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Abstract. Positivity bounds — constraints on any low-energy effective field theory imposed
by the fundamental axioms of unitarity, causality and locality in the UV — have recently
been used to constrain various effective field theories relevant for cosmology. However, to
date most of these bounds have assumed that there is a single Lorentz-invariant vacuum in
which all fields have zero expectation value and in many cosmologically relevant models this is
not the case. We explore ways to overcome this limitation by investigating a simple example
model, the covariant Galileon, which possesses a one-parameter family of Lorentz-invariant
vacua as well as multiple boost-breaking vacua. Each of these vacua has a corresponding set
of positivity bounds, and we show how a particular (beyond-the-forward-limit) bound can
be used to map out the parameter space according to which vacua may persist in the UV
theory, finding that in general there are regions in which none, one or many of the effective
field theory vacua can be consistent with unitarity, causality and locality in the UV. Finally,
we discuss the interplay between this map and cosmological observations. We find that
the observationally favoured region of parameter space is incompatible with a large class of
vacua, and conversely that particular boost-breaking vacua would imply positivity bounds
that rule out otherwise observationally favoured cosmologies. We also identify a specific
boost-breaking vacuum which is “closest” to the cosmological background, and show that
the particular positivity bound we consider reduces the otherwise cosmologically favoured
region of Galileon parameter space by up to 70%, ruling out the vast majority of cosmologies
with a positive coefficient for the cubic Galileon in the process.
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1 Introduction

General Relativity (GR) is a cornerstone of 20th century physics, having proven remarkably
successful over a wide range of scales. However, since it is ultimately an effective field theory
(EFT)—breaking down at the Planck scale if not before — and can encounter difficulties
when accounting for the observed late-time acceleration [1, 2] — the well-known cosmolog-
ical constant problem [3] — we know that it cannot be the fundamental description of our
Universe. This need to explore possible deviations from GR has led to a plethora of different
models which introduce additional dark sector fields.

The simplest addition beyond the tensor degrees of freedom of GR is a single scalar
degree of freedom, φ, which can play the role of dark energy in the late Universe (see [4–9] for
reviews). The next generation of experiments will improve the precision of our cosmological
observations and provide increasingly tight constraints on the parameters in these models.
But without further theoretical guidance, it is not clear which models are the best motivated
or should guide future survey strategies, or how our observations of these EFT parameters
should shape future UV model-building.

“Positivity bounds” can provide this much-needed sign-posting, mapping out the land-
scape of consistent low-energy EFTs. These are constraints which must be satisfied by the
EFT scattering amplitudes as a consequence of unitarity, causality and locality — the foun-
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dational axioms of quantum field theory — in the UV [10–12].1 By using these bounds, we
can carve the EFT parameter space into regions which could admit a standard Wilsonian UV
completion, and regions which could never be embedded in a high-energy theory (in a way
consistent with these standard axioms). This positivity technology has recently been applied
to a number of different low-energy EFTs, ranging from particle physics [33–48] to cosmol-
ogy [49–62]. However, these previous applications have focussed on scattering fluctuations
around a trivial vacuum configuration, such as φ = 0.

In this work, we develop a new application of EFT positivity bounds. Rather than
focus on the scaterring processes around the trivial (background) solution, φ = 0, which most
related work has focused on in the past, we also consider 2→ 2 scattering processes around
other stable vacua of the EFT — this generates a family of different positivity bounds, which
can be used to diagnose which vacua may persist in the UV completion. This is especially
relevant in the dark energy context, where large classes of observationally relevant scalar-
tensor theories do not permit a stable φ = 0 solution — see [63–65] and references therein.
In this paper, to illustrate the key concepts as simply as possible, we focus on the covariant
Galileon theory [66],

S[φ] =
∫
d4x
√
−g

{ 5∑
i=1

ciLi[φ]
}
, (1.1)

which is characterised by five constant (dimensionless) Wilson coefficients, ci. The five terms
in the Lagrangian are given by

L1 = −1
2Λ3

3φ , L2 = X , L3 = 2X[Φ] ,

L4 = M2
Pl

2 R+ X2

Λ6
3
R+ 2X

(
[Φ]2 − [Φ2]

)
,

L5 = X2

Λ6
3
GµνΦµν − X

3
(
[Φ]3 + 2[Φ3]− 3[Φ][Φ2]

)
. (1.2)

where [Φn] are traces of the matrix Φ ν
µ ≡ ∇µ∇νφ/Λ3

3, X ≡ −1
2g
µν∇µφ∇νφ, Gµν is the

Einstein tensor, and Λ3 is the strong coupling scale of this EFT. Note that the Galileon
invariance of the pure scalar interactions in this theory is broken by gravitational corrections,
but since graviton exchange is suppressed by at least one factor of MPl the above remains
radiatively stable — see [67–72] and also [73–79] for recent extensions of these arguments (also
in other cosmologically relevant scalar-tensor theories). We emphasise that this example is
not chosen to champion this specific theory as a frontrunner for e.g. dark energy, but rather
since (as we will see) it neatly illustrates a number of key conceptual points related to
positivity bounds in theories where multiple vacua exist and also allows us to explore the
interface of such bounds with observational constraints in detail.

In particular, for any specific choice of the cn, this theory has up to four stable Lorentz-
invariant solutions of the form φ ∝ xµx

µ, plus various additional solutions which break
Lorentz boosts. By applying positivity bounds around each of the stable vacua of this theory,

1In this work we focus on linear positivity bounds for a single scalar field. There has been much progress
recently developing similar (and in some cases stronger) bounds for spinning particles [13–16], non-linear
bounds from moment theorems [17–19] and exploiting full crossing symmetry [20–24], generalised bounds for
EFTs with multiple fields [25, 26], and bounds including the effects of gravity [27–32].
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we find that usually only a subset are consistent with unitarity, causality (analyticity2) and
locality in the UV. This illustrates the importance of the IR vacuum structure when it comes
to searching for possible UV completions, and provides a more sophisticated “positivity-map”
of parameter space in which different regions correspond to the UV containing different stable
vacua. For instance, we show that while the quartic Galileon cannot be generated with c4 > 0
if the UV theory contains the trivial φ = 0 vacuum, it can be generated with a positive sign
if the kinetic term has c2 < 0 and only the non-trivial vacuum is stable. That a non-trivial
vacuum structure may allow for an apparent violation of the φ = 0 positivity bounds was
also recently observed in [80, 81] for P (X) theories.

These considerations are particularly important once we pair the theoretical positivity
considerations above with constraints from cosmological observations. Indeed, for Galileon
dark energy cosmological observations require that c2 < 0 [63] and so the trivial φ = 0 solu-
tion is always unstable in realistic such models. This conclusion remains true in a much wider
class of scalar-tensor theories [65], so the Galileon cosmologies we consider here are repre-
sentative in this sense. It is therefore not possible to apply conventional positivity bounds
about the trivial vacuum for these theories, and instead we must only consider bounds from
the stable non-trivial vacua. These bounds can then be incorporated into a cosmological
constraints analyses as theoretical priors along the lines explored in [82, 83]. Observational
constraints for cosmological Galileons have been well explored [63, 84–91], so in addition
to its interesting vacuum structure this further motivates choosing the Galileon as an ini-
tial example to investigate the interplay between novel positivity bounds and observational
constraints. Here we therefore explore for the first time how demanding the existence of
different vacua places different positivity priors on cosmological parameter spaces. For in-
stance, we identify an incompatibility between certain vacua in the EFT and large values
of the so-called “tracking parameter” ξ, that parametrises the background evolution of the
dark energy Galileon. We also identify a particular boost-breaking vacuum which is (at least
instantaneously) very close to the cosmological evolution, such that a violation of the corre-
sponding positivity bounds would be difficult to reconcile with a standard UV completion.
Positivity bounds computed around this vacuum are therefore particularly well-motivated
theoretical priors in a cosmological setting and we show that this prior is indeed powerful,
e.g. ruling out the vast majority of otherwise observationally viable cosmologies with c3 > 0.

In section 2.1, we describe various vacua (background solutions) of the covariant
Galileon (1.1) and the conditions under which they are stable. Then in section 2.2 we con-
sider 2→ 2 scattering of fluctuations about each of these vacua and derive the corresponding
positivity bounds. In section 3.1 we discuss the constraints on (1.1) from cosmological ob-
servations, and finally in section 3.2 we compare each of the different positivity bounds with
observations and discuss their use as theoretical priors. We conclude with some discussion
in section 4. Further technical details, especially on the (derivation of the) positivity bounds
employed in the main text, can be found in the appendices.

2When considering vacua which spontaneously break Lorentz symmetry, the low-energy positivity
bounds that we consider correspond to an analyticity in UV which can be stronger than that implied by
causality [104, 105].
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2 A study of IR vacua: from Galileon to Galileid

2.1 Vacua, fluctuations and stability

In this subsection, we describe various background solutions for the scalar field φ in the
covariant Galileon theory (1.1). We begin by considering a non-dynamical flat spacetime
background, gµν = ηµν (and hence set R = 0 = Gµν in (1.2), which reduce to the usual
Galileon interactions). The coupling to gravity will be re-introduced when we discuss cosmo-
logical backgrounds in section 3.2, but note that since they play no role in this section the
corresponding results apply to any covariantisation of the Galileon interactions.

Background. We investigate a family of background solutions which are specified by two
constant parameters: α and β. Specifically, we expand the scalar φ = φ̄ + ϕ about a
background configuration φ̄ given by,

φ̄ = Λ3
3

2
(
−αt2 + β|x|2

)
. (2.1)

Since the action (1.1) is invariant under a shift and (on a fixed flat spacetime) a Galileon
symmetry, φ → φ + c + cµx

µ, the background (2.1) depends on the lowest power of the
co-ordinates which cannot be removed using this symmetry. Three subcases are of particular
interest for us:

• α = β = 0. This case corresponds to the usual trivial vacuum φ̄ = 0.

• α = β. This case encapsulates the trivial vacuum above, but also includes non-trivial,
but still Lorentz invariant, vacua of the form φ̄ ∝ xµx

µ. We therefore have a one-
parameter family of Lorentz invariant background solutions.

• α 6= β. This two-parameter background solution breaks boosts, but a combination
of the Galileon symmetry and spacetime translations survives3 and so the effective
interactions for ϕ conserve both energy and momentum. This produces the so-called
type-II galileid studied in [92].4

The solution (2.1) encapsulates all of the above subcases and we will refer both to this general
solution as well as to the three subcases above throughout this paper. Expanding φ about φ̄
in S[φ] leads to an effective action for the ϕ fluctuations, and in the remainder of this section
we describe this action for each of the above backgrounds.

Fluctuations about trivial background. For the trivial background φ̄ = 0, ϕ is governed
by the same covariant Galileon action S[ϕ] given in (1.1). In order for this to be a stable
background, the tadpole term must vanish, c1 = 0, and the kinetic term must have the sign
c2 > 0. To canonically normalise the fluctuations, we should rescale ϕ → ϕ/

√
c2 (i.e. the

effective strength of the cubic Galileon interaction is c3c
−3/2
2 , as measured by any observable

such as a scattering amplitude).

3Note that while the stress-energy tensor Tµν ∝ x2 is not translationally invariant, we are working in the
limit where gravity has decoupled and so the spacetime background remains approximately Minkowski.

4The type-I galileid corresponds to α = 0.
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Fluctuations about other Lorentz-invariant backgrounds. If we instead consider
the general Lorentz-invariant background, φ̄LI = βΛ3

3x
µxµ/2, then the ϕ fluctuations will be

described by an effective action of the same Galileon form, but with redressed coefficients,

c̄1 = c1 − 8βc2 − 48β2c3 − 96β3c4 + 16β4c5

c̄2 = c2 + 12βc3 + 36β2c4 − 8β3c5

c̄3 = c3 + 6βc4 − 2β2c5 (2.2)

c̄4 = c4 −
2
3βc5

c̄5 = c5 ,

since schematically each cn∂
2n−2φn interaction in (1.1) produces ∑n

j=0 β
n−j∂2j−2ϕj once

expanded about this background. This background is stable whenever c̄1 = 0 and c̄2 > 0.
Note that in any particular covariant Galileon theory (i.e. a particular choice of the cn
in (1.1)), there are up to four real background solutions for β. Canonically normalising the
fluctuations corresponds to rescaling ϕ → ϕ/

√
c̄2 (so overall the effective strength of the

cubic Galileon interaction is now c̄3c̄
−3/2
2 , and has a non-polynomial dependence on β).

Fluctuations about Lorentz-breaking backgrounds. Finally we turn to the general
case of (2.1) with α 6= β. This can be written as φ̄ = φ̄LI + (β − α)Λ3

3t
2/2, and we see that

the difference β−α controls the breaking of boost invariance. The classical stability of (2.1)
is determined by the linear and quadratic terms,

δS[ϕ] =
∫
dtd3x

(
−1

2Jϕ
)

δ2S[ϕ] =
∫
dtd3x Z2

2c3
s

(
ϕ̇2 − c2

s(∂iϕ)2
)
, (2.3)

where the tadpole and kinetic-term normalisation are shifted relative to (2.2) by the boost-
breaking part of φ̄,

J = c̄1 + 2c̄2(β − α) , Z2/c3
s = c̄2 , 1− c2

s = (β − α)4c̄3
c̄2

. (2.4)

and now the sound speed cs of these fluctuations is generally different from 1 (the invariant
speed preserved by Lorentz boosts). In order for this to be a stable background, we require
that the tadpole vanishes, J = 0 and that there are no ghosts or gradient instabilities, Z2 > 0
and c2

s > 0. To canonically normalise the fluctuations, we should rescale ϕ → ϕ̃ = Zϕ, so
that the propagation of ϕ̃ fluctuations is determined by the simple effective metric g̃µν =
diag

(
−1, c2

s, c
2
s, c

2
s

)
, i.e. δ2S[ϕ] =

∫
dtd3x

√
−g̃

(
−1

2 g̃
µν∂µϕ̃∂νϕ̃

)
.

In addition to the non-trivial sound speed, the breaking of boosts also allows for new
interactions. The cubic and quartic action for the fluctuations can be written as,

δ3S[ϕ] =
∫
dtd3x

√
−g̃

(
−c̃3(∂̃ϕ)2 − d̃3ϕ̇

2
) �̃ϕ

Λ3
3

(2.5)

δ4S[ϕ] =
∫
dtd3x

√
−g̃

(
−c̃4(∂̃ϕ)2 − d̃4ϕ̇

2
) (�̃ϕ)2 − (∂̃∂̃ϕ)2

Λ6
3

(2.6)
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where
√
−g̃ = 1/c3

s and these derivatives are contracted using the effective metric,5 ∂̃µ =
g̃µν∂ν (e.g. �̃ = g̃µν∂µ∂ν). The interaction coefficients are given by,6

√
−g̃ c̃3 = 1

c4
s

[c̄3 − 3c̄4(β − α)] ,
√
−g̃ d̃3 = 2β − α

c4
s

[
4c̄2

3
c̄2
− 3c̄4

]
√
−g̃ c̃4 = 1

c6
s

[
c̄4 + 2

3 c̄5(β − α)
]
,

√
−g̃ d̃4 = 3β − α

c6
s

[4c̄3c̄4
c̄2

+ 2
3 c̄5

]
(2.7)

and clearly reduce to (2.2) when α → β, the limit in which cs → 1 and Lorentz symmetry
is restored. Further, the coefficients (2.7) differ from (2.2) by at most one factor of (β − α),
which reflects the antisymmetric derivative structure of the Galileon interactions (i.e. at most
one leg can be put on the (β − α)t2 part of the φ̄ background). Crucially, it is the effective
couplings (2.7) that control the strength of ϕ̃ interactions on this φ̄ background, and therefore
it is these particular combinations of parameters which will appear in the positivity bounds.

2.2 Positivity bounds

Having described the vacua in this low-energy EFT, we now turn to the question of UV
completion. Positivity bounds provide a way of diagnosing whether a particular EFT can
ever be embedded into a consistent UV complete theory (i.e. one which is unitary, causal and
local) in the usual Wilsonian sense. In this section, we derive a variety of positivity bounds
for the covariant Galileon EFT (1.1), and show that they can be used to determine which of
the EFT vacua (i.e. which values of α and β) can remain viable backgrounds in the full UV
theory.

Positivity about trivial background. First, let us consider the trivial background φ̄ = 0
(i.e. β = α = 0). The 2 → 2 scattering amplitude for the Galileon interactions about this
background, and the corresponding positivity bounds, can be found in [10, 60]. In this case,
Lorentz invariance is unbroken, and consequently the amplitude is a simple function of two
Mandelstam variables only, A(s, t). At tree-level, this EFT amplitude can be written as an
analytic power series in s and t, which in particular contains the terms,

A(s, t) = csss
2 + cssts

2t+ . . . , (2.8)

for constant coefficients css and csst. This EFT admits a unitary, causal, local, Lorentz
invariant UV completion only if [10],

css > 0 , (2.9)

and [12]

csst > −
3

2Λ2 css , (2.10)

where Λ is the cut-off of the EFT. The technical steps leading from unitarity, analyticity and
locality in the UV to these constraints in the EFT are reviewed briefly in appendix B.

5In particular, note that if nµ = ∇µt is the time-like direction, then c2sηµν = g̃µν + (1 − c2s)nµnν , which
allows us to replace any ∂ϕ with ∂̃ϕ and ϕ̇.

6For convenience, in appendix A we provide expressions for the effective coefficients (J , Z2, c2s, c̃n, d̃n) in
terms of the original cn coefficients appearing in (1.1).
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An exact Galileon symmetry requires that css = 0, which violates the first of these
bounds [10]. One possible resolution is to break the Galileon symmetry, e.g. with a small
mass [60] or small (∂φ)4 interaction [52], but this inevitably leads to an unacceptably low
cut-off.7 Another possible resolution is to make weaker assumptions about the nature of the
UV completion — for instance, if the UV amplitude exhibits some mild non-locality, then
the dispersion relation for ∂2

sA need not converge and (2.9) need not apply, and yet higher
order positivity bounds may still be used to constrain these couplings [16, 93]. Yet another
possibility is that gravitational effects modify (2.9), particularly in light of recent results
which show that a small negative css may not violate causality if balanced by a gravitational
time delay [27] (see also [94–99]). Since our goal here is to compare positivity bounds around
different vacua, rather than rescue any particular covariant Galileon theory, we will accept
that the leading bound (2.9) appears to be marginally violated for the trivial background
considered here and move on to contemplate the first non-trivial bound (2.10).

The bound on csst has recently been used to constrain Horndeski scalar-tensor theo-
ries [82, 83], where it was shown that (2.10) provides a potentially useful theoretical prior
when paired with current observational data. For the covariant Galileon (1.1) (i.e. a partic-
ular choice of the Horndeski functions), this bound is simply [60],

c2
3 − c2c4 > 0 . (2.11)

Physically, this positivity condition is telling us that it is not possible to integrate out unitar-
ity, causal, local UV physics to produce an EFT of the form (1.1) with a stable φ̄ = 0 back-
ground (c1 = 0 and c2 > 0) and with c2

3 < c2c4. This has a number of important consequences
— for instance, in the absence of the cubic Galileon, c3 = 0, the region c4 > 0 is forbidden,
and this is the precisely the region in which Vainshtein screening takes place [80, 100].

In this work, we are exploring for the first time the caveat that the above argument
implicitly assumes φ̄ = 0 is a stable background solution about which to compute A(s, t).
For example, if c2 < 0 then the action (1.1) expanded around φ̄ = 0 should not be used to
compute a perturbative scattering process: rather, one must first expand around a solution φ̄
which is stable, and consider scattering ϕ fluctuations using the effective action given above
in (2.5) and (2.6). Such cases are not just a calculational curiosity, but highly relevant in
cosmological contexts. As we shall discuss in more detail below, c2 < 0 is observationally
mandated in the context of the self-accelerating Galileon dark energy theories we are focusing
on here [63] and indeed this conclusion remains true in a much wider classes of observationally
relevant scalar-tensor theories [65]. A stable φ̄ = 0 does not exist in these theories and hence
arguments and results based on assuming the existence of such a background solution, e.g.
the positivity requirement (2.11), do not apply in this context.

Positivity about other Lorentz-invariant backgrounds. To make this more concrete,
consider what happens when one of the α = β 6= 0 vacua is stable. This background
preserves Lorentz invariance and (thanks to the Galileon symmetry) translation invariance,
so the amplitude Aϕϕ→ϕϕ(s, t) is once again a function of s and t only. We give this function
explicitly in appendix B. The positivity bound (2.10) applied to this amplitude gives,

c̄2
3 − c̄2c̄4 > 0 , (2.12)

7In particular, exploiting full crossing symmetry gives a further bound [20], csst < +8css/Λ2, and so it is
not possible to arrange for a small |css| � Λ2|csst|, i.e. the symmetry breaking must be order-one in units of
the cut-off.
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where the c̄n coefficients are given in (2.2). Although we have adopted a notation in
which (2.11) and (2.12) are superficially similar, let us stress that the bound (2.12) about
this φ̄LI = 1

2βΛ3
3 xµx

µ background is qualitatively different when β 6= 0. For one thing, while
the quintic coefficient c5 of the original Lagrangian (1.1) could never be constrained by tree-
level scattering about φ̄ = 0, considering this non-trivial background has introduced a c5
dependence into (2.12)8. A further interesting observation is that when c3 = c5 = 0 and one
considers the quartic Galileon interaction alone, (2.12) becomes −c2c4 > 0 for any value9 of
β. However, now the condition for stability is c2 +36β2c4 > 0, and so unlike the bound (2.11)
around the trivial background we now have the possibility of setting c2 < 0 and c4 > 0. Put
another way, the quartic interaction in (1.1) could be generated with a positive sign by uni-
tary, causal, local UV physics if c2 < 0 and the stable background is φ̄ = 1

2βΛ3
3 xµx

µ (with
β2 = −c2/(12c4) from J = 0), but not if c2 > 0 and φ̄ = 0 is the stable background. This
will have interesting consequences once we consider the interplay with observational bounds
on the ci in the next section (particularly in the observation-favoured c2 < 0 regime alluded
to above).

Positivity about Lorentz-breaking backgrounds. Finally, we consider backgrounds
of the form (2.1) in which α 6= β. Importantly, here c2 < 0 is perfectly consistent with
the existence of stable background solutions — this follows directly from (2.4) — so the
observational constraints mandating a negative c2 for cosmological solutions mentioned above
do not rule out the existence of stable {α, β} vacua within the same EFT. While this by itself
does not guarantee that cosmological and galileid solutions co-exist within the same EFT,
this removes a major obstacle in linking (positivity) bounds and (observational) constraints
from those two classes of vacua. Indeed, later on we will discuss how precisely one may
map constraints from the galileid vacua considered here to the cosmological ones detailed in
section 3.

For α 6= β backgrounds, the amplitude for scattering ϕ fluctuations is no longer invariant
under boosts. A can therefore depend explicitly on three additional variables, which we
take to be the energies {ω1, ω2, ω3} of the fluctuations (since time translations are unbroken
ω4 = −ω1 − ω2 − ω3 is fixed by energy conservation). In the forward limit, in which t = 0
and ω3 = −ω1, the most general boost-breaking amplitude takes the form,

A = csss
2 + dsωωsω1ω2 + dωωωωω

2
1ω

2
2 + . . . (2.13)

plus terms that are suppressed either by more powers of the cut-off or by the approximate
shift symmetry of the fields (as we show in appendix C).

The analogue of the positivity bound (2.9) for such an EFT amplitude (2.13) was first
worked out in [104], and amounts to fixing the energies as though in the centre-of-mass frame
(i.e. ω1 = ω2 =

√
s/2), which gives A an effective s2 coefficient that should be positive,

css + 1
4dsωω + 1

16dωωωω > 0 , (2.14)

8The use of non-trivial backgrounds to constrain higher-point interactions has been described previously
in [80], where it was shown that for simple P (X) theories this strategy can reproduce the bounds that would
have been inferred from higher-point scattering amplitudes [101]. This is analogous to the observation that
linearising interactions around several different backgrounds can probe information that only enters non-
linearly around a specific background.

9The fact that β drops out of the positivity bound is perhaps related to the special Galileon symmetry
φ → φ + Sµν

(
xµxν − c4

c2
∂µφ∂νφ

)
enjoyed by the quartic Galileon, where Sµν is a fixed traceless symmetric

tensor [102, 103].
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if the UV completion obeys properties analogous to unitarity, causality and locality — namely
it is smoothly connected to the EFT amplitude modulo unitary branch cuts (we briefly review
these technical details in appendix B.1). More recently, it was pointed out in [105] that for
general particle energies (i.e. scattering with a general centre-of-mass momentum p1+p2 6= 0)
the same UV axioms lead to a 1-parameter family of bounds,

css + γ2

4 dsωω + γ4

16dωωωω > 0 , (2.15)

controlled by the dimensionless ratio γ2 = 4ω1ω2/s which may take any value ≥ 1. Setting
γ2 = 1 recovers (2.14). Physically, γ is related to (the Lorentz factor of) the centre-of-mass
velocity: we describe this interpretation in more detail in appendix B.3.

For the general galileid background (2.1), we find that css = dsωω = dωωωω = 0 in (2.13),
i.e. the Galileon symmetry forbids these terms from appearing in the amplitude. Conse-
quently, (2.15) is always marginally violated, for any value of α and β. This answers a
question first posed in [92]: the Galileid suffers from the same IR obstruction to UV comple-
tion as the Galileon, which cannot be healed by considering non-trivial backgrounds (at least
those which preserve time-translation invariance). However, note that this marginal violation
of the leading positivity bound (2.15) is again subject to the same possible loopholes as the
Lorentz-invariant bound (2.9) described above. Ultimately, since our goal is to compare pos-
itivity bounds around different vacua, rather than rescue any particular covariant Galileon
theory from (2.15), we will move on to the first non-trivial bound which arises beyond the
forward limit.

Allowing for a small non-zero t, the most general boost-breaking amplitude compatible
with a Galileon symmetry takes the form10,

A (s, t, ω1 = −ω3, ω2) = cssts
2t+ dstωωstω1ω2 + . . . (2.16)

plus higher order terms, as we show in appendix C. In terms of the Wilson coefficients
appearing in (2.5) and (2.6),

csst = 3
(
c̃2

3
Z2 − c̃4

)
, dstωω = 4

(
d̃4 −

2c̃3d̃3
Z2

)
. (2.17)

Positivity bounds for such an EFT amplitude were recently derived in [105] by assuming an
analytic extension of A into the UV consistent with unitarity and locality, which in this case
would require,11

csst + γ2

4 dstωω > 0 , (2.18)

(see appendix B for a brief review of the technical details). In this work, we focus for the most
part on the consequences of this bound (2.18), which can be applied to a greater range of
vacua than the Lorentz-invariant bound (2.10). The analogue of the positivity bound (2.10)

10Note that we continue to set ω1 = −ω3 so that t = 0 corresponds to the forward limit p1 = −p3 (and
p2 = −p4)—this ensures the positivity of the UV contribution to the dispersion relation, from which (2.18)
follows (see appendix B.1). For the sake of completeness, the amplitude at general ω1 6= ω3 is given in (B.4).

11Note that, in the absence of any Galileon symmetry, there can be additional terms appearing in the ampli-
tude (2.16) which affect (2.18)—we give the general bound on any shift-symmetric amplitude in appendix C.
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corresponds to setting γ = 1 (i.e. scattering with “centre-of-mass” kinematics), and gives the
following constraint on the Wilson coefficients,

Pos. bound 1: c̃2
3 − Z2c̃4 >

1
3
(
2c̃3d̃3 − Z2d̃4

)
. (2.19)

Note that when α = β and the φ background recovers Lorentz-invariance, the coefficients
d̃3 and d̃4 on the right-hand-side vanish and we recover the Lorentz-invariant bound (2.12).
Furthermore, one key conceptual difference to the Lorentz-invariant case is that now the
positivity bound (2.18) depends on the additional parameter, γ2. By considering large values
of γ (i.e. scattering processes in which there is a non-zero centre-of-mass motion12), there is
an additional constraint,

Pos. bound 2: 2c̃3d̃3 − Z2d̃4 ≤ 0 . (2.20)

Taken together, (2.20) and (2.19) imply a weaker bound on c̃2
3 − Z2c̃4 than the Lorentz

invariant (2.12). In terms of these effective coefficients, allowing for a more general vac-
uum/background for φ therefore allows a greater range of Wilson coefficients to be UV com-
pleted.13 When comparing with observational constraints in section 3, we will find that (2.19)
and (2.20) taken together are significantly more constraining than (2.19) alone.

It should be noted that the Lorentz-invariant bound (2.12) and the boost-breaking
bounds (2.19), (2.20) are on a slightly different footing. While both require the UV comple-
tion to be analytic in the complex s-plane, in the case of (2.12) this analyticity is a direct
consequence of causality (i.e. local operators commute outside of the light-cone). For back-
grounds which spontaneously break boosts, the connection between causality and analyticity
is more subtle (in particular the cs-cone of the low-energy fluctuations generally does not
coincide with the UV light-cone), and ultimately the analytic structure of the high-energy
amplitude should be added to the list of assumptions made about the UV completion (in
addition to unitarity and Froissart-boundedness). A violation of (2.12) signals that the UV
completion violates unitarity, locality (Froissart-boundedness) or causality, whereas a vio-
lation of (2.19) or (2.20) signals that the UV completion violates unitarity, locality or our
assumption of analyticity. These assumptions are discussed in more detail in appendix B.1.

Finally, note that (2.20) is not a strict inequality, since a low-energy amplitude may
have dstωω = 0 and still satisfy (2.18). In fact this is precisely what happens for the purely
quartic Galileon (c3 = c5 = 0), whose tree-level amplitude is simply Z2A = c2c4(s3 + t3 +u3)
on any galileid background. Ordinarily, since both d̃3 and d̃4 change sign when cs crosses
1, any region of parameter space which satisfies (2.20) for subluminal backgrounds (i.e. has
dstωω > 0 on backgrounds with cs < 1) will necessarily violate it on superluminal backgrounds
(i.e. will have dstωω < 0 on backgrounds with cs > 1), and vice versa. Only in the special case
dstωω = 0 can (2.20) be satisfied by both sub- and super-luminal solutions in this covariant
Galileon theory. Put another way, if one starts from a unitary, causal, local, Lorentz invariant
UV completion (with invariant speed c = 1), then the EFT for low-energy fluctuations about
a boost-breaking background will typically only be viable for a particular sign of 1−c2

s, unless
there is some cancellation which produces dstωω = 0 in the amplitude.14

12We show in appendix B.2 that γ � 1 at small s remains within the validity of the EFT, and further
discuss this interesting limit in appendix B.3.

13While this is certainly intuitive, note that when written in terms of the original cn coefficients appearing
in the covariant Lagrangian (1.1), the effective c̃n are themselves functions of α and β (see (2.7)), and so (2.19)
for a boost-breaking background is not necessarily a weaker positivity bound on the cn parameter space.

14Note that, throughout this paragraph, we have implicitly kept the ci fixed, while exploring different vacua
by changing {α, β}, subject to the tadpole and stability conditions being satisfied.

– 10 –



J
C
A
P
0
6
(
2
0
2
2
)
0
3
1

−1.0 −0.5 0.0 0.5 1.0

α

−1.0

−0.5

0.0

0.5

1.0

β

−1.0 −0.5 0.0 0.5 1.0

α

−1.0

−0.5

0.0

0.5

1.0

β

−1.0 −0.5 0.0 0.5 1.0

α

−1.0

−0.5

0.0

0.5

1.0

β

Figure 1. Here we show the space of vacuum solutions, as parametrised by the α and β parameters.
The three panels from left to right correspond to the cubic, quartic and quintic Galileon theories,
respectively, where only the respective ci and c2 are non-zero and the kinetic term has been normalised
by setting c2 = −1 (in anticipation of the next section and hence ruling out a stable vacuum solution
φ̄ = 0). For any given choice of (α, β) we solve the tadpole condition (2.4) to obtain the free ci.
Regions ruled out by ghost and/or gradient instabilities are then shaded black, stable regions that
fail either of the positivity bounds ((2.19) and (2.20)) are hatched grey and regions free of ghost and
gradient instabilities and consistent with the positivity bounds considered here are white.

The space of allowed vacua. Having derived positivity bounds and stability conditions
for the family of Galileon vacuum solutions (2.1) above, we now investigate how restrictive and
informative these criteria are in identifying physically well-motivated vacua. We first focus
on a particular vacuum (with fixed α, β) and use these bounds to constrain the remaining cn,
i.e. ask whether this particular solution could ever arise from any theory of the form (1.1).
In figure 1 we show the results for a cubic, quartic and quintic Galileon (panels from left to
right), respectively. Having normalised the kinetic L2 term, these theories each have one free
ci parameter, which we fix using the tadpole condition (2.4). We then consider the space of
vacuum solutions (2.1) as parametrised by (α, β) and identify, which regions of parameter
space are ruled out by ghost and gradient stability constraints (black regions in figure 1). For
the residual parameter space we then ask, whether the positivity bounds (2.19) and (2.20)
are satisfied — regions failing this test (hatched gray regions) can be as large as 2/3 of
the residual parameter space, so positivity bounds are a powerful tool to identify physically
well-motivated vacua (white regions) in this context.

To develop intuition for the vacuum structure outlined in figure 1, it is useful to discuss
one example in more detail. We pick the cubic Galileon, i.e. the leftmost panel in figure 1,
and normalise the kinetic term by setting c2 = −1 (in anticipation of the following section).
From (2.4) we obtain the tadpole condition for the relevant cubic Galileon vacua

12β (α+ β) c3 = α+ 3β, (2.21)

which we can solve for c3. Using this solution, from (2.4) we can then find the following
conditions for the absence of ghost and gradient instabilities, respectively

β (α+ β) > 0, α2 + 2αβ + 3β2 ≥ 0. (2.22)

Only the no-ghost condition places a non-trivial constraint on the allowed vacua here, no real
{α, β} violate the gradient stability condition. Using (2.21) and imposing the above stability
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conditions, the two positivity bounds (2.19) and (2.20), respectively, then imply

2α2 + 4αβ + 3β2 > 0, (α− β) (α+ 3β) ≥ 0. (2.23)

The first positivity condition is satisfied for all stable vacua, so places no further constraints
here. The second positivity bound, on the other hand, does place a significant constraint.
The boundaries of the ‘positive’ region in the cubic Galileon panel of figure 1 are ultimately
determined by the factor of (α−β) in the second positivity bound and β in the no-ghost sta-
bility bound — the boundaries are correspondingly the lines α = β and β = 0. When viewed
in this {α, β} parameter space, positivity bounds therefore eliminate 2/3 of the parameter
space consistent with stability bounds alone for this example.

Instead of scanning vacua in the {α, β} space and asking whether they could arise
from (a subset of) covariant Galileon theories, we can instead consider a particular covariant
theory (1.1) (with fixed coefficients cn) and use positivity bounds to effectively constrain the
allowed range of β, i.e. probe which vacua in this particular EFT could be compatible with
a standard UV completion. Focusing on the second positivity bound (2.20), when written in
terms of the original cn appearing in the covariant action (1.1), this bound implies that,

(1− c2
s)

8β3c3
3 + 12βc3 β

2c4 − β3c5
βc3 + 6β2c4 − 2β3c5

≤ 0 . (2.24)

for any Galileid vacua in which now α is fixed by the tadpole condition (J = 0) and β obeys
the no-ghost stability condition (Z2/c3

s > 0, cf. (2.4)),

c2 + 12βc3 + 36β2c4 − 8β3c5 > 0 . (2.25)

Note that there is the freedom to redefine φ→ Cφ for any real constant C (which is equiv-
alent to mapping β → Cβ and cn → Cncn) and indeed physical quantities like c2

s and the
bounds (2.24) and (2.25) are not affected by such a rescaling. A crucial observation is that,
for both positivity bounds (including the first bound not explicitly shown in the ci basis
above) and once α has been solved for using the tadpole condition, all ci always enter in
the combination βi−2ci. By construction, the same is true for ghost and gradient stability
bounds, so when written in this basis, the bounds for a theory with n non-zero ci only depend
on n independent effective parameters. This is different to the {α, β} space considered above,
where an additional (dependent) parameter was present.

We now again consider the simplest models in which only a single Galileon interaction
is present. For example, if c4 = c5 = 0, so only the cubic interaction is present, then all
12βc3 > −c2 vacua obey (2.25) and are stable, but only the superluminal ones (1 − c2

s ≤ 0)
satisfy (2.24). Which vacua are sub/super-luminal depends on the sign of c2. When c2 > 0
the stable superluminal vacua correspond to −c2 < 12βc3 ≤ 0, and when c2 < 0 the sta-
ble superluminal vacua correspond to |c2| < 12βc3 ≤ 2|c2|. In both cases, the positivity
bound (2.24) has greatly reduced the available parameter space compared to stability con-
siderations alone (from a semi-infinite range to a finite line segment15). Similarly, for the
simple model in which only the quintic Galileon is present (c3 = c4 = 0), all 8β3c5 < c2
vacua obey (2.25) and are stable, but again only the superluminal ones satisfy the positivity
condition (2.24). When c2 > 0 the stable superluminal vacua are 0 < 8β3c5 < c2, and when

15For theories in which c2 = 0, so the kinetic term for fluctuations comes entirely from the cubic Galileon
interaction, cs is always subluminal and so the positivity bounds can never be satisfied — in this case the line
segment shrinks to nothing.
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c2 < 0 the stable superluminal vacua are −4|c2| < 8β3c5 < −|c2|. So again positivity has
reduced the available parameter space to a finite window. Finally, we already noted above
that the quartic Galileon is a special case, since the second positivity bound is trivially satu-
rated there (giving 0 ≥ 0). The first positivity bound, on the other hand, is always satisfied
by any solution that respects the no-ghost stability condition, β2c4 > −c2/36. In this special
case, both sub- and super-luminal solutions are consistent with all bounds.

3 Interplay with cosmological observations

In this section we explore the interplay between positivity bounds and observational con-
straints for Galileon theories of cosmological interest. To that end, we will first discuss the
observational bounds by themselves and then ask how informative the above novel positivity
bounds (computed around a specific family of boost-breaking vacua) can be for cosmologi-
cally relevant dark energy theories (around a different boost breaking vacuum, i.e. the FLRW
solution).

3.1 Observational constraints for the Galileon

Cosmological background solutions. When considering cosmological background solu-
tions for the Covariant Galileon, the existence of a so-called ‘tracker’ is crucial [106]. Here we
briefly summarise its characteristics and consequences as discussed in detail in [63, 90, 106].
The tracker is characterised by the constant ξ parameter, where one can define

ξ ≡ φ̇H

Λ3
3

= constant. (3.1)

Throughout this section, Λ3 = (MPH0)1/3 where H0 is the Hubble rate today. The existence
of this solution is tightly linked to the underlying shift symmetry of the theory,16 which
allows re-writing the field equations as a current conservation equation. More specifically,
one finds

∇µJ µ = J̇ 0 + 3HJ0 = 0, (3.2)
J0 = c2ξ − 6c3ξ

2 + 18c4ξ
3 + 5c5ξ

4. (3.3)

As a consequence of (3.2), J 0 decays as a−3 and so there exists a ‘tracker’ solution. In [63] it
was shown that reaching this tracker solution while the fractional contribution of dark energy
to the energy density of the Universe, ΩDE, is still sub-dominant is required in order to comply
with CMB constraints. In what follows we will therefore assume this tracker has indeed been
reached sufficiently early, effectively setting J 0 = 0 and using (3.3) as a constraint on the
ci. Assuming a spatially flat Universe, one can furthermore use the Friedmann equation to
derive

Ωφ,0 = 1
6c2ξ

2 − 2c3ξ
3 + 15

2 c4ξ
4 + 7

3c5ξ
5. (3.4)

Note that we are considering self-accelerating solutions here, where the Galileon scalar φ
makes up the entirety of dark energy, i.e. ΩDE = Ωφ. The 0 index refers to the time t0, i.e.

16Note this is simply a consequence of the φ → φ + c shift symmetry part of the full Galilean symmetry,
i.e. the full Galilean symmetry (weakly broken by the coupling to matter and gravity) is not relevant here.
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to today. The relations (3.3) and (3.4) then have profound consequences for the background
evolution of the Covariant Galileon. In essence, they will tightly constrain one of the free
coefficients of the theory, as we can use (3.3) to solve for ξ or one of the free ci and then
use (3.4) to place a tight observational constraint on (another) one of the ci for a given set
of bounds on Ωφ,0. Specifically, we can use that Ωφ,0 ∼ 0.7 [107].

Cosmological backgrounds and (un-)stable vacua. The tracker constraints discussed
above have immediate consequences for vacuum stability, i.e. which solutions satisfy the
ghost and gradient stability conditions derived from (2.4). As foreshadowed in the previous
section, perhaps the most interesting consequence relates to the instability of the trivial
vacuum solution, φ̄ = 0. Here it is instructive to start with the same simple examples used
to illustrate the ‘space of vacua’ in the previous section: pure cubic, quartic and quintic
Galileons, each case with only two free parameters: c2 and the respective ci. Using (3.4)
together with J 0 = 0 and (3.3), we find

Ωcubic
φ,0 = −c2

6 ξ
2, Ωquartic

φ,0 = −c2
4 ξ

2, Ωquintic
φ,0 = −3c2

10 ξ
2. (3.5)

Since ξ is a real constant (3.1), obtaining a positive Ωφ,0 therefore requires a negative c2
for all of these simple examples. When considering the full space of Galileon theories with
arbitrary ci combinations, this conclusion no longer follows just from the tracker conditions,
but overall observational constraints still enforce a negative c2 [63]. Crucially this disconnects
cosmologically relevant Galileons from the trivial φ̄ = 0 vacuum. In our present positivity-
related context, this means that bounds computed around a φ̄ = 0 background do not apply
to the cosmologically relevant branch of solutions, further motivating our present exploration
of bounds for boost-breaking vacua.

Data sets and priors. We now perform a Markov chain Monte Carlo (MCMC) analysis,
computing cosmological constraints on the Galileon model parameters. The data sets we use
come in two parts: first, CMB temperature and polarisation data from Planck 2018 [108].
More specifically, we use the high-` TTTEEE, low-` EE, and low-` TT likelihoods. Note
that we therefore do not use the pre-marginalised Plik_lite likelihood, which has mostly been
shown to be accurate for ΛCDM cosmologies (i.e. not for the Galileon cosmologies considered
here). However, in practice we find that the resulting parameter constraints we will discuss
below are almost unaffected by the choice between the pre-marginalised Plik_lite and ‘full’
Planck likelihoods. We complement the above CMB data by using BAO measurements from
the 6dF Galaxy Survey [109], SDSS DR7 LRG [110] and from BOSS DR9 CMASS [111].
Note that we have not included newer, additional BAO data sets such as from the SDSS
main galaxy sample [112], which are in mild ∼ 2σ tension with the Galileon cosmologies
discussed here — see [90] for a detailed discussion of this choice of BAO datasets. Modulo
using current Planck data, we are therefore using the same data sets as [90] here. With
this minimal set of cosmological data (we will discuss the impact of including additional
observations/data sets below), we then proceed as follows. We fix c1 = 0 for simplicity and
normalise c2 = −1, where we recall a negative c2 is required by cosmological constraints [63].
We then use (3.3) and (3.4) to solve for {c4, c5}, so that {ξ, c3} are the residual free Galileon
parameters. As part of the MCMC analysis we now vary these two parameters in addition to
the standard ΛCDM parameters {Ωb,Ωcdm, H0, As, ns, τreio} and Σmν (the sum of neutrino
masses). Note that we assume a degenerate neutrino mass spectrum, where a (significantly)
non-zero sum of neutrino masses is observationally mandated in Galileon cosmologies [87].
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Figure 2. Here we show cosmological data constraints in the ξ − c3 parameter space for covariant
Galileons. We fix c2 = −1 to remain consistent with observational constraints, while c4 and c5 are
fixed by the current conservation (3.3) and Friedmann equations (3.4). Data contours mark 68% and
95% confidence intervals, computed using CMB+BAO data (see main text for details). The blue dot
and diamond identify the CMB + BAO and CMB + BAO + ISW best-fit cosmologies, respectively
(where the best-fit cosmology including ISW constraints has been lifted from [90]).

No prior boundaries are imposed on any of the varied parameters, except for requiring a non-
negative sum of neutrino masses and τreio ≥ 0.004 (corresponding to zreio & 6 and motivated
by observations of the Gunn-Peterson trough, see e.g. [113]).

Cosmological parameter constraints. Throughout this paper we will focus on con-
straints in the {ξ, c3} plane, marginalising results over {Ωb,Ωcdm, H0, As, ns, τreio,Σmν}.
Working with the full covariant Galileon and solving the current conservation (3.3) and
Friedmann equations (3.4) for c4 and c5, we are then left with ξ and c3 as the two parameters
controlling dark energy dynamics here (recall that we have fixed c1 = 0 for simplicity and
normalised c2 = −1 as required by cosmological constraints [63]). In figure 2 we show the
resulting parameter constraints in the ξ−c3 plane, which are in excellent agreement with the
corresponding results found by [90], as expected. As a reference point for later, we are also
marking the best-fit parameter values to the data for the CMB+BAO constraints considered
here (circular dot) as well as for the CMB+BAO+ISW constraints from [90] (diamond).
However, we caution against overinterpreting these best-fit points and emphasise that any
region of parameter space within the ∼ 2σ contours in figure 2 should be considered as fully
consistent with the observational bounds considered here. Overall CMB+BAO constraints
require 1.5 . ξ . 3 and −0.2 . c3 . 0.3 at the 2σ level.17

17Note that the Einstein-Boltzmann solver we use, hi_class [114, 115], struggles to solve cosmologies with
|c3| . 0.005 in the setup discussed here. This is because the scalar equation of motion and the ‘spatial’
Friedman equation are used to solve for φ̈ and Ḣ in the default code setup, but this solution becomes degenerate
at a point during the cosmological evolution for small values of c3 (and when solving for c4, c5 as discussed
above). However, this is an artefact of the solver and not related to any underlying physical singularity (one
could e.g. use the other Friedman equation to solve for H instead), so we here simply interpolate across the
|c3| . 0.005 region.
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3.2 Positivity bounds as theoretical priors

After the observational considerations above, we are now in a position to discuss the interplay
between observational bounds on the covariant Galileon as a cosmological candidate theory
for dark energy and the positivity bounds derived in the previous section.

Positivity bounds and the space of vacua. Following the spirit of [82], we would like
to know whether positivity bounds can be folded into a cosmological constraint analysis as
informative theoretical priors. In addition we here specifically explore what this can tell us
about the space of galileid vacua consistent with both observational constraints and positivity
bounds. In order to explore this space of vacuum solutions, we would like to identify galileid
vacua that can be associated to each point in the observationally relevant {ξ, c3} plane and
we therefore proceed as follows:

1. We fix c1 = 0 for simplicity and normalise c2 = −1, where we recall a negative c2 is
required by cosmological constraints [63]. This leaves us with three free ci (c3, c4, c5)
and two free parameters (α and β from (2.1)) tracing over different vacuum solutions.

2. We now choose an array of 3-tuples {ξ, c3, α/β} as input,18 solving the current conser-
vation (3.3) and Friedmann equations (3.4) for c4 and c5, where we impose Ωφ = 0.69
consistent with current constraints [107].19

3. Taking those solutions, we now find all values for α consistent with this from (2.4), in
other words we find all the vacua of the form (2.1) consistent with the above solution
and input {ξ, c3, α/β}. Note that there are up to four real solutions for α and that the
value of α together with the α/β input also specifies β here, i.e. we have now found all
the vacua consistent with the input.

4. All the above solutions and vacua are now labelled according to whether I) they respect
ghost and gradient stability conditions from (2.4), II) whether the associated positivity
bounds (2.19) and (2.20) are satisfied.

Following the above algorithm, the corresponding results are shown in figure 3. Here we
combine an analysis of the ‘positivity’ and stability properties of the {ξ, c3, α/β} parameter
space as outlined above with observational constraints on the covariant galileon as a self-
accelerating dark energy field. We highlight that, in combining positivity and stability bounds
from given {α, β} vacua with observational constraints for cosmological vacua, we are here
implicitly assuming that these vacua, as identified in the above fashion, co-exist within the
same over-arching EFT and explore what the resulting combined bounds (from both classes
of vacua) would be for the cosmologically relevant parameter space — we will discuss this
assumption in more detail below. For the cases considered here, we find that, when imposing
positivity bounds to require a ‘standard’ UV completion as described in the previous section,
the large-ξ part of the observationally acceptable region is in tension with positivity bounds
for vacua with α/β . 0.1. This tension will become especially relevant when we discuss

18It is worth noting, that we could of course have chosen a different set of three input parameters, e.g.
{c3, c4, β}. In particular, we here chose ξ as one of our ‘native’ parameters, since we are primarily interested
in observationally relevant regions of parameter space for which a real ξ solution must exist.

19Note that we have checked that the resulting ‘labels’ in step 4 (and hence the corresponding positivity
priors) only change minimally when altering the fiducial value of Ωφ within the 2σ bound from Planck on ΩΛ,
namely 0.6847± 0.0146 [107].
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Figure 3. Here we illustrate the interplay between positivity bounds and cosmological stability
constraints on the observationally relevant ξ − c3 parameter space for covariant Galileons. Data
contours are as in figure 2 and the different panels correspond to different families of vacuum solutions.
Top row (from left to right): α/β = 10, 1, 0.1, Bottom row: α/β = −10,−1,−0.1. The middle
panel in the top row therefore shows boost-invariant solutions, while all the other panels display
different cross-sections of boost-breaking solutions. Regions in black are those for which no stable
background solution exists, i.e. the ghost or gradient constraint (2.4) is violated. Dark grey, hatched
regions are those, where one or more stable background/vacuum solutions exist, but they all fail their
respective positivity bounds. Light grey then denotes regions of parameter space, where again stable
vacua exist and some (but not all) of them satisfy positivity bounds. Finally, white regions are those,
where stable vacuum solutions exist and all stable solutions satisfy their respective positivity bounds.

which of these vacua are ‘most relevant’ in a cosmological context below. This shows that
requiring the co-existence of several classes of galileid vacua and cosmological galileon dark
energy solutions can be used to place strong constraints on cosmological parameter spaces.
Alternatively, reversing the direction of the argument, observational constraints can be used
in this way to place strong contraints on the space of physically acceptable vacua.

Identifying cosmologically relevant vacua and positivity bounds. Above we were
considering positivity bounds derived from generic galileid vacua classified by their value
of α/β, investigating the interplay of these bounds with cosmological data constraints for
galileon dark energy. If vacua with a given value of α/β exist within the same EFT as
the cosmological background solution, we can then use the corresponding positivity bounds
as informative theoretical priors for cosmological parameter constraints (if we have good
reason to demand the existence of the relevant galileid vacua) or can use constraints from
cosmological data to identfy which classes of galileid vacua can physically co-exist within
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the same EFT (if we are agnostic about galileid vacua in the first place). However, ideally
we would like to do better and identify galileid vacua that are particularly ‘close’ to the
cosmological solution and hence the ‘correct’ ones to use as theoretical priors for cosmology.
To do so, recall that while a Galilean symmetry transformation φ → φ + c + cµx

µ can be
used to shift φ and ∇µφ, the second derivative ∇µ∇νφ is Galileon invariant. Comparing this
for the cosmological background (3.1) with that of the vacua in section 2, we see that,

Section 2: ∇µ∇ν φ̄ = +βΛ3
3

(
δνµ −

(
1− α

β

)
δ0
µδ
ν
0

)
(gµν = ηµν) ,

Section 3: ∇µ∇ν φ̄ = −ξΛ3
3

(
δνµ −

(
1 + Ḣ

H2

)
δ0
µδ
ν
0

)
(gµν = gFLRW

µν ) . (3.6)

We emphasise that both the background considered for the metric (a flat Minkowski back-
ground for section 2 and a cosmological FLRW metric for section 3) and the scalar field
background (the galileid vacua discussed in detail for section 2 and a cosmological Galileon
on the tracker discussed in detail above) are different for those two cases. However, (3.6) sug-
gests that for sufficiently high energy ϕ fluctuations (for whom gFLRW

µν can be approximated
as ηµν), an instantaneous mapping between the two solutions emerges at a given instant ti
during the cosmological evolution, namely

β ∼ −ξ, α/β ∼ −Ḣi/H
2
i . (3.7)

The scattering of sufficiently high energy ϕ fluctuations can therefore instantaneously be
described by the effective action of section 2.1 with {α, β} satisfying (3.7), where we recall that
ξ ≡ φ̇H/Λ3

3 is constant on the cosmologically relevant tracking solution, with its constancy
(i.e. reaching the tracker before dark energy plays a significant role in the Universe’s evolution)
mandated by CMB constraints [63].

Equipped with the mapping (3.7), we can therefore identify preferred positivity bounds
for any instance in a given Galileon cosmology. We now investigate how these bounds can
be used as theoretical priors in deriving cosmological parameter constraints. As before, we
fix c2 = −1 and solve for c4 and c5 using the Friedmann and current conservation equations.
In addition we fix β = −ξ from (3.7) and use the tadpole condition for (α, β) vacua to find
a unique corresponding α. Overall this procedure associates a unique galileid (α, β) vacuum
solution to a given (ξ, c3). Using (3.7) we can identify at which point in the evolution, i.e.
for which time ti and Ḣi/H

2
i = −α/β this mapping establishes a direct link between the

cosmological solution and the given (α, β) vacuum. Note that, once we have fully solved for
all parameters in terms of (ξ, c3), a specific choice of α/β traces out a line in the (ξ, c3) plane.
For example, when choosing α/β = 3/2 (i.e. a period of matter domination upon using (3.7)),
then we find c3 ∼ (3.8− 1.2ξ2)/ξ3.

The resulting constraints are shown in figure 4. The left panel shows the most direct
application of the above procedure. Here we simply use (3.7) to associate a specific (α, β)
vacuum to any given point in the (ξ, c3) plane and compute and apply positivity bounds
around that galileid vacuum regardless of the value of α/β. One can then use those bounds
as theoretical priors for cosmological parameter estimation and we see that there is significant
tension between the region of parameter space preferred by the data themselves and positivity
bounds here. About 2/3 of the 2σ parameter space for (ξ, c3) identified by CMB+BAO
constraints is inconsistent with the corresponding positivity requirements. Note that this
includes the highlighted best-fit cosmologies, which prefer larger values for ξ. The middle
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and right panel then show more conservative applications of the identified positivity bounds.
Here bounds from a given (α, β) vacuum identified via the above procedure are only applied,
if the mapping (3.7) links them to a physical instance throughout cosmological evolution
— regions where this is not the case are shaded blue and we do not place positivity priors
in those regions. Specifically, the middle panel shows the case where we restrict to vacua
with 2 ≥ −Ḣ/H2 = α/β ≥ 0 (i.e. from radiation domination to a future de Sitter limit).
The right panel instead shows an even more conservative application where we restrict to
vacua with 3/2 ≥ −Ḣ/H2 = α/β & 1/2 (i.e. from matter domination to today). Notably,
whether we include radiation dominated phases or not only has a marginal impact on which
regions in the (ξ, c3) plane we can constrain (slightly shrinking the region where we apply
constraints from the left), but whether we extrapolate up to a future de Sitter limit or not
has more significant implications (shrinking the region where we apply constraints from the
bottom right. This future extrapolation is particularly important with an eye on constraining
some of the observationally most-favoured large ξ cosmologies. Note that (looking beyond
the specific examples considered here), regardless of the specific family of vacua and/or form
of the mapping used, establishing the range of cosmological evolution to which positivity
bounds are applied is crucial in determining the resulting constraining power along the lines
explored here. In particular, we expect that extrapolating up to a future de Sitter limit will
always significantly increase constraining power in a dark energy context.

In all three cases shown in figure 4 positivity bounds rule out most cosmologies with
positive c3. In the ‘medium’ case we also (just) rule out the best-fit CMB+BAO+ISW cos-
mology and some of the region most preferred by data (namely the large ξ cosmologies within
the 2σ contours). The least conservative case also rules out the best-fit CMB+BAO cosmol-
ogy and completely eliminates the large ξ cosmologies (ξ & 2.5) preferred by observational
data alone.

Additional constraints from observations. Throughout this paper we have only con-
sidered a small selection of observational bounds to illustrate the interplay between such
constraints and theoretical positivity priors. In future work this can be improved upon by
implementing/adding additional already existing theoretical bounds/observational data to
the analysis. Here we point out a few potential examples for this route:

• Incorporating galaxy-ISW cross-correlations into our analysis (cf. [90, 116–118]) as well
as existing large scale structure measurements (e.g. from redshift space distortions or
weak lensing observables) promises to add additional constraining power that would
add to our analysis on linear cosmological scales.

• While we have restricted ourselves to considering the covariant Galileon as a dark
energy EFT for cosmological scales here, complementary constraints can be obtained
from significantly smaller scales probed by gravitational waves, e.g. by considering the
propagation of dark energy perturbations on backgrounds sourced by binary SMBH
mergers. This probes scales ∼ 10 orders of magnitude smaller than cosmological scales
and yields additional constraints on the size and presence of gravitational-wave in-
duced dark energy instabilities [119] (also see the closely related [120, 121]). This in
turn can significantly tighten cosmological parameter constraints on dark energy [122],
so investigating the interplay of these constraints will be an interesting task for the fu-
ture. Here we have focused on observational constraints from cosmological scales only,
in effect conservatively applying our EFT description of dark energy on cosmological
scales only.
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Figure 4. The equivalent of figure 3, but here we fix β = −ξ so that (together with the tadpole
condition) there is a unique (α, β) vacuum assigned to each point in the (ξ, c3) plane. This assignment
is such that, if Ḣ/H2 ∼ −α/β at some stage during the cosmic evolution, then the cosmological φ̄
at that instant can be mapped to the corresponding (α, β) vacuum via (3.6) and (3.7). This assigns
a unique positivity bound to each point in the (ξ, c3) plane, representing the bound from section 2
which is most relevant for this particular cosmology. Left panel: points lying in hashed grey areas are
ruled out by their respective positivity bounds, while black regions fail ghost/gradient stability tests.
Middle panel: same as left, but with a blue shaded region, where Ḣ/H2 = −α/β is not achieved
at any stage in the cosmic evolution from radiation domination to a future de Sitter limit, i.e. where
2 ≥ −Ḣ/H2 = α/β ≥ 0. So in the blue region the mapping (3.7) does not relate the (α, β) vacua
assigned to individual points to instances during the actual cosmological evolution. Note that, under
this mapping, specific values of Ḣ/H2 trace out lines in the panels shown. The mapping (3.7) therefore
cannot be invoked as robustly in the blue regions, but we can see that even only applying positivity
priors outside those regions still excludes a large portion of the observationally relevant cosmologies
(just about including one of the best-fit cosmologies). Right panel: same as middle, but where blue
shaded regions now denote parameter values for which Ḣ/H2 = −α/β is not achieved at any stage
in the cosmic evolution from matter domination to today, i.e. where 3/2 ≥ −Ḣ/H2 = α/β & 1/2.
This panel therefore displays a maximally conservative application of positivity bounds, with minimal
extrapolation into the past and future. Even in this case positivity priors exclude a substantial fraction
of the observationally relevant parameter space. Note that the vast majority of positive c3 cosmologies
is ruled out in all three cases shown.

• Finally, we have not incorporated any bounds on the speed of gravitational waves
here. While especially the near simultaneous detections of GW170817 and GRB
170817A [123–127] have also been used to significantly reduce the functional freedom
both for the covariant Galileon as well as for wider classes of dark energy/modified
gravity theories (see [128–131] and references therein), the frequencies of the merger
are close to Λ3, so additional assumptions about the UV physics are necessary to apply
these bounds [132]. Our goal here is to remain as agnostic as possible about the UV
physics, so we will not fix the speed of cosmological gravitational waves here. Note
that this is also in the spirit of only applying our EFT description of dark energy on
cosmological scales, as mentioned above.

4 Discussion

Summary. We have explored how positivity constraints can vary when computing them
around different vacuum solutions by considering the simple covariant Galileon model (1.1)
as an instructive and illustrative example. These different positivity bounds can provide a
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valuable sign-posting of the IR landscape, identifying regions of parameter space in which
one or more of the EFT vacua cannot possibly survive UV completion by any unitary, causal,
local new physics. Particularly interesting are cases in which the usual (trivial) vacuum φ = 0
is either not stable or violates the positivity bounds — we have shown that such theories
may nonetheless be UV completed providing they possess a stable non-trivial field configu-
ration which satisfies the corresponding bound. This is especially relevant in a dark energy
context, where — both for the covariant Galileon we have focused on here as well as for large
classes of other observationally relevant scalar-tensor theories — cosmological observations
require that the kinetic term has the “wrong sign” for the trivial solution [63–65], and so
any comparison between positivity and cosmological data must employ bounds from other
(non-trivial) solutions. We showed that present observational constraints are incompatible
with the existence of large families of such non-trivial solutions in the UV completion of the
theory and we illustrated how this can be used to probe the underlying vacuum structure
with present-day constraints from data and/or to tighten data constraints by imposing priors
from the existence of well-motivated vacua. Finally, from the various background solutions
for φ that we consider in this work, we identify one which is “closest” to the cosmologi-
cal background evolution at a given time (in the sense that the scalar field profiles match
instantaneously). Positivity bounds computed around this vacuum are therefore especially
well-motivated as theoretical priors for cosmology and we have shown how the corresponding
bounds impact cosmological parameter constraints, e.g. reducing the viable region of param-
eter space by up to ∼ 70% (with the precise percentage depending on the range of vacua from
which the bounds are inferred) and, for instance, ruling out the vast majority of otherwise
observationally viable cosmologies with c3 > 0.

These results — in particular the improved understanding of how different vacua lead
to different positivity bounds — open up several new directions for future exploration.

Beyond the covariant Galileon. To illustrate our main point, we have focussed on
a particularly simple theory: the covariant Galileon. This had the advantage that there
are many Lorentz-invariant and boost-breaking background solutions about which to derive
positivity bounds and a simple tracker solution for the cosmological background evolution.
In other more realistic models, it will generically be the case that expanding around different
stable backgrounds will produce different positivity bounds, and therefore a more refined
application of positivity bounds in the future will account for which subset of these vacua
are assumed to persist in the UV theory.

EFT of Dark Energy. The time-dependence of the cosmological background is generally
more complicated than simply φ ∼ t2. One way to derive positivity bounds directly on this
background would be to treat the scalar fluctuations as in the EFT of Dark Energy [133].
This shares many similarities with the EFT of inflation [134], and in particular in a suitable
subhorizon/decoupling limit the corresponding scattering amplitudes would break only boosts
(see for instance the discussion in [105]). This is potentially an avenue towards applying this
positivity technology directly on the cosmological background (albeit on subhorizon scales).

Improved positivity bounds. Recently there has been much progress developing pos-
itivity bounds on the scattering of scalar fields about Lorentz-invariant backgrounds. In
particular, exploiting full crossing symmetry can lead to upper bounds on coefficients like
csst [20–24], which complement the lower bounds considered here. Our observation that ex-
panding around different vacua will correspond to different bounds on the EFT parameters
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remains true also for these additional positivity bounds. It is worth remarking that these
further bounds from full crossing symmetry have not yet been extended to boost-breaking
backgrounds, and so for the α 6= β backgrounds considered above the only bounds currently
available are the lower bounds shown here. It would also be interesting to further investigate
the gravitational corrections to the positivity bounds studied here, for instance along the
lines of [27–32].

Future data constraints. As discussed, the predictions of the covariant Galileon (as
cosmological dark energy) are in some tension with the latest BAO data [90], e.g. with
results from the main galaxy sample (MGS) of SDSS DR7 [112]. So future more precise BAO
data have the potential to conclusively rule out this specific class of theories as well as to
place significant constraints on dark energy effective field theories at large. Secondly, for the
Galileon cosmologies we have focused on here, there is a strong ∼ 5σ preference for a non-zero
sum of neutrino masses [90], more specifically a preference for a rather large sum of neutrino
masses ∑mν ∼ 0.5 eV. While the total neutrino mass is known to be at least ∼ 60meV
from oscillation experiments [135–138], near-future experiments are forecast to measure this
sum of masses with an error of ∼ 30meV [139], drastically improving constraints and placing
significantly more precise bounds on (and potentially decisively ruling out) models such as
the covariant Galileon and other EFTs of dark energy. More generally, and going beyond the
context of the specific illustrative models considered here, increasingly accurate measurements
of clustering and lensing by large scale structure are expected to tighten current observational
bounds (e.g. on the ci as considered here) by approx. an order of magnitude in the near future
(LSST, CMB-S4, SKA) [140]. Combined with novel constraints from gravitational waves, this
should allow us to obtain far more precise hints from data as to the underlying nature of
dark energy.
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A Galileid interaction coefficients

The expressions (2.4) and (2.7) given in the main text for the effective interaction coefficients
of ϕ around a general (α 6= β) Galileid background are written in terms of the intermediate
c̄n coefficients (2.2) of the Lorentz-invariant (α = β) background. For ease of reference, note
that in terms of the original cn coefficients appearing in the covariant Galileon action (1.1),

J = c1 − 2(α+ 3β)c2 − 24β(α+ β)c3 − 24β2(3α+ β)c4 + 16αβ3c5

Z2/c3
s = c2 + 12βc3 + 36β2c4 − 8β3c5 (A.1)

1− c2
s = (β − α) 4c3 + 24βc4 − 8β2c5

Z2/c3
s

,
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and √
−g̃ c̃3 = 1

c4
s

(c3 + 3 (α+ β) c4 − 2αβc5)

√
−g̃ d̃3 = 2

c4
s

(
c3
(
1− c2

s

)
+ 3c4

(
α+ β − 2βc2

s

)
− 2c5

(
αβ − β2c2

s

))
√
−g̃ c̃4 = 1

c6
s

(
c4 −

2
3αc5

)
√
−g̃ d̃4 = 1

c6
s

(
3c4

(
1− c2

s

)
− 2c5

(
α− βc2

s

))
. (A.2)

B Positivity bound details

In this appendix we collect various details that underpin the positivity bounds studied in
the main text. First, in section B.1 we briefly review the arguments that connect unitarity,
causality and locality in the UV to bounds on the EFT coefficients. Then in section B.2
we compare these positivity bounds with the bounds which would have been inferred from
perturbative unitarity alone. In particular, we show that for the covariant Galileon considered
here, loop corrections to the EFT can remain small in the limit γ � 1 at small s which was
used in the main text to derive positivity bound (2.20). The role of the γ parameter and
its physical interpretation are described in more detail in section B.3. Finally, in section C
we explicitly write these positivity bounds for a general shift-symmetric amplitude (with no
Galileon symmetry), to facilitate future applications to other scalar field theories.

2 → 2 scattering amplitude. The central object in deriving these UV/IR connections
is the 2 → 2 elastic scattering amplitude, A. Since the general background (2.1) breaks 3
boost symmetries, the amplitude can depend on 5 independent variables (3 more than the
usual Mandelstam s and t), which we take to be A(s, t, ω1, ω2, ω3) (since time translations are
unbroken, the energy of particle 4 is fixed as ω4 = −ω1 − ω2 − ω3). Here ωA is the time-like
component (i.e. the frequency) of the 4-momentum pµA for particle A. Furthermore, since the
propagator of ϕ fluctuations is given by (g̃µνpµpν)−1 in momentum space, it is most natural
to define the Mandelstam variables as,

s := −(p1 + p2)µg̃µν(p1 + p2)ν (B.1)
t := −(p1 + p3)µg̃µν(p1 + p3)ν (B.2)
u := −(p1 + p4)µg̃µν(p1 + p4)ν (B.3)

where our convention is that ∑
a pa = 0 (and recall from section 2 that g̃µν =

diag
(
−1, c2

s, c
2
s, c

2
s

)
). These obey the usual relation, s + t + u = 0, since on-shell fluctua-

tions satisfy the free equation of motion20 pµg̃
µνpν = 0. In terms of these variables, the

2→ 2 scattering amplitude from the cubic and quartic interactions (2.5) and (2.6) is,

A(s, t, ω1, ω2, ω3) =
(
c̃4 −

c̃2
3
Z2

)
s3 + t3 + u3

Λ6
3

+
(

2c̃3d̃3
Z2 − d̃4

)
s2(ω1ω2 + ω3ω4) + t2(ω1ω3 + ω2ω4) + u2(ω1ω4 + ω2ω3)

Λ6
3

(B.4)

where we note that the d̃2
3 term is proportional to s+ t+ u and hence vanishes.

20Or rather pµg̃µνpν = O(m2), if the shift symmetry is softly broken by a small mass.
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B.1 Overview of positivity derivation

In this section we briefly review the arguments of [10, 12] and [105] which connect the
properties of unitarity, causality (analyticity) and locality (boundedness) of the underlying
UV theory to the bounds (2.9), (2.10) and (2.14, 2.18) on the low-energy EFT coefficients.

Lorentz-invariant bounds. For Lorentz-invariant interactions, the scattering amplitude
is a function of the two Mandelstam variables only, A(s, t). Assuming a unitary, causal,
local (Lorentz invariant) UV completion leads to various positivity bounds on A(s, t). In
short, unitarity (namely a partial wave expansion of the optical theorem) can be used to
show that,21

∂nt ImA(s, t)|t=0 > 0 (B.5)

for any physical value of s and any number of t derivatives, while causality and locality can
be used to prove a simple dispersion relation which relates the amplitude at different scales,

∂2
sA(s, t) =

∫ ∞
0

ds′

π
ImA(s′, t)

[ 1
(s′ − s)3 + 1

(s′ + s+ t)3

]
, (B.6)

where we have neglected the particle masses,22 and made use of the crucial crossing property
that A(s, t) = A(u, t). (B.6) can be used to connect unitarity (B.5) in the UV (namely
positivity of ImA(s′, t) at large s′) to properties of the low-energy EFT (namely the sign of
∂2
sA(s, t) at low s). Explicitly, supposing that the low-energy EFT can be used to reliably

compute A up to an energy sb (beyond which it breaks down and is replaced by a UV
completion), then we can use (B.6) to relate AEFT and AUV,

∂2
sBEFT(s, t) := ∂2

sAEFT −
∫ sb

0

ds′

π
ImAEFT(s′, t)

[ 1
(s′ − s)3 + 1

(s′ + s+ t)3

]
=
∫ ∞
sb

ds′

π
ImAUV(s′, t)

[ 1
(s′ − s)3 + 1

(s′ + s+ t)3

]
, (B.7)

where we have introduced BEFT as shorthand for the low-energy part of (B.6). A unitary,
causal and local UV completion at high energies therefore requires various bounds on AEFT
— in particular the forward limit must be positive [10],

∂2
sBEFT|s=0

t=0
= 2
π

∫ ∞
sb

ds

s3 ImAUV|t=0 > 0 , (B.8)

and the t derivatives must be bounded in terms of lower-order derivatives [12],(
∂t + 3

2sb

)
∂2
sBEFT|s=0

t=0
= 2
π

∫ ∞
sb

ds

s3

(
∂t + 3

2
s−sb
s sb

)
ImAUV|t=0 > 0 , (B.9)

and so on. When applied in perturbation theory, where the EFT amplitude takes the
form (2.8), (B.8) implies (2.9) and (B.9) implies (2.10).

21Note that ∂nt ImA(s, t)|t=0 = 0 requires that A = 0 at all energies, i.e. that the theory can have no
interactions and is trivially free.

22In practice a gapped theory will have ImA = 0 for 0 < s′ < 4m2 below the two-particle threshold, and
also |A| < s2 at large s due to the Froissart bound. Although we will neglect mass effects, we continue to
assume this Froissart boundedness in the UV.
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Boost-breaking bounds. For a general amplitude A(s, t, ω1, ω2, ω3) in which boosts are
broken, unitarity (namely a suitable spherical wave expansion of the optical theorem) can
again be used to establish that [146],

∂nt ImA(s, t, ω1, ω2, ω3)| t=0
ω1=−ω3

> 0 (B.10)

for any physical value of s and of the energies, where now the forward limit corresponds
to both t = 0 and ω1 = −ω3. Translating (B.10) into EFT positivity bounds was recently
considered in [105] (see also [104] for earlier work with particular centre-of-mass kinematics).
The central distinction with Lorentz-invariant positivity bounds is that some prescription
must be provided for how to hold the three energy variables fixed when performing the
partial derivatives and integration in any dispersion relation (B.6). In particular for s-
channel scattering, since the spatial momenta cs|p1 +p2| > ω1−ω2 on-shell, the Mandelstam
s defined in (B.1) must obey,

s ≤ (ω1 + ω2)2 − (ω1 − ω2)2 . (B.11)

This means that holding ω1 and ω2 fixed is not an option, since (B.11) would always be
violated at sufficiently large s, invalidating the unitarity bound on the UV amplitude (which
only applies to physical on-shell momenta). Instead, it was argued in [105] that the correct
prescription for the forward limit amplitude is,

Ã(s, γ,M) := A
(
s, t = 0, ω1 = −ω3 = γ2M, ω2 = s

4M

)
, (B.12)

where ω1 and ω2 have been replaced with the variables γ2 and M , and the s-channel condi-
tion (B.11) becomes simply M > 0 and γ2 ≥ 1. Fixing ω2 in terms of s in this way ensures
that when s is analytically continued to −s, ω2 is analytically continued to −ω2 = ω4, and so
one may retain a simple crossing relation, Ã(s, γ,M) = Ã(−s, γ,M) (since particles 2 and 4
are indistinguishable). Following the same steps as in the Lorentz-invariant case, assuming
the analogous properties (analyticity, crossing and Froissart boundedness23) of Ã(s, γ,M)
in the full UV theory leads to a dispersion relation of the form (B.6) which connects the
amplitude on different scales, allowing (B.10) to constrain the EFT amplitude.

The analogue of the leading positivity bound (B.8) when boosts are broken is,

∂2
s B̃EFT|s=0 = 2

π

∫ ∞
sb

ds

s3 Im ÃUV > 0 , (B.13)

where the derivatives/integrals are taken with γ, M held fixed, and the inequality holds for
any M > 0 and γ ≥ 1.

To go beyond the forward limit, one might imagine that,

Ã(s, t, γ,M) := A
(
s, t, ω1 = −ω3 = γ2M, ω2 = s−u

8M

)
(B.14)

is the natural extension of (B.12), since this would retain a trivial crossing relation
Ã(s, t, γ,M) = Ã(u, t, γ,M). However, the t derivatives,

23In the Lorentz-invariant case, these properties are consequences of unitarity and causality in any local
quantum field theory with a mass gap. When boosts are broken, there is not yet a rigorous derivation of these
properties from causality, however see [105] for first steps in that direction.
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∂tIm Ã =
(
∂t + 1

8M ∂ω2

)
ImA . (B.15)

are not positive, due to the ∂ω2 term. As described in the appendix of [105], the key to going
beyond the forward limit is to consider an integral of the amplitude,24

I(s, t, γ,M, δ) :=
∫ s−u

8M +δ

s−u
8M −δ

dω2 A(s, t, ω1, ω2, ω3)|ω1=−ω3=γ2M , (B.16)

where we assume that the constant δ can be chosen sufficiently small that this integral
converges for any s (which is certainly the case in perturbation theory, since A(s, t, ω1, ω2, ω3)
is analytic in ω2 at fixed s), and provides a new complex function which shares the analyticity
properties of Ã. Unitarity (B.10) now guarantees that,(

∂t + 1
8M ∂δ

)
Im I(s, t, γ,M, δ)|t=0 > 0 (B.17)

for all s > 0, M > 0, γ2 ≥ s/(s − 4δM) ≥ 1 (to be compatible with the condition (B.11)
for real momenta in the s-channel), and so a dispersion relation for I can be used to place a
positivity bound on the EFT analogous to (B.9),[

∂t + 3
2sb + 1

8M ∂δ
]
∂2
sIEFT|s=0

t=0
= 2
π

∫ ∞
sb

ds

s3

(
∂t + 1

8M ∂δ + 3
2
s−sb
s sb

)
Im IUV|t=0 > 0 (B.18)

which must be satisfied for all γ2 ≥ 1+δ/ωb ≥ 1, where ωb is the energy scale up to which the
branch cut can be subtracted within the EFT. When applied in perturbation theory, where
the EFT amplitude takes the form (2.16), (B.13) implies (2.14) and (B.18) implies (2.18).

EFT regime of validity. Our leading-order, tree-level computation ofAEFT(s, t, ω1, ω2, ω3)
is subject to corrections from (i) higher-derivative interactions in the EFT (which cap-
ture loops of all heavy fields integrated out of our description), and (ii) loops of the light
fields. To estimate the size of (i), we appeal to a simple EFT power-counting in which all
fields/derivatives are suppressed by the same cut-off scale Λ,

AEFT = ALO +O
(
s

Λ2 ,
ω1
Λ ,

ω2
Λ

)
. (B.19)

In order for our leading-order calculation ALO (which included only the interactions with
fewest derivatives, namely (1.1)) to be a reliable estimate, we require that,

s2

Λ2 � 1 ,
ω1
Λ � 1 ,

ω2
Λ � 1 . (B.20)

In particular, when applying the positivity bounds above, in which ω1 and ω2 are fixed in
terms of (s, γ,M), (B.20) implies that higher-derivative corrections are only small provid-
ing that,

s

Λ2 �
M

Λ �
1
γ2 ≤ 1 . (B.21)

24The integration limits have been chosen so that I(u, t, γ,M, δ) = I(s, t, γ,M, δ) inherits the crossing
relation of A.
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Put another way, when γ2 is large, this lowers the effective cut-off of our EFT in the complex
s-plane to smax ∼ Λ2/γ2. In the main text, when we discuss the large γ2 � 1 limit, we have
in mind that we evaluate AEFT at sufficiently small s (< smax) that these higher-derivative
corrections remain small.

To estimate the size of (ii), the correction due to light loops, we can use perturbative
unitarity. This is described in more detail in the following section, but in summary: since
perturbative unitarity imposes a condition of the form ImA > |A|2, we can use our tree-level
calculation of |A| to place a lower bound on the size of the light loops (which contribute to
ImA). We find that the soft behaviour of the Galileon amplitude, lims→0A = 0, guarantees
that there is never any obstruction to making γ2 large, providing s is made small enough.25

B.2 Comparison with perturbative unitarity bounds

In this section, we compare the positivity bounds studied in the main text with the bounds
that can be placed on the EFT coefficients from perturbative unitarity alone. In short,
unitary time evolution is encoded in the amplitude via the optical theorem,

1
i

(
Ap1p2→p3p4 −A∗p3p4→p1p2

)
=
∫
q1q2
Ap1p2→q1q2A∗p3p4→q1q2 + . . . (B.22)

where the + . . . terms involve higher n-point amplitudes and are positive for forward scat-
tering. The integral on the right-hand-side is over the two-particle phase space, subject to
the momentum conservation condition that p1 + p2 = q1 + q2.

Lorentz-invariant bounds. The partial wave expansion,26

Ap1p2→p3p4 = 16πgs
∑
`

(2`+ 1)P`(cos θs) a`(s) (B.23)

replaces t with the centre-of-mass frame scattering angle, cos θs = 1 + 2t/s. The degeneracy
factor gs accounts for whether the two ingoing particles are distinguishable (gs = 1) or
indistinguishable (gs = 2) in the s-channel. Substituting (B.23) into (B.22) gives 2 Im a`(s) =
|a`(s)|2 + . . ., where the higher-order + . . . terms are all positive. Unitarity can therefore be
expressed in terms of the partial wave coefficients as,

1 ≥ |a`(s)| ≥ Im a`(s) ≥ 0 . (B.24)

For the amplitude (2.8),27 the only non-zero partial wave amplitudes at tree-level are,

a0(s) = s2

192π (5css − cssts)

a2(s) = s2

960π (css + cssts) . (B.25)

Since css ∼ 1/Λ4 and csst ∼ 1/Λ6 in terms of the EFT cut-off, the unitarity bound (B.24) is
always satisfied in perturbation theory providing s < κΛ, where κ is an order one number
(whose precise value can be inferred from (B.25) if so desired).

25In contrast, in the absence of any shift symmetry, one could have contributions to A from s-channel
exchange that ∼ ωn1 /s = γ2nMn/s, and these will violate perturbative unitarity at large γ / small s.

26Note that here, as in the main text, we are treating all particle masses as negligible.
27More precisely, from the css and csst terms appearing in the full amplitude (C.9) and (C.10).
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Boost-breaking bounds. When boosts are broken, the amplitude depends explicitly on
the energies of the particles (as discussed in the previous section). One may nonetheless
restrict one’s attention to scattering processes for which p1 +p2 happens to vanish, i.e. those
for which the partial wave expansion (B.23) may be used just as in the Lorentz invariant
case. This corresponds to setting all energies |ωn| =

√
s/2. The resulting optical theorem

can be used to place constraints on the EFT Wilson coefficients (see for instance [147, 148]).
However, to leverage the full constraining power of unitarity, we must allow for scattering at
arbitrary kinematics, as described in [146]. This requires expanding the amplitude in terms
of more general angular momentum states, and leads to the spherical wave expansion,28

Ap1p2→p3p4 = 64π2gs
∑
`1`3
m1m3

Y m1
`1

(ϑ1, ϕ1)Y m3∗
`3

(ϑ3, ϕ3) am1m3
`1`3

(s, γs) , (B.26)

where the angles ϑn and ϕn describe the direction of pn (relative to p1 + p2), and γs is the
Lorentz factor associated with the centre-of-mass motion, i.e. γs = 1/

√
1− v2

CM/c
2
s where

vCM = c2
s|p1 + p2|/(ω1 + ω2). These are explicitly related to the variables used in the main

text by,29

|ωn| =
√
s

2 γs (1− cosϑn) ,

t = s

2 (−1 + cosϑ1 cosϑ3 + sinϑ1 sinϑ3 cos (ϕ1 − ϕ3)) . (B.27)

Note that this γs is related to the γ appearing in the positivity bounds, but they are not iden-
tical — the precise relation between the two is given in the next section. Substituting (B.26)
into (B.22), unitarity can be expressed in terms of the spherical wave coefficients as,∣∣∣∣∣∣∣∣

∑
`1`3
m1m3

vm1
`1
am1m3
`1`3

(s, γs)vm3∗
`3

∣∣∣∣∣∣∣∣ ≤
∑
`
m

vm` v
m∗
` . (B.28)

for any complex vector vm` , which is the matrix analgoue of |a`| ≤ 1.
For the Galileon amplitude (2.16),30 the non-zero spherical wave amplitudes are,31

a00
00 = s3

192π

[
−csst −

1
6dstωω −

γ2
s

12dstωω
]

a00
02 = a00

20 = s3

2304
√

5π

[
dstωω

(
γ2
s − 1

)]
a00

22 = s3

960π

[
csst + 1

3dstωω −
γ2
s

12dstωω
]

28The 2-particle partial wave expansion in a general Lorentz frame can also be found in [149].
29Note that the amplitude does depends only on the difference ϕ1 − ϕ3 (since rotations about p1 + p2

remain unbroken by the centre-of-mass motion), and consequently am1m3
`1`3

(ωs, s) is diagonal in its m1 and m3
indices. Further selection rules on these spherical wave coefficients can be found in the appendix of [105].

30More precisely, from the Galileon-invariant terms appearing in the full amplitude (C.10).
31Note that the centre-of-mass frame corresponds to γs = 1. With this choice, the spherical wave coefficients

are related to the traditional partial wave coefficients by, a`(s) = 1
2`+1

∑`

m=−` a
mm
`` (s, γs)|γs=1.
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a±1,±1
22 = s3

960π

[
csst + 1

4dstωω
]

a±2,±2
22 = s3

960π

[
csst + γ2

s

4 dstωω
]
. (B.29)

Since csst and dstωω both ∼ 1/Λ6 in terms of the EFT cut-off, the unitarity bound (B.24) is
always satisfied in perturbation theory providing γ2

ss
3 < κ′Λ6, where κ′ is again an order one

number (which can be inferred from (B.28) if so desired).
The important point here is that, while perturbative unitarity bounds like (B.24)

and (B.28) are useful for estimating the regime of validity of the EFT, they invariably con-
strain the absolute size of Wilson coefficients, but not their overall sign. The positivity
bounds discussed in the main text however, since they are exploiting causality and locality in
addition to unitarity, are able to say something non-trivial about the signs of each coefficient
appearing in the amplitude.

Finally, note that (B.29) confirms that, providing the interaction energy s is sufficiently
small, the centre-of-mass velocity may be large (i.e. γs � 1), without generating large loop
corrections (i.e. loops can be small without violating the bound (B.28)). Since when s is
small, γs ∼ γ2M/

√
s, this also implies that taking γ � 1 at fixed M and s (as we do in the

main text to derive (2.20)) can remain safely within the EFT’s regime of validity. We will
now discuss the link between γ2 and γ2

s in more detail.

B.3 The role of γ2

In this short section, we describe the physical interpretation of the parameter γ that appears
in the positivity bounds (2.15) and (2.18). It is related to the Lorentz factor γs of the centre-
of-mass motion, however γs is not a manifestly crossing symmetric quantity. In order for the
amplitude to exhibit an s↔ u crossing symmetry, we should instead hold fixed a combination
of γs and γu (its u-channel counterpart) which is manifestly s↔ u symmetric. One natural
choice is,

γ2 = sγ2
s − uγ2

u

s− u
= γ2

s + γ2
u when t = 0 (B.30)

where,

γ2
s = 1 + c2

s|p1 + p2|2

s
, γ2

u = 1 + c2
s|p1 + p4|2

u
(B.31)

represent the “centre-of-mass motion” in the s- and u-channels respectively. This particular
combination corresponds to the velocity of the so-called Breit frame, in which the analytic
structure of the amplitude is simplest [105]. Note that for the physical scattering process
p1p2 → p3p4, γu does not represent the speed of any physical object (in particular γ2

u < 0),
but rather is the analytic continuation of γs under p2 ↔ p4. In fact, if one focuses on real
momenta in the s-channel, then in the forward limit one can write γ2 = cos2 ϑ1 + γ2

s sin2 ϑ1,
in terms of the angular variables of the previous section — in particular, γ ≤ γs and is only
= γs when ϑ1 approaches π/2.

At this point, it is worth noting that there is a caveat to the second positivity
bound (2.20). A violation of (2.20) could be consistent with a unitary, causal, local UV
completion if the EFT breaks down before a maximum value of γ2,
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Figure 5. Same as figure 3, but for different values of γ2 when evaluating positivity bounds. Black
regions fail ghost and/or gradient stability bounds, while grey hashed regions are excluded by (from
left to right): pos. bound 1 (2.19) (which sets γ2 = 1) only, pos. bound 1 (2.19) and the general
positivity bound (2.18) with γ2 = 10, pos. bound 1 (2.19) and pos. bound 2 (2.20) (which effectively
sends γ2 → ∞). The observationally relevant positivity priors for the case considered here can
therefore already be derived from the small γ region, γ2 . 10.

γ2
max = c̃2

3 − Z2c̃4
2
3 c̃3d̃3 − 1

3Z
2d̃4

, (B.32)

even at s ≈ 0. Physically, this corresponds to an EFT which cannot resolve large centre-
of-mass motions with γs ≥ γmax, no matter how small the interaction energy s is. As we
argued above, there can be no such breakdown in γ if integrating out the heavy physics leads
to a simple EFT power-counting in which all fields/derivatives are suppressed by the same
scale. But in principle a more exotic UV theory, which produces a low-energy EFT in which
temporal/spatial derivatives are suppressed by very different scales such that AEFT breaks
down before (B.32), could violate (2.20) without sacrificing unitarity/causality/locality. The
γ2 = 1 positivity bound (2.19), on the other hand, is more robust because this constraint
could only be evaded if the EFT breaks down already at γ = 1, i.e. already in the centre-
of-mass frame, in which there is no overall motion with respect to the symmetry-breaking
background.

For the particular case of the covariant Galileon discussed in the main text, in practice
the vast majority of the constraining power comes from the positivity bounds evaluated at
γ2 < 10, as illustrated in figure 5. So although in the main text we introduced bound (2.20) as
a large γ2 limit, our subsequent discussion of how this constraint interfaces with observational
constraints actually applies to any standard UV completion which produces a EFT able to
resolve relative motions up to γ2 ≈ 10.

C Bounds on a general shift-symmetric amplitude

Without a Galileon symmetry, the 2→ 2 amplitude will generally depend on more combina-
tions of {s, t, ωs, ωt, ωu} at this order than the two given in (2.16). In this section we provide
a complete, manifestly crossing symmetric, basis which captures all possible amplitudes, and
write down the corresponding positivity bounds at O(s2) and O(s2t).

– 30 –



J
C
A
P
0
6
(
2
0
2
2
)
0
3
1

Counting the invariants. We begin by simply counting the total number of independent
terms which can appear in A at a given order in derivatives. To simplify this counting,
we can treat the Mandelstam u as an independent variable (and set u = −s − t at the
end of the calculation). Then since we are scattering identical fluctuations, the function
A(s, t, u, ωs, ωt, ωu) must be invariant under the following permutations,

Swapping 1↔ 3 : s↔ u , ωs ↔ ωu (C.1)
Swapping 2↔ 3 : s↔ t , ωs ↔ ωt

Swapping 1↔ 4 : s↔ t , ωs ↔ −ωt , (C.2)

and any combination thereof. We will also focus on interactions that are invariant under time-
reversal, so that A is unchanged by flipping the signs of all energies, ω → −ω. Altogether,
this gives 48 separate permutations under which A must be invariant. Since A at tree-level
is an analytic function of its arguments, we arrive at a simple combinatorics problem: how
many ways can one combine powers of the variables {s, t, u, ωs, ωt, ωu} to make a term which
is invariant under all of the desired permutations? Fortunately, the solution to this kind of
problem is well-documented. We can express the answer in terms of a Hilbert series,

H(p, q) =
∑
a,b

Nab p
aqb , (C.3)

where Nab is the number of invariants that contain a Mandelstam variables (i.e. a powers
of s, t or u) and b energies (i.e. b powers of ωs, ωt or ωu). Using Molien’s formula with our
particular set of 48 permutations gives a Hilbert series,

H(p, q) = 1 + pq2 + pq4 + p2q2 + p2q4 + p3q6

(1− p)(1− p2)(1− p3)(1− q2)(1− q4)(1− q6) (C.4)

= 1 +
(
p+ q2

)
+
(
2p2 + 2pq2 + 2q4

)
+ . . . ,

which tells us that there are 2 combinations of mass-dimension 2 (one of the form s and one
of the form ω2, namely s+t+u and ω2

s+ω2
t +ω2

u), there are 6 combinations of mass-dimension
4 (two of the form s2, two of the form sω2, and two of the form ω4), and so on.32

An explicit basis. In fact, the Hilbert series (C.4) tells us that any polynomial of these
six variables which is invariant under these permutations can be written in the following form
(a so-called “Hironaka decomposition”)

A(s, t, u, ωs, ωt, ωu) =
6∑
Sij

Aij(Pab)Sij , (C.5)

where the sum is over the six “secondary” generators,33

S00 = 1 , S12 = sω2
s + tω2

t + uω2
u

S14 = sω4
s + tω4

t + uω4
u , S22 = s2ω2

s + t2ω2
t + u2ω2

u , (C.6)
S24 = S12S12 , S36 = S14S22 .

32To account for the constraint s+ t+ u = 0, one can simply multiply H by a factor of (1− p).
33Note that the secondary generators must be constructed with care, since they require the property that

any product SabSij can be written in the form (C.5).
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which may only appear in single powers (this accounts for six terms in the numerator
of (C.4)), with coefficients that depend on six “primary” generators,

P10 = s+ t+ u , P02 = ω2
s + ω2

t + ω2
u ,

P20 = s2 + t2 + u2 , P04 = ω4
s + ω4

t + ω4
u , (C.7)

P30 = s3 + t3 + u3 , P06 = ω6
s + ω6

t + ω6
u ,

which may appear to arbitrary powers, (Pab)N for any N (this accounts for the six factors
in the denominator of (C.4)). Finally, imposing s+ t+ u = 0 corresponds to setting P10 = 0
and removes one of the primary generators.

Explicitly, this reveals that the most general tree-level amplitude (invariant under space-
time translations and spatial rotations, but not boosts) is described up to sixth order in
derivatives by just 14 Wilson coefficients,

A(s, t, ωs , ωt , ωu) (C.8)
= c00 + c02P02 + c20P20 + c12S12 + c04P04 + c′04P

2
02

+ c30P30 + c22S22 + c′22P20P02 + c14S14 + c′14P02S12 + c06P06 + c′06P04P02 + c′′06P
3
02.

Using this general template, we are now going to impose an approximate shift-symmetry to
wittle the number of free coefficients down a little further, and then apply positivity bounds.

At leading order. An exact shift symmetry would require that the amplitude exhibits
certain soft behaviour, in particular A → 0 when any single pa → 0 (equivalently, the La-
grangian is built from interactions in which each field is covered by at least one derivative).
Even when this symmetry is broken by a small mass, this soft behaviour in the massless limit
can be used to infer a hierarchy between the coefficients in (C.8). For instance, the c00 and
c02 terms in (C.8) are suppressed (since they correspond to interactions with fewer than one
derivative per field), and so the leading order amplitude begins at mass-dimension 4. Fur-
thermore, only one combination of c04 and c′04 is unsuppressed — namely the term ω1ω2ω3ω4
(in which each field has a single derivative). This means that a general shift-symmetric
amplitude, at leading order in derivatives, is described by just three Wilson coefficients,

ALO(s, t, ωs, ωt, ωu) = 1
2css

(
s2 + t2 + u2

)
+ 1

4dsωω
(
sω2

s + tω2
t + uω2

u

)
+ dωωωωω1ω2ω3ω4

(C.9)

where we have redefined the coefficients {c20, c12, c04} as css, dsωω, dωωωω to match (2.13).
Positivity of the UV completion requires that these coefficients obey the bound (2.15) given
in the main text.

At next-to-leading order. At next-to-leading order (i.e. at sixth order in derivatives),
there are up to 8 new coefficients, but only 6 of these are compatible with an approximate
shift-symmetry. Separating out the Galileon-invariant terms (and renaming their coefficients
to csst and dstωω to match (2.16)), we have that the most general tree-level EFT amplitude
at sixth order in derivatives (and constrained by spacetime translations, spatial rotations,
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and an approximate shift symmetry) is given by,

ANLO(s, t, ωs ,ωt ,ωu) (C.10)

=−1
3csst

(
s3 + t3 +u3

)
− 1

4dstωω
(
s2(ω1ω2 +ω3ω4)+ t2(ω1ω3 +ω2ω4)+u2(ω1ω4 +ω2ω3)

)
+c22

(
s2ω2

s + t2ω2
t +u2ω2

u

)
+c14

(
sω4

s + tω4
t +uω4

u

)
+c′14

(
sω2

s + tω2
t +uω2

u

)(
ω2
s +ω2

t +ω2
u

)
+c06 ω1ω2ω3ω4

(
ω2
s +ω2

t +ω2
u

)
.

It is easy to see that the c14, c
′
14 and c06 terms could never arise from a Galileon invari-

ant theory, since the only interactions with that many derivatives require an antisymmetric
derivative structure to be invariant, which can produce at most two time derivatives. The
c22 term cannot be produced for essentially the same reason: the antisymmetric structure
requires that the amplitude vanishes in the forward limit.

Accounting for the four additional Wilson coefficients in (C.10), as well as the three
Wilson coefficients in (C.9), which are not Galileon invariant but which can generally arise
in any shift-symmetric scalar field theory, the positivity bound (B.9) becomes an inequality
that depends on γ, M and δ. Taking γ2M � δ gives a bound,

csst+γ2
(1

4dstωω−c22

)
−γ4

(3
8c14 + 1

4c
′
14

)
>− 3

2sb

(
css+ 1

4dsωωγ
2 + 1

16dωωωωγ
4
)
, (C.11)

which reduces to the bound (2.18) studied in the main text once restricted to only the Galileon
invariant terms.
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