cross-shaped filters effectively learned as a combination of 3ˆ1 and 1ˆ3 filters
are capable of representing more complex local pixel relations than rank-1 filters.

Recent advances in state-of-the-art accuracy with CNNs for image classification
have come at the cost of increasingly large and computationally complex models. We
believe our results to show that learning computationally efficient models with fewer,
more relevant parameters, can prevent overfitting, increase generalization and thus
also increase accuracy.





5

Inter-Filter Connectivity

“The marvelous powers of the brain emerge not from any single, uniformly
structured connectionist network but from highly evolved arrangements of smaller,
specialized networks which are interconnected in very specific ways.”

– Marvin Minsky, Prologue: A View from 1988, Perceptrons

With few exceptions, state-of-the-art CNNs for image recognition are largely mono-
lithic, with each filter operating on the feature maps of all filters on a previous layer.
Interestingly, this is in stark contrast to what we understand of biological neural
networks, where we see “highly evolved arrangements of smaller, specialized networks
which are interconnected in very specific ways” (Minsky and Papert, 1988).

Yet it has been shown that a large proportion of the learned weights in DNNs are
redundant (Denil et al., 2013), a property that has been widely exploited to make neural
networks smaller and more computationally efficient (Denton et al., 2014; Szegedy,
Liu, et al., 2015). A carefully designed sparse network connection structure can have
a regularizing effect. CNNs (Fukushima, 1980; LeCun, Bottou, et al., 1998) embody
this idea, using a sparse convolutional connection structure to exploit the locality of
natural image structure. In consequence, they are easier to train.

In chapter 4 learning a low-rank spatial basis for filters was found to improve
generalization while reducing the computational complexity and model size of a CNN
with only full rank filters. However, this work addressed only the spatial extents of
the convolutional filters (i.e. h and w in fig. 5.1(a)). In this work we will show that a
similar idea can be applied to the channel extents — i.e. filter inter-connectivity — by
using filter groups (Krizhevsky, Sutskever, and Geoffrey E. Hinton, 2012).

In this chapter we show that simple alterations to the architecture of state-of-the-
art CNNs for image recognition can drastically reduce computational cost and model
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size while maintaining (or even increasing) accuracy, through a novel structural prior
reducing the connectivity in monolithic networks to reflect more closely the sparse,
localized filter co-dependencies within a trained network.

5.1 Related Work

Most previous work on reducing the computational complexity of CNNs has focused
on approximating convolutional filters in the spatial (as opposed to the channel)
domain, either by using low-rank approximations (Jaderberg, Vedaldi, and Zisserman,
2014; Lebedev et al., 2015; Mamalet and Garcia, 2012; Rigamonti et al., 2013), or
Fourier transform based convolution (Mathieu, Henaff, and LeCun, 2014; Rippel,
Snoek, and Adams, 2015). More general methods have used reduced precision number
representations (Gupta et al., 2015) or compression of previously trained models (W.
Chen et al., 2015; Kim et al., 2016). Here we explore methods that reduce the
computational impact of the large number of filter channels within state-of-the art
networks. Specifically, we consider decreasing the number of incoming connections to
neurons.

AlexNet Filter groups Amongst the seminal contributions made by Krizhevsky,
Sutskever, and Geoffrey E. Hinton (2012) is the use of ‘filter groups’ in the convolutional
layers of a CNN (see fig. 5.1). While their use of filter groups was necessitated by
the practical need to sub-divide the work of training a large network across multiple
GPUs, the side effects are somewhat surprising. Specifically, the authors observe that
independent filter groups learn a separation of responsibility (colour features vs. texture
features) that is consistent over different random initializations. Also surprising, and
not explicitly stated by Krizhevsky, Sutskever, and Geoffrey E. Hinton (2012), is
the fact that the AlexNet network has approximately 57% fewer connection weights
than the corresponding network without filter groups. This is due to the reduction in
the input channel dimension of the grouped convolution filters (see fig. 5.2). Despite
the large difference in the number of parameters between the models, both achieve
comparable accuracy on ILSVRC — in fact the smaller grouped network gets « 1%
lower top-5 validation error. This paper builds upon these findings and extends them
to state-of-the-art networks.

Low-dimensional Embeddings Lin, Q. Chen, and Yan (2014) proposed a method
to reduce the dimensionality of convolutional feature maps. By using relatively cheap
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(a) Convolution

(b) Convolution with filter groups

Fig. 5.1 Convolutional Filter groups. (a) Convolutional filters (yellow) typically
have the same channel dimension c1 as the input feature maps (gray) on which they
operate. However, (b) with filter grouping, g independent groups of c2{g filters operate
on a fraction c1{g of the input feature map channels, reducing filter dimensions from
hˆwˆc1 to hˆwˆc1{g. This change does not affect the dimensions of the input
and output feature maps but significantly reduces computational complexity and the
number of model parameters.
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Fig. 5.2 AlexNet Performance and Filter Groups. Model Parameters vs. top-5
error for variants of the AlexNet model on ILSVRC image classification dataset. Models
with moderate numbers of filter groups have far fewer parameters, yet surprisingly
maintain comparable error.

‘1ˆ1’ convolutional layers (i.e. layers comprising d filters of size 1ˆ1ˆc, where d ă c),
they learn to map feature maps into lower-dimensional spaces, i.e. to new feature maps
with fewer channels. Subsequent spatial filters operating on this lower dimensional
input space require significantly less computation. This method is used in most state-
of-the-art networks for image classification to reduce computation (He et al., 2016a;
Szegedy, Liu, et al., 2015). Our method is complementary.

GoogLeNet In contrast to much other work, Szegedy, Liu, et al. (2015) propose a
CNN architecture that is highly optimized for computational efficiency. GoogLeNet
uses, as a basic building block, a mixture of low-dimensional embeddings (Lin, Q.
Chen, and Yan, 2014) and heterogeneously-sized spatial filters — collectively an
Inception module. There are two distinct forms of convolutional layers in the Inception
module, low-dimensional embeddings (1ˆ1) and spatial (3ˆ3, 5ˆ5). GoogLeNet keeps
large, expensive spatial convolutions (i.e. 5ˆ5) to a minimum by using few of these
filters, using more 3ˆ3 convolutions, and even more 1ˆ1 filters. The motivation
is that most of the convolutional filters respond to localized patterns in a small
receptive field, with few requiring a larger receptive field. The number of filters in
each successive Inception module increases slowly with decreasing feature map size, in
order to maintain computational performance. GoogLeNet is by far the most efficient
state-of-the-art network for ILSVRC, achieving near state-of-the-art accuracy with the
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Fig. 5.3 Learning a spatial basis for filters. Learning a linear combination of
mostly small, heterogeneously-sized spatial filters, as proposed in chapter 4. Note that
all filters operate on all c channels of the input feature map.

lowest computation/model size. However, we will show that even such an efficient and
optimized network architecture benefits from our method.

Low-Rank Approximations Various authors have suggested approximating learned
convolutional filters using tensor decomposition (Jaderberg, Vedaldi, and Zisserman,
2014; Kim et al., 2016; Lebedev et al., 2015). For example, Jaderberg, Vedaldi, and
Zisserman (2014) propose approximating the convolutional filters in a trained network
with representations that are low-rank both in the spatial and the channel domains.
This approach significantly decreases computational complexity, albeit at the expense
of a small amount of accuracy. In this chapter we are not approximating an exist-
ing model’s weights but creating a new network architecture with explicit structural
sparsity, which is then trained from scratch.

Learning a Basis for Filters Our approach is connected with that presented in
chapter 4, where we showed that replacing 3ˆ3ˆc filters with linear combinations
of filters with smaller spatial extent (e.g. 1ˆ3ˆc, 3ˆ1ˆc filters, see fig. 5.3) could
reduce the model size and computational complexity of state-of-the-art CNNs, while
maintaining or even increasing accuracy. However, that work did not address the
channel extent of the filters.

5.2 Root Architectures

In this section we present the main contribution of our work: the use of novel sparsely-
connected architectures resembling tree roots — to decrease computational complexity
and model size compared to state-of-the-art DNNs for image recognition.
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Learning a Basis for Filter Dependencies It is unlikely that every filter (or
neuron) in a deep neural network needs to depend on the output of all the filters in
the previous layer. In fact, reducing filter co-dependence in DNNs has been shown
to benefit generalization. For example, Geoffrey E. Hinton, Srivastava, et al. (2012b)
introduced dropout for regularization of DNNs. When training a network layer with
dropout, a random subset of neurons is excluded from both the forward and backward
pass for each mini-batch. Furthermore, Cogswell et al. (2016) observe a correlation
between the covariance of hidden unit activations and overfitting. To explicitly reduce
the covariance of hidden activations, they train networks with a loss function, based
on the covariance matrix of the activations in a hidden layer.

Instead of using a modified loss, regularization penalty, or randomized network
connectivity during training to prevent co-adaption of features, we take a much more
direct approach. We use filter groups (see fig. 5.1) to force the network to learn filters
with only limited dependence on previous layers. Each of the filters in the filter groups
is smaller in the channel extent, since it operates on only a subset of the channels of
the input feature map.

This reduced connectivity also reduces computational complexity and model size
since the size of filters in filter groups are reduced drastically, as is evident in fig. 5.4.
Unlike methods for increasing the efficiency of DNNs by approximating pre-trained
existing networks (see section 5.1), our models are trained from random initialization
using stochastic gradient descent. This means that our method can also speed up
training and, since we are not merely approximating an existing model’s weights, the
accuracy of the existing model is not an upper bound on accuracy of the modified
model.

Root Module The basic element of our network architecture, a root module, is shown
in fig. 5.4. A root module has a given number of filter groups, the more filter groups,
the fewer the number of connections to the previous layer’s outputs. Each spatial
convolutional layer is followed by a low-dimensional embedding (1ˆ1 convolution).
Like in chapter 4, this configuration learns a linear combination of the basis filters
(filter groups), implicitly representing a filter of full channel depth, but with limited
filter dependence.
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(a) Convolution with d filters of shape h ˆ w ˆ c.

(b) Root-2 Module: Convolution with d filters in g “ 2 filter groups, of shape hˆw ˆc{2.

(c) Root-4 Module: Convolution with d filters in g “ 4 filter groups, of shape h ˆ w ˆ c{4.

Fig. 5.4 Root Modules. Root modules (b), (c) compared to a typical set of con-
volutional layers (a) found in ResNet and other modern architectures. Grey blocks
represent the feature maps over which a layer’s filters operate, while colored blocks
represent the filters of each layer.
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Table 5.1 NiN Root Architectures. Filter groups in each convolutional layer.

Model conv1 conv2 conv3
a b c a b c a b c

5ˆ5 1ˆ1 1ˆ1 5ˆ5 1ˆ1 1ˆ1 3ˆ3 1ˆ1 1ˆ1
Orig. 1 1 1 1 1 1 1 1 1
root-2 1 1 1 2 1 1 1 1 1
root-4 1 1 1 4 1 1 2 1 1
root-8 1 1 1 8 1 1 4 1 1
root-16 1 1 1 16 1 1 8 1 1

5.3 Results

Here we present image classification results obtained by replacing spatial convolu-
tional layers within existing state-of-the-art network architectures with root modules
(described in section 5.2) .

5.3.1 Improving NiN on CIFAR-10

NiN (Lin, Q. Chen, and Yan, 2014) is a near state-of-the-art network for CIFAR-
10 (Krizhevsky, 2009). It is composed of 3 spatial (5ˆ5, 3ˆ3) convolutional layers with
a large number of filters (192), interspersed with pairs of low-dimensional embedding
(1ˆ1) layers. As a baseline, we replicated the standard NiN network architecture as
described by Lin, Q. Chen, and Yan (2014) but used state-of-the-art training methods.
We trained using random 32ˆ32 cropped and mirrored images from 4-pixel zero-padded
mean-subtracted images, as used by I. J. Goodfellow et al. (2013) and He et al. (2016a).
We also used the initialization of He et al. (2015) and batch normalization (Ioffe and
Szegedy, 2015). With this configuration, ZCA whitening was not required to reproduce
validation accuracies obtained in (Lin, Q. Chen, and Yan, 2014). We also did not
use dropout, having found it to have little effect, presumably due to our use of batch
normalization, as suggested by Ioffe and Szegedy (2015).

To assess the efficacy of our method, we replaced the spatial convolutional layers of
the original NiN network with root modules (as described in section 5.2). We preserved
the original number of filters per layer but subdivided them into groups as shown
in table 5.1. We considered the first of the pair of existing 1ˆ1 layers to be part of
our root modules. We did not group filters in the first convolutional layer — since
it operates on the three-channel image space, it is of limited computational impact
compared to other layers. Results are shown in table 5.2 and fig. 5.5 for various network
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Fig. 5.5 NiN CIFAR-10 Results. Spatial filters (3ˆ3, 5ˆ5) are grouped hierarchi-
cally. The best models are closest to the origin. For the standard network, the mean
and standard deviation (error bars) are shown over 5 different random initializations.
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Table 5.2 NiN CIFAR-10 Results

Model FLOPS ˆ108 Param. ˆ105 Accuracy CPU (ms) GPU (ms)
Orig. 2.22 9.67 0.9211 39.0 0.623
root-2 1.64 7.37 0.9209 31.2 0.551
root-4 1.23 4.55 0.9202 27.6 0.480
root-8 1.03 3.15 0.9215 24.4 0.482
root-16 0.93 2.45 0.9167 23.0 0.475
tree-2 1.48 4.88 0.9185 31.4 0.541
tree-4 1.15 3.31 0.9147 29.1 0.535
tree-8 0.99 2.53 0.9171 25.7 0.500
tree-16 0.91 2.14 0.9168 20.6 0.512
col-2 1.53 5.71 0.9197 28.8 0.568
col-4 1.18 3.73 0.9200 26.1 0.536
col-8 1.01 2.73 0.9192 23.0 0.475
col-16 0.92 2.24 0.9120 22.8 0.494

architectures1. Compared to the baseline architecture, the root variants achieve a
significant reduction in computation and model size without a significant reduction in
accuracy. For example, the root-8 architecture gives equivalent accuracy with only 46%
of the FLOPS, 33% of the model parameters of the original network, and approximately
37% and 23% faster CPU and GPU timings (see section 5.4 for an explanation of the
GPU timing disparity).

Figure 5.6 shows the inter-layer covariance between the adjacent filter layers conv2c
and conv3a in the network architectures outlined in table 5.1 as evaluated on the
CIFAR training set. The block-diagonalization enforced by the filter group structure (as
illustrated in fig. 5.1) is visible, more so with larger number of filter groups. This shows
that the network learns an organization of filters such that the sparsely distributed
strong filter relations, visible in fig. 5.6(a) as brighter pixels, are grouped into a denser
block-diagonal structure, leaving a visibly darker, low-correlated background.

1Here (and subsequently unless stated otherwise) timings are per image for a forward pass computed
on a large batch. Networks were implemented using Caffe (with CuDNN v2 and MKL) and run on an
Nvidia Titan Z GPU and 2 10-core Intel Xeon E5-2680 v2 CPUs.
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Fig. 5.6 Inter-layer filter covariance conv2c–conv3a. The block-diagonal sparsity
learned by a root-unit is visible in the correlation of filters on layers conv3a and conv2c
in the NiN network as observed on the CIFAR-10 training data.
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Fig. 5.7 Covariance for between two layers in the root-32 NiN model with and without
whitened responses.

5.3.2 Inter-Layer Covariance

To show the relationships between filters between adjacent convolutional layers, as
illustrated in fig. 5.1(a), we calculate the covariance of the responses from two adjacent
feature maps, the outputs of convolutional layers with c1 and c2 filters.

Let X i “ rxi,1; xi,2; . . . ; xi,N s be the matrix of N samples xi,n from the ci dimensional
feature map for layer i. We consider each pixel across the two feature maps to be a
sample, and thus each vector xi,n is a single pixel filter response of dimension ci. If
two feature maps have different spatial dimensions, due to pooling, we up-sample the
smaller feature map (with nearest neighbor interpolation) such that there are the same
number of pixels (and thus samples) in each feature map.

Given two samples X1, X2 with zero mean (i.e. mean subtracted) for two adjacent
feature maps, we calculate the inter-layer covariance,

covarpX1, X2q “ E
”

X1 XT
2

ı

, (5.1)

“
1

N ´ 1X1 XT
2 . (5.2)

While this shows the covariance between layers, it is conflated with the inherent
covariances within X1 and X2 from the data (as shown in fig. 5.7(a)). We can more
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clearly show the covariance between layers by first whitening (using ZCA (Krizhevsky,
2009)) the samples in X1 and X2. For a covariance matrix,

covarpX, Xq “
1

N ´ 1XXT, (5.3)

The ZCA whitening transformation is given by,

W “
?

N ´ 1
´

XXT
¯´ 1

2 . (5.4)

Since the covariance matrix is symmetric, it is easily diagonalizable (i.e. PCA),

covarpX, Xq “
1

N ´ 1PDP T, (5.5)

(5.6)

where P is a orthogonal matrix and D a diagonal matrix. This diagonalization allows a
simplified calculation of the whitening transformation (see the derivation in Krizhevsky
(2009, Appendix A)),

W “
?

N ´ 1PD˝´ 1
2 P T, (5.7)

where D˝´ 1
2 is simply D with an element-wise power of ´1

2 .
The covariance between the whitened feature map responses is then,

covarpW1X1, W2X2q “ E
”

pW1X1q pW2X2q
T

ı

. (5.8)

Figure 5.8 shows the per-layer (intra-layer) filter correlation. This shows the correlation
of filters is more structured in root-networks, filters are learned to be linearly combined
into useful filters by the root module, and thus filters are often grouped together with
other filters with which they correlate strongly.

Figure 5.6 shows the inter-layer filter covariances between layers conv3a and conv2c.
Figure 5.10 shows the full set of inter-layer covariances between all convolutional layers
in the NiN models. Block-diagonal sparsity is visible on the layers with filter groups,
conv2a and conv3a. This block-diagonal is shown for all variants in more detail in
fig. 5.10.
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5.3.3 Grouping Degree with Network Depth

An interesting question concerns how the degree of grouping in our root modules
should be varied as a function of depth in the network. For the NiN-like architectures
described earlier, we might consider having the degree of grouping: (i) decrease with
depth after the first convolutional layer, e.g. 1–8–4 (‘root’); (ii) remain constant with
depth after the first convolutional layer, e.g. 1–4–4 (‘column’); or (iii) increase with
depth, e.g. 1–4–8 (‘tree’).

To determine which approach is best, we created variants of the NiN architecture
with different degrees of grouping per layer. Results are shown in fig. 5.5. The results
show that the so-called root topology (illustrated in fig. 5.12) gives the best performance,
providing the smallest reduction in accuracy for a given reduction in model size and
computational complexity. Similar experiments with deeper network architectures have
delivered similar results and so we have reported results for root topologies. This aligns
with the intuition of DNNs for image recognition subsuming the deformable parts
model. If we assume that filter responses identify parts (or more elemental features),
then there should be more filter dependence with depth, as more parts (filter responses)
are assembled into complex concepts.

5.3.4 Improving Residual Networks on ILSVRC

Residual networks (ResNets) (He et al., 2016a) are the state-of-the-art network for
ILSVRC. ResNets are more computationally efficient than the VGG architecture (Si-
monyan and Zisserman, 2015) on which they are based, due to the use of low-dimensional
embeddings (Lin, Q. Chen, and Yan, 2014). ResNets are also more accurate and quicker
to converge due to the use of identity mappings.

ResNet 50

As a baseline, we used the ResNet 50 model (He et al., 2016a) (the largest residual
network model to fit onto 8 GPUs with Caffe). ResNet 50 has 50 convolutional layers,
of which one-third are spatial convolutions (non-1ˆ1). We did not use any training
augmentation aside from random cropping and mirroring. For training, we used the
initialization scheme described by (He et al., 2015) modified for compound layers, as
presented in section 4.3, and batch normalization (Ioffe and Szegedy, 2015). To assess
the efficacy of our method, we replaced the spatial convolutional layers of the original
network with root modules (as described in section 5.2). We preserved the original
number of filters per layer but subdivided them into groups as shown in table 5.3. We
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Table 5.3 ResNet 50. Filter groups in each conv. layer.

Model conv1 res2{a–c} res3{a–d} res4{a–f} res5{a–c}
7ˆ7 1ˆ1 3ˆ3 1ˆ1 3ˆ3 1ˆ1 3ˆ3 1ˆ1 3ˆ3

Orig. 1 1 1 1 1 1 1 1 1
root-2 1 1 2 1 1 1 1 1 1
root-4 1 1 4 1 2 1 1 1 1
root-8 1 1 8 1 4 1 2 1 1
root-16 1 1 16 1 8 1 4 1 2
root-32 1 1 32 1 16 1 8 1 4
root-64 1 1 64 1 32 1 16 1 8

Table 5.4 ResNet 50 Results.

Model FLOPS ˆ109 Param.
ˆ107

Top-1 Acc. Top-5
Acc.

CPU (ms) GPU (ms)

Orig. 3.86 2.55 0.730 0.916 621 11.6
root-2 3.68 2.54 0.727 0.912 520 11.1
root-4 3.37 2.51 0.734 0.918 566 11.3
root-8 2.86 2.32 0.734 0.918 519 10.7
root-16 2.43 1.87 0.732 0.918 479 10.1
root-32 2.22 1.64 0.729 0.915 469 10.1
root-64 2.11 1.53 0.732 0.915 426 10.2

considered the first of the existing 1ˆ1 layers subsequent to each spatial convolution to
be part of our root modules. Results are shown in table 5.4 and fig. 5.13 for various
network architectures. Compared to the baseline architecture, the root variants achieve
a significant reduction in computation and model size without a significant reduction in
accuracy. For example, the best result (root-16) exceeds the baseline accuracy by 0.2%
while reducing the model size by 27% and floating-point operations (multiply-add) by
37%. CPU timings were 23% faster, while GPU timings were 13% faster. With a drop
in accuracy of only 0.1% however, the root-64 model reduces the model size by 40%,
and reduces the floating point operations by 45%. CPU timings were 31% faster, while
GPU timings were 12% faster.

ResNet 200

To show that the method applies to deeper architectures, we also applied our method to
ResNet 200, the deepest network for ILSVRC 2012. To provide a baseline we used code
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Fig. 5.13 ResNet-50 ILSVRC Results. Models with filter groups have fewer pa-
rameters, and less floating point operations, while maintaining error comparable to the
baseline.
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Table 5.5 ResNet-200 ILSVRC Results

Model FLOPS ˆ1012 Param. ˆ107 Top-1 Err. Top-5 Err.
Orig. 5.65 6.25 0.2196 0.0623
root-2 5.64 6.24 0.2168 0.0592
root-4 5.46 6.06 0.2194 0.0607
root-8 4.84 4.91 0.2205 0.0626
root-16 4.43 3.98 0.2187 0.0601
root-32 4.23 3.51 0.2207 0.0630
root-64 4.13 3.28 0.2210 0.0604
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Fig. 5.14 ResNet-200 ILSVRC Results. Models with filter groups have fewer
parameters, and less floating point operations, while maintaining error comparable to
the baseline.
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Table 5.6 GoogLeNet ILSVRC Results.

Model FLOPS
ˆ109

Param.
ˆ107

Top-1 Acc. Top-5 Acc. CPU (ms) GPU (ms)

Orig. 1.72 1.88 0.694 0.894 315 4.39
root-2 1.54 1.88 0.695 0.893 285 4.37
root-4 1.29 1.85 0.693 0.892 273 4.10
root-8 0.96 1.75 0.691 0.891 246 3.72
root-16 0.76 1.63 0.683 0.886 207 3.59

Table 5.7 GoogLeNet. Filter groups in each conv. layer and Inception module (incp.)

Model conv1 conv2 incp. 3{a,b} incp. 4{a–e} incp. 5{a,b}
7ˆ7 1ˆ1 3ˆ3 1ˆ1 3ˆ3 5ˆ5 1ˆ1 3ˆ3 5ˆ5 1ˆ1 3ˆ3 5ˆ5

Orig. 1 1 1 1 1 1 1 1 1 1 1 1
root-2 1 1 2 1 1 1 1 1 1 1 1 1
root-4 1 1 4 1 2 2 1 1 1 1 1 1
root-8 1 1 8 1 4 4 1 2 2 1 1 1
root-16 1 1 16 1 8 8 1 4 4 1 2 2

implementing full training augmentation to achieve state-of-the-art results2. Table 5.5
and fig. 5.14 show the results, top-1 and top-5 error are for center cropped images. The
models trained with roots have comparable or lower error, with fewer parameters and
less computation. The root-64 model has 27% fewer FLOPS and 48% fewer parameters
than ResNet 200.

5.3.5 Improving GoogLeNet on ILSVRC

We replicated the network as described by Szegedy, Liu, et al. (2015), with the exception
of not using any training augmentation aside from random crops and mirroring, as
supported by Caffe (Jia et al., 2014)). To train we used the initialization of (He et al.,
2015) modified for compound layers, as described in section 4.3 and batch normalization
without the scale and bias (Ioffe and Szegedy, 2015). At test time we only evaluate
the center crop image.

While preserving the original number of filters per layer, we trained networks
with various degrees of filter grouping, as described in table 5.7. While the Inception
architecture is relatively complex, for simplicity, we always use the same number of

2https://github.com/facebook/fb.resnet.torch

https://github.com/facebook/fb.resnet.torch
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groups within each of the groups of different filter sizes, despite them having different
cardinality. For all of the networks, we only grouped filters within each of the ‘spatial’
convolutions (3ˆ3, 5ˆ5).

As shown in table 5.6, and plotted in fig. 5.15, our method shows significant
reduction in computational complexity — as measured in FLOPS (multiply-adds),
CPU and GPU timings — and model size, as measured in the number of floating point
parameters. For many of the configurations the top-5 accuracy remains within 0.5%
of the baseline model. The highest accuracy result, is 0.1% off the top-5 accuracy of
the baseline model, but has a 0.1% higher top-1 accuracy — within the error bounds
resulting from training with different random initializations. While maintaining the
same accuracy, this network has 9% faster CPU and GPU timings. However, a model
with only 0.3% lower top-5 accuracy than the baseline has much higher gains in
computational efficiency — 44% fewer floating point operations (multiply-add), 7%
fewer model parameters, 21% faster CPU and 16% faster GPU timings.

While these results may seem modest compared to the results for ResNet, GoogLeNet
is by far the smallest and fastest near state-of-the-art model ILSVRC model. We
believe that more experimentation in using different cardinalities of filter grouping in
the heterogeneously-sized filter groups within each Inception module would improve
results further.

5.3.6 The Effect on Image-level Filters of Root Modules

In the ResNet root models, filter groups are used in conv2, directly after the image
level filters of conv1 some of the organization of filters can be directly observed, and
give us intuition as to what is happening in root networks. Figure 5.16 shows the conv0
filters learned for each of the ResNet 50 models. It is apparent that the filters learned
in these networks are very similar to those learned in the original model, although
sometimes inverted or with a different ordering. This ordering is somewhat consistent
in models with filter groups however, even with different random initializations. This
is because filter groups cause filters with strong mutual information to be grouped
adjacent to each other.

For example, in the root-8 network (fig. 5.16(d)), each row of filters corresponds
to the input of an independent filter group in conv2. We can see that the first row
primarily is composed of filters giving various directions of the same color gradient.
These filters can be combined in the next layer to produce color edges easily. Due
to the shortcut layer and the learned combinations of filters however, not all filter
groupings are so obvious.
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(d) CPU Forward Time vs. Top-5 Error.

Fig. 5.15 GoogLeNet ILSVRC Results. Models with filter groups have fewer
parameters, and less floating point operations, while maintaining error comparable to
the baseline.
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(a) Standard (b) Root-2

(c) Root-4 (d) Root-8

(e) Root-16 (f) Root-32

Fig. 5.16 ResNet 50 conv1 filters. With filter groups directly after conv1, in conv2,
some of the organization of filters can be directly observed, and give us intuition as to
what is happening in root networks.
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5.3.7 Layer-wise Compute/Parameter Savings

Figure 5.17 shows the difference in compute and parameters for each layer in a standard
ResNet 50 model and a root-64 variant. The layers in the original networks with the
highest computational complexity are clearly the spatial convolutional layers, i.e. layers
with 3ˆ3 spatial filters. When instead a root-module is used, the computational com-
plexity of these layers is reduced dramatically. While the low dimensional embedding
layers (1ˆ1) are not changed, these have less than half the compute of the spatial
convolution layers. The number of parameters in spatial convolution layers with large
numbers of input channels, which increase towards the end of the network, are similarly
reduced.

5.4 GPU Implementation

Our experiments show that our method can achieve a significant reduction in CPU and
GPU runtimes for state-of-the-art CNNs without compromising accuracy. However,
the reductions in GPU runtime were smaller than might have been expected based
on theoretical predictions of computational complexity (FLOPs). We believe this is
largely a consequence of the optimization of Caffe for existing network architectures
(particularly AlexNet and GoogLeNet) that do not use a high degree of filter grouping.

Caffe presently parallelizes over filter groups by using multiple CUDA streams to
run multiple CuBLAS matrix multiplications simultaneously. However, with a large
degree of filter grouping, and hence more, smaller matrix multiplications, the overhead
associated with calling CuBLAS from the host can take approximately as long as
the matrix computation itself. To avoid this overhead, CuBLAS provides batched
methods (e.g. cublasXgemmBatched), where many small matrix multiplications can
be batched together in one call. Jhurani and Mullowney (2015) explore in depth
the problem of using GPUs to accelerate the multiplication of very small matrices
(smaller than 16ˆ16), and show it is possible to achieve high throughput with large
batches, by implementing a more efficient interface than that used in the CuBLAS
batched calls. We have modified Caffe to use CuBLAS batched calls, and achieved
significant speedups for our root-like network architectures compared to vanilla Caffe
without CuDNN, e.g. a 25% speed up on our root-16 modified version of the GoogleNet
architecture. However, our optimized implementation still is not as fast as Caffe with
CuDNN (which was used to generate the results in this chapter), presumably because
of other unrelated optimizations in the (proprietary) CuDNN library. Therefore we
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suggest that direct integration of CuBLAS-style batching into CuDNN3 could improve
the performance of filter groups significantly.

5.5 Discussion

We explored the effect of using complex hierarchical arrangements of filter groups in
CNNs and show that imposing a structured decrease in the degree of filter grouping
with depth — a ‘root’ (inverse tree) topology — can allow us to obtain more efficient
variants of state-of-the-art networks without compromising accuracy. Our method
appears to be complementary to existing methods, such as low-dimensional embeddings,
and can be used more efficiently to train DNNs than methods that only approximate a
pre-trained model’s weights.

We validated our method by using it to create more efficient variants of state-
of-the-art NiN, Googlenet, and ResNet architectures, which were evaluated on the
CIFAR-10 and ILSVRC datasets. Our results show comparable accuracy with the
baseline architecture with fewer parameters and much less compute (as measured by
CPU and GPU timings). For NiN on CIFAR-10, our model has 47% of the parameters
of the original network, and approximately 22% faster CPU and GPU timings. For
ResNet 50, our model has 27% fewer parameters, and was 24% (11%) faster on a CPU
(GPU). For ResNet 200 our model has 27% fewer FLOPS and 48% fewer parameters.
Even for the most efficient of the near state-of-the-art ILSVRC network, GoogLeNet,
our model uses 7% fewer parameters and is 21% (16%) faster on a CPU (GPU). Even
for the most efficient of the near state-of-the-art ILSVRC network, GoogLeNet, our
model uses 7% fewer parameters and is 21% (16%) faster on a CPU (GPU).

3note that in August 2017, approximately a month before the submission of this disseration, the
latest version of CuDNN, version 7, now supports the acceleration of filter groups.
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Conditional Connectivity

“. . . the simplest most robust network which accounts for a data set will, on
average, lead to the best generalization to the population from which the training
set has been drawn”
– David Rumelhart, in personal communication with Hanson and Pratt, 1987

The ideal discriminative model desired for most tasks would have all the advantages
of both neural networks and decision forests, and none of the weaknesses. It would have
good generalization with computational efficiency, lend itself to semantic understanding
and yet have sufficient functional complexity to solve complex problems. Different
tasks require different assumptions however, and hence different model types, but it is
rare that either one of these models in itself exhibits a clear and distinct advangtage in
all aspects over the other for a particular task — yet we are limited to choosing one or
the other in practice.

In this chapter we intend to explore the continuum of discriminative models that
exist between decision forests and neural networks, to try to find such a balance.
We will explore the theory and applications behind such models, with a focus on
contemporary problems such as object class recognition, i.e. the ImageNet ILSVRC
challenge which has been the focus of much of the recent work on deep learning.

6.1 On Methods of Discriminative Classification

Two methods of discriminative classification, Neural Networks and Decision Forests,
have recently dominated the field of Computer Vision. Deep neural networks have
even replaced the research in local features (e.g. SIFT), providing end-to-end learning
from pixels to output (Yi et al., 2016). Much work has been done on improving
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both methods and exploring their applications — with academic and even commercial
success. For example, decision forests are used to find the body pose of a person with
the Kinect (Shotton et al., 2011) used in game consoles. Deep CNNs on the other
hand have recently surpassed human accuracy on what was considered one of the most
challenging outstanding problems in computer vision, object class recognition (He et al.,
2015), and are already finding their ways into applications such as Google Photos1.
However, the important fact that these two methods are related often seems to be
all but forgotten. Sethi (1990) showed that any decision tree can be represented as a
neural network with one hidden layer, however the converse does not necessarily hold
true.

Despite this fundamental relationship, decision forests and neural networks have
such distinct and mutually exclusive strengths and weaknesses that it is not surprising
that they are themselves usually considered to be distinct. Decision forests require
vast amounts of labelled data, proportional to the number of classes and tree depth,
since samples are “diluted” down the tree, while, with appropriate regularization,
neural networks can be trained with far more parameters than actual samples. At test
time, neural networks are opaque giving little understanding, while decision forests are
more intuitive — each node having an explicit decision on the input data and even
describe per-class statistics. The routing of decision forests makes it easy to distribute
computation, while the high connectivity of neural networks makes model parallelism
difficult and inefficient. Decision forests are extremely fast at test time due to sample
routing, only a small part of a tree need be computed, i.e. conditional computation.
Neural networks must, on the other hand, computation the response at every node,
even if many of these responses are approximately zero or not useful to the final output.

6.2 Generalizing DNNs and Decision Trees

Here we explore the continuum of models between decision forests, with the objective
of reducing the connectivity of deep neural networks trained with backpropagation,
specifically CNNs, while retaining some of the efficiency and understanding which arise
from the conditional computation in decision forests.

Towards this objective, we generalize neural networks and decision trees intuitively
by using a new graphical notation for representing both. This notation isolates the

1http://photos.google.com

http://photos.google.com
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Fig. 6.1 Block-diagonal correlation of activations, and data routing. (a) An
example 2-layer preceptron with ReLU activations. This is a portion of the ‘VGG’
model Simonyan and Zisserman, 2015 trained on Imagenet. (b) The correlation matrix
Λ12 shows unstructured activation correlation between unit pairs. (c) Reordering
the units reveals a noisy, block-diagonal structure. (e) Zeroing-out the off-diagonal
elements is equivalent to removing connections between unit pairs. This corrsponds to
the sparser, routed perceptron in (d).

differences between the two models, such that we can represent a hybrid model, i.e. a
Conditional Network, compactly2.

6.3 Structured Sparsity and Data Routing

The seminal work in Krizhevsky, Sutskever, and Geoffrey E. Hinton, 2012 demonstrated
how introducing rectified linear unit activations (ReLUs) allows deep CNNs to be trained
effectively. Given a scalar input vj, its ReLU activation is σpvjq “ maxp0, vjq. Thus,
this type of non-linearity switches off a large number of feature responses within a
CNN. ReLU activations induce a data-dependent sparsity; but this sparsity does not
tend to have much structure in it. Enforcing a special type of structured sparsity is
at the basis of the efficiency gain attained by conditional networks. We illustrate this
concept with a toy example.

The output of the exemplar multi-layer perceptron (MLP) of fig. 6.1a is computed
as v2 “ σpP12v1q “ σpP12σpP01v0qq. Given a trained MLP we can look at the average

2This notation itself was created by Dr. Antonio Criminisi, and is not a contribution of this
dissertation. Some figures are used with the permission of Dr. Antonio Criminisi/Microsoft Research.
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correlation of activations between pairs of units in two successive layers, over all training
data. For example, the matrix Λ12 (fig. 6.1b) shows the joint correlations of activations
in layers 1 and 2 in a perceptron trained on the Imagenet classification task.3 Here we
use the final two layers of the deep CNN model of Simonyan and Zisserman, 2015 with
a reduced number of features (250) and classes (350) to aid visualization.

Thanks to the ReLUs, the correlation matrix Λ12 has many zero-valued elements
(in white in fig. 6.1b), and these are distributed in an unstructured way. Reordering the
rows and columns of Λ12 reveals an underlying, noisy block-diagonal pattern (fig. 6.1c).
This operation corresponds to finding groups of layer-1 features which are highly
active for certain subsets of classes (indexed in layer-2). Thus, the darker blocks
in Fig. fig. 6.1c correspond to three super-classes (sets of ‘related’ classes). Zeroing
out the off-diagonal elements (Fig. fig. 6.1e) corresponds to removing connections
between corresponding unit pairs. This yields the sparse architecture in Fig. fig. 6.1d,
where selected subsets of the layer-1 features are sent (after transformation) to the
corresponding subsets of layer-2 units; thus giving rise to data routing.

We have shown how imposing a block-diagonal pattern of sparsity to the joint
activation correlation in a neural network corresponds to equipping the network with
a tree-like, routed architecture. Next section will formalize this intuition further and
show the benefits of sparse architectures.

6.4 A New Graphical Notation

The proposals we will make require a re-interpretation of existing classification models,
that is neural networks and decision trees, but standard graphical diagrams for both
of these models hides the implicit functional similarities on which we will build our
models, and are instead connection-centric — focused on showing the connectivity
of the models rather than the underlying data transformations. As such, before we
are able to explain the concept of a conditional network, a new graphical language is
proposed.

6.4.1 Neural Networks

The standard depiction of a neural network with one hidden layer is shown in fig. 6.2(a),
where each of the layers is fully-connected, and these connecting weights are illustrated
as lines between the neurons represented as circles. While this image illustrates the

3The correlation matrix Λ12 is not the same as the weight matrix P12.
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(a) Standard diagram of a neural network
with one hidden layer.

node

unit

(b) New notation showing transformation
between layers explicitly.

Fig. 6.2 The proposed compact graphical notation for neural networks. Non-
linear transformations in a standard neural network with one hidden layer are indicated
by the projection matrix P between the two layers, followed by a generic non-linearity,
represented with the symbol ≀. ©Antonio Criminisi, used with permission.

connectivity of the model, it assumes the function of the neurons themselves to be
known or otherwise described. In fig. 6.2(b) we use a different notation to show both
connectivity and function of each layer, with the assumption that all nodes on a
particular layer have the same function.

In this simple example of a fully-connected neural network, between layers i and j,
every node outputs the non-linear transformation, vj “ σpPviq, a composition of the
non-linear function σ (e.g. a ReLU or sigmoid) and the projection of the input units
with a projection matrix P, which includes the bias term in homogeneous coordinates.
We denote this operation explicitly as Pij≀, where Pij is the projection matrix and
≀ represents a non-linearity. In short Pij≀ denotes the standard neural net layer’s
non-linear transformation vj “ σpPviq.

CNNs typically include layers with pooling operations (e.g. GAP), or local response
normalization. Any of these operations may also be represented by the function σ.

6.4.2 Decision Trees and Random Forests

This graphical language may also represent decision trees, also typically depicted in a
connection-centric graphical diagram as shown in fig. 6.5(a). Decision trees typically
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New  notation Algebraically

The  bias  is  incorporated  within  the
Homogeneous  notation  for  simplicity

Generic  non-linearity

(a) Generic projection with non-linearity, typically found in neural networks.
Algebraically
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(b) Identity projection with identity function, typically found in decision trees.
Algebraically
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(c) Selection projection, found in random forests.

Fig. 6.3 The proposed compact graphical notation for various types of pro-
jection in a conditional network. ©Antonio Criminisi, used with permission.
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Fig. 6.4 The proposed compact graphical notation for a “decision stump”.

copy, or reference, samples from the root of the tree down to the leaf (or leaves) without
transformation. This is notably in contrast with representation learning approaches,
such as neural networks, which try to learn optimal data transformations during
training with a full projection matrix, as illustrated in fig. 6.3(a). There have, however,
been attempts to incorporate representation learning within decision forests (Bulò and
Kontschieder, 2014; Montillo et al., 2011). The copying of the sample may also be
considered as a special case of the transformation vj “ σpPviq, where the projection is
the identity matrix Pij “ I, and the function σ is the identity function σpviq “ vi. As
such, we use the identity I in our graphical language to denote the routing between
each tree level. This is explained graphically in fig. 6.3(b).

Random forests consist of a number of decision trees, each of which is applied to
a restricted number of the input feature dimensionality. It may not be immediately
obvious how this is represented in our new graphical language, but in fact a simple
extension of the above theme represents selection — i.e. an identity matrix of reduced
rank, as illustrated in fig. 6.3(c).

6.4.3 Explicit Routing

We are still missing the method of conditional computation found in decision trees in
our graphical language however, i.e. how the decision is made to route each sample at
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(a) Standard diagram of a decision
tree. (b) New explicit graphical notation.

Fig. 6.5 The proposed compact graphical notation for a full decision tree.
©Antonio Criminisi, used with permission.

a node. We must generalize two forms of routing found in decision trees, hard routing
where samples are only routed to one node in the next layer, and soft routing where a
weighted sample is potentially sent to every node of the next layer.

We achieve this with the minor addition of a new set of nodes we call routers. A
router consists of K weights for a K-ary node or tree, as shown in fig. 6.4. These
router weights themselves are determined in a way more reminiscent of a neuron’s
activation function, typically a non-linear transformation of the sample. Thus this is
represented in the same graphical notation as the mapping between neural network
layers, i.e. as Pij≀. Figure 6.5(b) shows the same tree as shown in fig. 6.5(a), notably
with the routers highlighted in red. Typically a router will have a number of non-zero
weights and perform soft routing, however if only one of the router weights is non-zero,
the router effects hard routing.

6.4.4 Implicit Routing

It is in fact possible for networks to learn a conditional routing of data without an
explicit router. We call this form of conditional routing implicit routing vs. explicit
routing, where a router is used.
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…

…

…

…

router

(a) Explicitly routed network.

…

…

…

…

(b) Implcitly routed network.

Fig. 6.6 Explicit vs. implicitly routed networks. ©Antonio Criminisi, used with
permission.

In an explicitly routed network, the routes are trained by combining the routes
before the training loss. For example, in fig. 6.6(a) the input to layer v2, y1, is a linear
combination of the routes weighted by the router weights, represented by ` operator,

y1 “

!

yj
1

)

@j ` r “
ÿ

j

rjσ
´

P jvj
1

¯

. (6.1)

For an implicitly routed network instead a (non-weighted) linear combination
is followed by a single fully-connected layer, i.e. inner product and ReLU, i.e. for
fig. 6.6(b), the output of v2, is simply,

y1 “ max

¨

˝0,
ÿ

j

vj
1σpP jv0q

˛

‚. (6.2)

6.4.5 Conditional Networks

The generalization, a conditional network, mixes elements of both of these models.
Conditional networks may perform arbitrary projections of samples, and use arbitrary
non-linear functions. Conditional networks may route samples with a soft or hard
router in some or all of the layers, they may select some of all of the input feature
space.
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Fig. 6.7 A generic conditional network. Conditional networks fuse efficient data
routing with accurate data transformation in a single model. Vector concatenations
are denoted with ‘.

6.4.6 Computational Efficiency

Efficiency through explicit data routing. Split nodes can have explicit routers
where data is conditionally sent to the children according to the output of a routing
function (e.g. node 2 in fig. 6.7), or have implicit routers where the data is uncondi-
tionally but selectively sent to the children using selection matrices S (e.g. node 1).
If the routing is explicit and hard (like in trees), then successive operations will be
applied to ever smaller subsets of incoming data, with the associated compute savings.
Next we show how implicit conditional networks can also yield efficiency.

Efficiency of implicit routed networks. fig. 6.8 compares a standard CNN with
a 2-routed architecture. The total numbers of filters at each layer is fixed for both
to c1, c2 and c3. The number of multiplications necessary in the first convolution
is c2 ˆ c1kxkyWH, with W , H the size of the feature map and kx, ky the kernel size
(for simplicity here we ignore max-pooling operations). This is the same for both
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Fig. 6.8 Computational efficiency of implicit conditional networks. (top) A
standard CNN (one route). (bottom) A two-routed architecture with no explicit
routers. The larger boxes denote feature maps, the smaller ones the filters. Due to
branching, the depth of the second set of kernels (in yellow) changes between the two
architectures. The reduction in kernel size yields fewer computations and thus higher
efficiency in the branched network.

architectures. However, due to routing, the depth of the second set of filters is different
between the two architectures. Therefore, for the conventional CNN the cost of the
second convolution is c3 ˆ c2kxkyWH, while for the branched architecture the cost is
c3 ˆ

`

c2
2

˘

kxkyWH, i.e. half the cost of the standard CNN. The increased efficiency is
due only to the fact that shallower kernels are convolved with shallower feature maps.
Simultaneous processing of parallel routes may yield additional time savings.4

6.4.7 Back-propagation Training

Implicitly-routed conditional networks can be trained with the standard back-propagation
algorithm Krizhevsky, Sutskever, and Geoffrey E. Hinton, 2012; Szegedy, Liu, et al.,
2015. The selection functions S become extra parameters to optimize over, and their
gradients can be derived straightforwardly. Now we show that explicitly-routed net-
works can also be trained using back-propagation. To do so we need to compute partial
derivatives with respect to the router’s parameters (all other differentiation operations
are as in conventional CNNs). We illustrate this using the small network in fig. 6.9.

4Feature not yet implemented in Caffe Jia et al., 2014.
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Here subscripts index layers and superscripts index routes (instead, in fig. 6.7 the
subscripts indexed the input and output nodes). The training loss to be minimized is

Lpθq “
1
2

`

v2pθq ´ v˚
2
˘J `

v2pθq ´ v˚
2
˘

, (6.3)

with θ “ ttPju, PRu denoting the parameters of the network, and v˚
2 the ground-truth

assignments to the output units. We define this energy for a single training data point,
though the extension to a full dataset is a trivial outer summation. The network’s
forward mapping is

vj
1 “ σ

´

Pjv0

¯

and v2pθq “ rpθq V1pθq, (6.4)

with r “ σ
`

PRv0
˘

the output of the router. In general: i) the routing weights r are
continuous, rpiq P r0, 1s, and ii) multiple routes can be “on” at the same time. V1 is a
matrix whose j-th row is pvj

1qJ. The update rule is ∆θt`1 :“ ´ρ BE
Bθ

ˇ

ˇ

ˇ

t
, with t indexing

iterations. We compute the partial derivatives through the chain rule as follows:

BL

Bθ
“

BL

Bv2

Bv2

Bθ
“

BL

Bv2

¨

˝

Br
BPR V1 `

R
ÿ

j“1
rpjq

Bvj
1

Bϕj

Bϕj

BPj

˛

‚, (6.5)

with ϕj :“ Pjv0, and R the number of routes. eq. (6.5) shows the influence of the
soft routing weights on the back-propagated gradients, for each route. Thus, explicit
routers can be trained as part of the overall back-propagation procedure. Since trees
and DAGs are special instances of conditional networks, now we have a recipe for
training them via back-propagation (cf . Kontschieder et al., 2015; Schulter et al., 2013;
Suárez and Lutsko, 1999).

In summary, conditional networks may be thought of as:

1. Decision trees/DAGs which have been enriched with (learned) data transformation
operations, or as

2. CNNs with rich, DAG-shaped architectures and trainable data routing functions.
Next, we show efficiency advantages of such branched models with comparative
experiments.
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Fig. 6.9 Training a network’s routers via back-propagation. A toy conditional
network used to illustrate how to train the router’s parameters PR via gradient descent
back-propagation.

6.5 Results

6.5.1 Conditional Sparsification of a Perceptron

We begin with a toy experiment, designed to illustrate potential advandages of using
explicit routes within a neural network. We take a perceptron (the last layer of
“VGG11” Simonyan and Zisserman, 2015) and train it on the 1,000 Imagenet classes,
with no scale or relighting augmentation Jia et al., 2014. Then we turn the perceptron
into a small tree, with R routes and an additional, compact perceptron as a router
(see fig. 6.10a). The router PR

8 and the projection matrices Pi
8 are trained to minimize

the overall classification loss (section 6.4.7).

Interpolating between trees and CNNs. Given a test image we apply the con-
volutional layers until the beginning of the tree. Then we apply the router, and its
R outputs are soft-max normalized and treated as probabilities for deciding which
route/s to send the image to. We can send the image only to the highest probability
route only (as done in trees) or we could send it to multiple routes, e.g. the τ most
probable ones. For τ “ 1 we reproduce the behaviour of a tree. This corresponds to
the left-most point in the curves in fig. 6.10b (lowest cost and higher error). Setting
τ “ R corresponds to sending the image to all routes. The latter reproduces the same
behaviour as the CNN, with nearly the same cost (lowest error and highest compute
cost point in the curves). Different values of τ P t1, . . . , Ru correspond to different
points along the error-cost curves.
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Fig. 6.10 Conditional sparsification of a single-layer perceptron. (a) We take
the deep CNN model in Simonyan and Zisserman, 2015 (‘VGG11’) and turn the last
fully connected layer (size 4095 ˆ 1000) into a tree with R routes (R “ 4 shown in
figure). (b) The top-5-error vs. test-time-cost curves for six conditional networks
trained with different values of R P t2, 4, 6, 8, 16, 24, 32u. Test-time cost is computed
as number of floating point operations per image, and is hardware-independent. The
strong sub-linear shape of the curves indicates a net gain in the trade-off between
accuracy and efficiency.
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Dynamic accuracy-efficiency trade-off. The ability to select the desired accuracy-
efficiency operating point at run-time allows e.g. better battery management in mobile
applications. In contrast, a CNN corresponds to a single point in the accuracy-efficiency
space (see the black point in fig. 6.10b). The pronounced sub-linear behaviour of the
curves in fig. 6.10b suggests that we can increase the efficiency considerably with little
accuracy reduction (in the figure a 4-fold efficiency increase yields an increase in error
of less than 1%).

Why care about the amount of computation? Modern parallel architectures
(such as GPUs) yield high classification accuracy in little time. But parallelism
is not the only way of increasing efficiency. Here we focus on reducing the total
amount of computations while maintaining high accuracy. Computation affects power
consumption, which is of huge practical importance in mobile applications (to increase
battery life on a smartphone) as well as in cloud services (the biggest costs in data
centres are due to their cooling). Next we extend conditional processing also to the
expensive convolutional layers of a deep CNN.

6.5.2 ILSVRC

We first validate the use of conditional networks for image classification on the ILSVRC
dataset (Russakovsky et al., 2015), a large dataset consisting of 1.2M training images
for 1000 classes, and 50,000 validation images.

As discussed in section 5.1, AlexNet uses two filter groups throughout most of
the layers of the model in order to split computation across two GPUs. The authors
observed that the filters on each GPU appeared to specialize to learn fundamentally
different features regardless of initialization (Krizhevsky, Sutskever, and Geoffrey E.
Hinton, 2012). This interesting observation has mostly been ignored in subsequent
networks where GPU memory has increased enought that such a split of the network
is not required, but the original observation is a fundamental motivation of our work.

We based our experiments on the VGG network (Simonyan and Zisserman, 2015) on
which the current state-of-the-art models are also based (He et al., 2015). Specifically,
we focus on the VGG-11 model as it is deep (11 layers) and relatively memory efficient
(trains with Caffe (Jia et al., 2014) on a single Nvidia K40 GPU). It notably does
not have any filter grouping, as found in AlexNet, or low-dimensional embeddings, as
found in NiN. It therefore suffers from an explosion in the number of filters required at
each layer, and represents the ideal network on which to demonstrate the efficiency
savings brought about by these simple modifications.
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Fig. 6.11 Conditional network used with Imagenet experiments. The network
employs implicit data routing in the (expensive) convolutional layers to yield higher
computational efficiency than the corresponding, non-routed DNNs.

Global Max-Pooling to Reduce Model Size

We found that GMP, like GAP (as used by Lin, Q. Chen, and Yan (2014) and Szegedy,
Liu, et al. (2015)), after the last convolutional layer is effective in reducing model
parameters while maintaining, if not improving, accuracy. This suggests that preserving
spatial information after the convolutional layers may not be as important as previously
thought. We trained a new network (‘VGG-11-GMP’) with such pooling, and achieved
lower top-5 error than the baseline VGG-11 network (13.3% vs. 13.8%), with a decrease
in the number of parameters of over 72% (see fig. 6.13).

Designing an Efficient Conditional Architecture

Starting from the already improved, non-routed VGG-11-GMP architecture, we de-
signed the conditional network in fig. 6.11. Since most of the computational cost
in VGG-11-GMP is in the convolutional layers, our conditional variant introduces
a DAG-like routed structure to split the filters in the convolutional section. The
assumption here is that each filter should only need to be applied to a small number of
channels in the input feature map.

Data routing is implemented via ‘filter groups’, as originally used in (Krizhevsky,
Sutskever, and Geoffrey E. Hinton, 2012). Thus, at each level conv_n_t1, 2u, n “

3 . . . 5, the convolutional filters of VGG-11-GMP are divided into 2pn´2q groups. Each
group depends only on the results of exactly 128 previous filters. The feature maps of
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the last convolutional layer are concatenated together, and globally max-pooled before
the fully-connected layers, which remain the same as those in VGG-11-GMP.

Training

We trained our conditional network with the same hyperparameters as in (Simonyan
and Zisserman, 2015), except for using the initialization strategy suggested of (He
et al., 2015), and a learning schedule,

γt “ γ0p1 ` γ0λtq´1, (6.6)

where γ0, γt and λ are the initial learning rate, learning rate at iteration t, and weight
decay respectively (Bottou, 2012). When the validation accuracy of the network levelled
out, the learning rate was further decreased by a factor of 10, twice. The conditional
network took twice as many epochs to train than VGG-11, however this equates to a
comparable training time given its higher efficiency.

Accuracy vs. Efficiency

In order to compare different network architectures as fairly as possible, here we did
not use any training augmentation aside from that supported by Caffe (Jia et al.,
2014) (mirroring/random crops). Similarly we report test-time accuracy based only
on centre-cropped images, without potentially expensive data oversampling. This
reduces the overall accuracy (w.r.t. to state of the art), but constitutes a fairer test
bed for teasing out the effects of different network architectures. This is because each
architecture uses a different method of augmentation and has a different affect on the
increase in inference time. Applying the same oversampling to all networks produced a
nearly identical accuracy improvement in all models, without changing their ranking.

Table 6.1 summarize the results, and fig. 6.12 shows top-5 error as a function of
test-time cost5 and model size. The best network by these measures (i.e. closest to
the origin) is GoogLeNet (Szegedy, Liu, et al., 2015). In both networks much of the
computational saving is obtained by routing subsets of features to different branches of
the network. GoogLeNet learns low-dimensional embeddings, has multiple intermediate
training losses, and a very different training schedule. These differences, along with its
deeper DAG structure, may explain its superior performance.

5Measured here as number of multiply-accumulate operations. We have observed this measure to
correlate very well with CPU time.
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Fig. 6.12 Efficiency of conditional networks on ILSVRC relative to state-of-
the-art models. Our VGG-11-GMP (GMP) reduces model size significantly, and
is the baseline network. VGG-11 conditional networks (Cond. Network) yield points
closer to the origin for networks with the same conv1 stride, noted as (conv1/stride)
in the legend.
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Table 6.1 Conditional network ILSVRC Results. Accuracy, multiply-accumulate
count, and number of parameters for the baseline networks and more efficient versions
created by the methods described in this chapter. Results with test-time oversampling
(OS) are also shown.

Network Name Stride Top-1
Err.

Top-1
Err.
OS

Top-1
Err.

Top-5
Err.
OS

FLOPS
ˆ109

Param.
ˆ107

VGG-11 1 0.351 0.328 0.138 0.124 7.61 13.29
GMP 1 0.325 0.309 0.118 0.108 7.51 3.22
Cond. Network 1 0.350 0.336 0.137 0.129 3.46 2.83
Cond. Network 2 0.421 1.000 0.186 1.000 0.88 2.83
GoogLeNet 2 0.313 0.298 0.111 0.101 1.59 1.34
Alexnet 4 0.427 0.414 0.198 0.188 0.72 6.10
Network In Network 4 0.437 0.424 0.206 0.200 1.10 0.76

The conditional network of fig. 6.11 corresponds to the green circle in fig. 6.12. It
achieves a top-5, centre-crop error of 13.9% compared to 13.8% for the VGG-11 network,
while requiring less than half of the computation (45%), and almost one-fifth (21%)
of the parameters. Although it is the second closest to the origin (after GoogLeNet),
we believe that better results can be achieved by using routes of different (learned)
cardinality, as well as incorporating low-dimensional embedding and multiple-loss
training. This is left for future work. Note that the most efficient model in (He et al.,
2015) uses 1.9 ˆ 1010 flops which is just outside the plot. More accurate versions of (He
et al., 2015) are more expensive still. Finally, fig. 6.13 shows efficiency improvements
achieved by our conditional network, layer by layer.

GoogLeNet divides filters within each Inception module into 4 groups of various
filter sizes, giving the overall network a DAG-like structure. GoogLeNet’s usage of
low-dimensional embeddings within these routes reduces computatation and parameters
of the network even further.

The most efficient of the state-of-the-art networks used for Imagenet classification,
by a wide margin, is GoogLeNet (see fig. 6.12). NiN and GoogLeNet pioneered the
use of semi-dense weight matrices in the form of learning dimensionality reductions,
reducing the explosion of filters usually found in deep network architectures.

Another unique feature of these two networks is GAP, where the spatial dimensions
of the last convolutional feature map are reduced to a single compact feature vector
of length c, where c is the number of filters in the layer. This greatly reduces the
parameters of the network by reducing the weights in the first fully-connected layer,
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Fig. 6.13 Computational cost of VGG-11 based networks per layer. Number
of parameters and number of multiply-accumulate operations for all (convolutional
and fully-connected) layers of VGG-11, VGG-11-GMP, and our conditional network.
Our two networks reduce both the memory use and the computational cost.
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Fig. 6.14 Automatically learned conditional architecture for image classifica-
tion in CIFAR-10. Both structure and parameters of this conditional network have
been learned automatically via Bayesian optimization. ©Antonio Criminisi, used with
permission.

which contains the majority of weights in the network (see fig. 6.13), and is the single
largest factor in the space efficiency of NiN and GoogLeNet.

6.5.3 CIFAR-10

Here we validate conditional networks for the classification of images in the CIFAR-10
dataset (Krizhevsky, 2009). The dataset contains 60,000 images of 10 classes, typically
divided into 50,000 training images and 10,000 test images. We take the state-of-the-art
NiN model as a reference (Lin, Q. Chen, and Yan, 2014), and we build a conditional
version of it to produce the architecture in fig. 6.14. Then we go on to show its increased
efficiency compared to the original NiN model.

Designing a Family of Conditional Networks

The NiN model has a large number (192) of initial image-level filters in the first
convolutional layer (‘conv1’), representing a sizable amount of the overall computation.6

We build a variant (‘NiN-64’) that prepends a layer of 64 filters to the NiN model.
While this variant is more complex than NiN, when routed (as described later) it allows
us to split the larger layers into many routes and increase the efficiency. In fact, for
a convolutional layer with N groups of filters, each filter operates on 1{N channels
of the input feature map, thus yielding reduced test-time computation and learning
filters with fewer channels. Additionally, training routed convolutional layers means

6Most Imagenet networks typically use 64 ´ 96 conv1 filters.
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that filters are exposed only to the training subset of data that flows through that
route, thus allowing for a potentially higher degree of specialization. By changing the
number of routes at each level of the NiN-64 model (from conv2) we can generate a
whole family of possible conditional architectures.

Learning the Optimal Network Architecture

In this experiment we have optimized the network structure automatically, by using
Bayesian optimization (Snoek, Larochelle, and Adams, 2012), as available in WhetLab.7

This has allowed us to search the large joint space of parameters and structures in a
principled manner, and come up with multiple reasonable networks to be tested.

In the optimization we maximized the size-normalized accuracy α “
validation accuracy

model size
with respect to the parameters Rl “ 2i, ti P N : 0 ď i ď 5u, where Rl is the number of
nodes at layer l in the conditional network. Figure 6.14 shows the architecture which
maximizes α in CIFAR-10. It is a DAG-structured conditional network with 10 layers.
To our knowledge this is the first attempt at learning automatically the architecture of
a deep CNN for image classification.

Accuracy vs. efficiency

For comparison, we also reduce the complexity of the unrouted NiN-64 network
by learning a reduction in the number of per-layer filters, i.e. we maximize α over
Fl “ Forig{2i, ti P N : 0 ď i ď 4u, where Forig is the number of filters in layer l in NiN-64.

All networks were trained with the same hyperparameters as (Lin, Q. Chen, and
Yan, 2014), except for using the initialization strategy of (He et al., 2015), and a
learning schedule,

γt “ γ0p1 ` γ0λtq´1, (6.7)

where γ0, γt and λ are the initial learning rate, learning rate at iteration t, and weight
decay respectively (Bottou, 2012). Training was run for a maximum of 400 epochs, or
until the maximum validation accuracy had not changed in 10,000 iterations. We split
the original CIFAR-10 training set into 40,000 training images and 10,000 validation
images. The standard 10,000 held-out images are used for testing.

Figure 6.15 shows test errors with respect to test-time cost and model size for
multiple networks. Diamonds denote unrouted networks and circles denote conditional
networks. The original NiN is shown in red, and our NiN-64 variant is shown as a
grey diamond. A sample of 300 models explored during the Bayesian optimization

7Formerly at https://www.whetlab.com, defunct since its acquisition by Twitter in June 2015.

https://www.whetlab.com
https://techcrunch.com/2015/06/17/twitter-acquires-machine-learning-startup-whetlab/
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Fig. 6.16 Explicit data routing for conditional ensembles. An explicitly-routed
conditional network that mixes existing deep CNNs in a learned, data-dependent
fashion.

are shown as grey circles. The green circle denotes the conditional network closest to
the origin of the 3D space ptest-error, test-cost, model-sizeq. Most of the conditional
networks proposed by the Bayesian search procedure are distributed along a curve
characterized by either high accuracy, or low model size, or both. Reducing the NiN
model by filter reduction (pink diamonds in the figure) does not yield the same gains
as data routing. Despite NiN achieving the highest accuracy (it has been optimized for
accuracy alone), the optimal conditional network is much closer to the origin of the 3D
space, thus indicating much higher efficiency (in terms of memory and computation)
for a small loss in accuracy.

6.5.4 Conditional Ensembles of CNNs

A key difference between CNNs and conditional networks is that the latter may include
(trainable) data routers. Here we use an explicitly-routed architecture to create an
ensemble of CNNs where the data traverses only selected, component CNNs (and not
necessarily all of them), thus saving computation.

As an example, the branched network in fig. 6.16 is applied to the ILSVRC2012
image classification task. The network has R “ 2 routes, each of which is itself a
deep CNN. Here, we use GoogLeNet (Szegedy, Liu, et al., 2015) as the basis of each
component route, although other architectures may be used. Generalizing to R ą 2
is straightforward. The routes have different compute cost (denoted by different-
sized rectangles), arising from differing degrees of test-time oversampling. We use no
oversampling for the first route and 10X oversampling for the second route.

The router determines which image should be sent to which route (or both).
The router is trained together with the rest of the network via back-propagation
(section 6.4.7) to predict the accuracy of each route for each image. The router is
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Fig. 6.17 Error-accuracy results for conditional ensembles of CNNs. Error-
accuracy results for the two GoogLeNet base networks are shown in purple. The
dynamic error-cost curve for our conditional ensemble is in green. In the green circle
we achieve same accuracy as the most accurate GoogLeNet with half its cost.

itself a deep CNN, based on CNN1; This allows computation reuse for extra efficiency.
At test time, a (dynamic) trade off can be made between predicted accuracy and
computational cost.

Figure 6.17 shows the resulting error-cost curve. All costs, including the cost of
applying the router are taken into consideration here. Given our trained conditional
network, we use dynamic, multi-way data routing (section 6.5.1) to generate a curve
in the error-compute space. Each point on the curve shows the top-5 error on the
validation set at a given compute cost, which is an amortized average over the validation
set.

The dashed line corresponds to the trivial error vs. compute trade-off that could
be made by selecting one or other base network at random, with a probability chosen
so as to achieve a required average compute cost. The fact that the green curve lies
significantly below this straight line confirms the much improved trade-off achieved
by the conditional network. In the operating point indicated by the green circle we
achieve nearly the same accuracy as the 10ˆ oversampled GoogLeNet with less than
half its compute cost. A conventional CNN ensemble would incur a higher cost since
all routes are used for all images.
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6.6 Discussion

This chapter has investigated the similarities and differences between decision trees/-
forests and DNN. This has led us to introduce a hybrid model (namely conditional
networks) which can be thought both as: (i) trees which have been augmented with
representation learning capabilities, and (ii) CNNs which have been augmented with
explicit data routers and a rich, branched architecture. Experiments on image classifica-
tion have shown that highly branched architectures yield improved accuracy-efficiency
trade-off as compared to trees or CNNs. The desired accuracy-efficiency ratio can be
selected at run time, without the need to train a new network.



7

Conclusion and Future Work

In this dissertation, we have proposed that carefully designing networks in consideration
of our prior knowledge of the task can improve the memory and computational efficiency
of state-of-the art networks, and even increase accuracy through structurally induced
regularization. While this philosophy defines our approach, deep neural networks have
a large number of degrees of freedom, and there are many facets of deep neural networks
that warrant such analysis. We have attempted to present each of these in isolation:

Chapter 4 proposed to exploit our knowledge of the low-rank nature of most filters
learned for natural images by structuring a deep network to learn a collection of mostly
small 1ˆh and wˆ1 basis filters, while only learning a few full wˆh filters. Our
results showed similar or higher accuracy than conventional CNNs requiring much less
computation. Applying our method to an improved version of VGG-11 network using
GMP, we achieve comparable validation accuracy using 41% less computation and
only 24% of the original VGG-11 model parameters; another variant of our method
gives a 1 percentage point increase in accuracy over our improved VGG-11 model,
giving a top-5 center-crop validation accuracy of 89.7% while reducing computation by
16% relative to the original VGG-11 model. Applying our method to the GoogLeNet
architecture for ILSVRC, we achieved comparable accuracy with 26% less computation
and 41% fewer model parameters. Applying our method to a near state-of-the-art
network for CIFAR-10, we achieved comparable accuracy with 46% less computation
and 55% fewer parameters.

Chapter 5 addresses the filter/channel extents of convolutional filters, by learning
filters with limited channel extents. When followed by a 1ˆ1 convolution, these can
also be interpreted as learning a set of basis filters, but in the channel extents. Unlike
in chapter 4, the size of these channel-wise basis filters increased with the depth of
the model, giving a novel sparse connection structure that resembles a tree root. This
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allows a significant reduction in computational cost and number of parameters of
state-of-the-art deep CNNs without compromising accuracy. Our results showed similar
or higher accuracy than the baseline architectures with much less computation, as
measured by CPU and GPU timings. For example, for ResNet 50, our model has 40%
fewer parameters, 45% fewer floating point operations, and is 31% (12%) faster on
a CPU (GPU). For the deeper ResNet 200 our model has 25% fewer floating point
operations and 44% fewer parameters, while maintaining state-of-the-art accuracy. For
GoogLeNet, our model has 7% fewer parameters and is 21% (16%) faster on a CPU
(GPU).

Chapters 4 and 5 proposed similar methods for reducing the computation and
number of parameters in the spatial and channel (filter-wise) extents of convolutional
filters respectively. Rather than approximating filters in previously-trained networks
with more efficient versions, we learn a set of smaller basis filters from scratch; during
training, the network learns to combine these basis filters into more complex filters
that are discriminative for image classification. This means that at both training and
test time our models are more efficient. Overall, the approach of learning a set of basis
filters was not only effective for reducing both computation and model complexity
(parameters), but in many of the results in both chapters 4 and 5, the models trained
with this approach generalized better than the original state-of-the-art models they
were based on.

Chapter 6 presented work towards conditional computation in deep neural networks.
We proposed a new discriminative learning model, conditional networks, that jointly
exploits the accurate representation learning capabilities of deep neural networks with
the efficient conditional computation of decision trees and directed acyclic graphs
(DAGs). In addition to allowing for faster inference, conditional networks yield smaller
models, and offer test-time flexibility in the trade-off of computation vs. accuracy.

7.1 Future Work

Research outcomes are often better evaluated by the questions borne rather than the
questions answered. In this section we’ll address the main research questions that
this dissertation has highlighted, and propose future directions for research which we
believe would have the most impact on the field.
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7.1.1 Learning Structural Priors

The move towards “end-to-end” learning has made great strides in making learning more
automatic, notably in learning complex representations rather than experts designing
inferior representations themselves. There still exists however, a significant amount
of hand design and manual tuning that is key to the success of any deep learning
approach. We hope our work will motivate the field towards a research direction that
aims to minimize this further, by working on methods of automatically structuring
neural networks, in a move towards a truly “end-to-end” learning of DNN structure
itself.

The lack of understanding or concrete rules for structuring DNNs means that in
practical applications deep learning is often restricted to experts in the field, who
have an intuition in network design formed from years of experience, and know which
structural priors to use. The effect on deep learning research is no less profound,
with a lack of understanding of the basic interplay between structure and learning in
DNNs, we have little chance of understanding the limitations of deep learning or the
representations learned by the networks.

The benefits of automatically structuring DNNs go further than these considerations
even, as the research presented in this dissertation has shown, better structured DNNs
are more computationally efficient (use fewer parameters and are faster to compute),
and generalize better. Currently, training state-of-the-art DNNs for image classification
requires a prohibitive amount of time and computational resources — 3 weeks of
training on 8 high-end and expensive GPUs — and yet we know that trained DNNs
are very sparse representations and have been shown to be highly compressible. It is
because we cannot appropriately understand this sparse structure well enough to fully
exploit it that our current DNNs are so inefficient.

With automatic methods of learning the structure, DNNs will become markedly
more efficient to train, leading to faster experimental results for research, and also allow
easier deployment to embedded devices, such as mobile phones, drones and robots. It
would also allow for research strides in learning networks for multiple modalities, for
example a self-driving car needs to process input data from normal camera sensors,
along with depth maps or point clouds, and even radar. One of the stumbling blocks
in doing this is understanding how to best structure a network to deal with multiple
inputs which require different structural priors.

Research on finding automatic methods of structuring neural networks is not a
completely new avenue of research, with a substantial effort put towards it 30 years ago
when neural networks, and datasets, were much smaller. This is covered in chapter 3,
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but suffice to state that there were two main approaches: (i) greedily building networks
from scratch, and (ii) pruning (removing parameters) large networks. The proposals
made for both building networks from scratch , such as that of Fahlman and Lebiere
(1989), and pruning full networks, such as that of LeCun, J. S. Denker, and Solla
(1989), suffer drawbacks which make them unsuitable in the modern deep network of
hundreds of millions of parameters. Even in neural networks of contemporary size, the
greedy approach of Fahlman and Lebiere (1989) meant that learned networks were
suboptimal. This proposal should also not be confused with ‘universal learning’, or
violating the no free lunch theorem (section 3.2.5), since we are interested in learning
methods for the specific set of problems we as humans are interested in solving, rather
than all possible input patterns.

At least three factors prevented this line of research from being successful historically,
that we believe have now been overcome. Recent breakthroughs in training DNNs
have given us a better understanding of how to train very large, arbitrarily structured
networks, notably avoiding the so-called ‘vanishing gradient’ (He et al., 2016b; Ioffe
and Szegedy, 2015), and a better understanding of initialization (He et al., 2015).
Extremely large and diverse datasets are now prevalent, such as ImageNet (Russakovsky
et al., 2015), whereas historically datasets were prohibitively small to be useful for
automatically structuring DNNs. And finally computational resources have increased
dramatically. In fact these are most of the reasons the field of deep learning itself has
been more successful now than neural networks were 30 years ago.

7.1.2 Jointly Learning a Basis for Spatial and
Channel Extents of Filters

In the shorter term, there is an obvious question arising from the work presented
in chapters 4 and 5 that explore learning more efficiently by reducing the learned
parameters in the spatial and channel extents of convolutional filters respectively.
These naturally lend themselves to being merged into a single effective method for
training with low-rank basis filters. We plan to submit a journal article in which both
methods are merged and explored in new results on state-of-the-art DNNs.

7.1.3 Optimization and Structural Priors

It is notable that many structural priors can be viewed as enforcing sparsity on
fully-connected networks. For example, in the case of a CNN, any learned CNN is
representable in a fully-connected network, since a CNN can be viewed as a fully-
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connected network with a specific arrangement of zeroed connect weights, and some
duplicated weights (shared weights) as illustrated in fig. 4.1.

The question arises then, why can we not learn these in fully-connected networks?
Structural priors give lower training loss, and yet when we optimize fully-connected
networks with an appropriate structure and capacity to learn the sparse structural
priors, they do not. Another, more recent example, is that of ResNets, as explained in
section 2.3.5, these are motivated by the observation that in very deep networks the
optimization fails to learn even the identity function, when it can be shown to give a
lower loss.

In many ways the need for structural priors can be seen as the result of a problem
with the current methods of optimization of DNNs. As discussed in section 2.1.6,
higher order optimization might help solve this, but is not practical given the size of
contemporary DNNs.

7.1.4 Parting Note

In my PhD, I have focused on experiments which I believed would shed light on the
representations being learned in DNNs. Although the overt motivation of much of the
work in its publication has been efficiency, my personal motivation has always been
to better understand the learned internal representation of state-of-the-art DNNs for
image classification, and explain why they are so over-parameterized. Structural priors,
such as those demonstrated in this dissertation do not only improve the effectiveness
of a deep network, but are necessary for good generalization.
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Bibliographic Epilogue

Research in deep learning has taken on a new rapidity since the adoption of pre-prints,
and the explosion of interest in the field. Rather than being bound to the annual
conference schedule, new research is released on a weekly basis. Presenting a paper
at a contemporary conference, one is now in the odd situation of having to relate the
‘new’ research being presented to the 6–12 months of follow-up research in the field.
Compare this to even a few years ago, when publication of new research was withheld
until a conference paper acceptance, perhaps a couple of months before the conference.

This dissertation represents the ultimate presentation of the research we have
undertaken and, just as in a conference, it must also be presented in the context and
timeline of the follow-up research and applications that it has already inspired.

In this section, we will briefly outline the significant derivative papers published
after the original pre-print publication of the research we have presented here, along
with their pre-print dates. We also present new research, published after ours that has
extended the field towards learning structural priors automatically.

A.1 Pre-print Publication Dates

For reference, the initial public release of the papers behind the work presented in this
dissertation are outlined below:

• Decision Forests, Convolutional Networks and the Models in-Between (Ioannou,
Robertson, Zikic, et al., 2015)

MSR internal technical report Apr. 2015

Pre-print 3 Mar. 2016
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• Training CNNs with Low-Rank Filters for Efficient Image Classification (Ioannou,
Robertson, Shotton, et al., 2016)

Pre-print arXiv:1511.06744 (30 Nov. 2015)

Peer-reviewed publication date May 2, 2016

• Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups (Ioannou,
Robertson, Cipolla, et al., 2017)

Pre-print arXiv:1605.06489 (20 May 2016)

Peer-reviewed publication date CVPR 2017 (21 July, 2017)

A.2 Recent Research Related to Chapter 4

The method presented in this chapter directly applied to many deep learning vision
problems, and we have heard directly from developers of it’s use in embedded devices,
in applications as diverse as some of the most popular mobile phones to autonomous
drones.

Unfortunately even citing authors assume the paper present a low-rank approx-
imation of the filters, despite our explicit and frequent statements that our models
are trained from scratch and not approximated. This is likely due to the title and its
similarity to the titles of a large amount of literature proceeding presenting methods
of approximation.

Rethinking the Inception Architecture for Computer Vision

Pre-print arxiv:1512.00567 (2 Dec. 2015)

Peer-reviewed publication date CVPR 2016 (28 June, 2017)

Szegedy, Vanhoucke, et al. (2016) published an update to the Inception architecture
around 3 weeks after our pre-print publication, making it likely that their work was
independent. Nevertheless, the method they present is identical to our proposal (Ioan-
nou, Robertson, Shotton, et al., 2016) — the training of the Inception architecture
with low-rank (i.e. 1ˆ3 and 3ˆ1) filters to reduce computation and improve general-
ization. They call these ‘factorized filters’ which we disagree with, since being simply
concatenated they are not a factorization (i.e. separation of a multiplication), rather
we argue they are linearly combined, and so represent a basis.
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The method proposed in this chapter (and identical to our proposed method) forms
the basis of all current Inception architectures, and are now used in all Google deep
learning backed products, for example Google Photos™.

A.3 Recent Research Related to Chapter 5

Unfortunately, likely due to the prominence of Google and Facebook in the research
community, the Xception and ResNeXt papers below have received most of the citations
and credit for root units in recent work, despite the pre-prints coming five and six
months after our pre-print publication, respectively. On the other hand, this exposure
has brought a lot of attention to the method, making the use of filter groups, and root
modules specifically, for efficiency and generalization increasingly common.

Xception: Deep Learning with Depthwise Separable Convolutions

Pre-print arXiv:1610.02357 (7 Oct. 2016)

Peer-reviewed publication date CVPR 2017 (21 July, 2017)

The author proposes the ‘Xception’ module, which is a special case of our proposed
root modules (Ioannou, Robertson, Cipolla, et al., 2017), where, if c1 is the number
of input feature map channels, and g is the number of groups (as in fig. 5.4), an
‘Xception’ module is the extreme case where g ” c1. In our experiments, this level
of sparsity is clearly adverse. In the ‘Xception’ experiments the number of filters
is greatly increased as compared to the original architecture compensating for this.
However, by using convolutional groups of the same size as input channels, any of the
computational advantages of root modules are lost, for all the reasons described in
section 5.4. We should note that in personal correspondence with the author he has
denied any relationship between this work and ours, and so does not cite our work.

Aggregated Residual Transformations for Deep Neural Networks

Pre-print arXiv:1611.05431 (16 Nov. 2016)

Peer-reviewed publication date CVPR 2017 (21 July, 2017)

The aggregated residual units proposed by Xie et al. (2017) are technically identical to
our root modules as implemented in ResNet (the paper cites our work), however they
explore a different compute-generalization trade-off with their ResNeXt architecture.
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Rather than using the more efficient representation learned by the root units to
save parameters and computation as in our work, the authors propose to maintain
the original computational footprint of the model, and instead increase the number of
filters learned. The result is a much improved network, so much so that their model
won second place in the 2016 ILSVRC competition.

Interestingly, the authors claim that root units are even more effective on much
larger datasets, and more effective than further increasing depth or width of the
network. Xie et al. (2017) state that “. . . increasing cardinality is more effective than
going deeper or wider when we increase the capacity.”, where they denote the number
of filter groups used as cardinality.

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mo-
bile Devices

Pre-print arXiv:1707.01083 (4 Jul. 2017)

X. Zhang et al. (2017)

Interleaved Group Convolutions for Deep Neural Networks

Pre-print arXiv:1707.02725 (7 Oct. 2016)

Peer-reviewed publication date October 22, 2017

T. Zhang et al. (2017)

The Power of Sparsity in Convolutional Neural Networks

Pre-print arXiv:1702.06257 (21 Feb. 2017)

Changpinyo, Sandler, and Zhmoginov (2017)

Convolution with Logarithmic Filter Groups for Efficient Shallow CNN

Pre-print arXiv:1707.09855 (31 Jul. 2017)

Lee et al. (2017)
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A.4 Recent Research Related to Chapter 6

While being a very interesting topic, little has been published in relation to this paper
since its pre-print release, aside from the work of E. Bengio et al. (2015) who used a
reinforcement learning framework to add conditional computation to a DNN.

Conditional Computation in Neural Networks for Faster Models

Pre-print arXiv:1511.06297 (19 Nov. 2015)

E. Bengio et al. (2015)

A.5 Automatically Learning Network
Architectures

Since the papers this dissertation is based on were published, the research community
has been moving towards learning to create neural network architectures. In particular,
the following papers have shown significant progress. Baker et al. (2017) and Zoph
and Le (2017) both presented methods of learning neural network architectures using
reinforcement learning.





Appendix B

Co-adaption in
Deep Neural Networks

As discussed in section 7.1.3, there is a link between structural priors and a failure in
our current optimization methods. Dropout in particular seems like it may have a link
to structural priors given that it is claimed to be randomly sampling ‘thinner’ network
architectures composed of subsets of the neurons from the model. It can also be argued,
as we will demonstrate, that dropout is an optimization trick rather than a form of
regularization. Here we will present work that, while not being substantial enough
for publication, may provide an interesting insight into the problem of ‘co-adaption’
as discussed by Geoffrey E. Hinton, Srivastava, et al. (2012b) and the mechanism of
dropout.

B.1 The Limitations of First Order Optimization

With the increasing number of practical applications of deep learning, the optimization
of deep neural networks is of critical importance, with generalization, accuracy and
training time all direct consequences. Due to practical considerations of training large
state-of-the-art models with limited computational resources, network optimization is
restricted to first order methods in practice – typically stochastic gradient descent with
momentum. With breakthroughs in initialization (Glorot and Y. Bengio, 2010; He
et al., 2015) and maintenance of numerical precision during training (Ioffe and Szegedy,
2015) alleviating the ‘vanishing gradient’ problem, such methods have surpassed human
accuracy on large scale image recognition datasets, amongst other breakthrough results.
This success has overshadowed any weakness of the current methods of training deep
networks.
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There has been much evidence to suggest that the optimization of deep networks
remains a concern however. Ba and Caruana (2014) showed that shallow networks
could be regressed from deep networks, and claim that the success of deep networks
could be explained by our inability to properly train shallow networks from scratch.
More recently, He et al. (2016a,b) in particular have shown that the optimization of
very deep networks can expose fundamental optimization issues where training loss
increases for deeper networks, whereas even the trivial solution to maintain training
loss — the identity mapping — is not discovered by the optimization. They suggest a
work-around for this problem is to utilize residual layers, incorporating the identity
explicitly. Why the optimization fails so spectacularly without identity connections
remains unexplained however.

Martens (2010) suggests that ‘pathological curvature (see section 2.1.6) is a possible
explanation for the difficulty of training deep networks. For some networks, the
error surface can have a complex curvature and the solution is to use a second order
optimization, proposing a more efficient method, ‘Hessian-free’ optimization.

In this chapter we will demonstrate that some of the contemporary issues in training
deep networks may be explained as being caused by this pathological curvature in the
high dimensional error surfaces, and our use of first-order optimization methods. We
will show that in particular dropout, which has empirically been shown to improve
generalization in deep networks can also be explained in this light, and why this
improvement diminishes in the presence of batch normalization, as observed by Ioffe
and Szegedy (2015).

B.2 Co-adpation of Hidden Units in Deep Networks

Geoffrey E. Hinton, Srivastava, et al. (2012a) and Srivastava et al. (2014) proposed
dropout as a regularization method for neural networks. In randomly dropping out
hidden units — zeroing out a random subset on each layer — it was claimed that
complex co-adaptions of these hidden units on training data, which do not generalize
to the test set, are prevented. In practice dropout has seen remarkable success in
improving the generalization of large neural networks, especially in the context of large
fully-connected layers. Several follow-up methods have similarly suggested alternative
methods of preventing this co-adaption (Cogswell et al., 2016).

Although empirically dropout works well, the claim that hidden units learn to
co-adapt has not itself been well demonstrated, and seemingly straightforward methods
of doing have serious drawbacks. Showing the covariance/correlation between pairs of
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hidden units doesn’t give the full story, since covariance shows the linear relationship
between the units, but in a deep network this relationship is likely to be highly non-
linear. Mutual information cannot be used either since most modern networks need to
use unbounded activation functions, such as ReLUs, in order to train effectively.

A crude but effective method of analyzing the importance of hidden units in neural
networks is ablation – zeroing out certain units in a trained network of interest, and
observing the effect on the training and test loss. This method can be extended to
empirically evaluate the importance of pairs of hidden units in trained neural networks.
For each pair of hidden units, zero out the parameters of both units, and observe
the effect on the loss calculated over the training/test set: pairwise ablation. This is
however very expensive since each pair of hidden units must be evaluated over the
entire dataset.

We will focus on layer-wise filter co-dependence, and thus only needed to evalu-
ate the pairwise ablation within each layer. In addition for large datasets, such as
ILSVRC2012 (Russakovsky et al., 2015), a random subset of the dataset was evaluated.

ResNet-50 Figure B.1 shows the results of pairwise ablation on a ResNet-50 He
et al. (2016a) network trained on ILSVRC2012, on both the training set (fig. B.1(c))
and validation set (fig. B.1(d)).

While, as expected, most pairwise ablations result in a decrease in accuracy, a small
but significant number of pairwise ablations result in an increase in accuracy (and
decrease in loss). For the validation set this seems to provide clear evidence of hidden
units co-adapting, and hence overfitting to the training data. Surprisingly however, this
effect is also evident when evaluating on the training set, and by definition cannot be
explained by overfitting. We observed similar effects on all other layers of the network.

MNIST This effect is not limited to large state-of-the-art deep networks, or indeed
even deep networks. Surprisingly this effect is reproducible with a minimal single
hidden-layer MNIST network. With a fully-connected network with one hidden layer,
ReLU activation functions, and a variety of optimization methods, we find that this
co-adaption is still present above a minimal number of hidden units. Figure B.2 shows
the minimum and maximum increase in training loss/accuracy and test loss/accuracy
for the MNIST network with different numbers of hidden units, when pairwise filters
are ablated, as evaluated on the entire MNIST training/test sets. The effect of training
with weight decay dropout and momentum are also compared with vanilla SGD. Weight
decay and dropout are considered to be regularization methods, while momentum
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Fig. B.1 Histogram of the change in top-5 accuracy for all pairwise filter ablations of a
2500 randomly sampled images from the ILSVRC training/validation set in conv1 of
ResNet-50.
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Fig. B.2 Maximum increase and decrease in training/test loss/accuracy for a single-layer
hidden MNIST classification network under pairwise ablation of the hidden units. The
plots show the maximum increase in loss or decrease in accuracy. Both are measures
of the level of neural co-adpation in the trained networks.
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(a) Training Loss: Percentage of pairs of hidden units that exhibit adverse co-adaption.
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Fig. B.3 Number of pairs of hidden units in a single-layer hidden MNIST classification
network which under ablation, are adversely dependent (∆L ă 0) or independent
(∆L “ 0) for the training set.
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is an optimization trick that is intended to help avoid some issues of using a first
order optimization — it can help speed up learning in the presence of some types of
pathological curvature that would otherwise lead to slow optimization or a poor local
minima with vanilla SGD.

In fig. B.2 momentum clearly helps avoid co-adaption as compared to vanilla SGD,
where co-adaption is significant. Weight decay on the other hand, does not seem to
have a helpful effect on co-adaption, giving almost identical results to vanilla SGD. As
a form of regularization, this might be expected, as it should help generalization, not
training fit.

Taken by itself, this observation suggests that co-adaption may be a symptom of
an optimization problem, and thus an optimization trick like momentum helps while
regularization does not. On the other hand, dropout seems to reduce the number of
co-adapted units significantly, and is even effective at reducing co-adaption at training
time. If dropout is a regularization method, then this seems to conflict with our findings
with weight decay and momentum.

B.3 Dropout as an Optimization Trick

Dropout can also be thought of as a orthogonal projection of the error surface onto a
random lower-dimensional subspace, in which the curvature of the error surface may
no longer exhibit pathological issues, and optimization may be easier. For example,
if in a subset of the dimensions, a deep valley exists (as illustrated in fig. 2.8), and
these dimensions are dropped-out, first-order optimization will be substantially easier.
Random projection is a well established method for dimensionality reduction of high
dimensional spaces (Fodor, 2002; Kaski, 1998). If a layer has N nodes, and a width
matrix W , and input vector x, then dropout on the layer of K{N nodes may be defined
as the transformation:

dropoutpWq “ DiW, (B.1)

where D is a diagonal binary matrix, with rank K, defining an orthogonal projection
onto a K-dimensional subspace.

To demonstrate that it is this projection, rather than the zeroing out of neurons
itself, that is responsible for performance improvements with dropout, we can instead
perform a random projection in a different orthogonal co-ordinate basis, which does
not dropout (zero) any neurons. To do this we can first rotate the parameters with
random rotation matrix into a non-axis aligned co-ordinate basis, and perform dropout
(orthogonal projection) in the rotated space, and then rotate back into the original
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co-ordinate basis:

dropprojectpWlq “ R´1dropoutpRWlq, (B.2)

for a random rotation matrix R P SON . This “dropproject” method avoids zeroing out
any of the units, while still performing an equivalent projection as that in dropout.

Figure B.4 compares the effect of dropout, and various forms of dropproject, on a
large VGG model trained on the CIFAR-10 (Krizhevsky, 2009) dataset. Both dropout
and dropproject are only applied to the two large fully-connected layers of the VGG
network. With dropproject (DP), one random rotation matrix is generated and
used for the duration of training. For DP-Random10, 10 random rotation matrices
are generated and a single rotation matrix is randomly chosen from these for each
mini-batch during training. Finally, DP-Random generates a random rotation matrix
for each mini-batch.

Both methods have close to identical effect on training loss/error, and are drastically
different than the plots of the standard network without dropout/dropproject. At test
time, both methods also achieve comparable minimum error, but in the loss curve it
can be seen that dropproject appears to start overfitting earlier than dropout. While
the projection (and not regularization) appears to be responsible for the increased
generalization and speed of training, the zeroing out of units for dropout also has a
small regularization effect not seen in dropproject. None of the variants of dropproject
seem to be different, indicating that the random projection itself rather than the
random rotation into a different co-ordinate basis is important for the effect.

Dropout and Batch Normalization It has been observed empirically by Ioffe and
Szegedy (2015) and others that when used with batch normalization, dropout is not as
effective. In light of our understanding of dropout as being an optimization method
for error surfaces with highly complex curvature, we can explain this. As explained
by (Martens, 2010), an important property of second order optimization methods is
‘scale invariance’ — robustness to any linear rescaling of the model parameters. For
example, if we are in an elliptically shaped local minima of the error surface, ideally we
would want different a higher learning rate for parameters in the direction of the major
axis, as compared to those in the direction of the minor axis, as RMSprop (Tieleman
and G. Hinton, 2012) attempts. When using batch normalization, the layer-wise error
surface is whitened, reducing the importance of scale-invariance in optimization, and
any related optimization tricks.
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Fig. B.4 Training and test curves for a VGG network on CIFAR-10 comparing dropout
to dropproject.





Appendix C

Trained Models

Although all the details for reproducing the experiments presented in this thesis are
detailed in the relevant chapters, we have endevoured to make most of the models
open-access, and have archived these with permanent Digital Object Identifiers.

Chapter 4

Trained models for chapter 4 are archived under the identifier:

doi:10.5281/zenodo.53189

Chapter 5

Trained models for chapter 5 are archived under the identifier:

doi:10.5281/zenodo.116680

Chapter 6

Unfortunately not all the models and code for the experiments in chapter 6 will be
publicly released. The research was joint work partly pursued while on a research
internship at Microsoft Research. The trained models/code we can release may be
found archived under the identifier:

doi:10.5281/zenodo.988423

https://doi.org/10.5281/zenodo.53189
https://doi.org/10.5281/zenodo.116680
https://doi.org/10.5281/zenodo.988423




Appendix D

Conference Posters

Sometimes posters achieve what a paper cannot in explaining a concept, and although
we hope this is not the case in this dissertation, for completeness we have included the
links to relevant conference posters, and have archived these with permanent Digital
Object Identifiers.

Chapter 4: ICLR 2016

The poster presented at ICLR 2016 is archived under the identifier:

doi:10.5281/zenodo.53187

Chapter 5: CVPR 2017

The poster presented at CVPR 2017 is archived under the identifier:

doi:10.5281/zenodo.831418

https://doi.org/10.5281/zenodo.53187
https://doi.org/10.5281/zenodo.831418




Glossary

AlexNet A neural network architecture proposed by Krizhevsky, Sutskever, and
Geoffrey E. Hinton (2012) that revolutionized computer vision, and renewed
interest in neural networks 31, 58

BLAS BLAS, a common API for accelerating linear algebra operations, notably matrix
multiplication, on hardware. Typically a heavily optimized version is provided
by the hardware company. see API,

CIFAR CIFAR, government agency behind the funding of several prominent re-
searchers in Canada, notably the lab of Geoffery Hinton who released two popular
datasets, CIFAR-10 and CIFAR-100 see CIFAR-10,

CIFAR-10 An image recognition dataset funded by CIFAR and created by Krizhevsky
(2009) consisting of 60,000 32ˆ32 colour images of 10 classes of objects see CIFAR,
xxi, 5, 32, 81, 82, 96, 117, 139, 140, 145, 164

CNN CNN, a neural network designed for learning representations of image inputs,
with shared parameters in the form of a set of convolutional filters

composite layer a DNN layer effectively composed of several potentially heteroge-
neous layers, e.g. the Inception module see Inception, 67, 68, 69, 70, 73, 83

CuBLAS CuBLAS, Nvidia’s implementation of BLAS for the CUDA see BLAS &
CUDA,

CUDA CUDA, Nvidia’s GPU programming API see API & GPU,

CuDNN Nvidia’s Deep Neural Network acceleration library see CUDA, 96, 116

DNN DNN, a neural network with two-or-more hidden layers

explicit routing in a conditional network, routing caused by a routing node 126



172 | Glossary

feature map The input/output of a convolutional layer, a 3D tensor with two spatial
dimensions and a third dimension corresponding to the output image from a
single convolutional filter 23, 24, 25, 32, 58, 64, 66, 68, 70, 71, 73, 89, 90, 92, 93,
94, 98, 100, 101, 106, 134, 137, 139, 153

filter A convolutional filter, or kernel, of spatial dimensions wˆh, and depth c, where
c is the number of channels in the input see feature map

finetuned A method of continuing the training of a pre-trained network, with varied
definitions. Typically a subset or all of the layers of a pre-trained DNN are
trained at a greatly reduced learning rate 57

GoogLeNet A neural network architecture proposed by Szegedy, Liu, et al. (2015)
and since extended in the Inception v1–4 refinements see Inception, 34, 58, 112

implicit routing in a conditional network, routing caused by the network’s structure
126

Inception A building-block of the GoogLeNet neural network architecture designed
for efficient state-of-the-art image recognition see GoogLeNet, 34, 35, 68, 79, 81,
92, 111, 112, 137, 152

MKL MKL, BLAS implementation for Intel CPU see BLAS & CPU,

MNIST MNIST, dataset of handwritten numerical digits commonly used as a 60,000
image training/10,000 image testing dataset for machine learning algorithms

NiN NiN, a neural network architecture proposed by Lin, Q. Chen, and Yan (2014)
which introduced GAP and LDE see GAP & LDE,

object class recognition the problem of recognizing a general object class, e.g.
recognizing a car vs. bicycle 22

object instance recognition the problem of recognizing a specific instance of an
object class, e.g. recognizing a specific car model 22

Occam’s razor A general principle in hypothesis selection; given several hypothesis
that match the evidence, the simplest hypothesis, i.e. the one with the least
assumptions, should be selected 50, 51
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padding padding of the input feature map/image for convolution, pads the outer edge
of the image with (typically zero) dummy values to allow the convolutional filter
to be applied to every input pixel see feature map, 24, 66

regularization a broadly-used, but relatively ill-defined term — often its usage im-
plies a definition of ‘anything that improves generalization’, instead we define
regularization as any modification of the training algorithm that modifies, ex-
plicitly or implicitly, the error surface such that it is smoother, the prototypical
method being weight decay (Geoffery E. Hinton, 1987) 2

ResNet Residual network, a network architecture proposed by He et al. (2016a) that
uses residual connections to improve generalization and training of very deep
architectures. 31, 107, 108, 112, 117, 145, 149, 159

RNN RNN, a neural network designed for sequences, with shared parameters in the
form of a recurrence

stride number of rows/columns of the input feature map/image to skip during convo-
lution see feature map, 25

Structural Prior The encoding of prior knowledge into a neural network by architec-
ture design, e.g. a CNN, what some might call “infinitely strong regularization” (I.
Goodfellow, Y. Bengio, and Courville, 2016) see CNN

VGG VGG, a research group at the University of Oxford from which the popular
VGG network architecture was proposed by Simonyan and Zisserman (2015)
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