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ABSTRACT 

Background 

Anthracyclines are widely used chemotherapeutic drugs that can cause 

progressive and irreversible cardiac damage and fatal heart failure. Several 

genetic variants associated with anthracycline-induced cardiotoxicity (AIC) have 

been identified, but they explain only a small proportion of the interindividual 

differences in AIC susceptibility. 

Patients and Methods 

In this study we evaluated the association of low-frequency variants with risk of 

chronic AIC using the Illumina HumanExome BeadChip array in a discovery 

cohort of 61 anthracycline-treated breast cancer patients with replication in a 

second independent cohort of 83 anthracycline-treated pediatric cancer 

patients, by using gene-based tests (SKAT-O).  

Results 

The most significant associated gene in the discovery cohort was ETFB 

(electron transfer flavoprotein beta subunit) involved in mitochondrial β-

oxidation and ATP production (P=4.16x10-4) and this association was replicated 

in an independent set of anthracycline-treated cancer patients (P=2.81x10-3). 

Within ETFB we found that the missense variant rs79338777 (p.Pro52Leu; 

c.155C>T) made the greatest contribution to the observed gene association and 

it was associated with increased risk of chronic AIC in the two cohorts 

separately and when combined (OR=9, P=1.95×10-4, 95%CI=2.83–28.6). 

 



Conclusions 

We identified and replicated a novel gene, ETFB, strongly associated with 

chronic AIC independently of age at tumor onset. Although experimental 

verification and further studies in larger patient cohorts are required to confirm 

our finding, we demonstrated that exome array data analysis represents a 

valuable strategy to identify novel genes contributing to the susceptibility to 

chronic AIC.  
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KEY MESSAGE 

Previous efforts made to understand the interindividual variability in AIC risk 

have focused exclusively on common variants mainly through a candidate gene 

strategy. In this study, we evaluated the association of low-frequency variants at 

genome-wide level by exome-array analysis. We identified and replicated ETFB 

as a novel gene strongly associated with risk of chronic AIC in cancer patients. 

 

 

 

 



INTRODUCTION 

Anthracyclines are highly effective chemotherapeutic agents used in a wide 

range of cancers, including hematopoietic and solid tumors. However, a 

prominent dose-limiting side effect of treatment with anthracyclines is cardiac 

damage [1]. Anthracycline-induced cardiotoxicity (AIC) may occur during 

treatment (acute) or can be delayed, being diagnosed within the first year of 

treatment (early onset) or many years after completion of therapy (late onset) 

[2]. Both chronic forms are characterized by an irreversible left ventricle (LV) 

dysfunction that can be progressive and, which, in some cases leads to heart 

failure and death [3]. In addition to clinical cardiotoxicity, chronic AIC can 

manifest as asymptomatic cardiotoxicity [4]. The cardiac effects of anthracycline 

chemotherapy are highly variable between individuals, suggesting a genetic 

component to AIC susceptibility, apart from well-known risk factors [5]. Several 

studies [6–20] have identified genetic variants associated with AIC, including 

genetic polymorphisms in genes involved in anthracycline transport and 

metabolism (e.g., SLC28A3 [12, 13], ABCB1 [12], ABCC1 [10, 12], and CBR3 

[7, 9, 11, 20]) or genes involved in the mechanism of oxidative stress-mediated 

AIC (e.g., NADPH oxidase multi-enzyme complex: NCF4 [6, 14], RAC2 [14] and 

CYBA [14]). Because all previous efforts have been focused on the 

identification of common susceptibility variants (minor allele frequency (MAF) 

≥5%) and the vast majority [6–18] via a candidate gene approach; it is plausible 

that analyses of low-frequency (MAF<5%) variants could explain additional 

interpatient variability in susceptibility to AIC. To investigate this hypothesis, we 

performed a genome-wide association analysis using the Illumina 

HumanExome Beadchip, which is enriched for low-frequency coding variants 



(>80% variants with MAF ≤1%) [21], in Spanish breast cancer patients treated 

with anthracyclines with replication in an independent cohort of anthracycline-

treated pediatric cancer patients. 

 
MATERIALS AND METHODS 
 
 
Patients 
 

Discovery cohort: 71 patients with pathological confirmed locally advanced 

breast cancer and treated at the San Carlos University Hospital, (Madrid, Spain) 

were included. These patients were aged older than 18 years at cancer 

diagnosis and were enrolled in a neoadjuvant phase II randomized clinical trial 

[22], as previously described [23]. Patients were randomly assigned to receive 

four cycles of either neoadjuvant doxorubicin (75 mg/m2) (39 patients) or 

neoadjuvant docetaxel (100 mg/m2) (32 patients) every 3 weeks. After surgery, 

patient treatment assignment was crossed-over to receive four cycles of the 

opposite drug.  

Replication cohort: 83 anthracycline-treated patients aged less than 30 years 

and treated at the La Paz University Hospital or Niño Jesús University Hospital 

in Madrid or at the University Clinic of Navarra in Pamplona were included. 

Details of the replication cohort have been described elsewhere [24]. All 

patients were treated with doxorubicin, daunorubicin or epirubicin as part of 

their chemotherapy protocol.  

Patients in both cohorts received anthracyclines as part of their chemotherapy 

protocol, had normal cardiac function before anthracycline chemotherapy and 



had echocardiographic evaluations (prechemotherapy and postchemotherapy). 

Patients were excluded if they had a personal history of cardiac disease or were 

treated with concomitant (neo) adjuvant use of trastuzumab, because of its well-

known association with cardiotoxicity. Written informed consent was obtained 

from adult patients and from the parents or legal guardians of children. The 

study was approved by the ethics committees of each participating hospital. 

Patient medical records were reviewed by oncologists and cardiologists. 

Demographic, clinical and therapeutic information extracted from medical 

records included demographics, disease characteristics, chemotherapy, 

diagnostic echocardiograms to document baseline and follow-up cardiac 

function and any cardiac compromise and its severity, and any symptoms or 

signs consistent with chronic AIC.  

AIC definition. AIC in breast cancer patients was defined as early or late-onset 

(i) cardiac failure grade 3–5 using the CTCAE 4.0 scoring system (grade 3: 

severe symptoms at rest or with minimal activity or exertion, intervention 

indicated; grade 4: life-threatening consequences, urgent intervention indicated; 

5: death) [25] (ii) asymptomatic decrease of left ventricular ejection fraction 

(LVEF) ≥10%. Control patients were defined as those having no symptoms or 

signs of cardiac complications and normal echocardiograms (with a LVEF>60% 

at both baseline and follow-up and with a decline in LVEF≤5%) during and after 

therapy. Pediatric cases were required to have early/late-onset LV dysfunction 

evidenced by symptoms/signs of severe mitral valve insufficiency, pericardial 

effusion, LV hypertrophy or pulmonary hypertension. The criteria for 

determining a symptomatic event were established by pediatric cardiologists. 



Asymptomatic pediatric cases had shortening fraction (SF) ≤ 27% any time after 

anthracycline treatment completion. Pediatric controls had normal 

echocardiograms (SF≥35%) during and after anthracycline therapy. 

To rule out acute AIC, only echocardiograms obtained 30 days or more after an 

anthracycline dose were considered. 

Methods 

To determine the role of low-frequency variants, patients from the discovery 

cohort were genotyped for the 247,870 variants on the Illumina HumanExome-

12v1_A Beadchip (Illumina, San Diego) array according to the manufacturers´ 

recommended protocols. We conducted gene-based tests using the optimized 

sequence kernel association test (SKAT-O) [26, 27] and considering only genes 

with at least 3 genotyped variants and age at diagnosis as covariate. Genes 

with a P<5x10-4 in the discovery cohort were assessed in the replication cohort 

(with available genetic data for the Illumina HumanExome array [24]), using the 

same statistical methods. While the SKAT-O does not provide any parameter 

estimates, sensitivity analyses for individual variants within replicated genes 

were applied. The impact of selected variants on protein structure or function 

was assessed using in silico predictions. Details of genotyping, statistical 

analyses and in silico prediction are provided in the Supplementary Material. 

RESULTS 

The main patient´s demographic and clinical characteristics of the discovery 

and replication cohorts are shown in Table 1.  



We carried out gene-based analysis to investigate the role of low-frequency 

variants in chronic AIC using the (SKAT-O) test. The most significantly gene 

associated with chronic AIC in the discovery cohort was ETFB (electron transfer 

flavoprotein beta subunit), which encodes a cardiac protein involved in 

mitochondrial β-oxidation and ATP production [28] (P=4.16x10-4) (Table 2). 

Given that cardiac mitochondria are preferential targets of anthracyclines, we 

assessed the association of ETFB in an independent cohort of 83 anthracycline-

treated pediatric cancer patients and this association was replicated 

(P=2.81x10-3) (Table 2).  

Examination of variants within ETFB revealed that the low-frequency variant 

rs79338777 (p.Pro52Leu; c.155C>T) made the greatest contribution to the 

observed association. The minor T allele of rs79338777 was more common in 

cases in the discovery cohort (MAFCASES=13% v MAFCONTROLS=2%) (Table 3). 

Consistently, the T risk allele was more common in cases than in controls in the 

replication cohort (MAFCASES=18% v MAFCONTROLS=7%) (Table 3).Combined 

analysis revealed that rs79338777 was significantly associated with chronic AIC 

(OR=9, P=1.95×10-4, 95%CI=2.83–28.6) (Table 3). Overall, it was found that 

the T risk allele for rs79338777 to be 3.55 times more frequent in cases than in 

controls (MAFCASES=16% v MAFCONTROLS=5%). 

In order to evaluate the impact of the missense variant rs79338777 

(p.Pro52Leu) on ETFB protein structure or function, we applied four in silico 

prediction algorithms. Interestingly, rs79338777 was classified as pathogenic by 

the consensus classifier Predict-SNP and SIFT, and as possibly damaging by 

PolyPhen-2. 



DISCUSSION 

Genetic variation has been shown to influence susceptibility to AIC; however, 

the contribution of rare and low-frequency variants to the interindividual 

variation in AIC occurrence remains unexplored. Exome chip arrays constitute a 

cost-effective alternative to whole-exome sequencing and have proven their 

capacity to identify low-frequency and rare variants associated with complex 

diseases [29–32]. In the present study, we have identified and replicated ETFB 

as a novel gene associated with chronic AIC susceptibility in anthracycline-

treated cancer patients by exome-array analysis. 

ETFB is the β subunit of the heterodimer electron transfer flavoprotein (ETF) 

protein located in the inner mitochondrial membrane. ETF acts as an electron 

acceptor of energy production from amino acid and fatty acids that transfers 

electrons to the main respiratory chain via the ETF ubiquinone oxidoreductase 

(ETF-QO) and subsequent ATP production [33]. Fatty acids are the main 

energy substrate of the heart and alterations in mitochondrial fatty acid 

oxidation occur in different forms of heart disease including heart failure, 

ischaemic heart disease and diabetic cardiomyopathy [34]. Anthracycline 

therapy is known to inhibit long chain fatty acid oxidation and transport across 

mitochondrial membrane [35] and mitochondrial dysfunction (decrease ATP 

production, direct damage to the mitochondria and mitochondria dependent 

apoptosis) along with oxidative stress have been proposed as major 

contributors to anthracycline mediated myocardial injury [35,36]. Analysis of 

protein expression in doxorubicin-treated adult rat cardiomyocytes revealed 

differential downregulation of ETFB [38]. In addition, proteomic analyses of 



cardiac proteins from mice treated with doxorubicin showed elevated oxidative 

modifications of cardiac proteins, including ETF-QO, and these oxidative 

modifications altered their enzymatic activity [39], thus compromising ATP 

production in cardiac mitochondria. Taken together, these findings indicate that 

ETF is an important target in anthracycline-mediated mitochondrial dysfunction. 

The fact that ETFB was associated to chronic AIC in both breast and pediatric 

cancer patients points to mitochondrial dysfunction as a molecular mechanism 

of AIC independent of age at tumor onset. Within ETFB, we found that the 

variant allele of rs79338777, which has a predicted pathogenic effect according 

to two of the in silico prediction algorithms used, including the consensus 

classifier, was significantly associated with higher risk of developing chronic AIC 

in the combined analysis.   

Strengths of this study include that it was based on a well-characterized series 

of uniformly anthracycline-treated patients with extensive patient, tumor and 

therapy-related information and the notable long-term follow-up of patients, 

which is critical for a clear distinction between controls and cases of chronic 

AIC. The main limitation of the present study is the relatively small sample size 

of individual cohorts. 

Although further analysis in larger cohorts of patients and functional 

characterization of the precise role of the ETFB gene in chronic AIC are 

required, this study demonstrates that exome-array genotyping is a valuable 

approach to identify novel genes that contribute to chronic AIC susceptibility. 
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Table 1. Patient clinical characteristics 

 Discovery cohort (N=71) Replication cohort (N=83) 

 
Controls 
(N=53) 

Cases 
 (N=18) 

Controls  
(N=52) 

Cases 
 (N=31) 

Characteristic N %* N %* N %* N %* 

Age at diagnosis (years)     

Median 49 59.5 5.1 10.4 

Range 27-73 36-72 1.4-16.9 1.2-21.1 

Sex      

Female 53 100 18 100 23 44 7 23 

Male - - - - 29 56 24 77 

Primary diagnosis (tumor type)       

Breast cancer      

Ductal 42 79 13 72 - - - - 

Lobular 8 15 4 22 - - - - 

Others 3 5.7 1 5.6 - - - - 

Pediatric cancer         

Leukemia - - - - 45 87 12 39 

Osteosarcoma - - - - 3 5.8 9 29 

Ewing Sarcoma - - - - 4 7.7 10 32 

Tumor grade      

1 1 1.9 - - - - - - 

2 36 68 14 78 - - - - 

3 16 30 4 22 - - - - 

Radiotherapy** 25 47 6 33 - - 2 6.5 

Anthracycline type      

Doxorubicin 53 100 18 100 44 85 29 94 

Epirubicin - - - - 5 9.6 - - 

Daunorubicin     8 15 1 3.2 

Cumulative anthracycline dose (mg/m
2
)    

Median 298.6 298.4 134 360 

Mean 282.9 298.1 189.2 362.7 

Range 150-375 200-588 49.2-562 105-780 

Follow-up (years)     

Median 4.76 5.74 8.55 10 

Range 2-16 1.19-10.07 1-24.1 1-27.5 

* Percentages are computed based on the total number of non-missing values. a Radiotherapy 
includes mediastinal and mantle radiation and total body irradiation. b Cumulative anthracycline dose 
was calculated using doxorubicin equivalents. 

    



 

 

 

 

 

 

 

 

 

 

 

Table 2. Association results for ETFB with chronic AIC in cancer patients 

    Discovery cohort  
(N=61) 

Replication cohort 
(N=83) 

Gene Chr. Start End 
Number of 

variants 
P PFDR 

Number of 
variants 

P 

ETFB 19 51,848,546 51,869,541 4 4.16×10-4 0.77 4 2.81×10-3 
Positions are based on Genome Reference Consortium Human Build 37 (GRCh37/hg19). Associations between ETFB and risk of chronic AIC 
were assessed using SKAT-O considering only genes with at least 3 genotyped variants and including important clinical covariates (discovery 
cohort: age at diagnosis; replication cohort: age at diagnosis, cumulative anthracycline dose and bleomycin concomitant therapy)  



 

 

 

 

 

 

 

 

Table 3. Association of  variant rs79338777 (ETFB) with chronic AIC 

   
Discovery cohort  

(N=61) 
Replication cohort  

(N=83) 

Overall combined logistic 
regression 

(N=144) 

Variant Gene 
MAF  

cases 
MAF 

controls 
MAF 

MAF  
cases 

MAF 
controls 

MAF P OR 95%CI 

rs79338777 
(C>T) 

ETFB 0.13 0.02 0.04 0.18 0.07 0.11 1.95×10-4 9 2.83–28.6 

Covariates for the logistic regression in the combined analysis were age at diagnosis, cumulative anthracycline dose and whether patients had 
breast o pediatric tumors. Abbreviations: MAF, minor allele frequency; OR, odds ratio; CI, confidence interval. 



Figure 1. Contribution of individual ETFB variants on statistical 

significances for the ETFB gene in the discovery cohort. Top: genomic 

location of ETFB displayed in the USCS Genome Browser. Exon location and 

amino acid substitution of each of the 4 coding polymorphic variants included in 

the Illumina HumanExome BeadChip array are depicted. Bottom: P-values for 

the ETFB association in SKAT-O gene-based tests after removing one variant 

at a time and recalculating the association. Grey line indicates the P-value for 

the ETFB association with chronic AIC including all 4 coding variants 

(P=4.16x10-4). 
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