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Abstract: 

Osteoarthritis (OA) is one of the most common diseases, which affect the 
correct functionality of synovial joints and is characterized by articular 
cartilage degradation. OA is one of the leading causes of mobility 
impairment and symptoms include pain, swelling and stiffness of the joint. 
Limitation in the treatment of OA is mostly due to the very limited 
regenerative characteristic of articular cartilage once is damaged. Because 
of the complex structure of the joint the more representative models to 
study the different stages of OA are the in vivo models. Small animals are 
of particular importance for mechanistic analysis to understand the 

processes that affect cartilage degradation. They offer not only 
reproducible and standardized models of surgery but also allow 
manipulation of the genome in a tissue- and time-specific fashion. 
Combination of joint injury techniques with the use of stem cells has been 
shown to be an important tool for understanding the processes of cartilage 
degradation and regeneration. Implementation of stem cells and small 
animal models, as they develop OA similarly to humans, will help 
researchers to find a solution that could prevent and ameliorate the 
symptoms of OA and possibly avoid the need for surgery. 
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Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in 

cartilage regeneration. 

Introduction 

Healthy hyaline articular cartilage is crucial for the proper functioning of the joint, providing 

a resilient and low friction surface for smooth articulation and capable of absorbing shocks 

due to mechanical loading 
1-4

. Osteoarthritis (OA) is a joint disease characterized by 

enzymatic breakdown of proteoglycan and collagen and eventual loss of the cartilage of the 

articular surface This causes bone ends to grind against each other, impairing movement 

because of acute and chronic pain, swelling and stiffness of the joints and it can involve an 

immunological response 
5-7

. In most cases treatment is restricted to perform joint 

replacement, partial or total
8
 and limitation in the treatment of OA is mostly due to the very 

limited regenerative characteristic of articular cartilage once it is damaged
3, 9

. Recently the 

assumption that articular cartilage is a non-regenerative tissue has been challenged and new 

evidences suggest the presence of pre-chondrocytes, which could be used for regeneration 

and OA treatment. 

Stem cells (SCs) are clonogenic and characterized by two main features: multi-potency (the 

ability to differentiate into different type of cells) and self-renewal (the ability of replenishing 

the SCs population)
10

. As early as 1966 Friedenstein and colleagues showed that cells 

isolated from the bone marrow (BM) can differentiate into adipocytes, chondrocytes, 

osteoblasts and reticulocytes 
11

. SCs in the joint have been identified in different tissues, not 

only in the stromal compartment of the bone marrow. The superficial zone has been 

hypothesized to harbour SCs and stem cell markers expression has been shown (Notch-1, 

Stro-1, and vascular cell adhesion-1) 
12, 13

. Notch-1 positive cells isolated from the superficial 

zone of the articular cartilage retain high colony-forming efficiency 
14

, a characteristic of 

SCs, which was abolished once Notch signalling was inhibited 
15

. Synovium might harbour 

SCs as the synovial membrane rapidly becomes hyperplastic when subjected to injuries or 

trauma 
16-18

 and multi-potent SCs have been isolated from adult human synovium and 

expanded, showing limited senescence and maintaining the multi-lineage potency 
19

. Another 

area that has been suggested to be a reservoir for SCs in terms of pre-chondrocytes is the 

groove of Ranvier, which was first described in 1873 and was shown to contain proliferating 

cells and express markers specific and typical for progenitors and SCs, such as Stro-1, Ptch-

1, Jagged-1, N-cadherin and FGFR3 
20, 21

. Moreover, since 2003 several groups have 

demonstrated the ability of chondrocytes to generate in vitro multi-lineage potency and 

differentiate into chondrogenic, adipogenic and osteogenic lineage 
22-25

. A schematic 

representation of where stem cell niches have been identified in the joint is depicted in Figure 

1.  

 

This review will particularly focus on the progress that has been done thanks to small animal 

models and on implementation of recruitment and injection of stem cell in different mouse 

models for the study of a therapy for OA. 

 

Why animal models are useful to understand OA 

The use of animal models is of critical importance to promote translational research to 

improve the options for OA prevention and progression. Animal models not only allow for 
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evaluation of the entire osteochondral unit, but the in vivo situation is much more 

representative and complex compared to in vitro analysis only 
29, 30

. Large animals are more 

suitable for direct translational research, because of the great similarity in the structure of 

their articular cartilage and the mechanical load to humans. Smaller animals like rodents or 

rabbits are more useful for mechanistic and molecular analysis because of their relatively 

short generation time and the possibility of modifying their genome 
29, 31-41

. Small animal 

models for OA studies have been shown to share characteristics of the disease development 

common to human, such as cartilage degradation and proteoglycan depletion by proteinases 
42-47

. Similarly to humans, different strains of mice develop spontaneous OA, with male mice 

having a higher incidence of cartilage degeneration compared to females, also shown in 

chemically induced and surgical models of OA 
44, 48-52

. Different mouse strains show different 

characteristics in term of response when OA is induced and therefore the appropriate genetic 

background should be chosen for investigating different OA processes. For example C57Bl/6 

spontaneously develop age-induced OA, but they are resistant to collagen-induce arthritis, to 

which DBA/1 mice are responsive 
53-55

. Mouse models have contributed to identify different 

targets that could be modulated in order to protect articular cartilage from degradation. For 

example ablation of A disintegrin and metalloproteinase with thrombospondin motifs 

(ADAMTS-5) in mouse cartilage has been shown to protect against degradation after surgical 

induced OA 
44

. In the same way, mice that secrete a form of Aggrecan (ACAN) resistant to 

aggrecanase-mediated cleavage were protected from OA development. This was not true for 

mice secreting a form of ACAN resistant to Matrix metalloproteinase (MMP)-mediated 

degradation, which developed a more severe form of OA compared to control mice, 

suggesting that a controlled balance of MMP-mediated degradation could be necessary for 

cartilage homeostasis 
56

. 

At present there are different models for studying OA in mice: age-induced OA can be 

observed in STR/ort mouse 
46

 and C57Bl/6 mice 
54

 and also in gene manipulated mice such as 

Del1 
57

. However, age-induced OA requires a long waiting time before even being able to 

study the defects and genetically altered mouse models can exhibit other cartilage disorders 

like chondrodysplasia even in the absence of surgical or stress induced-defects 
46, 58

. During 

the past years researchers started to improve and standardize different models, which are 

more representative of secondary or post-traumatic OA (PTOA) and involve both surgical 

and mechanical insult to the joint. 

 

Different type of injury to understand different mechanistic aspects of OA and repair:  

Ligament resection and meniscectomy 

Kamekura et al. have recently compared four different surgical models of OA including 

anterior cruciate ligament transection (ACLT), complete medial meniscectomy (MM), 

posterior cruciate and patellar ligament transection, as well as medial collateral ligament 

transection 
59

. Glasson et al. compared two different surgical techniques such as ACLT and 

displacement of the medial meniscus (DMM). Both Kamekura and Glasson observed in the 

ACLT model mild OA in the anterior region of the joint and moderate to severe OA in the 

central weight-bearing region 
59, 60

.  

In the DMM model the mice developed mild to moderate OA and, although the severity of 

the lesions increased over time, posterior erosion of the tibial plateau, as for the ACLT model 
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was never observed. Also neo-condrogenesis was significant in the ACLT model while 

absent in the DMM, as well as free cells in the synovial cavity 
60

. The DMM model appears 

to be more similar to the slow degradation of OA in human compared to the ACLT model. 

Moreover it has been successfully employed in different strains of KO mice to understand the 

progression of OA and the role of those genes in the process, such as Adamts-5 and 

Interleukin-1b (Il-1b) 
44, 53

. Deletion of Adamts-5 has been shown to have a protective effect 

against OA development, in contrast to MMP13, whose ablation had negative effects on the 

progression of OA, suggesting that a balance between degradation and regeneration is crucial 

in maintaining cartilage integrity 
44, 61

. 

Clements et al. 
43

 analyzed a model similar to the one proposed by Glasson 
60

 with the 

difference that in addition to the resection of the medial ligament they performed partial 

meniscectomy. They performed this surgery to analyze a KO model lacking different 

enzymes and factors that play crucial roles in the development of OA, like Il-1b and 

stromelysin. Surprisingly all the models analyzed developed accelerated cartilage destruction 

4 weeks after surgery, suggesting that a controlled balance of degradation and regeneration is 

important to maintain cartilage integrity. The combination of ligament transection with 

meniscectomy results in a more severe late OA phenotype compared to ligament resection 

alone, with formation of osteophytes, and a slightly accelerated degradation of cartilage 

during the early phases after surgery 
43, 60

.  

 

Non-invasive mouse models of PTOA 

A variation to the surgical models of PTOA, in which an external mechanical load is applied, 

has been developed in order to recreate aseptic injury and avoiding the problematic related to 

trauma derived from invasive surgical procedures. Furman et al. were the first to describe a 

non-invasive mouse model of PTOA that simulates a severe injury comparable to collision 

impacts where high-energy forces applied to the joint generates an intraarticular fracture 

(IAF) of the tibia
62

. This results in severe damage to the articular cartilage and subchondral 

bone, with bone marrow infiltration into the synovial cavity due to dislodgement of the 

articular surface. Progressive loss of proteoglycan ended in complete loss of articular 

cartilage was observed accompanied by a thickening of the subchondral bone of both tibia 

and femur. However high variability in joint inflammation and levels of joint degradation was 

observed in different animals 
63

. 

Ward et al. compared the results of IAF after PTOA in two different mouse strains, 

MRL/MpJ mice and C57Bl/6, and analyzed according to their different regenerative 

properties, the first being known as a good healer and the second for his very poor tissue 

regeneration 
64

. Analysis revealed that MRL/MpJ mice had little changes in bone density, 

subchondral bone thickness, and cartilage degeneration. This was associated with reduced 

systemic inflammation as well of the joint compared to C57Bl/6 mice, as shown by lower 

levels of TNF α and IL-1α and IL-1β at gene expression and protein level in different joint 

tissues. Moreover, macrophage chemokines release and infiltration of the synovial tissue was 

increased in C57Bl/6 compared to MRL/MpJ mice 
65

. 

Diekman et al. investigated the use of stem cell therapy in C57Bl/6 mice with the IAF 

method by injecting SCs isolated from either MRL/MpJ or C57Bl/6 mice at the site of the 

defect 
66

. They could observe a trophic effect with SCs derived from both MRL/MpJ and 
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C57Bl/6, which prevented PTOA 8 weeks post injury, as shown by other authors with 

surgical models of OA 
67

, although it could not inhibit inflammation and macrophage 

invasion of the synovium 
68

. Christiansen et al. described the use of a single heavy load 

compression of the tibia in young C57BL/6 mice to mimic acute joint injury in human 
69

, 

similarly to experiments performed in rabbits 
70

. This method results in rupture of the ACL, 

trabecular bone loss of femur and tibia, osteophytes formation, breakdown and degeneration 

of articular cartilage with loss of proteoglycan and chondrocyte apoptosis. 

Cyclic tibial compression was used first by Poulet and colleagues to induce cartilage 

degeneration in CBA mice 
71

 and they could observe proteoglycan loss, lesion of the articular 

cartilage on the lateral side and a general increased severity of the lesion after 3 weeks of 

loading. This model was used on the STR/Ort mouse strain, which spontaneously develop 

OA to show that external injury did not influenced OA development in this mouse 

background and therefore genetic predisposition is not related to mechanical trauma 

susceptibility
72

. Onur et al. 
73

 compared cyclic compression with and without rupture of the 

ACL in FVB mice and the results were consistent with previous study 
74

, where ACL injury 

is responsible for displacement of the structures in the joint and development of a severe OA 

phenotype. Only animals with ACL rupture showed inflammation of the synovium and 

osteophyte formation. Progress of degradation can be accelerated with additional loading 

cycles 
73, 74

, but a less severe type of injury cannot be achieved with this model. In addition, 

similarly to the DMM model, cartilage degeneration is due to an increased instability of the 

joint structure due to the injury to the ACL, rather than a direct effect on the articular 

cartilage as for the cyclic tibial compression without ACL rupture. However, while the DMM 

surgery induces a mild to moderate severity of OA, cyclic compression with rupture of the 

ACL generate a severe degradation.  

 

Cartilage degeneration and recruitment of SC: Subchondral drilling and joint 

superficial defects. 

At the present time one of the common surgical options in the clinic to treat small defects of 

articular cartilage involves stimulation of bone marrow SCs to migrate and to generate scar 

tissue over the lesion. This is achieved by micro-fracture performed by drilling through the 

articular layers into the marrow cavity to allow stromal SCs to migrate and to invade the 

newly formed defect, generating a clot, which spontaneously differentiates into fibrocartilage. 

This procedure is relatively low cost and simple 
75, 76

 but the level of repair that can be 

observed depends on different factors, like the size of the lesion and gender, age and body 

mass index (BMI) of the patients 
75-77

. Montoya et al. recently induced micro-fracture in 

rabbits and evaluated histologically and immunohistochemically the scar formation 
78

. The 

scar tissue lacked staining for proteoglycan-rich matrix (SafraninO and ACAN) as well as 

Collagen (COL)1 and 2. These results were consistent with previous reports and indicated 

that whilst the micro-fracture technique is a good system to repair the articular surface the 

scar tissue does not present the typical characteristics of hyaline articular cartilage 
78

. 

A more extensive study on the micro-fracture model has been recently performed by 

Matsuoka and colleagues in a mouse model 
79

. They analyzed the outcome of this technique 

on C57Bl/6 mice when surgery was performed at different ages 
79-81

. The C57Bl/6 strain is 

very well known for its poor ability for cartilage repair and the type of repair observed when 
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surgery was performed at young or juvenile stages differed greatly from that observed in 

adult mice. As expected adult C57Bl/6 mice showed poor cartilage repair, while young and 

juvenile mice showed better cartilage repair compared with that of adult subgroup 
79

. This 

result is importantly showing that the regenerative ability of young and juvenile C57Bl/6 

mice is comparable to very good healing strains such as MRL/MpJ and DBA/1 mice 
80, 82

. As 

different strains show different regeneration characteristics 
83, 84

, a previous study compared 

the healing abilities of MRL/MpJ, the so-called “super-healer” 
85

 with C57Bl/6 strain 
86-88

. 

Fitzgerald et al. induced an articular cartilage defect in those two different mouse strains. The 

repair site in MRL/MpJ mice was populated by round chondrogenic cells, which secreted a 

proteoglycan-rich matrix. Collagen was also present in the newly repaired lesion and 

resembled the surrounding healthy cartilage. In contrast, the quality of the repair tissue in the 

C57Bl/6 control mice was poor, with very few chondrocytes and a fibrous cartilage lacking 

both proteoglycan and collagen 
81

. 

These results strongly support the existence of a certain cell type, which can promote good 

healing of articular defects. Although it might be argued that results derived from these types 

of studies cannot be translated to the clinic, as good repair is observed only in young mice 

while patients with articular defects are usually adults, they still can be very useful to identify 

the best type of cell to promote repair. Young mice offer the best model to study the 

mechanisms of repair as they were able to develop hyaline cartilage, while juveniles formed 

fibrocartilage and adults showed poor cartilage repair 
79

. 

Similarly to Fitzgerald et al. another group compared the effect of superficial joint defects in 

two mouse strains with different healing abilities: DBA/1 and C57BL/6 
80

. The lesion that 

they generated was highly standardized, choosing a specific site of the femur where cartilage 

thickness is uniform and accessible after patellar dislocation. The authors created a defect that 

was deeper than the full thickness of the cartilage and would run along the center of the 

patellar groove, ensured by the use of a glass bead together with the needle. As also observed 

by Kamekura et al. 
59

 the younger mice DBA/1 healed the surface defect while the C57BL/6 

did not and developed in addition secondary OA. Different repair in different strain is due to 

different regulation of cell viability and matrix remodeling. When the defect was induced in 

DBA/1 aged mice, they did not show repair of the lesion either, confirming that the age of the 

animals when the lesion occurs is a crucial factor that affects the repair 
80

.  

 

Regeneration after insult: Injection of SCs in the articular cartilage at the site of injury. 

Brittberg et al. have first reported the implementation of autologous transplantation of 

chondrocytes derived from an arthroscopically harvested healthy area of the same patient into 

an area of lesion or damaged cartilage 
89

. Cells were first expanded in vitro and then injected 

in solution over the damaged area, previously covered with periosteum. Follow-up showed 

positive outcome in all patients with the formation of hyaline cartilage at the site of the 

transplant 
89

. Some issues presented themselves with this technique: of particular importance 

were the problems of dedifferentiation of chondrocytes into fibroblast-like cells after 

monolayer culture and difficulties in the positioning of the grafted cells. Therefore different 

scaffolds with different collagen, polyglycolic/polylactic acid, hyaluronic acid and fibrin gel 

compositions have been engineered to achieve a more uniform and reproducible repair of the 

lesion 
90-94

. Follow up of these patient cohorts has shown successful regeneration and 
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integration of the graft and healthy cartilage appearance 
95-99

. Although the general outcome 

of the repair was positive, the newly formed cartilage did not entirely resemble the native 

articular cartilage. 
100-102

. 

During the past few years stromal SCs have become the best candidate for isolation, rapid 

expansion and differentiation into chondrocytes 
103

. Bone marrow and umbilical cord- 

derived SCs have been widely used in the effort of regenerate hyaline cartilage in vitro 
104

. 

Although the use of scaffolds to promote and improve the generation of repair cartilage in 

vivo showed positive outcome in various animal models, they have not been suggested for the 

use in human because of possible side effects 
105

. Another option is the implantation of small 

spherical aggregates of chondrocytes, whose structure resemble that of native cartilage 
106

. 

This approach eliminates both the use of scaffolds and the associated problems, such as 

toxicity, immunogenicity, differentiation due to mechanical strain forces 
107, 108

 and the 

problem of ECM degradation in the repair tissue 
109, 110

.   

Further development in the use of pellet culture has been made using microspheres to induce 

chondrogenesis in human mesenchymal stem cells (hMSC) 
111, 112

. Microspheres were able to 

release continuously TGFb3, allowing its availability in situ for hMSCs to differentiate and at 

the same time avoiding side effects of scaffolds, such as osteophyte formation and 

inflammation 
113

. A collagenase-induced model of OA was treated with implanted hMSCs 

and differentiation occurred only when TGFb3 was present, with both mouse and human cells 

taking part to the formation of repair cartilage. The implementation of a technology such as 

the microsphere could be useful to deliver differentiating agents with only a single 

implantation, avoiding the need for repeated injections. It is important the fact that cartilage 

formation from MSCs could develop also in the pathological environment of OA, because not 

only MSCs differentiated into chondrocytes but they also confirmed a trophic effect on the 

host cartilage 
114-116

.  

Horie et al. performed an experiment of xenotransplantation of hMSCs into rat meniscus and 

they observed that they promoted meniscal regeneration with synthesis of rat-COL2 although 

only a few of the human cells actually engrafted in the host tissue and differentiated. Also 

hMSCs showed a protective effect on the cartilage, demonstrated by reduced OA of the tibia 

when compared to the control knees 
117

.  Therefore it appears that the effect of MSCs is not 

only limited to differentiation into chondrocytes but they can play an important role in 

immunomodulation and have a trophic effect on the surrounding tissue 
118

. MSCs-

conditioned medium is rich in factors with anti-inflammatory and anti-catabolic activity, 

which could modulate the gene expression of synovial cells and cartilage. Gene expression 

changes due to MSCs were not only limited to genes related to inflammation (IL-1b, IL-1RA, 

SOCS1) but also to matrix degradation (MMP1, MMP13 and ADAMTS-5). Therefore 

implanting MSCs in an OA-affected joint could promote and ameliorate the healing process, 

providing a valid alternative to replacement surgery in terms of less invasive and autologous 

treatment. 

Mak et al. isolated bone marrow derived MSCs from two different strains of mice (MRL/MpJ 

and C57Bl/6) in order to treat lesions of the articular cartilage. MRL/MpJ-derived MSCs 

were able to take part in the repair of the cartilage, a phenomena not observed with cells 

derived from the C57Bl/6. In both MRL/MpJ- and C57Bl/6-derived cells, the injection of 

MSCs showed an improved outcome compared to the non-injected controls. Nevertheless 
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C57Bl/6-derived cells were not able to take part in the repair. It should also be noted that 

whilst MRL/MpJ-derived cells were able to colonize the site of repair first, they were not 

integral to the repair tissue at later stages, suggesting that MRL/MpJ-MSCs can take part in 

the early stages of the wound healing process and facilitate the higher quality repair observed 

in these mouse models 
67

.  

 

Conclusions 

Articular cartilage is a tissue with an extremely reduced ability to regenerate on its own. 

Although the presence of cartilage progenitors and SCs has been shown by many different 

studies 
12, 13, 19-21, 26-28

 the challenge still remain to understand which cell type is actually a 

stem cell and how to induce them toward the best pathway for cartilage repair. Animal 

studies are important in elucidating the mechanisms that regulate cell differentiation in an in 

vivo environment.  

Most surgical and mechanical models might not be considered comparable to the spontaneous 

development of OA in human patients as the lesion is induced and degradation is not 

naturally occurring.  These models are considered more representative of trauma-induced 

OA, but still they allow the combination of generating a cartilage defect together with the 

possibility of activating and inactivating genes in vivo in a time and tissue specific manner
32-

41
. Different techniques to induce OA are summarized in Table 1, together with the severity 

of OA each of them generates. Also a schematic representation of the knee joint with the 

surgery location of different techniques is depicted in Figure2.  Different levels of OA can be 

achieved with different techniques and therefore each method can be chosen based on of the 

particular OA characteristics that need to be investigated. The severe and moderate models 

could be useful to evaluate osteochondral defects that involve cartilage as well as bone, like 

for example formation of osteophytes. The moderate models are characterized by a slower 

and more constant cartilage degradation, allowing researcher to follow OA development from 

very early stages, suggesting their use for mechanistic analysis of the processes involved. 

These methods provide researchers with powerful tools to better understand chondrocytes 

and their precursor behavior in response to stress and to better understand the possible repair 

and what influence different genes might have in the process 
23, 63-74, 119-121

. 
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Figure 1. Schematic representation of stem cell niches identified in the knee joint.  
Stem cells are depicted in green. Pre-chondrogenic SCs have been identified between cells of the superficial 
zone 98, 99, in the groove of Ranvier 107, 108 and in the synovium 102. Multilineage stromal stem cells have been 

isolated from bone marrow 95-97.  
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Figure 2. Schematic representation and location of different surgical model in the knee.  
Location of different surgical models and type of surgery to induce a cartilage defect are depicted. Severity 
of OA achieved with different techniques is reported in Table1. Patellar ligament and patella have been 

omitted for simplification purposes.  
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Table 1. Different technique to induce OA in small animal models 

 

Type of OA Model Severity of OA References 

Spontaneous/age-

induced 

C57Bl/6, Balb/c and 

STR/ort mouse 

strains 

Similar to human: 

males are more 

severely affected 

than females 

Mason et al., 200146; 

Stoop et al., 1999122; 

Mahr et al., 2003123 

Stress/exercise 

induced 
Treadmill Mild Poulet et al., 2014124 

Chemically induced 

Monosodium 

iodoacetate, 

collagenase intra-

articular injection 

Acute and severe 

Blom et al., 2007
125
; 

van der Kraan et al., 

1990126; van Osch et 

al.,  1993, 1996127, 128 

Surgically induced PMM, MCLT Severe Visco et al., 1996129 

 DMM, ACLT Mild to severe 

Kamekura et al., 

200559; Glasson et 

al., 200760 

Mechanically induced    

high-energy forces ,IAF  Acute and severe 

Furman et al., 200762 

Lewis et al., 200163, 

Christiansen et al., 

2012
69 

low-energy forces 
Cyclic tibial 

compression 
Mild 

Poulet et al., 2011
71
, 

Onur et al., 2014
73
 

low and high-energy 

forces 

Cyclic tibial 

compression with 

ACL rupture 

Mild and Severe  Onur et al., 2014
73 

PMM=partial medial meniscectomy; MCLT=Medial collateral ligament transection; 

DMM=destabilization of the medial meniscus; ACLT= anterior cruciate ligament transection; 

IAF= intraarticular fracture 
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