
Synthese
https://doi.org/10.1007/s11229-018-1768-x

Predictive coding and thought

Daniel Williams1,2

Received: 5 October 2017 / Accepted: 15 March 2018
© The Author(s) 2018

Abstract Predictive processing has recently been advanced as a global cognitive
architecture for the brain. I argue that its commitments concerning the nature and for-
mat of cognitive representation are inadequate to account for two basic characteristics
of conceptual thought: first, its generality—the fact that we can think and flexibly
reason about phenomena at any level of spatial and temporal scale and abstraction;
second, its rich compositionality—the specific way in which concepts productively
combine to yield our thoughts. I consider two strategies for avoiding these objections
and I argue that both confront formidable challenges.
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In philosophy, ever since Plato, the mainstream opinion has been that the mind
is the organ of thought… Psychologists, for the last hundred years or so, have
mostly viewed that sort of ‘intellectualism’ as an embarrassing remnant of the
Enlightenment (Fodor 2011)
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1 Introduction

An increasingly influential thesis in cognitive science is that the brain is fundamen-
tally a probabilistic predictionmachine, continually striving tominimize themismatch
between self-generated predictions of its sensory inputs and the sensory inputs them-
selves (Clark 2016; Friston 2010; Friston et al. 2017a; Hohwy 2013; Seth 2015).When
repeated up the hierarchical structure of the neocortex, this process of prediction error
minimization is alleged to implement approximateBayesian inference and generate the
full spectrum of psychological phenomena that make up the mind. Drawing on work
from statistical physics, theoretical biology, machine learning, and cognitive and com-
putational neuroscience, this extremely ambitious emerging framework—variously
titled “predictive processing,” “predictive coding,” and the “free-energy principle”
in the broader literature (I will use “predictive processing”—see Sect. 2 below)—is
currently creating both intense excitement and scepticism in the mind sciences, along-
side a growing literature that explores its implications for foundational debates in the
philosophy of mind and science (Hohwy 2013; Clark 2016 for overviews).

As even its most enthusiastic proponents acknowledge, one of the most impor-
tant challenges for predictive processing is whether the mechanisms it posits can be
extended to capture and explain thought (Clark 2016, p. 299; Hohwy 2013, p. 3; see
alsoRoskies andWood 2017).1 In addition to perceiving and acting upon theworld, we
also reason, deliberate, plan, and reflect. These cognitive processes implicate concepts
that can be flexibly recombined in productive ways and applied across an indefinite
number of domains and tasks. If predictive processing cannot capture such mani-
fest psychological capacities, it fails as a “grand unified theory of the brain” (Huang
2008)—as a “complete framework… for explaining perception, cognition, and action
in terms of fundamental theoretical principles and neurocognitive architectures” (Seth
2015, p. 1; my emphasis).

This paper has two aims. First, I argue that extant views about the nature and format
of cognitive representationwithin predictive processing are unable to capture two basic
characteristics of conceptual thought: first, its generality—the fact that we can think
and reason about phenomena at any level of spatial and temporal scale and abstraction;
second, its rich compositionality—the specific way in which concepts productively
combine to yield our thoughts.2 Second, I identify and evaluate two strategies for over-
coming this problem. The first dissociates the ambitious prediction error minimization
framework from the problematic claims about cognitive representation I identify, and
abandons the latter. The second attempts to explain away these alleged characteristics
of thought as idiosyncrasies of natural language. I argue that both possibilities should
be explored, but that they confront formidable challenges: in the first case, it strips
predictive processing of substantive empirical content and thus much of its explana-
tory ambition; in the second case, it is not clear how the suggestion would help even
if it were true, and there are good reasons to suppose it is false.

1 I use “thought” as an intuitive catch-all term for a suite of “higher” (i.e. non-perceptual) cognitive
capacities: reasoning, planning, deliberating, and so on (see Sects. 3 and 4 below).
2 The current paper thus complements a growing body of literature that criticises the explanatory ambition
of predictive processing as a grand unified theory of the brain (Colombo and Wright 2016; Klein 2016).
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I structure the paper as follows.
In Sect. 2, I identify the central commitments and core theoretical structure of pre-

dictive processing, and distinguish these commitments frommore schematic (and thus
less constraining) frameworks in cognitive science. In Sect. 3, I outline what I call the
“standard strategy” among advocates of predictive processing for extending themecha-
nisms it posits to the domain of “higher” cognition. In Sect. 4, I identify two related rea-
sonswhy the standard strategy fails. I then conclude in Sect. 5 by outlining and evaluat-
ing the two most plausible strategies one might pursue in response to these objections.

2 Predictive processing as a cognitive architecture

The term “predictive processing” is used in many ways across the cognitive sciences.
As I will use the term, it refers to an extremely ambitious theory that combines two
ideas: first, a vision of the brain as an “organ for prediction errorminimization” (Hohwy
2014, p. 259)3; second, a specific account of the representations and algorithms—a
“cognitive architecture” (Thagard 2011)—implicated in this process of prediction error
minimization (see Clark 2016; Hohwy 2013; Seth 2015).

The first of these ideas relates predictive processing to the “free-energy principle,”
according to which prediction error minimization is a special case of a more funda-
mental imperative in biological agents to self-organize (Friston 2010). The free-energy
principle is of immense scientific and philosophical interest in its own right, and is
supposed to provide the rationale for thinking that all neural activity is orchestrated
around a single, overarching function (Hohwy 2015). Nevertheless, I will have little to
say about it in what follows. My aim is to evaluate predictive processing understood
as a theory in cognitive neuroscience concerning the information-processing strate-
gies exploited by the brain. This theory should be able to stand on its own two feet
(although see Sect. 5).

The second idea connects predictive processing to “predictive coding,” probably
the most influential name for the framework under discussion in the broader scientific
literature (Bogacz 2017; Rao and Ballard 1998). Strictly speaking, however, predictive
coding is an encoding strategy whereby only the unpredicted elements of a signal are
fed forward for further stages of information processing (Clark 2013, p. 182). This
idea plays a pivotal role within predictive processing, but it should not be confused
for predictive processing itself, which situates this strategy within a much broader
theoretical context (Clark 2016, p. 25).

2.1 Bayesian inference and predictive coding

To introduce predictive processing, I will first present the necessary background on
Bayesian inference and predictive coding in this sub-section, and then outline more
technical details on the nature of probabilistic graphical models more generally in
the next (Sect. 2.2). Both sub-sections—and especially the latter—are more technical

3 Note that it is in fact a vision of the brain as an organ for long-term, average prediction error minimization
(see Hohwy 2015). For convenience I drop this qualifier in the text.
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than is customary in introductions of predictive processing in the philosophical
literature. Nevertheless, as will be clear, this level of detail is crucial for evaluating
its ability to explain thought.

First, then, there has been something of a “Bayesian revolution” in cognitive science
in recent years—an “explosion in research applying Bayesian models to cognitive
phenomena” (Chater et al. 2010, p. 811). This revolution has been motivated both
by a growing consensus that one of the fundamental problems that cognitive systems
solve is inference and decision-making under uncertainty, alongside an appreciation
of how Bayesian statistics and decision theory can be used to model the solutions to
such problems in mathematically precise and empirically illuminating ways (Chater
et al. 2010; Griffiths et al. 2010; Tenenbaum et al. 2011).

In the case of perception, for example, the brain must exploit the statistical pat-
terns of activity at the organism’s sensory transducers to recover the structure of the
distal environment. This evidence, however, is notoriously “sparse, noisy, and ambigu-
ous” (Tenenbaum et al. 2011, 1279). Specifically, it dramatically underdetermines the
complex structured environmental causes that generate it and is transmitted via input
channels that are vulnerable to corruption by random errors. Mainstream perceptual
psychology understands this problem as an inference problem: the brain must infer
the causes of its sensory inputs from the sensory inputs themselves (Helmholtz 1867).
Because this is a paradigmatic instance of inference under uncertainty, an influen-
tial contemporary tradition models this inferential process as statistical inference in
accordance with Bayes’ theorem (Rescorla 2013).

Bayes’ theorem is a derivation of probability theory, and states the following:

(Bayes , Theorem) P (H |E) � P (E |H) P (H) /P (E) .

Bayesian perceptual psychology models the perceptual system as a mechanism that
infers the causes of its sensory inputs in accordance with this theorem (Geisler and
Kersten 2002). In a typical model, the perceptual system assigns probabilities both to
hypotheses estimating possible environmental states P(H) (its priors) and to different
patterns of sensory evidence given such hypotheses (the likelihood P(E/H)). When
confronted with new evidence (i.e. activity at the organism’s sensory transducers), it
then updates these priors to posteriors P(H/E) in conformity with Bayes’ theorem.

Bayesian perceptual psychology ismathematically precise and has produced empir-
ically impressive models of a range of perceptual phenomena (Rescorla 2013). More
generally, its emphasis on prior expectations and optimal statistical inference provides
attractive explanations of a range of general features of perception: how brains over-
come the noise and ambiguity in their sensory evidence, how they effectively integrate
evidence from across the sensory modalities, how they generate perceptual constan-
cies, and why they systematically produce specific perceptual illusions (cf. Chater
et al. 2010; Geisler and Kersten 2002; Kersten and Yuille 2003; Rescorla 2013). Fur-
ther, although perception has plausibly been the domain where Bayesian modelling
has gained the most widespread acceptance in cognitive science (see Chater et al.
2010), the frameworks of Bayesian statistics and decision theory have been applied to
a much broader range of phenomena, reflecting the fact that most if not all cognitive
tasks can fruitfully be understood in terms of abductive inference and decision-making
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under uncertainty: language, memory, sensorimotor processing, judgements of causal
structure and strength, and much more (cf. Chater et al. 2010; Tenenbaum et al. 2011).

Despite these attractions, Bayesian cognitive science confronts at least three big
challenges. First, it is implausible that the brain explicitly follows Bayes’ theorem.
Exact Bayesian inference can be extremely slow and sometimes computationally
intractable (Penny 2012a, b; Tenenbaum et al. 2011). Much work in statistics and
machine learning is thus devoted to developing algorithms for approximate Bayesian
inference (Penny 2012a, b, p. 2). Second, it needs an account of where the relevant
priors and likelihoods come from. Without independent constraints on their content,
there is a significant risk of post hoc model-fitting (i.e. any cognitive phenomenon
can be modelled by identifying the right priors and likelihoods “just-so”) (cf. Bowers
and Davis 2012; Jones and Love 2011). Finally, once we have a story of the aetiology
of priors and the algorithms responsible for approximate Bayesian inference, how do
such processes get implemented in the brain’s neural networks (Chater et al. 2010)?

A useful although slightly misleading4 pathway to understanding predictive pro-
cessing is as an answer to these questions. Very roughly, its answer is: by installing
and updating a hierarchical probabilistic generative model through predictive coding
and precision-weighted long-term prediction error minimization.

To understand how this works, one must grasp two basic ideas: first, how Bayesian
inference can be formalized in terms of precision-weighted prediction error minimiza-
tion; second, how the brain (and especially the neocortex) can do precision-weighted
prediction error minimization and thereby implement approximate Bayesian inference
through hierarchical predictive coding.

First, then, recall that Bayesian inference is a matter of identifying the hypothesis
P(H/E) that best predicts the evidence P(E/H) weighted by its prior probability P(H). If
we assume the hypothesis space and evidence are Gaussian (and can thus by described
by their sufficient statistics), one can calculate this by comparing the mean value m of
the prior distribution with the mean value e of the evidence to compute a prediction
error—namely, the distance between these two values (Hohwy 2017; Seth 2015).5 In
this way the prediction error varies inversely with the likelihood of the hypothesis:
the greater the hypothesis’ likelihood, the less prediction error it generates. Bayes’
theorem then answers the question: how much should the prior be updated in light of
the prediction error it generates?

To calculate this requires some means of weighting the relative reliability or uncer-
tainty of the two sources of information. With Gaussian distributions, this can be
computed from their relative precisions (the inverse of the variance of the two density
functions), the ratio of which determines the learning rate in Bayesian inference: the
more precise the priors are relative to the evidence, the less the agent learns about the
world—the less the prediction error influences the posterior—and vice versa (Hohwy
2017). Thus as one learns more about a domain, one’s priors will become increasingly
precise (less uncertain), and prediction errors will be weighted less in driving infer-

4 Misleading because it wrongfully suggests Bayesian inference is the function of prediction error mini-
mization (see Williams 2017).
5 I use “probability distribution” to include density functions (i.e. continuous distributions).
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Fig. 1 Posterior beliefs are a function not just of the means but also the precisions of the sensory evidence
and prior distribution. On the top graph, the comparatively greater precision of the sensory evidence has a
proportionately greater influence on the posterior than the prior. On the bottom, this is reversed

ence—just as Bayes’ theorem dictates. For a simple visual illustration of these ideas,
see Fig. 1.

As stated, however, this process is far too simple to work in the case of real-world
perception. Specifically, the sensory input received by the brain is not a linear function
of environmental causes. If it were, recursively employing this process of Bayesian
inference would result in arbitrarily precise priors and the optimal minimization of
prediction error in the manner just described (Kiefer and Hohwy 2017). The real
world, however, is richly structured, dynamic, and volatile, with causes interacting at
multiple levels of spatial and temporal scale (Hohwy 2017). Under such conditions,
an inferential system must be able to flexibly adjust the learning rate as conditions
change. For example, it is no good holding steadfast to one’s prior expectations about
the location of an object if it ismoved. This requires hierarchical Bayesian inference: if
the evidence is a function of a complex hierarchically structured dynamic environment,
the perceptual systemmust effectively invert this function, deconvolving the structural
elements of the environment and forming expectations at multiple temporal scales in
a manner that regulates the learning rate in context-sensitive ways. Such a system
induces a hierarchical Gaussian filter, extracting regularities at different time scales
from the non-linear time series of sensory input (Mathys et al. 2014; Hohwy 2017).

In formal terms, this means building a hierarchy of hypothesis spaces capturing
regularities in the environment at increasingly greater spatial and temporal scale and
abstraction (see Sects. 3 and 4 for more on this idea of a hierarchy). The hypotheses at
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any level L+1 thereby function as the priors for the level belowL and the “sensory evi-
dence” for the level above L+2. The basic process of prediction error minimization is
thus iterated up this hierarchy, ensuring that hypotheses higher up can guide inferences
lower down, which in turn influence such higher-level expectations (Hohwy 2013, p.
31). In addition, such a system can build expectations for the precisions of sensory
evidence at multiple levels, such that longer-term expectations can be exploited to
adjust the learning rate in context-sensitive ways (Hohwy 2017). For example, such
a system might learn that visual evidence is differentially reliable in various lighting
conditions, and modulate the relative precision of visual evidence accordingly. A hier-
archical Bayesian system of this kind is thus responsive not just to the causal structure
of the environment but to the state-dependent level of noise and uncertainty as this
structure is conveyed through sensory evidence (Hohwy 2013, p. 66).

So far I have described exact Bayesian inference, albeit of a specific, hierarchical
form: such a system explicitly follows Bayesian inference in learning and updating
its priors, and thereby keeps prediction error at an optimal minimum. We saw above
that exact Bayesian inference is implausible both computationally and biologically,
however.

This is where predictive processing comes in. Instead of claiming that brains fol-
low exact Bayesian inference and thereby minimize prediction error, it states just the
opposite—that brains are configured to minimize long-run, average prediction error
and thereby come to approximate the results of exact Bayesian inference (Kiefer and
Hohwy 2017, p. 18). The significance of this idea is this: whilst it is implausible to
suppose that the brain explicitly follows Bayes’ rule, it is not obviously implausible
to suppose it might be structured in such a way as to minimize long-run prediction
error. Minimally, what this requires is some way of matching predictions of incoming
sensory input against the sensory input itself in a way that is responsive to the hier-
archical structure of its environmental causes, and that factors in the uncertainty of
these evidential sources.

This is where predictive coding comes in. As noted above, predictive coding is an
encoding strategy whereby only the unpredicted elements of a signal are fed forward
for further stages of information processing. In the case of the deeply hierarchical neo-
cortex (Rolls 2016), predictive processing contends that “backwards” or “top-down”
connections in the brain match predictions from “higher” cortical areas (e.g. frontal or
temporal) against activity at “lower” cortical areas (functionally closer to the proximal
sensory input), and that—as per predictive coding—only the deviations from such pre-
dictions (i.e. the prediction errors) are then fed forward (Kiefer and Hohwy in press).

Computing prediction errors through predictive coding in this way provides the
brain with an internally accessible quantity to minimize. Predictive processing’s pro-
posal is that the brain’s ceaseless efforts to minimize this quantity installs a rich,
structured body of information about the environmental causes of sensory input—a
hierarchical generative model (see below Sect. 2.2)—which can be exploited in guid-
ing approximateBayesian inference. The features of exact Bayesian inference required
to minimize prediction error are thus thought to emerge naturally and in an unsuper-
vised manner from the single imperative to minimize long-run prediction error (Kiefer
and Hohwy 2017).
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What is the evidence for this ambitious view of cortical information processing? Its
motivation comes mostly from simulations of artificial neural networks either explic-
itly following this approach (e.g. Rao and Ballard 1998) or closely related approaches
in artificial intelligence involving generative models and prediction-based learning
(Dayan et al. 1995; Clark 2016, Ch. 1). At a more general level, although predictive
processing is advanced approximately at Marr’s (1982) “algorithmic” level of descrip-
tion (Clark 2016, p. 319), the mechanisms it requires—prolific feedback connections,
hierarchical representation, functionally distinct units for predictions and prediction
errors, and gating mechanisms for adjusting the influence of prediction errors as a
function of their precision—are thought by at least some to map on convincingly to
brain structures (Friston 2002, 2003, 2005; Gordon et al. 2017; Weilnhammer et al.
2017). Further, its commitment to a single principle of cortical functioning exploits
evidence for the surprising uniformity and radical plasticity of the neocortex, along-
side awidely held conviction that what functionally differentiates cortical areas is their
input–output profile, not their computational architecture (George and Hawkins 2009;
Hawkins and Blakeslee 2005; Mountcastle 1978).6 When these facts are combined
with both the increasing quantity of applications of the theory to different psycholog-
ical and neurocognitive phenomena (see Clark 2016) and the immense popularity of
Bayesian modelling in cognitive science (Chater et al. 2010), it is not surprising that
predictive processing is currently enjoying the level of interest and excitement it does.

Much more could be said about the theory than the foregoing overview provides—-
for example, about how precision-weighting is supposed to align with the functional
role of attention (Feldman and Friston 2010), and how action is supposed to arise
through an inversion of the core process of prediction error minimization (cf. Clark
2016, Ch. 4). Nevertheless, this overview of its commitments will suffice for this paper.
Next I outline the specific assumptions about cognitive representation that fall out of
such commitments.

2.2 Hierarchical probabilistic generative models

So far, I’ve presented the broad architecture of predictive processing’s view about
cortical information processing: as brains minimize precision-weighted prediction
error through hierarchical predictive coding, they acquire a structured body of knowl-
edge about the ambient environment and exploit this knowledge to guide approximate
Bayesian inference. In this sub-section I get clearer about how the nature of represen-
tation is understood within this framework—both because it further illuminates how
this story is supposed to work, but also because it will be crucial for evaluating its
capacity to explain conceptual thought.

First, then, the core representational structure in the predictive mind is the hier-
archical probabilistic generative model (henceforth HPGM) (Clark 2016; Kiefer and
Hohwy 2017). Conceptually, a generativemodel is a compact structure capable of gen-
erating a range of phenomena in a way that models (when accurate) the actual process
by which the relevant phenomena are generated. In most engineering and theoretical

6 See Marcus et al. (2014) for forceful dissent on this point.
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applications of generative models, the process is causal (see below), and the phenom-
ena are data—for example, the activation patterns provided as input to an artificial
neural network (Kiefer and Hohwy 2017, in press, pp. 3–4). In predictive processing,
the brain’s generative model is encoded in top-down and lateral7 synaptic connec-
tions in the neocortex. This model both generates predictions carried via “top-down”
synaptic connections in a manner that represents or simulates the process by which the
brain’s sensory input is actually generated by the environment (Gładziejewski 2015;
Williams and Colling 2017).

As noted above, this process of inversion is hierarchical. A generative model is
hierarchical if it contains multiple levels of “latent variables” (variables whose values
are not provided directly by the data). In effect, this amounts to a hierarchy of genera-
tive models, with each level’s data represented as dependent on the latent variables at
the level above (Kiefer and Hohwy 2017). Finally, a generative model is probabilistic
if it represents not just the dependencies among the values of random variables but
the dependencies among the probabilities of such values. For example, in a classifi-
cation task in which the challenge is to assign classes C to examples E, a generative
model determines the probability of examples given classes P(E/C), as well as a prior
distribution P(C) over classes (Lake et al. 2016).

In many presentations of predictive processing, this overview of HPGMs would be
sufficient. For our purposes, however, it is not. Specifically, the mere claim that the
brain commands a HPGM is consistent with a variety of ways of expressing the infor-
mation encoded in that generativemodel: as a simple neural network, amore structured
graph, or a functional program, for example (Goodman et al. 2015; Tenenbaum et al.
2011). Such alternative representational formats have important consequences for
both the utility and computational power of a generative model, as well as a theory’s
consilience with contemporary views about the structure and dynamics of biolog-
ical neural networks (Tenenbaum et al. 2011). This point will be important below
(Sect. 4.2). To flag the issue in advance, however: this paper does not address whether
generative models can capture the basic characteristics of thought, but whether pre-
dictive processing with its specific commitments concerning the structure and format
of the brain’s generative models can.

Although this point is not often made clear in the literature, the structure of HPGMs
in predictive processing can be understood in terms of probabilistic graphical models
(Bastos et al. 2012; Denève and Jardri 2016; Friston et al. 2017b; Kiefer and Hohwy
2017; Lee and Mumford 2003; Penny 2012a, b). Graphical models were first intro-
duced into cognitive science and artificial intelligence largely by Judea Pearl’s seminal
work (Pearl 1988). These data structures are graphical because they express the set of
dependencies between the elements of a domain with a graph, a mathematical struc-
ture of nodes and edges that can be directed (A→B), undirected (A–B), or bidirected
(A←→).

Such graphs effectively comprise compact representations of dependence or rel-
evance relationships (Danks 2014, p. 39). The graph itself captures the qualitative
structure of a domain: namely, the pattern of dependence relationships between its

7 I ignore the role of lateral connections in this overview (see Friston 2005) for space constraints and
because it is not directly relevant to my argument.
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elements. In most cases, this qualitative structure is complemented with quantitative
parameters that represent the strength of the dependencies between these nodes. For
example, in the graphicalmodels thatwill concern us, the nodes represent variables and
the edges represent probabilistic dependencies between them. As such, the qualitative
information encoded in the graph must be complemented with a set of probability dis-
tributions that quantify how the probabilities assigned to some variables systematically
depend on the values of others.

What makes graphical models so powerful is their graphical component. Imagine,
for example, that you want to model some domain that contains 100 variables—a
meagre size when contrasted with the complexity of the world we must navigate. A
joint distribution over such a set of variables will thus be 100-dimensional, which
is extremely difficult both to learn and manipulate (Jacobs and Kruschke 2010, p.
10). What a graph enables you to do is capture the probabilistic dependencies between
these variables in terms of direct relevance (i.e. dependence) (Pearl 1988). Specifically,
graphical models capitalize on the fact that whilst everything is in some sense relevant
to everything else, not everything is directly relevant to everything else (Danks 2014).
For example, which country someone lives in is relevant to how wealthy they are.
But it is not directly relevant: once one factors in other information—their assets, the
amount of money in their bank account, and so on—the knowledge of where they live
becomes uninformative. In the vocabulary of probability theory, such variables are
conditionally independent given observation of these other variables.

In a graph, this notion of direct relevance is captured in its edges. Roughly, if nodes
are adjacent in the graph—that is, they are connected to one another by some edge
between them—they are directly relevant to one another; if not, they are conditionally
independent. As such, one can effectively factorize a high-dimensional joint prob-
ability distribution into a set of much lower-dimensional distributions in which the
probability assignment of each variable depends only on the values of adjacent nodes
(Jacobs and Kruschke 2010). When the parameters of a model accurately reflect the
network of conditional independence relationships implied by its graphical structure in
this way, themodel satisfies theMarkov assumption, which states that “if two nodes are
not adjacent in the graph, then they are independent in the quantitative component [i.e.
model parameters]” (Danks 2014, p. 43). This factorization comes with considerable
representational and computational benefits (Fig. 2).

In predictive processing, the HPGMs are best understood as neurally instantiated
hierarchical probabilistic graphical models of this kind (Bastos et al. 2012). Specif-
ically, the variables at each level of the generative model (on out to the observable
variables provided directly by the sensory input) are represented as directly dependent
on the values of variables at the level above (i.e. their parents), such that each level
effectively determines a conditional probability distribution on the level below. In this
way, non-adjacent levels of the model are conditionally independent of one another
in a manner that satisfies the Markov assumption. Predictive coding and prediction
error minimization are then supposed to offer a computationally tractable account of
how this hierarchical generative model gets both installed and updated in real time (cf.
Bastos et al. 2012; Kiefer and Hohwy 2017).
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Fig. 2 A maximally simple directed graphical model capturing the conditional dependence structure
between five random variables. In this case, even though the values of D and E are dependent on the
values of A and B, learning the values of A and B tells one nothing about the values of either D or E once
one knows the value of C. D and E are thus conditionally independent of A and B given C

Predictive processing is by nomeans alone in its commitment to the graphical struc-
ture of cognitive representations (Danks 2014; Gopnik and Wellman 2012; Griffiths
et al. 2010; Hinton 2011; Sloman 2005). Nevertheless, it is not noted often enough
that it is committed to this structure.

3 The standard strategy

In this section I set out the prima facie obstacles in the way of extending the cognitive
architecture just outlined to capture and explain conceptual thought. I first set out
the challenge (Sect. 3.1) and then outline the standard strategy in the literature for
addressing this challenge (Sect. 3.2), before turning in Sect. 4 to explain why it is
inadequate.

3.1 The challenge

First, then, I noted in Sect. 1 that predictive processing is advanced as a global theory
of brain function. The aspect of this extreme explanatory ambition that I want to focus
on here is its ability to explain distinctively conceptual thought or what is sometimes
called “higher cognition.” That it can explain such psychological phenomena is often
asserted in the literature (my emphases):

… the first truly unifying account of perception, cognition, and action (Clark
2016, p. 2).

Thismechanism ismeant to explain perception and action and everythingmental
in between (Hohwy 2013, p. 1).

Arguably, PP provides the most complete framework to date for explaining
perception, cognition, and action in terms of fundamental theoretical principles
and neurocognitive architectures (Seth 2015, p. 1).

However, despite the frequency with which such claims are made in the literature,
there have been few systematic attempts to show how predictive processing might be
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extended to capture and explain conceptual thought.8 Further, it is not at all clear how
any such extension might work. As presented above, the framework seems first and
foremost to provide an account of unsupervised learning and perception (and action
(Clark 2016, Ch. 4)). Clearly, however, there is much more to our mental lives than
such perceptual responsiveness to the structure of the distal environment. We don’t
just perceive (and act).We reason, deliberate, plan, and reflect, and such psychological
processes are often strongly decoupled from immediate perception.

In fact, there are really two problems here. The first is how any theory of the mech-
anisms implicated in perception could simply be extended to capture the mechanisms
implicated in thought as well. If perception and cognition are characterized by differ-
ent information-processing characteristics and capacities, as is commonly believed in
cognitive psychology (Firestone and Scholl 2015, p. 1), it is not clear how a single
theory could subsume both domains of psychological phenomena. Second, it is not
clear how the specific mechanisms posited by predictive processing could capture the
kinds of capacities exhibited in thought. What could precision-weighted hierarchical
prediction error minimization have to dowith planning andwriting an academic paper,
worrying about what your date thinks about your offer to pay the bill, figuring out how
best to arrange a surprise birthday for a friend, and so on?

Of course, so far this at best amounts to a challenge—a vague expression of
incredulity—and not a substantive objection. Before I turn in Sect. 4 to substanti-
ate this incredulity, I first outline what I think is plausibly the standard strategy for
answering this worry among advocates of predictive processing.

3.2 The standard strategy

The “standard strategy” can be extracted from the work of Clark (2013, 2016), Hohwy
(2013) and Fletcher and Frith (2008), among others. It has three components, which
I outline in turn.

First, it begins by either denying or deflating any distinction between perception
and thought. Clark (2013, p. 190), for example, contends that predictive processing
dissolves “at the level of the implementing neural machinery… the superficially clean
distinction between perception and knowledge/belief,” and Hohwy (2013, p. 72) notes
that “it is normal for us to distinguish between on the one hand perception and expe-
rience, and on the other hand belief and thought… Yet the perceptual hierarchy does
not suggest that there is such a difference” (my emphasis).

This challenge comes from at least two sources. The first concerns representation:
as outlined in Sect. 2, there is a sense in which all information processing within
predictive brains implicates beliefs—specifically, “Bayesian beliefs” encoding proba-
bility distributions over possible states of the world (Seth and Friston 2016). As such,
the same fundamental kind of representation underlies representation in both sensory
cortices and cortical regions responsible for intuitively “higher-level” cognition. The
second concerns inference: according to predictive processing, all representations are
updated through (approximate) Bayesian inference. Given that Bayesian inference

8 Clark (2016) is an exception to this (see Sect. 5).
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is a paradigmatically cognitive process, this encourages the idea that what we ordi-
narily distinguish as perception and thought are in fact subsumed under a broader
information-processing regime.

If this is right, what accounts for the strong intuition of a difference between percep-
tion and thought? The second component of the standard strategy explains away this
intuition as a response to different levels of the brain’s hierarchical generative model.
Specifically, whatwe ordinarily characterise as perception tracks representations in the
generative model computationally closer to the sensory periphery estimating environ-
mental causes at fine-grained spatiotemporal scale, whereas more intuitively cognitive
activities correspond to representations of worldly phenomena implicated in larger-
scale, longer-term regularities (Clark 2013; Hohwy 2013). Hohwy (2013, p. 72), for
example, suggests that “perceptions are…basically shorter-term expectations and con-
cepts longer-term expectations,” and Clark (2013, p. 190) asserts that “in place of any
real distinction between perception and belief we get variable differences in the mix-
ture of top-down and bottom-up influence and differences of temporal and spatial scale
in the internal models that are making the predictions” (my emphasis). In addition,
Hohwy (2013, pp. 72–73) suggests that more intuitively conceptual representations
comprise discrete distributions over categorical entities, whereas continuous densities
capture more intuitively perceptual experience (see also Friston et al. 2017b).9

Importantly, these components are not restricted to philosophical analyses of the
implications of predictive processing. In a highly influential article on the emergence of
hallucinations and delusions in schizophrenia, for example, Fletcher and Frith (2008)
draw on predictive processing to offer a unified account of both phenomena in terms of
a common underlying computational architecture. Exemplifying the first component
of the standard strategy, they deny that “perception and belief formation… [comprise]
distinct processes,” citing “recent advances in computational neuroscience” (i.e. pre-
dictive processing) to argue that “the unusual perceptual experiences of patients and
their sometimes bizarre beliefs… [are] part of the same core abnormality…” (Fletcher
and Frith 2008, p. 48). Expressing the second component, they then claim that there is
“a hierarchy of… inferencing devices in the brain where lower levels of the hierarchy
aremore relevant to perception and upper levels andmore relevant to beliefs” (Fletcher
and Frith 2008, p. 56).

As stated, however, these first two aspects of the standard strategy do not address a
major component of the worry raised above—namely, that much of our psychological
lives is decoupled from direct perceptual engagement with our environments.

The third part of the standard strategy is to try and capture such decoupled psy-
chological phenomena in terms of “offline simulation” (Clark 2016; Pezzulo 2017).
As Clark (2016) argues, once a predictive brain acquires a rich, structured generative
model with which it can perceive the world, a capacity to imagine that world—to
engage in a “deliberate imaginative exploration of our own mental space (273)—is
attractively co-emergent (8). Within the context of predictive processing, such purely
simulative capacities are made possible by removing the constraints of incoming sen-

9 Strictly, this would require a slightly different architecture to standard predictive processing (see Sect. 2,
and Friston et al. 2017b), although discrete distributions are plausibly easier to compute with than density
functions.
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sory evidence on cortical processing, such that top-down predictions are not made to
minimize the prediction errors they generate. Taking the model “offline” thus enables
the system to simulate hypothetical causal processes and engage in counterfactual
reasoning, thereby facilitating cognitive capacities directed at temporally distant or
counterfactual states of affairs (Clark 2016, Ch. 3).

Unfortunately, concrete testable models within this ballpark are for the most part
yet to be developed. Nevertheless, there is a wide range of speculative accounts con-
cerning how this potential aspect of the predictive processing architecture might be
able to illuminate an array of psychological phenomena—phenomena such as dream-
ing (Hobson and Friston 2012), social cognition and coordination (Kilner et al. 2007),
memory (Henson and Gagnepain 2010), planning (Clark 2016, Ch. 3), and more (cf.
Clark 2016).Whatever the details of such accounts, predictive processing clearly must
exploit this potential of its cognitive architecture if it is to have any hope of account-
ing for the range of cognitive capacities we exhibit that are decoupled from online
perceptual activity or action.

I don’t pretend that the foregoing three components of the standard strategy capture
all work within predictive processing when it comes to accounting for higher cogni-
tion—indeed, I return in Sect. 5 to work that points to the transformative impact of
public symbol systems and structured social practices on the predictivemind (cf. Clark
2016)—but I do think these three components are representative of the basic strategy
by which advocates of predictive processing have sought to address the challenge with
which I began this section. I next turn to render this challenge precise and argue that
the standard strategy does not successfully answer it.

4 Two challenges to predictive processing

Despite the attractions of the standard strategy, it doesn’t work. Specifically, predic-
tive processing is unable to capture two basic and related characteristics of conceptual
thought: first, its generality—the fact that we can think and reason about phenomena
at any level of spatiotemporal scale and abstraction; and second, its rich composi-
tionality—the specific way in which concepts are productively combined to yield
our thoughts. These characteristics undermine predictive processing’s commitment to
hierarchical representation and probabilistic graphical models as the whole truth about
cognitive representation in the brain. Before I advance the arguments in defence of
these claims, I first briefly note two qualifications.

First, and most obviously, I make no claim to originality in identifying these cogni-
tive capacities. In fact, they plausibly stand at the centre of most prominent historical
debates about cognitive architecture—about the prospects of behaviourism, connec-
tionism, dynamicism, and embodied cognition, for example. Specifically, they are
those capacities most amenable to the flexible combinatorial symbol systems of “clas-
sical” cognitive science (Newell and Simon 1976). What is novel here is the analysis
of why predictive processing cannot accommodate them. This is not a simple rehash-
ing of classical critiques of connectionism (Fodor and Pylyshyn 1988). Predictive
processing represents a genuine improvement over such previous models, and Clark
(2015, 2016) explicitly claims that hierarchical generative models within predictive
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processing can answer the worries about structure and representational flexibility that
motivated such critiques. I think he is wrong (see below), but it must be shown why.

Second, and hopefully equally obviously, I do not claim that these are the only
characteristics of cognition or human psychologymore generally that pose a challenge
for predictive processing.10 Instead, the claim is more modest: that the characteristics
I identify are easily grasped, are central to conceptual thought, and transparently
highlight deep structural problems with the cognitive architecture it posits.

4.1 The generality of thought

The first challenge is straightforward: we can think and reason about phenomena at
any level of spatial and temporal scale or abstraction in a way that flexibly combines
representations across such levels; extant views about cognitive representation within
predictive processing are unable to accommodate this fact; therefore, such views are
mistaken.

To see the problem here, begin with Vance’s (2015) observation that predictive
processing seems to be committed to two ideas about the representational hierarchy:
first, that it tracks computational distance from sensory surfaces; second, that it tracks
representations of phenomena at increasingly larger spatiotemporal scales.11 AsVance
(2015) notes, these two ideas seem to be straightforwardly in tension with one another:
“person-level beliefs can be computationally far from the sensory surfaces and can
also represent things at small spatiotemporal scales”—a fact he illustrates by reference
to our ability to think about sub-atomic particles moving close to the speed of light.
Specifically, if beliefs are supposed to exist higher up the hierarchy (see Sect. 3.2) and
moving higher up the hierarchy is supposed to result in representations of phenomena
at larger spatiotemporal scales, it should be impossible to have beliefs about extremely
small phenomena implicated in fast-moving regularities.Given that this is evidently not
impossible, the standard story about the representational hierarchy must be mistaken.

The problem, however, is much deeper than this, and it is worth unpacking it in
some detail.

First,we can think andflexibly reason about phenomena atany spatiotemporal scale.
The simplest way to see this is to note that we can think about any of the phenomena
represented by our perceptual systems: distributions of light intensity, oriented edges,
fast-moving patterns of auditory stimuli. If we could not, neuroscience—and thus
predictive processing—would be impossible. Further, such representation is not a
matter of activating parts of the relevant sensory cortices “offline” (see Sect. 3.2).

10 For example, Colombo andWright (2016) have recently drawn on the systemic role ofmesocorticolimbic
dopaminergic systems to challenge the explanatory scope of predictive processing, and Klein (2016) argues
that the framework cannot account for motivation. My challenge here is intended to complement these other
critiques.
11 Clark (2012, p. 762), for example, characterises “a hierarchy of increasingly abstract generative models”
as “models capturing regularities across larger and larger temporal and spatial scales,” and Hohwy (2012,
p. 2) writes, “In general, low levels of the hierarchy predict basic sensory attributes and causal regularities
at very fast, millisecond, time scales, and more complex regularities, at increasingly slower time scales are
dealt with at higher levels.” For more evidence and quotes, see Williams (forthcoming).
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A blind person can think about light patches or binocular disparity. This strongly
undermines any attempt to restrict conceptual thought to regions of an inferential
hierarchy if such regions are supposed to represent a specific spatiotemporal range of
phenomena. Further, this point doesn’t apply to uniquely “high-level” reasoning of
the sort found in deliberate intellectual or scientific enquiry: patients suffering from
“delusional parasitosis” (Prakash et al. 2012)wronglybelieve themselves to be infested
with tiny parasites, insects, or bugs—a fact difficult to square with Fletcher and Frith’s
(2008) suggestion outlined in Sect. 3.2 that delusions arise in “higher” levels of the
hierarchy, if this hierarchy is understood in terms of increasing spatiotemporal scale
(see Williams forthcoming).

In response, one might note that what predictive processing is strictly committed to
is that higher levels within the hierarchy identify the environmental variables that best
predict the regularities (statistical patterns) identified at the level below. For exam-
ple, in deep learning applications in artificial intelligence research, this process is a
matter of recursively extracting the sources of mutual information among variables,
where two variables are mutually informative if observation of one reduces uncer-
tainty about the other (Goodfellow et al. 2017; Ryder forthcoming). Importantly, this
account subsumes the view that representations higher up represent phenomena at
larger spatiotemporal scale, but it is also consistent with representations of phenom-
ena—for example, individuals and kinds—where it might not strictly make sense to
speak of different spatiotemporal scale, but which are nevertheless genuinely pre-
dictive of patterns of sensory input. Further, advocates of predictive processing often
stress that the hierarchy here is in fact better understood as a sphere orweb—with prox-
imal inputs across different modalities perturbing the outer edges—than a stepladder
(Penny 2012a, b). This allows formultimodal or amodal representations to effectively
predict the phenomena represented across different sensory modalities. For example,
representing the presence of a dog predicts a multitude of visual, tactile, olfactory,
auditory, and interoceptive sensations. If this is right, perhaps it is only hierarchical
representation in sensory cortices that functions in terms of increasing spatiotemporal
scale, and that as one moves into association cortex representations latch onto more
“abstract” environmental variables.

This response confronts a dilemma, however: either it simply abandons the view
that conceptual representation is meaningfully located at some region of a hierar-
chy in favour of a conventional understanding of concepts as an autonomous domain
of amodal representations capable in principle of ranging over any phenomena (e.g.
Pylyshyn and Fodor 2015; see below Sect. 4.2); or it offers some principled means
of characterising the region of the hierarchy involved in non-perceptual domains. The
challenges for this latter option are formidable: prima facie, at least, the fact thatwe can
engage in highly abstract thought about phenomena at any level of spatiotemporal scale
undermines any simple hierarchically iterated process of prediction error minimiza-
tion as the whole truth about cognitive representation. Domy thoughts about electrons
activate representations at a different position in “the hierarchy” to my thoughts about
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Paris, the English football team’s defensive strategy, or the hypothesised block uni-
verse? If so, by what principle?12

The problems here are easiest to see when one focuses on the second strand of
the problem: we can think and reason about phenomena at any level of abstraction.
Specifically, it is not just that we can think about concrete phenomena at any spa-
tiotemporal scale; we can think about phenomena with no spatiotemporal scale—for
example, Bayesian inference, the number 3, representational content, postmodernism,
and so on. Such phenomena play no causal role and thus are predictive of no regulari-
ties (although of course our thoughts about them might themselves play causal roles).
Insofar as inter-level relations in the inferential hierarchy are determined by a recursive
process of prediction error minimization, it is not obvious how representations of such
abstract entities could feature at all.

Finally, the third dimension of the challenge in this sub-section concerns not just
our ability to think about this varied range of phenomena but our capacity to flexibly
reason about phenomena in a way that combines representations from across levels of
any conceivable hierarchy. To see the problem here, consider the cognitive architecture
of predictive processing as outlined in Sect. 2: on this view, the Markov assumption
codifying the conditional independence of non-adjacent levels of the hierarchy (see
Sect. 2.2) ensures that the influence of representations at non-adjacent levels is always
mediated by representations in the levels between them. The problem with this idea,
however, is that conceptual thought and reasoning do not have this restriction: one can
combine representations of phenomena at different levels of spatiotemporal scale and
abstraction into structured beliefs and exploit these beliefs in reasoning in a manner
that looks flatly inconsistent with an understanding of conceptual representation in
terms of hierarchical graphical models. For example, we can think about how the laws
of physics would have to change to make it possible for an elephant to move faster
than the speed of light.

This point relates to Gareth Evans’ (1982, p. 104) famous “generality constraint”
on conceptual thought, according to which:

“If a subject can be credited with the thought that a is F, then he must have the
conceptual resources for entertaining the thought that a is G, for every property
of being G of which he has a conception.”

I have been using the term “generality” in a different sense to Evans—roughly, to
indicate the range of phenomena about which we can think and reason, rather than

12 One interpretation that might be attributed to Hohwy (2013) is that levels within the inferential hier-
archy are determined not by what they represent—their content—but by the relative time-scale of the
representations themselves (see, e.g. Hohwy’s claim referenced above that “perceptions are…shorter-term
expectations and concepts longer-term expectations” (2013, p. 72)). It is difficult to make sense of this
suggestion, however, hence why I have not included it in the main text. First, although active perceptual
states might be short-lived, the representational system from which they are generated is just as enduring
as other representational systems. The putative difference must therefore concern the time-scale of active
representations at different levels of the hierarchy. But insofar as active representations in different parts
of the brain exhibit differential levels of persistence or invariance, this is itself explained by what they
represent, and is highly context-sensitive. For example, deliberately focus your vision on an unchanging
stimulus that allows for multiple interpretations, and let your interpretation change back and forth between
them: the low-level perceptual state remains the same; your conceptual interpretation changes.
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the way concepts can be combined to yield such thoughts. Nevertheless, the two ideas
now relate to one another fairly directly: our capacity to think and flexibly reason
about phenomena of any spatiotemporal scale and abstraction reflects our ability to
combine concepts into structured thoughts irrespective of their contents. The problem
with predictive processing is that hierarchical generative models of the sort it posits
appear not to satisfy this constraint: the relation of different representations to one
another is mediated entirely by their place in the specific network structure, sharply
delimiting the allowable representational combinations.

To understand the nature of these deficiencies in detail requires us to turn to the
second challenge of this section: the rich compositionality of thought, and predictive
processing’s current inability to capture this compositionality.

4.2 The rich compositionality of thought

The previous section focused on characteristics of thought that the predictive process-
ing cognitive architecture cannot account for. In this section I focus instead on awidely
accepted explanation of conspicuous characteristics of thought: its compositionality.
As before, the argument of the section is straightforward: thought is richly compo-
sitional; extant views about cognitive representation within predictive processing are
inconsistent with this fact; therefore, such views are mistaken.

Compositionality is a familiar principle of representational systems in which the
representational properties of a set of atomic representations compose to yield the
representational properties of molecular representations. For example, the content of
“Ben loves Bob” is a compositional function of the grammar and meanings of its
constituent expressions—“Ben,” “Bob,” and “loves”—and the way in which they are
combined. If one combines a compositional representational system with recursive
rules whereby the outputs of some functions provide the inputs to others, one thereby
yields the infinitary character of representational systems such as natural languages.

The compositionality of the representational system underlying conceptual thought
is widely considered a necessary explanation of two basic characteristics of cognition:
its productivity and systematicity (Fodor 1975; Fodor and Pylyshyn 1988). “Produc-
tivity” names the infinitary character of thought. “Systematicity” names the systematic
relations our thoughts bear to one another, such that an ability to think some thoughts is
inherently tied to the ability to think others (Fodor and Pylyshyn 1988). For example,
if one can think that Bob loves Ben, one can think that Ben loves Bob.

Nevertheless, to say that thought is systematic, productive, or compositional is not
to say very much. The reason is that different representational systems have different
compositional properties and thus generate different forms of productivity and sys-
tematicity. As such, my first premise is that thought is richly compositional, where
by “richly” I mean the following: at least as expressive as first-order logic. Because
predictive processing is committed to HPGMs whose structure is captured by proba-
bilistic graphical models, it cannot capture this characteristic of thought. Specifically,
graphical models are effectively restricted to the expressive power of propositional
logic (Russell and Norvig 2010, p. 58; cf. also Goodman et al. 2015; Russell 2015).
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To see this, it will be helpful to briefly review a general divide in the history of
cognitive architectures between approaches that stress symbols and those that stress
statistics (see Goodman et al. 2015; Tenenbaum et al. 2011). The former approach
focuses on the compositional, rule-governed character of cognitive capacities, and is
exemplified in the symbol-manipulating paradigm of classical cognitivism. Famously,
whilst such architectures are well-suited to modelling abstract domain-general logical
reasoning, they are traditionally confined to the realm of certainty and are widely
held to be at odds with known facts about neurobiology, rendering them brittle and
unrealistic models of cognition (Churchland 2012; Pearl 1988). By contrast, the lat-
ter cognitive architectures—exemplified by work on artificial neural networks, for
example—are much more adept at dealing with uncertainty and make closer contact
with neurobiology, but typically lack the structured and compositional representational
abilities seemingly necessary to capture and explain higher-level cognition (Fodor and
Pylyshyn 1988; Tenenbaum et al. 2011).

Clark (2015, 2016, p. 24, pp. 171–174) contends that the HPGMs in predictive
processing can capture the attractions of both traditions without suffering the draw-
backs of either, combining neurobiological realism and statistical inference with the
rich, hierarchically structured representational capacities central to more traditional
symbolic models (see Clark 2016, p. 24, pp. 171–174):

The worries [advanced, e.g., by Fodor and Pylyshyn 1988] about structure are
directly addressed because… prediction-driven learning, as it unfolds in these
kinds of multilayer settings, tends to separate out interacting distal (or bodily)
causes operating at varying scales of space and time (Clark 2016, p. 24).

To understand this, it will be helpful to return to the discussion of probabilistic graph-
ical models in Sect. 2. First, such models are compositional. As with all statistical
models, their compositional properties are determined by the possible assignments
of values (and assignments of probabilities to these values) to their variables. These
possible assignments correspond to the space of possible worlds such models can
represent, with different assignments corresponding to different worlds (Kiefer and
Hohwy 2017).

For this reason, probabilistic graphical models are at least weakly productive, in
that such systems can represent phenomena they have never represented before. Fur-
ther, the modularity of graphical models enabled through conditional independence
relationships (see Sect. 2.2) ensures that new random variables can be added rather
painlessly—that is, without resulting in a combinatorial explosion (Danks 2014, p.
44). Finally, as with statistical models more generally, such graphical models exhibit a
kind of systematicity. In a supply/demand model, for example, an ability to represent
that supply=X and demand=Y goes hand in hand with an ability to represent that
supply=Y and demand=X.

The aspect of HPGMs in predictive processing that Clark thinks is most impor-
tant, however, is their hierarchical structure. Specifically, this enables such networks
to effectively deconvolve the structural elements of the environment, separating out
functionally significant environmental causes in a way that radically amplifies their
compositional abilities (Clark 2016, p. 24). As such, these HPGMS in effect capture
compositional relationships between environmental variables, explicitly representing
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how simple environmental elements are parts of and thus systematically related to
the larger structures within which they participate. In other words, such models not
only flexibly represent possible worlds but rich, structured possible worlds. As Clark
(2015, p. 5) puts it:

[Predictive processing] offers a biologically plausible means… of internally
encoding and deploying richly structured bodies of information… [enabling]
us, as agents, to lock onto worldly causes that are ever more recondite, capturing
regularities visible only in patterns spread far in space and time….

Despite this, such hierarchical probabilistic graphical models are insufficient. They
are not richly compositional. As noted, their expressive power is equivalent to propo-
sitional logic (Russell and Norvig 2010, p. 58). It is worth unpacking what this means.

Propositional logic provides a compositional representational system whose ontol-
ogy comprises facts and whose operations are defined over atomic (i.e. unstructured)
representations of such facts—namely, propositions. That is, the basic representational
units are descriptions of world states, which both combine with other descriptions to
yield molecular descriptions of world states and feature in formal argument patterns
(like modus ponens). Propositional logic thereby produces factored representations,
in which a represented state of the world comprises a vector of attribute values: the
attributes (i.e. variables) are the propositions and the values are their truth-values
(Russell and Norvig 2010, p. 58).

In one sense, the difference between propositional logic and probabilistic graphical
models is immense. Most obviously, propositional logic cannot handle uncertainty:
descriptions of the world are either true or false. By contrast, probabilistic graphical
models define a probability distribution over world states. Relatedly, inference in such
models is not deductive but statistical, capturing characteristics of inference like non-
monotonic reasoning not possible in propositional logic (Pearl 1988). Nevertheless,
despite these important differences, the ontology and thus expressive power of such
representational systems is equivalent: namely, facts (Russell and Norvig 2010, p.
290).

The limitations of propositional logic and such factored representations more gen-
erallymotivated the development ofmore expressive formal systems—most famously,
first-order (i.e. predicate) logic (cf. Haaparanta 2009). In contrast to factored repre-
sentations, the ontology of first-order logic comprises not just facts but objects and
relations, thereby representing “the world as having things in it that are related to each
other, not just variables with values” (Russell and Norvig 2010, p. 58). As such, first-
order logic decomposes a propositional representation (e.g. Hume is a philosopher)
into subjects (e.g. Hume), n-place predicates (e.g. is a philosopher), and quantifiers
(e.g. there is an x such that x is Hume and x is a philosopher). The resulting gains in
expressive power are famously enormous.

These expressive limitations of probabilistic graphicalmodels havemotivatedmany
both in the tradition of Bayesian cognitive psychology (Goodman et al. 2015; Lake
et al. 2015) and machine learning (Ghahramani 2015) to abandon such models as the
data structures implicated in probabilistic inference in favour of probabilistic program-
ming languages—that is, programming languages familiar from computer science that
capture the expressive power of higher-order logics but nevertheless facilitate proba-
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bilistic inference (Goodman 2013). In the domain of cognitive psychology that most
concerns us, Goodman et al. (2015) explicitly argue that hierarchical graphical models
are inadequate to capture the productivity of distinctively conceptual thought.

To see a concrete example of this, imagine trying to represent a simple choice
model (i.e. theory of mind) with a probabilistic graphical model (Goodman et al.
2015). In some sense, one could capture the dependence relationships between actions,
beliefs, and desires with a graph (i.e. actions are the children of beliefs and desires).
The obvious problem with any such representation, however, is twofold: first, the
domain of the relevant variables is infinite—that is, there is no limit on the kinds of
things one can want, think, or do; second, a simple (causal) probabilistic dependency
relationship does not capture the functional relationships that exist between mental
states and actions in choice models—for example, some kind of utility maximization
(Gerstenberg and Tenenbaum in press; Goodman et al. 2015). More generally, this
example illustrates that graphical models will fail whenever the domain either requires
a richly compositional representational system, or because the relationships between
the elements in that domain cannot be captured with a simple graph-like structure.
Crucially, hierarchical graphical models do not solve this problem: they introduce a
computationally powerful kind of relationship between variables, but do not alter their
basic expressive power (Gerstenberg and Tenenbaum in press; Goodman et al. 2015).

Insofar as predictive processing is committed toHPGMswhose structure is captured
by probabilistic graphical models, then, it will be unable to account for any features of
thought that are more expressive than propositional logic. Plausibly, this characterises
all conceptual thought (Fodor 1975; Goodman et al. 2015). Even if one were to deny
this, however, notice how low the bar is in the current context: all one requires is to
show that some features of higher cognition are at least as expressive as first-order
logic. This claim could not plausibly be denied.

4.3 Summary

I have argued that predictive processing is unable to capture either the generality
of thought or its rich compositionality. Specifically, by restricting representations to
specific locations within a network structure, it lacks the resources to accommodate
either the radical domain generality of thought or the way in which concepts can be
flexibly, systematically, and productively combined to yield such thoughts. I think it is
plausible that these characteristics are not peripheral features of cognition but central
to conceptual thought and reasoning in general (see Fodor 1975; Gerstenberg and
Tenenbaum in press; Goodman et al. 2015; Jackendoff 2002). Nevertheless, all that
the argument of this paper strictly requires is that such features are present in at least
some instances of higher cognition.

Is there a way out? I conclude by identifying what I think are the twomost plausible
strategies for an advocate of predictive processing to pursue in light of the foregoing
objections. In doing so, I hope to pave the way for constructive empirical and philo-
sophical work in the future motivated by the critical arguments of this paper. Given
space constraints, I simply identify the strategies, their attractions, and the steepest
obstacles they confront, without elaborating on these points in detail.
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5 Conclusion: two strategies for predictive processing

First, in Sect. 2 I argued that predictive processing has two parts: a vision of the brain
as an organ for prediction error minimization, and a specific proposal concerning how
the brain minimizes prediction error involving hierarchical predictive coding. The
simplest strategy for an advocate of predictive processing to pursue in light of the
foregoing objections is simply to either abandon this second part or restrict its domain
of application—to dissociate the prediction error minimization framework from the
specific “process theory” I have considered in this paper.

There are at least three considerations that recommend this strategy. First, I noted
briefly in Sect. 2 that the motivation for conceptualising the brain as an organ for
prediction error minimization has deep links to considerations from statistical physics
and theoretical biology (cf. Friston 2010; Hohwy 2015), and the “process theory” I
have focused on in this paper is plausibly just one (among many possible) sugges-
tions for how the brain minimizes long-run prediction error. As such, the cognitive
architecture I have addressed does not seem an essential characteristic of the pre-
diction error minimization framework. One might even go further and argue that the
most efficient means for organisms in our predicament to minimize prediction error
would be to induce a representational system with the characteristics I have identified,
although I will not pursue that suggestion here. Second, there is an enormous amount
of excellent work that falls under the broad rubric of the Bayesian brain hypothesis and
“prediction-and-generative-model-based architectures” (Clark 2016, p. 299) that is not
specifically tied to the cognitive architecture I have addressed. Finally, and relatedly,
I noted above (Sect. 4.2) a recent emergence of fascinating work in cognitive psy-
chology and machine learning that focuses on probabilistic programming languages
and is explicitly designed to answer the kinds of worries I have raised for predictive
processing here within the confines of a Bayesian, generative-model-based approach
to cognition (see Goodman et al. 2015). Given this, there is no shortage of excellent
work an advocate of predictive processing might draw from were she to abandon her
commitment to the cognitive architecture outlined in Sect. 2 as the whole truth about
the brain.

Despite these attractions, I think this strategy pays a steep price: explanatory power.
The fewer commitments that predictive processing has, the less it can genuinely
explain. As noted in Sect. 2, there is plausibly nothing that could falsify the mere
claim that the brain is Bayesian, and one might make a similar point with respect
to the prediction error minimization framework. Short of substantive commitments
concerning the actual information-processing architecture in the brain, it is difficult to
see how such frameworks on their own could genuinely illuminate concrete psycho-
logical phenomena. At best, they would constrain the space of possible explanations
and provide the theoretical resources for advancing specific explanatory models of
such phenomena. In itself, this is no objection. Nevertheless, it does undermine the
widespread view that predictive processing itself constitutes a “complete framework…
for explaining perception, cognition, and action” (Seth 2015, p. 1, my emphasis).

A second strategy is more radical: it accepts the psychological phenomena I iden-
tified in S4 above, but associates them with the distinctive contribution of natural
language and public combinatorial symbol systems more generally. This would relate
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predictive processing to a long tradition in both psychology and philosophy (see
Bermúdez 2005, Ch. 10) that attributes many of the idiosyncrasies of higher cogni-
tion in humans not to a qualitatively distinct neural architecture from other mammals,
but to the public symbol systems that we are plausibly uniquely exposed to. Such
a possibility is suggested by the latter chapters of Clark’s (2016) recent monograph
on predictive processing, in which he attributes the seemingly novel cognitive capac-
ities we exhibit not just to a deeper and more richly structured neocortex, but also
to “the influence of flexible structured symbolic language… and an almost obsessive
drive to engage in shared cultural practices” (Clark 2016, p. 276; see Williams 2018).
On this view, “human thought… inherit[s] such systematicity as it displays from the
grammatical structure of human language itself ” (Clark 2000, p. 77, my emphasis).

Again, this idea has numerous attractions. First, it is much less plausible that other
mammals exhibit the psychological capacities I identified above, despite the seem-
ingly profound anatomical and computational similarities between our neocortices.
This encourages the idea that what differentiates human cognition from that of other
mammals is largely a matter of the novel environments we inhabit—with its structured
social practices and public symbol systems—rather than the basic kind of cortical com-
putation (see Churchland 2012). Second, the characteristics I identified do appear to
be strongly coupled to natural language: it is difficult to imagine how one could think
about electrons or postmodernism, for example, without the conceptual scheme and
language endowed by one’s culture. Third, it is not difficult to find speculative accounts
of why the evolutionary pressures on communication might have led to the develop-
ment of a representational system in language qualitatively different in its character
from the system that underlies neural computation (Bermúdez 2005, Ch. 10). As such,
the characteristics of these representational systems might very well interact in ways
to produce seemingly novel kinds of cognition. Finally, and perhaps most importantly,
this strategy might provide an advocate of predictive processing with the resources to
hold on to the basic cognitive architecture outlined in Sect. 2.

As with before, however, this strategy confronts significant challenges. First, it is
not obvious that it is true. Of course, to what extent pre-linguistic cognition exhibits
the generality and rich compositionality I have identified is a difficult and strongly
contested empirical question, and I cannot settle it here. Two reasons for thinking it
does, however, are: first, the seemingly rich structure of “intuitive theories” of domains
like physics and psychology that appear to be pre-linguistic, central to commonsense
reasoning, and yet richly compositional (Gerstenberg and Tenenbaum in press); and
second, the fact that we can learn and understand natural languages—a fact that is
difficult to understand without positing a representational system at least as expressive
as language itself (Pylyshyn and Fodor 2015). I will not take a stand on such debates
here. By contrast, this strategy must come down hard on one side of them.

The second and related challenge is that it is not obvious how the suggestion would
help even if it were true. That is, even if one grants that the features of concep-
tual thought I have outlined in this paper are somehow intimately related to public
representational systems, one would still have to explain how human thought might
“inherit” these features from such systems. If public representations literally transform
the brain’s information-processing architecture, this strategy would collapse into the
first strategy outlined above—namely, a (partial) abandonment of the idea that the
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information-processing architecture outlined in Sect. 2 provides the whole truth about
cognitive representation within the brain. If one wants to preserve that information-
processing architecture, then, it seems that one would have to endorse some form
of externalism about the vehicles of public representational systems like natural lan-
guage.13 This does not seem like an attractive option, however.

However these issues play out, I hope that I have done enough to show that they
must play out if predictive processing is to have any hope of accounting for conceptual
thought.
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