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Supplementary Note 1

Poission linear mixed model for cell type composition analysis

Log linear model for two-way tables

Let Yij be the cell type count observed from the sample i (i = 1, . . . , N) for the cell type j
(j = 1, . . . , J). A simple test of independence between samples and cell types (to make sure
there is no differential cell type abundance among samples) would be to fit a log-linear model
for two-way tables [1]:

Yij
i.i.d.∼ Pois(λij),

log λij = µ + ai + bj + ε ij,

for i = 1, . . . , N and j = 1, . . . , J. Here we assume Yij follows a Poisson distribution with a mean
λij, the logarithm of which can be decomposed into the grand mean µ, the sample mean ai, the
cell type mean bj and the interaction term ε ij (between sample i and cell type j). In order to
assess the two-way table is independent, we assume {ai, bj, ε ij} follow the independent normal
distributions with variance parameters {ν2, ω2, σ2}, such that

ai
i.i.d.∼ N (0, ν2), bj

i.i.d.∼ N (0, ω2), ε ij
i.i.d.∼ N (0, σ2),

for i = 1, . . . , N and j = 1, . . . , J, where the variance σ2 is the parameter of interest. If there is
no interaction (i.e., no differential cell type abundance among samples), the variance estimate
should become σ̂2 → 0.

Variance explained by sample metadata

Suppose σ2 > 0, this model enables us to explore the relative importance of a wide range of
clinical/technical factors in determining cell type composition. Let xik be a value of the factor
k (k = 1, . . . , K) for the sample i, which is either a numerical value (e.g. patient’s age) or a
categorical value of Lk levels (e.g., disease severity with Lk = 6: healthy, asymptomatic, mild,
moderate, severe and critical). Then the mean of the poisson distribution can be extended with
extra interaction terms between cell type and each of the K factors, such that,

log λij = µ + ai + bj +
K

∑
k=1

ηijk + ε ij

ηijk =

{
z>ikujk factor k is a categorical variable with Lk levels,
x̃ikujk factor k is a numerical variable (Lk = 1),

where ηijk denotes the interaction effect between the cell type j and the factor k for the sample
i, which is modelled by the interaction effect ujk = (ujk1, . . . , ujkLk)

>. Here x̃ik denotes the
scaled value of xik (i.e., sample mean and variance of the numerical factor k is 0 and 1) and
z>ik = (zik1, . . . , zikLk) is a design vector whose element is

zjkl =

{
1 xik = l,
0 otherwise,



for l = 1, . . . , Lk. The interpretation of ujkl is the log fold change of the jth cell type abundance
for the lth level of categorical factor k against the grand mean. For a numerical factor k, ujk is
a scalar value reflecting the log fold change of the jth cell type abundance in response to one
unit change of scaled data x̃ik.

Because the factors are colinear and often confounding each other (unless the study is the
designed experiment), we further assume those interaction effects follow multivariate normal
distributions:

ujk
i.i.d.∼ N (µk, δ2

k ILk),

where µk denotes the mean vector around which the variance parameter δ2
k is estimated, which

reflects the relative contribution of each factor on cell type composition variation. Here the
mean vector µk is not the parameter of interest, therefore for the categorical factors, we re-
gressed out from the model by assuming another multivariate normal distribution:

µk
i.i.d.∼ N (0, γ2

k ILk)

so that the number of parameters can be significantly reduced from Lk to 1.

Likelihood ratio test

To properly assess the statistical significance of each factor that explains a significant amount
of interaction variation, we compared the the following two models:

H0 : δ2
k = 0

H1 : δ2
k > 0

Then the likelihood ratio test statistics follows the χ2 distribution with one degree of freedom
under the null hypothesis (H0). In order to adjust multiple testing, we used the number of fac-
tors (i.e., K, which is the same as the number of variance parameters γ2

k for cell type interaction)
for the total number of tests.

Posterior mean and variance of random effects

In general, the generalised linear mixed model has no closed form of the marginal likelihood,
because the integral with respect to random effects is intractable. Therefore an approximation
becomes one of the natural alternatives. A well-known method of approximate integrals is
named after Laplace (used in lme4 package on R). Let Y> = (Y11, . . . , YNJ) be the vector of cell
type counts and

u> = (a1, . . . , aN , b1, . . . , bJ , µ>1 , . . . , µ>K, u>11, . . . , u>JK, ε11, . . . , εNJ)

be the vector of all random effects, the marginal likelihood can be approximated as

p(Y) =
∫

p(Y|u)p(u)du ≈ c|H|− 1
2 exp{L(ũ)},

where L(u) = log p(Y|u)p(u) denotes the complete log likelihood function whose maximum
is attained at u = ũ with the first derivative L′(ũ) = 0 and the hessian matrix H = −L′′(ũ),
and c denotes a constant multiplication. This gives an approximated posterior distribution of
u given Y, such that

u|Y ∼ N (ũ, H−1).



Standard error of model parameters

The log marginal likelihood L(θ|Y) = log p(Y) after integrating out the random effects u is a
function of model parameters θ = (µ, ν, ω, σ, γ1, . . . , γK, δ1, . . . , δK). The standard error of θ can
be computed from the inverse matrix of the Fisher score matrix

I = − ∂2L(θ|Y)
∂θ∂θ>

∣∣∣∣
θ=θ̂

where the likelihood function attains its maximum value at θ = θ̂ with L′(θ̂|Y) = 0.

Overdispersion due to technical variation

Although the Poisson model does not explicitly take account of the overdispersion in the cell
type count data (unlike Negative Binomial distributions), the interaction term ε ij between sam-
ple and cell type partly captures the discrepancy between E[Yij] and Var(Yij), since

Var(Yij|uij) = E[Yij|uij] + E[Yij|uij]
2(eσ2 − 1),

where uij = (ai, bj, ηij1, . . . , ηijK)
>. This fact suggests the model becomes overdispersed when

eσ2
> 1 given uij.

Local true sign rate (ltsr)

To visualise how far each log fold change estimate ũ deviates from 0 (in Mahalanobis distance),
we computed the area under the curve of the posterior distribution with respect to u over the
positive domain:

(ltsr) =
∫

u>0
N (u|ũ, σ)du

if ũ > 0, where σ is obtained from the corresponding diagonal element of H−1. Note that, if
ũ < 0, the area under the curve over the negative domain is calculated.



Supplementary Note 2

Cell type enrichment analysis for GWAS traits

Bayesian hierarchical model and fGWAS

A Bayesian hierarchical model [2] has been proposed for mapping expression quantitative trait
loci (eQTLs) with various functional annotations. The model is flexible and was extended later
for fine-mapping and enrichment analysis of functional annotations for GWAS traits, called
fGWAS [3]. The model has two prior probabilities, one is the variant-level prior probability
and the other is the feature-level prior probability. The feature-level prior probability can be
modelled as any functional annotation related with the feature. We used the cell type specific
expression as the feature level annotation to quantify the relative enrichment of a cell type
to a GWAS trait. The model is readily applicable to GWAS summary statistics without raw
genotype and phenotype data.

Feature level prior probability and cell type enrichment

The cell type enrichment is measured by the effect size of cell type specific expression on GWAS
associations. Let us denote by xjk the expression level of the gene j (j = 1, . . . , J) for the cell
type k, and by Zjk the Bernoulli random variable indicating the gene j for the cell type k is a
putative causal gene for the GWAS trait, if Zjk = 1; otherwise Zjk = 0. We used the logistic
regression model to estimate the cell type enrichment, such that

logit p(Zjk) = β0k + β1kxjk,

where the effect size β1k is the parameter of interest. Here p(Zjk) is called the feature-level prior
probability and Zjk is unknown a priori (unobservable). We used a marginal genetic association
around the gene j as a proxy of the fact that the gene j is causal to the GWAS trait. Let us denote
by p(y|Zjk) the conditional probability to observe GWAS phenotype y given Zjk. The marginal
probability is then given by

p(y) =
J

∏
j=1

[p(Zjk = 0)p(y|Zjk = 0) + p(Zjk = 1)p(y|Zjk = 1)]

∝
J

∏
j=1

[(1−Πjk) + ΠjkRBFj],

where Πjk ≡ p(Zjk) = logit−1(β0k + β1kxjk) and

RBFj =
p(y|Zjk = 1)
p(y|Zjk = 0)

is so called the regional Bayes factor (RBF) to measure the strength of genetic association around
the gene j. The detailed derivation of RBFj is described in the next section.

The marginal probability is a function of β = {β0k, β1k} and easily maximised using a stan-
dard EM algorithm (see Supplementary Note of [4]). The standard error of β1k was estimated



from the inverse matrix of the Fisher information

I = − ∂2

∂βk∂βk
> p(y)

∣∣∣∣
βk=β̂k

at the maximum likelihood estimator β̂k = argmaxβk
p(y). The P-value of cell type enrichment

was calculated from the square of the Wald statistic, such that β̂2
1k/Var(β̂1k), which asymp-

totically follows the χ2 distribution with 1 degree of freedom under the null hypothesis. For
the multiple testing correction, we used the Benjamini-Hochberg method to compute Q-values
across all cell types (k = 1, . . . , K).

Regional Bayes factor

The regional Bayes factor was defined as a marginal genetic association averaged across all
variants around the gene j. Let us denote a 1Mb cis-regulatory windowWj for gene j centred
at the transcription start site (TSS). We aggregated the GWAS associations within the window
as follows

RBFj = ∑
l∈Wj

πjl BFjl ,

where πjl is the variant-level prior probability that the genetic variant l ∈ Wj is the putative
causal variant for the GWAS trait and BFjl denotes the genetic association of the variant l to the
GWAS trait. Here we used the Wakefield approximation [5] to convert the GWAS summary
statistics, the effect size bjl and its standard error sjl , into

log BFjl =
1
2

log(1− rjl) +
z2

jl

2
rjl ,

zjl =
bjl

sjl
,

rjl =
W

W + s2
jl

.

Here the prior variance of the effect size was set to be W = 0.1 [3].
It is noticeable that the window Wj may overlap each other in a gene dense region and

therefore the variant l ∈ Wj could appear multiple times in other windows. This may lead to
the underestimation of the standard error of β. To overcome this issue, we hypothesised that
60% of interactions is observed in 20Kb distance or less, because the cis-regulatory interaction
between a putative causal variant and a gene promoter occurred in a very short distance [4].
The distribution can be approximated by the exponential distribution with the rate parameter
equal to λ̂ ≈ 4.58× 10−5. Then the variant-level prior probability that the variant l ∈ Wj is a
putative causal variant given TSS proximity djl ∈ [0, 500Kb] is obtained by

πjl =
e−λ̂djl

∑m∈Wj
e−λ̂djm

.

This prior probability strongly penalised the long-range association from the TSS and therefore
the overlapping effect is potentially minimised.



Linkage disequilibrium

Linkage disequilibrium (LD) could potentially bias the marginal association. We computed the
unbiased LD score [6], wjl (l ∈ Wj) inside the window to properly weight the variant-level
prior probability, such that

π̃jl =
w−1

jl e−λ̂djl

∑m∈Wj
w−1

jm e−λ̂djm
.

Intuitively, if the variant l has a lot of LD mates, we down-weight the association Bayes factor
by 1/wjl .

Adjustment by marginal expression

In reality, cell type specific expressions are strongly correlated between different cell types and
we observe large effect size β̂1k even if the cell type k is not relevant for the GWAS trait [7]. We
introduced the marginal expression x̄j = ∑K

k=1 xjk/K for the gene j across K different cell types
in the data to adjust cell type enrichment in the model, such that

logit p(Zjk) = β0k + β1kxjk + β2k x̄j.

Again, β1k is the parameter of interest and the parameters {β0k, β1k, β2k} are easily maximised
using a standard EM algorithm (see Supplementary Note of [4]).



Supplementary Note 3

Description of tuft cell activation results related to the Extended Data
Figure 7

PLCG2 expression by tuft cells was at higher levels than B and myeloid cell lineages (Extended
Data Fig. 7a) and together with downstream signaling mediators including RAC2, ITPR2,
PRKCA and TRPM5 suggested the ability of tuft cells to respond to immune cells. In addi-
tion, we observe an increase in PLCG2 expression across TNF-alpha or IFN-gamma stimulated
human organoid epithelial cells (Extended Data Fig. 7d-e) and show a significant increase in
inhibitory FcγRIIb-expressing tuft cells in a mouse model of intestinal colitis, suggesting a neg-
ative feedback mechanism at play during chronic inflammation (Extended Data Fig. 7f). This
data suggests the likely capacity of tuft cells to sense IgG through PLCG2 activation.



Supplementary Note 4

Description of B cell gene expression and BCR analysis results related
to the Extended Data Figure 14

To infer whether the developing lymphoid structures were partitioned into B and T cells zones,
we characterised B cells in fetal and adult tissues (Extended Data Fig. 14a-g). Analysis of paired
V(D)J sequencing data revealed almost exclusive IgM heavy chain expression across all fetal
gut B cells and no meaningful levels of clonal expansion and somatic mutation (Extended Data
Fig. 14h-i). In comparison, adult B cells expressed primarily IgA1 and IgA2 and displayed high
mutational frequency and clonal expansion consistent with having undergone affinity matura-
tion (Extended Data Fig. 14h-i). Mutation frequency and clonal expansion were slightly higher
at the proximal and distal ends of the adult gut, and sharing of B cell clones, while restricted to
occurring within each donor, was evident across distant gut regions (Extended Data Fig. 14j-l).
This suggests that additional environmental factors, such as microbiota, might be required for
the maturation and zonation of B cells in developing secondary lymphoid organs.
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