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A Detailed methodology

A.1 Why we sample energy landscapes

A common problem in structural biology is encountered when we consider the structural
polymorphism common, for example, in functional nucleic acids – the molecules in
question exhibit a range of stable structures, but it is not clear how stable each of these
configurations is, nor how fast a system can transition between states. This property
has been described in detail in the literature, and occurs due to the broken ergodicity
exhibited by biomolecules [1]. It is most prominently observed in the multiple time
scales that biomolecular rearrangements span, and in the context of nucleic acids has
also been described as kinetic partitioning.

As biomolecular structure and function are closely connected, it is desirable to
understand these polymorphic structural ensembles in detail, and identify key structures
and transitions between them. The theoretical underpinning that may be used to
explain the molecular properties are based on the existence of the potential energy
landscape. This energy landscape for each molecule contains the information needed to
compute various properties of any molecular system [2]. As a result, detailed knowledge
of the energy landscape will enable our understanding of the structural ensembles along
the lines laid out above. This knowledge may be obtained in various ways, and in fact
any method, whether experimental or computational, probes the energy landscape.
Many methods do so implicitly, leading to constraints based on the topography of the
energy landscape. For example molecular dynamics simulations are often used to study
biomolecular systems, but as these computations retrace the dynamics of the molecular
systems, the rare events studied remain slow, requiring enhanced sampling methods.

A complementary approach is provided by direct energy landscape explorations,
i.e. our aim is to sample the energy landscape explicitly, and then in a second step
derive observables such as thermodynamics and kinetics from the energy landscape.

The computational energy landscape framework [3–5] employed in this study follows
this idea of direct energy landscape explorations. In this approach, the energy landscape
is coarse-grained into local minima and transition states,1 which connect the local

1Defined here as Hessian index-1 saddle points.
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minima. The transition states are the highest-energy saddle points a system has to
traverse between local energy minima. Sampling results in a database of local minima
and transition states, allowing the computation of thermodynamic, kinetic and
structural properties. The search for these stationary points can rely on geometry
optimisation, which is independent of energy barriers, and hence independent of the
characteristic time scales of the molecular system.

A.2 How we explore energy landscapes

Efficient exploration of the energy landscape relies on two factors. Firstly, an efficient
way to locate transition states is required. These transition states not only should
connect a set of minima, but furthermore we are seeking the low energy transition
states, and they need to be physically acceptable. The low energy states will correspond
to much faster transition rates, and hence locating low-energy transitions is required to
converge the kinetic properties of the system under investigation. The physicality of the
transition state is important in discrete modelling, such as discrete pathsampling (DPS),
where we can go from one structure with the correct chirality and cis-trans stereoisomer
to another such structure, through states where the chirality of a steric centre is
inverted. Such transition states must be avoided to obtain reasonable transitions.

The second condition is that we need to find all low-energy minima. Importantly,
while we can explore the energy landscape from a small subset of minima, the
exploration will be faster and more efficient if our set of initial minima to be connected
is as structurally diverse as possible.

A diverse set of minima might be located in a number of ways. For example,
molecular dynamics simulations can be used to generate a diverse set of structures at
high temperatures. Subsequent quenching of this set would then result in a suitable set
of local minima to start exploration. A second option is to use available experimental
structures, such as from X-ray or NMR experiments. Another option is to employ
global optimisation, such as basin-hopping, to locate low-energy structures efficiently.

As no experimental structural data is available for this system, we used BH global
optimisation [6–8] to obtain low energy structures. It should be noted that we were not
aiming to find all low energy minima, but to locate a number of low energy minima to
start the sampling. The sampling is fully parallel, and hence can make full use of
modern computing architectures, and this approach therefore allows the use of multiple
GPUs in parallel. As the basin-hopping is only used to seed the sampling, the
convergence of the sampling is independent of the performance of the basin-hopping.
The aim of the basin-hopping is therefore only to yield structures fairly low in energy
that have some diversity. As such the exact choice of starting structures for
basin-hopping and exact details of the searches will not change the sampled landscape,
but will impact how efficient the landscape can be sampled.

Once we have located a suitable set of structures, we aim to connect structures by
locating discrete paths between pairs of local minima [9,10]. The discrete path is a
series of minima and intervening transition states. In this case, we started our
exploration using an in- and and out-configuration for an initial connection [11]. Once
this path was connected, we used the UNTRAP [12], SHORTCUT BARRIER [12,13]
and CONNECTUNC [14] schemes in PATHSAMPLE2 to converge sampling. UNTRAP
removes artificial kinetic traps, SHORTCUT BARRIER finds lower energy barriers for
already connected minima, and CONNECTUNC connects unconnected minima into the
database.

Throughout, the doubly-nudged elastic band (DNEB) algorithm [15–17] was used
with an initial linear interpolation. Transition state candidates were converged with

2See https://www-wales.ch.cam.ac.uk/PATHSAMPLE/
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hybrid eigenvector-following [18], and minima located by following approximate
steepest-descent paths on either side of the unique eigendirection of the transition state.

A.3 Sampling convergence

In an ideal case, a converged landscape would include all possible minima and transition
states, however, such a level of sampling is unfeasible. This limitation mainly stems
from the vast number of high energy minima, which we will likely not detect.
Importantly, this limitation is likely to affect transitions between ordered and disordered
structures, for example for melting transitions, but will not necessarily impact lower
energy ordered to ordered transitions. As a consequence, we need to define what we
mean by sampling convergence within the framework described. We may identify a
number of possible answers to this question. Firstly, we can see convergence as the
convergence of the landscape topography. In this case we refer to the fact that
additional sampling is not affecting the number of funnels, nor their connectivity and no
additional features appear.

The second possible definition is the convergence of thermodynamic properties. This
criterion includes the correct location of the low energy minima, including the global
minimum. This convergence is observed, when the addition of stationary points to the
database is not altering the appearance of features in the heat capacity plot. Related to
both of these points of view is the convergence of the relevant structural ensembles,
i.e. that the structural ensembles have been found and their relative energies are
described accordingly.

The final potential definition in this context is convergence of kinetic properties.
The correct representation of dynamics is very difficult to judge, and without available
comparison to experimental measurements nearly impossible. The methodology has
been shown to faithfully reproduce the dynamics in other cases. A more detailed
comment on the convergence is given in the next section.

A.4 A comment on the reported rates and equilibrium
constants

An important question regarding this computational study is how accurate the reported
equilibrium constant and rate constants are. We have two independent estimators to
consider here.

Firstly, we use the NGT algorithm to calculate the kinetic properties of the system.
NGT preserves the mean-first passage time of the system, which can be inverted to
obtain the rate. The requirement on the kinetic transition network is therefore that we
need to have the correct distribution of first passage times. An interpretation of this
requirement is that we need to include all kinetically relevant paths to the product
states in our calculation. This condition is likely met for low-entropy, folded states.

Given the large number of contacts preserved within the system, even for C and C⋆,
we are likely in a regime where our description of paths is reasonable, as there are no
unfolded or partially unfolded states involved in the transitions we observe.

Looking more closely at the heat capacity curves, which where obtained from the
harmonic superposition approach from the minima located, we observe a clear
separation between the second and the third peak for the m6A modified system, i.e. it is
clear that the unfolding and structural changes are clearly distinguished processes, and
the kinetic description is good. For the unmodified system, the peaks are much closer,
and so there might be some error. This change would affect the rate constants
somewhat.

The clustering within NGT is self-consistent. The process combines minima into
states, while conserving the distribution of first passage times. The minima themselves
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are converged for the states as the relevant thermodynamics (heat capacity features) are
converged. As a result the error in our estimate would stem from the correct
representation of the paths. More detail can be found in the cited literature.

Overall, in this study, we see convergence in the appearance of the energy landscape
and in the thermodynamic properties as judged from the CV curves for low energy
transitions. While we cannot definitely state that the dynamic properties have
converged, it is important to consider the difference in the described energy barriers and
rate constants. As the differences we describe are many orders of magnitude and the
thermodynamics appear converged, any faster dynamics would not eradicate the stark
differences between the methylated and unmethylated molecule.
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B Structures details

In Figure A we report the sequence of the modelled system, the 2D structure already
proposed in the literature, and the three-dimensional structure obtained from the 2D
structure using RNAComposer. This structure is used to initiate path-sampling
simulations for the native system and for the mutated system after having substituted
A22 by m6A22.

In figure B we show the detailed 3D structures of the relevant regions undergoing
changes in the four ensembles A, A∗, C and C∗, in relation to figures 5 and 6 in the
manuscript.

Fig A. Primary sequence, secondary structure from experiments and three-dimensional
structure from RNAComposer. In red we highlight the modified base A22.
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Fig B. Top: apical loop shown for the four ensembles. Nucleotide 22 is shown in
atomistic detail and its backbone ribbon highlighted in red. Middle: upper helix (H2).
Nucleotides G16, C33 and U34 are shown in dark green, the pair C17-G32 in orange,
and nucleotides C18 and G31 in light blue. Bottom: central bulge (B). Nucleotides A8
and A38 are shown in pink, C11 is in light blue.
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C Energy landscape for a shortened stem loop

While previous experimental work showed the requirement for the lower bulge in the
regulation of SND1 recruitment [19], it is important to test that the energy landscape
exploration for a shortened stem loop exhibits the same behaviour.

C.1 Methodology

The shortened sequence chosen contains the nucleotides 17 to 32, which includes A22,
the apical loop and flanking nucleotides that form a stable stem on either side of the
loop. We took the lowest energy minima for the in- and out-configurations from the
unmethylated full stem loop energy landscape. We manually removed the unnecessary
residues, and ran single point geometry optimisations on both minima. We then
connected the minima in the same way as for the full sequence, and subsequently
sampled the energy landscape in a similar fashion to the full sequence.

We used the same force field and parameter settings as for the full sequence.

C.2 Results and discussion

The free energy landscape at 310K for the shortened sequence is shown in Fig. C,
alongside example structures characteristic for the funnels on the energy landscape.
Alongside a number of alternative loop structures for the in-configuration, we observe
the out-configurations at much lower energies compared to the full length sequence.
The unimolecular rate constants for the transitions are 4.043×104 s−1 for the out to in
transition and 2.327×104 s−1 for the in to out transition, if we consider the structures
that most resemble the structures we find in the full sequence. Considering all possible
in-configurations, we find the transition rate constants as 4.046×104 s−1 and
4.675×10−1 s−1, respectively.

In the case of the structures resembling the experimental structures most closely,
these transition rate constants correspond to an equilibrium constant of 1.737.

It is clear from this data that the shorter sequence loses the energetic differentiation
between the in-and out-configurations. This result is in line with experimental
findings [19], and reinforces the interpretation that the lower bulge is required to
differentiate between the in- and out-configurations, which is required for controlled
functionality.
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Fig C. Free energy disconnectivity graph at 310K for the shortened unmethylated loop.
The graph is coloured according to the absolute dihedral angle between A22 and the
preceding nucleotide, where red are in-configurations and blue are out-configurations.
The out-configuration is similar in energy to the in-configuration, and both the
transition probability is increased compared to the stem loop and the transition rate is
significantly higher.
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D Additional analysis for CV curves

The analysis for the CV curves in the main manuscript focuses on the two peaks with
the lowest transitions energies. This choice is based on the fact that P1 shows in both
systems the transition between different lower stem arrangements, and P2 is the
transition between in- and out-configurations.

In addition, there is another peak in both curves (P3). For the methylated system,
this peak is well separated, while for the unmethylated system the peak forms a
shoulder for P2. The transition for peak three corresponds to the loss of secondary and
tertiary structure. This loss can be seen in the example structures shown in Fig.D.
Especially the top part of the stem loop changes shape, visible in the loss of the tight
helix observed at lower temperatures.

Fig D. Example structures for the high temperature transition (P3) for the methylated
system. Left: Structures that are more likely occupied below the peak temperature.
Right: Example structure which is more likely to be occupied above the peak
temperature.
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