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14 Abstract 

15 A number of veterinary clinical pathology laboratories in New Zealand have been reporting 

16 emergence of increased minimum in inhibitory concentrations for β-lactams in the common 

17 clinical bovine mastitis pathogen Streptococcus uberis. The objective of this study was to 

18 determine the genetic basis of this increase in MIC for β-lactam amongst S. uberis. Illumina 

19 sequencing and determination of oxacillin MIC was performed on 265 clinical isolates. 

20 Published sequences of the five penicillin binding proteins pbp1a, pbp1b, pbp2a, pbp2b, and 

21 pbp2x  were used to identify, extract and align these sequences from the study isolates. 
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22 Amino acid substitutions resulting from single nucleotide polymorphisms (SNP) within these 

23 genes were analysed for associations with elevated (≥ 0.5 mg/L) oxacillin MIC together with 

24 a genome wide association study. The population structure of the study isolates was 

25 approximated using a phylogenetic tree generated from an alignment of the core genome. A 

26 total of 53% of isolates had MIC ≥ 0.5 mg/L for oxacillin. A total of 101 substitutions within 

27 the five pbp were identified, of which 11 were statistically associated with an MIC ≥ 0.5 

28 mg/L. All 140 isolates which exhibited an increased β-lactam MIC had SNPs leading to 

29 pbp2x E381K and Q554E substitutions. The phylogenetic tree indicated that the genotype and 

30 phenotype associated with the increased MIC for oxacillin were present in several different 

31 lineages suggesting that acquisition of this increased β-lactam MIC had occurred in multiple 

32 geographically distinct regions. Reanalysis of the data from the intervention studies from 

33 which the isolates were originally drawn found a tendency for the pbp2x E381K substitution to 

34 be associated with lower cure rates. It is concluded that there is geographically and 

35 genetically widespread presence of pbp substitutions associated with reduced susceptibility to 

36 β-lactam antimicrobials. Additionally, presence of pbp substitutions tended to be associated 

37 with poorer cure rate outcomes following antimicrobial therapy for clinical mastitis. 

38 Key words: Streptococcus uberis; β-lactam resistance; penicillin binding proteins 

39 1. Introduction  

40 Streptococcus uberis is a common bovine mastitis pathogen (Bradley et al., 2007; 

41 McDougall et al., 2007b),. Its core genome consists of 1,530 genes and it is a highly 

42 recombinant species (Lang et al., 2009). Streptococcus uberis is highly heterogeneous as 

43 indicated by strain typing including random amplified polymorphic DNA (RAPD) 

44 fingerprinting, multilocus sequencing typing (MLST), and pulsed field gel electrophoresis 
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45 (PFGE) (Zadoks et al., 2011). Isolates from the UK and New Zealand have been shown to 

46 have distinct MLST patterns, with a preponderance of ST-143 in New Zealand isolates, while 

47 ST-5 was predominant among the UK isolates (Pullinger et al., 2006). S. uberis may behave 

48 either as an environmental or contagious pathogen. Contagious transmission has been 

49 demonstrated through longitudinal studies and inferred from cross sectional studies in which 

50 the same sequence type is observed among cows or herds (Phuektes et al., 2001; Zadoks et 

51 al., 2003).  

52 Bacteriological cure rates following therapy of clinical S. uberis are reported to range 

53 between 64 and 91% (McDougall, 1998; McDougall et al., 2007a; Owens et al., 1997). Many 

54 factors influence the cure rate following mastitis therapy, including antimicrobial resistance 

55 (Sandholm et al., 1990). Because they do not produce β-lactamase (Zapun et al., 2008), 

56 Streptococci have historically been regarded as highly susceptible to β-lactams which are still 

57 the therapy of choice for infections with these bacteria. However, phenotypically β-lactam 

58 resistant bovine S. uberis isolates have been reported with bimodal distributions of minimum 

59 inhibitory concentrations (MIC) for cloxacillin in French, German and New Zealand studies 

60 (Guérin-Faublée et al., 2003; McDougall et al., 2014; Tenhagen et al., 2006).  

61 Penicillin-binding proteins (PBPs) are cell wall transpeptidases that catalyse assembly 

62 of cell wall peptidoglycan. Six pbp are found in S. pneumoniae: five high-molecular-mass 

63 pbp (pbp1a, pbp1b, pbp2x, pbp2a, and pbp2b) and one low-molecular-mass PBP (pbp3). 

64 pbp2a and 2b are essential, at least in S. pneumoniae, as double deletion results in non-

65 viability (Peters et al., 2016). The active site of transpeptidase activity is formed by three 

66 conserved amino acid motifs, SXXK, SXN, and KT(S)G. β-lactam resistance is generally 

67 associated with changes within, or flanking, these motifs. Mutations that confer resistance 

68 have only been described in the penicillin binding domains, that is, the transpeptidase 
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69 domains (Hakenbeck et al., 2012a). Low affinity variants of all the pbp have been described 

70 (Hakenbeck et al., 1999), but only mutations of pbp1a, -2x, and -2b appear to be associated 

71 with clinical β-lactam resistance (Grebe and Hakenbeck, 1996; Nagai et al., 2002). Low level 

72 resistance occurs with amino acid substitutions in pbp2b or 2x, while high level resistance 

73 requires additional amino acid substitutions in pbp1b or pbp3 (Du Plessis et al., 2002; Smith 

74 and Klugman, 1998). Alterations in the conserved motifs in pbp2b tend to be associated with 

75 resistance to penicillin, and alterations in pbp2x appear to contribute to low-level resistance to 

76 cephalosporins (Nagai et al., 2002). There is evidence of horizontal gene transfer amongst the 

77 streptococci, with a common resistance gene pool for S. pneumoniae, S. oralis and S. mitis 

78 (Dowson et al., 1994; Hakenbeck et al., 2012a). There is variation in the affinity of different 

79 β-lactams to pbp variants, which may reduce the clinical efficacy of different β-lactams in the 

80 face of emerging resistance (Garau, 2002; Grebe and Hakenbeck, 1996) in streptococci. It has 

81 been shown that resistant S. uberis isolates generated in the laboratory arise from alterations 

82 in pbp1a, pbp2b and/or pbp2x (Haenni et al., 2010b). β-lactam resistance mechanisms 

83 independent of substitutions amongst the pbp have been reported including the presence of  a 

84 murMN/fibAB operon, a mutation in the gene coding for GlcNAc deacetylase,  and  mutations 

85 in the gene mraY (Chewapreecha et al., 2014; Hakenbeck et al., 2012b). 

86 This study was undertaken to test the hypothesis that increases in MIC in clinical S. 

87 uberis isolates are associated with amino acid substitutions in one or more of the pbp.  

88 2. Materials and Methods 

89 Streptococcus uberis isolates collected during the conduct of two clinical mastitis 

90 antimicrobial therapy intervention studies were used for this study (Bryan et al., 2016; 

91 McDougall et al., 2019). The isolates were obtained from mastitic milk of cows prior to 
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92 treatment from a total of 35 dairy farms in New Zealand (North Island and South Island) and 

93 were collected with permission of Animal Ethics Committees. 

94 Isolates that were Gram positive cocci, catalase negative, cleaved esculin, sorbitol and 

95 inulin and which did not grow in SF broth were initially defined as S. uberis. All isolates 

96 were subcultured onto an entire 5% blood agar plate containing 1% aesculin (Fort Richard, 

97 Auckland, New Zealand). From a pure culture, a single colony was picked and inoculated 

98 onto a Dorset egg slope (Fort Richard, Auckland, New Zealand), incubated overnight at 37°C 

99 and checked for growth before storage at 4 °C for further testing. The species of isolates was 

100 confirmed by MALDI-TOF (Pathology Associates LTD, Pathlab Bay of Plenty Division, 

101 Tauranga, New Zealand).  

102 2.1 Susceptibility testing 

103 The MIC of oxacillin was determined using a broth microdilution method according to 

104 CLSI standards (CLSI, 2013) using cation-adjusted Mueller-Hinton broth supplemented with 

105 2.5% lysed horse blood (CAMHB-LHB). Oxacillin solutions were prepared in CAMHB-LHB 

106 to a concentration range double of that the desired final concentrations of 0.0325 to 16 mg/L 

107 and dispensed into 96-well plates at 50 µl per well. Inoculum was prepared using colony 

108 suspension method to a turbidity equivalent to that of a 0.5 McFarland standard and was 

109 diluted 1:100 in CAMHB-LHB. For each test isolate, 50 µl of diluted isolate inoculum was 

110 added to the wells. Each isolate was tested in triplicate. The 96-well plates were then placed 

111 in a plastic bag to minimize evaporation and incubated at 35 °C for 20 h. Oxacillin was 

112 selected as we wished to determine the MIC for the penicillinase-stable penicillins including 

113 cloxacillin, which is commonly used for treatment of both clinical (Bryan et al., 2016, and 

114 subclinical mastitis at the end of lactation. The oxacillin MIC for the 265 isolates were used 
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115 to determine the epidemiological cut off (ECOFF) values by fitting a series of mixture 

116 models (Everitt, 1996) to the log-transformed MIC by maximum likelihood.  

117 Additional antibiotic susceptibility data was generated during the original clinical 

118 studies using either eTest (Biomerieux, France) or a custom-designed broth microdilution 

119 (Sensititre, Trek Diagnostics, Thermo Fisher, OH, USA) for penicillin, cefalexin, cefuroxime, 

120 ceftiofur, and cefquinome for subsets of the isolates. Streptococcus pneumoniae (ATCC 

121 49619) was run as a quality-control organism in parallel with the unknown isolates and the 

122 results were within the CLSI defined quality assurance standards.  

123 2.2 Molecular biology 

124 Genomic DNA was extracted from overnight cultures using the MasterPure Gram 

125 Positive DNA Purification Kit (Cambio, UK). Illumina library preparation was carried out as 

126 previously described (Quail et al., 2008), and sequencing performed on an Illumina HiSeq 

127 2000 following the manufacturer's standard protocols (Illumina, Inc, USA) at the Welcome 

128 Sanger Institute, Hinxton, UK (WSI).  

129 2.3 Bioinformatics  

130 Assemblies and annotations were generated using pipelines at the WSI (Page et al., 

131 2016). Assemblies were imported into Geneious (version 10.2.2, Geneious Inc, NZ) for 

132 analysis. The sequences for pbp1a, 1b, 2a, 2b and 2x were obtained from O140J S. uberis 

133 genome (NCBI accession number AM946015) and used to identify these genes in the study 

134 isolates. The pbp genes were extracted, aligned and single nucleotide polymorphisms (SNP) 

135 associated with amino acid substitution were identified. Amino acid sequences were aligned 

136 (and numbered) with those previously reported (Haenni et al., 2010b) for pbp1a, 2b and 2x, 

137 while amino acid numbering relative to the start of the open reading frame were used for 

138 pbp1b and 2a.  
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139 For comparison with the sequence data from the study isolates, the sequences of 13 UK 

140 S. uberis (Hossain et al., 2015) were downloaded from European nucleotide archive 

141 (http://www.ebi.ac.uk/ena) and 63 Canadian S. uberis sequences were downloaded from 

142 PATRIC (www.patricbrc.org) (Vélez et al., 2017). 

143 Multilocus sequence types were determined from the genome sequenced data (Coffey et 

144 al., 2006) (http://pubmlst.org/suberis).  

145 A core genome alignment was obtained using Roary (Page et al., 2015) and a maximum 

146 likelihood phylogenetic tree was constructed using Randomized Accelerated Maximum 

147 Likelihood (RAxML)(Stamatakis, 2014). This tree was annotated using iTOL (Letunic and 

148 Bork, 2016). 

149 Initial associations between non-synonymous SNPs and the presence of an MIC above 

150 the ECOFF were examined using bivariate (χ2) statistics and binary logistic regression 

151 analyses. Subsequently forward and reverse multivariate logistic regression models were 

152 constructed to which all SNPS that were significant (P < 0.05) at the bivariate level were 

153 offered. This analysis was undertaken in STATA v10.2 (Stata Corp., College Station, TX, 

154 USA). Comparisons of MIC amongst other β-lactams for the specific SNPs were undertaken 

155 using Kruskal-Wallis non-parametric analyses, and regression analyses were used to compare 

156 the MIC of oxacillin with the MICs for other β-lactams.  

157 Subsequently a genome wide association study (GWAS) was undertaken using the 

158 oxacillin resistance MIC as the outcome using sequence element enrichment analysis (SEER; 

159 https://github.com/johnlees/seer) (Lees et al., 2016) and visualised using Phandango 

160 (Hadfield et al., 2017). K-mers (10-593bp) were generated from the isolate assemblies using 

161 FSM-lite. For the population structure an initial distance matrix was prepared using Mash 
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162 (Ondov et al., 2016), which was projected onto a final distance matrix into 6 dimensions 

163 (selected on the basis of a Scree plot, data not shown) using R (script available at MRC 

164 Climb; climb.ac.uk) (Connor et al., 2016). SEER was then used to determine if any k-mers 

165 were associated with the cloxacillin resistance phenotype using a threshold adjusted for 

166 multiple testing of P < 5 x 10-8 (Barsh et al., 2012). 

167 Frequency of recombination events within the S. uberis genomes was estimated by 

168 performing a Genealogies Unbiased By recombinations In Nucleotide Sequences (Gubbins) 

169 analysis, (https://github.com/sanger-pathogens/Gubbins; Croucher et al 2015). A Roary 

170 alignment tree was used as the starting tree, the alignment was undertaken using SMALT, 

171 with O140J as the reference, and visualised using Phandango (Hadfield et al., 2017). 

172 2.4 Cure following intramammary therapy 

173 The association between the presence of the E381K substitution in pbp2x and cure rate 

174 (defined as absence of signs of clinical mastitis and/or non-isolation of the bacteria associated 

175 with clinical mastitis pre-treatment at 2 or 3 time points post treatment) following 

176 intramammary therapy was examined independently for the isolates from the two 

177 intervention studies. In the first study quarters with clinical mastitis were infused on three 

178 occasions at 24 hour intervals with either 1 g penicillin and 200 mg cloxacillin (PenClox 

179 1200 High Potency Milking Cow, Virbac, (NZ) Ltd, Hamilton, NZ), or with a combination of 

180 200 mg oxytetracycline, 100 mg oleandomycin, 100 mg neomycin and 5 mg prednisolone 

181 (Mastalone, Pfizer NZ Ltd., Auckland, NZ) (Bryan et al., 2016).  In the second intervention 

182 study affected quarters were treated by intramammary infusion at 12 hourly intervals with 

183 200 mg amoxycillin (as amoxycillin trihydrate), 50 mg clavulanic acid (as potassium 

184 clavulanate), and 10 mg prednisolone (Clavulox LC, Zoetis New Zealand Limited, Auckland, 

185 New Zealand) on three or five occasions (McDougall et al., 2019). 
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186 Generalised linear mixed models were used to assess the effect of treatment, E381K 

187 pbp2x genotype, and the treatment by genotype interaction on cure. For the first intervention 

188 study, herd was included as a random effect, and lactation number (i.e. categorised as first 

189 and second versus greater than second lactation) was also included as fixed effect.  For the 

190 second intervention study, the model also included days in milk at clinical mastitis diagnosis 

191 (categorised as ≤ 4 versus > 4 days), and age (categorised as 2, 3, 4-6, > 6-years-old). 

192 3. Results 

193 3.1 Distribution of minimum inhibitory concentrations and cut-off value 

194 The frequency distribution of MICs of oxacillin are shown in Fig. 1. The MIC50 and 

195 MIC90 were 1.0 and 2.0 mg/L. The ECOFF was defined as ≥ 0.5 mg/L based on visual 

196 assessment and the mixture modelling, and 141/265 (53.2%) of the isolates had an ECOFF 

197 greater or equal to this cutpoint.  

198 3.2 Penicillin binding proteins 

199 Penicillin binding proteins 1a, 1b, 2a, 2b and 2x were identified in all 265 isolates. The 

200 three conserved active site motifs were identified in pbp1a (S214TMK, S272SN, and K401TG), 

201 pbp1b (S441SIK, S497WN and K632TG), pbp2a (S454TIK, Y491GN and K632TG), PBP2b (S353VVK, 

202 S408SN, and K579TG), and in pbp2x (S339TMK, S398SN, and K549TG: Fig. 2). There was perfect 

203 alignment of the conserved active site motifs between the S. uberis pbp2x and S. pneumoniae 

204 (NCBI gene ID 934744). 

205 A total of 101 non-synonymous SNPs were identified across the 5 pbp. There were 19, 

206 17, 19, 26 and 20 SNPs in pbp1a, 1b, 2a, 2b and 2x, respectively.  
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207 3.3 Associations between SNPs and oxacillin resistance 

208 At a bivariate level, the 11 most common SNPs (i.e. present in ≥ 26 (10%) of the 

209 isolates) were associated with an oxacillin MIC greater or equal to the ECOFF within the 

210 transpeptidase domains of pbp1a, 2b and 2x, and pbp1b and 2a (Table 1).  

211 Of the 141 isolates having an oxacillin MIC greater or equal to the ECOFF, 140 of 

212 these had the pbp2x E381K, Q554E, and G600E substitutions. There was only one isolate without 

213 the E381K substitution that had an oxacillin MIC greater or equal to the ECOFF as it had an 

214 oxacillin MIC of 1 mg/L. A total of 133 of the isolates with an oxacillin MIC greater or equal 

215 to the ECOFF also had a pbp2x V590A substitution, and all of the V590A also had the E381K, 

216 Q554E, and G600E substitutions. There was no difference in the oxacillin MIC for isolates that 

217 did or did not have the V590A substitution within isolates with the E381K substitution (1.79 ± 

218 0.57 mg/L vs 1.66 ± 0.48 mg/L for isolates with and without the V590A substitution within the 

219 E381K substitution; P = 0.05).  

220 The E381K substitution was also associated with increases in MIC, relative to isolates 

221 without the substitution, for penicillin, cefuroxime,  ceftiofur, and cefquinome, but with a 

222 decrease in MIC for cefalexin (Table 2; Fig. 3). There was a positive association between 

223 oxacillin MIC and the MICs for penicillin (R2 = 0.58; P < 0.001), cefuroxime (R2 = 0.60; P < 

224 0.001), ceftiofur (R2 = 0.29; P < 0.001), ampicillin (R2 = 0.63; P < 0.001), cefquinome (R2 = 

225 0.43; P < 0.001) and ampicillin/clavulanic acid (R2 = 0.19; P < 0.001), but a negative 

226 association between oxacillin and cefalexin (R2 = 0.07; P < 0.001). 

227 There were 5 non-synonymous SNPs in the transpeptidase domain of pbp2x gene of the 

228 13 UK and 63 Canadian isolates (Table 1). All these variants, except the A492E substitution, 

229 were also found in the New Zealand isolates.  
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230 Multivariable models for oxacillin resistance did not converge if any one of the E381K, 

231 Q554E, and G600E substitutions and any other SNPs were included.  

232 3.4 Multilocus sequence typing and Phylogenetic analysis 

233 A total of 146 sequence type were identified by MLST in the New Zealand isolates, a 

234 proportion of which had not previously been described (listed in Supplementary Table 1). 

235 While there was an association between MLST type and presence of the pbp2x E381K 

236 substitution  (P < 0.001), the E381K substitution was widely distributed throughout the 

237 phylogenetic tree and not found exclusively within one lineage (Supplementary Fig. 1).  

238 3.5 GWAS 

239 In the genome wide association study, the Manhattan plot (Supplementary Fig. 2) 

240 reveals a high level of association (peaking at P < 10-12) of k-mers within pbp2x and three 

241 other genes positioned next to this gene. Statistically significant candidate loci were detected 

242 in the pbp2x and mraY peptidoglycan biosynthesis pathway, and in two other genes yxeM and 

243 yxeN.  There were a total of 27, 42 and 11 SNPs in the mraY, yxeM, and yxeN genes, 

244 respectively of which 10, 18 and 4 were non-synonymous.  There were 3, 2, and 1 non-

245 synonymous SNPs with a prevalence of > 20% on mraY, yxeM, and yxeN genes, respectively, 

246 all of which were associated (P < 0.001) with the bpb2x E381K, Q554E, and G600E substitutions. 

247 No statistically significant SNPs were found in the cshB gene located between mraY and 

248 yxeM. 

249 3.6 Gubbins analysis 

250 A high level of genomic recombination was observed amongst the S. uberis genomes 

251 (Supplementary Fig. 3).  
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252 3.7 Cure rate 

253 In the first intervention study (Bryan et al., 2016), there was no significant effect of 

254 Treatment (P = 0.99), pbp2x E381K substitution (P = 0.13), or the treatment x pbp2x E381K 

255 substitution interaction (P = 0.41) on cure rate. However, the cure rate was numerically lower 

256 in quarters affected with S. uberis with the E381K substitution where treatment occurred with 

257 the β-lactam treatment (approximately 15% lower cure rate), while the cure rate of the E381K 

258 substitution was 4% lower following treatment with the non- β-lactam (Fig.  4a).  

259 In the second study (McDougall et al., 2019), presence of the E381K substitution tended 

260 (P = 0.07) to reduce bacteriological cure rate (Fig. 4b). While not significant (P = 0.11), 

261 numerically there appeared to be an interaction with the duration of treatment, whereby 

262 isolates with the E381K substitution treated for a longer duration (5 x 12 hourly) had higher 

263 bacteriological cure rates than isolates treated for a shorter period (3 x 12 hourly), whereas 

264 duration of treatment did not affect cure rate amongst the isolates without the substitution. 

265 4. Discussion 

266 A bimodal distribution of MICs for oxacillin was observed for S. uberis isolated from 

267 cases of bovine mastitis. A total of 53% of isolates had an MIC greater than the ECOFF of  ≥ 

268 0.5 mg/L. isolates with MICs  greater than the ECOFF were present on 28 of 30 farms 

269 located both in the North and South islands of New Zealand,  indicating wide geographic 

270 distribution and a low probability of direct cow to cow transmission of isolates with an MIC 

271 greater than the ECOFF.  

272 SNPs with possible association with the oxacillin MICs greater than the ECOFF were 

273 found on all 5 pbp (pbp1a, 1b, 2a, 2b and 2x). Following multivariable modelling, those on 

274 pbp2x resulting in a E381K substitution were found to account for the observed increased MIC 
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275 for oxacillin. This finding was confirmed by the results from a GWAS, which identified only 

276 pbp2x and 3 genes flanking this region. 

277 Substitutions in pbp1b and pbp2a have not been previously reported in S. uberis. 

278 However, substitutions in all pbp associated with phenotypic resistance have been reported to 

279 occur in S. pneumoniae (Hakenbeck et al., 2012a). The pbp1b G768S and the pbp2a T397A 

280 substitutions were also found in the Canadian and UK isolates, demonstrating wide 

281 geographic distribution of these substitutions. 

282 On pbp2b, 4 of the substitutions previously induced (Haenni et al., 2010b) were also 

283 observed in the current study in New Zealand, Canada and the UK; N366I, T402I, V570A and 

284 P575S. Three other substitutions were located in pbp2b in the New Zealand isolates, but none 

285 of these were associated with an increased MIC for oxacillin. As previously reported (Haenni 

286 et al., 2010b), the N366I substitution was located 13 residues downstream of the SVVK motif, 

287 the T402I SNP was located six residues before the SSN motif, and the V570A and P575S SNPs 

288 were located nine and four residues upstream of the KTG motif, respectively.  

289 For pbp2x, five substitutions associated with an increased MIC for oxacillin were 

290 located in the present study. All 5 were also located in the Canadian and UK isolates. The 

291 E381K and Q554E substitutions were previously reported as occurring in naturally occurring and 

292 induced resistant S. uberis (Haenni et al., 2010b), being 42 amino acids downstream of the 

293 STMK motif and five amino acids downstream of the KTG motif, respectively. All isolates 

294 with the pbp2x E381K, Q554E, and G600E substitutions had oxacillin MIC ≥ 0.5mg/L. Of the 

295 eight isolates with the pbp2x A590V substitution, seven of these also had the pbp2x E381K, 

296 Q554E, and G600E substitutions. This suggests that pbp2x E381K, Q554E, and G600E substitutions 

297 are the functionally important ones, rather than the A590V substitution. The mechanism of 
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298 resistance for the one isolate without the E381K, Q554E, and G600E substitutions that had an 

299 elevated oxacillin MIC remains to be determined. 

300 The pbp2x Q554E substitution has been described in other penicillin resistant 

301 streptococci (Haenni et al., 2018). Restoring the wild type genotype at this position results in 

302 8 to 16 fold reduction in MIC (Dahesh et al., 2008), demonstrating the importance of this 

303 substitution. The pbp2x E381K substitution has not been described in Streptococci other than S. 

304 uberis (Haenni et al., 2010b; Hakenbeck et al., 2012a). The biological effect of the newly 

305 identified substitutions (I295V, V590A, G600E, G600D) are unclear. These substitutions were 

306 identified in all 3 populations of isolates examined. These substitutions were highly 

307 correlated with the E381K, Q554E, and G600E substitutions, hence in the current population the 

308 increased MIC for oxacillin could be entirely explained by the presence of the E381K and Q554E 

309 substitutions. The V590A, G600E, G600D substitutions are located in the α-helix of the 

310 transpeptidase domain. In S. pneumoniae, a N605T substitution is associated with decreased 

311 acetylation and reduced sensitivity to β-lactam antimicrobials (Carapito et al., 2006) and site-

312 directed mutagenesis has demonstrated that the reversion of the resistant Y595F substitution 

313 reduces the MIC (Smith and Klugman, 2005). Both of these substitutions are also within the 

314 α-helix of the transpeptidase domain (Hakenbeck et al., 2012a). Taken together these data 

315 suggest that the newly identified substitutions could contribute to reduced susceptibility of S. 

316 uberis to β-lactam antimicrobials. 

317 The E381K, Q554E, and G600E substitutions were also associated with increased MIC for 

318 other β-lactams including penicillin, ceftiofur, cefquinome, amoxicillin/clavulanic acid and 

319 cefuroxime. Only ceftiofur has a validated bovine mastitis clinical breakpoint (2 mg/L) and 

320 only 2 of 265 isolates in the current study had an MIC > 2 mg/L. For the other β-lactams, the 

321 maximum MIC were 0.5 mg/L for penicillin, 1 mg/L for cefquinome, and 2 mg/L for 
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322 cefuroxime, cephalexin and 2/1 mg/L for amoxicillin/clavulanic acid. In the absence of 

323 clinical breakpoints, while bimodal distributions for many of these antimicrobials were 

324 present, the clinical significance of this remains unclear. However, following intramammary 

325 infusion of 1 g of penicillin, which is a commonly used therapy in New Zealand, it is likely 

326 that concentrations greater than the maximum MIC for penicillin of the current isolates would 

327 be achieved. Following infusion of 1 million international units (i.e. approximately 606 mg) 

328 of penicillin G on 3 occasions at 12 hourly intervals, the mean milk concentration of 

329 penicillin was 175 mg/L (Moretain and Boisseau, 1989), approximately 700-fold higher than 

330 the MIC50 for penicillin found amongst the E381K substitute isolates in the current study. The 

331 E381K, Q554E, and G600E substitutions were associated with increased MIC for all β-lactams 

332 tested, other than cephalexin. Similarly, there was a positive association between the MIC for 

333 oxacillin and all other β-lactams, other than cefalexin. Different effects on sensitivity within 

334 antimicrobials class within mutations to pbp2x have been previously described. Laboratory 

335 pbp2x mutants which increased cefotaxime MIC by more than 10 fold had no effect, or 

336 increased, sensitivity to oxacillin (Grebe and Hakenbeck, 1996). 

337 4.1 Population structure 

338 The current study found multiple MLST types including many novel types. In common 

339 with a number of previous studies, it is clear that bovine mammary S. uberis are a highly 

340 diverse population (Davies et al., 2016; Zadoks et al., 2011).  There was limited evidence of 

341 clonal expansion within or between dairy herds in New Zealand, suggesting a predominantly 

342 environmental source of S. uberis in the New Zealand context, as distinct from cow to cow 

343 transmission inferred from some previous studies (Davies et al., 2016; Zadoks et al., 2011).  

344 Streptococci are generally found to be recombinogenic as seen in S. pneumoniae 

345 (Croucher et al., 2014). This leads to substantial genome modification likely via a 
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346 combination of point mutations, homologous recombination and movement of mobile genetic 

347 elements (Croucher et al., 2014).  This suggests that the association between the increased 

348 MIC for oxacillin and the pbp2x genotype is more likely to be causal and not just a result of 

349 clonal expansion of lineages carrying the pbp2x substitutions contained in a resistant 

350 background genome. The Gubbins analysis indicated that recombination events are 

351 particularly common in S. uberis. This places constraints on the interpretation of any 

352 phylogeny within this species not taking recombination into account although it should be 

353 noted that the maximum likelihood tree from the core genome shared much of the same 

354 structure as the tree from the Gubbins analysis (which accounted for recombination). As 

355 might be expected, the pbp2x E381K, Q554E, and G600E substitutions were conserved amongst 

356 closely related isolates using the core genome phylogeny. However, there were many 

357 examples of isolates within the same clade having different pbp2x genotypes suggesting 

358 multiple pbp2x mutation or acquisition events.  

359 4.2 GWAS 

360 The GWAS independently identified the pbp2x locus. Additionally, the mraY locus was 

361 identified which codes for phospho-N-acetylmuramoyl-pentapeptide-transferase, an enzyme 

362 responsible for the formation of the first lipid intermediate of the cell wall peptidoglycan 

363 synthesis. These two loci were also identified in a GWAS study of S. pneumoniae 

364 (Chewapreecha et al., 2014).  Two loci not previously reported as being associated with β-

365 lactam resistance in Streptococci were identified including yxeM which codes for an 

366 extracellular solute-binding protein and yxeN which codes for an ABC transporter permease. 

367 These later 2 genes flank pbp2x, and it is likely that they are associated due to linkage 

368 disequilibrium.  Interestingly cshB, which codes for a surface associated protein, and is 

369 located between mraY and yxeN, contained a number of SNPs, none of which were associated 

370 with oxacillin resistance. The reason for this is unclear; all isolates possessed this gene, and 
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371 in the same location.  A number of loci identified in the GWAS of S. pneumoniae 

372 (Chewapreecha et al., 2014) including clpL, ciaH, ftsL and gpsB were not associated with β-

373 lactam resistance in the current study.   

374 4.3 Cure rate 

375 As the original intervention studies were not powered to specifically test the effect of 

376 E381K, Q554E, and G600E substitutions on bacteriological cure rate, care should be taken when 

377 interpreting the cure rate data given the relatively small sample size. 

378 However, numerically the cure rate was lower amongst S. uberis isolates with the E381K, 

379 Q554E, and G600E substitutions than those without these substitutions. The cure rate was 

380 numerically lower for isolates with E381K, Q554E, and G600E substitutions following treatment 

381 with a β-lactam compared with a non-β-lactam.  This is biologically plausible as the SNP in 

382 the pbp2x is only likely to affect β-lactams, and not the efficacy of antimicrobials operating 

383 via different mechanisms.  Increasing the duration of therapy with a β-lactam to 5 x 12 hourly 

384 tended to overcome the depression in cure rate seen with a shorter duration of therapy (i.e. the 

385 3 x 12 hourly treatment). Again, this is biologically plausible given that β-lactams are time-

386 dependent antimicrobials, hence with increasing duration it is feasible that concentrations 

387 above MIC were of sufficiently long duration to result in bacteriological cure even amongst 

388 isolates with increasing MIC.  Failure to detect difference in cure rate between pbp2x 

389 genotypes could also have been due to presence of other resistance mechanisms being present 

390 masking any effect of the pbp2x genotype. For example, in the first study the control group 

391 was treated with a combination of an aminoglycoside, a macrolide and a tetracycline. While 

392 streptococci are considered to constitutively resistant to aminoglycosides (Jayarao and Oliver, 

393 1992), there was no evidence of tetracycline resistance genes in the current study, and only 7 

394 isolates had presence of the ermB gene conferring increased MIC to macrolides (unpublished 
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395 data). Thus, it is considered unlikely that the failure to differentiate cure rate was due to a 

396 reduced cure rate in the non-β-lactam treatment group. 

397 The maximum MIC for cloxacillin of any isolates in the current study was 2 mg/L. 

398 Ongoing monitoring of the MIC of S. uberis isolates, and the association between MIC and 

399 clinical and bacteriological cure rates amongst clinical mastitis cases associated with S. 

400 uberis is required.  Additionally, as cloxacillin-based antimicrobials are the most commonly 

401 used at the end of lactation (i.e. for dry-cow therapy), it is plausible that ongoing use of 

402 antimicrobials at the end of lactation may result in selection of S. uberis with higher 

403 cloxacillin MIC. However, this hypothesis remains to be tested. 

404 5. Conclusions 

405 This study has found widespread evidence for increased MIC of oxacillin amongst the 

406 common bovine mastitis pathogen S. uberis. The great majority of isolates with an increased 

407 MIC for oxacillin were found to have substitutions in pbp2x, and the E381K, Q554E, and G600E 

408 substitutions were predictive of the increased MIC for oxacillin phenotype and did not 

409 require inclusion of substitutions on other pbp in the final predictive models. Isolates with the 

410 E381K, Q554E, and G600E substitutions were also found in Canadian, European and UK isolates, 

411 suggesting wide geographic distribution of this genotype. Phylogenetic analysis found the 

412 E381K, Q554E, and G600E substitutions were widely distributed amongst New Zealand clades, 

413 but there was variation in pbp2x genotype within closely related isolates. This suggests that 

414 horizontal gene transfer may be occurring, as has been reported in other Streptococci, or that 

415 multiple independent SNPs have occurred over time.  

416 Presence of the E381K, Q554E, and G600E substitutions was numerically associated with 

417 lower bacteriological cure rates following treatment with a β-lactam compared with a non-β-
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418 lactam intramammary therapy. Additionally, lower bacteriological cure rates occurred where 

419 this genotype was treated with a shorter compared with the longer duration of therapy. 
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602 Table 1  

603 Penicillin binding protein (PBP) number, residue number (based on previously reported 

604 (Haenni et al., 2010b) numbering for pbp1a, 2b and 2x, otherwise from the start of the open 

605 reading frame), most common residue at that position (core residue), the number of isolates 

606 with the core residue at that position, the amino acid of the variant and the number of isolates 

607 with this variant, the P-value from chi squared analysis of the variant against the isolate being 

608 resistant (that is, an oxacillin MIC of > 0.5 mg/L), and the number and percentage of isolates 

609 in core and variant amino acids with oxacillin resistance. Note only those substitutions with 

610 >10% prevalence and within the transpeptidase domain (for pbp1a, 2b and 2x) are listed. 

611 Where the same substitutions were identified in Canadian (Vélez et al., 2017) and UK 

612 (Hossain et al., 2015) isolates these are listed. 

613 Table 2  

614 The mean, standard error of the mean (SEM) and median minimum inhibitory concentration 

615 (MIC50; mg/mL) for β-lactam antimicrobials for Streptococcus uberis isolates with and 

616 without the E381K substitution in pbp2x.
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617 Fig. 1. Frequency histogram of minimum inhibitory concentrations (mg/L) of oxacillin for 

618 Streptococcus uberis from bovine clinical mastitis cases. 

619 Fig. 2 a, b, c. Sites in (a) pbp1a, (b) pbp2b, and (c) pbp2x implicated in altered affinity to β-

620 lactams. The transpeptidase domain is represented as the horizontal black bar; the active site 

621 motifs are indicated in blue and marked by blue triangles. Numbers in brackets indicate the 

622 position of the first and last amino acids of the transpeptidase domain. The substitutions in 

623 green are from the current study, and the red substitutions are from those induced in S. uberis 

624 (Haenni et al., 2010a). Note only substitutions present in >10% of isolates in the current 

625 study are represented. 

626 Fig. 3. Box plots of the MIC of β-lactams for S. uberis isolates from bovine clinical mastitis 

627 cases defined as oxacillin resistant (i.e. MIC ≥ 0.5 mg/L) or susceptible (< 0.5 mg/L).  

628 Fig. 4 a,b. Estimated marginal mean (95% confidence intervals) for cure proportion for (a) 

629 study 1 for quarters infected with S. uberis that had the E381K substitution (open bar) or not 

630 (solid bar) by treatment type. The non-β-lactam treatment was daily intramammary infusion 

631 for 3 days of a combination of 200 mg oxytetracycline, 100 mg oleandomycin, 100 mg 

632 neomycin and 5 mg prednisolone, and β-lactam treatment was daily infusion 3 days of a 

633 combination of 1 g penicillin and 200 mg cloxacillin, and (b) cure proportion for quarters 

634 treated by intramammary infusion at 12 hourly intervals with 200 mg amoxycillin, 50 mg 

635 clavulanic acid, and 10 mg prednisolone on three (hatched bar) or five (open bar) occasions.  
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636 Supplementary Table 1.  Isolate identity, multilocus sequence type (Sequence type), 

637 oxacillin minimum inhibitory concentration (Ox MIC (mg/L)), resistance phenotype 

638 (resistant (1) =  ≥ 0.5 mg/L), resistance genotype (1 = pbp2x E381K substitution), location in 

639 New Zealand (North or South Island) and the unique farm identity (Farm_ID), ENA sample 

640 accession number, and ENA lane accession number. 
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641 Supplementary Fig. 1. Phylogenetic tree of 265 S. uberis isolates from bovine clinical 

642 mastitis cases in New Zealand (classified as from the North or South Island) and S. uberis 

643 isolates from Canada and the UK. The tree is created from the core genome (~1,500 genes) of 

644 S. uberis. The meta data includes (from inner to outer) isolate number, multilocus sequence 

645 type, island of New Zealand, farm identity,  pbp2x E381K genotype (open green Square = wild 

646 (sensitive) genotype; closed green square = resistant genotype), and oxacillin MIC phenotype 

647 (red open square < 0.5 mg/L, closed red square ≥ 0.5 mg/L). 

648 Supplementary Fig. 2. Manhattan plot showing the results of a k-mer based genome wide 

649 association study using SEER visualised using Phandango. The reference genome used was 

650 17652_8#12.gff. The annotation file was generated by Prokka as part of the Welcome Sanger 

651 Institute Pathogen Informatics pipeline. The size of the dots indicates the length of positively 

652 associated k-mer. A threshold of P < 5x10-8 was applied. The vertical axis is the negative of 

653 the log10 value of P. The horizontal axis represents the base pair distance along the genome. 

654 Supplementary Fig. 3. Gubbins plot of 265 S. uberis isolates from bovine clinical mastitis 

655 cases in New Zealand. The phylogenetic tree (left panel) represents the maximum likelihood 

656 tree. The S. uberis 0140J genome is represented as the blue vertical bars across the top of the 

657 figure, while the vertical red bars in the centre of the figure represent the density estimates of 

658 recombination events. The line graph at the bottom of the figure is the cumulative frequency 

659 of recombination events at that locus. 
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Table 1 

Penicillin binding protein number (PBP), residue number (based on previously reported (Haenni et al., 2010b) numbering for pbp1a, 2b and 2x, otherwise 

from the start of the open reading frame), most common residue at that position (core residue), the number of isolates with the core residue at that position, 

the amino acid of the variant and the number of isolates with this variant, the P-value from chi squared analysis of the variant against the isolate being 

resistant (that is oxacillin MIC of >0.5 mg/L), and the number and percentage of isolates in core and variant amino acids with oxacillin resistance. Note only 

those substitutions with >10% prevalence and within the transpeptidase domain (for PBP1a, 2b and 2x) are listed. Where the same substitutions were 

identified in Canadian (Vélez et al., 2017) and UK (Hossain et al., 2015) isolates these are listed. 

New Zealand isolates Canadian isolates UK isolates
Core Resistant Variant Resistant Core Variant Variant Core Variant Variant

Gene Position AA no. no. % AA no. no. % P-value AA no. AA no. AA no. AA no. AA no. AA no.
pbp1a 452 S 175 73 41.7 N 90 68 75.6 0.000 N 50 S 13 N 11 S 2
Pbp1b 768 G 164 83 50.6 S 101 58 57.4 0.280 G 34 S 28 G 9 S 4
Pbp2a 44 E 179 107 59.8 G 86 34 39.5 0.002
Pbp2a 397 T 235 125 53.2 A 30 16 53.3 0.843 T 45 A 18 T 12 A 1
pbp2b 366 N 162 67 41.4 I 103 74 71.8 0.000 N 55 I 8 N 1 I 2
pbp2b 370 S 237 129 54.4 T 28 12 42.9 0.246
pbp2b 394 A 238 125 52.5 S 27 12 44.4 0.336
pbp2b 402 T 161 67 41.6 I 104 74 71.2 0.000 T 55 I 8 T 11 I 2
pbp2b 570 V 174 78 44.8 A 91 63 69.2 0.000 V 55 A 8 V 12 A 1
pbp2b 575 P 174 78 44.8 S 91 63 69.2 0.000 P 55 S 8 P 12 S 1
pbp2x 295 I 172 139 80.8 V 93 2 2.2 0.000 I 57 V 6 I 12 V 1
pbp2x 381 K 140 140 100.0 E 125 1 0.8 0.000 K 53 E 10 E 10 K 3
pbp2x 554 E 140 140 100.0 Q 125 1 0.8 0.000 E 52 Q 11 Q 11 E 2
pbp2x 590 A 133 133 100.0 V 132 8 6.1 0.000 A 45 V 18 V 11 A 2
pbp2x 600 E 140 140 100.0 G 125 1 0.8 0.000 E 49 G 11 D 3 G 10 E 2 D 1



E381K substitution No substitution
Mean SEM MIC50 Mean SEM MIC50 P-value

Penicillin 0.24 0.09 0.25 0.05 0.02 0.0625 0.05
Cefuroxime 0.63 0.27 0.5 0.06 0.11 0.025 0.05
Ceftiofur 1.52 1.47 1.0 0.15 0.13 0.025 0.05
Cefquinome 0.23 0.15 0.25 0.03 0.01 0.025 0.05
Cefalexin 0.34 0.22 0.25 0.51 0.29 0.5 0.05


