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Continuously forced, stratified shear flows occur in many geophysical systems, including
flow over sills, through fjords, and at the mouths of rivers and estuaries. These continu-
ously forced shear flows can be unstable and drive turbulence, which can enhance the rate
of mixing. In this study, we analyze three-dimensional direct numerical simulations of
an idealized stratified shear flow that is continuously forced by weakly relaxing both the
buoyancy and streamwise velocity towards prescribed mean profiles. We explore a range of
large and small Richardson numbers, for constant Reynolds and Prandtl numbers (Re =
4000 and Pr = 1). After a turbulent steady state develops, three regimes are observed:
(i) a weakly stratified, overturning regime, (ii) a strongly stratified, scouring regime, and
(iii) an intermediately stratified, intermittent regime. The overturning regime exhibits
partially formed overturning billows that break down into turbulence and broaden the
velocity and buoyancy interfaces. Conversely, the scouring regime exhibits internal gravity
waves propagating along the strongly stratified buoyancy interface, while turbulence
on either side of the buoyancy interface reinforces the stratification. The intermediate
regime quasi-periodically alternates between behaviors associated with the overturning
and scouring regimes. For each case, we quantify an appropriate measure of the efficiency
of mixing and examine its dependence on relevant parameters including appropriate def-
initions of the buoyancy Reynolds number, gradient Richardson number, and horizontal
Froude numbers. Using a framework involving sorted buoyancy coordinates as introduced
by Nakamura (1996) and Winters & D’Asaro (1996), we examine the underlying physical
mechanisms leading to broadening and thinning of the buoyancy interface.
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1. Introduction

Forced stratified shear flows are stratified shear flows that are continuously forced
for some period of time by the exchange between two reservoirs (or sources). These
reservoirs supply a replenishing source of momentum and buoyancy and enable a constant
production of turbulence. Forced shear flows occur at the mouths of rivers and estuaries,
in cross-shelf exchange flows, and in channels between basins. They play a role in many
important processes and systems including outflow from the Mediterranean Sea (Armi &
Farmer 1988), setting properties of bottom water and underflows (van Haren et al. 2014;
Dallimore et al. 2001; Yoshida et al. 1998), the persistence or destruction of hypoxic
layers (Cui et al. 2019), and the vertical and horizontal distribution of chemicals, biota,

† Email address for correspondence: J.R.Taylor@damtp.cam.ac.uk



2 K. M. Smith, C. P. Caulfield and J. R. Taylor

and sediments in coastal and riverine regions (Wolanski & Pickard 1983; Boehm et al.
2002; Pineda 1994). However, these flows and the turbulence associated with them are
generally unresolved in Earth system models and thus a thorough understanding of them
and their effects is needed to model and parameterize them accurately.

Turbulence in stratified shear flows can exhibit a wide range of characteristics. When
stratification is relatively weak, shear-driven overturns can develop at a relatively ‘sharp’
density interface embedded in a broader region of velocity variation. Such vortical
overturns can break up or broaden interfaces and mix the two differing fluids through
penetrative entrainment (Barenblatt et al. 1993; Balmforth et al. 1998; Woods et al.
2010). An example of this is the commonly studied stratified shear flow mixing event of a
large overturning billow that develops from a Kelvin-Helmholtz instability (KHI) (Thorpe
1973; Koop & Browand 1979; Klaassen & Peltier 1985). These events occur when the
kinetic energy of the flow is able to overcome the potential energy of the (essentially two
layer) stratification, thereby allowing eddies to overturn the interface and mix the two
fluids.

At higher values of stratification, the flow does not have enough kinetic energy and
large overturns are suppressed. Instead, Holmboe waves instabilities (HWI) and turbulent
scouring are observed (Holmboe 1962; Smyth & Winters 2002; Salehipour et al. 2016a,
2018) that act to sharpen interfaces further (Fernando & Long 1988; Woods et al. 2010;
Zhou et al. 2017b). This produces an anti-diffusion-like behavior at the interface that
preserves the distinct density layers over relatively long times. However, it is unclear as
to whether this process leads to more or less irreversible mixing of buoyancy in comparison
to the above turbulent diffusive-like overturning events (Koop & Browand 1979; Smyth
& Winters 2002; Carpenter & Lawrence 2006; Salehipour et al. 2016a).

There is a large body of literature on stratified shear flows (e.g. (Peltier & Caulfield
2003; Smyth & Moum 2012; Mashayek & Peltier 2012a,b; Salehipour & Peltier 2015;
Salehipour et al. 2016a)). Many of these studies have focused on the development and
breakdown of unforced linear instabilities, including KHI and HWI. A typical initial value
problem consists of a primary linear instability growing to a saturated finite amplitude
followed by a (relatively rapid) break down into turbulence and then a (typically slower)
decay back to a laminar state. However, the ocean and atmosphere can be turbulent and
events like these can exist within a larger-scale forcing flow or within a flow that has
retained memory of previous mixing events (Hogg & Ivey 2003). It is not clear whether
linear stability or initial value problems are relevant when considering persistent shear
flows or useful in predicting shear-driven mixing between two exchanging bodies of fluid.
Thus, questions still remain about what happens in a continuously forced shear flow, in
particular whether these two behaviors of overturning and scouring are generic, robust
and present, and what determines the appearance of either class of dynamics.

Several experiments have tried to address these (and related) questions. For example,
the Stratified Inclined Duct (SID) experiments of Meyer & Linden (2014) Lefauve et al.
(2018), and Lefauve et al. (2019) are designed to maintain over relatively long periods
a shearing counterflow of dense fluid moving below light fluid within an inclined duct
connecting two reservoirs of fluid with differing densities. Depending on the tilt of the duct
and the Reynolds number, they found four distinct flow states: (i) a laminar state, (ii) a
state primarily susceptible to HWI, (iii) a spatio-temporally intermittent state, and (iv) a
broadening turbulent state. The transition between the flow states appears to be governed
by switching from hydraulically controlled, low-dissipation states to higher dissipation
states. The constricted duct experiments of Hogg & Ivey (2003) saw a billowing KHI
steady state and a HWI steady state with a clear transition between, predicted by an
appropriately defined bulk Richardson number. Additionally, the circular lock-exchange
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experiments of Tanino et al. (2012) observed pulsing between turbulent and laminar
states that was better predicted by a Reynolds number-based criterion than a Richardson
number-based (i.e. shear compared to stratification) criterion.

Here we perform a series of direct numerical simulations (DNS) of a continuously
forced stratified shear flow. Each simulation is initialized with a uni-directional stratified
shear flow that is unstable to Kelvin-Helmholtz or Holmboe instabilities and random
perturbations are added. The flow is then forced by relaxing the buoyancy and streamwise
velocity towards a background state that is set to the horizontal mean of the initial
conditions. Given the chosen relaxation time scale (discussed in section 2), the flow
then reaches a new quasi-equilibrium background state. Our principal aims are two-fold.
First, we wish to investigate whether this flow (for appropriate choices of parameters) can
exhibit ‘overturning’ Kelvin-Helmholtz-like mixing and ‘scouring’ Holmboe-like mixing.
Second, we wish to characterize the ensuing mixing, in particular whether it is ever
possible for a relatively sharp density interface to survive while the flow is turbulent.
To address these two key aims, the rest of the paper is organised as follows. We
describe the set-up for the simulations performed in §2, and we discuss qualitatively
the phenomenology of the simulations in §3. We then discuss the simulations in the
context of a linear stability analysis framework in §4 and present quantitative analysis
of the simulations in §5. Lastly we provide our conclusions in §6.

2. Numerical Simulations

2.1. Equations

We perform three-dimensional DNS of a box of fluid centered at the density interface of
a forced shear flow. We force the flow, the details of which are discussed below, to mimic
the effects of the larger-scale shear flow outside of the box. This is intended to resemble
what happens at the interface of an actual geophysical exchange flow. A schematic of the
flow geometry is shown in figure 1. Such a flow is commonly referred to as a stratified
shear ‘layer’, as there is a finite depth layer in which the shear is significantly different
from zero. Since we are particularly interested in the fate of the relatively thin region
in which the density varies significantly from the two far field values, we will refer to
this region as a density ‘interface’ and the region where velocity varies significantly as a
velocity ‘interface’, and reserve the use of the word ‘layer’ for the two deeper regions with
approximately constant (initial) properties above and below these ‘interfaces’, which in
general will have different and time-dependent depths.

We solve the nondimensional incompressible Boussinesq Navier-Stokes equations, given
as

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∇2u + Ri0bẑ + Fux̂ , (2.1)

∂b

∂t
+ u ·∇b =

1

RePr
∇2b+ Fb , (2.2)

∇ · u = 0 , (2.3)

where u is the Eulerian velocity, p is the pressure, b is the buoyancy, Re is the Reynolds
number, Ri0 is the (initial) bulk Richardson number, Pr is the Prandtl number, Fu
and Fb are the streamwise velocity and buoyancy forcing terms, and x̂ and ẑ are the
unit vectors in the streamwise and vertical directions respectively. The forcing terms are
defined as

Fu = −1

τ
[u− u∗0 (z)] , (2.4)
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Figure 1. Schematic of simulation flow geometry and initial background profiles.

Fb = −1

τ
[b− b∗0 (z)] , (2.5)

where τ is the relaxing time scale, u is the streamwise velocity component, and u∗0(z)
and b∗0(z) are the z-dependent initial conditions to which the flow relaxes back, which
have the (nondimensional) form

u∗0 (z) = U∗0 tanh

(
z∗

d∗0

)
, (2.6)

b∗0 (z) = B∗0 tanh

(
z∗

δ∗0

)
, (2.7)

where U∗0 and B∗0 are the initial (nondimensional) magnitudes of the streamwise velocity
and buoyancy, and d∗0 and δ∗0 are the initial (half) depths of the velocity and buoyancy
interfaces, respectively. This is a forced-dissipative system where forcing in the system is
achieved entirely by the relaxation terms in equations 2.4 and 2.5.

In this context, τ can be thought of as the nondimensional (scaled with the advection
time scale d∗0/U

∗
0) flushing or refreshing time scale associated with the larger-scale shear

flow outside our computational domain. The time scale τ = 100 has been chosen such
that, at steady-state, the forcing is strong enough to maintain shear unstable background
profiles of the streamwise velocity and buoyancy (determined so by performing stability
analysis on the steady-state horizontally averaged streamwise velocity and buoyancy
profiles), but weak enough that it is less than half the turbulence production term in
the turbulent energy equation. Figure 7 in §3.3 shows the relative magnitude of these
terms and additional, under-resolved simulations at τ values of 50 and 200 are shown
and discussed in appendix A. The Reynolds number, initial bulk Richardson number,
and Prandtl numbers, as well as the (initial) interface length scale ratio R0 are defined
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as

Re ≡ d∗0U∗0
ν∗

, Ri0 ≡
B∗0d

∗
0

U∗20
, Pr ≡ ν∗

κ∗
, R0 =

d∗0
δ∗0
, (2.8)

where ν∗ is the kinematic viscosity and κ∗ is the molecular diffusivity of the buoyancy. We
are also interested in the properties of a particular gradient Richardson number Rig(z, t),
defined in terms of the horizontally-averaged velocity and buoyancy profiles and so in
general a function of both z and t:

Rig(z, t) = Ri0

∂
∂z 〈b〉xy(
∂
∂z 〈u〉xy

)2 =
N2

S2
, (2.9)

where 〈·〉xy denotes horizontal averaging, S(z, t) is the vertical shear of the horizontally
averaged streamwise velocity, and N2(z, t) is the buoyancy frequency associated with the
horizontally averaged buoyancy, i.e.

N2(z, t) ≡ Ri0
∂

∂z
〈b〉xy. (2.10)

Initially the gradient Richardson number at the midpoint of the density interface is
Rig,0 = Rig(0, 0) = Ri0R0 = N2(0, 0).

The numerical code is the pseudo-spectral code DIABLO (Taylor 2008), used pre-
viously in similar simulations of stratified shear flow (Deusebio et al. 2015; Taylor &
Zhou 2017; Zhou et al. 2017b). Horizontal derivatives are calculated pseudo-spectrally,
while vertical derivatives use second-order finite differences. Time stepping is done with
a mixed implicit/explicit scheme of third-order Runge-Kutta and Crank-Nicolson. The
velocity and buoyancy are periodic in both the horizontal directions. Vertical velocity is
zero at the top and bottom boundaries while all other components of the velocity and
the buoyancy have zero gradients at the top and bottom boundaries. The domain size is
LX = 30, LZ = 30, and LY = 15 relative to the initial velocity interface half-depth, d∗0,
and 768× 768× 384 gridpoints are used for all simulations. In all cases the grid spacing

is no larger than twice the Kolmogorov length scale (Lκ =
(
ν∗3/ε

)1/4
, where ε is the

kinetic energy dissipation rate), a typical criterion for DNS (Yeung & Pope 1989; Pope
2000). The initial flow field is seeded with random noise with a k−2 spectra (although
the steady-state results are not sensitive to this specific form) and amplitude of 0.001U∗0
in order to aid the transition to turbulence.

Through a sequence of exploratory simulations we can identify three distinct regimes
which arise in this system: (i) an overturning and interface broadening regime ‘B’; (ii) a
scouring and interface thinning regime ‘T’; and (iii) an intermediate, spatio-temporally
intermittent regime ‘I’, and we thus consider in detail three simulations, representative
of each of these regimes. All three simulations have Re = 4000, Pr = 1, and R0 = 7, but
with different initial and background forced bulk Richardson numbers. For simulation
‘B’ in the interface broadening regime, Ri0 = 0.0125 and hence Rig,0 = 0.0875, for
simulation ‘T’ in the interface thinning regime Ri0 = 0.35 and hence Rig,0 = 2.45, while
for simulation ‘I’ in the intermediate, spatio-temporally intermittent regime Ri0 = 0.1
and hence Rig,0 = 0.7. The Re value is chosen so it is sufficiently high for the full ‘zoo’ of
secondary instabilities and subsequent turbulent break down to arise, at least for flows
susceptible to KHI (Mashayek & Peltier 2013; Salehipour et al. 2016a).

We have conducted a linear stability analysis on the initial profiles of each simulation,
details of which will be discussed in section §4. This analysis reveals that the most
unstable mode in simulation B is KHI, identified by the phase speed of the most unstable
mode being zero, while both simulations T and I are initially most unstable to HWI, with
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the most unstable modes being a complex conjugate pair with non-zero phase speeds.
The specific value of R0 is chosen so that all three of these regimes can be accessed with
the same R0 value. Linear stability analysis and several test simulations reveals that
at lower values of R0 the flow is no longer unstable to HWI (or only weakly so) at the
chosen Re and τ values. This will be discussed further below and is illustrated in figure 8,
where the darkness of the red shading represents the growth rate associated with HWI at
different R0 and Rib values. Simulations B and T are run until an approximate turbulent
steady-state is achieved, while the simulation I is run until several pulsation cycles are
achieved, as a steady-state does not develop. All results shown are from times after these
steady states are achieved unless otherwise stated. In general, we will not be discussing
the transient spin-up phase of each simulation with too much detail, as our primary
focus is on the statistically steady state. The novel aspect of this study is the addition of
the forcing term, which allows a statistically steady state to develop. Additionally, the
forcing term is relatively unimportant during the transient phase, and a large body of
literature has already explored the evolution of stratified shear layers from a prescribed
initial condition (Caulfield & Peltier 2000; Peltier & Caulfield 2003; Smyth & Moum
2012; Mashayek & Peltier 2012a,b; Salehipour & Peltier 2015; Salehipour et al. 2016a;
Smyth & Winters 2002; Carpenter & Lawrence 2006; Kaminski & Smyth 2019; Brucker
& Sarkar 2007).

It should be noted that although the exact form of the forcing and the magnitude of τ
do change the quantitative results of this study, the qualitative results within each regime
appear to be robust for a large range of τ values. Changing the magnitude of τ generically
leads to the occurrence of three distinct regimes, an overturning and interface broadening
regime, a scouring and interface thinning regime, and an intermediate spatio-temporally
intermittent regime. However, the parameter values at which each regime occurs, the
transitions between the regimes, and the magnitudes of the analyzed quantities presented
later shift with changes of τ , primarily due to an increase or decrease in the kinetic and
potential energy provided by the forcing. Thus, our focus in this study is in comparing
the characteristics of the turbulence seen in each regime, with all parameters except the
initial bulk Richardson numbers held the same. We first consider qualitatively the flows
observed in each of the three simulations, and then present a quantitative analysis and
interpretation of the simulation data.

3. Phenomenology

3.1. Simulations B and T

Figure 2 shows the horizontal and time-averages of the (a) streamwise velocity, (b)
buoyancy, and (c) gradient Richardson number Rig as defined in (2.9) (but constructed
using the time-averaged profiles). Dotted lines show simulations B and T initially and
solid lines at their final turbulent steady-state. Time-averages are performed over the
last 100 (nondimensional) time units of each respective simulation. It is immediately
clear from panels a and b that the initial sharp interfaces of the velocity and buoyancy
in simulation B (compare grey dotted lines to red solid lines) are not maintained once
a turbulent steady-state is achieved and the buoyancy and velocity interfaces are much
broader at the end of the simulation. We define time-dependent (and nondimensional)
velocity and density interface half-depths as

d(t) =

∫ Lz/2

−Lz/2

(
1− 〈u〉xy2

)
dz , (3.1)
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Figure 2. Horizontal and time-averages of: (a) streamwise velocity 〈u〉xyt; (b) buoyancy 〈b〉xyt;
and (c) gradient Richardson number Rig as defined in (2.9) constructed from these time-averaged
profiles as a function of physical depth z for simulation B (with Ri0 = 0.0125, plotted with solid
red lines) and simulation T (with Ri0 = 0.35, solid blue lines). Time-averaging is done over the
last 100 (nondimensional) time units of each respective simulation. Nondimensional streamwise
velocity and buoyancy are compared to their initial profiles, shown as a grey dashed line (which
lie very close to the curves for Ri0 = 0.35). Rig profiles are also compared to initial profiles,
shown as respectively colored dashed lines, and the Miles-Howard criterion of 1/4, shown as a
thin dashed grey line. Note the change in vertical axis used in panel c.

δ(t) =

∫ Lz/2

−Lz/2

(
1− 〈b〉xy2

)
dz , (3.2)

where, by construction, d(0) = 1 and δ(0) = 1/R0. Defining the time-dependent interface
half-depth ratio as R(t) = d/δ, we plot this ratio versus time in figure 3. Here, we
see that the initial transient broadening period for all three cases lasts roughly 100-
200 (nondimensional) time units. In simulation B, during this transient period the flow
develops turbulent billows, similar to those seen in the intermediate or strongly turbulent
initial condition simulations of Kaminski & Smyth (2019). The resulting growth of the
buoyancy interface causes R(t) to decrease from its initial value R(0) = R0 = 7 to its
steady-state value of R ' 1. Additionally, the gradient Richardson number (panel c of
figure 2), which initially had a maximum at the midplane of the computational domain,
is relatively uniform across the center of the domain and remains well below the Miles-
Howard criterion of 1/4 (vertical dashed line in panel c) (Miles 1961; Howard 1961).
In contrast, a relatively sharp interface for both the buoyancy and velocity profiles is
still maintained for simulation T during steady-state. While both d and δ increase from
their initial values quite rapidly as turbulent and wispy interfacial waves develop in
the transient period, even in steady-state the density interface remains thinner than the
velocity interface, and so R remains significantly greater than one (as seen in figure 3 and
discussed further below). Additionally, although slightly decreased from its initial value,
a maximum in the gradient Richardson number in panel c of figure 2 is still maintained
at the midplane of the computational domain, with minima (less than 1/4) on either side
of the midplane, while the gradient Richardson number then approaches large values in
the far field, as the shear is very small away from the midplane. Note, the high frequency
oscillations seen in figure 3 for simulation T are interfacial waves within a continuously
stratified system.

To visualize the flow dynamics, we show in figure 4 vertical slices of various flow
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Figure 3. R as a function of t for simulation B (Ri0 = 0.0125, red solid line), I (Ri0 = 0.1,
green dotted line), and T (Ri0 = 0.35, blue dashed line).

quantities at the end of simulations B and T. In panels a and d we show buoyancy, in
panels b and e we show the log of kinetic energy dissipation rate ε, and in panels c and
f we show the log of buoyancy variance dissipation rate χ, defined as

ε(x, t) = 2ν∗sijsij , χ(x, t) = κ∗ |∇b|2 /N2 , (3.3)

where sij is the rate of strain tensor associated with the full velocity field u and the
buoyancy frequency is as defined in (2.9).

Considering the three panels for simulation B (i.e. panels a-c), it is apparent that
regions of high buoyancy variance dissipation generally coincide with regions of high
turbulence dissipation. This co-location leads to a significant amount of irreversible
mixing and broadens the density interface. Since the initial gradient Richardson number
at the density interface is not particularly high, turbulent eddies in the flow overcome
the effects of stratification. Additionally, throughout the steady-state portion of this
simulation we do not see the classical coherent billow of KHI roll-up, but rather a complex
turbulent flow that is reminiscent of the simulations in Brucker & Sarkar (2007) and
Kaminski & Smyth (2019), which are seeded with pre-existing turbulence. In the initial
transient period, there is roll-up like behavior, but is again significantly altered by the
presence of turbulence.

In contrast, in the equivalent panels for simulation T (i.e. panels d-f), the kinetic
energy and buoyancy variance dissipation are overall less than those in simulation B,
indicating that overall mixing in simulation T is much smaller than that in simulation B.
The high initial gradient Richardson number at the density interface prevents turbulence
from overturning the interface, instead relegating overturns to either side of the interface
where stratification is relatively low and they can scour the interface. So while mixing
is overall all much smaller in simulation T, the important feature here is the difference
in mixing going from the midplane to the outer flanks of the interface. This leads to a
sustained sharpening of the interface and a maintenance of a higher gradient Richardson
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Figure 4. Vertical x − z slices at y = 7.5 of: (a,d) buoyancy b; (b,e) log of kinetic energy
dissipation rate log10 (ε); and (c,f) log of buoyancy variance dissipation rate log10 (χ) for:
simulation B with Ri0 = 0.0125 (top row); simulation T with Ri0 = 0.35 (bottom row).

number at z = 0, which in turn further inhibits the breaking down of the interface by
turbulence.

3.2. Simulation I

In contrast to both simulations B and T, a statistically steady turbulent flow is not
achieved in simulation I (see figure 3). Instead, spatio-temporal intermittency develops
that has aspects that resemble each of the other simulations. Specifically, this simulation
exhibits overturning and scouring behaviour at different stages in the flow evolution.
In panels a and b of figure 5, it is apparent that the horizontally-averaged streamwise
velocity and buoyancy cycle between phases where the interfaces sharpen and broaden.
It should be noted that while the cyclic behavior is generically present for all values of τ
tested (see appendix A for more detail), the value of τ does influence the period of the
cycling between the two states. Specifically, as τ is increased, the period linearly increases
as well. In panel c, 4N2−S2 is shown, where S and N are the mean shear and buoyancy
frequency as defined in (2.9). Therefore, positive and negative values of this quantity
correspond to Rig > 1/4 and Rig < 1/4 respectively. Significantly, after t ' 100 at the
midplane of the computational domain, Rig > 1/4 is maintained (prior to t ' 100 an
initial larger roll-up occurs that reduces Rig to less than 1/4 briefly, before developing the
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Figure 5. Variation with z and t of horizontal averages of: (a) streamwise velocity 〈u〉xy; (b)
buoyancy 〈b〉xy; and (c) 4N2 − S2 as defined in (2.9) for simulation I with Ri0 = 0.1. Regions
with Rig > 1/4 are shown in blue and regions with Rig < 1/4 are shown in red. The dashed and
dotted lines indicate the times of slices shown in figure 6.

spatio-temporal intermittency seen in the rest of the simulation). However, depending
on whether the system is in the observed overturning- or scouring-like state, the width
of this strong buoyancy interface and the values of Rig either side of this interface vary.
Specifically, considering the time period around the first thick dashed line, there is a
relatively thin high Rig region flanked by very low values of Rig. In contrast, looking
at the time period around the second dotted line, we see that 4N2 − S2 becomes small
shortly before this time, followed by an increase in Rig over a much broader vertical
extent.

Figure 6 shows vertical slices of buoyancy (in panels a and d), the log of kinetic energy
dissipation rate (in panels b and e), and the log of buoyancy variance dissipation rate
(in panels c and f) at the span-wise centerline as in figure 4 but at two different times in
simulation I (denoted by the vertical dashed and dotted lines in figure 5).

Panels d-f show slices taken at the time marked with a grey dotted line in figure 5, at
(nondimensional) t ≈ 1000 when the density interface is broadening. Coherent overturns
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Figure 6. Vertical x − z slices at y = 7.5 of: (a,d) buoyancy b; (b,e) log of kinetic energy
dissipation rate log10 (ε); and (c,f) log of buoyancy variance dissipation rate log10 (χ) for
simulation I with Ri0 = 0.1 at two different times: data from a scouring event (top row, marked
with a dashed line in figure 5; data from an overturning event (bottom row, marked with a
dotted line in figure 5)).

of the density interface are visible and strong momentum dissipation is co-located with
strong buoyancy gradients. This is qualitatively similar to the top three panels of figure
4 for simulation B. However, here the buoyancy interface, while broader than in the
scouring-like state in panels d-f, is still noticeably thinner than in simulation B. Panels
a-c show slices taken at the time marked with the grey dashed line in figure 5, at t ≈ 500
when the density interface is thinning. Here the buoyancy interface is thinner than in
panels d-f, and significant kinetic energy dissipation occurs on either side of the buoyancy
interface, similar to the bottom three panels of figure 4 for simulation T (although the
interface is not quite as thin as in simulation T).

Although this is an idealized system with Pr = 1 and a relatively modest Reynolds
number, it is interesting to note that the intense braid-like structures in the dissipation
field of panel e strongly resemble the features in acoustic backscatter images of a salt-
stratified estuarian outflow in figures 2 and 3 in Geyer et al. (2010). Although they do not
explicitly measure dissipation, they estimate kinetic energy dissipation from the vertical
velocity variance measurement they make. In both Geyer et al. (2010) and the overturning
phase simulation I here, the most intense dissipation values occur in regions of large
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Figure 7. Horizontal and time-average of: shear production P (blue lines); buoyancy flux B
(yellow lines); dissipation D (green lines); and forcing F (red lines); as a function of depth z for:
(a) simulations B with Ri0 = 0.0125 and (b) simulations T with Rib,0 = 0.35. The time-average
is performed over the last 600 (nondimensional) time units of each respective simulation.

buoyancy gradients. A similar co-location of intense kinetic energy and buoyancy variance
dissipation can also be seen in the estuarian observations of Holleman et al. (2016), where
again, they have not directly measured either dissipation, but rather estimated it from
variance measurements.

3.3. Turbulent Kinetic Energy

Modifying the Osborn (1980) assumption of stationarity in time and homogeneity in
space to include forcing, the turbulent kinetic energy (TKE) equation reduces to a balance
between four terms: shear production P, turbulent buoyancy flux B, viscous dissipation
D, and forcing F . These are defined as

P(z) = −
〈
∂〈u〉xy
∂z

〈u′w′〉xy
〉
t

, B(z) = 〈b′w′〉xyt , (3.4)

D(z) = 〈ε〉xyt , F(z) = 〈u′2〉xyt/τ , (3.5)

where u′, w′, and b′ are the fluctuations about 〈u〉xy, 〈w〉xy, and 〈b〉xy, respectively. Figure
7 shows the horizontal and time-averages of these four terms for the B and T cases. Case
I is not shown as stationarity is not achieved at any point in the simulation. Time-
averages are performed over the last 600 (nondimensional) time units of the respective
simulations. The average TKE over this period for the B and T cases are 0.64 ± 0.1 and
0.015 ± 0.0007, respectively, and the average changes in TKE in time over this period
are 0.0 ± 0.004 and 0.0 ± 0.0003, respectively, showing that a statistical steady-state is
maintained. Additionally, the magnitude of the forcing terms are less than half of the
respective TKE production terms in each case.

4. Linear Stability Analysis

In order to examine the initial and temporal evolution of the stability of each simula-
tion, we have numerically calculated the linear stability of a viscous, diffusive, stratified
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shear flow system. We substitute the perturbation solutions

u = U(z)i + εu′(x, y, z, t) , b = B(z) + εb′(x, y, z, t) , (4.1)

into eqs. (2.1)-(2.3) and linearize around the base states U and B. Considering normal
modes of the form

φ′(x, y, z, t) = φ̂(z) exp [σt+ ikx] , (4.2)

where φ′ is the perturbation of any flow property, φ̂(z) is the z-dependent eigenfunction,
σ is the growth rate, and k the streamwise wavenumber, we get the following system of
forced, viscous Taylor-Goldstein equations

σ

[
∇2 0

0 I

][
ŵ

b̂

]
= A

[
ŵ

b̂ ,

]
(4.3)

where

A11 = −ikU
(
D2 − k2

)
+ ikD2U +

1

Re

(
D2 − k2

)2
+

1

τ
D2 ,

A12 = −k2Ri0 ,

A21 = −dB
dz

,

A22 = −ikU +
1

RePr

(
D2 − k2

)
+

1

τ
,

and D2 = d2/dz2. The notable addition to this system of equations being the τ forcing

terms. Boundary conditions at the top and bottom for ŵ and b̂ are free-slip and insulating,
respectively. The base states U and B take the same form as the initial velocity and
buoyancy profiles given in (2.6) and (2.7) covering a Ri0 − R0 phase space through
variation in the strength and depth of the buoyancy interface. We solve the system of
equations using the procedure outlined in the appendix of Smyth et al. (2011). The most
unstable mode is extracted for a range of R0 and Ri0 values. Figure 8 shows in color the
magnitude of the real part of the growth rate of the most unstable mode according to the
linear stability analysis as a function of R0 and log10 (Ri0). Blue shading is used when the
phase speed of the most unstable mode is zero (interpreted as being of KHI type) and the
red shading is used when there is a complex conjugate pair with non-zero phase speeds
of most unstable modes (interpreted as being of HWI type). Stable or neutral modes are
colored white. The initial condition (Ri0, R0) for simulation B is marked with a triangle,
for simulation I is marked with a star, and simulation T is marked with a square. The
attached lines show the temporal evolution of each simulation in Rib − R phase space.
At each instant the updated values of d and δ, determined using (3.1) and (3.2), are used
to determine the value of R = d/δ for the simulation, used as the y-coordinate on the
figure. Analogously, we can also define a time-dependent value of the bulk Richardson
number, taking into account the fact that the depth d of the velocity interface in general
increases (and so the intensity of the shear drops). We generalize the definition of the
initial Ri0 in (2.8) as it has no time-dependent terms (d∗0 is defined as the initial velocity
interface and so we distinguish it from the d(t) used in (3.1)), so that

Rib(t) =
B∗0d

∗
0d(t)

(U∗0)2
= Ri0d(t), (4.4)

which we use to determine the x-coordinate on the figure. Increases in d > 1 lead
inevitably to increases in Rib from its initial value Ri0. The grey lines denote the initial
transitory, non-steady evolution of each simulation and the black lines show the steady
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Figure 8. Growth rate Re(σ) of the fastest growing mode from a linear stability analysis as a
function of interface half-depth ratio R0 = d0/δ0 and log10 (Ri0). Regions plotted using the blue
color map correspond to fastest growing modes with zero phase speeds (i.e. unstable to KHI)
and those using the red color map correspond to fastest growing modes with non-zero phase
speeds (i.e. unstable to HWI). The symbols (triangle = B, star = I, and square = S) indicate
the chosen parameters for the initial conditions of each of the simulations. The thick lines are
the horizontally-averaged trajectories for each simulation that the time-dependent parameters
Rib = Ri0d and R = d/δ follow in time during the simulation using: grey lines trace the
initial unsteady state path; black lines trace the quasi-steady states (simulations B and T) or
spatio-temporally intermittent state (simulation I).

or fully-evolved state of each simulation. All three simulations exhibit an initial transient
period that involves the broadening of the velocity interface. In simulation B, this
broadening affects the velocity and buoyancy interfaces, so Rib increases significantly (due
to the increase in d) and the velocity and buoyancy interfaces becoming approximately
equal in depth, and so R ' 1. In simulation T, while there is an initial broadening
of both interfaces with δ increasing more than d, R still remains substantially larger
than in simulation B (R ' 3.5) once steady-state is achieved. Simulation I resembles
simulation B in its low steady-state average R value, however, unlike simulation B,
simulation I oscillates in phase space between two different states (examples of which
can be seen in figure 6). Performing the same stability analysis as before, but using
the instantaneous horizontally averaged velocity and buoyancy profiles at each time step
output as the base state reveals that it is oscillating between a completely stable state
and a state that is most unstable to a mode 2 KHI. However, caution should be taken in
inferring the stability of the flow from these averaged profiles as the background state is
continuously altered by the growing perturbations (Hogg & Ivey 2003). Although Pr = 1
in these simulations, to leading order the forcing counteracts any broadening effects of
the much slower molecular diffusion. Thus, turbulence is the primary mechanism for
interface broadening and setting of the steady-state R value here.
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Figure 9. Horizontal averages of: (a,b,c) kinetic energy dissipation rate [log10 (〈ε〉xy)];
(d,e,f) buoyancy variance dissipation rate [log10 (〈χ〉xy)]; and (g,h,i) mixing efficiency
[η = 〈χ〉xy/ (〈χ〉xy + 〈ε〉xy)] as a function of time-averaged buoyancy-interface normalized depth
z/〈δ〉xyt and time t for: simulation B with Ri0 = 0.0125 (left column); simulation I with
Ri0 = 0.1 (middle column); simulation T with Rib,0 = 0.35 (right column). Horizontally
and time-averaged buoyancy interface half-depth 〈δ〉xyt values used in normalizing z for each
simulation are averaged over the time window in each respective panel and are shown in white
text at the tops of the panels in the middle row.

5. Quantitative Analysis

5.1. Mixing efficiency: physical coordinate space

Figure 9 shows as a function of time the horizontal averages of kinetic energy dissipation
rate 〈ε〉xy, buoyancy variance dissipation rate 〈χ〉xy, and the associated mixing efficiency
η(z, t), defined as

η(z, t) ≡ 〈χ〉xy
〈χ〉xy + 〈ε〉xy

, (5.1)
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Figure 10. Probability density function (PDF) of: horizontally-averaged (a) gradient
Richardson number as defined in (2.9) and (b) mixing efficiency as defined in (5.1). Data plotted
is from successive horizontal averages spaced 1 (nondimensional) time unit apart across the
respective time window shown in figure 9 within the region −〈δ〉t 6 z 6 〈δ〉t. Red bars are from
simulation B with Ri0 = 0.0125; blue bars are from simulation T with Ri0 = 0.35; green bars
are from simulation I with Ri0 = 0.1. Vertical dashed line in panel a marks Rig = 1/4 and in
panel b η = 1/6.

for all three simulations. One advantage of this definition is that the mixing efficiency is a
function of depth, unlike the mixing efficiency defined with the irreversible buoyancy flux
as calculated from the APE framework from Winters & D’Asaro (1996) which yields a
single volumetric mixing efficiency. For ease of comparison between different simulations,
z has been normalized for each simulation by a time-averaged buoyancy interface half-
depth 〈δ〉xyt given by (3.2), where the time-averaged value is shown in each figure. For
simulation B, we see that η(z, t) is quite variable in space and time. Close to the midplane
of the computational domain, η(z, t) is relatively low, where overturning and turbulence
is relatively active and thus 〈ε〉xy is large, but buoyancy is, relatively, more homogenized,
so 〈χ〉xy is somewhat suppressed. The mixing efficiency then increases to higher values
toward the outer flanks of the turbulent region, where both 〈ε〉xy and 〈χ〉xy become quite
small. In contrast, simulation T has a relatively constant mixing efficiency concentrated
around the midplane of the computational domain, with peak values of the mixing
efficiency and overall values of the kinetic energy dissipation and buoyancy variance
dissipation much less than those in simulation B. However, a reduction or enhancement
in mixing or mixing efficiency when comparing the two regimes, B and T, is not the only
important point to be made here. As will be discussed in subsequent sections, how the
mixing and mixing efficiencies vary with respect to the buoyancy interface in each regime
is a key feature of that respective regime. Again, the high frequency oscillations seen panel
c, f, and i for simulation T are a result of high frequency internal waves propagating along
the density interface. These are effectively interfacial waves in the continuously stratified
system and they can be seen more clearly in panels d-f of figure 4. Similarly to before,
simulation I appears to exhibit behavior similar to aspects of both simulation B and T,
cycling between a state of high peak values towards the flanks and a state of lower, yet
more uniform values that are localized around the midplane.
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An important idea of self-organization and the tendency for a system to be attracted
towards critical Rig and η values of 1/4 and 1/6 at steady-state is raised in Salehipour
et al. (2018) using data from unforced, initial-value simulations. To examine whether a
forced system, such as the ones examined here, exhibits evidence of this behavior we plot
in figure 10 the probability density function (PDF) of the horizontally averaged gradient
Richardson number and mixing efficiency as defined in (2.9) and (5.1), respectively.
Data points included in the binning are from the interface region −〈δ〉t 6 z 6 〈δ〉t
and the last 600 (nondimensional) time units of each simulation. As to be expected,
simulation B has relatively low gradient Richardson numbers and mixing efficiencies,
simulation T has relatively high gradient Richardson numbers and mixing efficiencies,
and simulation I is situated between the two. Although there is a peak at Rig = 1/4 in
the steady-state of simulation T, the mixing efficiencies are well above 1/6, and again,
although there is a peak at η = 1/6 in the spatio-temporally intermittent simulation I,
the gradient Richardson’s number values are well below 1/4. Additionally, the majority
of the steady-state values in simulation B for both Rig and η are well below 1/4 and 1/6,
respectively. Though we might not expect to find evidence of a self-organized basin of
attraction here, as the forcing appears to act somewhat against these effects, not least
due to being somewhat too strong for the underlying assumptions of the self-organized
criticality paradigm.

5.2. Mixing efficiency: buoyancy coordinate space

The above view of the mixing efficiency, however, does not reveal the full picture.
Horizontally averaging over the domain and thus the interfacial internal waves arising
in both simulation T and I produces a broad density interface when calculated in this
fashion. In order to eliminate this misleading property, we now average the dissipation
rate, buoyancy variance destruction rate, and mixing efficiency data based on the refer-
ence z∗ buoyancy coordinate space of Winters & D’Asaro (1996) and Nakamura (1996).
Specifically, the sorted buoyancy profile b∗(z∗, t) is first calculated using the PDF method
in Tseng & Ferziger (2001). Then 〈ε〉∗ and 〈χ〉∗ are calculated by averaging the values
of ε and χ that fall within a given z∗ bin.

For all three simulations, figure 11 plots (with thick lines) time and buoyancy
coordinate-averaged kinetic energy dissipation rate 〈ε〉∗t, buoyancy variance dissipation
rate 〈χ〉∗,t, and the associated time-averaged mixing efficiency 〈η〉∗,t, where η∗ is defined
as

η∗ ≡
〈χ〉∗

〈χ〉∗ + 〈ε〉∗
. (5.2)

Time-averages are performed using snap-shots spaced 100 (nondimensional) time units
apart across the respective time windows shown in figure 9. Analogously to figure 9, for
each simulation, the z∗ coordinate is scaled with an appropriate measure of the depth of
the buoyancy interface. Specifically, the time-dependent half-depth δ∗(t) of the buoyancy
interface in buoyancy coordinate space is defined as

δ∗(t) =

∫ Lz/2

−Lz/2

(
1− b2∗

)
dz∗ . (5.3)

We then scale the vertical coordinate in the plots using the time-average 〈δ∗〉t, averaged
over the same period as 〈ε〉∗, 〈χ〉∗, and η∗, and the specific values of this quantity for each
simulation are given on the figure. Furthermore, the data from simulation I have been split
to construct a time-average, referred to as IB , over all relatively thick interfaces, identified
as interfaces for which δ∗ > 2.4 (the time-averaged values of δ∗ for all of simulation I),
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Figure 11. Average in time and sorted buoyancy coordinates z∗/〈δ〉∗,t of (a) kinetic energy
dissipation rate log10 (〈ε〉∗,t); (b) buoyancy variance destruction rate log10 (〈χ〉∗,t); and (c)
mixing efficiency 〈η〉∗,t = 〈χ〉∗,t/ (〈χ〉∗,t + 〈ε〉∗,t) plotted with solid thick lines. Time-averages
are performed using data snap-shots spaced 100 (nondimensional) time units apart across the
respective time window shown in figure 9. One standard deviation from this average is plotted
with shaded regions and solid thin lines for: simulation B with Ri0 = 0.0125 (red lines);
simulation I with Ri0 = 0.1 during the IT phase (green lines) and IB phase (grey lines);
simulation T with Ri0 = 0.35 (blue lines). The IT phase is defined by δ∗ < 2.4, while the
IB phase is defined by δ∗ > 2.4. The time-averaged values of δ∗ used are displayed in their
respective colors.

and a time-average, referred to as IT , over all relatively thin interfaces, identified as
interfaces for which δ∗ < 2.4. Finally, the shaded regions indicate ±1 standard deviation
of the instantaneous data about the time average.

Averaged in this way, it is now apparent that the dissipation in simulation T is localized
on the edges of the buoyancy interface, exterior to the location of the strongest buoyancy
gradient, the time-average of which is maximum at the midpoint in z∗ coordinates. The
kinetic energy dissipation rate is low in simulation T in the region −0.5〈δ∗〉t 6 z∗ 6
0.5〈δ∗〉t compared to the other simulations. The buoyancy variance destruction rate,
〈χ〉∗, is also smaller near z∗ = 0 in simulation T, but the reduction compared to the
other simulations is smaller and hence the mixing efficiency is relatively large in this
region in simulation T. So while the midplane mixing efficiency is relatively large for
simulation T, the flow at the midplane is quasi-laminar and mixing and 〈χ〉∗ are at least
an order of magnitude smaller than the other simulations at the midplane. However, when
moving away from z∗ = 0 towards the flanks of the buoyancy interface, the flow becomes
more turbulent. Both 〈ε〉∗ and 〈χ〉∗ begin to increase for larger values of z∗ in simulation
T, indicating more mixing is occurring, but do so in such a way that the mixing efficiency
decreases. This difference between mixing at the midplane and flanks is precisely what
contributes to simulation T’s interface thinning behavior, as will be discussed further in
§5.3. Conversely, in simulation B, the maximum dissipation rate is co-located with the
maximum buoyancy variance destruction. Additionally, both are spread across a much
larger portion of the domain (of width 〈δ∗〉t = 10.3), leading a more broad and relatively



Forced stratified flow 19

moderate value of mixing efficiency. Subdividing simulation I into IT and IB phases, it is
apparent the associated mixing efficiencies are quite similar, exhibiting a combination of
behaviors characteristic of both simulation T and B. Specifically, dissipation is not peaked
on the flanks of the buoyancy interface as in simulation T, but rather both dissipation
and buoyancy variance destruction are peaked at the midpoint as in simulation B. On the
other hand, the widths of these regions of enhanced dissipation and buoyancy variance
dissipation (of width 〈δ∗〉t = 2.0 and 2.8 respectively), are quite narrow, similarly to the
observed behavior in simulation T.

A further depth-averaged mixing efficiency is calculated using an average across the
buoyancy interface (i.e. for −〈δ∗〉t < z∗ < 〈δ∗〉t), which we denote as η∗. For simulations
B and T, the associated averaged values are η∗ = 0.11 and η∗ = 0.43 respectively,
suggesting that, although it spans a much smaller vertical extent, simulation T achieves
a much higher interfacial-averaged mixing efficiency. However, a key point to keep in
mind when considering the destruction or maintenance of sharp buoyancy interfaces, is
not so much whether mixing and mixing efficiency are high or low overall when comparing
simulation B and T, but how mixing and mixing efficiency vary along the depth of the
interface within each simulation (a point that is illustrated further in §5.3). Evaluating
mixing or mixing efficiency as a single depth-averaged value in simulations such as these
can mask this important information. For simulation I, the value associated with the
IT phase is η∗ = 0.23 and the value associated with the IB phase is η∗ = 0.28, falling
between the values associated with the other two simulations.

5.3. Effective diffusivity

In examining the mechanisms behind the destruction or maintenance of buoyancy
interfaces in layered stratified plane Couette flow simulations, Zhou et al. (2017b) derived
an evolution equation for the buoyancy gradient in the same sorted buoyancy coordinate
as discussed above. They found that the curvature of the effective diffusivity κe, defined
as

∂2κe
∂z2∗

=
∂2

∂z2∗

[
κ∗
(
∂z∗
∂b

)2

〈|∇b|2〉z∗

]
=

∂2

∂z2∗

[
κ∗
(
As
A

)2
]
, (5.4)

where As is the area of the isopycnal surface and A is the area of the isopycnal surface
projected onto a flat plane, served as a simple quantity to diagnose whether ‘scouring’ or
‘overturning’ processes took place at the interface. In this context, ‘scouring’ is character-
ized by positive curvature, while ‘overturning’ is characterized by negative curvature. The
distinction can perhaps be best understood through consideration of isopycnal surfaces.
Large overturning processes distort isopycnal surfaces near the midpoint, leading to a
relatively large As/A ratio and hence relatively large κe. This distortion then decreases
away from the midpoint, creating negative curvature in κe. Conversely, during scouring
processes, relatively large isopycnal distortion due to turbulence, and associated relatively
large As/A, is displaced to either side of the interface, while at the midpoint (i.e. where
z∗ = 0) the isopycnals are almost flat. This leads to a positive curvature in κe and
a mechanism by which diffusive spreading of the interface is counteracted. In addition
to the curvature of κe, Prandtl number effects were also found to be important, as κe
is bounded below by the molecular value of κ∗, which thus limits the development of
positive curvature at finite Peclet numbers.

While the physical set-up of the Zhou et al. (2017b) simulations is quite different from
that of this study, we can still employ this simple metric describing the curvature of κe
to understand the mechanisms behind the interface broadening and thinning behavior
observed in simulations B, T, and I. In figure 12c we have plotted the time-averaged
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Figure 12. Variation with normalized buoyancy depth z∗/〈δ∗〉t of the time-averaged: (a)
buoyancy Reynolds number 〈Reb,∗〉t; (b) turbulent flux coefficient 〈Γ∗〉t; and (c) normalized
effective diffusivity κe/κ

∗ as defined in (5.5) for: simulation B with Ri0 = 0.0125 (red lines);
simulation I with Ri0 = 0.1 during the IT phase (green lines) and IB phase (grey lines); simulation
T with Ri0 = 0.35 (blue lines). The IT phase is defined by δ∗ < 2.4, while the IB phase is defined
by δ∗ > 2.5. Time-averages are performed in the same manner as in figure 11 and respective
time-averaged values of δ∗ are the same as used in figure 11.

vertical profiles of κe/κ
∗ as a function of z∗/〈δ∗〉t for all three simulations. Time-averaging

is the same as in figure 11. In simulation B, κe is enhanced well above molecular diffusion
across the entire depth of the domain with κe exhibiting a negative curvature. Isopycnal
distortion is greatest at the midpoint (i.e. at z∗ = 0) due to overturns, which naturally
leads to interface broadening.

In simulation T, κe ' κ∗ for |z∗| < 〈δ∗〉t. Since κe includes molecular diffusion, this
indicates that there is very little enhancement in mixing by turbulence and the flow is
quasi-laminar. For |z∗| = 〈δ∗〉t, κe > 2κ∗. Although this is smaller than in the other
simulations, the enhancement of mixing by turbulence outside of the density interface is
non-trivial. As a result of the enhanced mixing on the flanks of the density interface, the
κe(z∗) profile has positive curvature, and based on the analysis in Zhou et al. (2017b),
this acts to thin the interface.

In Zhou et al. (2017b), similar thinning and broadening interfaces were seen. However,
the interface thinning observed in that study required a relatively large Prandlt number
(Pr = 70) to limit the diffusion of the interface. In the study described herein, the
forcing plays a somewhat analogous role in limiting secular spreading of the interface.
In all cases the velocity and buoyancy interface depths are greater than their initial
depths. The forcing term always works to counteract the effects of interface diffusion. In
simulation B, this effect is swamped by the broadening effects of the overturns. On the
other hand, in simulation T, the forcing helps the scouring eddies to maintain a thinner
interface.

In order to understand what sets the magnitude of κe, it is helpful to consider the
following relation from Salehipour & Peltier (2015) and Taylor & Zhou (2017) for κe,
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quantifying the effective diffusivity enhancement above the molecular κ∗:

κe
κ∗

= PrΓ∗Reb,∗ + 1; Reb,∗ =
〈ε〉∗
ν∗N2

∗
; Γ∗ =

η∗
(1− η∗)

;N2
∗ = Ri0

∂

∂z∗
b∗ (5.5)

where Reb,∗, N
2
∗ and Γ∗ are a buoyancy Reynolds number, buoyancy frequency and tur-

bulent flux coefficient constructed from the appropriately sorted buoyancy field b∗(z∗, t),
and generically functions of both z∗ and time.

Panels a and b of figure 12 show time-averaged profiles of the buoyancy Reynolds
number (〈Reb,∗〉t) and flux coefficient (〈Γ∗〉t) as a function of z∗/〈δ∗〉t for the three
simulations. Again, time-averaging is the same as in figure 11 and for κe in panel c.
Comparing these profiles with their corresponding κe profiles in panel c, it is apparent
that both 〈Reb,∗〉t and 〈Γ∗〉t contribute to the magnitude of κe. For simulation B, 〈Reb,∗〉t
is relatively large over the entire depth of the domain, but 〈Γ∗〉t conversely is relatively
small. The overturns are not particularly efficient at buoyancy variance destruction, at
least partly because there is less buoyancy variance to destroy, but are nevertheless quite
vigorous and thus lead to a relatively large value of κe. Conversely, in simulation T,
〈Reb,∗〉t is relatively small at the interface and increases away from it, while 〈Γ∗〉t is quite
large at the interface and decreases away from it. Therefore, the scouring interface can
be interpreted as being quite efficient at the destruction of buoyancy variance, but since
overturns of the interface are suppressed, κe falls to molecular κ∗ values, and mixing at
the interface is weak. Away from the interface, there is less buoyancy variance to destroy,
but turbulence conversely become more vigorous and κe is larger than at the interface.
Again, the IT and IB phases of simulation I lie somewhere in between simulations B and
T at intermediate values and exhibit a mix of characteristics of the dynamics of the other
two simulations.

Crucially, as is immediately apparent from panel c, forced flows exhibiting overturning,
broadening behaviour lead to much more diapycnal transport than flows exhibiting
scouring, thinning behaviour. Although the mixing in simulation B may be thought of
as being less efficient than in simulation T, since typical values of the flux coefficient Γ∗
are significantly smaller for simulation B than for simulation T, this effect is completely
swamped by the substantially higher average value of the buoyancy Reynolds number, as
shown in panel a (and thus perhaps warrants a comparison to be made between scouring
and overturning mechanisms at the same buoyancy Reynolds number). Therefore, from
(5.5), the overturning-dominated mixing in simulation B has a much larger typical value
of effective diffusivity than the scouring-dominated mixing in simulation T, remembering
that the horizontal axes in the figure are logarithmic. It is also apparent that the
intermediate simulation I has properties which lie between the two other simulations,
with significantly larger effective diffusivity when the flow is in the IB phase.

5.4. Scaling of mixing efficiency

There is mounting evidence that mixing associated with stratified turbulence is a
function of one or more nondimensional numbers (see e.g. (Linden 1979; Shih et al.
2005; Maffioli et al. 2016; Karimpour & Venayagamoorthy 2014; Venayagamoorthy &
Koseff 2016; Garanaik & Venayagamoorthy 2019; Salehipour et al. 2016b; Brucker &
Sarkar 2007; Holleman et al. 2016; Zhou et al. 2017b)). Here we diagnose the dependence
of the time-dependent mixing efficiency η∗(z∗, t) in reference buoyancy coordinates (as
defined in (5.2)) on several (also time-dependent) nondimensional numbers to understand
these relationships in a continuously forced system. As noted above, the actual (effective)
diffusivity is proportional to the product of the turbulent flux coefficient Γ∗ = η∗/(1+η∗)
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Figure 13. Variation of mixing efficiency, η∗ (as defined in (5.2)), with: (a) buoyancy
Reynolds number, log10 (Reb,∗); (b) gradient Richardson number, Rig,∗; and (c) variation of
the flux coefficient, Γ∗, with horizontal Froude number, Frh,∗. Only points within the region
−δ∗ 6 z∗ 6 δ∗ are shown. Red points are from simulation B with Ri0 = 0.0125; blue points are
from simulation T with Ri0 = 0.35. Black and green points are from simulation I with Rib,0 = 0.1
during the IT phase and IB phase respectively. No time-averaging is performed. Instead, all data
points are plotted from successive snap-shots spaced 100 (nondimensional) time units apart
within the respective time window shown in figure 9. Shading indicates distance from z∗ = 0,
or neutral buoyancy, where light is close to z∗ = 0 and dark is close to z∗ = ±δ∗. In panel a

the dashed line indicates η∗ ∝ Re
− 1

2
b,∗ scaling. In panel b the dashed line indicates η∗ ∝ Rig,∗

scaling and the dotted line is η∗ = 0.25 [1− exp (−7Rig,∗)] scaling. In panel c the dashed line
indicates Γ∗ ∝ Fr−2

h,∗ and the dotted line indicates Γ∗ ∝ Fr−1
h,∗. The vertical solid grey line in

panel c marks the regime transition between the Γ∗ ∝ Fr−2
h,∗ scaling and contant Γ∗ found by

Maffioli et al. (2016).

and the buoyancy Reynolds number Reb,∗, and so any dependence of η∗ on Reb,∗ is
naturally of interest to explain (and parameterize) the eventual effective diffusivity.

We use the results of our simulations to determine the values of various key quantities as
functions of time and the reference buoyancy coordinate z∗, and then construct various
nondimensional parameters on which (an appropriately defined) mixing efficiency has
been hypothesized to depend. In particular, figures 13 and 14 show time-dependent
mixing efficiency and flux coefficient with respect to several commonly considered nondi-
mensional numbers. Specifically, we are interested in the dependence on the buoyancy
Reynolds number Reb,∗ as defined in (5.5), gradient Richardson number, and horizontal
Froude number in the reference z∗ buoyancy space coordinate, defined

Rig,∗ =
N2
∗

S2
∗
, Frh,∗ =

ε∗
N∗U2

h,∗
, (5.6)

where S2
∗ =

(
〈∂u∂z 〉∗

)2
and Uh,∗ =

√
〈u′2 + v′2〉∗. Here, the gradient for the shear is

with respect to the physical space vertical coordinate and u′ and v′ are the fluctuating
horizontal velocities calculated as departures from the horizontal means 〈u〉xy and 〈v〉xy
in physical space.
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In each case, all values of η∗ over the range −δ∗ 6 z∗ 6 δ∗ are plotted against the
relevant parameter and no time-averaging is performed. Points outside of this z∗ range
are not considered in this analysis because stratification in this region is very weak and
our focus is on the properties of turbulence and mixing within a stratified shear layer.
By restricting our analysis to the stratified interface, we are able to compare the three
simulations more directly since the stratified interface occupies a much smaller fraction of
the computational domain in simulations T and I than in simulation B. Data points are
plotted from successive snap-shots spaced 100 (nondimensional) time units apart within
the respective time window shown in figure 9. The coloring of circles indicates distance
from z∗ = 0, where light is close to z∗ = 0 and dark is close to z∗ = ±δ∗. A series of
scaling lines are provided for reference on each of the panels. In panel a of figure 13,

the dashed lines show the scaling η∗ ∝ Re
−1/2
b,∗ identified in the DNS simulations of Shih

et al. (2005) and field measurements of Davis & Monismith (2011) and Walter et al.

(2014). The data appear to be consistent with a η∗ ∝ Re
−1/2
b,∗ scaling for simulation B,

which it must be remembered is relatively weakly stratified. We do not see evidence for
an asymptote to a constant mixing efficiency for small Reb,∗ as suggested in Shih et al.
(2005). However, the Reynolds number and resolution of the simulations in this study
are not similar to those in Shih et al. (2005).

Shih et al. (2005) proposed that the mixing efficiency transitions from a constant value

to η ∝ Re
−1/2
b at Reb ' 100. However, several recent studies have found that the value

of Reb that marks the start of the η ∝ Re
−1/2
b scaling is Reynolds number dependent

(Lozovatsky & Fernando 2013; Maffioli et al. 2016; Taylor et al. 2019). Extrapolating the

Re
−1/2
b,∗ scaling line in Figure 13(a) suggests that the start of the Re

−1/2
b,∗ scaling occurs

for Reb,∗ > 100 in our simulations, although the gap between cases B and IB make
it difficult to be precise about this transition point. Additionally, the mixing efficiency
does not appear to decay to zero at small values of Reb,∗, as was seen in the analysis
of Salehipour & Peltier (2015) which only included the post roll-up mixing events, but
rather varies non-monotonically as Reb,∗ decreases. Specifically, η∗ decreases in the IT
phase after an initial peak during the IB phase for simulation I, but it is observed to
increase again in simulation T. Figure 2 in Mashayek et al. (2017) shows that with
the addition of the roll-up, denoted as ‘DNS: young’, a similar second peak in mixing
efficiency at low Reb,∗ occurs.

The dependence of the mixing efficiency on the gradient Richardson number, Rig,∗
is shown in panel b of figure 13. For comparison, the dashed line shows the scaling
η∗ ∝ Rig,∗. As proposed by Salehipour & Peltier (2015), this scaling arises from the as-
sumption that an appropriate (irreversible) definition of the turbulent Prandtl number is
unity, implying that the turbulent diffusivities of momentum and (irreversible) buoyancy
variations are equal. As discussed in Salehipour & Peltier (2015), this scaling follows by
noting that the turbulent Prandtl number PrT,∗ can be written as

PrT,∗ ≡
νT (z∗, t)

κT (z∗, t)
=
−P∗/S2

∗
−B∗/N2

∗
=
P∗
B∗

Rig,∗ ≡
Rig,∗
Rf,∗

, (5.7)

where Rf,∗ = Rf,∗(z∗, t) is a ‘flux Richardson number’, and νT and κT are the turbulent
viscosity and diffusivity, respectively. They are defined as the ratio of the turbulent
momentum (buoyancy) flux to the momentum (buoyancy) gradient. κT here differs from
the κe used above as κT vanishes in the limit of a laminar flow, while κe remains
non-zero due to molecular diffusion. For a quasi-steady state with negligible turbulent
transport (see for example Mashayek et al. (2013) and Salehipour & Peltier (2015) for
further discussion) it is commonplace to assume that, particularly when only irreversible
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processes are considered, Rf,∗ ' η∗ or equivalently Rf,∗ ' Γ∗/(1 + Γ∗). Therefore
the assumption that both momentum and buoyancy are ‘mixed’ largely equivalently by
turbulent motions and PrT,∗ ' 1, implies that η∗ ∝ Rig,∗. There is increasing evidence
for this scaling, particularly when a flow may be characterised as being relatively weakly
stratified (see for example Zhou et al. (2017a) and Portwood et al. (2019)). On the other
hand, the dotted line in figure 13 shows the essentially empirical scaling

η∗ = 0.25 [1− exp (−7Rig,∗)] , (5.8)

proposed by Karimpour & Venayagamoorthy (2014) and Venayagamoorthy & Koseff
(2016).

Simulations B and I appear to exhibit at least approximate agreement with the unity
turbulent Prandtl number scaling. Around Rig,∗ ∼ 0.2 − 0.25 the data (largely the
interface preserving data from simulation T) begins to deviate from this scaling. From
here it is unclear as to whether η∗ asymptotes to a constant value, similar to the empirical
scaling relation in (5.8), or if it decreases again in some fashion, as is predicted by the
right-flank of the flux-gradient curve within the paradigm presented by (Phillips 1972)
for the development (and maintenance) of interfaces, and is observed in the experimental
data presented by Linden (1979).

Although the flows considered here are forced specifically by a vertical shear, it is
also of interest to compare the mixing efficiency with scalings proposed in terms of the
horizontal Froude number, Frh,∗, which naturally is expressed in terms of properties of
the turbulence and background stratification alone. Maffioli et al. (2016) proposed that
for sufficiently high Reynolds number, Re, the flux coefficient, Γ , is a function of the
Froude number alone. Specifically, Maffioli et al. (2016) proposed that

Γ∗ ∝ Fr−2h,∗, for Frh,∗ > 0.3, (5.9)

and Garanaik & Venayagamoorthy (2019) proposed an additional intermediate scaling
Γ∗ ∝ Fr−1h,∗ for Frh,∗ = O(1), where in both cases we have written the scaling in
terms of variables calculated in sorted buoyancy coordinates. Since the Reynolds number,
buoyancy Reynolds number, and Froude number are related through Reb,∗ = ReFr2h,∗
by definition (e.g. Ivey et al. 2008), for fixed Re, the scaling Γ∗ ∝ Fr−1h,∗ is equivalent to

Γ∗ ∝ Re−1/2b,∗ .
Figure 13c shows the flux coefficient, Γ∗, as a function of the horizontal Froude number,

Frh,∗, along with lines indicating Γ∗ ∝ Fr−1h,∗ (dotted) and Γ∗ ∝ Fr−2h,∗ (dashed). The
solid grey line shows the regime transition from the scaling given in (5.9) for Frh,∗ > 0.3
to an η ∼ 0.23 scaling for Frh,∗ < 0.3 seen by Maffioli et al. (2016) in their steady-state
forced shear-free DNS simulations. Simulation B is consistent with a Fr−1h,∗ scaling, while
the scatter in the data points makes it difficult to determine whether the results follow a
Fr−2h,∗ scaling, although the data is not inconsistent with this scaling for Frh,∗ > 0.3 as
proposed by Maffioli et al. (2016).

There is no significant evidence of an asymptote to a constant as proposed by Maffioli
et al. (2016) and Garanaik & Venayagamoorthy (2019) for small Froude numbers.
However, our simulations differ from those reported in Maffioli et al. (2016) in several
important ways and are perhaps not expected to be directly comparable. First, the flows
here are never ‘strongly’ stratified at all depths. Second, they are specifically designed
to inject energy through shear instabilities, while those in Maffioli et al. (2016) are
isotropically forced. Third, the vertical Froude number here is somewhat constrained
by the initial and forcing value of Ri0 and may not reach unity as it has in Maffioli
et al. (2016), where it no longer influences the dynamics. However, we argue that, in the
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flows considered here, the vertical momentum length scale (used in the calculation of the
vertical Froude number) is not the only important length scale. Here, the width of the
momentum and buoyancy interfaces, and in particular their ratio, R, is an important
parameter, as demonstrated in figure 8.

In figure 13 the spatial variability within the buoyancy interface in the B and I cases are
quite small, meaning they are more robust to the different definitions of vertical averaging
one might choose in order to arrive at an average measure of the mixing efficiency. In
contrast, the T case has a very strong dependence on depth within the buoyancy interface
and thus would be quite sensitive to the specific choice in definition of vertical averaging.
It should be noted for all of these scalings that the method used for averaging and the
definition of each nondimensional number could be different between the current study
and those that are cited and thus could explain some of the differences.

Figure 14 shows the specific value of the mixing efficiency (shown as symbol shading),
as defined in (5.2), as a function of Reb,∗ and Rig,∗. Data from simulation B are plotted
as triangles, from simulation T are plotted as squares, while phase IB and phase IT
from simulation I are plotted with circles and diamonds respectively. Here again, no
time- or vertical-averaging is performed. All data points are plotted from within the
region −δ∗ 6 z∗ 6 δ∗ and from successive snap-shots spaced 100 (nondimensional) time
units apart within the respective time window shown in figure 9. From this plot, it is
clear that for all the simulations Reb,∗ and Rig,∗ are correlated, and overall, a decrease
in gradient Richardson number corresponds to an increase in the buoyancy Reynolds
number, although there is some suggestion of an increase in Rig,∗ with intermediate
values of Reb,∗. An additional dashed line plots a Rig,∗ ∝ 1/Reb,∗ scaling, which naturally
emerges from their respective dependence on N2

∗ . Such a scaling implies that turbulence
is shear-generated. Its properties are determined by the large scale shear and not strongly
affected by the stratification. Thus in turn, the stratification is also not strongly affected
by the turbulence. Both the B and T cases fall on this line because in their steady-states,
where turbulence is strong (everywhere for the B case and on either side of the interface
for the T case), it is shear generated and stratification is relatively weak. In contrast, the
I case does not fall on the line because it is never in a steady-state, instead the shear and
stratification compete with each other. Thus turbulence is not solely shear-generated and
the stratification is not unaffected.

Non-monotonic variation of η∗ with Reb,∗ is once again apparent, with peak values of
η∗ shown for both simulation T and the IB phase of simulation I. Also, the relatively high
values of η∗ at very low Reb,∗ and high Rig,∗ suggest that, even though entrainment of
fluid due to large overturning processes may strongly decrease in a weakly turbulent flow
with a robust interface, the flux of buoyancy, and associated irreversible mixing across
the interface is not fully suppressed. However, it is important to appreciate that such
high efficiency does not imply large (total) transport, due to the associated small value
of Reb,∗, thus implying from (5.5) relatively little enhancement in (irreversible) effective
diffusivity.

6. Conclusions

We have demonstrated the existence of three distinct types of behaviour in an idealized
continuously forced, stratified shear flow: (i) a weakly stratified, broad density interface
in simulation B; (ii) a thin, strongly stratified density interface in simulation T; and
(iii) spatio-temporal intermittency with certain characteristics of each of the other two
behaviours, shown in simulation I. Each simulation had the same Re = 4000, Pr = 1, and



26 K. M. Smith, C. P. Caulfield and J. R. Taylor

Figure 14. Comparison of mixing efficiency, η∗ (as defined in (5.2) and shown as symbol
shading), as a function of buoyancy Reynolds number, log10 (Reb,∗) and gradient Richardson
number, Rig,∗ within the region −δ∗ 6 z∗ 6 δ∗. As in figure 13, all data points are plotted
from successive snap-shots spaced 100 (nondimensional) time units apart within the respective
time window shown in figure 9 with no time-averaging performed. Data from: simulation B with
Ri0 = 0.0125 are plotted with triangles; simulation T with Ri0 = 0.35 are plotted with squares;
and from simulation I with Ri0 = 0.1 are plotted with diamonds and circles for the IT phases
and IB phases respectively. Note that the colorbar has been saturated at a value of 0.4 and for
some value less than log10 (Reb,∗) = 1 the mixing efficiency η∗ is always greater than 0.4. The
dashed line plots a Rig,∗ ∝ 1/Reb,∗ scaling.

initial R0 = 7, the ratio between the initial velocity and buoyancy interface half-depths,
but different initial bulk Richardson numbers Ri0.

Simulation B is characterized by turbulent eddies and overturns being largely co-
located with strong buoyancy gradients. This flow structure leads to a relatively rapid
break up and broadening of the buoyancy interface so that the ratio of the velocity and
buoyancy interface half-depths R ≈ 1 throughout the quasi-steady state flow evolution.
In contrast, simulation T is characterized by turbulent eddies being shifted slightly above
and below the (robust) buoyancy interface. This produces a scouring effect, ensuring that
the buoyancy interface remains relatively thin compared to the velocity interface, and so
R > 1 throughout the quasi-steady state evolution of this simulation.

We have found that there is a useful classification in terms of a parameter space based
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on the specific properties of the initial and forced background velocity and buoyancy
profiles, in particular the values of Rib and R = d/δ, as defined in (4.4), (3.1) and (3.2).
Certain regions of this parameter space can be associated with these two dynamically
different behaviours, which may be characterised as ‘overturning’ and ‘scouring’ dynam-
ics. Loosely, overturning dynamical behaviour is associated with relatively small values
of Rib and R, while scouring dynamical behaviour is associated with larger values of Rib
and R.

However, we have also found that there is not a sharp transition between these two
behaviors. For certain choices of initial parameters, as demonstrated by simulation I,
intermediate dynamical behavior occurs, characterized by spatio-temporal intermittency
and alternating overturning and scouring behaviour with points of at least qualitative
similarity to simulations B and T. As shown in figure 8, simulations B and T evolved
to quasi-steady states, with characteristic values of associated bulk Richardson number
Rib and interfacial depth ratio R. Interestingly, linear stability analysis of the notional
horizontally-averaged background profiles of velocity and buoyancy reveals that the quasi-
steady state of simulation B is most unstable to Kelvin-Helmholtz-type instabilities, while
the quasi-steady state of simulation T is most unstable to Holmboe wave instabilities.
These observations suggest that linear stability could be useful to determine if a quasi-
steady forced turbulent system is in either an overturning or scouring state.

Comparison of the three forced simulations considered here to previously reported
unforced (and hence inherently transient) simulations is instructive. For example, in the
unforced KHI and HWI simulations of Salehipour et al. (2016a) and Salehipour et al.
(2018), qualitatively similar overturning behavior at low R values and scouring behavior
at higher R values is observed, consistent with previous simulations at substantially
smaller Reynolds numbers considered by Carpenter & Lawrence (2006). Indeed, all such
simulations are consistent with the theoretical predictions of Smyth & Peltier (1991) and
Hogg & Ivey (2003).

Furthermore, the HWI simulations of Salehipour et al. (2016a) clearly exhibited both a
scouring-like behavior and a ‘long-lived twin-lobed’ structure in the diapycnal diffusivity.
Recalling the simple metric of Zhou et al. (2017b) utilised here, the positive curvature
of the diffusivity profile reported in Salehipour et al. (2016a) suggests strong points of
commonality between these (transient) simulations and the continually forced simulation
T described here. This is perhaps unsurprising, since as discussed in Salehipour et al.
(2018), transient flows prone to HWI apparently approach for an extended period a quasi-
equilibrium state. Perhaps more interestingly, in the inherently transient simulations
prone to primary KHI, Salehipour et al. (2016a) observed an analogously negative
curvature in diapycnal diffusivity to simulation B reported here. This point of similarity
suggests that such a property may well be generic for flows prone to relatively large-scale
overturning mixing.

As discussed in Salehipour et al. (2016a), the efficiency of mixing by a KHI-dominated
flow can reach substantially larger values compared to the mixing associated with a
HWI-dominated flow with the same (initial) bulk Richardson number Ri0 = 0.16, and
yet different initial interface ratio R0, (R0 = 1 for the KHI simulation and R0 =

√
8 for

the HWI simulation) principally due to the ‘flare’ associated with the large primary KHI
billow overturning. They also found that Reb,∗ reached significantly larger values in the
KHI-dominated flow, thus leading transiently to larger effective diffusity κe (see their
figure 11). This behaviour is superficially not consistent with our forced results here,
where the time-averaged mixing efficiency was much lower in the overturning simulation
B than in the scouring simulation T. However, it is important to remember that the initial
bulk Richardson number is much smaller for simulation B than for simulation T (0.0125
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as opposed to 0.35), and also that their simulations were at higher Pr = 8. Furthermore,
in our analysis here, we only consider the steady-state behavior of the system, and in
particular we ignore the collapse of the first overturning event in simulation B. Also, as
is shown in figure 12, the effective diffusivity of simulation B is still markedly larger than
for simulation T, principally due to Reb,∗ being substantially larger in the broadening
simulation, which does have points of consistency with the KHI-dominated simulation
reported in Salehipour et al. (2016a).

Additionally, we see higher mixing efficiency values at very low buoyancy Reynolds
number here in comparison to the strongly stratified HW simulations of Salehipour et al.
(2016a), suggesting that the re-supply of stratification through the forcing helps to sustain
a larger mixing efficiency. While this may be less relevant in the open ocean, it could
be an important factor in natural exchange flows where there is an external source of
buoyancy, although it is worth noting that if Reb,∗ is small, the enhancement in diffusivity
might not be significant.

Our demonstration of scouring dynamics at relatively high Richardson numbers sug-
gests that this behavior could be a mechanism for interface formation and preservation
in places where there are large buoyancy contrasts, such as the sharp thermoclines of
estuaries. Additionally, the maintenance of a sharp interface at a relatively low Prandtl
number in this study suggests that in regions of high levels of turbulence, such as those
associated with many exchange flows, a high Prandtl number may not be necessary for
either interface formation or maintenance if there is some form of external forcing and
a re-supply of buouancy. Indeed, a fluid with a larger Prandtl number should result in
more of the Rib−R phase-space being favorable for interface formation and maintenance.

Declaration of Interests. The authors report no conflict of interest.

Appendix A. Dependence on τ

In order to show the dependence of the results shown here on the chosen value of
τ , additional simulations were run for τ = 50, 100, and 200 for each of the three Ri0
values. These simulations used a lower resolution than the simulations in the text and
should be classified as under-resolved DNS. However, comparing the fully-resolved and
under-resolved simulations with τ = 100 shows that the qualitative behavior is similar.
Note that all results shown here for τ = 100 are from the under-resolved simulations in
order to make a fair comparison between the different τ value results. Specifically, the
same physical dimensions, boundary conditions, and form of forcing were used, but the
resolution was reduced to 256 × 256 × 128 gridpoints and the value of τ was set to 50,
100, or 200.

Figure 15 shows the trajectories of the simulations in R, Rib phase space as in figure
8 in the main text, but now for τ = 50, 100, and 200, differentiated by dashed, solid,
or dotted lines, respectively. Trajectories are calculated in the same way using (3.1)
and (3.2) to construct a time-dependent R and bulk Richardson number and the initial
conditions are marked with a triangle for Ri0 = 0.0125, a star for Ri0 = 0.1, and a square
for Ri0 = 0.35. Linear stability analysis was performed for the three different values of
τ . While the magnitude of the growth rates of the fastest growing modes do vary with τ ,
we found that the boundaries between the KHI, HWI, and stable regions to be only very
weakly dependent on τ within this range. Thus for simplicity and clarity, we choose to
plot only the boundaries between the primary instability regimes for τ = 100 here (which
correspond closely to the boundaries for τ = 50 and 200). The blue contour line denotes
the boundary of the region where the most unstable mode is a KHI, the red contour line
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Figure 15. Boundaries of the positive growth rate Re(σ) regions for the fastest growing mode
from the τ = 100 linear stability analysis (same as in figure 8) as a function of interface half-depth
ratio R0 = d0/δ0 and log10 (Ri0). Regions to the left of the blue contour line correspond to where
the fastest growing modes have zero phase speeds (i.e. unstable to KHI) and regions enclosed by
the red contour line correspond to where the fastest growing modes have non-zero phase speeds
(i.e. unstable to HWI). Regions outside of the blue and red contour lines correspond to where all
modes are decaying (i.e. stable). Like figure 8, the symbols (triangle = B, star = I, and square =
T) indicate the chosen parameters for the initial conditions of each of the simulations. The thick
black lines are the horizontally-averaged trajectories for each under-resolved simulation that the
time-dependent parameters Rib = Ri0d and R = d/δ follow in time during the simulation, with
dashed lines corresponding to τ = 50, solid lines to τ = 100, and dotted lines to τ = 200.

denotes the boundary of the region where the most unstable mode is a HWI, and all
regions outside of both the red and blue contour lines are stable.

In general, we found that the simulations do not strongly depend on the value of τ
unless the flow changes regimes (e.g. from broadening to thinning). For Ri0 = 0.0125, all
of the results are largely insensitive to the range of τ values tested and behave largely
the same. Similarly, for Ri0 = 0.35, reducing the forcing time scale to 50 results in very
similar behavior to the τ = 100 simulations. However, an increase in the forcing time
scale to 200 causes a regime change, from one of interface thinning to one of interface
broadening. For the Ri0 = 0.1, a regime change does not occur, but the period and
amplitude of the spatio-temporally intermittent pulsations was affected by changes in τ .
There appears to be a roughly linear relationship between the τ and the period of the
pulsations, though this conclusion should be taken with caution as it is made with only
three data points. Concerning differences in the transient behavior dependence on τ , we
found that for the all three values of Ri0 the transient period was roughly the same for
the different values of τ so long as a regime change was not triggered (as it was with
Ri0 = 0.35, τ = 200).

In order to examine the dependence of mixing efficiency on the choice of τ in figure
16 we plot the horizontal and time-averaged mixing efficiency 〈η〉xyt for τ = 50, 100, or
200 for each of the three Ri0 values as a function of time-averaged buoyancy-interface
normalized depth z/〈δ〉xyt (the values of which appear in corresponding colors in each
panel). Here the time-average has been performed over the last 100 (nondimensional)
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Figure 16. Horizontal and time-average of: mixing efficiency [η = 〈χ〉xy/ (〈χ〉xy + 〈ε〉xy)] as a
function of time-averaged buoyancy-interface normalized depth z/〈δ〉xyt for the under-resolved:
(a) simulations with Ri0 = 0.0125; (b) simulations with Ri0 = 0.1; (c) simulations with
Rib,0 = 0.35. τ = 50 is shown as red lines; τ = 100 is shown as green lines; τ = 200 is shown
as blue lines. The time-average for both values of η and the buoyancy interface half-depth
〈δ〉xyt is performed over the last 100 (nondimensional) time units of each respective simulation.
Respective values of 〈δ〉xyt used are shown in corresponding red, green, or blue colors in each
panel.

time units of each simulation. Similar to what was seen in figure 15 for the trajectories,
the general behavior and shape of the mixing efficiency across the interface for the Ri0 =
0.0125 simulations (panel a) are largely insensitive to the τ values tested here. However,
the width of the interface does increase slightly with τ . The same can be said for the
behavior and shape of the mixing efficiency across the interface for the Ri0 = 0.35 (panel
c), τ = 50 and 100 simulations, but when a regime change is triggered in the τ = 200
simulation the interface begins to broaden and behave more like the broadening regime
seen in the Ri0 = 0.0125 simulations. For the Ri0 = 0.1 simulations (panel b), again, the
τ = 50 and 100 simulations are roughly identical in their mixing efficiencies, but as τ is
relaxed to 200, the amplitude of the spatio-temporally intermittent pulsations increases
and the broadening phase of those pulsations increases in vertical extent. We speculate
that further relaxation of τ in this case would cause a regime change, either to one of
interface broadening or to a laminar state.
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