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Abstract
Sensorimotor synchronization (SMS), the rhythmic coordination of perception and action, is a fundamental human skill that 
supports many behaviors, including music and dance (Repp, 2005; Repp & Su, 2013). Traditionally, SMS experiments have 
been performed in the laboratory using finger tapping paradigms, and have required equipment with high temporal fidelity to 
capture the asynchronies between the time of the tap and the corresponding cue event. Thus, SMS is particularly challenging 
to study with online research, where variability in participants’ hardware and software can introduce uncontrolled latency 
and jitter into recordings. Here we present REPP (Rhythm ExPeriment Platform), a novel technology for measuring SMS 
in online experiments that can work efficiently using the built-in microphone and speakers of standard laptop computers. 
In a series of calibration and behavioral experiments, we demonstrate that REPP achieves high temporal accuracy (latency 
and jitter within 2 ms on average), high test-retest reliability both in the laboratory (r = .87) and online (r = .80), and high 
concurrent validity (r = .94). We also show that REPP is fully automated and customizable, enabling researchers to monitor 
experiments in real time and to implement a wide variety of SMS paradigms. We discuss online methods for ensuring high 
recruiting efficiency and data quality, including pre-screening tests and automatic procedures for quality monitoring. REPP 
can therefore open new avenues for research on SMS that would be nearly impossible in the laboratory, reducing experimental 
costs while massively increasing the reach, scalability, and speed of data collection.
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Sensorimotor synchronization (SMS) is a fundamental 
human skill that involves the temporal coordination of 
rhythmic movement with a predictable external event (Repp, 
2005; Repp & Su, 2013). SMS requires individuals to pre-
cisely integrate visual or auditory perception with motor 
production, supporting a wide range of human behaviors. 
For example, the ability to entrain to an external auditory 
cue plays a key role in musical experiences across human 

cultures (Savage et al., 2015; Jacoby et al., 2021) and has 
been linked to specific genotypes, suggesting an innate 
human sensitivity to rhythm (Niarchou et al., 2021). SMS 
has also been associated with the development of literacy 
skills, such as reading and speech (Carr et al., 2014; Flaug-
nacco et al., 2014; Ladányi et al., 2020; Tierney & Kraus, 
2013), and various neurodevelopmental disorders, including 
attention deficit hyperactivity disorder (Noreika et al., 2013) 
and Parkinson’s disease (Bieńkiewicz & Craig, 2015).

Quantitative research on SMS dates back at least to 1886 
(Stevens, 1886), but its popularity has increased consider-
ably in recent decades (see Repp, 2005; Repp & Su, 2013, 
for reviews). SMS experiments can differ substantially in 
their implementation, using different production modes (e.g., 
finger tapping, clapping, or speaking), different stimulus 
domains (e.g., visual or auditory), and different experimental 
designs, including rate limits (London, 2002), perturbation 
studies (Repp, 2002a), simulated partners (Repp & Keller, 
2008), and transmission chains (Jacoby & McDermott, 2017; 
Ravignani et al., 2016). However, at their core, most SMS 
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experiments consist of a relatively simple procedure: par-
ticipants tap with their index finger to a rhythmic sequence 
of auditory stimuli. This procedure presents a methodologi-
cal challenge: how to measure the asynchrony (or synchro-
nization error) between the time of the tap and the corre-
sponding cue event with high millisecond-level precision. 
To meet this challenge, previous studies have used various 
laboratory-based methods that rely on specialized software 
and hardware. For example, some studies have used external 
hardware to record responses and control auditory feedback 
(e.g., a MIDI percussion pad or keyboard connected to com-
puter software), such as FTAP (Finney, 2001) and Max-MSP 
(Patel et al., 2005; Repp et al., 2005). Researchers have also 
proposed solutions that use the low-level timing hardware of 
Arduino microcontrollers, including TapArduino (Schultz & 
van Vugt, 2016) and TeensyTap (van Vugt, 2020). Another 
popular solution is MatTAP, a MATLAB-based toolbox for 
dedicated data acquisition hardware (Elliot et al., 2009). 
Others have developed an iOS application for tapping exper-
iments that takes advantage of specific hardware in mobile 
Apple devices (Tap-It, Kim et al., 2012). In previous work, 
we have used a simple, low cost, in-lab method that achieves 
high temporal fidelity by simultaneously recording the audio 
stimulus and tapping responses using a standard sound card 
with an audio loopback cable (Elliott et al., 2018; Jacoby 
& McDermott, 2017; see Experiment 2 for a description of 
this method).

Nevertheless, none of these methods are viable for per-
forming SMS experiments over the internet, where research-
ers have very limited control over participants’ hardware 
and software. This lack of experimental control combined 
with the technical demands of SMS tasks makes studying 
SMS with online research a true challenge. In particular, 
SMS experiments performed online, such as tapping on the 
spacebar or mouse in synchronization to an external beat, 
can introduce all kinds of delay in latency and jitter into 
the recorded timestamps (Anwyl-Irvine et al., 2020; Bridges 
et al., 2020). Latency refers both to the time gap between a 
participant pressing a key and the device registering the key-
press, and the time interval between initiation of audio play-
back and the physical start of the sound. It is often related to 
issues concerning scan rates, device drivers, internet connec-
tion, operating system variability, and sound card start-up 
latencies. Jitter is closely related and refers to the variation 
in latency. It can be either introduced in each tapping onset 
or across tapping trials (e.g., operating systems usually pro-
cess each keyboard stroke with different temporal latencies). 
These inaccuracies can be in the order of 60 to 100 ms and 
can vary considerably between platforms, browsers, and 
devices (Anwyl-Irvine et al., 2020). Thus, measuring par-
ticipants' asynchronies in online settings with high precision 
is currently unfeasible.

Another important source of noise in online experiments 
is altered participant behavior compared to laboratory set-
tings (e.g., Clifford & Jerit, 2014). This can be challenging 
in SMS tasks because they usually require participants to 
pay close attention to the task and take a large number of 
trials per session. There is also a higher risk of fraudulent 
responders (Ahler et al., 2019; Crump et al., 2013), includ-
ing both computer “bots” and non-serious respondents, such 
as participants who do not tap at all or tap at a regular rate 
irrespective of the external auditory cue. When performing 
online research on SMS, it is therefore important to analyze 
experimental trials and monitor performance in real time, 
providing feedback to participants and excluding fraudulent 
responders.

Here we present REPP (Rhythm ExPeriment Platform), a 
novel technology for measuring SMS in online experiments 
that can work efficiently using hardware and software avail-
able to most participants online, specifically standard laptops 
with working speakers and microphones. To address core 
issues related to latency and jitter, REPP uses a free-field 
recording approach: the audio stimulus is played through 
the laptop speakers and the original signal is simultane-
ously recorded with participants’ tapping response using the 
built-in microphone (Fig. 1a). The success of this method 
relies on a simple observation: although the initial onset in 
a recording is hard to control due to the interplay between 
the sound card and operating system, once a sound card 
starts recording, it registers all subsequent sound events as 
audio samples encoded with high precision with respect to 
the beginning of the recording. Thus, by using a single audio 
recording to simultaneously capture the stimulus and tap-
ping onsets, we can remove the most significant sources of 
delay in both response and presentation latencies. We then 
apply audio filtering and other signal processing techniques 
to the resulting audio recording to split the different compo-
nents of the recording into separate channels and therefore 
extract the stimulus and tapping onsets with reliable timing. 
Finally, we use custom markers with known temporal loca-
tions to unambiguously identify the position of the tapping 
and stimulus onsets in the audio recording, allowing a precise 
alignment to measure participants' asynchronies. REPP can 
be executed rapidly in real time and is fully customizable, 
enabling researchers to adapt the code to support a wide range 
of SMS paradigms in online and laboratory settings. In this 
paper, we aim to validate REPP in a series of experiments 
while demonstrating how to best implement it in online stud-
ies to ensure high data quality.

This paper continues with an overview of REPP. We 
then present a series of calibration and behavioral experi-
ments demonstrating key aspects of this technology: tem-
poral accuracy (Experiment 1), test-retest reliability and 
concurrent validity in the laboratory (Experiment 2), and 
test-retest reliability in a larger-scale online experiment, as 



Behavior Research Methods	

1 3

Fig. 1   REPP: A robust cross-platform solution for online SMS exper-
iments. a REPP uses a free-field recording approach that can work 
efficiently using standard hardware and software available to most 
online participants. b REPP comprises five main steps. c Example of 
a recording using REPP in a trial of beat synchronization to music. 

REPP uses a unique frequency range for each audio element in the 
recording: metronome (blue), tapping (green), markers (yellow), and 
test channel (red). d Output of the performance analysis after the sig-
nal processing steps, including the number of detected tapping onsets, 
detected markers, and mean and SD of asynchrony
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well as methods for ensuring high data quality while mini-
mizing costs (Experiment 3). Finally, we discuss the limita-
tions of REPP and implications for future work on SMS. We 
release REPP as a free and open-source framework along-
side the publication of this paper. Code available in https://​
gitlab.​com/​compu​tatio​nal.​audit​ion/​repp

Overview: REPP

REPP can be organized around five main steps: (i) stimulus 
preparation, (ii) recording phase, (iii) onset extraction, (iv) 
onset alignment, and (v) performance analysis (see Fig. 1b).

REPP takes two inputs: an audio file with the stimulus 
(e.g., a metronome or a music clip) and a list of the cor-
responding stimulus onsets. Prior to performing an experi-
ment, the stimulus must be prepared to be used efficiently 
in the subsequent steps. First, we filter the stimulus to avoid 
any overlap with the frequency range that will be occupied 
by participants' tapping responses (e.g., 50–500 Hz). Sec-
ond, we add custom markers with known temporal locations 
to the beginning and end of the stimulus, shifting the cor-
responding stimulus onsets accordingly (see Fig. 1c; yel-
low boxes). These markers are critical to unambiguously 
identify the position of the tapping and stimulus onsets in 
the audio recording, enabling their precise alignment. Thus, 
we designed the markers to be robustly detected across par-
ticipants’ hardware and software, including cases of noise-
cancellation technologies and noisy recordings. In particular, 
we generate the markers’ sound by combining a short burst 
of filtered white noise (50%, filtered to 200–340 Hz) and 
pure tones (50%, also filtered to 200–340 Hz), and play the 
resulting sound at nearly maximum volume (see Custom 
Markers in supplementary information for technical details 
on the markers’ generation procedure).

In the recording phase, REPP uses a free-field recording 
approach: the prepared stimulus is played through the laptop 
speakers and the resulting audio signal is simultaneously 
recorded along with the participant’s tapping response using 
the built-in microphone (see Fig. 1a). This method returns an 
audio file where both the audio stimulus and tapping onsets 
are mixed in the same channel. The next step (i.e., onset 
extraction) therefore applies signal processing techniques to 
split the mono recording into separate channels. REPP uses 
a unique frequency range for each relevant audio element in 
the recording, including a marker range and a tapping range 
(see Fig. 1c). The tapping range is determined by the acous-
tic spectrum of the sound produced by participants’ mode of 
tapping. In our procedure, participants tap with their index 
finger on the surface of their laptop, producing a crisp sound 
with a significant part of its energy between 80 and 500 
Hz. Since we have previously filtered the audio stimulus to 
avoid any overlap with this tapping range, we can efficiently 

extract the tapping signal from the raw recording by using 
bandpass filters with cutoff frequencies set to these ranges.

Similarly, we use a specific range to filter and identify the 
marker locations (i.e., the same range used to generate the 
marker sound, i.e., 200–340 Hz). In addition, to enhance the 
markers’ extraction procedure, we compare the amplitude 
of the filtered markers’ channel against a test channel set to 
be one octave below the markers’ range, i.e., 100–1070 Hz 
(Fig. 1c; orange boxes). The test channel is used to compute 
an estimate of the temporal locations that contain the mark-
ers. We then use these estimates to boost the markers’ signal 
exactly in temporal locations where we found more energy 
in the markers’ frequency range than in the test frequency 
range. The rationale here is that tapping sounds will have 
similar energy within the markers and test channels, whereas 
marker sounds will have all energy in the markers channel 
and nearly no energy in the test channel. Thus, by using 
this principle, we can be sure that the detected signal corre-
sponds to the markers and not to other sources of noise (e.g., 
tapping signal or background noise). In particular, the result-
ing signal has enhanced the markers’ amplitude, which helps 
combat signal attenuation as a result of noise cancelation 
and noisy backgrounds, effectively increasing the chance 
of detection only in those areas containing the markers (see 
Custom Markers in supplementary information for techni-
cal details on the markers’ extraction procedure, including 
Figure S7 with examples of successful and failed trials). 
Next, REPP applies a simple onset extraction algorithm 
to the filtered markers and tapping channels to detect all 
samples exceeding a relative threshold (Elliott et al., 2018), 
returning a vector of extracted tapping onsets and extracted 
marker onsets.

The last challenge consists of aligning the extracted taps 
to their position in the audio stimulus. Since the sound card 
guarantees that all events are recorded with high precision 
with respect to the beginning of the recording, we can use 
the first detected marker as a single frame of reference to 
align the stimulus and tapping response. We use the other 
markers to assess REPP’s timing performance in each trial 
and exclude participants with incompatible hardware or soft-
ware (see Failing Criteria in supplementary information). 
For example, we calculate the markers’ timing error by sub-
tracting the known markers’ locations against the detected 
markers’ location. This metric is critical to ensure that the 
timing accuracy of our technology remains high in all trials. 
Importantly, by relying on the markers’ accurate timing, we 
do not need to extract the stimulus onsets from the recorded 
signal, which can be challenging in online studies due to 
noise-cancellation technologies and interference from other 
audio elements (e.g., participants' tapping response and 
background noise). Instead, we use the list of stimulus onsets 
provided in the stimulus preparation step and, therefore, 
do not need to extract the onsets from the recorded audio 

https://gitlab.com/computational.audition/repp
https://gitlab.com/computational.audition/repp
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stimulus, minimizing any interference with other elements 
in the signal processing pipeline. This method allows us to 
support SMS experiments using “virtual” onsets that are not 
clearly defined in the audio signal, such as when working 
with music (Colley et al., 2018; Dannenberg & Wasserman, 
2009; Patel et al., 2005; Repp, 2002b). Namely, we can use 
the list of preregistered onset lists even in the absence of any 
physical onset in the stimuli. The output of this step is a list 
of realigned stimulus onsets and realigned tapping onsets. 
Finally, we calculate several metrics to assess the perfor-
mance of REPP and measure participants' tapping accuracy, 
including the mean and standard deviation of the tap-stim-
ulus asynchrony, percentage of detected taps, percentage of 
detected markers, and markers’ timing error (see Fig. 1d).

Validation experiments

Three experiments were conducted to validate REPP and 
show how it can be implemented in online experiments to 
produce high-quality data. In Experiment 1, we assess the 
timing accuracy of REPP using an independent calibration 
system. In Experiment 2, we assess REPP’s test-retest reli-
ability and concurrent validity when measuring individual 
differences in SMS in the laboratory. Finally, in Experiment 
3, we assess the test-retest reliability of REPP with a larger 
sample of participants recruited online and also provide sug-
gestions to reach high data quality while minimizing recruit-
ing costs. See supplementary information for additional 
methods and demographic information. All datasets are
available in an OSF repository: https://​osf.​io/​r2pxd/

To measure tapping performance, we followed common 
practices established in previous tapping studies (Repp, 
2005). Asynchronies were defined as An = Rn – Sn, where Rn 
denotes a response onset and Sn denotes a stimulus onset in a 
given tapping trial. We then computed the mean asynchrony 
and standard deviation (SD) of asynchrony. Throughout the 
paper, we report the SD of the asynchrony, as it provides 
a more consistent measurement of tapping accuracy than 
mean asynchrony. Typically, the mean asynchrony is nega-
tive due to a human tendency to anticipate taps by a few tens 
of milliseconds when synchronizing to an external cue event 
(Repp, 2005). Mean asynchrony is also more influenced by 
tapping tasks, production modality, and auditory feedback 
biases compared to the SD of asynchrony. However, we rep-
licated the main results reported in the behavioral experi-
ments (Experiment 2 and 3) when using mean asynchrony 
(see Figure S8 in supplementary information). Furthermore, 
we repeated the same analyses using alternative (and more 
sophisticated) measures of SMS (see Trialling Alternative 
Measures of SMS in supplementary information). These 
included vector length using circular statistics (Fisher, 
1993), a leading model of SMS proposed by Vorberg and 

Wing (Vorberg & Wing, 1996; Vorberg & Schulze, 2002), 
including the three hypothesized components (i.e., time-
keeper noise, motor noise, and error correction), and lag-1 
autocorrelation of the asynchrony and inter-tap interval as 
alternative measures of error correction.

Experiment 1: Timing accuracy

This experiment assessed the timing accuracy of REPP by 
comparing its performance with a ground-truth recording 
obtained from an independent calibration system. The exper-
iment was divided into three parts. Part 1 and 2 were large-
scale validation experiments aimed to extensively test the 
timing accuracy of the audio stimulus and tapping response, 
respectively. Part 3 was smaller in terms of the number 
of data points but aimed to test all components of REPP 
together (i.e., markers, stimulus, and tapping response).

REPP’s timing performance was tested in the laboratory 
against an independent calibration system. This allowed us 
to measure the cue events (either tapping or stimulus onsets) 
separately in the two systems, providing an upper bound on 
inaccuracies of both REPP and the independent calibration 
system. Based on an established method previously used in 
our work (Jacoby & McDermott, 2017), we used a calibra-
tion system that offers a simple solution for measuring the 
ground-truth recording of REPP (see Fig. 2a). We tested 
two variants of this system: one where participants tap on a 
tapping sensor (part 2) and another where participants tap on 
the surface of the laptop (part 3). In general, the independent 
calibration system uses two external synchronized devices to 
record the stimulus and tapping signals as soon as they are 
produced by the laptop speakers and finger tap, respectively. 
Since both the stimulus and tapping signals produce a highly 
precise sound wave, we can then apply a simple onset extrac-
tion algorithm to precisely identify the location of the onsets 
at the earliest possible moment. To record the audio stimulus 
(both the markers and stimulus onsets), we directed a Shure 
SM58 microphone to the laptop speakers being tested. To 
record the tapping onsets, we used a custom-made tapping 
sensor device. The sensor consisted of a soft pad with ear-
buds installed inside (Apple EarPods). The earbuds offer a 
low-sensitivity microphone that is well-suited to precisely 
detect touch on the surface of the sensor while being insen-
sitive to external noises and minimizing auditory feedback. 
The tapping sensor was placed next to the laptops’ built-
in microphone to capture the sound of the finger tapping. 
Both the microphone and tapping sensor were connected to 
a Focusrite Scarlett 2i2 USB sound card to record the signal 
on a separate MacBook computer running Ableton Live 10 
Software, saving the resulting recording as a wave file.

To validate the timing accuracy of the audio stimulus 
(part 1), REPP was programmed to produce 100 isochronous 

https://osf.io/r2pxd/
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metronome clicks at four different inter-onset intervals 
(IOIs): 250 ms, 500 ms, 750 ms, and 1000 ms. No finger 
taps were produced for this part and only the audio stimulus 
was recorded using the external microphone (Fig. 2a). To 
validate the timing accuracy of the tapping response (part 
2), the same trials were produced and a researcher tapped in 
time to the clicks, resulting in four trials of 100 taps at four 
different IOIs: 250 ms, 500 ms, 750 ms, and 1000 ms. The 
tapping response was recorded using the tapping sensor and 
the audio stimulus was recorded using the external micro-
phone (Fig. 2a). In the third part, to validate the timing accu-
racy of all components of the system together (i.e., markers, 
stimulus, and tapping response), REPP was programmed to 
produce 20 isochronous metronome clicks at two IOIs: 500 
ms and 1000 ms. This time, the researcher tapped on the 
surface of the laptop in anti-phase, so the stimulus and tap-
ping onsets could be unambiguously distinguished in the 
recording. Both stimulus and tapping onsets were recorded 
with the same external microphone. The recording was then 
separated into three channels (i.e., markers, stimulus, and 
tapping response) and manually cleaned to only contain 

the corresponding elements in each channel (e.g., stimulus 
onsets in the stimulus channel, tapping onsets in the tapping 
channel).

The results of the timing accuracy analysis in all valida-
tion parts are reported in Table 1. The average latency and 
jitter of REPP was within 2 ms and similarly accurate for 
all components of the system: markers, audio stimulus, and 
tapping response. Timing accuracy was computed as the 
difference between the time the stimulus or tapping onsets 
were produced (measured using the external calibration 
system) and the time they were detected by REPP, using 
the first detected marker as the single frame of reference 
(Fig. 2b). We used two alternative measurements to calcu-
late timing accuracy: marker-to-stimulus or marker-to-tap 
(i.e., the interval between the first marker onset and each 
subsequent onset in the audio or tapping signal), and inter-
onset interval (i.e., the interval between onsets). Figure 2c, 
d shows the distribution of the time difference between the 
stimulus onsets (part 1) and tapping onsets (part 2) measured 
in the two systems, confirming that REPP’s timing accuracy 
is high and consistent.

Fig. 2   Results of Experiment 1: Timing accuracy. a External cali-
bration system used to measure REPP’s timing accuracy. b Example 
of the beginning of a 500 ms IOI trial recorded in the two systems, 
showing the three marker sounds placed at the beginning of the 
stimulus and the two first metronome clicks. The figure illustrates 
the two alternative measures to assess timing accuracy: the differ-
ence between the first marker and the stimulus (marker-to-stimulus), 
and the inter-onset interval. Note that the calibration system has two 

input channels (external microphone and tapping sensor) but we com-
bine them in the figure for simplicity. c Distribution of the difference 
between the time the stimulus onsets (metronome clicks) were pro-
duced and the time they were detected by REPP. N refers to the total 
number of tested onsets. d Distribution of the difference between the 
time the physical taps were produced and the time they were detected 
by REPP. N refers to the total number of tested onsets
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Experiment 2: Reliability and concurrent validity

Experiment 1 showed that REPP can measure tapping and 
stimulus onsets with high temporal accuracy. In Experiment 
2, we aimed to examine whether REPP can reliably meas-
ure derived psychological quantities such as a particular 
individual’s tapping accuracy. Specifically, we assessed the 
test-retest reliability of REPP and compared its performance 
against a completely independent method: a well-established 
method previously used in the laboratory to measure SMS 
with high precision (Elliot et al., 2018).

To assess test-retest reliability, the same group of partici-
pants (N = 20) performed a short battery of tapping tasks 
two times in each method, using the following sequence: 
method 1 (pre), method 2 (pre), method 1 (post), method 2 
(post). Half of the participants started the experiment using 
REPP, whereas the other half started using the independent 
in-lab method. To assess concurrent validity, we correlated 
the participants’ overall tapping performance in the two 
methods. Participants completed the experiment in a quiet 
testing room with two tables, one for each method.

The independent in-lab method consisted of a loop-back 
setup to measure participants’ asynchronies with high tem-
poral fidelity (see Fig. 3a). This method has been extensively 
used in the laboratory and field research on SMS (Elliot 
et al., 2018; Jacoby & McDermott, 2017; Jacoby et al., 
2021). The loop-back setup consists of a cable connected to 
a sound card to simultaneously record the input signal from 
the headphones and the output signal from a tapping sensor 
with nearly zero latency. We used professional headphones 
(i.e., Sennheiser HD 280 Pro headphones) to deliver the 
stimulus, and the custom-made tapping sensor described in 
Experiment 1 to record participants’ tapping response with 
high precision. Both the headphones and tapping sensor 
were connected to an external sound card (Focusrite Scar-
lett 2i2 USB) using the loop-back setup described above 
(Fig. 3a). The sound card was connected to a MacBook via 

USB. The tapping tasks were implemented using MATLAB, 
mirroring the experimental procedure used in REPP. To 
detect the stimulus and tapping onsets at the earliest pos-
sible moment, we used the same onset extraction algorithm 
described in Experiment 1 (Jacoby & McDermott, 2017).

The materials and experimental procedure were identi-
cal in the two methods (see Instructions in supplementary 
information). Before starting the main tapping task, partici-
pants performed a practice phase to get familiar with each 
method (see Practice Phase in supplementary information). 
The main tapping tasks consisted of a short battery of tap-
ping trials (approximately 8–10 minutes long) using two 
common paradigms in the tapping literature (Repp, 2005; 
Repp & Su, 2013): isochronous tapping and beat synchro-
nization to music. The isochronous tapping consisted of four 
30-second-long trials of isochronous tapping to a metronome 
sound (two with IOIs of 800 ms and two with the IOIs of 
600 ms). The presentation order was fixed, using the fol-
lowing sequence: 800 ms, 600 ms, 800 ms, and 600 ms. The 
beat synchronization task consisted of four 30-second-long 
excerpts of music from two distinct music genres with dif-
ferent style, tempo, and tapping difficulty, also with fixed 
order of presentation (see Beat Synchronization Task in sup-
plementary information).

The results of Experiment 2 are plotted in Fig. 3. Tap-
ping performance was measured using the SD of the tap-
stimulus asynchrony (see supplementary information for 
the results of the same analysis using alternative measures 
of SMS). To examine test-retest reliability, an aggregated 
performance score was calculated for each participant in 
each test (pre and post) and method by averaging their 
tapping performance in the two tapping tasks (i.e., isoch-
ronous tapping and beat synchronization to music). The 
test-retest correlation in REPP was high (r = .87; ρ = .81) 
and similar to the one achieved by the independent loop-
back setup (r = .89; ρ = .83; Fig. 3a). We further examined 
test-retest reliability by calculating the intraclass correla-
tion coefficient (ICC; Shrout & Fleiss, 1979). Following 

Table 1   Timing accuracy results

“Part” refers to each validation experiment: part 1 (only stimulus), part 2 (only tapping response), and part 3 (stimulus and tapping response 
together). N refers to the total number of tested onsets.

Part N Min-max Latency (SD) Min-max Latency (SD)
Relative to first marker Inter-onset interval

1 + 2 Markers 40 −.08 to 4.9 1.85 (1.76) - -
1 Stimuli 400 −1.3 to 4.9 1.15 (1.61) −4 to 1 .02 (.39)
2 Tapping 400 −2.8 to 5.9 −.2 (1.37) −5 to 8 .03 (.13)
3 Markers 10 0 to 1 .58 (.48) - -
3 Stimuli 40 −.3 to .9 −.03 (.23) 0 to 1 .04 (.17)
3 Tapping 40 −3.1 to 1 −1.04 (.89) −4 to 2 −.02 (1.13)
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the recommendations of Koo and Li (2016), ICC estimates 
and their 95% confidence intervals were calculated based 
on single-rating, absolute-agreement, 2-way mixed-effects 
models (ICC3). We found a good ICC in both REPP (ICC 
= .86, 95% [.72, .93]) and the loop-back setup (ICC = 
.89, 95% [.77, .95]). This ICC is comparable to the values 
reported in previous work assessing the test-retest reli-
ability of similar rhythmic production tasks (Bégel et al., 
2018). Moreover, an ANOVA confirmed that participants’ 
mean tapping performances were similar across test-retest 
conditions and tapping tasks (all p-values > .05). Finally, 
we found that REPP has a high concurrent validity (r = 
.94 and ρ = .89), as indicated by the correlation between 
the overall tapping performances (averaging over both test 
and retest) measured by the two methods (Fig. 3b). In con-
clusion, the converging evidence of these analyses is that 
REPP produces reliable estimates to measure individual 
differences on SMS in a way that is consistent with the 
results produced by a completely independent method.

Experiment 3: Online demonstration

Having demonstrated that REPP achieves high temporal 
accuracy (Experiment 1) and test-retest reliability in the 
laboratory (Experiment 2), this experiment aimed to show 
that the technology can work in practice in an online setup 
that is similar to a large-scale data collection process. We 
also provide suggestions to ensure high data quality while 
enabling realistic data collection, in particular concerning 
pre-screening tasks and feedback based on recording quality 
and tapping performance. Participants were recruited from 
Amazon Mechanical Turk (see Participants in supplemen-
tary information) and performed the same battery of tapping 
tasks used in Experiment 2. In a total of six experimental 
batches (8 to 10 hours each), we collected valid tapping data 
for 226 participants.

We used two pre-screening tasks to ensure high data 
quality while minimizing recruiting costs (see Pre-screen-
ing Tests in supplementary information). First, we used an 
attention test to determine whether participants were pay-
ing attention to the instructions. Participants who failed the 
attention test were excluded from the experiment. Second, 

Fig. 3   Results of Experiment 2: reliability and concurrent validity. a 
Loop-back setup: independent in-lab method using a loop-back cable 
to measure participants’ tapping asynchronies with high temporal 

fidelity (Elliot et al., 2018). b Test-retest reliability in the two meth-
ods. c Concurrent validity: correlation between the overall tapping 
performance measured in the two methods
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Fig. 4   Results of Experiment 3: Online demonstration. a Test-retest 
reliability of REPP when measuring participants’ tapping perfor-
mance online. b Convergent validity: correlation between overall 
tapping performance and participants’ musical training. c Estimated 

markers’ error in Windows and macOS computers. N indicates the 
number of participants using each operating system, but we plot the 
data in all tapping trials (2814 in total)

we used a recording test to determine whether participants 
were using hardware and software that were not compat-
ible with REPP, such as malfunctioning speakers or micro-
phones, or the use of strong noise-cancellation technologies. 
Participants who did not pass the recording test were also 
excluded from the experiment. To assess the efficacy of the 
recording test in comparison to the attention test on its own, 
we only used the recording test in half of the participants.

Before the main tapping tasks, participants were 
instructed on several key aspects concerning the proper 
functioning of REPP, including instructions about the tech-
nical requirements and tapping procedure for the experi-
ment, a volume calibration test, and a tapping calibration 
test (see Instructions in supplementary information). Next, 
participants undertook a practice phase consisting of four tri-
als of isochronous tapping to a metronome sound (see Prac-
tice Phase in supplementary information). After completing 

the practice phase, the four audio recordings were analyzed 
in real time using a failing criteria designed to identify and 
fail trials where participants used incompatible hardware 
and software, or where participants did not tap as indicated 
in the instructions (see Failing Criteria in supplementary 
information). Those participants who failed two or more 
trials were excluded from the experiment. After the prac-
tice phase, participants started with the main experimental 
task, which consisted of the same battery of tapping tasks 
employed in Experiment 2 (i.e., four trials of isochronous 
tapping and four trials of beat synchronization to music, 30 
seconds long each). Participants repeated the same battery 
of tapping tasks a second time in order to measure test-retest 
reliability.

The results of Experiment 3 are visible in Fig. 4 (see sup-
plementary information for the same analysis using alterna-
tive measures of SMS). For measuring test-retest reliability, 
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we only consider participants who provided at least one valid 
tapping trial for each stimulus in each tapping task and test-
retest condition (N = 166). Test-retest analyses were performed 
using the same procedure described in Experiment 2. Results 
indicated a high test-retest correlation when using REPP to 
measure participants’ tapping performance online (Fig. 4a; r 
= .80 and ρ = .81), also confirmed by an intraclass correlation 
analysis (ICC = .82, 95% [.77, .86]). Moreover, participants’ 
tapping performance was similar across test-retest conditions 
in the two tapping tasks, as indicated by two paired-samples 
t-tests with test condition as the independent variable and tap-
ping performance in each tapping task as dependent variables 
(all p-values > .05). As a measure of convergent validity, we 
further examined whether participants’ tapping performance 
was related with their self-reported levels of musical training. 
We calculated an aggregated tapping performance score (aver-
aging over test and retest in the two tapping tasks) for all partici-
pants who provided good tapping (N = 226). Musical training 
was measured using a reduced version of the Gold-MSI musical 
training factor (Müllensiefen et al., 2014). Replicating a recur-
ring finding in the literature (e.g., Niarchou et al., 2021; Repp, 
2010; Thompson et al., 2015), we found a significant negative 
correlation (r = -.32, p < .001) between tapping variability and 
self-reported musical training (Fig. 4b), indicating that partici-
pants with more musical training were better at synchronizing 
to an external beat. To explore the robustness of our technology 
across operating systems and laptop models, we compared the 
markers’ detection accuracy (i.e., the delay between the known 
marker locations and the detected marker onsets) across the 
two most common operating systems, Windows and macOS 
(Fig. 4c). Overall, trials recorded in macOS computers achieved 
slightly better temporal accuracy (M = 1.48, SD = .68) than tri-
als recorded in Windows (M = 1.74, SD = .85), t(2812) = 9.36, 
p < .001. A small difference in this direction is not surprising: 
macOS computers are typically better equipped for delivering 
sound and recording audio than Windows computers, which 
also tend to exhibit greater variability in hardware.

Discussion

SMS is an active area of research with a long history of tapping 
experiments performed in the laboratory (Repp, 2005; Repp 
& Su, 2013). However, it currently lacks a robust method to 
precisely measure participants’ asynchronies in online experi-
ments. In this paper, we presented REPP, a cross-platform 
solution for online SMS experiments that achieves high tempo-
ral accuracy and reliability while also being practical in terms 
of large-scale data collection. We release this technology as a 
free and open-source framework alongside this paper.

We validated REPP in three experiments. We first dem-
onstrated that it achieves high temporal accuracy using 
an independent calibration system (Experiment 1). Based 

on the ground-truth recording, we estimated the average 
latency and jitter of REPP to be within 2 ms and similarly 
accurate for all elements in the system (i.e., markers, audio 
stimulus, and tapping response). In a laboratory experiment 
(Experiment 2), we then compared the test-retest reliability 
of REPP with a completely independent method that uses 
specialized equipment (i.e., a loop-back setup) to measure 
SMS with optimal temporal fidelity. We found that our tech-
nology achieves a high test-retest reliability (r = .87, ρ = 
.81, ICC = .86) that is equivalent to the reliability obtained 
by the independent in-lab method (r = .89, ρ = .83, ICC 
= .89). By correlating the overall tapping performance 
measured in the two methods, we also found that REPP has 
a high concurrent validity (r = .94 and ρ = .80). Finally, 
we showed that REPP can work in practice in an online 
setup that is similar to a large-scale data collection process 
(Experiment 3). In particular, we confirmed that REPP has 
a high test-retest reliability using a larger sample of par-
ticipants recruited online (N = 166; r = .80, ρ = .81, ICC 
= .82). We also provided suggestions of tapping instruc-
tions and pre-screening tests to ensure high data quality in 
online experiments while minimizing recruitment costs (see 
supplementary information). Together, these experiments 
demonstrate that our technology is well-equipped to support 
a wide variety of SMS experiments using standard hardware 
and software available to most online participants.

A core aspect of REPP is the ability to analyze partici-
pants’ recordings in real time, making it possible to monitor 
experiments online and provide feedback almost instantly. 
We used a software testing tool1  to reliably estimate the 
speed of processing of this technology under different analy-
sis conditions (for each condition, we repeated the same 
analysis a thousand times)2. We found that running the 
analysis when plotting is disabled leads to the fastest per-
formance. For example, the average running time (Q1–Q3) 
to analyze a 15-second-long recording is 0.66 seconds 
(0.64–0.67), whereas the average running time (Q1–Q3) 
for a 30-second-long recording is 1.46 seconds (1.42–1.49). 
When plotting is enabled (generating and saving plots for 
each analysis), the average running time (Q1–Q3) is 3.84 
seconds (3.75–3.89) for a 15-second-long recording and 
5.55 seconds (5.29–5.81) for a 30-second-long record-
ing. This is mainly due to the slow implementation of the 
python package Matplotlib3 that we used for plotting. In case 
this is important, experimenters can avoid plotting (as it is 
only used for debugging) or consider implementing a more 

1  https://​pypi.​org/​proje​ct/​pytest-​bench​mark/
2  We used a MacBook Pro (macOS Catalina version 10.15.7), with 
an Intel processor 2.3 GHz 8-Core Intel Core i9, and Python 3.9.4.
3  https://​matpl​otlib.​org/

https://pypi.org/project/pytest-benchmark/
https://matplotlib.org/
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efficient plotting library (such as VisPy4 or PyQtGraph5). 
Overall, these results show that REPP is suitable to process 
participants’ recordings in real time, enabling researchers 
to filter participants based on performance or provide trial-
to-trial feedback. The ability to rapidly process participants’ 
performance is also crucial to enable more complex SMS 
paradigms in online settings, such as iterated tapping exper-
iments where new stimuli are generated on the fly based 
on previous tapping responses. In Jacoby et al. (2021), for 
example, we successfully adapted an iterated tapping para-
digm using REPP in  a large-scale online tapping experiment 
conducted in the US, India, and Brazil.

REPP currently has some limitations. First, it does not 
support all functionalities that are offered in many in-lab 
methods (e.g., FTAP, Max-MSP, or MatTAP). For exam-
ple, REPP currently does not support real-time response 
feedback (Mates & Aschersleben, 2000; Finney & Warren, 
2002). A possible solution would be to play the real time 
feedback with a JavaScript audio process; this feedback 
may have compromised accuracy, but at least the feedback 
signal could be recorded and monitored with a variant of 
our technology. Developing this approach would however 
require significant additional work. Second, REPP currently 
only works with laptop speakers. We see great potential in 
extending our technology to mobile devices and tablets as 
well. This would not only make REPP more accessible, but 
it would also open the possibility to run SMS experiments 
while in motion, such as walking or dancing. Combining 
REPP with features available in most mobile devices, such 
as multi-touch screens or accelerometers, can also enable 
new ways to collect data and modes of interaction. Third, 
REPP relies on a stimulus preparation step that filters the 
audio stimulus to remove lower frequencies that would oth-
erwise interfere with other aspects of the signal process-
ing pipeline, such as the analysis of participants’ tapping 
response. This procedure decreases the perceived quality of 
complex auditory stimuli, such as music, and it could there-
fore compromise its ecological validity. We encourage future 
research to test this in the lab, for example, by comparing 
participants’ tapping accuracy in a beat synchronization task 
using music stimuli filtered at different frequency ranges. 
Nevertheless, it is worth noting that in the two behavioral 
experiments conducted here we did not receive any com-
plaints from participants regarding the quality of the music 
stimuli. More importantly, participants’ tapping performance 
in the online beat synchronization task (using filtered music) 
was within an expected range (Experiment 2, N = 166, SD 
of asynchrony = 42.68; SD = 15.82) and similar to the their 
performance in the online isochronous task tapping using 

an unfiltered metronome sound (Experiment 2, N = 166, SD 
of asynchrony = 40.68; SD = 11.98), also supported by a 
large correlation between participants’ tapping performance 
in the two tasks (r = .58, ρ = .59, all p-values < .001). This 
suggests that the filtering step does not drastically impair 
participants ability to synchronize to a musical beat when 
using REPP in online SMS experiments.

Moreover, we learned that collecting good tapping data 
over the internet can necessitate a high exclusion rate, at 
least when using a large-scale recruiting strategy via Ama-
zon Mechanical Turk. In Experiment 3, for example, a total 
of 727 participants began the online task. This includes any-
one who accepted the experiment regardless of their inten-
tions to take the task seriously or whether they met the tech-
nical requirements to provide good tapping data. Thus, we 
used a practice phase to familiarize participants with the task 
and exclude cases who could not provide good tapping data 
in the majority of trials. Note that we used relatively strict 
failing criteria to exclude trials based on whether the signal 
could be correctly recorded and whether participants pro-
duced a minimally acceptable number of tapping responses 
(see Failing Criteria in supplementary information). A total 
of 226 participants (31%) passed the practice phase and were 
able to provide good tapping data. The remaining 483 par-
ticipants (69%) were excluded from the experiment and com-
prised a mix of fraudulent participants (e.g., computer bots 
or non-serious responders) and participants that did not meet 
the technical requirements of REPP, such as poor internet 
connection or incompatible hardware and software. Com-
mon sources of failure included participants’ behavior, such 
as not tapping at all, using desktop computers without built-
in microphones, or performing the experiment with head-
phones instead of the laptop speakers. We also noticed that 
many participants did not follow the instructions to eliminate 
background noise, such as music or speaking, resulting in 
noisy recordings. An additional problem was the usage of 
remote desktops, which may be employed by some partici-
pants to alter their geographical reported location. Since the 
remote desktop will open a microphone that is not physically 
connected to the computer of the participant, the technology 
is not able to record any signal. Furthermore, there were 
several cases where the technology failed due to laptops with 
low quality or malfunctioning speakers. The same occurred 
in laptops with strong noise-cancelling technologies, where 
the marker sounds are suppressed and cannot be detected in 
the signal. This last issue requires further investigation, as in 
theory it is possible to turn off noise cancellation manually 
in most devices, but the way to do so changes in different 
computer models and brands.

Naturally, the more demanding the online tasks, the 
higher the exclusion rate. In previous work, we found exclu-
sion rates of only about 10% in Amazon Mechanical Turk 
experiments with minimal technical requirements, such as 

4  https://​vispy.​org/
5  https://​www.​pyqtg​raph.​org/

https://vispy.org/
https://www.pyqtgraph.org/
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when using visual rating scales in the browser (Harrison 
et al. 2020). However, the exclusion rate increases when 
the experiment becomes technically more demanding. For 
example, a pre-screening test that requires participants to 
wear headphones to perform an auditory perception task 
produces an estimated exclusion rate of 36% (Wood et al., 
2017), whereas performing online research with computer 
webcams can necessitate an exclusion rate of about 40% 
(Tran et al., 2017). In language production experiments that 
require participants to record themselves using a microphone 
to extract voice onset latencies, the exclusion rate can be 
around 60% (Vogt et al., 2021). Thus, the exclusion rate 
of REPP (~60–70%) is not unexpected when using a large-
scale recruiting strategy via Amazon Mechanical Turk, as it 
is technically more demanding than previous paradigms. In 
particular, REPP can only work in SMS experiments when 
the marker sounds can be detected with high millisecond-
level precision and participants take the task seriously (i.e., 
tapping with their index finger on the surface of their laptop 
in time to an auditory stimulus). A high exclusion rate is not 
particularly problematic when using online recruitment sys-
tems with large pools of active participants, but other modes 
of recruiting may require different strategies, such as when 
recruiting participants from special populations or using 
internal university systems. In these cases researchers can 
significantly reduce exclusion rates by using more relaxed 
failing criteria and taking more time to support participants 
and ensure they follow the instructions and meet the techni-
cal requirements. REPP can also be used in laboratory stud-
ies and field research with an exclusion rate of effectively 
0%, as shown in Experiment 2.

Since exclusion rates may be high when using technical 
demanding tasks in online recruiting systems, such as Ama-
zon Mechanical Turk or Prolific, we strongly recommend the 
use of pre-screening tests to determine whether participants 
will take the experiment seriously and meet the technical 
requirements to provide good tapping data. In Experiment 3, 
we analyzed the efficacy of two pre-screening tests, an atten-
tion test and a recording test (see supplementary information 
for a full description). We defined the exclusion rate of the 
pre-screening tests in terms of the proportion of participants 
who successfully passed the practice phase. Accordingly, 
we found that when using both pre-screening tests, 68% of 
the participants were able to pass the practice phase and 
deliver good tapping data in the experiment. In contrast, 
when only using an attention test without the recording test, 
the percentage was 31%. Thus, adding a recording test at the 
beginning of the experiment reduces the costs of recruiting 
participants online by nearly half. Such practices can also 
help maintain a good reputation in the online community; 
for example, both the attention test and recording test help 
eliminate a large proportion of the failure rate that comes 
from fraudulent participants, including computer bots and 

non-serious respondents (Crump et al., 2013). In addition 
to pre-screening tests, we encourage the use of data quality 
checks to monitor participants’ performance throughout the 
experiment. REPP computes several metrics to check the 
quality of a given recording, such as the number of detected 
markers or the time error between the known locations of the 
markers and the detected onsets, which provides a reliable 
measure of timing accuracy at the trial level. We can also 
know how well participants are tapping by computing the 
ratio between the number of detected onsets and the num-
ber of stimulus onsets. Using these metrics, we can provide 
feedback each time a participant completes a tapping trial, 
indicating whether their recording quality is sufficiently 
good and if it is not, suggesting ways to improve it for the 
subsequent trials (we apply this strategy in the practice 
phase of Experiment 3). We encourage future research to 
explore these options further in order to increase recruit-
ment efficiency, such as providing more detailed feedback 
after tapping trials or nudging participants online to meet 
the technical requirements.

It is worth noting that REPP can be easily extended to 
support online experiments requiring precise timing of tap-
ping response without any synchronization to an external 
stimulus. For example, to perform unconstrained finger tap-
ping paradigms where participants are not given an external 
stimulus but instead are asked to tap at their preferred rate 
(e.g., Collyer et al., 1994), or imitation experiments in which 
participants replicate a rhythm from memory (e.g., Ravig-
nani et al., 2016). In these cases, researchers can skip the 
stimulus preparation and onset alignment steps, and simply 
use the parts of the pipeline that are directly related to the 
onset extraction procedure. We have successfully explored 
these options using a simplified method for several experi-
ments that do not require stimulus-response synchronization, 
and support this variant in the code package published with 
this paper. Another simple extension of REPP is from finger 
tapping to other modes of production, including clapping, 
tapping on a table, or speech. We noticed that our technology 
works well for clapping or tapping on a table, but adapting 
it to spoken utterances may require a modification to the 
parameters of the signal processing pipeline (see Experiment 
6 in Jacoby & McDermott, 2017). Potentially, our technol-
ogy could also be used to support online experiments requir-
ing precise timing in domains other than rhythm perception 
and production. This includes any experiment measuring 
reaction times to auditory stimuli, such as auditory lexi-
cal decision tasks (e.g., Blumstein et al., 1982; Goldinger, 
1996), priming paradigms using spoken words (e.g., Radeau 
et al., 1998), sounds (e.g., Schön et al., 2010), or music (e.g., 
Bharucha & Stoeckig, 1986, 1987), and experiments on tem-
poral processing using time interval production tasks (e.g., 
Jazayeri & Shadlen, 2010).
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We hope REPP plays a major role in improving the effi-
ciency, scalability, and reach of SMS research. Finding new 
ways to allow online data collection has become particu-
larly important during the COVID-19 pandemic, with many 
researchers unable to run experiments in the laboratory. Sup-
porting online experiments on SMS will also significantly 
reduce the time and resources that researchers usually spend 
to recruit and test participants in the laboratory. For instance, 
recruiting 20 participants in the laboratory (Experiment 2) 
took us approximately one week of work, whereas in the 
online version of the same experiment (Experiment 3) we 
recruited 20 valid participants in about 2 hours. Importantly, 
online experiments allow for the collection of significantly 
larger and more diverse samples of participants, both demo-
graphically and culturally. This is crucial for moving away 
from the relatively restricted and small samples of univer-
sity students that laboratory studies tend to rely on (Hen-
rich et al., 2010). Moreover, since online SMS experiments 
are more accessible and easier to share, they can improve 
research diversity and collaboration worldwide, an important 
challenge in today’s cognitive science (Barret, 2020; Savage 
et al., 2021). Finally, by increasing the reach, scalability, 
and speed of data collection, online experiments open new 
avenues for research on SMS that would be nearly impos-
sible in the laboratory. For example, very large-scale studies 
with hundreds of participants to study individual differences 
on SMS in the general population (Niarchou et al., 2021), 
or cross-cultural experiments that include a diverse sample 
of participants from around the world (Jacoby et al., 2021). 
Online tapping experiments can also allow for large scale 
simulated experiments on cultural transmission that were 
previously conducted only with small cohorts of lab par-
ticipants (Raviginani et al. 2016). Similarly, the ability to 
collect large tapping datasets online can also help increase 
our understanding of the role of SMS in the context of vari-
ous neurodevelopmental disorders, including attention defi-
cit hyperactivity disorder (Noreika et al., 2013), dyslexia 
(Colling et al., 2017; Thomson & Goswami, 2008), and Par-
kinson’s disease (Bieńkiewicz & Craig, 2015).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13428-​021-​01722-2.
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