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Summary 

Ovarian clear cell carcinoma (OCCC) is a distinct subtype of epithelial ovarian cancer (EOC) 
characterised by glycogen accumulation. Frequently arising within endometriotic cysts, it can 
be conceived as an ectopic endometrial cancer. Putative driver genomic events include 
HNF1B overexpression and inactivating ARID1A mutations. Importantly, these can also be 
found in a significant proportion of adjacent non-malignant endometriotic lesions and, 
therefore, are likely early events in OCCC pathogenesis. I hypothesised that the study of the 
functional consequences of these driver genomic events and metabolic perturbations would 
provide insights into potential therapeutic targets in this difficult to treat cancer. 

 

Gene expression arrays in normal mouse uterus, embryonic fibroblasts and human 
immortalised ovarian surface epithelium cells revealed that a core ARID1A-driven 
transcriptional programme, conserved across normal tissues and species, centred on 
regulation of mitosis and cell cycle progression-related genes, and involving potentially 
targetable kinases, exists. Despite this, the effect of ARID1A knockdown on proliferation in 
human cell lines and mouse cells and tissues was found to be context and tissue specific. 
Interestingly, in vivo knockout in the uterine epithelium of Arid1afl/fl mice was accompanied by 
a dramatic increase in proliferation, in support of its suggested driver-event role in uterine-
derived cancers. 

 

HNF1B overexpression has been previously reported to affect proliferation and metabolism in 
a variety of cell lines but studies in well characterised OCCC cells are lacking. Here, HNF1B 
was found to consistently drive proliferation in a panel of bona fide OCCC cell lines. Pathway 
analysis of HNF1B-regulated genes suggested that HNF1B is involved in interactions with the 
tumour microenvironment. Indeed, I observed that HNF1B negatively regulates migration and 
invasion. Additionally, I found that HNF1B overexpression drives glycogen accumulation and 
that its knockdown reverses the Warburg effect. These results point at trade-offs among 
proliferation, metabolism and metastatic capability and suggest that HNF1B overexpression 
may be one of the reasons that, in marked contrast to high-grade serous EOC, OCCC 
frequently presents as early stage disease.   

 

Little is known about the functional consequences of glycogen accumulation in OCCC. I report 
that OCCC cell lines display increased expression of glycogen metabolism enzymes and that 
inhibiting the rate limiting phosphorylase (PYGL) and synthase enzymes markedly decreased 
proliferation, even in the presence of plentiful extracellular glucose. This observation suggests 
a role for glycogen beyond that of a glucose store. Assays performed to elucidate how PYGL 
knockdown affects proliferation suggest that this may be through G2/M phase arrest, possibly 
caused by inhibition of lipid breakdown or altered PKA signalling. Furthermore, preliminary 
evidence suggests that the effects of PYGL knockdown on proliferation are limited to 
malignant cells only. 



x 

 

In conclusion, this project studied the functional consequences of three driver events in OCCC: 
ARID1A mutations, HNF1B overexpression and glycogen accumulation. Targeting ARID1A-
regulated kinases and glycogen metabolism and perturbing HNF1B function require further 
investigation as potential therapeutic strategies in OCCC. 
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1. INTRODUCTION 

1.1. Origins of Epithelial Ovarian Cancer 

Epithelial ovarian cancer (EOC) is a significant cause of morbidity and mortality. In 2014, it is 

estimated that 21,980 cases will occur in the USA, leading to 14,270 deaths (Siegel et al. 

2014). In the UK, it is the fifth commonest malignancy affecting women (Cancer Statistics 

England 2011) and the commonest cause of death from gynaecological cancer. Despite 

intensive research efforts, advances in diagnostic modalities, improvements in surgical 

techniques and the incorporation of novel agents in systemic treatments, 5-year survival from 

EOC has remained constant over the past 3 decades (Vaughan et al. 2011). 

 

Our incomplete understanding of the pathogenesis of EOC has contributed to this failure to 

improve outcomes for patients. For most of the 20th century, the predominant theory of ovarian 

carcinogenesis postulated that EOC arises from the ovarian surface epithelium with 

subsequent metaplasia accounting for the different histological subtypes (Dubeau 2008). 

Scant attention was paid to the histological subtypes themselves, as they were viewed as 

slightly different manifestations of a single disease process. However, the search for a putative 

cell of origin and precursor lesions in the ovaries has proven largely unsuccessful (Dubeau 

2008). Following the discovery of the breast and ovarian cancer predisposition genes BRCA1 

and BRCA2 (Miki et al. 1994; Wooster et al. 1994), prophylactic salpingo-oophorectomy 

started to be performed in germline mutation carriers. Examination of these specimens failed 

to show precursor lesions in the ovaries, but did reveal the frequent presence of intraepithelial 

neoplasia (termed STIC for serous tubal intraepithelial cancer) with serous morphology in the 

fallopian tubes (Lee et al. 2006). Clonal relationships, based on identical TP53 mutations, 

between synchronous STIC and high-grade serous (HGS) ovarian cancer lesions have been 

shown (Kuhn et al. 2012), implying that a significant proportion of HGS cancers are actually 

fallopian tube cancers that only secondarily involve the ovaries. In addition, there is now 

evidence that the majority of ovarian clear cell (OCCC) and endometrioid (OEAC) cancers 

arise from endometriotic cysts (Kobayashi et al. 2009; Mandai et al. 2009) whereas most 

mucinous tumours appear to be metastatic from the gastrointestinal tract (Vaughan et al. 

2011).  

 

Based on these findings, the “Mullerian hypothesis” has been developed. This postulates that 

most ovarian cancers arise from Mullerian structures, such as the fallopian tube or the uterus, 
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and only secondarily involve the ovaries and is currently accepted by most authorities in the 

field (Bast et al. 2009; Dubeau 2008; Vaughan et al. 2011). Accordingly, each histological 

subtype, namely HGS, low-grade serous, OEAC, OCCC and mucinous, is viewed as a distinct 

disease entity (Fig. 1.1). It follows that advances in EOC understanding, management and 

outcomes will only come from subtype-specific studies. The work set out in this thesis aims to 

functionally characterise the main driver events in OCCC, a treatment-resistant subtype that 

accounts for 5-25% of all EOC (Anglesio et al. 2011a). 

 

1.2. Ovarian Clear Cell Cancer (OCCC) 

OCCC accounts for 5-13% of EOC in western populations, while, for reasons that are unclear 

at present, its incidence is much higher in Japan where it reaches 20-25% of all EOC (Anglesio 

 

Figure 1.1. The origins of ovarian cancer 
Putative sites of origin for the 4 main subtypes of EOC (from Vaughan et al. 2011). 
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et al. 2011a; Glasspool & McNeish 2013). Epidemiologically, histologically and clinically it 

differs from the commonest EOC subtype, HGS. It exhibits a strong epidemiological link to 

endometriosis: a self-reported history of endometriosis tripled the risk of OCCC in an analysis 

of 13 case-control studies as part of the Ovarian Cancer Association Consortium (Pearce et 

al. 2012). Histopathologically, it is characterised by the presence of clear and hobnail cells 

that, on electron microscopy studies, contain abundant glycogen (Ohkawa et al. 1977). Its 

clinical presentation is also distinct from that of HGS. Whereas the latter presents as advanced 

stage III-IV disease in the vast majority of cases, OCCC tends to be diagnosed as stage I-II 

disease and can be complicated by hypercalcaemia (Savvari et al. 2009) and venous 

thromboembolism (Anglesio et al. 2011a; Tan & Kaye 2007). When diagnosed at an early 

stage, its prognosis is at least as good, if not better, than HGS (Hoskins et al. 2012; Lee et al. 

2011; Takano et al. 2008a; Takano et al. 2010). However, prognosis of advanced stage or 

relapsed disease is much worse (Lee et al. 2011), due to its chemo-resistant phenotype 

(Crotzer et al. 2007; Takano et al. 2008b). This is exemplified by response rates that range 

from 11-27% for single agent platinum chemotherapy in the first line setting (Ho et al. 2004; 

Sugiyama et al. 2000) and fall to under 2% for platinum resistant recurrent disease (Crotzer 

et al. 2007). 

 

Gene expression studies support the notion that OCCC is distinct from other EOC. Schwartz 

et al (2002) analysed gene expression profiles of 113 ovarian tumours using principal 

components analysis (PCA) and reported that OCCC cases were readily distinguishable from 

HGS and OEAC tumours. Subsequently, Zorn et al (2005) showed, in 75 cases of ovarian and 

endometrial tumours analysed on a cDNA array, that clear cell cancers of both ovarian and 

endometrial origin clustered together and differed significantly from serous and endometrioid 

tumours of either ovarian or endometrial origin. Remarkably, in that study, the expression 

profile of the clear cell cancers was much more similar to that of renal clear cell cancer 

compared to the other gynaecological cancer subtypes, suggesting that the clear cell 

phenotype is representative of underlying biological processes that transcend the anatomical 

location of the tumour.  

 

1.3. Molecular pathology of OCCC 

Over the past few years, our knowledge regarding the genetic abnormalities underpinning the 

various EOC subtypes has markedly increased. It is now widely appreciated that HGS cancers 

are characterised by ubiquitous TP53 mutations as well as defective DNA double strand break 

repair in at least half the cases, resulting in extensive chromosomal instability (Ahmed et al. 
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2010; TCGA 2011). This has led to a dualistic model of ovarian carcinogenesis where TP53-

mutated, chromosomally unstable tumours are labelled as “Type II” and all others as “Type I” 

(Kurman & Shih 2011). I believe that this classification is unhelpful as it lumps together 

cancers, such as OCCC, low-grade serous and mucinous, with different biology, clinical 

behaviour and even cell of origin. Therefore, for the rest of this section, I will focus on the 

molecular pathology of OCCC, before comparing it with other tumours of Mullerian origin. 

 

1.3.1. ARID1A mutations 

ARID1A (AT Rich Interactive Domain 1A, also known as BAF250a) is a ubiquitously expressed 

250kDa protein that functions as part of the mammalian SWI/SNF complex (Inoue et al. 2002). 

This is an ATP-dependent chromatin remodeling complex that alters chromatin structure by 

locally unwrapping DNA, displacing nucleosomes or ejecting histone subunits (Kasten et al. 

2011). It is composed of at least 10–12 subunits, including either ARID1A or ARID1B (the 

latter is also known as BAF250b). These two proteins are closely related, are incorporated in 

the complex in a mutually exclusive fashion and may function to alter target specificity. 

Different combinations of ATPase (BRG1 or BRM, encoded by SMARCA4 and SMARCA2 

respectively) and ARID1 subunits are thought to act as a combinatorial code, causing 

activation or repression of transcription (Wilson & Roberts 2011). The exact composition of 

the complex is still a matter of debate and new subunits continue to be described (Kadoch et 

al. 2013). ARID1A-containing complexes have been implicated primarily in transcriptional 

repression. ARID1A is necessary for differentiation and cell cycle arrest in osteoblast culture 

models through MYC repression and consequent CDKN1A induction (Nagl et al. 2005; Nagl 

et al. 2006), maintenance of pluripotency of murine embryonic stem cells (Gao et al. 2008) 

and nuclear hormone-mediated transactivation [including estrogen (ER) receptor] (Inoue et al. 

2002). Other work, although not specifically addressing the role of ARID1A, has also shown 

the importance of ARID1/BAF57/BRG1-containing SWI/SNF complexes in mediating ER 

(García-Pedrero et al. 2006) and progesterone receptor (PgR) induced transactivation (Vicent 

et al. 2009). Additionally, recent studies have shown that ARID1A is necessary for DNA repair 

via non-homologous end joining (NHEJ) and TOP2A function in mitosis (Dykhuizen et al. 2013; 

Watanabe et al. 2014). The role of ARID1A in repression of transcription and inhibition of 

proliferation suggests that ARID1A functions as a tumour suppressor gene. How this role 

relates to the potential growth promoting effects of ER transactivation in cancer cell line 

models is unclear, and the role of ARID1A in normal endometrial tissues needs to be 

determined. 
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1.3.1.1. Incidence of ARID1A mutations in OCCC and other cancers 

In late 2010, ARID1A was reported to be frequently mutated in OCCC and OEAC. ARID1A 

mutations were found in 55 of 119 (46%) OCCC and 10 of 33 (30%) OEAC using whole 

transcriptome sequencing in a report from the OvCaRe tumour bank (Wiegand et al. 2010). 

Simultaneously, a second report showed that ARID1A mutations could be detected in 24 of 

42 (57%) OCCC (Jones et al. 2010). In both reports, mutations were spread evenly across the 

20 exons of the gene and were predominantly truncating and heterozygous. Wiegand et al 

(2010) also showed a strong, but not perfect, correlation between the presence of ARID1A 

mutations on sequencing and loss of ARID1A expression by IHC. The mechanism through 

which heterozygous truncating mutations result in complete loss of protein expression is not 

known at present but dominant-negative effects are postulated (Wiegand et al. 2010). 

Additionally, these authors were able to show that in 2 cases of OCCC with available adjacent 

atypical as well as distant endometriosis, identical ARID1A mutations were found in the cancer 

and the adjacent endometriosis but were absent in the distant endometriotic lesions (Wiegand 

et al. 2010), implying that ARID1A mutations play a role in the malignant transformation of 

endometriosis. 

 

Since the start of this project in 2011, multiple additional reports have confirmed the frequent 

loss of ARID1A expression in OCCC (Lowery et al. 2012; Samartzis et al. 2012; Xiao et al. 

2012; Yamamoto et al. 2012a; Yamamoto et al. 2012b). Additionally, in a series of 47 OCCC 

and OEAC from Johns Hopkins, Seirei Mikatahara and Hirosaki University Hospitals, all 31 

tumours with loss of ARID1A expression showed absent ARID1A staining in the adjacent 

endometriosis, whereas the other 16 tumours maintained expression in both cancerous and 

endometriotic tissues (Ayhan et al. 2012), thus confirming the initial observations (Wiegand et 

al. 2010). Further support to the notion that ARID1A loss is an early event in OCCC 

pathogenesis is provided by a 54-patient series from Case Medical Centre, Cleveland, where 

there was a progressive increase in ARID1A protein expression loss from normal endometrium 

(0%), to typical endometriosis (19%), to atypical endometriosis (38%) (Xiao et al. 2012). Loss 

of ARID1A expression in 15% of benign endometriomas was also shown in a 71-patient Swiss 

series; similar to the Cleveland series, no ARID1A loss was seen in eutopic endometrium 

(Samartzis et al. 2012).  

 

Over the past 2 years, ARID1A mutations or loss of protein expression have been reported in 

a wide range of gynaecological malignancies. In a series from the British Columbia Cancer 

Agency (BCCA), loss of ARID1A expression by IHC was seen in 29% of low grade 
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endometrioid, 39% of high grade endometrioid, 14% of carcinosarcoma, 18% of serous and 

26% of clear cell uterine tumours (Wiegand et al. 2011). ARID1A mutations were also 

identified by whole exome sequencing in a small cohort of uterine clear cell (13%) and serous 

carcinomas (6%) (Le Gallo et al. 2012). The frequent presence of ARID1A mutations in uterine 

cancers was corroborated by the TCGA analysis (Kandoth et al. 2013). This integrated 

genomic, transcriptomic and proteomic analysis of 373 endometrial endometrioid and serous 

tumours classified uterine cancers into 4 subtypes: POLE hypermutated, microsatellite 

instability (MSI) hypermutated, copy-number low and copy-number high. ARID1A mutations 

were frequent in the first 3 subtypes but not in the copy-number high one which contained 

most of the serous cancers and showed strong expression similarity to the HGS ovarian 

subtype. Contrary to these findings, ARID1A mutations do not seem to be a feature of HGS 

ovarian cancer. No mutations were found in 76 HGS cancers in the initial publication 

describing ARID1A mutations in OCCC and OEAC  (Wiegand et al. 2010) or in the TCGA 

ovarian cancer project (TCGA 2011).  

 

ARID1A mutations have also been reported in a wide range of non-gynaecological 

malignancies (Wiegand et al. 2011; Wu & Roberts 2013), including a significant proportion of 

gastric (K. Wang et al. 2011; Wang et al. 2012; Zang et al. 2012), oesophageal (Dulak et al. 

2013; Streppel et al. 2014), pancreatic (Birnbaum et al. 2011), hepatocellular (Fujimoto et al. 

2012; Huang et al. 2012), colon (Jones et al. 2012), bladder (Gui et al. 2011; TCGA 2014), 

renal (Lichner et al. 2013) and breast cancers (Stephens et al. 2012; Zhang et al. 2012), as 

well as Waldrenstrom’s macroglobulinaemias (Treon et al. 2012), Burkitt’s lymphomas 

(Giulino-Roth et al. 2012; Love et al. 2012), pulmonary carcinoids (Fernandez-Cuesta et al. 

2014), cholangiocarcinomas (Ross et al. 2014) and neuroblastomas (Sausen et al. 2013). 

 

1.3.1.2. Associations and consequences of ARID1A mutations in OCCC 

Several studies suggest that ARID1A mutations are frequently present in tumours exhibiting 

microsatellite instability (see section 1.3.6 for details) and tend to co-exist with activating 

PIK3CA mutations. In the original description of ARID1A mutations in OCCC by the Johns 

Hopkins group, 14 out of 24 (58%) tumours with ARID1A mutations also carried PIK3CA 

mutations compared with 3 out of 18 (17%) without (Jones et al. 2010). Similar results were 

reported in a second series of 42 OCCC, with 71% of tumours without ARID1A expression 

having PIK3CA mutations compared to 44% of those with intact ARID1A expression 

(Yamamoto et al. 2012a). The association persisted and reached statistical significance 

(p=0.013) in an extended series of 90 cases by the same authors (Yamamoto et al. 2012b). 
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Additionally, it was recently reported that, in 25 OCCC and OEAC cases with PIK3CA 

mutations from the BCCA tumour bank, ARID1A mutations occurred in 27% of tumours with 

helical domain mutations but 71% of those with other mutations (p=0.05) (Wiegand et al. 

2014a). The same pattern also seems to occur in uterine cancers with ARID1A mutations 

enriched among cases with PIK3CA and PTEN mutations in a series of 222 uterine cancers 

(Liang et al. 2012). In that series, ARID1A mutations correlated with phosphorylation of 

multiple members of the PI3K pathway including AKT, GSK3 (glycogen synthase kinase 3) 

and p70S6K. Interestingly, increased phosphorylation of AKT at Serine 473 (AKTpS473) was 

seen in the presence of ARID1A mutations even in samples with normal PTEN expression 

and absence of PIK3CA mutations, implying activation of the PI3K pathway by ARID1A that 

is independent of PTEN and PIK3CA aberrations (Liang et al. 2012). This is corroborated by 

the BCCA study (Wiegand et al. 2014a) which also showed increased AKTpS473 and 

AKTpT308 in OCCC and OEAC with ARID1A loss that was independent of the PTEN and 

PIK3CA status. Similar findings were recently reported in a screen of breast cancer cell lines 

which attempted to identify mediators of resistance to trastuzumab and PI3K pathway 

inhibitors (Berns et al. 2013). ARID1A knockdown in these cells resulted in increased 

AKTpS473, an effect that was mediated by induction of ANXA1 transcription. Additionally, 

ARID1A knockdown increased AKT phosphorylation in H460 and H1299 lung cancer cells (Y. 

Zhang et al. 2014). Conflicting results have, however, been reported in the EOC cell lines 

RMG-I, ES-2 and JHOC-5 where knockdown did not have an effect on AKT phosphorylation 

(Wiegand et al. 2014a). 

 

ARID1A mutations have been reported to be mutually exclusive with TP53 mutations in EOC 

(Guan et al. 2011; Wu & Roberts 2013). As TP53 mutations are ubiquitous in HGS but very 

rare in OCCC (Kuo et al. 2009), it is not clear if that observation reflects the different subtype 

distribution of mutations in these 2 genes. However, similar findings were reported in gastric 

cancers where 21% of samples with ARID1A alterations showed TP53 mutations, compared 

with 52% of samples without (K. Wang et al. 2011). In contrast, no enrichment for ARID1A 

mutations was seen in TP53 wild type bladder tumours in the recent TCGA report (TCGA 

2014). Furthermore, in an immortalized ovarian surface epithelium cell line, p53 interacted 

directly with the C-terminus of ARID1A and this interaction was necessary for p21 induction 

(Guan et al. 2011). Therefore, it is reasonable to speculate that, in some malignancies at least, 

ARID1A mutations may confer benefits to the cancer cell, in terms of proliferation and evasion 

of apoptosis, similar to those conferred by TP53 mutations. However, this hypothesis needs 

further experimental examination.  
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ARID1A exhibits evidence of haplo-insufficiency in tumours since, as has been mentioned 

earlier, heterozygous mutations seem to be sufficient to drive carcinogenesis. In addition, 

heterozygous germline Arid1a mutations were embryonically lethal in a mouse model with the 

embryos dying on day 6.5 of gestation due to failure of mesoderm formation (Gao et al. 2008). 

The recent report of germline ARID1A (and ARID1B) mutations as a cause of the intellectual 

disability Coffin-Siris syndrome in humans (Santen et al. 2012) would appear to argue against 

a similarly lethal haplo-insufficient phenotype in humans. However, more recent reports 

suggest that evidence of mosaicism can be found in all individuals with ARID1A mutations 

tested so far (Santen et al. 2013).   

 

The functional consequences of ARID1A loss in OCCC are not yet clear. In agreement with 

its proposed tumour-suppressor role, re-expression of ARID1A in the OCCC cell line OVISE 

and the uterine endometrioid cell line HEC-1A, both of which have ARID1A mutations, resulted 

in growth inhibition. On the other hand, overexpression in the ARID1A wild-type OCCC cell 

line JHOC-5 had no further effect on growth (Guan et al. 2011). Similarly, knockdown of 

ARID1A using shRNA in 2 immortalised ovarian surface epithelium cell lines (OSE4 and IOSE-

80PC) resulted in increased proliferation in vitro and increased tumourigenicity when 

implanted subcutaneously in nude mice (Guan et al. 2011). However, studies of the effects of 

ARID1A perturbations in a larger panel of OCCC cell lines and correlation with alterations in 

other components of the SWI/SNF complex, such as ARID1B, SMARCA4 and SMARCA2, are 

necessary and may identify dependencies of ARID1A-mutant cells on continuing expression 

and function of alternative SWI/SNF complex subunits.                 

 

Clinically, there does not appear to be a distinct ARID1A-driven OCCC phenotype. Four 

series, with 149, 119, 90 and 82 patients showed no correlations between ARID1A expression 

loss and clinicopathologic characteristics or OCCC outcomes (Lowery et al. 2012; Maeda et 

al. 2010; Wiegand et al. 2010; Yamamoto et al. 2012b). Katagiri et al (2012) though, reported 

shorter survival in patients with ARID1A expression loss in their series. However, this 

observation was based on only 9 patients with ARID1A loss in a 60-patient series, limiting the 

strength of the authors’ conclusions. Conflicting evidence exists for other cancers, particularly 

gastric adenocarcinomas, for which some, but not all, series show decreased survival in the 

presence of ARID1A mutations (Wang et al. 2012; Wiegand et al. 2014b; Yan et al. 2014). 

  

To summarise, ARID1A mutations appear to be one of the main driver events in OCCC as 

well as OEAC and high-grade endometrioid uterine cancers. At present, very little is known of 
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the physiological role of ARID1A in the human endometrium and in endometriosis, the putative 

precursor lesion for OCCC. Based on our current understanding of the role and function of the 

SWI/SNF complex (Olave et al. 2002; Reisman et al. 2009; de la Serna et al. 2006; Wilson & 

Roberts 2011), it is very likely that the consequences of ARID1A alterations will be tissue and 

developmental-context specific. Therefore, there is an urgent need for in depth studies of 

ARID1A function in uterine, endometriotic and ovarian tissues.  

 

1.3.2. HNF1B overexpression 

1.3.2.1. Incidence of HNF1B overexpression in OCCC and precursor lesions 

HNF1B (Hepatocyte Nuclear Factor 1-Beta, also known as TCF2) is a POU-homeodomain 

transcription factor with predominant expression in liver, pancreas and kidney (Ma et al. 2007; 

Tronche & Yaniv 1992). In 2003, it was first reported that, using IHC, nuclear staining for 

HNF1B was positive in 20 of 21 OCCC cases compared with only 1 of 61 of non-OCCC EOC 

(Tsuchiya et al. 2003). Subsequent reports have confirmed that >95% of OCCC stain positive 

for HNF1B, whereas other EOC subtypes do so extremely rarely (Higashiguchi et al. 2007; 

Kato et al. 2006; Kato & Toukairin 2007; Yamamoto et al. 2007). Based on that, it has been 

proposed that HNF1B positivity can be used as a problem solving tool in cases where the 

histological subtype of EOC cannot be determined by morphology alone (Anglesio et al. 

2011a). Importantly, it was shown that in a series of 12 OCCC cases with available adjacent 

endometriosis, 9 showed positive staining for HNF1B in the non-malignant endometriotic 

epithelium as well (Kato et al. 2006). Furthermore, 16 of 40 benign endometriotic cysts also 

showed HNF1B positivity, implying that induction of HNF1B expression is an early event in 

OCCC pathogenesis (Kato et al. 2006). Although evidence is limited, uterine cancers seem to 

express HNF1B frequently. In a small series of 5 endometrial clear cell cancers, all stained 

positive for HNF1B (Yamamoto et al. 2007). In a second series, 9 of 15 (60%) and 7 of 20 

(35%) uterine serous and endometrioid cancers were HNF1B positive, although the staining 

intensity for the latter was significantly lower when compared to 15 clear cell tumours (Fadare 

& Liang 2012). HNF1B is expressed in the normal endometrium, predominantly in glandular 

cells during the mid-to-late secretory phase and gestational endometrium (Fadare & Liang 

2012; Yamamoto et al. 2007), but not in the ovary (Human Protein Atlas; 

www.proteinatlas.org/ENSG00000108753/normal). This observation further supports the 

uterine origin of most OCCC. 
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1.3.2.2. Mechanisms of HNF1B overexpression in OCCC 

Activating mutations in HNF1B have not been described to date and the induction of its 

expression in OCCC is thought to be under epigenetic control. Using combined bisulfite 

restriction analysis, it was shown that methylation of CpG islands at the HNF1B promoter was 

markedly decreased in OCCC compared to HGS tumours and normal ovaries (Kato et al. 

2008). Recent data confirm and extend these observations, showing that HNF1B is 

overexpressed in OCCC and that HGS cancers show increased promoter methylation 

compared to normal ovarian surface and fallopian tube epithelia (Pharoah et al. 2013). 

Additionally, a strong inverse correlation between HNF1B expression and promoter 

methylation was seen. DNA methylation analysis in 269 cases from the Ovarian Tumor Tissue 

Analysis Consortium also demonstrated that the majority of OCCC strongly express HNF1B 

and have unmethylated HNF1B promoters whereas HGS tumours exhibit the opposite 

features (Shen et al. 2013)  

 

The IHC and methylation data point towards opposing roles for HNF1B in OCCC and HGS 

carcinogenesis with HNF1B induction in the former and repression in the latter. SNPs 

predisposing to EOC were analysed in 2 studies within the Ovarian Cancer Association 

Consortium (Pharoah et al. 2013; Shen et al. 2013). The first publication identified 2 different 

SNPs in the HNF1B locus, one (rs7405776) associated with HGS and the other (rs11651755) 

with OCCC risk (Shen et al. 2013). Consistent with the data already presented, the risk allele 

of rs7405776 was associated with increased HNF1B promoter methylation. Interestingly, there 

was also an association between unmethylated, expressed HNF1B  promoter and a global 

CpG methylation phenotype (Shen et al. 2013). The second publication identified an HNF1B 

intronic SNP (rs757210) that confers increased risk for HGS cancer (Pharoah et al. 2013). 

The 2 HGS-predisposing SNPs in these studies are strongly correlated (r2=0.97) (Shen et al. 

2013). Therefore, there is now strong evidence for opposing roles of HNF1B in OCCC and 

HGS carcinogenesis. Interestingly, a further SNP in HNF1B (rs4430796) is associated with 

endometrioid uterine and prostate cancer risk as well as type 2 diabetes mellitus (Spurdle et 

al. 2011). This SNP correlates very strongly with the rs11651755 SNP predisposing to OCCC 

(r2=0.94), implying a common carcinogenesis pathway for OCCC and endometrioid uterine 

cancer (Shen et al. 2013). 
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1.3.2.3. Functional implications of HNF1B overexpression 

Initial studies of HNF1B function focused on its role in diabetes and kidney disease as germline 

HNF1B mutations cause Maturity Onset Diabetes of the Young Type 5 (MODY 5) as well renal 

dysplasia and cysts. These effects are mediated, at least partially, through de-repression of 

SOCS3 expression (Ma et al. 2007) and prevention of activation of FXYD2 expression through 

a dominant-negative effect (Ferrè et al. 2011). Gene expression studies support a role for 

HNF1B in carbohydrate metabolism and development. Induction of HNF1B expression in the 

human embryonic kidney cell line HEK293 resulted in  differential expression of 25 genes, 

including genes involved in glucose metabolism (DPP4, encoding dipeptidyl peptidase IV) as 

well as bone morphogenesis and renal stone formation (SPP1, encoding osteopontin) (Senkel 

et al. 2005). The same group also reported on changes in gene expression following induction 

of HNF1B expression in the rat insulinoma cell line INS-1, which shows low constitutive 

HNF1B expression. 292 genes were differentially regulated with genes involved in 

development and morphogenesis being over-represented (Thomas et al. 2004). Similarly, 

after siRNA-mediated knockdown of HNF1B in a mouse hepatoma cell line, 243 genes 

showed >2 fold change in expression, including genes involved in insulin signaling and 

glucose metabolism (Tanaka et al. 2004). Over the past few years, it has become evident that 

germline microdeletions at 17q12, encompassing HNF1B, are a cause of uterine 

malformations, including the Mayer-Rokitanski-Kuster-Hauser syndrome (Bernardini et al. 

2009; Bingham et al. 2002; Oram et al. 2010), thus implicating HNF1B in uterine development. 

 

In that respect, the functional consequences of HNF1B overexpression in OCCC have only 

recently become the focus of investigation. Knockdown of HNF1B expression using siRNA in 

IGROV1 and SKOV3 cells resulted in reduced proliferation as assessed by a thymidine 

incorporation assay (Tomassetti et al. 2008). Similar results were seen in the androgen-

sensitive prostate cancer cell line LNCaP and two immortalised prostate epithelial cell lines 

(LHSAR and RWPE1), but not in the androgen independent PC3 cell line (Grisanzio et al. 

2012). Contrary to the above, increased proliferation was recently reported in the OCCC cell 

lines RMG-I and RMG-II after shRNA-mediated HNF1B knockdown (Okamoto et al. 2013). 

siRNA-mediated HNF1B-knockdown increased apoptosis in TOV21G and JHOC-5 cells, 

although the effect on proliferation was not reported (Tsuchiya et al. 2003). Further studies in 

a wider panel of OCCC cell lines are therefore needed, in order to gain a better understanding 

of the spectrum of HNF1B effects on proliferation. However, induced expression of HNF1B in 

an immortalised ovarian surface epithelium cell line, markedly increased proliferation, in 

accordance with the majority of studies that show a positive effect of HNF1B on proliferation 

in cancer cell lines (Tomassetti et al. 2008). The possibility that HNF1B may be one of the 
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drivers of chemotherapy resistance in OCCC was raised by a study that reported that HNF1B 

knockdown markedly improved cisplatin and paclitaxel sensitivity in TOV21G and OV207 cells 

through HSulf-1 de-repression (Liu et al. 2009).  

 

In addition to its effects on proliferation, HNF1B appears to be one of the main drivers of gene 

expression programmes in OCCC. Senkel et al (2005) reported a significant overlap between 

their 25-gene HNF1B signature derived from overexpression in HEK293 cells (see above) and 

previously reported OCCC expression profiles (Schwartz et al. 2002; Tsuchiya et al. 2003) 

with genes such as SPP1, RBPMS and SOX9 appearing on both lists. A gene expression 

signature derived from HNF1B knockdown in RMG-I and RMG-II cells was able to distinguish 

the OCCC from the other EOC in 2 publicly available ovarian cancer datasets (Okamoto et al. 

2013). Furthermore, the RMG-I and RMG-II expression profiles after HNF1B knockdown more 

closely resembled the non-OCCC compared to the OCCC signature, implying that HNF1B is 

one of the major determinants of the OCCC expression signature (Okamoto et al. 2013). Also, 

HNF1B was shown to drive a  gene expression profile resembling that of epithelial-to-

mesenchymal transition (EMT) in SKOV3 cells, leading the authors to conclude that HNF1B 

is important for the maintenance of an E-cadherin expressing epithelial phenotype in OCCC 

(Tomassetti et al. 2008). Recently, Cuff et al (2013), using the original expression profile 

reported by Senkel et al and after performing Gene Set Enrichment Analysis (GSEA) and 

bioinformatics analysis of potential HNF1B binding sites, showed that genes related to starch 

metabolism and the clotting cascade were enriched among HNF1B targets. These authors 

also showed, in a series of gynaecological and renal tumours, a clear association between 

HNF1B expression and the presence of clear cytoplasm and venous thromboembolism, thus 

implicating HNF1B in both the characteristic microscopic appearance of OCCC and one of its 

most significant clinical associations (Cuff et al. 2013).  

 

OCCC is characterised by glycogen accumulation and the studies referenced above suggest 

a role for HNF1B in that. However, no studies directly examining the effect of HNF1B 

alterations on the glycogen content of OCCC cells have been published. Genes involved in 

glucose and glycogen metabolism such as HK1 (encoding hexokinase), G6PC (encoding 

glucose-6-phosphatase) and DPP4 are HNF1B-regulated (Cuff et al. 2013; Uekuri et al. 2013). 

Supporting this, a recent study showed that Hnf1b knockdown in mouse liver caused glucose 

intolerance, insulin resistance and increased gluconeogenesis through G6pc and Pck1 

(encoding phosphoenolpyruvate carboxykinase 1) induction (Kornfeld et al. 2013). Also, 

shRNA-mediated HNF1B knockdown in RMG-I and RMG-II cells resulted in decreased 
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glucose uptake, glycolytic flux and lactate secretion in the medium whereas overexpression 

of HNF1B in the HGS cell line Hey, had the opposite effects (Okamoto et al. 2013). 

Furthermore, HNF1B knockdown downregulated multiple glycolytic genes, including HK1, 

HK2, ALDOA (encoding aldolase A), ALDOB, ALDOC, PGK1 (encoding phosphoglycerate 

kinase 1), PGK2, ENO2 (encoding enolase 2), ENO3, LDHA (encoding lactate dehydrogenase 

A) and LDHB as well as the main glucose uptake transporter GLUT1 (encoded by SLC2A1) 

(Okamoto et al. 2013). Additional circumstantial evidence for the role of HNF1B in glycogen 

accumulation is provided by the fact that HNF1B expression in the secretory and gestational 

endometrium correlates spatially and temporally with glycogen accumulation in these cells 

(Yamamoto et al. 2007). 

 

In summary, HNF1B overexpression is a defining characteristic of OCCC. HNF1B seems to 

drive OCCC gene expression signatures and to have a major impact on OCCC proliferation 

and metabolic profile. However, the effects on proliferation need to be examined in a wider 

panel of OCCC cell lines. Much of the data regarding gene expression is derived from 

overexpression in HEK293 cells and limited by older microarray technology. Therefore, gene 

expression studies in typical OCCC cell lines would provide additional useful insights in the 

HNF1B-driven transcriptional program and complement the available knowledge. Lastly, the 

metabolic data from Okamoto et al (2013) were derived from a cell line, RMG-II, that showed 

an atypical increase in proliferation on HNF1B knockdown. Again, validation of these findings 

in other cell lines would be useful, especially if a direct link to glycogen accumulation can be 

shown. I will discuss the functional role of glycogen in OCCC in section 1.4. 

 

1.3.3. PIK3CA mutations and PI3K pathway activation 

The PI3K pathway is implicated in cancer cell growth, motility, survival and metabolism 

(Courtney et al. 2010). Mutations in components of the pathway are extremely common in a 

wide range of malignancies. Frequent PIK3CA mutations in OCCC were first reported in 2009 

when, in an analysis of 87 OCCC tumours and 10 OCCC cell lines by targeted Sanger 

sequencing, 33% were found to harbour mutations in exons 1, 9 or 20 (Kuo et al. 2009). 

Further series have reported an incidence of PIK3CA mutations in OCCC between 29% and 

42% (Jones et al. 2010; Rahman et al. 2012; Yamamoto et al. 2011). PIK3CA mutations 

appear to be more common in OCCC with visible adjacent endometriosis and prominent 

papillary architecture (Yamamoto et al. 2012b) and can be detected in these endometriotic 

lesions as well. Indeed, in 9 of 10 cases of OCCC with activating H1047R exon 20 mutations, 

the identical mutation could be identified in the adjacent endometriotic lesion, even in cases 
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where the latter lacked cytological atypia (Yamamoto et al. 2011). Therefore, and similar to 

what has been reported for ARID1A mutations and HNF1B overexpression, PIK3CA mutations 

appear to be an early event in OCCC pathogenesis. 

 

PTEN loss, both through mutations or promoter methylation and lack of expression, is another 

mechanism of PI3K pathway activation and occurs at high frequency in multiple tumour types 

(Hollander et al. 2011). PTEN mutations have been reported in 5% of OCCC (Kuo et al. 2009). 

However, loss of immunoreactivity for PTEN has been reported in up to 37.5% of OCCC in 

other series (Abe et al. 2013; Hashiguchi et al. 2006; Ho et al. 2009). Furthermore, in a study 

of 50 OCCC using array comparative genomic hybridisation (aCGH), amplification of 19q13.2, 

encompassing AKT2 and thus, potentially activating the PI3K pathway, was seen in 14% of 

cases (Tan et al. 2011; Tan et al. 2013). Frequent AKT2 amplifications in OCCC were 

confirmed in a second study that showed their presence, again using aCGH, in 5 of 21 (24%) 

tumours (Yamashita et al. 2013).   

 

It should be kept in mind that activation of the PI3K pathway is also extremely common in 

endometrioid uterine cancers. In the TCGA analysis, 84% of samples showed perturbations 

in the PI3K pathway with extremely high incidence of PTEN alterations and PIK3CA mutations 

that reached 88% and 55% respectively in the MSI subtype (Kandoth et al. 2013). An 

additional mechanism of PI3K pathway activation in endometrioid uterine cancers are 

mutations in the regulatory subunits PIK3R1 and PIK3R2 in 20% and 5% of cases respectively 

(Cheung et al. 2011). The frequency of PIK3R1 mutations may reach 40% in the MSI subtype 

(Kandoth et al. 2013) but, up until now, PIK3R1 mutations have not been reported in OCCC. 

  

Activation of the PI3K pathway in OCCC can occur in the absence of known mutations in its 

core members. In a series of 87 OCCC, all of the PIK3CA-mutant tumour samples showed 

strong immunostaining for AKTpS473, but so did 85% of samples with wild type PIK3CA, 

implying alternative methods of pathway activation (Kuo et al. 2009). Similarly, absence of 

correlation between PIK3CA mutations and phosphorylated AKT and mTOR immunoreactivity 

was reported in a series of 56 OCCC (Rahman et al. 2012). In contrast to these two studies, 

a third study showed a positive correlation between PIK3CA overexpression by IHC and 

phosphorylated AKT in 62 OCCC samples (Abe et al. 2013). As already discussed (see 

section 1.3.1.2), ARID1A mutations are probably contributing to PI3K pathway activation; 

whether the effect of ARID1A loss is different in the majority of tumours with co-occurring 

PIK3CA mutations compared with those with wild type PIK3CA is at present unclear. 
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With regards to outcomes, two series of 56 and 62 OCCC cases showed improved prognosis 

in OCCC patients harbouring PIK3CA mutations (Abe et al. 2013; Rahman et al. 2012). 

Whether the presence of an activated PI3K pathway can predict response to mTOR inhibitors 

in OCCC is unclear at present. No differential activity of the PI3K inhibitors LY294002 and 

BEZ235 or the mTOR inhibitor temsirolimus was seen in a panel of OCCC cell lines with or 

without PIK3CA mutations (Rahman et al. 2012). However, other reports suggest that 

treatment with mTOR inhibitors can, at least in vitro, overcome OCCC resistance to cisplatin 

or trabectedin (Mabuchi et al. 2009; Mabuchi et al. 2011). Preliminary clinical evidence of 

benefit from targeting the PI3K pathway is provided by a small case series of heavily-

pretreated Japanese patients with OCCC. In that series, 1 of 6 patients treated with 

temsirolimus showed a partial response that lasted 14 months (Takano et al. 2011).  

 

In summary, the PI3K pathway is frequently activated in OCCC and PIK3CA mutations appear 

to be early events. Elucidation of the functional consequences of PI3K pathway activation in 

the context of ARID1A mutations and HNF1B overexpression may help identify a subgroup of 

patients that will benefit from treatments targeting this pathway and point towards rational 

therapeutic combinations.    

 

1.3.4. MET and HER2 amplifications  

MET is a receptor tyrosine kinase that relays signals through both the MAPK and PI3K 

pathways and is considered a key driver of oncogenic transformation in a variety of cancers 

(Appleman 2011). MET appears to be the most frequently amplified gene in OCCC. 

Amplification was reported in 37% of patients in a 73-patient series and correlated with worse 

survival in early stage disease (Yamashita et al. 2013). In a study of 11 OCCC with known 

MET amplification and adjacent endometriosis, MET amplification could be detected in the 

atypical endometriotic component in 67% of the cases but in not in the typical endometriotic 

component, implying a stepwise gain of expression during tumorigenesis (Yamamoto et al. 

2012c).  MET amplification in accompanied by increased MET mRNA levels as well as 

increased expression of its ligand, HGF, supporting the notion that MET is one of the key 

drivers of carcinogenesis, possibly in an autocrine manner, at least in a subset of OCCC 

(Anglesio 2011b).  

 

HER2 amplification was found in 13 of 39 (33%) and 7 of 50 (14%) patients with OCCC using 

aCGH in 2 recently reported studies (Anglesio et al. 2011b; Tan et al. 2011). HER2 mRNA 
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expression was increased 2.5-fold compared with the other EOC subtypes in a study of 113 

ovarian tumours (Schwartz et al. 2002) and HER2 protein overexpression by IHC was shown 

in 43%  of OCCC compared with 21% of HGS in a Japanese series (Fujimura et al. 2002).  

The authors of the latter study report that trastuzumab inhibited the growth of HER2-

overexpressing OCCC cell lines in vitro (Fujimura et al. 2002) but, otherwise, the role of HER2 

in OCCC pathogenesis remains understudied.  

 

1.3.5. Other events in OCCC 

PPP2R1A is a subunit of the serine-threonine phosphatase PP2A that acts as a tumour 

suppressor by dephosphorylating oncogenes (Perrotti & Neviani 2013). PPP2R1A mutations 

were initially reported to occur in 7% of OCCC (Jones et al. 2010). A subsequent report 

confirmed their presence in 4% of OCCC but also revealed very high incidence of mutations 

(41%) in uterine serous carcinoma but not in ovarian HGS (McConechy et al. 2011). It appears 

that the mutations cluster in exons 5 and 6 of the subunit and alter its interactions with other 

subunits and, therefore, the stability of the holoenzyme (McConechy et al. 2011). The 

functional effects of PPP2R1A mutations in OCCC are, at present, unknown. A second 

phosphatase, PPM1D, is amplified in 10-31% of OCCC (Anglesio et al. 2011b; Tan et al. 2009) 

and is thought to act in a tumourigenic fashion by suppressing TP53 activation via p38 

mitogen-activated protein kinase inhibition (Tan et al. 2009) and by suppressing Chk1 (Ali et 

al. 2012). 

  

Other rare events in OCCC include KRAS and BRAF mutations. The former were described 

in 0 of 25 (Rechsteiner et al. 2013), 4 of 42 (9.5%) (Jones et al. 2010) and 7 of 97 (7.2%) (Kuo 

et al. 2009) OCCC cases in 3 series. BRAF mutations are even rarer with just 1 case reported 

in a 97-patient series (Kuo et al. 2009) and no mutations seen in 2 smaller series comprising 

of 25 and 20 patients respectively (Niskakoski et al. 2013; Rechsteiner et al. 2013). It should 

also be noted that TP53 mutations have been reported in up to 10% of OCCC (Kuo et al. 

2009). As TP53 mutations are ubiquitous in HGS cancers and cells with clear cytoplasm can 

often be seen in these tumours (McCluggage 2008), it is unclear whether TP53 mutations are 

a feature of bona fide OCCC or the reported cases represent instances of histological 

misclassification. 

 

Interleukin 6 (IL6) expression by tumour cells (Coward et al. 2011) and plasma IL6 levels 

(Stone et al. 2012) are both associated with poor prognosis in patients with EOC. Inhibition of 
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IL6 signalling has shown preliminary evidence of benefit in preclinical models and in a small 

phase II study in unselected EOC patients (Coward et al. 2011). As IL6 signalling is particularly 

active in OCCC (Anglesio et al. 2011b) and the precursor endometriotic lesions (Bulun 2009), 

further evaluation of IL6 targeting therapies in OCCC is warranted (Glasspool & McNeish 

2013).      

 

1.3.6. OCCC and microsatellite instability 

OCCC appears to be a frequent presentation of Lynch syndrome-associated EOC. It 

comprised 35% of the latter in a recently reported Finnish series and these tumours tended to 

show LINE-1 hypomethylation (Niskakoski et al. 2013).  The frequency of ARID1A mutations 

in this series in not known but ARID1A expression loss appeared to be less common (14%) in 

uterine Lynch syndrome-associated endometrioid cancer compared with sporadic MSI 

tumours (75%) in a Dutch series (Bosse et al. 2013). In view of this discrepancy in ARID1A 

loss frequency, the authors postulated that ARID1A mutations led to MLH1 promoter 

hypermethylation and the MSI phenotype, but direct experimental evidence for this is presently 

lacking. Co-occurrence of ARID1A loss and deficient mismatch repair (MMR) is supported by 

two Canadian series. The first showed that 39% of high-grade endometrioid tumours with 

deficient MMR had ARID1A loss compared with only 11% of MMR proficient tumours (Nelson 

et al. 2013). A similar pattern was seen in a second series, consisting of gastric cancer cases, 

with loss of ARID1A expression in 48% of MMR-deficient tumours compared to 19% of MMR-

proficient ones (Wiegand et al. 2014b). 

 

1.4. Glycogen accumulation  

Glycogen accumulation leading to the characteristic clear cytoplasmic appearance is the 

defining morphological event in OCCC. Glycogen consists of glucose molecules linked linearly 

by α(1→4) glycosidic bonds (Fig. 1.2). Glycogen synthesis begins in identical fashion to the 

glycolytic pathway, with phosphorylation of glucose to glucose-6-phosphate (G-6-P) by 

hexokinase. G-6-P is then converted to fructose-6-phosphate in the glycolytic pathway, but to 

glucose-1-phosphate (G-1-P) in the glycogen synthesis pathway, a reaction catalysed by 

phosphoglucomutase (Bouché et al. 2004). G-1-P is subsequently converted to UDP-glucose 

by UDP-glucose pyrophosphorylase and molecules of UDP-glucose are joined together by 

α(1→4) glycosidic bonds by glycogen synthase around a glycogenin core (Roach et al. 2012). 

When chains of at least 11 glucose molecules are formed, 1,4-α-glucan branching enzyme 

transfers 7 glucose molecules to another chain, making an α(1→6) glycosidic bond in the 
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process (Pelletier et al. 2012). Repeated cycles of this process result in large fractal structures 

containing, on average, 30,000 glucose molecules (Meléndez et al. 1999). Glycogenolysis, 

releasing G-1-P, is achieved by glycogen phosphorylase, which breaks the α(1→4) bonds and 

the de-branching enzyme 4-α-glucanotransferase (also known as amylo-α1,6-glucosidase 

and encoded by AGL) (Ozen 2007). G-1-P can then be converted back to G-6-P by 

phosphoglucomutase and enter the glycolytic or the pentose phosphate pathways (Ozen 

2007).  

 

Glycogen synthase and glycogen phosphorylase catalyse the rate-limiting steps in 

glycogenogenesis and glycogenolysis respectively. Glycogen synthase (GYS) 

phosphorylation by cAMP-dependent protein kinase A (PKA), PKC and GSK3 generally 

decreases its activity (Bouché et al. 2004). GYS undergoes allosteric activation by G-6-P 

(Roach et al. 2012). Additionally, PKA, PKB/AKT, PKC and other kinases can phosphorylate 

Figure 1.2. Glycogen metabolism 
Key steps in glycogen synthesis and breakdown (adapted from Bouché et al. 2004). 
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GSK3, leading to dephosphorylation and activation of GYS (Pearce et al. 2010). This multilevel 

regulation of GYS allows for fine-tuning of glycogen synthesis depending on the cellular 

energetic state. Glycogen phosphorylase requires pyridoxal phosphate as an essential 

cofactor (Greenberg et al. 2006) and is activated by phosphorylation by phosphorylase kinase, 

which in turn is activated by PKA or phospholipase C (PLC), among others (Bouché et al. 

2004).  

 

Glycogen accumulation in OCCC is thought to represent an adaptive response to the hypoxic 

and oxidative environment of the endometriotic cysts from where OCCC develops (Iida et al. 

2012; Yamada et al. 2011). HIF1α is upregulated in hypoxia and has been shown to increase 

the expression of many genes involved in glycogen metabolism, including PGM1 (encoding 

phosphoglucomutase 1) (Pelletier et al. 2012), UGP2 (encoding UDP-glucose 

pyrophosphorylase)  (Pescador et al. 2010), GYS1 (encoding glycogen synthase 1) (Favaro 

et al. 2012; Iida et al. 2012), GBE1 (encoding 1,4-α-glucan branching enzyme) (Pescador et 

al. 2010) and PYGL (encoding glycogen phosphorylase – liver isoform) (Favaro et al. 2012). 

Glycogen accumulation can be detected in a wide variety of cell lines, including mouse 

fibroblasts, colon, breast and renal cancer cell lines with further glycogen accumulation after 

exposure to hypoxia and utilisation of the stored glycogen upon glucose deprivation (Pelletier 

et al. 2012). Similarly, culture of U87 glioblastoma cells in hypoxic conditions (0.1% O2) 

resulted in upregulation of PYGL and increase in cellular glycogen. PYGL knockdown by 

shRNA resulted in a further increase in glycogen levels, inhibition of proliferation and induction 

of senescence under both high (25mM) and physiological (5mM) glucose conditions (Favaro 

et al. 2012). 

 

In OCCC, HIF1α is activated by the IL6-JAK2-STAT3 pathway (Anglesio et al. 2011b; Coward 

et al. 2011). Indeed, a study using the HAC2 OCCC cell line showed HIF1α induction by 

hypoxia with consequent increases in expression of many enzymes involved in glycogen 

metabolism including GYS1 as well as increased glycogen accumulation (Iida et al. 2012).  

 

The role of glycogen, in cancer generally and OCCC in particular, remains understudied. It is 

not clear whether the glycogen stores are functionally relevant or an epiphenomenon of the 

malignant transformation programme or the endometrial cell of origin. The decrease in 

proliferation seen upon PYGL knockdown in the presence of adequate glucose in the medium 

(Favaro et al. 2012) raises the provocative hypothesis that continuous access to glycogen 

stores is important for  sustained proliferation, even in high-glucose conditions such as those 
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encountered in routine cell culture. OCCC with its high glycogen content is an ideal system to 

examine proliferation under conditions of both high and low glucose in order to clarify whether 

glycogen has a role beyond that of a fuel store. Furthermore, it is not known whether other 

factors, besides hypoxia, contribute to the high glycogen content of OCCC. Although HNF1B 

has been implicated by many authors (Cuff et al. 2013; Okamoto et al. 2013; Uekuri et al. 

2013), an effect of HNF1B on glycogen content has not been directly demonstrated. 

 

1.5. Is OCCC an endometrial cancer in the wrong place? 

As detailed in section 1.3, OCCC is characterised by frequent ARID1A mutations and 

activation of the PI3K pathway, two characteristics that it shares with uterine endometrioid 

cancer. Indeed, there is a remarkable overlap in the mutation patterns of some of the uterine 

and ovarian cancer subtypes (Fig. 1.3). Furthermore, as already mentioned, most OCCC arise 

 

Figure 1.3. Mutational events in cancers arising from the endometrium 
Frequency of common mutations in endometrium-derived cancers (from Gounaris et al. 
2011). 
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on an endometriotic background. Endometriosis, essentially ectopic endometrial tissue, can 

be seen after careful histological examination in the vast majority of OCCC and a significant 

proportion of ovarian endometrioid tumours (McCluggage 2008). These observations have led 

us (Gounaris et al. 2011), and others (Mao & Shih 2013), to propose that OCCC is essentially 

a uterine cancer developing in the wrong environment, that of an endometriotic cyst.  

 

Endometriosis, an inflammatory condition affecting 5-10% of reproductive age women 

(Giudice & Kao 2004), shares many characteristics with tumours, including evidence of 

clonality and tissue invasion (Barlow & Kennedy 2005). Extensive epidemiological 

investigations have confirmed that endometriosis is a risk factor not only for OCCC, but for 

OEAC and low-grade serous tumours as well (Pearce et al. 2012). The most widely accepted 

theory for its pathogenesis is that of retrograde menstruation through the fallopian tubes, 

leading to implantation of endometrial tissue on the ovaries (where they form endometriotic 

cysts) and other peritoneal surfaces (Bulun 2009). It is a hormonally and inflammation-driven 

process with multiple studies demonstrating high COX-2 and aromatase activity, leading to 

increased local prostaglandin E2 (PGE2) and oestradiol (E2) production (Bulun 2009; Rizner 

2009). Furthermore, endometriotic lesions exhibit increased local IL6 production (Bulun 2009) 

and evidence of oxidative stress from the release of ferric and ferrous ions from heme 

breakdown (Kobayashi et al. 2009). These factors contribute to extensive genomic damage, 

manifested as LOH in endometriotic lesions (Kobayashi et al. 2009; Xu et al. 2011) and loss 

of PTEN expression in up to 15% of cases (Martini et al. 2002). Additionally, as already 

discussed in section 1.3, mutations in genes such as ARID1A and PIK3CA as well as HNF1B 

expression induction can be seen in endometriosis with attendant cancer, and even in 

endometriotic lesions without malignancy (Samartzis et al. 2012). 

 

Evidence has accumulated over the past few years that the eutopic endometrium of women 

with endometriosis differs from that of women without, exhibiting COX-2 induction and 

increased PGE2 (Bulun 2009). There is also evidence of activation of the MAPK (Yotova et al. 

2011) and PI3K (Laudanski et al. 2009) pathways. Therefore, a stepwise accumulation of 

genetic and epigenetic changes from eutopic endometrium in women destined to develop 

endometriosis, to endometriosis and then to OCCC can be demonstrated (Fig. 1.4). 

 

These observations raise the important question of which, if any, of these events are 

responsible for the malignant transformation in 0.5-1% of endometriosis cases. If drivers of 

this malignant transformation can be identified, it would then be important to establish whether 
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early changes in some patients with endometriosis strongly predispose them to  malignancy 

or whether this transformation is a late stochastic event (Gounaris et al. 2011). In other words, 

it will be important to determine whether the appearance of putative OCCC driver events 

(ARID1A and PIK3CA mutations, PTEN loss, MET amplifications, HNF1B overexpression) in 

an endometriotic lesion is a common phenomenon or a harbinger of malignancy. Investigation 

of the functional consequences of their perturbations in endometrium and endometriosis can 

help elucidate interactions and temporal dependencies on the road to carcinogenesis. An 

important and understudied aspect of endometriosis-associated OCCC pathogenesis is the 

switch from a hormonally dependent state in endometriosis to a hormonally independent state 

in OCCC, a tumour that is almost invariably ER and PgR negative (Anglesio et al. 2011a).  

One theory postulates that endometriotic lesions that retain hormonal sensitivity during 

malignant transformation give rise to OEAC, whereas the ones that lose hormonal sensitivity 

develop into OCCC (Mandai et al. 2009). If a specific pattern of alterations strongly 

predisposing to cancer can be identified in endometriosis, then screening for endometriosis-

associated cancer may become feasible, especially if such alterations can be correlated with 

changes in the eutopic endometrium of these women (Gounaris et al. 2011).    

 

It should also be kept in mind, that OCCC is not necessarily genetically homogeneous. aCGH 

analysis of 50 OCCC cases identified two distinct clusters with different prognosis and clinical 

behaviour (Tan et al. 2011). Whereas the vast majority of OCCC arise from endometriotic 

 

Figure 1.4. Stepwise progression from endometriosis to OCCC 
Illustration of key abnormalities underlying the stepwise progression from an already abnormal eutopic 
endometrium to OCCC via endometriosis. The question marks refer to unknown or putative events. 
Specifically, it is not currently known whether ARID1A and PIK3CA mutations or HNF1B 
overexpression are frequent in early or typical endometriosis and whether their presence confers an 
increased risk of malignant progression (from Gounaris et al. 2011). 
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cysts (McCluggage 2008), some cases represent malignant transformation of the borderline 

tumour adenofibroma (Veras et al. 2009). Adjacent endometriosis can still be detected in up 

to 44% of adenofibroma-related OCCC (Veras et al. 2009) and, therefore, strong evidence for 

an endometriosis-independent route of OCCC pathogenesis is presently lacking. However, it 

would still be important to understand whether the mutational spectrum differs between cystic 

and adenofibroma-derived OCCC. 

 

1.6. Model systems for OCCC   

The realisation that EOC is actually a set of distinct malignancies with different tissues of origin 

and molecular pathogenesis has led to a reappraisal of the model systems used to study these 

tumours to the extent that it is no longer sufficient or acceptable to label a mouse model or cell 

line as “ovarian cancer”. In this section, I will briefly review some of the genetically engineered 

mouse models (GEMM) of endometriosis-associated ovarian cancer and established OCCC 

cell lines as well as the functional anatomy of the normal mouse endometrium. 

 

1.6.1. Genetically engineered mouse models (GEMM) 

Arguably, a GEMM of OCCC should reflect its uterine tissue of origin and endometriotic 

precursor lesions. Unfortunately, no such model exists today. Two main GEMMs have been 

described for the other endometriosis-related ovarian cancer, OEAC. Both models rely on 

intrabursal injection of recombinant adenovirus carrying the Cre recombinase (AdCre) in order 

to ablate genes of interest on the ovarian surface epithelium (OSE) (Dinulescu et al. 2005; Wu 

et al. 2007). Both models target Pten in addition to induction of oncogenic KrasG12D (Dinulescu 

et al. 2005) or deletion of Apc (Wu et al. 2007) and in both models mice develop tumours with 

endometrioid morphology. The main concern regarding use of these models is that the 

transformed OSE may accurately reflect neither the real tissue of origin which is thought to be 

the endometrium, nor the endometriotic background. 

 

In this respect, uterine endometrioid cancer GEMMs may provide useful insights as, at least, 

they reflect the putative cell of origin, albeit with the limitation that the endometriotic 

environment is not replicated. PgR-Cre has been used to selectively ablate genes of interest 

in tissues expressing PgR, including most female reproductive tissues but also the CNS (Soyal 

et al. 2005). Pten deletion using this system is sufficient to cause endometrial cancers 

(Daikoku et al. 2008; van der Zee et al. 2013), a process that is accelerated and exacerbated 
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when combined with either Apc (van der Zee et al. 2013) or Tp53 deletion (Daikoku et al. 

2008). Interestingly, when anti-Mullerian hormone type 2 receptor (Amhr2)-Cre was used to 

selectively ablate Pten in the myometrium and uterine stroma, endometrioid cancers did not 

develop (Daikoku et al. 2011), providing support to the notion that, although epithelial-stromal 

interactions may be important, the cells undergoing malignant transformation are of epithelial 

origin. Consistently with the above, uterine epithelial Lkb1 ablation using small proline-rich 

protein 2F (Sprr2f)-Cre, was sufficient to cause endometrioid cancer (Contreras et al. 2010).  

A limitation of all these models is that the targeted genes are deleted in a constitutive fashion, 

which could be important when targeting ubiquitously expressed, developmentally crucial 

genes such as Arid1a. Similarly, although the deletion is spatially targeted to the uterus, none 

of the genes used to drive Cre expression is absolutely uterus-specific giving rise to untoward 

effects. This was exemplified by the reported inability to use the Sprr2f-Cre model to ablate 

Pten in the uterine epithelium because of the development of brain tumours in the targeted 

animals (Daikoku et al. 2011). However, temporal and spatial control of the ablation of genes 

of interest in the uterus can be achieved by intra-uterine injection of AdCre, a method that has 

been successfully used to generate endometrioid cancers by targeting Pten (Joshi & Ellenson 

2011) or Lkb1 (Contreras et al. 2008). Insights gained from such models, although useful, do 

not replicate the unique phenotype of OCCC. 

 

Perhaps the optimal way to model OCCC would be to engineer mutations of interest (Arid1a, 

Pik3ca, Hnf1b overexpression) in a reliable model of endometriosis. Development of such 

models has been hampered by the fact that only primates undergo regular menstruation and 

spontaneously develop endometriosis. Although primate models have been developed, for 

obvious ethical, regulatory, financial and scientific reasons, they are not suitable for large scale 

carcinogenesis research (Tirado-González et al. 2010). Heterologous mouse models rely on 

the implantation of human endometrial tissue in immunosuppressed mice (Masuda et al. 2007; 

Tirado-González et al. 2010) and are, consequently, limited by the inability to fully replicate 

the intense inflammatory environment of endometriotic cysts. Homologous models utilise 

ovariectomy and oestrogen treatment to abrogate the mouse estrus cycle and induce uterine 

epithelial proliferation before harvesting the epithelium and implanting it in syngeneic animals 

(Cummings & Metcalf 1995; Tirado-González et al. 2010). An improved such model, using Ah-

Cre+/+/KrasG12V mice has recently been described. It utilises sequential E2 and progesterone 

(P4) administration after ovariectomy in order to induce a more human-like, decidualising 

uterine epithelium (Cheng et al. 2011). Oncogenic KrasG12V is subsequently induced in the 

uterus by topical β-napthoflavone injection, followed by harvesting of the endometrium and 

subcutaneous implantation in syngeneic animals. The developing lesions have all the 
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characteristics of human endometriosis, including invasion and activation of fibroblasts, 

endothelial cells and macrophages and collagen deposition (Cheng et al. 2011). This model 

could serve as the basis for modelling OCCC, as it would be feasible to engineer conditional 

mutations in genes such as Arid1a and Pik3ca in the donor animals and activate Cre by intra-

uterine β-napthoflavone. Alternatively, these genes could be knocked down ex vivo prior to 

the implantation of the harvested endometrium in the recipient animals. Both methods would 

thus overcome the lethal haplo-insufficient phenotype exhibited by Arid1a loss in the germline 

(Gao et al. 2008). 

 

Spontaneous peritoneal endometriotic-like lesions developed in mice after intrabursal AdCre 

injection that activated oncogenic KrasG12D in the OEAC model described by Dinulescu et al 

(2005). It is unclear how local Kras activation could cause distant lesions in these animals that, 

unlike when both Kras and Pten were targeted, did not develop malignancy. A simple 

explanation would be bursal perforation during the injection but, even then, any lesions would 

be arising from transformed mesothelial cells, limiting the utility of this model.  

 

To summarise, GEMMs of OCCC do not currently exist. Of the possible options, introducing 

mutations in putative OCCC driver genes in the endometriosis model described by Cheng et 

al, appears to be the most promising. 

 

1.6.2. OCCC cell lines 

Increasingly, it is realised that mis-identification and cross-contamination of laboratory cancer 

cell lines is a common problem with up to 15% of human cell lines shown not to be derived 

from the claimed source (Masters 2012). This problem is particularly acute in EOC research 

where accurate histological subtype information for many cell lines is lacking. Recently, it was 

shown that one of the commonly used OCCC cell lines, OV2008, is HPV positive and identical 

to the cervical adenocarcinoma cell line ME-180 (Korch et al. 2012). Another, ES-2, forms 

undifferentiated tumours in xenograft studies (Shaw et al. 2004) and lacks typical features of 

OCCC such as HNF1B overexpression, ARID1A or PIK3CA mutations (Anglesio et al. 2013), 

rendering it unsuitable as an OCCC model. It is also worth noting that SKOV3, commonly used 

as a HGS model, overexpresses HNF1B according both to mine and others’ results (Anglesio 

et al. 2013), has ARID1A and PIK3CA mutations and  accumulates large amounts of glycogen 

(see section 6.3). It could therefore be utilised as an OCCC model, although it is atypical as it 

also carries a TP53 mutation.  
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Recently, research groups have integrated genomic and IHC data in order to reclassify EOC 

cell lines and identify lines that could be suitable experimental models for the various EOC 

histological subtypes (Anglesio et al. 2013; Domcke et al. 2013). It is worth noting that 

Anglesio’s recommendation of JHOC-5 and TOV21G as the cell lines most suitable for 

studying OCCC is entirely in agreement with my experimental approach.  

 

1.6.3. Functional anatomy of the mouse endometrium 

Both human and mouse endometria consist of luminal and glandular epithelial cells held 

together by a supportive stroma. There is evidence of clonal origin of individual entire glands, 

suggesting the presence of an endometrial stem cell niche. Label retaining and side population 

cells (Kyo et al. 2011) have been identified in both the epithelium and the stroma in the mouse 

endometrium (Fig. 1.5) but, despite cell-to-cell variability in ER and PgR expression, distinct 

epithelial or stromal populations have not been yet described (Gargett 2007). It has been 

suggested that ERα positive stromal cells provide paracrine signalling to the ERα negative 

luminal progenitor cells that, in turn, differentiate to the predominantly ERα positive luminal 

cells (Gargett et al. 2012) (Fig. 1.5). This model is supported by recombination experiments in 

 

Figure 1.5. Organisation of the mouse endometrium and the stem cell niche 
Position of label retaining cells (LRC) in the mouse endometrium (top panel) and paracrine 
interactions in the stem cell niche (bottom panel). ERα+ stromal niche cells provide paracrine 
stimulation to ERα- progenitor cells that self-renew and differentiate to ERα+ luminal cells (from 
Gargett 2007 and Gargett et al. 2012). 
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ER knockout mice that have shown that epithelial proliferation is dependent on stromal ER 

signalling but that epithelial ER is dispensable for proliferation (Cooke et al. 2007).     

 

1.7. Specific aims of this project 

The work presented in this thesis aims to functionally characterise the consequences of the 3 

“signature” events in OCCC: ARID1A mutations, HNF1B overexpression and glycogen 

accumulation. 

 

At the start of this project, in early 2011, the frequent occurrence of ARID1A mutations in 

OCCC had just been reported. Very little was, and is still, known about the physiological role 

of ARID1A in the endometrium and the consequences of its loss. From what we knww about 

the SWI/SNF complex though in general, it was expected that ARID1A’s role would be tissue 

and context specific. Therefore, this project aimed to: 

• Study the role of Arid1a in the hormonal regulation of the endometrium and describe 

the Arid1a-driven transcriptional programme in normal endometrium using the mouse 

as a model system 

• Describe the ARID1A-driven transcriptional programme and the consequences of 

ARID1A loss in other model systems such as mouse embryonic fibroblasts (MEFs), a 

more easily manipulated non-cancerous model, and human immortalised ovarian 

surface epithelium (IOSE) 

• Investigate the effect of ARID1A knockdown on proliferation in normal mouse uterine 

tissues, MEFs, IOSE and a panel of OCCC and EOC cell lines 

• As ARID1A and ARID1B are mutually exclusive but essential components of the 

SWI/SNF complex, explore the consequences of combined ARID1A and ARID1B 

knockdown 

 

HNF1B overexpression is thought to be one of the main drivers of the OCCC phenotype and 

contribute to OCCC proliferation. Again, in 2011, knowledge of the HNF1B-driven 

transcriptional programme was based mostly on older generation microarray studies and 

direct metabolic studies were lacking. Studies of HNF1B’s role on proliferation had given 

inconsistent results. With regards to HNF1B, this project aimed to: 

• Investigate the role of HNF1B on proliferation in a wider panel of OCCC cell lines 
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• Describe the HNF1B-driven transcriptional programme using bona fide OCCC cell 

lines such as JHOC-5 and TOV21G 

• Describe the effects of HNF1B on the metabolic profile of OCCC and show whether a 

direct link to glycogen accumulation exists 

 

As detailed in section 1.4, the role of glycogen in cancer in general is understudied and only 

very recently studies have hinted at a role that goes beyond that of a fuel store. Aims of this 

project were to: 

• Investigate whether the OCCC glycogen stores are functionally active 

• Investigate the effects of glycogen metabolism perturbations on cell proliferation and 

survival in OCCC cell lines 

• Investigate the consequences of glycogen metabolism perturbations on the metabolic 

programming of OCCC cell lines 

 

The need for novel therapeutic approaches in OCCC is undeniable. The reports of “targetable” 

genomic alterations such as MET or HER2 amplifications in a minority of OCCC cases, raises 

the hope that targeted treatments may benefit a subset a patients. However, apart from the 

observed correlation between ARID1A mutations and PI3K pathway activation, implications 

for therapeutic strategies arising from the 3 “signature” events in OCCC are presently unclear. 

It is hoped that knowledge gained from studying the roles of ARID1A, HNF1B and glycogen 

in OCCC will suggest avenues for future therapeutic investigations. For this, a reliable GEMM 

of OCCC will be indispensable. Therefore, a long-term aim, beyond the time confines of this 

project, is to utilise the knowledge gained in order to create an OCCC mouse model on the 

background of the Cheng endometriosis model. 
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2. MATERIALS AND METHODS 

2.1. Animals 

C57BL/6 (B6) and CD-1 female mice were purchased from Charles Rivers Laboratories 

(Margate, UK). A vasectomized male B6 mouse was a kind gift from Dr. Xiangang Zou, CRUK 

Cambridge Institute (CI), Cambridge, UK. Arid1afl mice were a kind gift from Dr. Peri Tate, 

Sanger Institute, Hinxton, UK. They contain LoxP sequences surrounding exon 9 of Arid1a, 

have been derived using the techniques described by Gao et al (2008) and were re-derived 

by the Transgenics Core Facility at the CI. ROSA26Cre-ERT2 mice were a kind gift from Prof. 

Pierre Chambon, IGBMC, France, and have previously been described (Hameyer et al. 2007). 

Arid1afl and ROSA26Cre-ERT2 mice were backcrossed to a B6 background under the supervision 

of Dr. Doug Winton, CRUK CI, to generate ROSA26Cre-ERT2-Arid1afl/fl mice. Genotyping was 

performed using the following primers: TCAAGGGGGCATGATGGGAAC (forward) and 

CATCCCCAAGGCCCATCATCT (reverse). These amplify the region surrounding the LoxP 

sequence between exons 9 and 10 resulting in an approximately 40bp longer PCR product in 

its presence. After initial in-house validation, subsequent genotyping was performed by 

Transnetyx Inc (Cordova, TN, USA). All animals were housed in the CI Biological Resources 

Unit in accordance with the relevant animal care regulations. 

 

2.2. Estrus cycle monitoring 

In sexually mature mice, the estrus cycle was monitored with vaginal smears. Briefly, vaginal 

cells were aspirated using a sterile pastelle in ~0.5ml PBS, allowed to air-dry, fixed by 

immersion in acetone for 5 min, stained with Mayer’s haematoxylin, cover-slipped and 

examined under a light microscope.  

 

2.3. Mouse tissue acquisition 

Female mice (specific ages varied according to the experimental needs) were euthanized by 

asphyxiation in a CO2 chamber followed by cervical dislocation. The peritoneal cavity was 

opened and the uterus horns and body removed en block using a scalpel and scissors. 

Generally, the uterine horns were separated and one was fixed in 10% neutral buffered 

formalin (NBF) for 18-24 hours whereas the other was opened longitudinally, cut into ~5mm 

segments and placed in RNAlater (Qiagen) for subsequent RNA extraction.  
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2.4. Estrus-timed mouse uterus series 

To examine the variability of Arid1a expression in the mouse uterus during the estrus cycle 

and its association to hormonal responses (Inoue et al. 2002), a cohort of 28 6-8-week-old B6 

mice was used. In all mice, the phase of the estrus cycle was determined by daily vaginal 

smears for up to 4 days (see section 2.2) with the last one performed ~2 hours before tissue 

collection. One uterine horn from each mouse was preserved in RNAlater, RNA was extracted 

(see section 2.12.2) and used to measure Arid1a, Arid1b and Ltf mRNA expression by qRT-

PCR (see section 2.16.1). The second uterine horn was fixed in 10% NBF and submitted for 

histological evaluation. Quantitative immunohistochemistry (IHC) for ARID1A, ER, PgR and 

Ki67 was performed and analysed as detailed in section 2.15.1. Additionally, IHC was 

performed for CD45.  

 

2.5. Culture of murine uterine fragments 

2.5.1.  “Coin” method 

This method is based on an original description by Newbold et al (1994) with some 

modifications. Three to twelve-week-old B6 and CD-1 mice were killed by asphyxiation, the 

uteri were removed and the uterine horns slit longitudinally. Fragments approximately 0.5-

2mm in size were cut on ice, using scalpels and iris scissors, taking care to complete the 

procedure within 5-10 min. The fragments were subsequently placed in culture dishes with or 

without Matrigel (1:50 dilution) pre-coating (BD Biosciences). Media tried were a) Dulbecco’s 

Modified Eagle Medium / Ham’s F12 (DMEM/F12) 1:1 mix (Gibco), b) Basal Medium Eagle 

(BME) with 1% 10mM MEM non-essential amino acids, 1% 100x MEM vitamin solution, 1% 

100mM MEM sodium pyruvate solution and 1% 200mM L-glutamine (all from Sigma-Aldrich) 

and c) 3:1 DMEM/F12 mix supplemented with 0.5μg/ml hydrocortisone (Sigma-Aldrich), 

10ng/ml EGF (Peprotech) and 0.1nM cholera toxin (Enzo Life Sciences) (FAD). All media were 

supplemented with 10% FBS (Gibco), 50Un/ml penicillin and 50μg/ml streptomycin (Gibco) 

with or without 1-10ng/ml diethylstilbestrol (DES - Fisher Scientific). After 5-6 days in culture, 

the fragments were harvested, fixed in 10% NBF overnight, paraffin embedded, sectioned and 

stained with H&E to assess tissue viability. 

 

2.5.2. Culture in CellMatrix® 

This is a modification of the murine intestinal fragment culture method described by Ootani et 

al (2009). Fragments were prepared as described in 2.5.1 or, alternatively, 5mm uterine 



31 

 

fragments were further minced using a GentleMACS Dissociator (Miltenyi Biotec) on a non-

enzymatic digestion cycle. A bottom layer of collagen gel matrix consisting of CellMatrix type 

I-A (Nitta Gelatin) was created in a PICM03050 Millicell culture plate insert (Millipore) as 

described elsewhere (Ootani et al. 2009). A second layer containing a mixture of CellMatrix 

and the tissue fragments was added on top and the whole construct placed in 6-well plates 

(Corning). One-two ml medium with or without 1-10ng/ml DES was added to the outer dish. 

Culture media tried were DMEM/F12, RPMI 1640 (Gibco), FAD and BME supplemented as 

described in section 2.5.1. All media were supplemented with 10% FBS, 50Un/ml penicillin 

and 50μg/ml streptomycin. After 6-15 days in culture, the inserts were fixed with 4% PFA 

overnight and either the whole CellMatrix-tissue assembly or the retrieved tissue samples 

submitted for histological examination. 

  

2.5.3. Vibratome method 

Eight to fifteen-week-old CD-1 mice were killed by asphyxiation and the uteri removed. Whole 

uterine horns were embedded in 3% agarose (Fisher Scientific) and placed in ice for 30 min 

to allow the agarose to solidify. 100-200μm transverse tissue sections were cut using a 

VT1200S vibratome (Leica) and placed in culture dishes. Culture media tried were DMEM, 

DMEM/F12, RPMI 1640 and McCoy’s. All media were supplemented with 10% FBS, 50Un/ml 

penicillin and 50μg/ml streptomycin. After 6-7 days in culture, the tissue was fixed with ice-

cold methanol at -200C for 30 min, left to air-dry overnight and stained with H&E. Alternatively, 

after fixation, the tissue was re-embedded in paraffin and thin sections cut for H&E and IHC 

(for the latter fixation was with 10% NBF overnight as this is the institutional standard for IHC). 

In another experiment, 150μm uterine sections from a homozygous Arid1afl/fl mouse were 

placed in wells of a 96-well plate with 200μl DMEM medium and treated with increasing titres 

(up to 108 PFU per well) of Cre-expressing adenovirus (Ad-Cre-IRES-GFP, Vector Biolabs) to 

in vitro knockout Arid1a.   

 

2.5.4. Surgispon® method 

1mm uterine fragments from an 11-week-old CD-1 mouse were prepared as described in 

2.5.1. The fragments were subsequently placed on 1cm3 cubes of absorbable gelatin sponge 

(Surgispon®, Anser Medical) pre-soaked in medium (Centenera et al. 2012) in a 24-well tissue 

culture plate (Corning). 500 or 1000μl RPMI 1640 medium was added, supplemented with 

10% FBS, 50Un/ml penicillin and 50μg/ml streptomycin, 10μg/ml insulin (Sigma-Aldrich) and 
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10μg/ml hydrocortisone. After 6 days in culture, the fragments were fixed in 10% NBF 

overnight and submitted for histological examination. 

 

2.5.5. Non-adjacent co-culture method 

The method originally described by Chung and Das (2011) was used with modifications.1 Six 

or eight-week-old pseudo-pregnant CD-1 mice were euthanised on day 4 of pseudo-

pregnancy and uterine fragments prepared as described in 2.5.1. These were placed in 3ml 

dissociation solution consisting of a 9:1 mixture of 5mg/ml dispase (Stem Cell Technologies) 

and 250mg/ml pancreatin (Sigma-Aldrich) supplemented with 50Un/ml penicillin and 50μg/ml 

streptomycin and incubated at 40C for 1 hour, then at 200C for 1 hour and finally at 370C for 

10 min. Subsequently, 17ml ice-cold Hanks Balanced Salt Solution (HBSS, Gibco) and 2ml 

FBS were added and the fragments mixed by pipetting multiple times using a 25ml pipette. 

The epithelial cell-containing supernatant was collected and cells were allowed to settle by 

gravity. The medium was then discarded, cells were washed with 20ml HBSS, centrifuged at 

1,300rpm for 3 min and re-suspended in medium (phenol red-free DMEM/F12 supplemented 

with 10% charcoal-stripped FBS, 50Un/ml penicillin and 50μg/ml streptomycin). The uterine 

fragments were washed twice with 20-30ml HBSS and then incubated in 3ml of a 19:1 mixture 

of HBSS and 10mg/ml collagenase (Roche Diagnostics) supplemented with 50Un/ml penicillin 

and 50μg/ml streptomycin at 370C for 30 min. Subsequently, 17ml ice-cold HBSS and 2ml 

FBS were added and the fragments were mixed by pipetting multiple times with a 25ml pipette. 

The stromal cell-containing supernatant was then filtered through an 80μm nylon mesh 

(Millipore), centrifuged at 1,300rpm for 3 min and re-suspended in medium. The epithelial cells 

were plated in a 0.4μm PET cell culture insert (BD Falcon) coated with 1:50 Matrigel in medium 

solution, in 6-well plates. The stromal cells were plated on coverslips in different wells of 6-

well plates. After 48 hours of separate culture, the inserts were placed on top of the coverslips 

to establish the co-culture system and the concentration of FBS in the medium reduced to 1%. 

10nM oestradiol (E2 – Sigma-Aldrich) and/or 1μM progesterone (P4 – Sigma-Aldrich) were 

added after a further  24 hours followed by Bromodeoxyuridine (BrdU, Sigma-Aldrich) 48 hours 

later to verify, by innunofluorescence microscopy (see section 2.10), the establishment of 

normal hormonal responses (Chung & Das 2011). BrdU incubation times were up to 24 hours, 

in different experiments. 

 

                                                
1 It should be noted that the methods reference in this publication links to an irrelevant publication. A 
protocol version was obtained from the authors but it contained fundamental errors; e.g. if followed as 
stated, epithelial cells were discarded rather than retained. It therefore required extensive optimisation.  
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2.6. Culture of dissociated uterine cells 

The techniques described by Ouellette et al (1999) and Campbell et al (2006) were utilized. 

Initial experiments were based on the Ouellette et al (1999) method with minor modifications. 

Briefly, 8-week-old B6 mice were euthanized, the uteri retrieved, the uterine horns opened 

longitudinally and incubated for 60 min at 370C in 5ml DMEM/F12 with 5mg collagenase I 

(Invitrogen). The epithelial-cell containing supernatant was collected, spun-down briefly, re-

suspended in DMEM/F12 medium supplemented with 10% FBS, 50Un/ml penicillin and 

50μg/ml streptomycin and plated in 6-well plates. Meanwhile, the uterine horns were incubated 

for a further 60 min at 370C at 140rpm on a shaker in fresh DMEM/F12 with 5mg/ml 

collagenase I. Subsequently, the horns were crushed through an 180μm metal sieve in order 

to collect stromal cells that were plated in a manner identical to the epithelial cells. 

Alternatively, the initial incubation period was extended to 20 hours and Matrigel coating (1:50 

dilution) was applied to the plates. To establish baseline viability and proliferative capacity, 

cells were kept in culture for up to 32 days with weekly medium changes, were harvested at 

various time points and viable cell numbers determined using a Vi-CELL XR counter  

(Beckman Coulter) on days 10, 26 and 32. 

    

Using the Campbell et al (2006) method, dissociation was accomplished by overnight 

incubation of uterine horns in a 1:1 mixture of 1.75Un/ml dispase (Sigma-Aldrich) and HBSS 

followed by mechanical pressure in order to squeeze the luminal epithelium out of the horn. 

Subsequently, epithelium and stroma were incubated separately with 10mg/ml collagenase 

on a shaker at 250rpm at 370C for 2 hours and the tissue was further broken down by pipetting. 

The solution was centrifuged at 1,000rpm for 5 min, the pellet reconstituted and incubated with 

0.5% trypsin (Gibco) for 2 min, followed by a further centrifugation step (1,000rpm/5min), 

reconstitution of the pellet and passing through a 30μm cell strainer (BD Biosciences). Cells 

were counted using the Vi-CELL XR counter and plated in 12 or 96-well plates with or without 

Matrigel pre-coating (1:50 dilution). Media tested were DMEM/F12, McCoy’s and BME with 

the same additives as detailed in section 2.5.2.1. Cell numbers and viability were assessed 

after 7 days in culture using the Vi-CELL XR counter.  Alternatively, dissociated cells from 3-

week-old B6 mice were cultured in a 24-well plate with 5x104 irradiated feeder 3T3 fibroblasts 

per well, 0.5ml RPMI 1640 and 50ng/ml DES and observed for 30 days for colony formation. 
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2.7. Creation and expansion of Mouse Embryonic Fibroblast (MEF) cell 

lines 

Mouse embryonic fibroblasts can be useful model systems for functional studies of putative 

cancer associated genes (Sun et al. 2007). To create MEF cell lines pregnant B6 mice were 

euthanized on day 10.5-13.5 of pregnancy. The embryos were dissected out of the 

implantation sites at the uterine horns, placed in separate wells of a 24-well plate and washed 

with sterile PBS on ice. They were subsequently incubated with 1ml 0.25% trypsin/EDTA 

(Gibco) at 40C overnight. The following morning the trypsin was aspirated, 1 ml fresh 0.25% 

trypsin/EDTA was added to each well and the embryos incubated at 370C for 15 min. One ml 

DMEM supplemented with 10% FBS was added and the embryos were gently dissociated 

using a wide bore glass pipette. Cells from each embryo were then plated in two 100mm 

culture dishes with DMEM medium supplemented with 10% FBS, 50Un/ml penicillin and 

50μg/ml streptomycin. The culture dishes were inspected daily and when the cellular 

monolayer in a culture dish was confluent, the cells were transferred to 1 T-175 flask (passage 

2). When confluent again, the cells were transferred to 3 T-175 flasks (passage 3). When the 

cells became confluent in passage 3, they were tested for mycoplasma infection and once 

confirmed mycoplasma negative, placed in a liquid nitrogen tank in freeze medium consisting 

of 65% DMEM, 25% FBS and 10% glycerol. A list of the MEF cell lines created as part of this 

project is provided in Table 2.1. Cells were taken out of liquid nitrogen and expanded up to 

passage 6 for individual experiments as detailed in the relevant sections. 

    

Table 2.1. Mouse Embryonic Fibroblast cell lines 

MEF 
Cell 
lines 

Parental 
Genotype 

Pregnancy 
day 

Litter MEF 
genotype 

Comments 

E1-E5 WT x WT 10.5 A WT E1 and E5 stopped 
growing before freezing 

E6-E11 WT x WT 12.5 B WT  
E21-E29 Arid1atag x 

WT 
12.5 C E23, E28 & 

E29 Arid1atag 
Rest WT 

 

E31-E36 Arid1atag x 
WT 

10.5 D E31 & E34 
Arid1atag  
E32 WT 

E33, E35 and E36 
stopped growing before 
freezing 

E41-E45 Arid1afl/fl x 
Arid1afl/fl 

13.5 E Arid1afl/fl Frozen after passage 2. 
Very poor growth after 
thawing 

WT: Wild Type; Arid1atag: FLAG-tagged Arid1a allele 
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2.8. In vivo Arid1a ablation 

Either 2 or 4 mg tamoxifen were injected intra-peritoneally (i.p.) to in vivo ablate Arid1a in 

Arid1aWT/fl-ROSA26Cre-ERT2 or Arid1afl/fl-ROSA26Cre-ERT2 mice. Arid1aWTlWT-ROSA26Cre-ERT2 mice 

served as negative controls2. Uterine samples were collected after 4 to 28 days as described 

in section 2.3 and fixed in 10% NBF or preserved in RNAlater in order to establish the extent 

and efficiency of Arid1a knockout in the uterus. 

 

2.9. Cell line expansion and culture 

A list of EOC cell lines used, their presumed histological subtype, origin, and growth 

requirements is provided in Table 2.2. All cell lines were certified as mycoplasma-free using 

the Mycoprobe mycoplasma detection kit (R&D Systems) by the CI Biorepository Core Facility 

and their identity confirmed using Short Tandem Repeat analysis. All cell lines, unless 

otherwise specified, were cultured at 370C in a 21% O2 / 5% CO2 environment. After initial 

expansion using the media detailed in Table 2.2, cell lines were maintained in DMEM medium 

supplemented with 10% FBS, 50Un/ml penicillin and 50μg/ml streptomycin. 

 

Additionally, a TERT-immortalized ovarian surface epithelium cell line, IOSE4, and a 

syngeneic HNF1B overexpressing clone (HNF1B introduced by lentiviral transduction), 

IOSE4+HNF1B, were kind gifts from Prof. Simon Gayther, University of Southern California, 

CA, USA. These were maintained in a 1:1 mix of MCDB105 and M199 media, supplemented 

with 15% FBS, 10 ng/ml EGF, 0.5 μg/ml hydrocortisone, 5 μg/ml insulin, 34 μg protein/ml BPE 

(Life Technologies), 50Un/ml penicillin and 50μg/ml streptomycin. Selection of IOSE4+HNF1B 

cells was maintained by the addition to the medium of 400ng/ml puromycin (Life 

Technologies). 

 

2.9.1. Culture under hypoxia and glucose deprivation 

For experiments under hypoxia, cell lines were cultured at 370C in a 1% O2 / 5% CO2 

environment. For glucose deprivation experiments, glucose-free DMEM was used (Gibco), still 

supplemented with 10% FBS, 50Un/ml penicillin and 50μg/ml streptomycin. 

                                                
2 Tamoxifen injections performed by Dr. Anna Nicholson, Winton Laboratory, CRUK CI 
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2.10. Immunofluorescence microscopy 

Cells growing on coverslips, Ibidi chambers (Ibidi) or 0.4μm PET membranes were fixed with 

methanol at -200C for 20 min. Blocking was performed in TBS with 0.1% Triton-X (Fisher 

Scientific), 2% BSA (Cell Signaling Technology) and 1-10% normal goat serum (Sigma-

Aldrich) at room temperature (RT) for 60 min. Primary antibody incubation was performed 

overnight (16-18 hours) at 40C. After washing with TBS containing 0.1% Triton-X, the samples 

were incubated with secondary antibody at RT for 60 min. Primary and secondary antibodies 

used are presented in Tables 2.3 and 2.4. The samples were washed again, incubated with 

300nM DAPI (Life Technologies) at RT for 5 min, mounted using Prolong® Gold Antifade  (Life 

Technologies) and kept at 40C until imaging, which was performed on a Leica TCS SP5 

confocal microscope (Leica). To visualise BrdU incorporation (see 2.5.5), after fixation, the 

samples were permeabilised with 1.5M HCl at RT for 30 min and 5% normal donkey serum 

(Sigma-Aldrich) was added to the blocking solution. SKOV3 cells served as positive controls 

for BrdU incorporation. In all experiments samples treated with primary but not secondary 

antibody and vice versa served as negative controls.     

Table 2.3. List of primary antibodies used for immunofluorescence 

Antibody Clone Species Manufacturer 
(Cat no) 

Dilution 

Pan-cytokeratin 
(PE-conjugated) 

C11-PE Mouse Santa-Cruz (sc-
8018) 

1:50-1:200 

Desmin Polyclonal Rabbit Abcam (ab8592) 1:100-1:500 
Vimentin EPR3776 Rabbit Abcam (ab92547) 1:100 
E-cadherin 34/E Mouse BD Biosciences 

(610405) 
1:50-1:400 

BrdU Polyclonal Sheep Abcam (ab1893) 1:50-1:200 

 

Table 2.4. List of secondary antibodies used for immunofluorescence 

Antibody Clone Species Manufacturer 
(Cat no) 

Dilution 

Anti-Rabbit IgG-
FITC 

Polyclonal Goat Sigma-Aldrich 
(F9887) 

1:500-1:1000 

Anti-Sheep IgG-
DyLight650 

Polyclonal Donkey Abcam (ab96942) 1:500-1:1000 

Anti-Mouse IgG-
AF488 

Polyclonal Goat Life Technologies 
(A-11001) 

1:1000 

Anti-Rabbit IgG-
AF555 

Polyclonal Goat Life Technologies 
(A-21428) 

1:1000 

 



39 

 

2.11. Uterine Fragment Viability Microscopy 

Histological examination after fixation and paraffin embedding was the primary method used 

to ascertain tissue viability in the uterine fragment culture experiments (section 2.5). In order 

to obtain a faster read-out of tissue viability in culture, the LIVE/DEAD Viability/Cytotoxicity kit 

(Life Technologies) was used. Tissue fragments cultured in CellMatrix were washed with 

Dulbecco’s-PBS (Sigma-Aldrich) 3 times and placed on a microscope slide. Components A 

(Calcein AM) and B (Ethidium homodimer-1) were added at 2 concentrations (2μM/4μM and 

4μM/8μM respectively) and allowed to incubate for 40 min. The fragments were then examined 

under a Leica TCS SP5 confocal microscope with laser excitation as per the assay 

manufacturer’s instructions. 

 

2.12. Nucleic acid extraction, quantification and quality assessment 

2.12.1. DNA extraction and quantification 

DNA was extracted either from cell pellets or mouse ear punch biopsies (see section 2.1), 

using the DNeasy Blood & Tissue kit (Qiagen) and following the manufacturer’s instructions. 

DNA quantification was performed using a NanoDrop 1000 spectrophotometer (Thermo 

Scientific). 

 

2.12.2. RNA extraction  

RNA was extracted from cell pellets using the RNeasy Mini Kit (Qiagen) and following the 

manufacturer’s instructions. On-column DNase digestion was performed for the samples used 

in the gene expression arrays and RNA-seq experiments (see sections 2.17 and 2.18) but was 

not performed routinely in other samples. For RNA extraction from murine uterine samples, 

uterine horns were slit longitudinally, cut into ~5mm segments and placed in RNAlater (see 

section 2.3). The samples were then homogenized using 2.8mm ceramic beads on a 

Precellys-24 homogeniser (Precellys) for two 20-sec cycles at 6,000rpm. Extraction was 

completed using the RNeasy Mini Kit with on-column DNase digestion.  

 

2.12.3. RNA quantification and quality assessment 

To compare the performance of different platforms, uterine RNA was extracted from 24 mice 

and quantified using a Nanodrop 1000 Spectrophotometer, Qubit 2.0 Fluorometer (Life 

Technologies) or 2100 Bioanalyzer (Agilent). Means were compared using t-tests and the 



40 

 

Pearson product moment correlation coefficient r calculated. Day-to-day variability in 

Nanodrop quantification was assessed by comparing values obtained for the same samples 

on 2 different days. RNA quality was assessed using the 2100 Bioanalyzer to calculate RNA 

Integrity Number (RIN) values3. Only samples of acceptable quality were used in the gene 

expression array and RNA-seq experiments as detailed in sections 2.17 and 2.18.  

     

2.13. Protein extraction and quantification 

For protein extraction, cells were incubated with 200μl Lysis Buffer [50mM Tris pH 8.0, 150mM 

NaCl, 5mM EDTA, 0.5% Igepal and 2 tablets/100ml Complete EDTA-free protein inhibitor 

cocktail (Roche Diagnostics)], 0.2μl 100mM phenylmethanesulfonyl fluoride (Sigma-Aldrich), 

0.2μl Phosphatase inhibitor cocktail 1 (Sigma-Aldrich) and 0.2μl Phosphatase inhibitor cocktail 

2 (Sigma-Aldrich) on ice for 3 min, transferred to a 1.5ml tube and left on ice for 30 min. The 

lysate was syringed 4 times with a 25G needle, centrifuged at 17,000g for 3 min at 4oC and 

the pellet discarded. Protein quantification was carried out on a NanoDrop 1000 

spectrophotometer and from February 2013 onwards on a Direct Detect infrared system 

(Millipore). 

 

2.14. Immunoblotting and protein band intensity quantification 

Protein separation was performed with the NuPAGE system (Life Technologies), using 

NuPAGE Novex 3-8% Tris-Acetate or 4-20% Tris-Glycine Gels (Life Technologies) in an XCell 

Sure Lock chamber (Life Technologies) according to the manufacturer’s instructions. Tris-

Acetate gels were used when assaying ARID1A and ARID1B; for all other proteins, Tris-

Glycine gels were used. The HiMark® pre-stained protein standard (Life Technologies) and 

the Rainbow® molecular weight protein marker (Fisher Scientific) were used for protein size 

estimation with the Tris-Acetate and the Tris-Glycine gels respectively. For blotting, the XCell 

II Blot Module (Life Technologies) was used with the Immobilon FL PVDF Membrane 

(Millipore). Membranes were blocked in Odyssey Blocking Buffer (LI-COR) at RT for 60 min. 

Primary antibody incubation was performed overnight (16-18 hours) at 40C with the antibodies 

listed in Table 2.5. For protein detection, the Odyssey Infrared Imaging System (LI-COR) and 

associated secondary antibodies (goat anti-mouse or anti-rabbit conjugated with either IR Dye 

                                                
3 RIN is a robust measurement of RNA quality, derived from assessing the RNA electrophoregram and 
ranging from 0-10.  
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680 or IR Dye 800, 1:10,000) were used following the manufacturer’s instructions. For protein 

band intensity quantification, the relevant bands were selected manually on the Odyssey 

Table 2.5. List of primary antibodies used for immunoblotting 

Antibody Clone Species Manufacturer 
(Cat no) 

Dilution 

ARID1A PSG3 Mouse Santa Cruz (sc-
32761) 

1:1000 

 Polyclonal Rabbit Sigma-Aldrich 
(HPA005456) 

1:500 

 AT1188a Mouse Abgent 
(discontinued) 

1:1000 

ARID1B KMN1 Mouse Santa Cruz (sc-
32762) 

1:500 

 Polyclonal Rabbit Sigma-Aldrich 
(HPA016511) 

1:300-1:1000 

β-Catenin 6B3 Rabbit Cell Signaling 
(#9582) 

1:1000 

Cdc2 P34 Mouse Santa Cruz (sc-
54) 

1:1000 

Cdc25C 5H9 Rabbit Cell Signaling 
(#4688) 

1:1000 

Chk1 2G1D5 Mouse Cell Signaling 
(#2360) 

1:1000 

Cyclin B1 V152 Mouse Cell Signaling 
(#4135) 

1:1000 

E-cadherin 34/E Mouse BD Biosciences 
(610405 

1:150 

GAPDH 14C10 Rabbit Cell Signaling 
(#5014) 

1:1000-1:5000 

GLUT1 Polyclonal Rabbit Santa Cruz (sc-
7903) 

1:200 

 Polyclonal Rabbit Abcam 
(ab15309) 

1:100-1:300 

GYS1 EP817Y Rabbit Abcam 
(ab40810) 

1:1000 

HIF1α EP1215Y Rabbit Abcam 
(ab51608) 

1:500-1:2000 

HNF1B Polyclonal Rabbit Sigma-Aldrich 
(HPA002083) 

1:500-1:1000 

IL6 Polyclonal Rabbit Abcam (ab6672) 1:500 
IL6R Polyclonal Rabbit Abcam 

(ab85105) 
1:200 

Nonphosphorylated 
β-Catenin  

D13A1 Rabbit Cell Signaling 
(#8814) 

1:1000 

PhosphoCdc2(Y15) Polyclonal Rabbit Cell Signaling 
(#9111) 

1:1000 

PYGL Polyclonal Rabbit Sigma-Aldrich 
(HPA000962) 

1:500-1:1000 

α-tubulin DM1A Mouse Sigma-Aldrich 
(T6199) 

1:5000 
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Imaging System, intensity was calculated using the manufacturer’s software and normalized 

against the intensity of the GAPDH or tubulin loading control band. 

 

2.15. Immunohistochemistry (IHC) 

IHC assays were optimized manually in mouse uterine tissue for ARID1A (PSG3 and 

HPA005456 antibodies), ARID1B (KMN1) and PgR (HPA004751, Sigma-Aldrich). FFPE 

slides were de-waxed and rehydrated followed by heat-mediated antigen retrieval using either 

EDTA or Citrate pH 6.0 buffers for 20 min at 1000C. Endogenous peroxidase activity was 

quenched with 0.3% H2O2 in methanol for 20 min. The slides were then sequentially treated 

with 1% normal donkey serum (Sigma-Aldrich) for 30 min followed by the Vector Avidin/Biotin 

blocking kit (Vector Laboratories). For the PSG3 and KMN1 antibodies, which are raised in 

mouse, mouse IgG was then blocked using the Vector Mouse IgG blocking kit (Vector 

Laboratories) followed by application of the primary antibody (dilution range 1:50-1:400) for 

60 min. Subsequently, secondary (and tertiary in the case of mouse primary) antibody 

incubation [rat anti-mouse and donkey anti-rat (Jackson Laboratories) for PSG3 and KMN1 

and donkey anti-rabbit (Jackson Laboratories) for HPA005456 and HPA004751] was 

performed for 30 min at 1:250 dilution and the Vectastain ABC kit (Vector Laboratories) was 

applied for 30 min. Slides were then incubated with the DAB chromogen system (DAKO) for 

2 min, washed and counter-stained with H&E. Cancer cell lines with ARID1A mutations served 

as negative controls for ARID1A staining and mouse spleen tissue for PgR staining. ARID1A/B 

staining is ubiquitous in normal tissues and therefore the stained uterine tissues served as 

internal positive controls. For PgR staining mouse mammary tissue served as positive control. 

In all cases, samples where the primary antibody incubation step was replaced with incubation 

in PBS only served as additional negative controls. 

 

Following demonstration that the HPA00456 anti-ARID1A and the HPA004751 anti-PgR 

antibodies were performing satisfactorily, they were placed on the automated platform 

operated by the CI Histopathology Core Facility. Using this platform, de-waxing and 

rehydration are performed on a ST5020 Multistainer (Leica) and the blocking and staining on 

a Bond Max robot (Leica) using the Vector Biotin/Avidin and IgG blocking kits detailed above. 

Antigen retrieval is heat-mediated, using citrate pH 6.0 buffer for 20 min at 1000C. Post IHC 

dehydration and cleaning is again performed on a ST5020 Multistainer and a CV5030 

Coverslipper (Leica) is used for mounting. Primary antibodies used in this project are 

summarized in Table 2.6. Secondary antibody incubation times and dilutions are identical to 

those detailed above for manual IHC staining. 
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2.15.1. Quantitative IHC analysis 

Quantitative analysis of IHC staining for ARID1A, Ki67, ER and PgR was undertaken in the 

estrus-timed mouse uterus samples (see section 2.4). Stained slides were digitized and 

uploaded onto the eSlide Manager Platform (Aperio). Areas of interest encompassing the 

luminal and glandular epithelia as well as the uterine stroma were drawn, and an algorithm 

trained with the help of Dr. Will Howat, Head of the CI Histopathology Core Facility, to segment 

the epithelia from the stroma and subsequently to count and grade on a 0-3 scale all stained 

nuclei in each compartment. One transverse 5μm uterine section was analyzed for each 

mouse in its entirety, obviating the need for random sampling within each section. Two 

measurements were obtained for each antibody, in each of the 2 compartments (epithelium 

or stroma) and for each mouse: the percentage of positive cells, irrespective of intensity and 

an H-score calculated as 1 x (% cells staining 1+) + 2 x (% cells staining 2+) + 3 x (% cells 

staining 3+). ANOVA and t-tests were used to compare percentages or H-scores and the 

Pearson product moment correlation coefficient r to examine correlations. 

 

2.16. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) 

qRT-PCR was used for relative quantification of RNA expression. Briefly, RNA was converted 

to cDNA using the TaqMan® Reverse Transcription Kit (Applied Biosystems) according to the 

manufacturer’s instructions and with random hexamer (RH) primers. qRT-PCR was performed 

Table 2.6. List of primary antibodies used for IHC 

Antibody Clone Species Manufacturer (Cat 
no) 

Dilution 

ARID1A Polyclonal Rabbit Sigma-Aldrich 
(HPA005456) 

1:200 

Caspase-3 Polyclonal Rabbit R&D Systems 
(AF835) 

1:100 

Caspase-8 11B6 Mouse Novocastra (NCL-
CASP-8) 

1:50 

CD45 RA3-6B2 Mouse R&D Systems 
(MAB1217) 

1:2000 

ER 6F11 Mouse Novocastra (ER-
6F11-L) 

1:70 

Ki67 TEC-3 Mouse DAKO (M7249) 1:500 
 Polyclonal Rabbit Bethyl Laboratories 

(IHC-00375) 
1:1000 

PgR Polyclonal Rabbit Sigma-Aldrich 
(HPA004751) 

1:200 
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using the TaqMan® Fast Advanced Master Mix (Applied Biosystems) and TaqMan® Gene 

Expression Assays with FAM dye labels for 40 cycles in a 7900HT Fast Real-Time PCR 

System (Applied Biosystems) according to the manufacturer’s instructions. Table 2.7 lists all 

the TaqMan® Gene Expression Assays used. Relative expression of the RNA of interest was 

quantified using the ΔΔCT method, where the amount of target RNA present is given by the 

formula 2-ΔΔCT where ΔΔCT is the difference in ΔCT between samples.  ΔCT in turn is defined 

as the difference in cycle threshold between the transcript of interest and a reference transcript 

(ΔCT = CT Target -  CT Reference).  GAPDH was used as the reference transcript in 

experiments using cell line-derived samples.  

 

2.16.1. Validation of qRT-PCR for mouse uterus samples 

Formal validation of all the steps in RNA expression quantification was undertaken for mouse 

uterus samples in preparation for the estrus-timed mouse series experiment (see section 2.4).  

Table 2.7. List of TaqMan Gene Expression Assays used 

Gene Species Assay Number 

ARID1A Human Hs00195664_m1 
 Mouse Mm00473838_m1   
  Mm00473848_m1 
  Mm00473841_m1 
ARID1B Human Hs01128043_m1 
 Mouse Mm01338353_m1 
ATF6 Human Hs00232586_m1 
CDH1 Human Hs01023894_m1  
CTNNB1 Human Hs00355049_m1 
GAPDH Human Hs02758991_g1 
 Mouse Mm99999915_g1 
HIF1A Human Hs00153153_m1 
Hmbs1 Mouse Mm01143545_m1 
HNF1B Human Hs01001602_m1 
Hprt1 Mouse Mm00446968_m1 
HSP90B1 Human Hs00427665_g1  
HSPA5 Human Hs00607129_gH 
IL6 Human Hs00985639_m1 
IL6R Human Hs01075666_m1 
Ltf Mouse Mm00434787_m1  
PBRM1 Human Hs00216838_m1  
PDIA3 Human Hs00607126_m1 
Rpl32 Mouse Mm02528467_g1 
SLC2A1 Human Hs00892681_m1 
SMARCA2 Human Hs01030846_m1 
SMARCA4 Human Hs00231324_m1 
SNAI1 Human Hs00195591_m1 
XBP1 Human Hs00231936_m1 
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First, as the transcripts of interest (Arid1a, Arid1b, Ltf) exhibit large differences in length, both 

oligo-dT and RH primers were tested and their relative efficiency for reverse transcription 

assessed. Then, for each TaqMan® Gene Expression Assay used, efficiency and the slope 

of ΔCT vs. log input were calculated for 0.01-100ng input RNA, as relative quantification using 

the ΔΔCT method requires that the PCR efficiency is similar for all transcripts of interest. A 

literature review was undertaken to identify putative housekeeping genes (HKG) for qRT-PCR 

normalisation in the mouse uterus and the performance of the selected genes assessed using 

the freely available NormFinder (Andersen et al. 2004) and BestKeeper (Pfaffl et al. 2004) 

algorithms.  

 

2.17. Gene Expression Arrays 

Gene expression arrays were performed using the BeadArray microarray platform (Illumina) 

by the CI Genomics Core Facility and initial analysis generating differentially expressed gene 

lists by the CI Bioinformatics Core Facility using the Bioconductor package on R (Gentleman 

et al. 2004). I performed the downstream analysis using MetaCore (www.portal.genego.com). 

Individual experiment details are provided below: 

 

2.17.1. ARID1A expression arrays 

ARID1A was knocked down using siRNA (see section 2.20.1 for knockdown details) in MEFs, 

IOSE4 and JHOC-5 cells. In MEFs, 3 cell lines derived from the same litter (E6, E8 and E9) 

were used as biological replicates. For IOSE4 and JHOC-5 cells, knockdown was performed 

independently in 3 flask replicates per cell line. Additionally, gene expression was analysed in 

6 mouse uterus samples, all from late diestrus/early proestrus; 3 with high and 3 with low 

Arid1a expression. ARID1A knockdown efficiency was confirmed by qRT-PCR (see section 

2.16). Mean ARID1A mRNA levels after knockdown were 71%, 49% and 75% lower in MEFs, 

IOSE4 and JHOC-5 cells respectively. Similarly the “low Arid1a” uterus samples had 73% 

lower Arid1a mRNA levels compared to the “high Arid1a” ones. In all cases, RNA was 

extracted using the RNeasy Mini Kit (see 2.12.2) and RNA quality was assessed by calculating 

the RIN value. RIN values ranged from 8.5-9.7, 9.7-10 and 6.8-9.4 in MEFs, IOSE4 and uterus 

samples respectively. RIN value was 10 for all JHOC-5 samples. Samples were run on 

MouseWG-9 v2.0 and HumanHT-12 v4.0 BeadChip arrays (Illumina) as appropriate and 

differentially expressed gene lists generated using false discovery rate (FDR) thresholds of 

0.01 and 0.05. 
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Lists of ARID1A-regulated genes in the 4 experiments detailed above were compared using 

the Venny tool (http://bioinfogp.cnb.csic.es/tools/venny/) and overlapping genes were selected 

for further downstream analysis using MetaCore. To establish whether the lists showed a 

larger number of overlapping genes than expected by chance alone, representation factors 

and the corresponding p values were calculated using a calculator provided online 

(http://nemates.org/MA/progs/overlap_stats.html) by the Lund Laboratory, University of 

Kentucky, KY, USA. 

 

2.17.2. HNF1B expression arrays 

Lentiviral vectors were used to stably knock down HNF1B in JHOC-5 and TOV21G cells (see 

section 2.20.2 for details). Gene expression was compared between the JHOC-5 202 (non-

target shRNA) and JHOC-5 577 and JHOC-5 583 (HNF1B shRNA) clones and between the 

TOV21G 202 (non-target shRNA) and TOV21G 578 and TOV21G 582 (HNF1B shRNA) 

clones. Four flask replicates for each clone were used for this experiment. Knockdown 

efficiency, as determined by qRT-PCR (see section 2.16) was 30%, 43%, 0% and 49% for 

JHOC-5 577, JHOC-5 583, TOV21G 578 and TOV21G 582 respectively at the time of RNA 

extraction, despite constant puromycin selection. RNA was extracted using the RNeasy Mini 

Kit (see 2.12.2) and RNA quality was assessed by calculating the RIN value; this ranged from 

9.3-10. RNA expression was compared on a HumanHT-12 v4.0 BeadChip (Illumina), 

separately for each cell line. Differentially expressed gene lists at FDR 0.01 and 0.05 were 

generated for each knockdown clone compared to its respective non-target control. In 

accordance with the qRT-PCR results, the data generated by the arrays showed that only 

JHOC-5 583 and TOV21G 582 exhibited statistically significant reduction in HNF1B 

expression. Therefore, downstream analysis was performed for the gene lists generated by 

the JHOC-5 202 – JHOC-5 583 and TOV21G 202 – TOV21G 582 comparisons only. 

Additionally, differentially expressed gene lists from the 2 cell lines were compared using the 

tools described in section 2.17.1. 

 

2.18. RNA sequencing (RNA-seq) in MEFs  

RNA sequencing was performed in MEFs after siRNA Arid1a knockdown using the samples 

described in section 2.17.1. Library preparation was performed by the CI Genomics Core 

Facility using the TruSeq® RNA Sample Prep Kit-v2 (Illumina) according to the manufacturer’s 

instructions; samples were pooled and run on a single lane on a HiSeq 2000 Sequencing 

System (Illumina).  Single end reads were trimmed to 50 base pairs and aligned using Tophat 
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v.2.0.4 to the mouse genome v.GRCm38.68. Gene-level read counts were then carried out 

using HT-Seq-count v.0.5.3p9. 

 

Differentially expressed gene lists at FDR 0.01 derived from the microarray (see section 

2.17.1) and the RNA-seq analysis, were compared using the tools described in section 2.17.1. 

Genes that were concordantly up- or down-regulated in both the microarray and RNA-seq 

experiments underwent further downstream analysis using MetaCore.  

 

2.19. Metabolic profile after HNF1B and PYGL knockdown 

2.19.1. NMR medium and intracellular metabolites quantification 

Medium and intracellular metabolites were quantified in JHOC-5 cells stably transfected with 

non-targeting shRNA (clone 202) or shRNA targeting HNF1B (clones 577 and 583) and in 

JHOC-5 and TOV21G cells treated with non-targeting or anti-PYGL siRNAs. In each 

experiment, 5x105 cells were plated in 100mm cell culture dishes in DMEM medium 

supplemented with 10% FBS, 50Un/ml penicillin and 50μg/ml streptomycin. Three technical 

replicates were performed per sample. After 72 (shRNA-treated cells) or 96 (siRNA-treated 

cells) hours in culture, 600μl medium was aspirated and frozen at -800C until analysis. Cells 

were then harvested, counted on a Vi-Cell XR counter, and incubated with 2ml ice-cold 6% 

perchloric acid for 10 min to extract their water-soluble intracellular metabolites (Madhu et al. 

2006). Samples were neutralised to pH 7.0 with 10M KOH, lyophilised and stored at -800C 

until analysis. For 1H NMR analysis, cell extracts were re-suspended in 1 ml D2O 4. 600μl of 

the sample (medium or cell extract) was taken in a 5mm Wilmad standard NMR tube (Sigma-

Aldrich) and 10μl 10mM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) was added as an 

external standard. Additionally, 10 μL 10mM TSP was added as external standard for the cell 

extract samples.  1H NMR spectroscopy data was acquired on a 600 MHz Avance NMR 

spectrometer (Bruker). A water pre-saturation sequence with 128 averages, repetition time of 

5 sec and 64K time domain data points was used. Pre-processing of the time domain data 

included exponential multiplication (line broadening 0.3 Hz), Fourier transformation, zero and 

first order phase correction. DSS was used for chemical shift calibration and metabolite 

quantification. Intracellular metabolite concentrations were estimated using the Chenomx 

Software package (Chenomx) and then normalized to the protein content in the cell sample, 

as determined using the Direct Detect infrared system. Metabolites in the medium were 

                                                
4 All processing and analysis after the extraction step performed by Dr. Madhu Basetti, CRUK CI NMR 
Core Facility 
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measured as differences in concentration between fresh fully-supplemented and used 

medium and normalised to the number of cells at 72 or 96 hours as appropriate. 

 

2.19.2. Quantitative lipid imaging after PYGL knockdown 

PYGL was knocked down using siRNA as detailed in section 2.20.1 in JHOC-5 and TOV21G 

cells, in 3 replicates per cell line. Coherent Anti-Stokes Raman Scattering (CARS) imaging 

was performed by the CI Microscopy Core Facility. Briefly, a Chameleon Ultra Ti-sapphire 

laser (Coherent) was used to produce a pump beam (l=835nm) with 100fs pulse duration and 

80MHz repetition rate. 3W of the output power was used to generate a Stokes beam using a 

Levante optical parametric oscillator (OPO) (APE GmbH). To match the frequency for the CH2 

lipid vibrational mode (2845 cm-1) the OPO was tuned to 1096nm whilst temporally overlaying 

the two beams using a delay stage. For spatial overlay and scanning, the galvanometer stage 

of a TriM Scope II (Lavision Biotec GmbH) was used. The overlayed beams were directed into 

a BX51 upright microscope (Olympus), from which the sample was excited and blue shifted 

CARS light detected (Steuwe et al. 2013). Highly CARS active voids were used as control 

samples for optimised CARS resonance. The laser power at the sample was 30 mW. Cells 

were washed with PBS, fixed in cold 4% PFA in PBS for 15 minutes, washed three times with 

PBS and kept in PBS at 4oC until CARS images were taken. Images were acquired randomly 

from 10 individual locations within the sample for each time point using a pixel dwell time of 

30μs, a scanning area of 75μm x 75μm and a pixel resolution of 500 x 500. The lipid droplets 

were observed as bright spots, which were quantified using an in-house code written in 

MATLAB (Mathworks); shot noise occurring in the images was smoothed out using average 

filtering and the number of pixels with intensities exceeding a threshold defined by the cellular 

CARS background (the dispersed CARS signal from the cells) were counted as previously 

described (Steuwe et al. 2013). The lipid area in pixels was measured in each image from the 

total area of cells. Lipid droplet content of non-target and PYGL siRNA treated cells were then 

compared using the paired samples t-test. 

 

2.20. In vitro gene knockdown and knockout 

2.20.1. siRNA-mediated knockdown 

siRNA technology was used to knock-down transcripts of interest in cell lines (see section 2.9) 

and dissociated mouse uterine cells (see sections 2.5.5 and 2.6). Briefly, siRNA was 

resuspended in siRNA buffer (Thermo Scientific) to a final concentration of 20μM. For 

transfection in 96-well plates, 0.125μl siRNA and 0.2μl DharmaFECT DF1 transfection reagent 
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(Thermo Scientific) were added to 19.675μl Opti-MEM medium (Gibco) and plated together 

with the appropriate number of cells suspended in 80μl medium, thus giving a final siRNA 

concentration of 25nM.  siGENOME non targeting siRNA Pool 2 (Thermo Scientific) was used 

as a non-targeting control in all experiments. For experiments in 6-well plates, a scaling factor 

of 25 was used. For combined ARID1A and ARID1B knock-down experiments, each siRNA 

was used at a final concentration of 12.5nM for a total siRNA concentration in the experimental 

wells of 25nM. A list of targets and siRNAs used is provided in Table 2.8. Generally, ON-

TARGETplus SMARTpool (Thermo Scientific), which consists of a pool of 4 different siRNAs 

was the preferred reagent; when one targeting the gene of interest was not available, Silencer 

Select (Life Technologies) products, consisting of a single siRNA each, were used instead. 

Following knockdown, samples were collected at 72 or 96 hours, unless otherwise specified, 

to ascertain the efficiency of knockdown by qRT-PCR (see 2.16) or immunoblots (see 2.14). 

Details of the assays performed after knockdown are provided in the relevant sections in this 

chapter. 

 

2.20.2. Lentiviral-mediated shRNA HNF1B knockdown 

TRC2-pLKO vectors (Sigma-Aldrich) carrying shRNA targeting HNF1B were packaged into 

lentiviruses by Ms. Mareike Wiedmann, Brenton Laboratory, CRUK CI.  The following 

MISSION shRNA plasmids were used: TRCN0000255577 (referred to as “577”), 

TRCN0000255578 (“578”), TRCN0000255582 (“582”) and TRCN0000255583 (“583”). 

SHC202 (“202”) was used as a non-targeting control and SHC003, expressing TurboGFP, as 

a positive control for transfection efficiency (all from Sigma-Aldrich). Briefly, plasmids were 

expressed in E. coli, their identity confirmed by restriction digestion with PvuII and then 

packaged into lentiviruses in HEK293 cells using a 3rd generation packaging system 

(pMDL/pRRE, pRSV-REV, pVSG-V). The calculated viral titre was 2.3x108 CFU/ml. JHOC-5 

and TOV21G cells were infected at Multiplicity of Infection (MOI) 1.0 and underwent selection 

Table 2.8. List of siRNA products used 

Target Species Product Supplier 

ARID1A Human ON-TARGETplus SMARTpool Thermo Scientific 
 Mouse ON-TARGETplus SMARTpool Thermo Scientific 
ARID1B Human ON-TARGETplus SMARTpool Thermo Scientific 
 Mouse Silencer Select Life Technologies 
GYS1 Human ON-TARGETplus SMARTpool Thermo Scientific 
HIF1A Human ON-TARGETplus SMARTpool Thermo Scientific 
HNF1B Human Silencer Select Life Technologies 
IL6R Human ON-TARGETplus SMARTpool Thermo Scientific 
PYGL Human Silencer Select Life Technologies 
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with 1μg/ml puromycin. Knockdown efficiency was determined by immonoblotting (see 2.14) 

after 7 days puromycin selection. Compared to cells transfected with clone 202, HNF1B levels 

were 2%, 92%, 18% and 0% using clones 577, 578, 582 and 583 in JHOC-5 cells; the 

corresponding values in TOV21G cells were 37%, 13%, 3% and 10% respectively. Details of 

the assays performed after knockdown are provided in the relevant sections in this chapter. 

 

2.20.3. Lentiviral-mediated shRNA Arid1a knockdown 

Lentiviruses carrying shRNA targeting Arid1a were prepared by Dr. Lorraine Levy, Brenton 

Laboratory, as described above (section 2.20.2). The Arid1a-targeting vectors used were: 

TRCN0000238303 (“303”), TRCN0000238304 (“304”) and TRCN0000238305 (“305”). 

SHC202 and SHC003 were used as non-targeting and transfection efficiency controls 

respectively. The calculated viral titre was 5.8x108 CFU/ml and 5μl virus was used to knock 

down Arid1a expression in 2.5x104 E21 MEFs in 12-well plates for a sulforhodamine B (SRB) 

proliferation assay (see section 2.23.4).  

 

2.21. ARID1A overexpression in SKOV3 cells 

ARID1A was overexpressed in SKOV3 cells using a 129 kb BAC vector (Cat No: RP24-

339K10, Life Technologies) and Lipofectamine 2000 transfection reagent (Life Technologies) 

according to the manufacturer’s instructions by Dr. Jian Xian, Brenton Laboratory. These cells 

were used in proliferation assays as detailed in section 2.23.4. 

 

2.22. Glycogen metabolism inhibition 

Glycogen phosphorylase was inhibited in PEO1, TOV21G, SKOV3, JHOC-5, JHOC-7,   

JHOC-9 and OVISE cells with R3401 (Sigma-Aldrich) at concentrations up to 150μM and sc-

203975 (Santa Cruz) at concentrations up to 10μM with DMSO at the appropriate 

concentrations used as vehicle control. Additionally, PEO1, JHOC-5, TOV21G and SKOV3 

cells were treated with 0.78-800μM 1,4-Dideoxy-1,4-imino-D-arabinitol hydrochloride (DAB – 

Sigma-Aldrich) or 0.004-5mM Metformin (Abcam) dissolved in water.  Proliferation and 

glycogen assays were performed as detailed in sections 2.23.4 and 2.24.1. 
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2.23. Proliferation assays 

2.23.1. Bromodeoxyuridine (BrdU) assay 

The BrdU Cell Proliferation Assay Kit (Cell Signaling Technology) was used, following the 

manufacturer’s instructions, to assess proliferation in dissociated mouse uterus stromal cells 

after Arid1a knockdown. Stromal cells from five 7-11-week-old CD-1 mice were prepared as 

described in section 2.5.5. From each mouse, stromal cells derived from a whole uterus (115-

185x103 in 5 different experiments) were divided equally into wells of a 96-well plate. After 2 

days in culture, Arid1a or non-target siRNA was added (see 2.20.1) followed by hormonal 

manipulation 24 hours later as described in section 2.5.5. The final conditions, therefore were 

Arid1a or non-target siRNA treatment with no hormones, 10nM E2 only, 1μM P4 only or both 

hormones together; 3 technical replicates were performed for each condition. After a further 

48 hours, BrdU was added according the Assay Kit instructions and BrdU incorporation was 

measured using a PHERAstar FS plate reader (BMG Labtech) 24 hours later. BrdU 

incorporation was compared between Arid1a knockdown and controls using the t-test, and 

among the different hormonal manipulations using ANOVA. In a further experiment, stromal 

cells from a single CD-1 mouse, treated as above, were incubated with BrdU for 15, 30, 60, 

120 and 240 min to establish a time profile for BrdU incorporation.  

 

2.23.2. Incucyte assay 

The Incucyte kinetic imaging system (Essen BioScience) was used to assess proliferation 

after Arid1a knockdown using siRNA (see 2.20.1) in MEFs. Four MEF cell lines (E7, E8, E10 

and E11) were used with 3 flask replicates per cell line. 8,000 cells were plated in each well 

of a 96-well plate together with Arid1a or non-targeting siRNA and images of the wells were 

taken every 3 hours for 7 days. Changes in proliferation, demonstrated by differences in the 

surface area of each well covered by cells, were analysed using the Incucyte software. An 

identical experiment was performed using 4 flask replicates of the RMG-I cell line. Two-way 

ANOVA with post-hoc t-tests were used to compare confluency. 

 

2.23.3. Proliferation assessment using Vi-Cell 

ES-2 (2x106), SKOV3 (1x106) and RMG-II (1x106) cells were cultured under normoxic (21% 

O2) and hypoxic (1% O2) conditions for 96 hours, at which point viable cell numbers were 

counted again using Vi-CELL XR. The experiment was repeated 4-6 times for each cell line 

and differences in proliferation were tested using a paired samples t-test. 
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2.23.4. Sulforhodamine B (SRB) assay 

The SRB assay was the main assay used to assess proliferation in cell lines. The assay 

protocol has been previously published (Vichai & Kirtikara 2006). The cell lines listed in Table 

2.2, IOSE4, IOSE4+HNF1B cells as well as MEFs were used, and changes in proliferation 

were assessed after manipulations such as culture under hypoxia and glucose deprivation 

(see section 2.9.1), siRNA (2.20.1) or shRNA (2.20.2) knockdown or treatment with PYGL 

inhibitors (2.22). In most experiments, 1,000 cells were plated per well in a 96-well plate, 

manipulated using one of the techniques above and allowed to proliferate for up to 168 hours. 

Plates were fixed at 168 hours and, sometimes, at intermediate time points, and after staining 

with SRB, optical density (OD) was determined at 510nm using the PHERAstar FS plate 

reader. Instances where the conditions differed from the above (e.g. different time points or 

seeding cell numbers) are highlighted in the relevant results sections where appropriate. The 

statistical significance of differences in proliferation was tested using the appropriate paired or 

unpaired t-tests. 

 

2.23.5. Colony Forming Assay (CFA) 

CFA was performed to further examine the effects of PYGL knockdown on proliferation. 

Briefly, siRNA was used to knock down PYGL in PEO1, SKOV3, JHOC-5 and TOV21G cells 

as described above (see 2.20.1). 72 hours after knockdown, the cells were plated in limiting 

dilutions (25,000→12,500→6,250→3,125→1,565→782) in 6-well plates and cultured under 

normal tissue culture conditions, hypoxia or glucose deprivation (see 2.9.1) for 14 days. The 

colonies were then fixed with 3.3% TCA and photographed on a GelCount scanner (Oxford 

Optronix). Quantification of proliferation was then performed using the SRB assay. 

 

2.24. Glycogen assays 

2.24.1. Colorimetric glycogen assay 

A Glycogen Assay Kit (Abcam) which employs glucoamylase to break down glycogen into 

glucose with subsequent oxidation of the latter to produce a product that reacts with OxiRed 

probes to produce colour was used to measure the glycogen content of cell lines under 

experimental manipulations such as culture under hypoxia, glucose deprivation, PYGL, GYS1, 

HIF1a, IL6R siRNA knockdown or treatment with PYGL inhibitors. PEO1, TOV21G, SKOV3, 

JHOC-5, JHOC-7, JHOC-9, OVISE, IOSE4 and IOSE4+HNF1B cells were cultured under 

normal conditions, hypoxia or glucose deprivation (see 2.9.1) and glycogen content per 1x105 
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cells was assessed at various time points following the kit’s instructions. In experiments 

involving siRNA knockdown, due to the limited number of cells available, the assay was 

performed using all available cells and then normalised to the cell count as determined by 

using the Countess® Cell Counter (Life Technologies). In all assays, wells containing buffer 

only served as negative controls and wells with sample but no hydrolysis enzymes were used 

to correct for background glucose content. 

 

2.24.2. PAS and PAS-Diastase staining    

PAS and PAS-Diastase staining was performed by the CI Histopathology Core Facility to 

assess glycogen content under normal culture conditions in PEO1, SKOV3, TOV21G and 

JHOC-5 cell pellets, following fixation with 10% NBF and embedding in paraffin. It was also 

performed on TOV21G, SKOV3 and JHOC-5 cell pellets 96 hours after PYGL siRNA 

knockdown (see 2.20.1) under normal culture conditions. 

 

2.25. Interleukin 6 (IL6) assay 

IL6 secretion in culture medium was quantified using the Human IL-6 ELISA Ready-SET-Go!® 

kit (Affymetrix eBioscience). Briefly, 8x105 PEO1, TOV21G, SKOV3, JHOC-5, JHOC-7, 

JHOC-9 and OVISE cells were plated in 60mm dishes in 4ml medium. After 72 hours, the cells 

were counted, the medium collected and IL6 content quantified following the kit instructions. 

Results were normalised to cell number and medium volume. 

 

2.26. Reactive Oxygen Species (ROS) assay 

The generation of ROS after PYGL siRNA knockdown was assayed with the DCFDA Cellular 

Reactive Oxygen Species Detection Assay Kit (Abcam) according to the manufacturer’s 

instructions. Briefly, 72 hours after non-target or PYGL siRNA treatment (see 2.20.1 for 

details), 25x103 JHOC-5 and TOV21G cells were plated per well in dark-sided, clear-bottomed 

96-well plates (Corning) and allowed to adhere overnight. The following morning, the cells 

were fixed using 25μM DCFDA for 45 min at 370C and fluorescence measured with a 

PHERAstar FS plate reader at Ex485/Em520nm. Each experiment was repeated 4 times.  
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2.27. Terminal deoxynucleotidyl transferase dUTP nick end labelling 

(TUNEL) assay  

The TUNEL assay was performed by the CI Histopathology Core Facility to assess apoptosis 

96 hours after PYGL siRNA knockdown (see 2.20.1) in TOV21G, SKOV3 and JHOC-5 cells. 

The DeadEnd Colorimetric TUNEL System (Promega) was used according to the 

manufacturer’s instructions but with the biotinylated nucleotide mix used at 1:1,000 dilution 

and the wash steps adapted to the requirements of the Bond automated systems. Appropriate 

positive and negative controls were used with each run following the falicity’s SOPs.  

 

2.28. Senescence assay 

The Senescence Cells Histochemical Staining Kit (Sigma-Aldrich) was used to assess 

senescence after PYGL siRNA knockdown in PEO1, TOV21G, SKOV3 and JHOC-5 cells (see 

2.20.1). 5x104 cells were plated in each well of 12-well plates, siRNA was added and the cells 

left in culture for 168 hours before being fixed and stained as per the kit’s instructions. The 

cells were imaged 3 and 24 hours after X-gal staining. 

 

2.29. Cell cycle phase analysis 

The cell cycle phase distribution after PYGL siRNA knockdown (see 2.20.1) was assessed. 

Briefly, 2.5x105 TOV21G, SKOV3 and JHOC-5 cells were plated in 6-well plates and PYGL or 

non-target siRNA added. After 72 hours, the medium was replaced by FBS-free medium for 

24 hours to effect a G1 block. Following 24 hours of serum starvation, the medium was 

changed again to DMEM with 10% FBS and cells fixed using ice-cold 70% ethanol at 0, 4, 8 

and 24 hours. The pellets were then frozen at -200C until analysis. For analysis, the pellets 

were resuspended in 500μl PBS and 20μg/ml propidium iodide added. The samples were run 

on a FACSCalibur flow cytometer (BD Biosciences) and analysed using the FlowJo X software 

(Tree Star) with manual gating. There was no difference in the cell cycle phase distribution 

across the time points in each treatment condition, meaning that 24 hours of serum starvation 

failed to induce cell cycle arrest. Therefore the 4 time points were treated as flask replicates 

in the analysis. 
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2.30. Migration and invasion assays 

For the migration assay, 72 hours after non-target or HNF1B siRNA treatment, 1x104 JHOC-

5 and TOV21G cells, as well as untreated IOSE4 and IOSE4+HNF1B cells, were plated per 

well in ImageLock 96-well plates (Essen Bioscience) and allowed to proliferate until they were 

confluent. The plates were then scratched using a WoundMaker (Essen Bioscience) and the 

plates were imaged every 3 hours on an Incucyte kinetic imaging system. Wound width was 

analysed using the device’s software. The assay was performed using 4 biological replicates 

per condition run in technical triplicates. 

 

Two different invasion assays were performed. In the first, 3x104 JHOC-5 and TOV21G cells 

treated as above were suspended in 300μl medium without FBS and placed in Matrigel-coated 

8μm invasion chambers (BD Biosciences) in 24-well plates. 800μl fully supplemented medium 

on the bottom of the wells was used as chemo-attractant. After 24 hours, cells adherent to the 

insert face of the membrane were removed using a cotton bud and the membranes were fixed 

in 3.3% TCA and stained with SRB. Invading cells were then counted manually on a 

microscope. The assay was performed using 4 biological replicates per cell line. The second 

assay used was the CultreCoat® 96-Well BME-Coated Cell Invasion Optimization Assay 

(Trevigen) following the manufacturer’s instructions. Briefly, 72 hours after siRNA-mediated 

HNF1B-knockdown, 25x103 JHOC-5 and TOV21G cells in a final volume of 50μl serum-free 

medium were transferred to invasion chambers with high, medium, low or no basement 

membrane extract (BME) coating. 150μl fully supplemented medium was added to the bottom 

chambers. After 24 hours, cells still in the top chambers were washed away and the chambers 

transferred to an opaque 96-well receiving plate. Calcein AM/Dissociation solution was added 

to remove invading cells from the membrane and cells were quantified on a PHERAstar FS 

plate reader at Ex485/Em520nm. The assay was performed using 4 biological replicates run 

in technical triplicates. 

 

2.31. Proteomics analysis  

Proteomics analysis was undertaken in JHOC-5 and TOV21G cells following siRNA PYGL 

knockdown. 1x106 cells were plated in 60mm tissue culture plates and treated with non-target 

or PYGL siRNA in 3 independent experiments. After 72 hours,cells were lysed with 250μl Urea 

buffer (9M urea + 20mM HEPES pH8.0) and flash-frozen in a dry ice / ethanol bath. Samples 

were shipped to Prof. Moran’s Laboratory (Hospital for Sick Children, Toronto, ON, Canada) 

where they were processed and analysed as previously described (W. Zhang et al. 2014). 
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Briefly, the samples were treated with DTT and iodoacetamide, followed by trypsin digestion 

and purified in a Pierce C18 spin column (Thermo Scientific). Eluted peptides were then run 

on an Orbitrap Elite Mass Spectrometer (Thermo Fisher Scientific). Data were analysed with 

MaxQuant (www.maxquant.org) and Perseus software (www.perseus-framework.org) and 

FDR-corrected differentially expressed protein lists created. I then performed further 

downstream analysis using the Scaffold (www.proteomesoftware.com/products/scaffold/) and 

MetaCore tools.    

 

2.32. Statistical analysis 

Graphpad Prism 6.0 (GraphPad) and Excel 2010 (Microsoft) were used to summarise data 

and perform statistical analysis. Descriptive statistics were used to summarise data and 

proportions were compared using the χ2 or Fisher’s exact test as appropriate. Paired or 

unpaired t-tests and ANOVA were used to compare outcomes measured on continuous 

scales. The bioinformatics analysis was performed by the CI Bioinformatics Core Facility using 

Bioconductor packages on R. In all graphs, “*” denotes 0.01<p≤0.05, “**” denotes 

0.001<p≤0.01 and “***” p≤0.0001. 
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3. MOUSE UTERUS ASSAY DEVELOPMENT 

3.1. Introduction 

Epithelial-stromal interactions are important for oestrogen-mediated responses in the normal 

uterus with oestrogen-induced epithelial proliferation being controlled by stromal ER through 

paracrine mechanisms (Cooke et al. 1997; Cunha et al. 2004). Establishing an in vitro uterine 

fragment culture system that maintains normal hormonal regulation and allows genetic 

manipulation would be extremely useful for the study of early events in the pathogenesis of 

potentially uterus-originating cancers. Insights gained from such a system could then be 

applied in vivo in order to eventually create a GEMM of OCCC. In this initial part of my project, 

I attempted to set up such a system and I also selected and validated the reagents and 

techniques used in assessing Arid1a-driven transcriptional programmes in the uterus. 

 

3.2. Cultured murine uterine fragments show poor viability 

Four conceptually related techniques were used to establish in vitro cultures of uterine 

fragments: the “coin”, “CellMatrix”, “Surgispon” and “Vibratome” methods (Fig. 3.1). I first 

attempted to replicate the “coin” culture system described by Newbold et al (1994) that shows 

epithelial proliferation in the cultured uterine fragments in response to DES. Multiple fragments 

were cultured from each of 5 mice using DMEM/F12, BME or FAD medium with or without 

Matrigel coating of the culture dishes to provide support and DES, as detailed in Table 3.1. 

After 5-6 days in culture, the fragments were fixed and stained with H&E to assess viability. In 

all cases there was extensive necrosis with only a rim of viable tissue in the periphery and 

scattered cells in the middle of the “coin” (Fig. 3.2B-D, compare with the immediately fixed, 

non-cultured uterine section in Fig. 3.2A). 

 

Poor nutrient and oxygen diffusion to the centre of the fragment could be an explanation for 

the results observed above. Therefore, I subsequently used the “CellMatrix” intestinal 

organoid culture method reported by Ootani et al (2009). Using this method, medium diffuses 

through the collagen layer from below, allowing an air-tissue interface, and consequently 

oxygenation, to be maintained (Fig. 3.1). Multiple fragments were cultured from each of 16 

mice using DMEM, RPMI 1640, BME or FAD media with or without DES (Table 3.1). After 6 

to 15 days in culture, the fragments were fixed and stained with H&E to assess viability. Again, 



58 

 

there was extensive necrosis with loss of tissue architecture (Fig. 3.2E-F, J), although, for 

some fragments, viability appeared better compared with the “coin” method. 

 

A recent publication reported on the ability to culture ex vivo prostatic cancer tissue using a 

pre-soaked gelatin sponge to provide tissue support (Centenera et al. 2012). I therefore tried 

this method, using “Surgispon” sponges, to culture uterine fragments from a single mouse in 

RPMI 1640 medium (Table 3.1). After 6 days in culture the sponge had started to disintegrate 

and viability remained poor (Fig. 3.2G).  

 

To address the concern that excessive thickness of the manually cut fragments contributed to 

their poor viability, I used a Leica Vibratome to cut thick (100-200μm) sections from just 

harvested, agarose-embedded uteruses. Sections from 4 mice were subsequently cultured 

using DMEM, DMEM/F12, RPMI and McCoy’s media for 6-8 days (Table 3.1). H&E staining 

revealed that viability remained poor with loss of tissue architecture (Fig. 3.2H-I), an 

 

Figure 3.1. Murine uterine fragment culture techniques 
Schematic diagram illustrating the four uterine fragment culture techniques. The mouse uterus picture 
is from Zhang et al (2008). 
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observation supported by IHC for ARID1A that showed only few scattered positive cells (data 

not shown). 

Table 3.1. Culture of murine uterine fragments 

Experiment  Strain Age 
(weeks) 

Fragment 
preparation 
technique 

Culture Conditions Time in 
culture 
(days) 

01 B6 8 Coin DMEM/F12 +/- DES 5 
02 B6 8 Coin DMEM/F12 +/- DES  5 

    Matrigel + 
DMEM/F12 +/- DES 

5 

03 B6 12 Coin BME 5 
    FAD 5 

04 CD-1 12 Coin BME 5 
    FAD 5 

05 CD-1 3 Coin BME 6 
    FAD 6 

06 CD-1  
(2 mice) 

3 CellMatrix DMEM 12 

    BME 12 
    RPMI 1640 12 

07  CD-1  
(3 mice) 

3 CellMatrix BME +/- DES 9 

    RPMI 1640 +/- DES 9 
    DMEM +/- DES 9 

08 B6  
(4 mice) 

3 CellMatrix BME +/- DES 7, 15 

    RPMI +/- DES 7, 15 
09 B6 8 CellMatrix BME +/- DES 8 
10 B6 8 CellMatrix RPMI 1640 6 
11 CD-1 8 CellMatrix RPMI 1640 6 
12 B6 8 CellMatrix RPMI 1640 8 
13 CD-1 8 CellMatrix RPMI 1640 8 
14 CD-1  

(2 mice) 
3 CellMatrix BME 6 

    FAD 6 
15 CD-1 11 Surgispon RPMI 1640 6 
16 CD-1 11 Vibratome RPMI 1640 7 
17 CD-1 8 Vibratome DMEM 6 

    DMEM/F12 6 
    McCoy’s 6 
    RPMI 1640 6 

18 CD-1 8 Vibratome DMEM 7 
19 CD-1 15 Vibratome DMEM 7 

B6: C57BL/6; Culture media composition detailed in section 2.5. Multiple fragments were cut from 
each uterine horn. 
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Taking all the results together, there were no observed differences in viability according to the 

mouse strain (CD-1 or B6), mouse age (range 3-15 weeks), use of Matrigel or CellMatrix 

support, type of medium used or the addition of DES. Because of the poor viability exhibited 

in these experiments, further development of the method to in vitro assay the effects of Arid1a 

knockdown was abandoned. This decision was informed by a further experiment, where 

treatment of 150μm uterine sections from a homozygote Arid1afl/fl mouse, prepared with the 

Vibratome method, in wells of a 96-well plate with 0.5x106-1x108 PFUs of Ad-Cre-IRES-GFP 

adenovirus showed only patchy, peripheral transfection after 24 hours incubation (Fig. 3.2K). 

This suggests that even if the fragment viability problems were overcome, in vitro Arid1a 

knockout was likely to be technically and financially unsustainable and it would be preferable 

to ablate Arid1a in vivo.    

 

3.3. Culture of dissociated murine uterine cells 

3.3.1. Non-adjacent co-culture of dissociated uterine cells does not replicate normal 

hormonal regulation 

In view of the poor viability of uterine fragments in culture, I investigated alternative in vitro 

assays that replicate the in vivo epithelial-stromal interactions. Relevant to this, a  co-culture 

method of dissociated uterine cells that utilises tissues from pseudo-pregnant CD-1 mice was 

recently published (Chung & Das 2011). This method reportedly maintains the normal 

epithelial-stromal interactions as evidenced by proliferation, detected by BrdU incorporation, 

of the epithelial cells in response to E2 and of the stromal cells in response to combined E2 

and P4 treatment (Chung & Das 2011). Unfortunately, the publication did not contain the 

dissociation protocol and it referenced an irrelevant previous publication in its methods 

section. A version of the protocol was obtained after contacting the authors but it contained 

Figure 3.2. Culture of murine uterine fragments 
A) Uterine section from an 8-week-old B6 mouse (not cultured). B-I) Murine uterine fragments cultured 
as indicated (H&E stains): B) 3-week-old CD-1, prepared with the “coin” method, in culture for 6 days 
with BME medium. C)  12-week-old B6, prepared with the “coin” method, in culture for 5 days with BME 
medium. D)  12-week-old CD-1, prepared with the “coin” method, in culture for 5 days with FAD 
medium. E)  8-week-old B6, prepared with the “CellMatrix” method, in culture for 8 days with RPMI 
1640 medium. F) 8-week-old CD-1, prepared with the “CellMatrix” method, in culture for 8 days with 
RPMI 1640 medium. G) 11-week-old CD-1, prepared with the “Surgispon” method, in culture for 6 days 
with RPMI 1640 medium. H) 8-week-old CD-1, prepared with the “Vibratome” method, in culture for 7 
days with DMEM medium. I) 8-week-old CD-1, prepared with the “Vibratome” method, in culture for 6 
days with RPMI 1640 medium. J) LIVE/DEAD Viability Kit staining showing viable (green) and dead 
(red) cells in tissue fragments from an 8-week-old B6, prepared with the “CellMatrix” method, in culture 
for 8 days with BME medium.  K) Photomicrograph of a 150μm section from an Arid1afl/fl mouse, 
prepared with the “Vibratome” method and cultured for 24 hours in the presence of 108 PFUs of Ad-
Cre-IRES-GFP adenovirus (bar=300μm). 
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fundamental errors, as detailed in section 2.5.5. Eventually, the protocol was optimised and 

reliable separation of cytokeratin-positive, desmin-negative epithelial (Fig. 3.3A-C) and 

cytokeratin-negative, desmin-positive stromal cells (Fig. 3.3D-F) was achieved. SKOV3 cells 

were, as expected, cytokeratin-positive and desmin-negative (Fig. 3.3G-I), showing the 

specificity of the immunofluorescence staining protocol, which was further supported by the 

absence of fluorescence when primary antibodies were omitted in control slides (data not 

shown). Additionally, SKOV3 cells showed extensive BrdU incorporation (Fig. 3.3J), 

Figure 3.3. Dissociation of epithelial and stromal uterine cells 
A-C) Epithelial cells in cell culture inserts demonstrating positive DAPI (A) and pancytokeratin (C) and 
negative desmin (B) staining. D-F) Stromal cells cultured on coverslips demonstrating positive DAPI 
(D) and desmin (E) and negative pancytokeratin (F) staining. G-J) SKOV3 cells demonstrating positive 
DAPI (G) and pancytokeratin (I), negative desmin (H) staining and BrdU incorporation (J). The 
increased background in (A) is due to DAPI-induced fluorescence in the cell culture insert membrane 
(bar=100μm). 
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confirming the successful optimisation of the BrdU staining protocol. However, in 3 separate 

experiments, no BrdU incorporation was seen in either the epithelial or the stromal cells, 

irrespective of hormonal treatment (Fig. 3.4). Thus, I could not replicate the original publication 

(Chung & Das 2011). Whether this is because of subtle differences in the dissociation protocol 

is presently uncertain. Therefore, the co-culture system could not be used as a substitute for 

uterine fragments in order to in vitro ablate Arid1a while maintaining hormonal regulation.  

 

3.3.2. Culture of dissociated uterine epithelial and stromal cells shows poor cell yields 

Even without replicating the epithelial-stromal interactions, primary cultures of dissociated 

epithelial and stromal uterine cells could still be a valuable experimental resource. Therefore, 

I initially dissociated harvested uteri using collagenase I (Ouellette et al. 1999). Cells from one 

uterus were split into 9 wells of a 12-well plate and cultured in DMEM/F12 medium, with or 

without Matrigel and DES. This protocol showed low cell yields with no evident proliferation as 

 

                 

Figure 3.4. BrdU incorporation in co-cultured dissociated uterine 
cells 

A-D) Composite images showing no BrdU incorporation in epithelial cells 
under baseline conditions (A), treatment with 10nM E2 (B), 1μM P4 (C) or 
both E2 and P4 (D).  E-H) Composite images showing no BrdU incorporation 
in stromal cells under baseline conditions (E), treatment with 10nM E2 (F), 
1μM P4 (G) or both E2 and P4 (H). I) Composite image showing BrdU 
incorporation in SKOV3 cells. Note that the HCl treatment necessary for 
BrdU immunofluorescent staining interferes with, resulting in attenuation of, 
the pancytokeratin and particularly the desmin stains (bar=100μm). 
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cell numbers did not increase between 10 and 32 days in culture. At all timepoints, total live 

cell counts were between 500 and 15000 cells, with more live cells in Matrigel-coated wells 

but overall viability being poor at 25-72% (mean 55%). Next, I tried a dispase-collagenase-

trypsin method, as reported by Campbell et al (2006). Cells were cultured in DMEM/F12, 

McCoy’s or BME media, with or without Matrigel and DES. Despite plating 37500 epithelial 

and 67500 stromal cells per well, less than 5000 cells remained viable after 7 days in culture 

as assayed using the Vi-CELL counter. Viability was not improved when, in a separate 

experiment, irradiated 3T3 fibroblasts were used to provide stromal support (data not shown).   

 

3.4. Assays of gene expression in the mouse uterus 

3.4.1. RNA quantification and quality assessment 

Uterine RNA was extracted from 24 estrus-timed mice and quantified using the Nanodrop, 

Qubit and Bioanalyzer platforms (Table 3.2). There was excellent correlation between the 

Nanodrop and Qubit measurements (r=0.85, p<0.0001) but not between the Nanodrop and 

the Bioanalyser (r=0.36, p=0.08) or the Bioanalyzer and Qubit (r=0.35, p=0.1). Repeating the 

Nanodrop quantification on a different day showed excellent test-retest correlation (r=0.97, 

p<0.0001), although there was some variability in the absolute recorded concentrations (mean 

difference between samples 14.5%). As is evident from Table 3.2, despite the excellent 

correlation between Nanodrop and Qubit, there were large differences in the absolute RNA 

concentration as assayed with these two platforms. Mean calculated RNA concentration was 

358ng/μl using Nanodrop and 1684ng/μl using Qubit (p<0.0001). As the ultimate purpose of 

the assay was to study changes in Arid1a expression across samples, accurate relative 

quantification is more important, in order to ensure similar input RNA quantities for all samples 

in the qRT-PCR reactions. Therefore, for most experiments, I elected to proceed with the more 

conservative Nanodrop quantification, using the mean of 2 measurements on different days. 

However, Qubit was used for quantification of samples submitted for RNA-seq to conform to 

institutional SOPs. 

 

3.4.2. Validation of qRT-PCR assay steps for mouse uterus samples 

Formal validation of all steps in RNA expression quantification was undertaken for mouse 

uterus samples in preparation for the estrus-timed mouse series experiment (see section 4.2).  

Using RH, compared to oligo-dTs, reverse transcription for Arid1a and Arid1b was more 

efficient with lower Ct at qRT-PCR (e.g. for 100ng input RNA mean Arid1a Ct with RH was 

21.8 vs. 26.9 with oligo-dTs, n=6). Also, using RH but not oligo-dTs, PCR efficiencies were 
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within 10% of those of the putative HKGs (Table 3.3) and the slopes of ΔCt vs. log input were 

acceptable (all <0.1), thus fulfilling the manufacturer-suggested constraints. Three different 

Arid1a expression assays were tested. Mm00473838_m1 resulted in very poor amplification 

with Ct values >32 and was discarded. Both Mm00473848_m1 and Mm00473841_m1 were 

acceptable with similar PCR efficiencies (Table 3.3) and resulting Ct values. 

Mm00473841_m1 was used in all subsequent experiments. 

 

There is a paucity of publications regarding appropriate HKGs for qRT-PCR normalisation in 

the mouse uterus, although Gapdh is most commonly used for this purpose. After a literature 

review encompassing studies in mice (Schroder et al. 2009), humans (Vestergaard et al. 

2011), horses (Kayis et al. 2011) and pregnant pigs (S. Wang et al. 2011), 4 putative HKGs 

Table 3.2. RNA quantification using Nanodrop, Bioanalyzer and Qubit 

 
Mouse ID Nanodrop 1 

(ng/μl) 
Nanodrop 2 

(ng/μl) 
Qubit (ng/μl) Bioanalyzer 

(ng/μl) 

101 91 187 494 366 
102 469 448 577 720 
103 360 300 492 504 
104 328 282 741 528 
105 294 260 757 366 
106 101 206 801 312 
107 457 459 2984 714 
108 333 207 1212 348 
109 121 120 532 186 
110 227 259 1484 546 
111 430 414 2672 690 
112 456 448 2832 840 
113 548 537 2920 762 
114 844 771 4224 786 
115 302 293 1194 342 
116 599 601 3256 672 
117 315 309 1530 2178 
118 219 219 775 240 
119 455 458 2720 534 
120 104 99 446 132 
121 213 209 573 312 
122 553 561 2992 570 
123 346 361 1582 414 
124 424 413 2616 486 

Nanodrop 1 and 2 refer to 2 measurements, performed on different days. The Nanodrop 1 value was 
used for the calculation of correlation co-efficient with Qubit and Bioanalyzer as described in the text. 
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were selected for further evaluation: Gapdh, Rpl32, Hprt1 and Hmbs (see Table 2.7 for assay 

details). The stability of gene expression across the estrus cycle was assessed in 24 estrus-

timed uterus samples (diestrus n=9; proestrus n=9; estrus n=4; metestrus n=2) with 

acceptable RNA quality (mean RIN 8.1, range 5.5-9.9) using the NormFinder (Andersen et al. 

2004) and BestKeeper (Pfaffl et al. 2004) algorithms. Using BestKeeper (Pfaffl et al. 2004), Ct 

values for suitable HKGs must exhibit <3-fold difference across all samples and have SD<1. 

In a preliminary experiment, Hmbs showed high SD (2.5) and was not tested further. Testing 

across the 24 samples, the Ct SDs for Gapdh, Rpl32 and Hprt1 were 0.92, 1.18 and 0.8 

respectively. All 3 putative HKGs exhibited <3-fold difference across the samples (Gapdh 2.15, 

Rpl32 1.97 and Hprt 1.86). An advantage of the NormFinder algorithm (Andersen et al. 2004) 

is that it takes the grouping of the samples into account and reports a stability value. Using 

NormFinder, Gapdh and Hprt1 showed the most stable expression across the 4 phases of the 

cycle (stability value for the combination 0.228) and Gapdh was the single most stable gene. 

Taking both algorithm results in consideration, the geometric mean of Gapdh and Hprt1 was 

used for normalisation when performing qRT-PCR in mouse uterus samples. 

 

3.5. Discussion 

In this section, I have described in detail my attempts to establish an in vitro uterine organoid 

culture system. Despite testing multiple protocols, two of which specifically were developed 

for mouse uterus (Chung & Das 2011; Newbold et al. 1994), I was not successful. 

Irreproducibility of research, even when carefully peer-reviewed and published in high-impact 

journals, is a well-publicised phenomenon  (Begley & Ellis 2012). It is exacerbated by the 

cursory attention paid to the Methods section (and often its relegation to online-only 

supplementary information) in many scientific papers, as exemplified by my experience with 

non-adjacent co-culture of dissociated uterine cells. Obviously, it raises concerns regarding 

the validity of any conclusions based on an experimental method that is only shown to work 

Table 3.3. PCR efficiency for TaqMan expression assays 
 

Expression assay Random Hexamers Oligo-dTs 

Gapdh 98.1% 100.4% 
Rpl32 89.7% 93.8% 
Hprt1 96.8% 97.3% 
Hmbs 87.2% 97.0% 
Arid1a Mm00473848_m1 90.5% 95.4% 
Arid1a Mm00473841_m1 91.3% 108.6% 
Arid1b 95.7% 97.0% 
Ltf 94.8% 96.9% 
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in the hands of its developers. However, the problem is more pervasive, as even well 

characterised and commercially available assays, such as those assaying ERCC1 expression 

to guide lung cancer treatment, can prove irreproducible and flawed (Friboulet et al. 2013; 

Schneider et al. 2014). 

 

Despite the above, the eventually optimized dissociation protocol based on the Chung and 

Das (2011) publication consistently produced adequate numbers of viable stromal cells, 

whose identity could by confirmed by immunofluorescence microscopy. Therefore, stromal 

cells prepared using this protocol were used to assess the effects of Arid1a knockdown on 

proliferation (see section 4.10.1). Additionally, I was able to develop a robust qRT-PCR 

protocol to assess gene expression in the mouse uterus. 
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4. FUNCTIONAL CHARACTERISATION OF ARID1A IN 

MOUSE AND HUMAN CELLS AND TISSUES 

4.1. Introduction 

Truncating or frameshift ARID1A mutations, generally leading to loss of protein expression, 

are the most frequently occurring mutational event in OCCC (Jones et al. 2010; Wiegand et 

al. 2010). Their frequency, as well as their presence in precursor endometriotic lesions 

(Wiegand et al. 2010), imply that disruption of ARID1A is an early event in OCCC 

pathogenesis. Functioning as part of the chromatin remodelling SWI/SNF complex, ARID1A 

exhibits diverse roles in differentiation and cell cycle control (Nagl et al. 2005; Nagl et al. 2006), 

maintenance of stem cell pluripotency (Gao et al. 2008; Krosl et al. 2010) and steroid hormone 

mediated transactivation (Inoue et al. 2002). Furthermore, different configurations of the 

SWI/SNF complex can occupy the same gene promoter region (Nagl et al. 2007) and are 

associated with either activation or repression of transcription in a context-specific manner 

(Euskirchen et al. 2011). 

 

From the above it follows that insights gained by perturbing ARID1A function in established 

OCCC cell lines, although useful, will be limited by the extensive genetic and epigenetic 

abnormalities already present in these lines. It cannot be assumed that the effects of ARID1A 

loss will be the same in situations where it is an early event and in cell lines that managed to 

achieve all the hallmarks of malignancy while maintaining normal ARID1A expression. 

Therefore, in order to understand how ARID1A mutations contribute to OCCC pathogenesis, 

functional characterisation of ARID1A in normal endometrial and ovarian tissues, as well as 

in endometriosis, is necessary.     

 

The first question I asked, pertinent in view of the high frequency of ARID1A mutations in 

uterus-derived cancers, was whether Arid1a itself is hormonally regulated in the mouse uterus. 

In view of ARID1A’s reported role in steroid hormone receptor transactivation and the 

importance of epithelial-stromal interactions in uterine regulation, I then tested the hypothesis 

that Arid1a expression would correlate with ER, PgR or Ki67 expression in the uterine 

epithelium and stroma. I subsequently performed a microarray study in order to answer the 

question of what pathways and processes are Arid1a-regulated in the mouse uterus in an 

agnostic manner. Having thus established a transcriptional profile in the uterus, I tested the 
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hypothesis that a core ARID1A-driven transcriptional programme, operative in normal tissues, 

exists by investigating transcription in MEFs and IOSE cells. Following that, I asked whether 

similar conclusions could be reached by studying ARID1A function in an established OCCC 

cell line. Next, I tested the hypothesis that ARID1A effects on proliferation are context specific 

by performing proliferation assays in a variety of non-malignant and cancerous cells, including 

in vivo ablation in the mouse uterine epithelium. Finally, I asked whether ARID1B loss affects 

proliferation in EOC cell lines and specifically whether its loss is detrimental in the presence 

of ARID1A mutations.      

 

4.2. Arid1a expression across the estrus cycle 

Cyclical changes in oestrogen and progesterone exposure globally affect gene transcription 

and protein expression in the mouse uterus (Bronson & Hamilton 1971; Tan et al. 2003). 

Changes in Arid1a expression during the estrus cycle would imply that it, too, is hormonally 

regulated. To study this, I created a cohort of 28 B6 mice in which the estrus cycle phase was 

determined with daily vaginal smears prior to uterine tissue collection (diestrus n=9; proestrus 

n=9, estrus n=7; metestrus n=3).  

    

4.2.1. Arid1a mRNA levels are stable across the estrus cycle 

24 estrus-timed uterine samples yielded RNA of acceptable quality (mean RIN 8.1, range 5.5-

9.9). Due to smaller sample numbers, estrus and metestrus were analysed together and, 

therefore, the analysis dataset comprised 9 diestrus, 9 proestrus and 6 estrus/metestrus 

samples. ΔCt values for Arid1a and Arid1b showed considerably less variability compared to 

the classical oestrogen-regulated gene Ltf, which encodes lactotransferrin (Fig. 4.1A). As a 

measure of dispersion, the SDs for Arid1a and Arid1b were statistically significantly smaller 

than that of Ltf (both p<0.0001 using the f-test), whereas there was no difference between 

Arid1a and Arid1b (p=0.76). Compared to diestrus, Arid1a mRNA levels were not significantly 

different in proestrus [mean (±S.E.) fold-change (FC) 0.96 (0.82-1.13)] or estrus/metestrus 

[mean (±S.E.) FC 0.88 (0.70-1.11)] (Fig. 4.1B). Similarly, Arid1b mRNA levels did not differ 

between diestrus and proestrus [mean (±S.E.) FC 0.85 (0.71-1.03)] or estrus/metestrus [mean 

(±S.E.) FC 0.94 (0.77-1.15)]. As expected (Newbold et al. 1992), Ltf mRNA levels increased 

in proestrus [mean (±S.E.) FC 1.99 (1.27-3.13)] and even more so in estrus/metestrus [mean 

(±S.E.) FC 19.76 (12.01-32.49)] (Fig. 4.1B).  
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4.2.2. Arid1a protein expression in the stroma is lower than the epithelium and shows 

some variability 

RNA expression levels reflect the contributions of both the epithelial (luminal and glandular) 

and stromal compartments whereas IHC allows protein expression to be separately assessed 

in each of these two compartments. Visual inspection of the slides (diestrus n=8; proestrus 

n=8; estrus n=6; metestrus n=3) showed ubiquitous epithelial Arid1a expression (Fig. 4.1C) 

whereas stromal expression varied with most samples showing ubiquitous strong expression 

(Fig. 4.1C left panel) but others having a mixture of positive and negative stromal cells (Fig 

4.1C right panel). On visual inspection, samples in the latter group seemed to be mainly in the 

estrus and metestrus phases of the cycle. In order to more robustly assay Arid1a protein 

expression, quantitative IHC was undertaken, separately for the epithelial and stromal 

compartments as detailed in section 2.15.1 (Fig. 4.1D). Quantitative IHC showed that 5 of 8 

samples with <70% Arid1a positive stromal cells were from estrus or metestrus compared with 

only 4 of 17 with ≥70% positive cells (Fig. 4.1F). However, this did not reach statistical 

significance (p=0.087). Across all samples, more epithelial (87.2%) than stromal cells (73.6%) 

were Arid1a positive (p<0.0001), a difference that was maintained when staining intensity was 

taken into account by using H-scores [mean (±S.E.) 199.6 (±12.35) vs. 160.2 (±13.49), 

p<0.0001]. However, there was no difference in the mean percentage of positive cells across 

the estrus cycle phases either for the epithelium (p=0.26) or stroma (p=0.3) (Fig. 4.1E). 

Substituting H-scores for percentages of positive cells did not modify this observation (p=0.36 

and p=0.38 respectively) (Fig. 4.1E). There was only moderate correlation between Arid1a 

mRNA levels and either epithelial (r=0.41, p=0.066) or stromal (r=0.48, p=0.026) Arid1a 

protein expression (Fig. 4.1G).  

 

The RNA and protein expression data together show that average Arid1a expression does not 

vary during the estrus cycle, and do not support hormonal regulation of Arid1a. However, 

Arid1a protein expression can be relatively low in the stroma in a subset of samples, 

preferentially in estrus or metestrus. The functional relevance of this observation, if any, is 

presently unclear. Staining for CD45 showed only very occasional positive cells and, therefore, 

leukocytic infiltration was excluded as a significant contributor to the observed stromal 

appearances (data not shown). 
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Figure 4.1. Arid1a during the mouse estrus cycle 
Arid1a expression determined in 24 (RNA) and 25 (protein) 6-8-week-old B6 mice: A) ΔCt values for Arid1a, 
Arid1b and Ltf, calculated relative to the GM of Gapdh and Hprt1. B) Mean ±S.E. Arid1a, Arid1b and Ltf mRNA 
levels across the mouse estrus cycle normalised to diestrus. C) Examples of strong (left) and weak (right) 
Arid1a stromal staining by IHC. D) Example of the set-up for quantitative IHC: area of interest (left), luminal 
and glandular epithelial compartment (centre) and stromal compartment (right). After an area of interest is 
drawn by hand (green level), the algorithm counts and scores separately the epithelial (yellow level) or stromal 
(red level) cells. E) Mean ±S.E. epithelial and stromal Arid1a positive cells and H-scores across the estrus 
cycle. F) Distribution of strong (≥70% cells positive) and weak (<70%) Arid1a stromal expression across the 
estrus cycle. G) Correlation between Arid1a mRNA and Arid1a protein expression in the epithelium (left) and 
stroma (right).  
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4.2.3. ER expression peaks in proestrus and proliferation is limited to the epithelium  

ER and PgR expression show cyclical changes in the mouse uterus (Bergman et al. 1992; 

Mote et al. 2006) and ARID1A has been reported to be necessary for ER-mediated 

transactivation in breast cancer cell lines (Inoue et al. 2002). If ER and PgR are Arid1a-

regulated in the uterus, their expression should be correlated. In order to study these 

relationships, I first performed quantitative IHC for ER, PgR and Ki67 in the estrus-timed 

uterine samples. As determined by the percentage of positive cells, ER expression (Fig. 4.2A) 

in both epithelium and stroma was higher in proestrus. This difference in expression 

approached statistical significance in the epithelium (p=0.078) and reached it in the stroma 

(p=0.005). Substituting H-scores (Fig. 4.2A) slightly increased the strength of the observed 

associations (p=0.061 and p=0.002 respectively). Similar numbers of cells were ER positive 

in the epithelium (31%) and stroma (33%, p=0.37) (Fig. 4.2D). PgR expression showed less 

variability, although epithelial expression tended to be lower in estrus/metestrus, especially 

when H-scores were calculated (p=0.043) (Fig. 4.2B). More stromal than epithelial cells were 

PgR positive (p=0.016), although the difference was small (64% vs. 58%) (Fig. 4.2D). 

Proliferation seemed to be confined to the epithelium where 23% cells were Ki67 positive, 

compared to 8% in the stroma (p<0.0001) (Fig. 4.2D). No differences in Ki67 staining across 

the estrus cycle were seen (Fig. 4.2C). These results are generally in agreement with previous 

reports (Bergman et al. 1992; Mote et al. 2006) and, therefore, provide a robust base on which 

to study correlations between steroid hormone receptors, proliferation and Arid1a expression.  

 

4.2.4. Arid1a and ER expression are correlated 

I then calculated pairwise correlation coefficients r for Arid1a and ER, PgR or Ki67 expression, 

separately in the epithelium and stroma (Table 4.1). There were no statistically significant 

correlations of either epithelial or stromal Arid1a and epithelial or stromal PgR or Ki67 (Table 

4.1 and Fig. 4.2E-F). The correlations between epithelial or stromal Arid1a and stromal ER 

but not epithelial ER were statistically significant when the number of positive cells was used 

as the basis for the calculations (Table 4.1 and Fig. 4.2E-F). All 4 pairwise correlations 

between epithelial or stromal Arid1a and epithelial or stromal ER were statistically significant 

when calculated using H-scores (Table 4.1 and Fig. 4.2G). Using conventional thresholds for 

interpretation of r (Zou et al. 2003), the observed correlations between Arid1a and ER are 

moderate. Furthermore, 24 different correlation coefficients were calculated. As calculations 

based on positive cell numbers and H-scores are not independent, an appropriate correction 

for statistical significance would be to divide the 0.05 threshold by 12 (i.e. apply a Bonferroni 

correction).  The  p  value  threshold  for  significance  then  becomes  0.0042  and  only   the
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correlation between stromal Arid1a and stromal ER remains significant. The observed 

correlations could be consistent with a model of Arid1a-dependent ER transactivation (Inoue 

et al. 2002). However, regulation of both by a third factor, cannot be excluded from this cross-

sectional dataset.  

 

4.3. Arid1a expression in the uterus is associated with a transcriptional 

programme enriched in genes involved in cell cycle regulation 

Having established a potential correlation between Arid1a and ER expression, I asked what 

other genes may be Arid1a-regulated in the mouse uterus. To answer this in an unbiased 

manner, I exploited the fact that although Arid1a mRNA levels do not systematically vary 

Table 4.1. Correlation of Arid1a, ER, PgR and Ki67 in the mouse uterus 

Comparison Cell number 
correlation 
coefficient r 

p 
value 

H-score 
correlation 
coefficient r 

p 
value 

Epithelial Arid1a – epithelial ER 0.32 0.17 0.44 0.04 

Epithelial Arid1a – stromal ER 0.49 0.02 0.54 0.01 

Stromal Arid1a – epithelial ER 0.37 0.09 0.51 0.015 

Stromal Arid1a – stromal ER 0.47 0.03 0.60 0.003 

Epithelial Arid1a – epithelial PgR 0.12 0.56 -0.03 0.89 

Epithelial Arid1a – stromal PgR 0.27 0.20 0.27 0.19 

Stromal Arid1a – epithelial PgR 0.03 0.88 -0.01 0.98 

Stromal Arid1a – stromal PgR 0.12 0.56 0.33 0.11 

Epithelial Arid1a – epithelial Ki67 -0.03 0.9 -0.09 0.68 

Epithelial Arid1a – stromal Ki67 0.34 0.09 0.29 0.16 

Stromal Arid1a – epithelial Ki67 -0.13 0.51 -0.11 0.60 

Stromal Arid1a – stromal Ki67 0.29 0.15 0.34 0.10 

 

Figure 4.2. ER, PgR and Ki67 during the mouse estrus cycle and correlations with 
stromal Arid1a 
IHC performed in uterine samples from 25 6-8-week-old B6 mice: A-C) Mean ±S.E. epithelial and 
stromal ER (A), PgR (B) and Ki67 (C) positive cells and H-scores across the estrus cycle. D) Mean 
±S.E. ER, PgR and Ki67 expression in epithelium and stroma. E-F) Correlation between positive 
stromal Arid1a and epithelial (E) or stromal (F) ER, PgR and Ki67 cells. G) Correlation between 
epithelial or stromal Arid1a and ER H-scores. 
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across the estrus cycle and the dynamic range of Arid1a mRNA expression is much smaller 

than that of oestrogen-regulated genes such as Ltf (see section 4.2.1), there can still be 

significant between-sample variability. Gene expression arrays were performed using Illumina 

Beadchip arrays in 6 uterine samples with high (n=3) and low (n=3) Arid1a mRNA expression 

as determined by qRT-PCR (an overview of all gene expression experiments contained in this 

chapter can be found in Fig. 4.3). All samples came from mice in late diestrus / early proestrus 

(presence of lymphocytes with a few nucleated cells on the vaginal smears), minimising the 

impact of the estrus cycle phase on the global expression profile. The mean Arid1a mRNA 

expression in the “Low Arid1a” group was 73% lower than in the “High Arid1a” group. 

Hierarchical clustering showed that all “High Arid1a” samples clustered together, along with 

one of the “Low Arid1a” samples which necessitated weighing down the contribution of that 

sample and limited the power of the array (Fig. 4.4A). Despite this, 1358 unique genes were 

differentially expressed at a FDR 0.05 cut-off (Fig. 4.4B) with similar numbers of genes 

showing lower (n=745) and higher (n=612) expression in an Arid1a high context. As there was 

no experimental manipulation of Arid1a, these genes are best regarded as genes whose 

expression is correlated with Arid1a rather than genes directly regulated by it. 

 

 

Figure 4.3. Overview of gene expression experiments 
Schematic depicting the relationships of the 4 gene expression experiments and the corresponding text 
sections where they are discussed (DEG=Differentially Expressed Genes). 

Mouse uterus array
MEF array / RNA-

seq

DEG list
(Section 4.3)

IOSE4 array

DEG list
(Section 4.4)

Mouse “core” list
(Section 4.5)

JHOC-5 array

DEG list
(Section 4.6)

DEG list
(Section 4.8)

Normal tissue 

“core” list
(Section 4.7)
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 Pathway analysis of the 1358 differentially expressed genes using MetaCore, revealed 19 

enriched pathways at FDR<0.05 (Table A.1 in the Appendix). Five of the top 6 differentially 

regulated pathways are related to cell cycle, of which four are involved in regulation of mitosis 

[“Role of Nek in cell cycle regulation”, “Spindle assembly and chromosome separation” (Fig. 

4.5), “Role of APC in cell cycle regulation” and “The metaphase checkpoint”]. Differentially 

expressed genes involved in these pathways included some encoding cell cycle-related 

kinases (Aurka, Plk1, Cdk2) and regulatory proteins (Ccnb1, Cdc20, Cdc6, Cdc25a, Mad2l1), 

tubulin isoforms (Tuba1a, Tuba1b, Tuba1c, Tubb5, Tubb6, Tubb2c) and PI3K pathway 

components (Pik3r3, Pik3cb). Additionally, pathways related to apoptosis, cytoskeleton 

remodelling and development were also represented (Table A.1). Process network analysis 

of the same gene list, revealed 8 enriched networks at FDR<0.05 (Table A.2 in the Appendix). 

Similarly to the pathway analysis, cell cycle-related networks comprised 4 of the 8 significantly 

enriched networks with “Mitosis” representing the top hit, driven by differential expression of 

many of the genes mentioned above. Networks related to protein folding were also enriched, 

due to differential expression of genes such as Atf6b, Atf4, Hsp90aa1, Hsp90b1, Hspa2, 

Hspd1 and Hspe1.  

 

Using MetaCore, steroid hormone pathways and networks were not enriched among the 

differentially expressed genes. Additionally, Esr1 (encoding ERα) and Pgr (encoding PgR) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4. Arid1a gene expression array in mouse uterus 
Uterus samples with high (n=3) and low (n=3) Arid1a mRNA levels by qRT-PCR were compared using 
BeadChip arrays. A) Hierarchical clustering (red arrow) shows that all Arid1a high samples (green) 
cluster together, whereas the Arid1a low samples (brown) are split into 2 groups. B) Heatmap of the 
high vs. low Arid1a comparison.  

A B 
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were not differentially expressed (Log2-fold change of 0.05 and -0.53 respectively). I then 

tested the overlap of the 1358 differentially expressed genes and 27 core ER-signalling genes 

(Ahr, Adora1, Bcar1, Brca1, Cav1, Ccnd1, Efna5, Esr1, Esr2, Hsp90aa1, Igf1, Med1, Mta1, 

Ncoa1, Ncoa2, Ncoa3, Ncor1, Ncor2, Nr0b1, Nr0b2, Nrip1, Pelp1, Pgr, Phb2, Safb, Tff1, and 

Vdr)5. Only 2 genes (Ccnd1 and Hsp90aa1) overlapped (p=0.46) and therefore, the microarray 

data do not support regulation of the ER pathway by Arid1a in the uterus.  

 

The enrichment of mitosis and apoptosis associated pathways in this analysis would be in 

agreement with the tumour suppressor role of ARID1A in uterus-derived cancers. However, 

                                                
5 These are the genes analysed in the “Estrogen Receptor Signaling RT2 Profiler PCR Array” kit 
(Qiagen). 

 

Figure 4.5. The “Spindle assembly and chromosome separation” pathway is 
associated with Arid1a expression in the mouse uterus 
“Spindle assembly and chromosome separation” was one of the most enriched pathways when uterus 
samples with high (n=3) and low (n=3) Arid1a mRNA levels were compared using BeadChip arrays 
(FDR = 0.002). Differentially expressed gene (DEG) lists (n=1358) were created at FDR 0.05. Red 
“thermometer” bars highlight the DEG that drive pathway enrichment. Analysis performed and graph 
created using MetaCore (www.genego.com).  
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as already stated, the experimental design used cannot provide assurances that Arid1a really 

regulates these genes as other factors could cause differential expression of both Arid1a and 

the 1358-gene set. To mitigate against this limitation, an experimental setup with direct 

modulation of Arid1a expression is needed. 

 

4.4. Arid1a drives a transcriptional programme enriched in genes involved 

in cell cycle regulation and cytoskeleton remodelling in MEFs  

In order to obtain a more robust insight into Arid1a-driven transcriptional programmes, I utilised 

siRNA to knock down Arid1a expression in 4 different MEF cell lines and analysed gene 

expression with BeadChip microarrays and RNA-seq (see sections 2.17.1 and 2.18 for 

details). siRNA treatment reduced Arid1a expression by 68-76% as assessed by qRT-PCR 

(Fig. 4.6A). The MEF cell lines E6, E8 and E9 were tested, in technical duplicates, on 

BeadChip microarrays. Hierarchical clustering revealed that the cell lines clustered according 

to treatment with Arid1a or non-target siRNA (Fig. 4.6B) and 2971 genes were differentially 

expressed using a FDR 0.01 cut-off. The same samples, with the addition of a fourth MEF cell 

line, E10, were also tested with RNA-seq. The increased power of this technique (Hitzemann 

et al. 2013), combined with the larger sample size, resulted in 5288 genes being designated 

as differentially expressed at FDR 0.01. 2210 genes (50.5% up-regulated and 49.5% down-

regulated), were significantly differentially expressed at FDR 0.01 with both methods (p<1x10-

100 for the overlap) and formed a cross-validated high-confidence gene set that was used for 

downstream analysis. 

 

Figure 4.6. Arid1a gene expression array in MEFs 
Arid1a was knocked down using siRNA and gene expression was assayed using BeadChip arrays and 
RNA-seq in 4 MEF cell lines (E6, E8, E9 and E10). A) qRT-PCR shows 68-74% Arid1a knockdown 
after siRNA treatment B) Hierarchical clustering shows that samples used in the microarray experiment 
(E6, E8 and E9) cluster by Arid1a treatment status into 2 groups.   
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MetaCore pathway analysis of the 2210 genes revealed more than 50 pathways as being 

enriched at FDR<0.01 (Table A.3 in the Appendix lists the top 30 enriched pathways, all with 

FDR<7.5x10-4).  Similar to the uterus samples (see section 4.3), 6 of the 10 most enriched 

pathways are involved in cell cycle control and predominantly mitosis (“Spindle assembly and 

 

Figure 4.7. The “TGF, WNT and cytoskeletal remodelling” pathway is Arid1a-regulated 
in MEFs 
“TGF, WNT and cytoskeletal remodelling” was the most enriched pathway (FDR = 2.8x10-6) following 
siRNA knockdown of Arid1a in MEFs (n=3). High-confidence differentially expressed gene (DEG) lists 
(n=2210) were created using the overlap between the lists generated by BeadChip array and RNA-seq 
experiments, both at FDR 0.01. Red “thermometer” bars highlight the DEG that drive pathway 
enrichment. Analysis performed and graph created using MetaCore (www.genego.com). 
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chromosome separation”, “The metaphase checkpoint”, “Role of Nek in cell cycle regulation”, 

“Initiation of mitosis”, “Chromosome condensation in prometaphase” and “Regulation of G1/S 

transition”). As was the case with the uterus samples, cytoskeleton remodelling pathways were 

also significantly enriched with 3 of the top 10 pathways [“TGF, WNT and cytoskeletal 

remodelling” (Fig. 4.7), “Cytoskeleton remodelling” and “Regulation of actin cytoskeleton by 

Rho GTPases”] related to the cytoskeleton. Developmental and immune response pathways 

were also significantly enriched (Table A.3), whereas, contrary to the uterus samples, 

apoptosis-related pathways were not. Process network analysis revealed 33 significantly 

enriched networks at FDR<0.05 (Table A.4 in the Appendix). Again, cell cycle-related, 

cytoskeleton and developmental networks were prominent as was a “chromatin modification” 

network driven by components of the swi/snf complex, histone, histone deacetylase and 

polycomb group members (Fig. 4.8). Similar to the uterus experiment, genes such as Aurka, 

Ccnb1, Ccnd1, Cdk1, Cdc20, Pik3r3, Tuba1a, Tuba1c, Tubb5, Tubb6, Kif22, Shc1 and Sos2 

were Arid1a-regulated in the MEFs.  

 

4.5. Mitosis regulation, cytoskeleton remodelling and chromatin 

modification are components of a core Arid1a-driven transcriptional 

programme in the mouse 

There exists a remarkable overlap between the pathways and networks enriched after Arid1a 

knockdown in MEFs and in “High Arid1a” vs. “Low Arid1a” mouse uterus samples (Tables A.1-

A.4). In both datasets, 4 of the top 6 enriched pathways are identical (“TGF, WNT and 

cytoskeletal remodelling”, “Spindle assembly and chromosome separation”, “The metaphase 

checkpoint” and “Role of Nek in cell cycle regulation”) as are 3 of the top 6 enriched process 

networks (“Mitosis”, “Cell cycle – Core” and “Spindle microtubules”). The implications of this 

observation are two-fold: first, it increases the confidence that many of the genes identified 

from the mouse uterus microarray are Arid1a-regulated and not just correlated. Second, it 

supports the concept of a core Arid1a-driven transcriptional programme that is conserved 

across cell types and developmental stages. With that in mind, it should be noted that Cdkn1a, 

a gene reported to be a direct target of ARID1A in osteoblasts (Nagl et al. 2006) and 

immortalised ovarian surface epithelium (Guan et al. 2011), was not differentially expressed 

in either the uterus or the MEFs. Similarly, Myc, previously reported as ARID1A-regulated 

(Nagl et al. 2006), was not detected as differentially expressed in either of the microarrays. 

Therefore, even if a core transcriptional programme exists, it is likely that it does so in parallel 

to cell and tissue-specific ones.  
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To detect a putative Arid1a-driven core transcriptional programme in the mouse, the 

differentially expressed gene lists generated from the microarray experiments in the uterus 

(n=1358) and the MEFs (n=4291), both at a FDR 0.05 cut-off, were compared. I chose the 

0.05 FDR cut-off for the MEFs, using the microarray data only, to ensure consistency of the 

methods used to generate the 2 lists. The overlap between the 2 lists, consisting of 556 genes, 

was highly statistically significant (p=2.4x10-68) (Fig. 4.9). Seven pathways (Table A.5 in the 

Appendix) were significantly differentially regulated at FDR<0.05, with mitosis-related ones 

being prominent (“Role of Nek in cell cycle regulation”, “Spindle assembly and chromosome 

separation”, “The metaphase checkpoint” and “Role of APC in cell cycle regulation”) and 

cytoskeleton remodelling, apoptosis and cell adhesion also represented. Similarly, 8 process 

networks were differentially regulated at FDR<0.05 (Table A.6 in the Appendix), with cell cycle-

related ones (“Mitosis”, “Cell cycle – Core”, “G2-M” and “Meiosis”) being prominent and 

cytoskeleton and chromatin modification-related ones also making the list. 

      

4.6. ARID1A drives a similar transcription programme in immortalised 

human ovarian cells 

Having established that Arid1a regulates, through a common set of genes, similar pathways 

and processes in 2 different mouse tissues, I then tested whether that observation could be 

extended to a third cell type in a different species. For that, ARID1A was knocked down in 

human IOSE cells, a model commonly used in ovarian cancer research. siRNA treatment 

reduced ARID1A mRNA levels by 42-56% (Fig. 4.10A). Hierarchical clustering revealed that 

the cell lines were clustering according to siRNA treatment (Fig. 4.10B) and 2738 genes were 

 

Figure 4.9. Overlap in genes regulated by Arid1a in mouse uterus and MEFs 
Overlap of genes regulated by Arid1a in mouse uterus (n=1358) and MEFs (n=4291). Differentially 
expressed gene lists were created using BeadChip arrays at FDR 0.05. 
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differentially expressed using a FDR 0.01 cut-off. As was the case with the mouse uterus and 

MEF samples, cell cycle-related pathways (Table A.7 in the Appendix) and process networks 

(Table A.8 in the Appendix) related to mitosis and the G2/M checkpoint, were significantly 

enriched among ARID1A-regulated genes using MetaCore (Fig. 4.11). Similar to the mouse 

data, cytoskeleton remodelling and EMT regulation were also regulated by ARID1A in IOSE4 

cells. Additionally, DNA damage response pathways were significantly enriched in IOSE4 

cells. As has been previously reported in IOSE, SMAD3 transcription was repressed and that 

of MYC induced upon ARID1A knockdown (Guan et al. 2011). In agreement with the mouse 

uterus data, no enrichment for core ER-signalling pathway genes (see section 4.3 for gene 

list) was seen after knockdown in IOSE4 cells (p=0.15). 

 

4.7. A core ARID1A transcriptional programme which controls cell cycle 

progression and is conserved across species exists 

It is evident from looking at Tables A.1 to A.8 that ARID1A regulates the same pathways and 

network processes in mouse uterus, MEFs and human IOSE cells and that these pathways 

are mostly related to the G2/M checkpoint, mitosis and cytoskeleton remodelling (Fig. 4.12B). 

I then asked whether this is achieved through regulation of a common core set of genes, 

conserved across species. To answer that, I looked for genes that were ARID1A-regulated at 

FDR 0.05 in all 3 model systems. 177 genes fulfilled these criteria (p=1.7x10-13) (Fig. 4.12A). 

This p value is conservative as it assumes that all genes represented in the mouse array are 

present in the human one and vice versa, something unlikely to be true. MetaCore analysis of 

 

Figure 4.10. ARID1A gene expression array in IOSE4 cells 
ARID1A was knocked down using siRNA and gene expression was assayed using BeadChip arrays in 
IOSE4 cells (n=3 flask replicates) A) qRT-PCR shows 42-56% ARID1A knockdown after siRNA 
treatment B) Hierarchical clustering shows that the samples cluster by ARID1A treatment status into 2 
groups.  
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the “core” 177-gene set, again revealed enrichment of cell cycle-related pathways (Table 4.2) 

with the 4 most enriched pathways being “Spindle assembly and chromosome separation” 

(Fig. 4.13), “The metaphase checkpoint”, “Role of Nek in cell cycle regulation” and “Role of 

APC in cell cycle regulation”. Similarly, the 5 most enriched process networks were “Cell cycle 

- Mitosis” (Fig. 4.14), “Cell cycle - Core”, “Spindle microtubules”, “Cell cycle - G2-M” and “Cell 

cycle - S-phase” (Table 4.3). Looking at the gene list (Table 4.4), these pathways and networks 

are driven by changes in targetable genes such as CCNB1, CCND1, AURKA (encoding 

Aurora kinase A), PLK1 (encoding Polo-like kinase 1) and PLK4.  

 

 

Figure 4.11. The “Role of APC in cell cycle regulation” pathway is ARID1A-regulated in 
IOSE4 cells 
“Role of APC in cell cycle regulation” was the most enriched pathway (FDR = 4.3x10-8) following siRNA 
knockdown of ARID1A in IOSE4 cells (n=3). Differentially expressed gene (DEG) lists (n=2738) were 
created at FDR 0.01. Red “thermometer” bars highlight the DEG that drive pathway enrichment. 
Analysis performed and graph created using MetaCore (www.genego.com). 
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Figure 4.12. Overlap of genes and pathways regulated by ARID1A in mouse uterus, MEFs 
and IOSE4 cells 
A) Overlap of genes regulated by ARID1A in mouse uterus (n=1358), MEFs (n=4291) and IOSE4 cells 
(n=3909). Differentially expressed gene lists were created using BeadChip arrays at FDR 0.05. B) 
Pathways enriched in ARID1A-regulated genes with p<10-4 in all 3 datasets. 

 

Table 4.2. Pathways enriched in the 177 ARID1A-regulated genes in all of mouse uterus, MEFs 
and IOSE4 cells  

Pathway p value FDR 

Cell cycle - Spindle assembly and chromosome separation 8.809E-12 3.180E-09 

Cell cycle - The metaphase checkpoint 8.165E-10 1.474E-07 

Cell cycle - Role of Nek in cell cycle regulation 1.115E-08 1.007E-06 

Cell cycle - Role of APC in cell cycle regulation 1.115E-08 1.007E-06 

Cell cycle - Start of DNA replication in early S phase 1.886E-04 0.0136 

Cell cycle - Nucleocytoplasmic transport of CDK/Cyclins 2.459E-04 0.0148 

Reproduction - Progesterone-mediated oocyte maturation 4.536E-04 0.0234 

Cell cycle - Chromosome condensation in prometaphase 8.580E-04 0.0387 

Pathways list created and statistical analysis performed using MetaCore 
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Table 4.3. Process networks enriched in the 177 ARID1A-regulated genes in all of mouse 
uterus, MEFs and IOSE4 cells  

Process Network p value FDR 

Cell cycle - Mitosis 2.612E-16 3.265E-14 

Cell cycle - Core 9.946E-12 6.216E-10 

Cytoskeleton - Spindle microtubules 8.416E-10 3.507E-08 

Cell cycle - G2-M 1.736E-06 5.425E-05 

Cell cycle - S phase 1.752E-05 4.379E-04 

Cell cycle - Meiosis 5.548E-05 0.00116 

Process networks list created and statistical analysis performed using MetaCore 

 

 

Figure 4.13. The “Spindle assembly and chromosome separation” pathway is ARID1A-
regulated in mouse and human cells 
“Spindle assembly and chromosome separation” was the most enriched pathway (FDR = 3.2x10-9) 
among the 177 genes that were ARID1A-regulated in mouse uterus, MEFs and IOSE4 cells. Red 
“thermometer” bars highlight the DEG that drive pathway enrichment. Analysis performed and graph 
created using MetaCore (www.genego.com). 
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4.8. JHOC-5 cells exhibit a different ARID1A-driven transcriptional 

programme 

Subsequently, I assessed the effects of ARID1A knockdown in JHOC-5 cells, an OCCC cell 

line with wild type ARID1A. My hypothesis was that the effects of ARID1A on transcription 

would be different in a cell line that acquired the hallmarks of malignancy without needing to 

mutate ARID1A compared to normal cells and tissues. siRNA treatment decreased ARID1A 

expression by 75% (see section 2.17.1) and 435 genes were differentially expressed at FDR 

0.01. Contrary to the observations in non-malignant cells and tissues, enrichment in cell cycle-

related pathways and process networks was not observed (Tables A.9 and A.10 in the 

Table 4.4. ARID1A-regulated genes in all of mouse uterus, MEFs and IOSE4 cells  

Gene Name 

ABHD4 CDC20 FBXW2 KIF22 NME4 RASSF4 TMEM150A 

ACADM CDCA3 FEN1 KIF23 NOMO1 RAVER2 TMEM48 

ACER3 CDCA8 FHDC1 KLHL24 NSF RHOBTB3 TMEM97 

AKAP12 CDR2 FHL1 LAMP2 NTN4 RNF167 TPI1 

AKIRIN1 CENPI FIGNL1 LANCL1 NUSAP1 RPL22 TSC22D3 

ALG1 CENPW FNBP1 LMNA PA2G4 RPS27A TSHZ1 

ANKRD10 CIB1 FRAT2 LRP8 PAMR1 RPS6KA5 TUBA1A 

ANLN CLDN1 GALE LRRC49 PBK RRM1 TUBB6 

ANTXR2 CRELD2 GCAT LSM2 PDGFRA RRP12 TXNIP 

ANXA3 CTGF GCLM MAD2L1 PELI2 RTN3 TYMS 

AP1S1 DBF4 GINS2 MAPRE1 PIK3IP1 SERINC2 UBE2K 

ARHGEF6 DBI GLIPR2 MARS PLEKHA1 SERPING1 UBE2Q1 

ARPC5L DCAF7 GOLM1 MCM10 PLK1 SETD8 UCK2 

ATF4 DENND2A GSG2 MCM4 PLK4 SFXN4 UFC1 

ATIC DEPTOR GSTA4 MMGT1 POMT2 SH3PXD2B UHRF1 

AURKA DHCR24 HDLBP MORF4L2 PPFIBP1 SLC22A5 ULK1 

BBS4 DOLPP1 HMGB2 MORN4 PROS1 SLC25A5 USE1 

BIRC5 ECHDC2 HN1L MRPL17 PRRX1 SLC35A2 USP4 

BVES EFTUD2 ID3 MRPS12 PRSS23 SLC35B1 WDR1 

CACNB3 ENDOD1 IFIT2 MRPS7 PSAT1 SLC39A11 YIF1A 

CBX3 ERLIN2 IFT20 MTHFD2 PSMB2 SLC6A15 ZCRB1 

CBX5 FAM83D IGFBP3 NCAPH2 PUS1 SPC25  

CCNB1 FAM98A IKBIP NCKAP5 PVRL3 SRXN1  

CCND1 FAM98C IRF7 NDRG1 RAD54L ST5  

CCNDBP1 FBLN1 ITPR2 NFIX RAN TCEA2  

CD200 FBXO4 KCNK1 NHP2 RASL11B TMED10  
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Appendix). The sole significantly enriched pathway at FDR<0.05 was “ECM remodelling”, 

driven by changes in expression in genes such as MMP10, MMP7 and IL8. The 2 enriched 

process networks at the same significance level were “Blood Coagulation” (driven by changes 

in fibrinogen, plasminogen activator and collagen IV) and “Cell-matrix interactions”. Only 24 

genes overlapped when the “core” 177-gene list derived from normal cells and tissues was 

compared with the 866 ARID1A-regulated genes at FDR 0.05 in JHOC-5 cells (p=1.7x10-7) 

(Fig. 4.15).  MetaCore analysis did not identify any pathways or networks as significantly 

enriched in this 24-gene set. 

 

4.9. Arid1a regulation of Smarca4, Smarca2 and other components of the 

SWI/SNF and polycomb complexes 

There exist well known interactions between the SWI/SNF and polycomb complexes (Wilson 

et al. 2010); in fact the drosophila swi/snf complex was initially discovered during a screen for 

polycomb repressors (Reisman et al. 2009). As “chromatin modification” was one of the 

process networks significantly differentially regulated by Arid1a in MEFs, I assessed the effect 

of Arid1a knockdown on the expression of core components of the two complexes using the 

high-confidence list of 2210 genes regulated by Arid1a in both the microarray and RNA-seq 

MEF experiments.  Expression changes in 21 swi/snf components (Kadoch et al. 2013) and 

the 3 core polycomb subunits (Ezh2, Suz12 and Eed) were compiled. Smarca2, Bcl7a, Bcl7b 

and Suz12 were significantly down-regulated whereas Smarce1, Smarcd3 and Actb were up-

regulated. The enrichment in swi/snf and polycomb components (7/24) in the 2210-gene list 

reached statistical significance (p=0.024). I then checked the same 24-gene list in the 1358-

  

Figure 4.15. Overlap of genes and pathways regulated by ARID1A in mouse uterus, 
MEFs, IOSE4 and JHOC-5 cells 
Overlap of genes regulated by ARID1A in mouse uterus (n=1358), MEFs (n=4291), IOSE4 (n=3909) 
and JHOC-5 (n=866). Differentially expressed gene lists were created using BeadChip arrays at FDR 
0.05.  
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gene uterus and 2738-gene IOSE datasets. Smarca2 showed concordant changes in the 

uterus, having significantly higher expression in the “High Arid1a” samples. Additionally, 

Smarca5, Smarcb1 and Eed showed lower expression in those samples. The only 2 SWI/SNF 

components showing change in expression upon ARID1A knockdown, decrease in both 

cases, in IOSE4 cells were BCL7B and SMARCC1.  

 

To further investigate the effects of ARID1A loss on the expression of the SWI/SNF complex 

ATPases and components that could compensate for ARID1A (ARID1B and PBRM1), I 

knocked down ARID1A in PEO1, SKOV3 and JHOC-5 cells and performed qRT-PCR. siRNA 

treatment successfully depleted ARID1A by 73-80% (Fig. 4.16A). ARID1B and PBRM1 

expression did not change in any of the cell lines (Fig. 4.16B-C). In contrast, SMARCA4 mRNA 

was significantly decreased in PEO1 (21%, p=0.017) and JHOC-5 cells (27%, p=0.015) (Fig. 

4.16D) and SMARCA2 in PEO1 only (31%, p=0.009) (Fig. 4.16E). Taken together, the cell line 

and microarray results show no changes in the expression of the potentially complementing 

subunits ARID1B and PBRM1 upon ARID1A knockdown in any of the non-malignant or 

 

Figure 4.16. Effect of ARID1A knockdown on ARID1B, SMARCA4 and SMARCA2
expression 
ARID1A was knocked down using siRNA and RNA collected after 72 hours for qRT-PCR (n=5 
biological replicates). A) Mean ±S.E. ARID1A mRNA levels after knockdown. B-E) Mean ±S.E. ARID1B 
(B), PBRM1 (C), SMARCA4 (D) and SMARCA2 (E) mRNA levels after ARID1A knockdown. 
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malignant cells tested. However, in some, but not all, cases, reduction in ARID1A expression 

leads to suppression of expression of the core ATPases and other members of the complex, 

at least at the mRNA level and in a cell context-specific manner.   

 

4.10. Arid1a’s effect on proliferation is cell type specific 

Pathways and networks related to cell cycle control emerged as enriched in ARID1A-regulated 

genes in my gene expression experiments. However, there was no correlation between Arid1a 

and Ki67 expression in the estrus-timed mouse uterus samples (see section 4.2.4). Therefore, 

I then investigated the effects of ARID1A knockdown on proliferation in mouse tissues and 

cells and human cell lines, hypothesising that these will be tissue and context-specific. 

 

4.10.1. Arid1a knockdown does not increase proliferation in cultured mouse uterine 

stromal cells 

First, I utilised siRNA to knock down Arid1a in cultured dissociated uterine stromal cells from 

CD-1 mice. In 5 separate experiments, a mean 52% reduction in Arid1a mRNA levels by qRT-

PCR was achieved (Fig. 4.17A). There was no effect on proliferation, as assessed by a BrdU 

incorporation assay after 24 hours of incubation with BrdU (Fig. 4.17B). This observation was 

Figure 4.17. Effect of ARID1A knockdown on proliferation 
ARID1A was knocked down using siRNA (except for panels F-G) for the mouse and human sequences 
as appropriate: A) Mean ±S.E. Arid1a mRNA levels in primary mouse uterine stromal cells 72 hours 
after knockdown (n=5). B) Mean ±S.E. BrdU incorporation 72 hours after Arid1a knockdown in cultured 
primary mouse uterine stromal cells (n=5). Cells have been treated with 10nM E2 and/or 1μM P4 and 
incubated with BrdU for 24 hours. C) Mean ±S.E. BrdU incorporation 72 hours after Arid1a knockdown 
in cultured primary mouse uterine stromal cells (n=3 technical replicates). Cells have received no 
hormonal treatment and incubated with BrdU for 15-240min. D)    Mean ±S.E. Arid1a mRNA levels in 
MEFs 72 hours after knockdown (n=4). E) Mean confluency, assessed on Incucyte, of MEFs over 168 
hours after Arid1a knockdown. 8,000cells/well, 4 technical replicates for each MEF cell line (n=4). F) 
Mean Arid1a mRNA levels in E21 MEFs 168 hours after transfection with lentiviruses delivering 3 
different shRNAs against Arid1a (303, 304 and 305; n=1). G) Relative proliferation by the SRB assay 
in E21 MEFs 168 hours after transfection with lentiviruses delivering shRNA against Arid1a (n=1). H) 
ARID1A expression by immunoblot in TOV21G, ES-2, OV2008, RMG-I, RMG-II and HEC-1A cells. Red 
bands correspond to ARID1A and green to GAPDH. I) Relative ARID1A protein expression 96 hours 
after knockdown in EOC cell lines. J) Relative mean ±S.E. proliferation by the SRB assay of 7 EOC cell 
lines 96 hours after ARID1A knockdown. 4,000cells/well, 4 technical replicates per each flask replicate 
(n=4). K) Relative mean ±S.E. proliferation by the SRB assay of 7 EOC cell lines 168 hours after 
ARID1A knockdown. 1,000 cells/well, 4 technical replicates per each flask replicate (n=4). L) ARID1A 
protein expression in SKOV3 cells transfected with empty vector (WT) and an ARID1A expressing BAC. 
Introduction of the ARID1A BAC gives rise to two products: Band 1 at the expected WT ARID1A size 
(~270kDa) and Band 2 which is slightly smaller (~200kDa). M) Quantification (Mean ±S.E.) of ARID1A 
protein expression in transfected SKOV3 cells (n=3). N) Mean ±S.E. proliferation by the SRB assay of 
transfected SKOV3 cells after 168 hours. 1,000cells/well, 4 technical replicates per each flask replicate 
(n=4). O) Relative mean ±S.E. proliferation by the SRB assay of IOSE4 and IOSE4+HNF1B cells 168 
hours after ARID1A knockdown. 8,000cells/well, 4 technical replicates per each flask replicate (n=4). 
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consistent across cells that received no hormonal treatment, or were treated with 10nM E2, 

1μM P4 or both (Fig. 4.17B). Consistently, no difference in proliferation was seen at earlier 

timepoints, with BrdU incubation times ranging from 15 min to 4 hours (Fig. 4.17C).  
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4.10.2. Proliferation is increased in MEFs after Arid1a knockdown 

Arid1a was also knocked down using siRNA in 4 MEF cell lines (E7, E8, E10 and E11) in 

triplicate and a mean reduction of 70% in Arid1a mRNA expression was seen (Fig. 4.17D). As 

assessed using the Incucyte imaging system, Arid1a knockdown resulted in increased 

proliferation (p<0.0001 by 2-way ANOVA) (Fig. 4.17E). The absolute difference in confluency 

was 16.5% (p=0.012) at 72 hours and reached 20.8% (p=0.008) at 168 hours. Consistent 

results were obtained using the SRB assay to assess proliferation, as siRNA-mediated Arid1a 

knockdown in E21 MEFs (n=4) resulted in a 23% increase in proliferation (p=0.047) (Fig. 

4.19B). Similarly, using lentiviral delivery of 3 different shRNAs against Arid1a (see section 

2.20.3 for details) in E21 MEFs (n=1), a 37-61% reduction in Arid1a mRNA expression was 

seen (Fig. 4.17F), with a concomitant 23-41% increase in proliferation (Fig. 4.17G).    

 

4.10.3. Effect of ARID1A knockdown on EOC cell line proliferation 

Expression of ARID1A by immunoblotting was tested in the EOC cell lines listed in Table 2.2  

and the endometrial cell line HEC-1A which is known to have a truncating ARID1A mutation 

(Guan et al. 2011) (Fig. 4.17H shows examples). The only “OCCC” cell lines expressing 

ARID1A were ES-2, OV2008, RMG-I and JHOC-5, results consistent with recent publications 

(Anglesio et al. 2013; Domcke et al. 2013). The histological subtype of ES-2, OV2008 and 

RMG-I is disputed: ES-2 is undifferentiated with an IHC staining pattern inconsistent with 

OCCC (Anglesio et al. 2013; Shaw et al. 2004), OV2008 is identical to the cervical 

adenocarcinoma ME-180 cell line (Korch et al. 2012) and RMG-I is probably HGS (Anglesio 

et al. 2013). Therefore, the only bona fide OCCC cell line expressing ARID1A from this panel 

is JHOC-5. Additionally, SKOV3, as detailed in section 1.6.2, has characteristics of OCCC and 

retains expression of ARID1A (Fig. 4.17L) despite having a heterozygous truncating ARID1A 

mutation (Anglesio et al. 2013).  

 

I then performed siRNA knockdown in 5 ARID1A expressing “OCCC” cell lines, the HGS cell 

line PEO1, as well as in the ARID1A non-expressing TOV21G OCCC cell line as negative 

control (n=4 per cell line). The knockdown resulted in an 81-97% reduction in ARID1A protein 

expression compared to non-target siRNA in the 6 ARID1A-expressing cell lines (Fig. 4.17I). 

SRB assay after 96 hours (Fig. 4.17J) showed reduced proliferation in PEO1 cells (22%, 

p=0.03), non significant trends towards increased proliferation in ES-2 (32%, p=0.62), OV2008 

(13%, p=0.12), RMG-I (26%, p=0.54) and JHOC-5 (162%, p=0.41) and no difference in 

SKOV3 (2%, p=0.97) and TOV21G cells (1%, p=0.94). The results were similar at 168 hours 
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(Fig. 4.17K), with PEO1 showing a significant reduction in proliferation (86%, p=0.0005). In 

contrast, proliferation was increased in OV2008 (49%, p=0.001) with non-significant changes 

in ES-2 (42%, p=0.77), RMG-I (48% p=0.11) and JHOC-5 cells (370%, p=0.11). SKOV3 cells 

showed a numerically small but significant increase in proliferation (15%, p=0.04) whereas, as 

expected, there was no difference in TOV21G cells (9%, p=0.63). When RMG-I proliferation 

was assayed using the Incucyte system, there was a 16.8% increase in proliferation at 96 

hours (p=0.001), entirely consistent with the SRB assay results (data not shown). In summary, 

ARID1A knockdown shows trends towards increased proliferation in many EOC cell lines but 

the opposite effect was seen in PEO1 cells. 

 

4.10.4. ARID1A overexpression does not affect proliferation in SKOV3 cells     

An ARID1A BAC was introduced to over-express ARID1A in SKOV3 cells as detailed in 

section 2.21. Immunoblotting showed 2 ARID1A bands in the overexpressing cells, one of 

which was smaller (~200kDa) than the expected (~270kDa) size (Fig. 4.17L) and, therefore, 

its functionality is uncertain. Quantitative analysis showed that even if that band was 

disregarded, ARID1A expression was increased by 77% (Fig. 4.17M). However, when 

proliferation was assayed using the SRB assay (n=4), no difference was noted (difference in 

proliferation -5%, p=0.24) (Fig. 4.17N). Whether this is because ARID1A supra-physiologic 

concentrations have no incremental proliferation-suppressing effect or because the introduced 

ARID1A was not fully functional due to re-arrangement is unclear. 

 

4.10.5. ARID1A effect on proliferation is dependent on the cellular HNF1B status 

HNF1B is universally overexpressed in OCCC (Tsuchiya et al. 2003). To investigate whether 

the effects of ARID1A knockdown differ according to the cellular HNF1B status, siRNA was 

used to knock down ARID1A in immortalised ovarian surface epithelium IOSE4 cells and 

isogenic cells overexpressing HNF1B (IOSE4+HNF1B). Remarkably, ARID1A knockdown 

decreased proliferation by 33% in the former (p=0.005) and increased it by 18% in the latter 

(p=0.01) (Fig. 4.17O). 

 

4.11. In vivo Arid1a knockout increases proliferation in mouse uterine 

epithelium 

I then tested the effects of Arid1a knockout in the mouse uterus in mice carrying floxed Arid1a 

alleles and tamoxifen responsive Cre driven by the ROSA26 locus. Mice were killed 28 days 
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after tamoxifen administration and the uteruses harvested. IHC for Arid1a showed ablation in 

the luminal and glandular epithelium but not consistently in the stroma in Arid1afl/fl mice (Fig. 

4.18B). As expected, Arid1a expression was maintained in Arid1afl/+ and wild-type mice. There 

is considerable physiological variability in Ki67 expression in the epithelium in untreated wild 

type mice (Fig. 4.18A) and the same variability was seen following tamoxifen administration. 

 

Figure 4.18. In vivo effect of Arid1a knockdown on mouse uterine epithelium 
A) Spectrum of Ki67 staining in untreated, wild type mice. B) Arid1a and Ki67 staining in representative 
wild type (WT), Arid1afl/+ (Het) and Arid1afl/fl (Hom) mice, 28 days after 2mg Tamoxifen was 
administered i.p. All mice were homozygous for ROSA26Cre-ERT2 (bar=100μm). 
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Remarkably however, three of four Arid1afl/fl showed strong, almost ubiquitous Ki67 staining 

in the uterine epithelium; this was seen in two of four Arid1afl/+ mice but only in 1 of 5 wild type 

ones. Representatrive photomicrographs are shown in Fig. 4.18B. Similarly, no epithelial Ki67 

staining was seen in 3 wild-type mice when, in a different experiment, uteruses were harvested 

14 days after tamoxifen administration whereas patchy staining was seen in both Arid1afl/fl 

mice tested (data not shown).  

 

4.12. ARID1B knockdown affects proliferation but not in a consistent 

direction 

ARID1A and ARID1B are mutually exclusive components of the SWI/SNF complex. ARID1B 

mutations have been reported in a variety of cancers (Shain & Pollack 2013) but their effect 

on proliferation in unknown and potentially depends on the ARID1A status of the cells. Using 

siRNA, I knocked down Arid1b in E21 MEFs. qRT-PCR showed that Arid1b mRNA expression 

was reduced by 82% with a compensatory, non-significant 49% increase in Arid1a expression 

(Fig. 4.19A). Proliferation, as assessed by the SRB assay, did not change significantly (24% 

decrease, p=0.51, n=4) (Fig. 4.19B).  

 

I then determined ARID1B expression in EOC cell lines using qRT-PCR as, despite trying 

multiple different antibodies (see section 2.14 for details), no bands corresponding to ARID1B 

were seen at immunoblotting. All cell lines tested expressed ARID1B at comparable levels 

with the exception of SKOV3 that had 4-fold higher mRNA expression (Fig. 4.19C). I used 

siRNA to knock down ARID1B in 10 EOC cell lines (n=4 per cell line) with good knockdown 

efficiency (range 67-87%) (Fig. 4.19D). ARID1B knockdown resulted in significant decrease 

in proliferation after 168 hours in 5 cell lines [PEO1 (32%, p=0.0005), SKOV3 (24%, 

p<0.0001), TOV21G (31%, p=0.01), JOHC-9 (34%, p=0.001) and OVISE (15%, p=0.01)], no 

change in 1 cell line [JHOC-5 (0%, p=0.85)] and a significant increase in 4 cell lines [ES-2 

(16%, p=0.03), OV2008 (46%, p=0.001),  RMG-I (70%, p=0.005) and JHOC-7 (178%, 

p=0.0003)] (Fig. 4.19E). There was no entirely consistent relationship to ARID1A status as of 

the 4 ARID1A non-expressing cell lines, 3 showed decreased proliferation and one increased. 

Of the 6 ARID1A expressing lines, 2 showed decreased proliferation, 1 no change and 3 

increased proliferation. There was however a trend towards a reduction in proliferation when 

both ARID1A and ARID1B expression was impaired. 
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4.13. Effect of combined ARID1A and ARID1B loss on proliferation 

To further investigate the consequences of combined ARID1A and ARID1B loss, I used siRNA 

to simultaneously knock down ARID1A and ARID1B. In MEFs, combined knockdown reduced 

Arid1a and Arid1b levels by 37% and 47% respectively (Fig. 4.19A), resulting in a non-

significant 51% reduction in proliferation (p=0.19, n=4) (Fig. 4.19B). I then knocked down both 

ARID1A and ARID1B in the 7 cell lines used for the ARID1A knockdown experiment (4.10.3). 

SRB assay 168 hours after simultaneous knockdown (n=4 per cell line) showed reduced 

proliferation in PEO1 (mean decrease: 80%, p=0.0003), with trends towards reduction in ES-

2 (66%, p=0.11), SKOV3 (69%, p=0.06), JHOC-5 (19%, p=0.18) and TOV21G (70%, p=0.08). 

The opposite trend was seen in OV2008 (mean increase: 107%, p=0.07) and RMG-I (23%, 

p=0.18) (Fig. 4.19F). Comparing the results of ARID1A (Fig. 4.17K) and combined ARID1A 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.19. Effect of ARID1B and combined ARID1A and ARID1B knockdown on 
proliferation 
ARID1B and both ARID1A and ARID1B simultaneously were knocked down using siRNA for the mouse 
and human sequences as appropriate: A) Mean ±S.E. Arid1a and Arid1b mRNA in E21 MEFs 96 hours 
after knockdown (n=2). B)  Mean ±S.E. proliferation by the SRB assay of E21 MEFs 168 hours after 
knockdown. 8,000cells/well, 4 technical replicates per each flask replicate (n=4). C) Mean ±S.E. 
ARID1B expression in EOC cell lines, normalised to levels in PEO1 (n=3). D) Relative mean ±S.E.  
ARID1B mRNA levels 72 hours after knockdown in EOC cell lines (n=3). E) Relative mean ±S.E. 
proliferation by the SRB assay of 10 EOC cell lines 168 hours after ARID1B knockdown. 1,000
cells/well, 4 technical replicates per each flask replicate (n=4). F) Relative mean ±S.E. proliferation by 
the SRB assay of 7 EOC cell lines 168 hours after combined ARID1A and ARID1B knockdown. 
1,000cells/well, 4 technical replicates per each flask replicate (n=4). 
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and ARID1B (Fig. 4.19F) knockdown, it is evident that combined knockdown was able to 

reverse the pro-proliferative effect of ARID1A loss in ES-2, SKOV3 and JHOC-5 cells but not 

in RMG-I and OV2008 cells, implying that modulation of ARID1B may have therapeutic value 

in a subset of ARID1A mutated tumours. 

 

4.14. Discussion 

In this part of my project, I investigated aspects of ARID1A’s functional role in normal cells and 

tissues, including the putative OCCC tissue of origin, the uterus. I have found limited evidence 

for hormonal regulation of Arid1a and describe an ARID1A-driven transcriptional programme, 

conserved across tissues and species, centred on G2/M phase regulation. Knockdown 

experiments, in a variety of cell types, revealed cell context specific effects of ARID1A on 

proliferation as well as interactions with other components of the SWI/SNF complex such as 

ARID1B and SMARCA2. 

 

My data show that there is no systematic variation in Arid1a mRNA levels or protein expression 

during the estrus cycle and, therefore, ARID1A expression in the uterus is unlikely to be 

hormonally regulated. A limitation of my analysis is that I had to combine estrus and metestrus 

samples due to small numbers. However, when I analysed them separately, the overall pattern 

did not change, although confidence intervals became wider (data not shown). My 

observations are supported by the absence of Arid1a from a recently published list of 2428 

genes with differential expression between proestrus and estrus in CD-1 mice (Yip et al. 2013). 

If Arid1a were hormonally regulated, a potential mechanism for the frequent ARID1A 

mutations in endometriosis-associated cancer could be sought in the abnormal hormonal 

environment of these lesions (Bulun 2009).  

 

Conversely, prior knowledge would suggest that Arid1a regulation of uterine hormonal 

responses is likely, as components of the SWI/SNF complex, including BAF53 (Jeong et al. 

2009), BAF57 (García-Pedrero et al. 2006) and ARID1A itself (Inoue et al. 2002) have been 

shown to be necessary for ER transactivation. My results show that Arid1a stromal protein 

expression can be variable and that it is correlated with ER expression. This observation, 

which cannot be made from the mRNA data that represents the aggregate expression in 

epithelium and stroma, provides some limited support for Arid1a regulation of oestrogen 

responses in the uterus. However, my gene expression studies showed no difference in Esr1 

mRNA levels when uterine samples with high and low Arid1a mRNA levels were compared.  
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Moreover, genes implicated in ER signalling do not appear to be Arid1a-regulated in the 

mouse uterus or in human IOSE cells. The observations implicating ARID1A in ER 

transactivation were made in breast cancer cell lines. It is therefore unclear whether the 

discrepancy between those and my results reflect differences in ARID1A role in ER regulation 

in the breast compared to the ovary or uterus or differences in regulation between normal and 

malignant cells. The differences in ARID1A-driven transcriptional programmes between non-

malignant and JHOC-5 cells that I describe, make the latter explanation plausible. Clarification 

of Arid1a’s role in the hormonal regulation in the uterus may be possible by examining the 

effects of Arid1a knockout on ER and PgR expression in a large cohort of mice, work that is 

being planned. However, in the current GEMM, tamoxifen administration only ablated Arid1a 

in the epithelium (Fig. 4.18). Alternative methods of Cre activation such as intra-uterine 

adenovirus injection, may successfully ablate Arid1a in the stroma as well and facilitate the 

study of epithelial-stromal interactions.  Another unanswered question is whether ARID1A 

mutations play a role in the transition from the oestrogen-dependent endometriosis state to 

the oestrogen-independent OCCC state. This question could be answered by manipulating 

Arid1a in the Cheng endometriosis model (Cheng et al. 2011). It would then be important to 

explore cell-context specific differences in the consequences of ARID1A mutations in 

oestrogen-independent OCCC and oestrogen-dependent ovarian and endometrial 

endometrioid carcinomas. 

 

I describe a core ARID1A-driven transcriptional programme that is conserved across non-

malignant cells and tissues of different developmental origins and across species. Before 

discussing the implications of this any further, it is important to note some of the limitations of 

my analysis. As I have already mentioned, the experimental set-up used to generate the uterus 

gene expression data (see section 4.3) essentially provides correlational data. However, the 

remarkable overlap in enriched pathways and networks between uterus, MEFs and IOSE cells 

provides some assurance that the uterus expression data is enriched with genes regulated by 

and not just correlated with Arid1a. Additionally, the knockdown in IOSE cells, despite leading 

to the identification of 2938 differentially regulated genes at FDR 0.01, at approximately 50%, 

was suboptimal. A further limitation is that, whereas the gene expression data generated by 

using microarrays in MEFs were cross-validated by RNA-seq, no such procedure was 

performed for the uterus or IOSE data. However, approximately 75% of the genes (2210 of 

2971) identified as differentially expressed in MEFs by the microarray were confirmed as such 

by RNA-seq, and there is no reason to suppose that this proportion would differ significantly 

for the other microarray experiments. Of course, functional validation of the transcriptome 

analysis predictions is extremely important, as will be discussed later.  
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Several observations from the gene expression experiments deserve mention. To the best of 

my knowledge, no published ARID1A-driven transcriptome data exists yet. My data show that 

ARID1A regulates an extensive array of genes with 1358 genes differentially expressed in the 

mouse uterus (FDR 0.05), 2210 validated genes in MEFs and 2938 in human IOSE cells (both 

FDR 0.01). These numbers are much higher than the ~150 genes reported to be regulated by 

ARID1A in the hepatocellular carcinoma cell line HEPG2 in unpublished data presented by 

Dr. J Raab, University of North Carolina, USA.6 I found that 435 genes were ARID1A-regulated 

in JHOC-5 OCCC cells at FDR 0.01 in my data. Examination of a larger panel of non-malignant 

and malignant cells will help clarify whether ARID1A-regulates a more restricted subset of 

genes when modulated in established malignant cell lines compared to normal cells. 

Furthermore, although ARID1A has been described to be associated predominantly with 

transcriptional repression (Nagl et al. 2007), approximately equal numbers of genes were up- 

and down-regulated in all my experiments. Second and further-order effects could explain this 

discrepancy with ARID1A directly repressing transcription regulators, the consequences of 

which could be either repression or expression of their target genes. Analysis of Arid1a binding 

sites in MEFs using ChIP-seq is being planned and could provide important information.   

 

Pathways and networks related to mitotic cell cycle regulation were among the most 

significantly enriched in mouse uterus, MEFs and IOSE cells when each experiment was 

analysed independently, despite their different developmental origins. I was able to define a 

“core” set of 177 genes that showed ARID1A regulation in all 3 experiments. Remarkably, the 

4 most enriched pathways among these genes were all related to mitosis (“Spindle assembly 

and chromosome separation”, “The metaphase checkpoint”, “Role of Nek in cell cycle 

regulation” and “Role of APC in cell cycle regulation”). Of course, this is partly due to 

overlapping genes defining these pathways, but this does not negate the observation that 

ARID1A appears to play an important role in G2/M regulation. Previous reports have 

implicated the SWI/SNF complex in kinetochore organisation and regulation of mitosis (Varga-

Weisz 2001; Xue et al. 2000). Furthermore, disruption of mitotic checkpoints has been 

reported to accompany BAF47 (also known as Snf5) (Vries et al. 2005) and SMARCA4 loss 

(Bourgo et al. 2009). A recent publication shows that SMARCA4 and ARID1A are necessary 

for Topoisomerase IIα-mediated DNA decatenation and that disruption of either SWI/SNF 

component promotes the formation of anaphase bridges and aneuploidy, thus directly 

                                                
6 Presented at the AACR Chromatin and Epigenetics in Cancer Conference (June 19-22, 2013, Atlanta, 
GA, USA). 
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implicating ARID1A in the mitotic mechanism (Dykhuizen et al. 2013). My data also point 

towards further inter-dependencies between Topoisomerase IIα and ARID1A as Top2a 

expression was significantly downregulated (log2-fold change -0.66 in the microarray, -0.79 in 

RNA-seq) in MEFs following Arid1a knockdown. However, this was not seen in the mouse 

uterus and IOSE datasets. The observation that, in 3T3 cells, Arid1a expression is down-

regulated at prophase and completely disappears by metaphase (Flores-Alcantar et al. 2011), 

is consistent with my data and, together, suggest a model where ARID1A loss abrogates the 

G2/M checkpoint. These predictions require validation at the protein level and by cell-cycle 

analysis. An expedient way to perform these experiments would be to create MEFs from -

ROSA26Cre-ERT2-Arid1afl/fl mice and use tamoxifen to ablate Arid1a expression in vitro, work 

that is being planned.  

 

As detailed in section 1.3.1.2, ARID1A mutations tend to co-occur with PI3K pathway 

aberrations in many tumours, including OCCC (Jones et al. 2010; Yamamoto et al. 2012b) 

and endometrial cancers (Liang et al. 2012). Additionally, studies in endometrial cancer (Liang 

et al. 2012) have shown functional activation of the PI3K pathway in the presence of ARID1A 

mutations even in the absence of PI3K pathway mutations. Conversely, ARID1A 

overexpression in the glioblastoma U87 cell line decreased expression of pAKT and pS6K 

(Zeng et al. 2013). My gene expression data did not show differential expression of the major 

PI3K pathway genes (Pten, Pik3ca, Pik3r1, Akt, Torc1, Rps6kb1, Tsc1, Tsc2, Gsk3b) in either 

the MEFs or the uterus (data not shown). Of these genes, only TSC1 was down-regulated 

after knockdown in IOSE and none was in JHOC-5 cells.  Whether this is because of 

differences between mRNA expression and stabilisation or activation of protein products is 

unclear. However, some accessory components (Pik3r3, Pik3ip1, Pik3cb, Pik3cd), appear to 

be Arid1a-regulated in at least one of the normal tissues studied. Detailed functional studies 

are needed to examine whether ARID1A loss in normal tissues activates the PI3K pathway. It 

is possible that other co-operating events are needed for this activation to occur; these could 

be present in malignant but not normal cells.  

 

Differences in Arid1a transcriptional programmes between different tissues also exist. Taking 

the mouse uterus and MEF data as an example, pathways related to apoptosis were 

prominent among the former but not the latter (Table A.1). Additionally different developmental 

pathways were enriched in the two datasets (Tables A.1 and A.3). This points towards tissue 

and cell-type specific Arid1a-driven transcriptional programmes on top of its more generic 

effects on the cell cycle. However, pathway and network analysis using the list of 802 genes 
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that were Arid1a-regulated in the uterus, but not the MEFs, did not show any enriched 

pathways or networks at FDR<0.05 (data not shown), implying that Arid1a-driven cell type 

specific transcriptional programmes rely more on variations of the core programme than on 

regulation of entirely different sets of genes.             

 

Examination of ARID1A-regulated genes in the OCCC JHOC-5 cells did not show enrichment 

for the cell cycle or cytoskeleton-related genes that predominated in normal cells and tissues. 

In fact, despite 435 genes being reported as differentially regulated, very few specific 

pathways and networks were identified as enriched. This underscores the fact that, when 

studying putative early events in carcinogenesis, examination of gene function in normal and 

pre-malignant tissues can provide more valuable insights compared with aggressive malignant 

cell lines that have achieved the hallmarks of malignancy without the need to mutate the gene 

of interest.  

      

ARID1A knockdown resulted in decreased SMARCA4 and SMARCA2 mRNA levels in 2 EOC 

cell lines (PEO1 and SKOV3) as well as in MEFs. Additionally, Smarca2 mRNA levels were 

lower in the “Low Arid1a” compared with the “High Arid1a” uterine samples. These 

observations imply regulation of the SWI/SNF complex ATPases by ARID1A. A preferential 

association of ARID1A with either SMARCA4 or SMARCA2 is not thought to exist (Nagl et al. 

2007). However, my results are consistent with unpublished observations from our group (Ms. 

Charlotte Sutherell) that show SMARCA2 protein expression is not detected in 7 out of 8 

OCCC cell lines with absent ARID1A expression and warrant further confirmation. 

 

My results show that in the majority of cancer cell lines tested (5 of 6), ARID1A knockdown 

increases proliferation and the same effect was seen in MEFs. This is consistent with 

observations in hepatocellular carcinoma cell lines (Huang et al. 2012) and immortalised 

ovarian epithelium lines (Guan et al. 2011). However, I show that this is not a universal 

phenomenon as PEO1 cells exhibited decreased proliferation following knockdown. PEO1 is 

a HGS cell line that carries TP53 and BRCA2 mutations (Ng et al. 2012). However, knockdown 

of ARID1A increased proliferation in other cell lines that are probably HGS (RMG-I) or carry 

TP53 mutations (SKOV3). Examination of a larger panel of cell lines is needed to clarify 

whether PEO1 is a rare exception to a rule of increased proliferation after ARID1A knockdown 

in cancer cell lines. Supporting this notion, re-expression of ARID1A in mutated cell lines 

(OVISE and HEC-1A) decreased proliferation (Guan et al. 2011). Consistently with results in 

JHOC-5 cells (Guan et al. 2011), I found no change in proliferation when ARID1A was 
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overexpressed in SKOV3, a cell line with normal ARID1A expression. In contrast, reduction in 

proliferation was reported after ARID1A overexpression in U87 cells (Zeng et al. 2013); again 

overexpression in a wider range of cell lines will be needed to clarify the frequency of such 

phenomena. It should be noted however that, on average, the changes in proliferation upon 

ARID1A knockdown are modest compared to the effects of HNF1B knockdown (see section 

5.3) or glycogen metabolism perturbations (see sections 6.6 & 6.7). Additionally, the effect of 

ARID1A knockdown on proliferation was modified by HNF1B in at least one pair of isogenic 

cell lines, a matter that will be further discussed in the next chapter. 

 

Contrary to the observations in cell lines, siRNA targeting of Arid1a did not increase 

proliferation in cultured mouse uterus stromal cells, despite efficient gene knockdown. A 

limitation of this experiment is that a different assay, based on BrdU incorporation, was used 

to assess proliferation rather than the SRB assay used in the cell line experiments. However, 

the assay was able to detect different proliferation rates after hormonal treatments of the cells 

(Fig. 4.17B) and therefore, lack of assay sensitivity is an unlikely explanation for these results. 

Also, the lack of negative correlation between stromal Arid1a and Ki67 expression (Fig. 4.2E-

F) provides support for the BrdU assay results. It would be interesting to know the effects of 

Arid1a knockdown in uterine epithelial cells, since they are the most likely source of the cells 

that eventually undergo malignant transformation. However, the dissociation protocol only 

produced small numbers of epithelial cells in strips and clumps (compare Fig. 3.3C and 3.3E) 

that made accurate proliferation assays difficult to perform. 

 

Impressively, in vivo Arid1a knockout resulted in almost ubiquitous epithelial staining for Ki67 

28 days later in 75% of the mice examined compared to 20% of wild type mice, with 

heterozygous mice showing intermediate results. This very important observation suggests 

the possibility of a proliferative advantage for an endometrial epithelium clone with early 

ARID1A loss that could contribute to malignant transformation and needs to be further verified 

in a larger series. In this regard, a recent conference report showed that isolated Arid1a 

ablation in the ovarian epithelium via intrabursal adeno-Cre injection did not result in tumour 

formation. However, undifferentiated tumours formed in 40% of mice after combined Arid1a 

and Pten ablation (Guan et al 2013).    

 

Nevertheless, in their totality, the proliferation assays described above once more highlight 

the fact that the effects of knocking down a specific gene may be different in cells that have 

already achieved all the hallmarks of malignancy via other routes, compared with genomically 
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normal cells. This is particularly relevant in the study of putative early events in carcinogenesis 

such as ARID1A loss. 

 

Until very recently, the effects of ARID1B knockdown on proliferation had not been reported. 

I knocked down ARID1B in a panel of 10 EOC cell lines and found decreased proliferation in 

5 cell lines, increased in 4 and no change in 1. Three of 4 cell lines with no ARID1A expression 

showed reduction in proliferation after ARID1B knockdown. This was supported by the results 

of simultaneous knockdown of both ARID1A and ARID1B in cell lines expressing both 

proteins. Simultaneous knockdown in that experiment was able to reverse the pro-proliferative 

effect of ARID1A knockdown in 3 of 5 cells lines, suggesting that most cells need at least one 

of the 2 ARID1 components for survival and that targeting ARID1B may be a therapeutic 

strategy in cells with ARID1A mutations. However, this is not a universal phenomenon as 

simultaneous knockdown markedly accelerated proliferation in OV2008 cells (compare Fig. 

4.17K and 4.19E-F) and mutations in both ARID1A and ARID1B have been reported in some 

tumours (Shain & Pollack 2013). Very recently, it was reported that ARID1B was required for 

survival of ARID1A-mutated cell lines, in agreement with my results (Helming et al. 2014). It 

appears therefore, that a synthetically lethal relationship between ARID1A and ARID1B may 

exist. A similar relationship has been reported for the 2 ATPases of the complex, SMARCA4 

and SMARCA2 (Hoffman et al. 2014), and data from our laboratory point towards interactions 

between ARID1A and the ATPases as many OCCC cell lines concomitantly lack expression 

of ARID1A and SMARCA2. It is important to identify whether that renders them particularly 

reliant on SMARCA4 and work to clarify this is ongoing in our group. 

 

An important premise of my project was that functional characterisation of ARID1A may 

identify potential therapeutic vulnerabilities of OCCC. The “core” transcriptional programme I 

describe is driven by activation of cell cycle and mitotic kinases such as Cyclin B, Cyclin D, 

Polo like kinases and Aurora Kinase A. Drugs targeting these kinases are in various states of 

development (Li et al. 2013; Rocca et al. 2014; Umene et al. 2013). Additionally, PDGFRA 

(Table 4.4), targeted by drugs such as sunitinib, imatinib and nintedanib, is part of the “core” 

ARID1A transcriptional programme. It will be important to test the effect of these drugs in 

ARID1A-mutant OCCC cell line models. 

 

In conclusion, the observations presented in this chapter, for the first time, describe ARID1A-

driven transcriptional programmes and point towards a pro-proliferative role for ARID1A 

mutations in the majority of cases. An immediate priority is to study in much greater depth the 
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consequences of Arid1a knockout in the uterus, by performing gene expression studies and 

ChIP-seq in samples from the ROSA26Cre-ERT2-Arid1afl/fl mice. Additionally, we have already 

began preparatory work (in collaboration with the Charnock-Jones laboratory, led by Dr. Claire 

Dawson) in order to conditionally knock out Arid1a in the Cheng endometriosis model. Detailed 

description of the consequences of Arid1a loss in an endometriotic background holds great 

promise in identifying novel drivers and therapeutic targets in OCCC. Furthermore, Arid1a 

mutations in the Cheng model may lead, alone or in combination with introduction of mutations 

in further genes such as Pik3ca and overexpression of Hnf1b, to a much needed GEMM of 

OCCC.   
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5.  ROLE OF HNF1B IN THE OCCC PHENOTYPE 

5.1. Introduction 

HNF1B is overexpressed, through epigenetic mechanisms (Pharoah et al. 2013), in the vast 

majority of OCCC (Kato et al. 2006; Kato & Toukairin 2007; Tsuchiya et al. 2003) and is one 

of the signature characteristics of this malignancy. As detailed in section 1.3.2.3, HNF1B has 

been reported to be one of the main drivers of a gene expression profile that distinguishes 

OCCC from other ovarian cancers (Okamoto et al. 2013; Senkel et al. 2005). Germline HNF1B 

mutations are the cause of a rare form of diabetes, MODY 5 (Ma et al. 2007), and HNF1B 

regulation of multiple genes involved in glucose metabolism and glycolysis has been 

convincingly shown (Cuff et al. 2013; Okamoto et al. 2013; Uekuri et al. 2013). These 

observations have led to the conclusion that HNF1B underpins glycogen accumulation in 

OCCC, although this has not been directly demonstrated.  

 

As discussed in section 1.3.2.3, a limitation of our understanding of the HNF1B-driven 

transcriptional programme is that most data were derived following HNF1B overexpression in 

embryonic kidney (HEK293) cells (Cuff et al. 2013; Senkel et al. 2005). Until very recently, the 

only data derived from a putative OCCC cell line utilised SKOV3 cells (Tomassetti et al. 2008) 

and showed regulation of EMT-related genes by HNF1B. While this project was underway, a 

study reported on gene expression profiles following HNF1B knockdown in RMG-I and     

RMG-II cells (Okamoto et al. 2013). However, these authors reported that HNF1B knockdown 

increased proliferation in these 2 cell lines (Okamoto et al. 2013), a finding that contradicts 

observations in IGROV1 and SKOV3 cells (Tomassetti et al. 2008) and is inconsistent with 

the induction of apoptosis after HNF1B knockdown in TOV21G and JHOC-5 cells (Tsuchiya 

et al. 2003).      

 

In this part of my project, I tested the hypothesis that HNF1B drives proliferation in OCCC, and 

that the reported findings in RMG-I and RMG-II cells (Okamoto et al. 2013) are atypical, by 

studying the effects of HNF1B knockdown in a panel of 6 OCCC cell lines. I then investigated 

in detail the HNF1B-driven gene expression programme in 2 bona fide OCCC cell lines,  

JHOC-5 and TOV21G, as previous gene expression profiles have been derived from cell lines 

that are either not widely accepted as representative of OCCC (SKOV3), are probably not 

OCCC [RMG-I (Anglesio et al. 2013)], or show an atypical increase in proliferation after 

HNF1B knockdown [RMG-I and RMG-II (Okamoto et al. 2013)]. Guided by the results of the 
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expression profiling, I hypothesised that HNF1B overexpression decreases migration and 

invasion and tested this, using scratch wound and Boyden chamber assays. Spurred on by 

the associations of HNF1B mutations and diabetes and the recently published data using 

RMG-II cells (Okamoto et al. 2013), I next asked whether HNF1B drives the Warburg effect 

and glycogen accumulation in JHOC-5 cells.  

 

5.2. HNF1B expression in OCCC cell lines 

I first confirmed HNF1B expression by immunoblots in 6 OCCC cell lines (TOV21G, SKOV3, 

JHOC-5, JHOC-7, JHOC-9 and OVISE) whereas, as expected, the HGS cell line PEO1 did 

not express HNF1B (Fig. 5.1A). Quantification of protein expression showed that there was 

only limited variation in expression among the 6 cell lines, with the highest expressing one, 

OVISE, showing two-fold higher expression than the lowest, TOV21G (Fig. 5.1A). qRT-PCR 

confirmed expression at the mRNA level in OVISE, TOV21G and RMG-I cells, whereas PEO1, 

ES-2 and OV2008 did not show expression (data not shown). This observation casts further 

doubt on the provenance of the last two lines that have commonly been used as OCCC cell 

models. 

 

5.3. HNF1B drives proliferation in OCCC cell lines and immortalised 

ovarian epithelium 

I then used lentiviruses expressing shRNA targeting HNF1B (clones 577, 578, 582 and 583) 

or non-targeting shRNA (clone 202) to stably knock down HNF1B expression in JHOC-5 and 

Figure 5.1. HNF1B expression and effect on proliferation 
A) HNF1B expression in cell lines. The left side panel shows a representative immunoblot whereas the 
right side panel shows mean ±S.E. protein expression quantification relative to TOV21G (n=3). B) 
Representative immunoblot after shRNA HNF1B knockdown in JHOC-5 and TOV21G cells (202: Non-
targeting shRNA; 577, 578, 582 and 583: shRNAs targeting HNF1B). C) Mean ±S.E. proliferation by 
the SRB assay of JHOC-5, TOV21G and PEO1 cells stably transfected with HNF1B-targeting shRNAs 
(transient transfection for PEO1) after 168 hours in culture.  1,000cells/well, 4 technical replicates per 
each flask replicate (n=4). D) HNF1B protein expression 72 hours after siRNA-mediated HNF1B
knockdown. The left side panel shows the immunoblot and the right side panel quantification of protein 
expression relative to non-targeting siRNA. E) Relative mean ±S.E. proliferation by the SRB assay of 
7 EOC cell lines 168 hours after HNF1B knockdown. 1,000cells/well, 4 technical replicates per each 
flask replicate (n=4). F) Morphological appearance of parental IOSE4 (left) and IOSE4 cells 
overexpressing HNF1B (right) (bar=100μm). G) HNF1B protein expression by parental IOSE4 and 
overexpressing IOSE4+HNF1B cells. The increase in the apparent HNF1B size is due to the GFP tag. 
H)  Relative mean ±S.E. proliferation by the SRB assay of IOSE4 and IOSE4+HNF1B cells after 168 
hours in culture. 1,000cells/well, 4 technical replicates per each flask replicate (n=4). I) Relative mean 
±S.E. proliferation by the SRB assay of IOSE4 and IOSE4+HNF1B cells 168 hours after siRNA HNF1B 
knockdown. 1,000cells/well, 4 technical replicates per each flask replicate (n=4). 
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TOV21G cells as detailed in section 2.20.2. Protein expression was assessed after puromycin 

selection for 7 days (Fig. 5.1B). The effect of knockdown on proliferation was then assayed in 

4 separate experiments in 2 clones per cell line, by the SRB assay. Knockdown resulted in 

significant decrease in proliferation after 168 hours in both JHOC-5 and TOV21G cells (both 

p<0.0001 by 1-way ANOVA) (Fig. 5.1C). Compared to clone 202, proliferation was decreased 

by 57% and 58% using clones 577 and 583 in JHOC-5 and by 55% and 34% using clones 

578 and 582 in TOV21G cells. Transient shRNA HNF1B knockdown, using all 4 clones, did 

not decrease proliferation in the non-HNF1B expressing PEO1 cells (Fig. 5.1C). I then 

assayed the effect of transient HNF1B knockdown using siRNA in a wider panel of cell lines, 
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including PEO1 as a negative control. Treatment with HNF1B-targeting siRNA resulted in a 

74-98% reduction in protein expression at 72 hours (Fig. 5.1D). Proliferation was then assayed 

in a manner identical to the shRNA-mediated knockdown. There was a significant decrease 

in proliferation in 5 of the 6 OCCC cell lines tested (Fig. 5.1E). Proliferation decreased by 40% 

(p=0.04) in TOV21G and 64% (p=0.03) in JHOC-5 cells, mirroring the results obtained by 

shRNA treatment. Furthermore, it decreased by 77% (p=0.01) in SKOV3, 51% (p=0.007) in 

JHOC-9 and 60% (p=0.02) in OVISE cells. JHOC-7 proliferation was not affected by HNF1B 

knockdown (9% difference, p=0.78) nor was, as expected, PEO1 proliferation (8% difference, 

p=0.46).  

 

Next, I investigated the effects of HNF1B overexpression in the immortalised ovarian surface 

epithelium IOSE4 cell lines. Compared to the parental IOSE4 cells, IOSE4+HNF1B cells 

assume a more elongated shape (Fig. 5.1F) and express HNF1B (Fig. 5.1G). Using an 

identical set-up for the SRB assay to that utilised for the OCCC cell lines, induction of HNF1B 

expression in IOSE4 cells increased proliferation by 74% (p=0.0005) (Fig. 5.1H). As expected, 

siRNA-mediated HNF1B knockdown decreased proliferation back to baseline levels in 

IOSE4+HNF1B cells, but had no effect on IOSE4 cells (Fig. 5.1I). 

 

These results support a proliferation-promoting role for HNF1B in both OCCC and IOSE, in 

accordance with previous observations (Tomassetti et al. 2008; Tsuchiya et al. 2003).  

 

5.4. HNF1B gene expression profiling     

I then asked whether pathways and genes reported to be HNF1B-regulated in the literature 

were indeed so in the bona fide JHOC-5 and TOV21G OCCC cell lines. As detailed in section 

2.17.2, cells stably transfected with lentiviruses carrying non-targeting or HNF1B-targeting 

shRNA were assayed with Beadchip arrays, using four flask replicates per cell line. I first 

analysed results for each cell line separately, to gain an understanding of the variability of the 

HNF1B-driven transcriptional programme across different cell lines.   

 

5.4.1. HNF1B regulates EMT and cell adhesion in JHOC-5 cells 

Hierarchical clustering of the array samples showed that they clustered by treatment type, 

indicating that the type of shRNA used (HNF1B vs. non-targeting) was the most significant 

driver of the differences in the expression profiles (data not shown). Volcano plots and 
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heatmaps based on 2919 genes differentially expressed at FDR 0.01 are shown in Fig. 5.2A-

B. Approximately equal numbers of genes were up (1452) and down-regulated (1467) after 

HNF1B knockdown. I then carried out pathway analysis, using MetaCore, which showed that 

more than 50 pathways were enriched in differentially regulated genes at FDR<0.01 (Table 

A.11 in the Appendix). Pathways related to EMT, WNT signalling and cell adhesion 

[“Regulation of EMT (Fig. 5.3)”, “WNT signaling pathway”, “Chemokines and adhesion”, “ECM 

remodelling”, “TGF, WNT and cytoskeletal remodelling” and “TGF-beta-dependent induction 

of EMT via RhoA, PI3K and ILK”] occupy 6 of the top 7 places. Among others, genes involved 

in these pathways that were HNF1B-regulated are 3 WNT ligands (WNT2B, WNT7A and 

WNT7B), 3 Frizzled receptors (FZD2, FZD7 and FZD8) and growth factor receptors (EGFR, 

Figure 5.2. HNF1B gene expression array in JHOC-5 and TOV21G cells 
Gene expression was assayed using BeadChip arrays in JHOC-5 and TOV21G cells stably transfected 
with non-targeting shRNA (NTC) or shRNA targeting HNF1B (KD2). (n=4 flask replicates per clone). A, 
C) Volcano plots (log2-fold change vs. log odds) showing the top 8 differentially expressed genes in
JHOC-5 (A) and TOV21G (C) cells. B, D) Heatmaps for the KD2 vs. NTC comparisons in JHOC-5 (B) 
and TOV21G (D) cells.  
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FGFR1, MET and TGFBR2). Genes encoding downstream transcription factors such as 

TCF3, TCF4, JUN, SP1, CREB, MYC, SP1, SNAI1 (encoding SNAIL) and SNAI2 (encoding 

SLUG) as well as proteins involved in EMT [e.g. MMP9, VIM (encoding Vimentin), CLDN1 

(encoding Claudin-1) and CTNNB1 (encoding β-catenin)] also showed expression changes. 

HNF1B also appeared to positively regulate the expression of multiple members of the 

interleukin family (e.g. interleukin 1α, 1β, 6, 8 and 23α) and regulate members of the NF-κB 

 

Figure 5.3. The “Regulation of epithelial-to-mesenchymal transition” pathway is 
HNF1B-regulated in JHOC-5 cells 
“Regulation of epithelial-to-mesenchymal transition” was the most enriched pathway (FDR =6.35x10-8) 
following shRNA knockdown of HNF1B in JHOC-5 cells (n=4). Differentially expressed gene (DEG) 
lists (n=2919) were created at FDR 0.01. Red “thermometer” bars highlight the DEG that drive pathway 
enrichment. Analysis performed and graph created using MetaCore (www.genego.com). 
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pathway (e.g. NFKB2, NFKB1A, NFKB1B and IKBKG), which was reflected in the presence 

of multiple pathways related to immune response among the enriched pathways in Table A.11. 

In fact, IL6 was the single most down-regulated gene following HNF1B knockdown, showing 

an 8.5-fold reduction in expression.  

 

Process network analysis showed that 34 networks were enriched in HNF1B-regulated genes 

at FDR<0.01 (Table A.12 in the Appendix). “Mitosis” was the most enriched network, driven 

by changes in expression in CCNA1 (encoding Cyclin A), CCNB1, CCNB2, CDC25B and 

CDC25C.  Interestingly, an “ESR1-nuclear pathway” network was also enriched 

(FDR=0.0005), driven by changes in expression of ER-associated transcription factors such 

as FOS, JUN and FOXA1 and ER chaperones such as FKBP2. Furthermore, a “Chromatin 

modification” network was significantly enriched (FDR=0.0005). SWI/SNF components 

(ARID1B, SMARCA4, SMARCB1, SMARCC1 and SMARCD3) were negatively regulated by 

HNF1B, raising the possibility of an interaction between HNF1B and ARID1A in OCCC 

carcinogenesis. 

 

5.4.2. HNF1B regulates EMT and cell adhesion in TOV21G cells 

Similarly to JHOC-5 cells, hierarchical clustering after HNF1B knockdown in TOV21G cells 

showed clustering by treatment arm (data not shown). 3630 genes (1917 down-regulated and 

1713 up-regulated) showed change in expression at FDR 0.01 (Fig. 5.2C-D). More than 50 

pathways were enriched at FDR<0.01 on pathway analysis using MetaCore (Table A.13 in the 

Appendix). Similarly to JHOC-5 cells, 6 of the 7 most enriched pathways were related to EMT, 

cytoskeleton and adhesion [“Chemokines and adhesion” (Fig. 5.4), “Cytoskeleton 

remodelling”, “TGF, WNT and cytoskeletal remodelling”, “Regulation of epithelial-to-

mesenchymal transition (EMT)”, “Histamine H1 receptor signaling in the interruption of cell 

barrier integrity” and “Cadherin-mediated cell adhesion”]. Again, WNT ligands (WNT2B, 

WNT5A, WNT7B, WNT10A and WNT11), Frizzled receptors (FZD1, FZD2, FZD3, FZD7, 

FZD8 and FZD9), TGFβ   ligands (TGFB2 and TGFB3), growth factor receptors (EGFR, MET 

and FGFR1) and downstream transcription factors (JUN, SP1, TCF3, SNAI1 and TWIST1) 

were HNF1B-regulated. Additionally, multiple genes encoding cadherins [CDH1 (encoding E-

cadherin), CDH2 (N-cadherin), CDH5 (VE-cadherin)] were HNF1B-regulated in TOV21G cells, 

something that was not seen in JHOC-5. 
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31 process networks were significantly enriched at FDR<0.01 using MetaCore (Table A.14 in 

the Appendix). Consistent with the above, networks related to adhesion, EMT and 

cytoskeleton remodelling predominated. Multiple genes encoding collagen subunits, including 

subunits of Collagen Type I (COL1A1, COL1A2), IV (COL4A1, COL4A2, COL4A5) and V 

(COL5A1) underlie the enrichment in adhesion-related networks. The same Collagen Type IV, 

 

Figure 5.4. The “Chemokines and adhesion” pathway is HNF1B-regulated in TOV21G 
cells 
“Chemokines and adhesion” was the most enriched pathway (FDR = 7.7x10-13) following shRNA 
knockdown of HNF1B in TOV21G cells (n=4). Differentially expressed gene lists (n=3630) were created 
at FDR 0.01. Red “thermometer” bars highlight the DEG that drive pathway enrichment. Analysis 
performed and graph created using MetaCore (www.genego.com). 
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but not Type I or V, genes were regulated by HNF1B in JHOC-5 cells too. Intriguingly, mitosis-

associated kinases did not appear to be HNF1B-regulated in TOV21G cells. However, genes 

encoding Cyclin D isoforms (CCND1, CCND2 and CCND3) were negatively and those 

encoding Cyclin E isoforms (CCNE1 and CCNE2) positively regulated by HNF1B. Additionally, 

HNF1B positively regulated multiple DNA polymerase genes (POLA2, POLB, POLD3 and 

POLE2). This could imply different mechanisms for proliferation regulation by HNF1B 

depending on the cellular context and needs to be further investigated. 

 

5.4.3. A core HNF1B transcriptional programme is involved in adhesion, cytoskeleton 

remodelling and EMT regulation  

Gene expression analysis in JHOC-5 and TOV21G cells, separately in each cell line, revealed 

some common themes such as regulation of WNT pathways and EMT but also differences 

 

Figure 5.5. Overlap of genes and pathways regulated by HNF1B in both JHOC-5 and 
TOV21G cells 
A) Overlap of genes regulated by HNF1B in JHOC-5 and TOV21G cells. Differentially expressed gene 
lists were created using BeadChip arrays at FDR 0.01. B) Pathways enriched in HNF1B-regulated 
genes with p<10-7 in both JHOC-5 and TOV21G cells. 
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such as the enrichment in immune response, SWI/SNF and mitosis regulation genes in JHOC-

5 and in S-phase and angiogenesis regulation genes in TOV21G cells. Genes that are HNF1B-

regulated in both cell lines could provide insights into a “core” HNF1B-driven transcriptional 

programme. 1221 genes showed differences in expression after HNF1B knockdown in both 

cell lines (Fig. 5.5A), an overlap that was highly statistically significant (p=1.8x10-270). 

 

 

Figure 5.6. The “Chemokines and adhesion” pathway is HNF1B-regulated in OCCC cell 
lines 
“Chemokines and adhesion” was the most enriched pathway (FDR = 6.62x10-7) in the 1221 genes that 
were HNF1B-regulated in both JHOC-5 and TOV21G cells. Red “thermometer” bars highlight the DEG 
that drive pathway enrichment. Analysis performed and graph created using MetaCore 
(www.genego.com). 
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Pathway analysis of these 1221 gene using MetaCore, showed that more than 50 pathways 

were enriched in HNF1B-regulated genes at FDR<0.01 (Table 5.1 and Fig. 5.5B). The 5 most 

enriched pathways were again related to adhesion, WNT signalling and EMT regulation 

[“Chemokines and adhesion” (Fig. 5.6), “TGF, WNT and cytoskeletal remodelling”, 

“Cytoskeleton remodelling” “Regulation of EMT” and “ECM remodelling”]. Genes that were 

HNF1B-regulated in both cell lines included WNT ligands (WNT2B and WNT7B) and receptors 

(FZD2, FZD7 and FZD8), other growth factor receptors (MET, EGFR, FGFR1 and IGF1R), 

Table 5.1. Top 25 pathways enriched in genes regulated by HNF1B in both JHOC-5 and 
TOV21G cells  

Pathway p value FDR 

Cell adhesion - Chemokines and adhesion 1.01E-09 6.62E-07 

Cytoskeleton remodelling - TGF, WNT and cytoskeletal 
remodelling 

4.36E-08 9.64E-06 

Cytoskeleton remodelling - Cytoskeleton remodeling 4.43E-08 9.64E-06 

Development - Regulation of epithelial-to-mesenchymal 
transition (EMT) 

1.07E-07 1.74E-05 

Cell adhesion - ECM remodeling 2.49E-07 3.25E-05 

Immune response - MIF-induced cell adhesion, migration 
and angiogenesis 

3.62E-07 3.94E-05 

DNA damage - Brca1 as a transcription regulator 1.54E-06 1.44E-04 

Neurophysiological process - Receptor-mediated axon 
growth repulsion 

2.03E-06 1.55E-04 

Immune response - HMGB1/RAGE signaling pathway 2.14E-06 1.55E-04 

DNA damage - ATM/ATR regulation of G1/S checkpoint 3.01E-06 1.97E-04 

Development - Role of IL-8 in angiogenesis 4.6E-06 2.73E-04 

Immune response - C5a signaling 6.76E-06 3.68E-04 

Immune response - MIF-mediated glucocorticoid regulation 8.45E-06 4.25E-04 

Mucin expression in CF airways 9.63E-06 4.49E-04 

Immune response - CCL2 signaling 1.58E-05 6.8E-04 

Cell cycle - Regulation of G1/S transition (part 1) 1.67E-05 6.8E-04 

Development - VEGF signaling via VEGFR2 - generic 
cascades 

2.36E-05 9.06E-04 

Development - Thromboxane A2 pathway signaling 3.23E-05 0.001171 

G-protein signalling - RhoA regulation pathway 4.21E-05 0.001449 

Immune response - IL-18 signaling 4.85E-05 0.001508 

Immune response - IL-17 signaling pathways 4.85E-05 0.001508 

Development - VEGF signaling and activation 5.34E-05 0.001586 

Immune response - IL-1 signaling pathway 6.6E-05 0.001874 

Cell adhesion - Tight junctions 6.89E-05 0.001876 

Reproduction - GnRH signaling 7.29E-05 0.001905 

Pathways list created and statistical analysis performed using MetaCore 
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downstream transcription factors (TCF3, JUN, FOS, SP1, NFKB2 and SNAI1), interleukins 

(IL6 and IL8) and integrins (ITGA6). 

 

Process network analysis suggested that 14 networks were enriched in HNF1B-regulated 

genes at FDR<0.01 (Table 5.2). The top 2 networks were “Regulation of angiogenesis” and 

“Blood vessel morphogenesis”. Inspection of the gene lists revealed that this network 

enrichment was driven mostly by pleiotropic transcription factors (e.g. NFKB2, SP1, JUN, 

FOS) and protein kinases (e.g. SRC, PRKCH, PRKCQ) as well two ephrin isoforms (EFNA1 

and EFNAB2). There was no differential expression of VEGF isoforms of their receptors and, 

therefore, whether HNF1B directly regulates angiogenesis requires further mechanistic in vivo 

studies. Similar considerations apply to the enriched “ESR1-nuclear pathway”, with 

differentially regulated genes in this network including SP1, FOS, CDKN1A, CCND1 and 

CCNE1. 

 

Table 5.2. Top process networks enriched in genes regulated by HNF1B in both JHOC-5 and 
TOV21G cells  

Process Network p value FDR 

Development - Regulation of angiogenesis 4.75E-09 7.55E-07 

Development - Blood  vessel morphogenesis 8.27E-08 6.58E-06 

Development – EMT - Regulation of epithelial-to-
mesenchymal transition 

3.15E-06 1.67E-04 

Reproduction - FSH-beta signaling pathway 1.32E-05 5.25E-04 

Immune response - Antigen presentation 2.66E-05 8.46E-04 

DNA damage - Checkpoint 1.26E-04 0.003338 

Cell adhesion - Integrin-mediated cell-matrix adhesion 1.53E-04 0.003478 

Development – Neurogenesis - Axonal guidance 3.02E-04 0.006011 

Signal transduction - ESR1-nuclear pathway 3.98E-04 0.006205 

Cardiac development – Wnt - beta-catenin, Notch, VEGF, IP3 
and integrin signalling 

4.26E-04 0.006205 

Cytoskeleton - Regulation of cytoskeleton rearrangement 4.29E-04 0.006205 

Inflammation - Protein C signaling 8.17E-04 0.009898 

Inflammation - MIF signaling 8.25E-04 0.009898 

Development - Ossification and bone remodeling 8.72E-04 0.009898 

Process networks list created and statistical analysis performed using MetaCore 
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5.5. HNF1B decreases migration and invasion in OCCC cell lines and 

immortalised ovarian surface epithelium 

The combined gene expression profiling results suggested a role for HNF1B in the regulation 

of migration and invasion, in agreement with findings in SKOV3 cells where HNF1B was 

shown to promote an epithelial phenotype and repress EMT markers (Tomassetti et al. 2008). 

Therefore, I hypothesised that HNF1B overexpression suppressed migration and invasion. I 

first replicated the microarray results using qRT-PCR to assay changes in SNAI1, CTNNB1 

and CDH1 after siRNA-mediated HNF1B knockdown. As predicted, knockdown increased 

SNAI1 and decreased CDH1 expression (the latter only in TOV21G cells, in accordance with 

the array results); CTNNB1 showed a trend towards increase that was not significant due to 

the small number of replicates (n=2) in this experiment  (Fig. 5.7A). At the protein level, 

knockdown did not seem to affect total or non- phosphorylated, active, β-catenin expression 

(Fig. 5.7B). E-cadherin expression could not be detected by immunoblotting or 

Figure 5.7. Effect of HNF1B knockdown on EMT-related RNA and protein expression 
A) Relative mRNA expression levels of EMT-related genes 72 hours after siRNA HNF1B-knockdown 
in JHOC-5 and TOV21G cells (n=2). B) Protein expression of total and non-phosphorylated β-catenin 
and E-cadherin in JHOC-5 and TOV21G cells 72 hours after siRNA HNF1B knockdown and in IOSE4 
cells stably overexpressing HNF1B. MCF-7 cells are positive control for E-cadherin expression. C) 
Changes in vimentin expression by immunofluorescence in JHOC-5 and TOV21G cells 96 hours after 
HNF1B siRNA treatment. 
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immunofluorescence in JHOC-5 and TOV21G cells treated with either non-target or HNF1B 

siRNA, whereas a faint band was seen in MCF-7 cells (positive control) (Fig. 5.7B). JHOC-5 

cells strongly expressed vimentin under baseline conditions and showed a further increase in 

expression after HNF1B knockdown (Fig. 5.7C). Conversely, TOV21G cells showed low 

baseline vimentin expression with no further induction upon knockdown (Fig. 5.7C).  In 

accordance with these results, induction of HNF1B expression in IOSE4 cells did not affect 

total or non-phosphorylated β-catenin expression (Fig. 5.7B). 

 

To test the hypothesis that HNF1B negatively affects migration and invasion, I performed 

scratch wound and invasion assays in JHOC-5 and TOV21G cells. The scratch wound assay 

was performed with 4 flask replicates, each in technical quadruplicates, and showed that 

siRNA-mediated HNF1B knockdown markedly increased migration in JHOC-5 cells (Fig. 5.8A-

B). After 12 hours, the mean wound width was 23μm in the HNF1B siRNA treated cells 

compared with 288μm in non-target siRNA treated ones (p<0.0001). Two-way ANOVA 

showed that the knockdown had a significant effect on migration (p<0.0001) and also revealed 

a time by treatment interaction (p<0.0001) with the effect of knockdown becoming greater over 

time (Fig. 5.8B). TOV21G cells showed much slower migration (Fig. 5.8D). HNF1B knockdown 

significantly increased migration (p=0.0004 by 2-way ANOVA) but the magnitude of the effect 

was smaller than in JHOC-5 cells.    

 

Subsequently, I repeated the migration assays in IOSE4 and IOSE4+HNF1B cells. Similarly 

to the results in the OCCC cell lines, HNF1B expression in IOSE4 cells, confirmed by qRT-

PCR, resulted in a dramatic decrease in migration (Fig. 5.9A-B). 24 hours after scratching, the 

mean wound width was 136μm in the parental IOSE4 cells compared with 474μm in the 

IOSE4+HNF1B ones (p<0.0001). Two-way ANOVA showed that wound width was 

significantly different between the 2 cell lines (p<0.0001) and also revealed a time by treatment 

interaction (p<0.0001).    

 

 

Figure 5.8. Effect of HNF1B knockdown on migration and invasion of JHOC-5 and 
TOV21G cells 
A, C) Representative photomicrographs depicting JHOC-5 (A) and TOV21G (C) cell migration in the 
scratch wound assay (bar=300μm). B, D) Time course of wound width in JHOC-5 (B) and TOV21G 
cells (D) (n=4 for each cell line). E) Representative photomicrographs depicting JHOC-5 and TOV21G 
cell invasion after 24 hours in culture using BD Biocoat Matrigel Invasion chambers F) Quantification 
of cell invasion depicted in (E) (n=4 for each cell line). G) Quantification of cell invasion in the 
CultureCoat Cell Invasion Assay Basement Membrane Extract (BME) system (n=4 for each cell line)  
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I then performed an invasion assay using Matrigel-coated cell inserts, again with 4 flask 

replicates for each cell line. In agreement with the scratch wound assay, HNF1B knockdown 

resulted in increased invasion (Fig. 5.8E-F), which was statistically significant for JHOC-5 

(mean number of invading cells 34.75 vs. 0.25, p=0.05) but not TOV21G (mean number of 

invading cells 107.33 vs. 76.25, p=0.75). I repeated the invasion assay using the CultureCoat® 

assay that contains wells coated with 3 different concentrations of Basement Membrane 

Extract (BME) and provides a quantitative readout based on the fluorescence exhibited by 

invading cells following dissociation and Calcein AM incubation (Fig. 5.8G). Again, invasion of 

JHOC-5 cells was increased after HNF1B knockdown and reached statistical significance 

(p=0.05) for the “High BME” coating. Conversely, there was no difference in TOV21G invasion, 

irrespective of the invasion chamber coating (p=0.29-0.92). It is interesting to note that JHOC-

5 and TOV21G cells exhibited discordant behaviours in the 2 assays with the former showing 

very rapid migration but little invasion and the latter the reverse pattern.  

 

5.6. HNF1B is associated with clotting cascade genes 

OCCC is characterised by increased risk of VTE (Anglesio et al. 2011b) and a recent 

publication reported enrichment for clotting cascade genes among the genes regulated by 

HNF1B in HEK293 cells, a finding that was confirmed in an independent EOC dataset that 

included 8 OCCC cases (Cuff et al. 2013). Therefore, I investigated whether 36 clotting 

 

 

Figure 5.9. Migration and invasion of the IOSE4 and IOSE4+HNF1B cell lines 
A) Representative photomicrographs depicting parental IOSE4 and IOSE4 cells overexpressing 
HNF1B (IOSE4+HNF1B) cell migration in the scratch wound assay (bar=300μm). B) Time course of 
wound width in IOSE4 and IOSE4+HNF1B cells (n=4 for each cell line).     
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cascade genes were over-represented among HNF1B-regulated genes in JHOC-5 and 

TOV21G cells. Eight genes (FGB, F12, PLAT, PLAU, SERPINE1, SERPINA1, F2R and 

PLAUR) were regulated by HNF1B in JHOC-5, whereas 10 (FGA, FGB, BDKRB2, VWF, F3, 

PROS1, PLAT, TFPI, SERPINE1 and PLAUR) were in TOV21G cells. Of these, FGA and FGB 

were 2 of the 4 genes referred by name in the report by Cuff et al (2013). However, the overlap 

between the 36-gene clotting cascade gene set and the 2919 and 3630 HNF1B-regulated 

genes in JHOC-5 and TOV21G cells did not reach statistical significance (p=0.102 and 

p=0.067 respectively). 

 

5.7. HNF1B regulates multiple glycolytic pathway enzymes 

HNF1B has been shown to be important for glucose homeostasis (Wang et al. 2004) and the 

regulation of glycolysis in OCCC (Okamoto et al. 2013). Surprisingly, glucose metabolism 

related pathways and networks did not appear among the top hits in the agnostic MetaCore 

analysis of the core 1221 HNF1B-regulated genes. However, “Bile acids regulation of glucose 

and lipid metabolism via FXR” and “Regulation of lipid metabolism via LXR, NF-Y and SREBP” 

were among the enriched pathways (FDR=0.002 for both). Three transcription factors involved 

in glucose homeostasis, FOXA1, FOXO1 and FOXO4, were HNF1B-regulated in both cell 

lines as were the lipid metabolism-associated genes SREBF1, CREB1, PRKAG2, ACLY and 

SCD. 

 

Very recently, it was reported that 16 of 19 genes encoding enzymes involved in glycolysis 

were down-regulated following HNF1B knockdown in RMG-II cells (Okamoto et al. 2013). 

Seven of these genes (HK1, HK2, PFKP, PFKL, ENO2, ENO3 and LDHA) were significantly 

differentially expressed in JHOC-5 cells as well, with all except ENO3 showing reduced 

expression after HNF1B knockdown. The overlap in differentially expressed genes between 

this 19-gene list and the 2919 HNF1B-regulated genes in JHOC-5 cells was significant 

(p=0.009). Similarly, 6 genes (HK2, PFKL, PGK1, ENO2, LDHA and GAPDH) were 

differentially expressed in TOV21G cells. However, only PFKL, PGK1 and ENO2 were down-

regulated. The overlap was not significant in TOV21G cells (p=0.084). Notably, GAPDH 

expression was modestly but significantly increased after HNF1B knockdown by 18%. A 

consequence of this is that HNF1B knockdown efficiency is slightly underestimated in these 

cells as GAPDH expression was used for normalisation in qRT-PCR and immunoblots. In 

accordance with published results in RMG-I and RMG-II cells (Okamoto et al. 2013), HNF1B 

knockdown resulted in significant reduction in SLC2A1 (encoding GLUT1) expression in 
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JHOC-5 but not TOV21G cells. It appears therefore, that the effects of HNF1B knockdown on 

glycolysis are fairly similar between RMG-II and JHOC-5, but not TOV21G, cells.  

 

5.8. HNF1B knockdown reduces lactate production and leads to increased 

TCA intermediates and ATP accumulation 

As my data suggested that HNF1B regulates genes involved in glycolysis in JHOC-5 cells, I 

assayed changes in medium and intracellular metabolite concentrations over 72 hours in 

culture using NMR. Two lentiviral clones (577 and 583) were used to stably knock down 

HNF1B expression and were compared to the non-targeting 202 clone; the experiment was 

performed in triplicate as detailed in section 2.19.1. Compared to clone 202, HNF1B 

expression at the protein level was 63% and 76% lower in cells transfected with clones 577 

and 583 respectively on the day of the experiment. 

 

HNF1B knockdown resulted in a significant decrease in lactate excretion in the medium with 

a corresponding increase in pyruvate uptake (Fig. 5.10). Despite the reduction in SLC2A1 

expression (see section 5.7), glucose uptake from the medium was essentially stable. As 

expected (Israël & Schwartz 2011), glutamate and alanine mirrored the lactate changes, 

showing decreased excretion in the medium (Fig. 5.10). Other tested amino acids (glutamine, 

leucine, isoleucine, valine) showed minor, non-significant changes. The changes in the 

medium metabolic profile are most consistent with increased utilisation of pyruvate and 

glutamate (via α-ketoglutarate) in the TCA cycle and, therefore, less conversion of pyruvate 

to lactate or alanine. This was supported by increased intracellular concentrations of TCA 

intermediates such as citrate, succinate and fumarate (Fig. 5.11). Intracellular pyruvate and 

lactate levels were stable, strengthening the conclusion that after HNF1B knockdown less 

lactate is produced and pyruvate preferentially enters the TCA cycle. At the same time, 

intracellular glucose showed a non-significant increase with cellular glucose levels increasing 

possibly because of less glycogen accumulation (see section 5.9). Concentrations of 

membrane building blocks (taurine, choline, phosphocholine) and multiple amino acids 

(leucine, isoleucine, lysine, methionine, threonine, phenylalanine, glycine and serine) also 

significantly increased (Fig. 5.11; data not shown for serine and glycine). Even more 

importantly, the overall energetic state of the cells appeared more favourable with increases 

in intracellular creatine, phosphocreatine and ATP (Fig. 5.11). These results imply that HNF1B 

contributes to a pro-proliferative Warburg effect in JHOC-5 cells and its knockdown leads to 
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the cells reverting to oxidative phosphorylation and replenishing intracellular metabolites such 

as amino acids, membrane building blocks and ATP.  

 

5.9. HNF1B drives glycogen accumulation in JHOC-5 and IOSE4 cells 

The role of HNF1B in glucose metabolism through regulation of glycolytic pathways (Tanaka 

et al. 2004; Thomas et al. 2004), has led many to propose that HNF1B overexpression drives 

glycogen accumulation in OCCC (Uekuri et al. 2013). However, this has not been directly 

demonstrated before. I measured glycogen content, using a colorimetric assay (see section 

2.24.1 for details), in JHOC-5 and TOV21G cells stably transfected with lentiviruses carrying 

non-targeting (clone 202) or HNF1B-targeting (clones 577, 578, 582 and 583) shRNA, 

  

Figure 5.10. Effect of HNF1B knockdown on metabolites in the culture medium 
Changes in metabolite concentrations in the medium after 72 hours in JHOC-5 cells stably transfected 
with non-targeting shRNA (202) or shRNA targeting HNF1B (577 and 583). Cells were cultured in 
DMEM medium with 3 flask replicates per clone. Positive values indicate uptake from the medium (i.e. 
the concentration at 72 hours is lower than the baseline) whereas negative values indicate release in 
the medium (i.e. the concentration at 72 hours is higher than the baseline). 
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following puromycin selection, in 3 separate experiments.  HNF1B knockdown significantly 

decreased glycogen in JHOC-5 cells by 52% (p=0.04) and 77% (p=0.003) for clones 577 and 

583 respectively (Fig. 5.12A). Conversely, in TOV21G cells there was a non-significant 

increase in glycogen content (30%, p=0.39 for clone 578; 7%, p=0.9 for clone 582).  

 

I then interrogated the gene expression data (see section 5.4) for changes in expression of 

the core glycogen metabolism genes PYGL and GYS1 as well as the accessory genes PGM1, 

PGM2, PGM3, UGP1, UGP2 and GBE1. In JHOC-5 cells, PYGL, PGM3 and UGP2 showed 

significantly decreased expression following HNF1B knockdown. Conversely, in TOV21G cells 

PGM1 and GBE1 expression was increased following HNF1B knockdown. The significant 

reduction in PYGL expression was confirmed at the protein level in JHOC-5 cells, whereas 

TOV21G cells showed a non-significant trend towards reduced expression (Fig. 5.12D). These 

results suggest that HNF1B directly regulates glycogen content in JHOC-5 but not TOV21G 

cells. Taking into account the changes in expression of glycolytic pathway-related genes (see 

section 5.7) as well, it appears that glucose handling, and the role of HNF1B in it, differs 

significantly between JHOC-5 and TOV21G cells. 

 

Intriguingly, glycogen content remained stable or increased 72 hours after siRNA-mediated 

HNF1B knockdown in a panel of 6 OCCC cell lines, including JHOC-5 (Fig. 5.12B), implying 

complex time-dependent effects of HNF1B regulation of metabolism with changes in 

metabolites immediately after knockdown possibly not accurately reflecting the steady state 

(which is reflected in the gene expression arrays and metabolite measurement experiments). 

 

In accordance with the results obtained in JHOC-5 cells, expression of HNF1B in IOSE4 cells, 

increased glycogen content by 74% (p=0.047, n=5) (Fig. 5.12C). Therefore, it can be 

concluded that HNF1B directly regulates glycogen content, at least in a subset of cell lines.      
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Figure 5.11. Effect of HNF1B knockdown on intracellular metabolites 
Changes in intracellular metabolite concentrations after 72 hours in JHOC-5 cells stably transfected with 
non-targeting shRNA (202) or shRNA targeting HNF1B (577 and 583). Cells were cultured in DMEM 
medium with 3 flask replicates per clone and values corrected for protein content. 
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5.10. Discussion 

My results add to the literature suggesting that HNF1B overexpression, apart from its utility as 

a diagnostic IHC marker, is a major driver of OCCC. I have shown that HNF1B drives 

proliferation in a wide panel of bona fide OCCC cell lines, possibly through effects on 

interactions with the microenvironment (regulation of EMT and adhesion) and on cellular 

metabolism. Of considerable interest is the observation that, counter-intuitively, HNF1B 

knockdown increases migration and invasion while reversing the Warburg effect and the direct 

demonstration that HNF1B drives glycogen accumulation. 

 

With regards to proliferation, consistent results were obtained between stable HNF1B 

knockdown using lentiviruses to deliver shRNA in JHOC-5 and TOV21G cells (Fig. 5.1C) and 

siRNA in a wider panel of 6 OCCC cell lines (Fig. 5.1E). Only JHOC-7 cells were resistant to 

HNF1B knockdown, consistent with the resistance showed by this line to environmental and 

metabolism manipulations to be described in the following chapter. The lack of any effect on 

the HNF1B non-expressing PEO1 and IOSE4 cell lines, provides some assurances that the 

 

 Figure 5.12. HNF1B expression drives glycogen accumulation 

A) Glycogen content of JHOC-5 and TOV21G cells stably transfected with non-targeting shRNA (202) 
or shRNA targeting HNF1B (577 and 583 for JHOC-5; 578 and 582 for TOV21G) (n=3). B) Glycogen 
content of 6 OCCC cell lines 72 hours after siRNA HNF1B knockdown (n=2). C) Glycogen content of 
parental IOSE4 and IOSE4 cells overexpressing HNF1B (IOSE4+HNF1B) (n=5). D) Effect of HNF1B
knockdown on PYGL protein expression. A representative immunoblot is shown on the left and the 
mean ±S.E. expression on the right (n=3). Reduction is significant only for JHOC-5 clone 583 (p=0.03).
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observed changes in proliferation are not due to off-target shRNA or siRNA effects. My results 

are consistent with those reported previously in both ovarian (Tomassetti et al. 2008; Tsuchiya 

et al. 2003) and prostate (Grisanzio et al. 2012) cancer cell lines and contrast with the 

observed increase in proliferation following HNF1B knockdown in RMG-I and RMG-II cells 

(Okamoto et al. 2013). Whether this is due to the specific experimental design and assays 

used by these authors or to genuine differences in response among the cell lines requires 

further investigation. However, the increase in proliferation observed in RMG-I and RMG-II 

cells is inconsistent with the large body of work already mentioned. Further support for this is 

provided by my finding of increased proliferation in IOSE4+HNF1B compared with the parental 

IOSE4 cells (Fig. 5.1H).   

 

Gene expression analysis showed that HNF1B regulated a large set of genes in both       

JHOC-5 (n=2919) and TOV21G (n=3630) even with a stringent FDR 0.01 threshold. A 

limitation is that the array results were not formally validated by qRT-PCR as validating 

expression changes even for a few of the genes would vastly inflate the costs of the 

experiment. Nevertheless, in the few cases where array results were compared with qRT-PCR 

results (for HNF1B itself, CTNNB1, SNAI1 and CDH1) or protein expression (for PYGL and 

vimentin), concordance was observed. Use of a stringent FDR threshold as well as the 

extreme p value accompanying the overlap between genes showing differential expression in 

JHOC-5 and TOV21G cells (1.8x10-270), provide reassurance that the array results are robust. 

More importantly, the array predictions regarding regulation of EMT were confirmed by 

functional assays but, obviously, more extensive confirmation of the array results at the protein 

level is needed. The number of HNF1B-regulated genes in my study was much higher that 

previously reported (Senkel et al. 2005; Tomassetti et al. 2008). This is probably due to the 

number of replicates used in my experiment (4 flask replicates run in duplicate) which 

increased power. In addition, progress in microarray technology and analysis pipelines over 

the past decade has allowed changes of smaller magnitude to be reliably called as significant.  

 

My results support and expand on those previously reported. Senkel et al (2005) reported a 

list of 15 genes that were HNF1B-regulated in HEK293 cells and also part of an OCCC 

signature. The overlap between that 15-gene list and HNF1B-regulated genes in JHOC-5 and 

TOV21G was significant for both cell lines (9 common genes in JHOC-5, p=3.4x10-5; 8 

common genes in TOV21G, p=0.001). There was also a highly statistically significant overlap 

between the HNF1B-driven expression signature in RMG-II (Okamoto et al. 2013) and that in 

JHOC-5 (p=5.86x10-11) and TOV21G cells (p=1.69x10-7), implying that despite the atypical 
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effect on proliferation in RMG-II, HNF1B orchestrates a similar transcriptional programme in 

all 3 cell lines. Among the 29 genes regulated by HNF1B in all 3 cell lines, chemokines and 

genes implicated in extracellular matrix components and interactions appear prominent (e.g. 

CXCR4, CCL20, GPC4, TIMP2, DSE, GCNT1, RELN), as do growth factor receptors (e.g. 

FGFR1, IGF1R, SEMA6A) in accordance with the MetaCore pathway analysis of my data. 

 

Pathway analysis using MetaCore of HNF1B-regulated genes in both JHOC-5 and TOV21G 

cells individually and their overlap showed enrichment of pathways related to chemokines and 

adhesion, ECM remodelling, EMT regulation and WNT-driven cytoskeletal remodelling. These 

results are entirely in agreement with the report that HNF1B regulated adhesion, cytoskeletal 

and ECM-related genes in SKOV3 cells (Tomassetti et al. 2008). Importantly, that report 

showed that HNF1B repressed proteins associated with EMT and promoted E-cadherin 

expression (Tomassetti et al. 2008).  The change of morphology in IOSE4 cells upon HNF1B 

induction (Fig. 5.1F) is consistent with effects of HNF1B on adhesion and interactions with the 

micro-environment. Similarly, my data show that siRNA-mediated HNF1B knockdown 

increases EMT markers such as SNAI1 and vimentin while suppressing CDH1.  

 

The migration and invasion assays clearly show that, despite its pro-proliferative effect, 

HNF1B suppresses migration in both OCCC cell lines and in IOSE and additionally invasion 

in JHOC-5 cells. This is an extremely important observation that hints at trade-offs between 

proliferative and metastatic potential during OCCC tumour evolution and requires in vivo 

validation. Moreover, these results raise the intriguing possibility that HNF1B expression in 

OCCC may underlie the frequent presentation of OCCC as early stage disease, in stark 

contrast to HGS. My data also supports the report that HNF1B is the driver behind another 

well-recognised OCCC clinical manifestation, that of increased VTE risk (Cuff et al. 2013), as 

it modulates the expression of multiple genes involved in the clotting cascade.  

 

My analysis also reveals some of the limitations of over-reliance on pathway and network 

analysis predictions. Counter-intuitively, angiogenesis and blood morphogenesis emerged as 

HNF1B-regulated networks in my dataset. Closer examination of the gene lists revealed that 

this is probably a false positive finding due to changes in expression of pleiotropic transcription 

factors such as JUN, FOS and SP1. Nevertheless, it would be important to study the effects 

of HNF1B knockdown on angiogenesis in xenograft models. Similar considerations apply to 

the reported HNF1B regulation of an ESR nuclear network in my data. However, one of the 

main unanswered questions in OCCC carcinogenesis is how the switch from the oestrogen-
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dependent endometriosis state to the oestrogen-independent one of OCCC happens. 

Mechanistic studies of HNF1B activation in endometriosis using the Cheng GEMM (Cheng et 

al. 2011), as well as studies of oestrogen signalling in IOSE4 and IOSE4+HNF1B cells, may 

help clarify whether HNF1B overexpression promotes oestrogen independence. 

 

Another interesting observation from the gene expression data is that HNF1B modifies the 

expression of multiple SWI/SNF components, but not ARID1A itself, in the ARID1A wild-type 

JHOC-5 but not the ARID1A-mutant TOV21G cell line. This could imply that induction of 

HNF1B expression may compensate for wild-type ARID1A in a subset of tumours. The picture 

becomes more complicated when one considers that, in my mouse uterus (but not the MEF) 

data, Arid1a positively regulates Hnf1b expression, an observation repeated after ARID1A 

knockdown in the IOSE4+HNF1B cells (data not shown). Clearly, more information regarding 

HNF1B and ARID1A interactions is needed, as the possibility exists for reciprocal regulatory 

loops and temporal dependencies of their changes in OCCC carcinogenesis. 

 

Additionally, the gene expression data and the metabolic profiling studies in JHOC-5 cells 

confirm previous observations about the role of HNF1B in glycolysis (Tanaka et al. 2004; 

Thomas et al. 2004). Stable reduction of HNF1B protein levels in JHOC-5 cells was able to 

reverse the Warburg effect phenotype with reduction of lactate, glutamate and alanine 

excretion in the medium and increased pyruvate uptake, coupled with increases in intracellular 

glucose, TCA cycle intermediates, amino acid and membrane building blocks and a more 

favourable energetic state, as manifested by increased phosphocreatine and ATP levels. In 

short, HNF1B knockdown changes the metabolic profile of JHOC-5 cells to one that more 

closely resembles normal metabolism, while reducing proliferation. A limitation of my approach 

is that it provides a static picture of changes in metabolite concentrations after stable HNF1B 

knockdown; the observed concentrations are probably the aggregate result of changes in 

fluxes through multiple metabolic pathways. It will be important, in future studies, to investigate 

changes in carbon and phosphate handling directly. However, my results are generally in 

agreement with those reported by Okamoto et al while the current project was underway. 

These authors showed that HNF1B knockdown in RMG-I and RMG-II cells reduced lactate 

excretion and glycolytic flux (Okamoto et al. 2013). However, contrary to my data, they also 

showed reduced glucose uptake. Whether this is due to differences in experimental setup or 

real differences in the metabolic wiring of the cell lines tested is unclear. Nevertheless, my 

data provide a more detailed picture of changes in multiple metabolites and, for the first time, 

demonstrate direct control of intracellular glycogen accumulation by HNF1B in JHOC-5 and 
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IOSE4 cells. The fact that transient knockdown had a null or opposite effect of glycogen levels 

emphasises the importance of allowing enough time for steady states to be re-established 

following metabolism perturbations. It should be noted that HNF1B knockdown had a much 

more mixed effect on glycolytic pathway gene expression in TOV21G cells and did not affect 

glycogen levels. Therefore, it appears that HNF1B regulation of metabolism is fairly similar in 

RMG-I, RMG-II and JHOC-5 but differs in TOV21G cells. TOV21G shows microsatellite 

instability and is hyper-mutated (Domcke et al. 2013), facts that may have disrupted additional 

metabolism-related genes, causing these differences. Examination of a wider panel of OCCC 

cell lines will help to clarify these patterns. 

 

Further in vivo work is needed to confirm and expand on my observations. The stably 

transfected cell lines could be used in xenograft experiments with metastatic dissemination 

and survival as endpoints. In similar experiments, FDG-PET and spectroscopy could be used 

to assay metabolite changes and tumour electron microscopy to detect changes in glycogen 

accumulation. The xenograft approach would also allow for the effect of HNF1B on IL6 and 

inflammation in the tumour microenvironment to be studied in detail. 

  

To summarise, HNF1B is shown to be one of the major drivers of OCCC with a multitude of 

effects on proliferation, EMT and interactions with the microenvironment, and cancer cell 

metabolism. Almost all the presented work was conducted in cancer cell lines; it will be useful 

to study the effects of HNF1B expression induction in pre-malignant endometriotic cells, 

something that is possible using the Cheng endometriosis mouse model that enables genetic 

manipulation ex vivo during the transplantation step. Preparatory work for this has begun in 

the Charnock-Jones laboratory. Another extremely interesting and related question is whether 

HNF1B expression is induced as a stochastic event in endometriosis, eventually leading to 

OCCC, or is it that endometrial cells already expressing HNF1B confer a proliferative 

advantage and are at higher risk of malignant transformation in the stressful environment of 

an endometriotic cyst. Answering this question may help identify a subgroup of women with 

endometriosis at increased risk of malignancy, in whom preventive and screening efforts could 

be focused.       
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6.  TARGETING GLYCOGEN METABOLISM MAY BE A 

NOVEL THERAPEUTIC STRATEGY IN OCCC 

6.1. Introduction 

Glycogen accumulation is the defining morphological characteristic of OCCC and is thought 

to represent an adaptive response to the hypoxic and oxidative environment of the 

endometriotic cysts inside which OCCC develops (Iida et al. 2012; Yamada et al. 2011). 

Previous reports have suggested that, because of this, OCCC cell lines are more resistant to 

hypoxia and glucose deprivation than HGS ones (Stany et al. 2011). HIF1α induction in 

hypoxia is thought to promote glycogen accumulation in a wide variety of cell types (Favaro et 

al. 2012; Pelletier et al. 2012; Pescador et al. 2010). However, as I have shown in section 5.9, 

and others have suggested (Okamoto et al. 2013; Uekuri et al. 2013), HNF1B expression in 

OCCC also causes glycogen accumulation. Whether hypoxia and HIF1α further regulate 

glycogen accumulation in the setting of HNF1B overexpressing OCCC is presently unclear. 

Furthermore, it is not known whether glycogen accumulation represents a static glucose store, 

to be used under conditions of nutrient deprivation, or continuous flux of glucose through 

glycogen is required for optimal cell growth and proliferation.  

 

In this part of my project, I first tested the hypothesis that OCCC is more resistant to hypoxia 

and glucose deprivation in a panel of 10 EOC cell lines. After assaying the glycogen content 

of OCCC cell lines, I asked whether HIF1A knockdown had an effect on cellular glycogen 

accumulation in HNF1B expressing OCCC cells. I then asked whether perturbing glycogen 

metabolism in OCCC cell lines by targeting the rate-limiting enzymes glycogen phosphorylase 

(PYGL) and synthase (GYS1), would have an effect on cellular proliferation and metabolism 

and whether that effect would still be evident under normal, glucose-rich culture conditions. 

While this work was ongoing, work from Prof. Adrian Harris’ group suggested that PYGL 

knockdown resulted in decreased proliferation due to senescence induction in U87 

glioblastoma and MCF-7 breast cancer cells (Favaro et al. 2012), thus providing support to 

the concept that glycogen can be a valid therapeutic target in cancer. 
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6.2. OCCC cell lines are not more resistant to hypoxia or glucose 

deprivation 

I first studied the effects on proliferation of culturing cells in hypoxia (1% O2) in ES-2, SKOV3 

and RMG-II cells, using ViCell to count cell numbers as detailed in section 2.23.3. In 4 (RMG-

II) or 6 (ES-2, SKOV3) separate experiments, culture in 1% O2 for 96 hours significantly 

reduced proliferation by 31% (p=0.01), 32% (p=0.001) and 19% (p=0.002) in RMG-II, ES-2 

and SKOV3 cells respectively (Fig. 6.1A). However, these experiments required plating a large 

number of cells (1-2x106) to enable accurate cell counting, making screening of a large panel 

of cell lines, conditions and timepoints problematic. Therefore, I switched to using the SRB 

proliferation assay, plating 1000 cells per well in 96-well plates. To eliminate medium effects, 

all cell lines were cultured in DMEM supplemented with 10% FBS, 50Un/ml penicillin and 

50μg/ml streptomycin. For glucose deprivation experiments glucose-free DMEM with the 

same supplements was used. As FBS contains approximately 7mM glucose (personal 

communication with Life Technologies), cells cultured under glucose deprivation are exposed 

to ~0.7mM glucose whereas cells cultured under normal conditions (NC) are exposed to 

25mM. Experiments were performed with 4 technical replicates per each of 4 biological (flask) 

replicates. Due to low cell numbers used, differences in proliferation were not apparent until 

120 hours after plating and were maximal at 168 hours (Fig. 6.1B).  

 

I then assessed the effects of hypoxia, glucose deprivation, or both on proliferation at 168 

hours in 10 cell lines. As can be seen from Fig. 6.1C, hypoxia, glucose deprivation, or both, 

significantly decreased proliferation in all cell lines tested with the exception of JHOC-7 for all 

3 manipulations and PEO1 for hypoxia. Considering all cell lines together, hypoxia had a 

smaller effect on proliferation (mean reduction 31%) than glucose deprivation (mean reduction 

52%, p=0.028  for the comparison of  glucose deprivation to hypoxia); combined  hypoxia   and  

Figure 6.1. Effect of hypoxia and glucose deprivation on EOC cell line proliferation 
A) Mean ±S.E. proliferation of ES-2, SKOV3 and RMG-II cells under hypoxia (1% O2), relative to 
normoxia as assessed by ViCell after 96 hours in culture (n=6 for ES-2 and SKOV-3, n=4 for RMG-II). 
B) Mean ±S.E. proliferation of ES-2 and SKOV3 cells under normal culture conditions, glucose 
deprivation, hypoxia or both, as assessed by the SRB assay every 24 hours up to 168 hours (n=4). C) 
Mean ±S.E. proliferation of 10 EOC cell lines under glucose deprivation, hypoxia or both, relative to 
normal culture conditions as assessed by the SRB assay after 168 hours in culture (n=4). D) Mean 
±S.E. proliferation under glucose deprivation, hypoxia or both, relative to normal culture conditions 
comparing OCCC (SKOV3, TOV21G, JHOC-5, JHOC-7, JHOC-9 and OVISE) and non-OCCC (PEO1, 
TR-175, ES-2 and OV2008) cell lines. E) Mean ±S.E. proliferation under glucose deprivation, hypoxia 
or both, relative to normal culture conditions comparing OCCC and HGS (PEO1 and TR-175) cell lines. 
F) Mean ±S.E. proliferation under glucose deprivation, hypoxia or both, relative to normal culture 
conditions comparing glycogen-rich (SKOV3, JHOC-5, JHOC-7 and OVISE) and glycogen-poor (PEO1, 
TOV21G and JHOC-9) cell lines. 
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glucose deprivation markedly decreased proliferation (mean reduction 77%, p<0.001 for the 

comparison of combined hypoxia and glucose deprivation to either condition alone). I 

subsequently compared the 6 OCCC cell lines (TOV21G, JHOC-5, JHOC-7, JHOC-9, OVISE 

and SKOV3) with the 4 non-OCCC cell lines (PEO1, TR-175, OV2008 and ES-2). Glucose 

deprivation decreased proliferation by 49% in OCCC and by 56% in non-OCCC cell lines 

(p=0.75; Fig. 6.1D). Hypoxia decreased proliferation by 37% in OCCC and 23% in non-OCCC 

cell lines (p=0.29; Fig. 6.1D). Combined hypoxia and glucose deprivation decreased 

proliferation by 73% and 84% respectively (p=0.56; Fig. 6.1D). Results were very similar when 

the 6 OCCC cell lines were compared to the 2 HGS cell lines PEO1 and TR-175 (Fig. 6.1E).  

 

I next asked whether high glycogen content could modify the response to hypoxia and glucose 

deprivation. Glycogen content was available for 7 of the 10 cell lines (see section 6.3). In the 

comparison of glycogen-rich (SKOV3, JHOC-5, JHOC-7 and OVISE) and glycogen-poor 

(PEO1, TOV21G and JHOC-9) cell lines (Fig. 6.1F), no differential effect of hypoxia (mean 

reduction in proliferation 30% and 33%, p=0.9) was seen. Glucose deprivation decreased 

proliferation by 42% in glycogen-rich and 59% in glycogen-poor cell lines, although this was 

not statistically significant (p=0.54). Similarly, combined hypoxia and glucose deprivation 

decreased proliferation by 64% and 81% in glycogen-rich and glycogen-poor cell lines 

respectively (p=0.54). 

 

To summarise, I found no evidence that OCCC cell lines are more resistant than other EOC 

cell lines to hypoxia, glucose deprivation or both combined. Examination of a larger panel of 

cell lines is needed to clarify whether glycogen-rich cell lines are more resistant to glucose 

deprivation than glycogen-poor ones, as a non-statistically significant trend was observed.     

 

6.3. OCCC cell lines contain large amounts of glycogen which is utilized 

under glucose deprivation   

Glycogen accumulation is one of the defining characteristics of OCCC. To test whether OCCC 

cell lines contain detectable amounts of glycogen, I first assayed glycogen content of EOC cell 

lines using the qualitative PAS/PAS-diastase stain. This showed glycogen accumulation in all 

4 cell lines assayed (purple-magenta PAS staining changing to light pink after diastase 

treatment; Fig. 6.2A-D). Even using this non-quantitative method, it is evident that some cell 

lines such as PEO1 (Fig. 6.2A) or TOV21G (Fig. 6.2C) contain much less glycogen than others 

such as SKOV3 (Fig. 6.2B) or JHOC-5 (Fig. 6.2D). It is important to note that the HGS cell line 
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PEO1 contains detectable amounts of glycogen, albeit in lesser quantities than many OCCC 

cell lines, in accordance with previous reports showing glycogen accumulation in multiple cell 

types, including glioblastoma and breast cancer cell lines (Favaro et al. 2012). To provide 

quantitative estimates of glycogen content, I utilised a colorimetric glycogen assay (see 

section 2.24.1 for details). As can be seen in Fig. 6.2E, the assay is linear over a 40-fold range 

of tested cell numbers. Seven cell lines were tested in 3 separate experiments and glycogen 

content ranged from 0.11 to 1.12μg/105 cells with 4 OCCC cell lines (SKOV3, JHOC-5, JHOC-

7 and OVISE) exhibiting very high glycogen content of approximately 1μg/105 cells (Fig. 6.2F).  

 

Glucose deprivation for 24 hours significantly decreased glycogen content (Fig. 6.2G). 

Glycogen levels tended to decrease more in glycogen-poor cell lines (99.7% in PEO1, 98.6% 

in TOV21G, 91% in JHOC-9; n=2 per cell line) compared with the glycogen-rich ones (48% in 

JHOC-7, 72% in JHOC-5, 76% in SKOV3, 93% in OVISE; n=2 per cell line). These results on 

the one hand serve as indirect validation of the glycogen assay and, on the other, show that 

intracellular glycogen can readily be utilised by these cells under conditions of nutritional 

stress. 

 

Culture in 1% O2 for 96 hours increased glycogen content in all 7 cell lines in accordance with 

observations in other cell types (Favaro et al. 2012; Pelletier et al. 2012; Pescador et al. 2010). 

The increase in glycogen levels ranged from 1.6 to 6.7-fold (n=2 per cell line) with a trend for 

more pronounced increases in glycogen-poor cell lines (Fig. 6.2H). 

 

6.4. HIF1A is constitutively expressed and contributes to glycogen 

accumulation in OCCC cell lines 

As shown above, many OCCC cell lines contain up to 10-fold more glycogen than a 

representative HGS line, PEO1. I have already shown that stable HNF1B expression is a 

driver for glycogen accumulation, at least in some cell lines (see section 5.9). However, it is 

not presently known what other factors contribute to the exceptionally high glycogen levels in 

OCCC. Since HIF1α induction under hypoxia has been reported to lead to glycogen 

accumulation (Pelletier et al. 2012; Pescador et al. 2010), I first investigated whether glycogen 

accumulation is under HIF1A control in OCCC cell lines. Unfortunately, I was not able to 

reliably detect and quantify HIF1α expression by immunoblots and, therefore, only report 

expression at the mRNA level, accepting that mRNA and protein expression and stability may 

differ. Interestingly, HIF1A was constitutively expressed in the 3 OCCC cell lines tested 
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(SKOV3, JHOC-5, TOV21G) under normoxia with mRNA levels 6-15-fold higher than PEO1 

(Fig. 6.2I). Culture under hypoxia for 72 hours induced, as expected, HIF1A expression in 

PEO1 but not in the OCCC cell lines, which showed a trend towards reduced mRNA levels 

(Fig. 6.2J). Treatment with siRNA, under hypoxia, successfully depleted HIF1A levels by 78-

92% (Fig. 6.2K) and reduced proliferation in all 4 cell lines (by 39% to 81%) as assessed with 

the SRB assay (data not shown). HIF1A knockdown under hypoxia markedly depleted 

glycogen levels by 90% in TOV21G, 87% in PEO1, 67% in JHOC-5 and 33% in SKOV3 (Fig. 

6.2L). It appears, therefore, that constitutive HIF1A expression in OCCC cell lines is one of 

the drivers of glycogen accumulation. This constitutive HIF1A expression may be driven by 

HNF1B, at least in some OCCC cell lines, as my gene expression data (see section 5.4) show 

that HNF1B knockdown significantly decreased HIF1A expression in TOV21G (by 40%) but 

not in JHOC-5 cells.  

 

IL6 has been proposed to lead to HIF1α induction in OCCC via STAT3 (Anglesio et al. 2011b), 

so I investigated whether the IL6-IL6R axis also contributes to glycogen accumulation. IL6 was 

detected in the medium supernatant at concentrations varying from 27 in SKOV3 to 

783pg/ml/106 cells in OVISE (Fig. 6.2M). Interestingly, PEO1 cells also secreted considerable 

amounts of IL6 in the medium (Fig. 6.2M). Compared to PEO1, IL6 mRNA levels were 

increased by 1.3, 3 and 49-fold in SKOV3, JHOC-5 and TOV21G cells whereas the 

corresponding IL6R levels were 145, 19 and 1.6-fold higher (Fig. 6.2N). These results show 

considerable activation of IL6 signalling in OCCC cell lines, consistent with previous 

observations (Anglesio et al. 2011b). Treatment with siRNA successfully depleted IL6R levels 

by 43-93% (Fig. 6.2O) and modestly reduced proliferation in PEO1, SKOV3 and TOV21G (by 

Figure 6.2. Glycogen content of ovarian cell lines under normal culture conditions, 
hypoxia and glucose deprivation and effect of HIF1α and interleukin-6 on glycogen 
accumulation 

A-D) PAS (left panels) and PAS-Diastase (right panels) staining of PEO1 (A), SKOV3 (B), TOV21G (C) 
and JHOC-5 (D) cells (bar=50μm). E) Results of colorimetric glycogen assay in TOV21G cells showing 
the assay is linear over the tested range (n=1 biological replicate run in duplicate). F) Mean ±S.E. 
absolute glycogen content of 7 cell lines under normal culture conditions (n=3). G-H) Mean ±S.E. 
relative glycogen content of 7 cell lines after 24 hours of glucose deprivation (G) or 96 hours of hypoxia 
(H). (NC= normal culture conditions) (n=2). I) Mean ±S.E. HIF1A mRNA levels in NC normalised to 
PEO1 in OCCC cell lines (n=3). J) Mean ±S.E. HIF1A mRNA levels in hypoxia relative to NC in OCCC 
cell lines (n=3). K) Mean ±S.E. HIF1A mRNA levels relative to non-target siRNA 72 hours after siRNA-
mediated HIF1A knockdown in hypoxia (n=3). L) Mean ±S.E. glycogen levels in PEO1, SKOV3, JHOC-
5 and TOV21G cells, 72 hours after HIF1A  siRNA knockdown in hypoxia (n=2). M) IL6 concentration 
in medium after culture for 72 hours (n=1 biological replicate run in triplicate). N) Mean ±S.E. IL6 and 
IL6R mRNA levels normalised to PEO1 in OCCC cell lines (n=3). O) Mean ±S.E. IL6R mRNA levels 
relative to non-target siRNA 72 hours after siRNA-mediated IL6R knockdown (n=3). P) Mean ±S.E. 
glycogen levels in PEO1, SKOV3, JHOC-5 and TOV21G cells, 72 hours after IL6R siRNA knockdown 
(n=2). 
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17%, 26% and 33% respectively) but not JHOC-5 cells as assessed with the SRB assay (data 

not shown). However, IL6R knockdown did not affect glycogen levels in PEO1 and SKOV3 

cells whereas JHOC-5 and TOV21G showed a non-significant increase in glycogen content 

(Fig. 6.2P).To summarise, these results show that, in addition to HNF1B, constitutive HIF1A 

expression contributes to the glycogen accumulation phenotype in OCCC. The IL6-IL6R axis 

appears to be activated in OCCC but does not directly lead to glycogen accumulation.  
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6.5.  The rate-limiting glycogen metabolism enzymes glycogen 

phosphorylase and synthase are highly expressed in OCCC 

Since the accumulated glycogen in OCCC cell lines is rapidly broken down by the cells 

following glucose deprivation (see section 6.3), I asked whether the two glycogen metabolism 

rate-limiting enzymes, glycogen phosphorylase (PYGL) and synthase (GYS1) are 

constitutively expressed in OCCC. PYGL is the main glycogen breakdown enzyme and, 

compared to PEO1, PYGL mRNA levels were 31.3, 4.8 and 2.7-fold higher in SKOV3, 

TOV21G and JHOC-5 cells respectively (Fig. 6.3A). PYGL protein expression in PEO1 and 6 

OCCC cell lines was assessed in 3 separate experiments and a representative immunoblot is 

shown in Fig. 6.3B. Quantification of protein expression showed that, compared to PEO1, 

PYGL levels were 1.6 to 13.8-fold higher in OCCC cell lines (Fig. 6.3C).  Hypoxia has been 

reported to induce PYGL expression in U87 glioblastoma cells (Favaro et al. 2012). However, 

PYGL levels showed no consistent trend and small absolute changes in the 6 OCCC cell lines 

after 96 hours in 1% O2 whereas they modestly increased in PEO1 (Fig. 6.3D-E). To 

investigate the possibility that transient induction occurs at earlier time-points, PYGL 

expression was assayed in JHOC-5 and TOV21G cells 1, 4, 8, 24 and 48 hours after 

placement in 1% O2. Again, no consistent PYGL induction was seen (Fig. 6.3F). Similarly to 

PYGL, GYS1 protein expression in PEO1 and 6 OCCC cell lines was also assessed in 3 

separate experiments and a representative immunoblot is shown in Fig. 6.3G. GYS1 showed 

a narrower expression range with protein levels in the 6 OCCC cell lines varying from 2.2-fold 

lower in TOV21G to 3.9-fold higher in OVISE compared with PEO1 (Fig. 6.3H). 

 

The observed constitutive PYGL expression in OCCC, together with the rapid utilisation of 

glycogen after glucose deprivation, suggest that the glycogen stores are not static and raise 

the possibility that glycogen plays an active role in OCCC cellular metabolism, even under 

normal culture conditions. 

 

6.6. PYGL knockdown significantly decreases cellular proliferation 

To investigate the role of glycogen in OCCC cellular metabolism, I then proceeded to inhibit 

glycogen breakdown by knocking down PYGL in 6 OCCC cell lines and PEO1. Treatment with 

siRNA reduced PYGL protein levels by 62-100% (Fig. 6.4A-B) and increased glycogen levels 

in all 7 cell lines even under NC with 25mM glucose in the medium (Fig. 6.4C). Across the 7 

cell lines, the mean increase in glycogen levels was 3.5-fold (p=0.026). I repeated the 

glycogen assay after glucose deprivation in 5 of the cell lines and the results were unchanged 
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(Fig. 6.4D) with a mean 3.8-fold increase in glycogen levels (p=0.11). However, the increase 

in glycogen levels detected by the colorimetric assay, was not apparent by the qualitative PAS 

staining (Fig. 6.4E). The implications of these observations are two-fold: first, they show that 

siRNA PYGL inhibition results in decreased PYGL activity, although additional off-target 

effects cannot be excluded. More importantly, they suggest that PYGL is not only expressed 

but, also, constitutively active and that glycogen stores are continuously turned-over, even 

when plentiful glucose is available from the medium as, otherwise, PYGL inhibition shouldn’t 

have an effect on glycogen levels under NC. This observation applies to both the OCCC cell 

lines and PEO1, although glycogen and PYGL levels in the latter were lower.  

 

Figure 6.3. PYGL and GYS1 expression in OCCC cell lines 
A) Mean ±S.E. PYGL mRNA levels in OCCC cell lines normalised to PEO1 (n=3). B) Representative 
immunoblot showing PYGL expression in OCCC cell lines. C) Mean ±S.E. PYGL protein expression 
quantification in OCCC cell lines normalised to PEO1 (n=3). D) Representative immunoblot showing 
changes in PYGL expression after culture for 96 hours in hypoxia (1% O2) (“+” = 21% O2, “-“ = 1%O2). 
E) Mean ±S.E. change in PYGL expression after culture for 96 hours in hypoxia. (NC= normal culture 
conditions) (n=3). F) Time course of changes in PYGL expression after placement of JHOC-5 and 
TOV21G in hypoxia (mean ±S.E; n=2). G) Representative immunoblot showing GYS1 expression in 
OCCC cell lines. H) Mean ±S.E. GYS1 protein expression quantification in OCCC cell lines normalised 
to PEO1 (n=3). 
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Therefore, I next investigated the effects of PYGL knockdown under NC, glucose deprivation 

and hypoxia. My hypothesis was that PYGL knockdown would decrease proliferation under all 

3 conditions with the effects being more pronounced under glucose deprivation compared with 

NC. In all experiments, 1000 cells were plated per well in 96-well plates with 4-technical 

replicates per each of 4 biological (flask) replicates and the SRB assay was performed after 

168 hours. An overview of the results is presented in Table 6.1 and in Fig. 6.4F-H. PYGL 

knockdown dramatically decreased proliferation in 6 of the 7 cell lines under all 3 conditions 

tested, with the reduction in proliferation exceeding 90% in PEO1 and JHOC-5 cells. The only 

exception  was  JHOC-7  which  showed  no  change  in  proliferation  under NC and glucose  

 Table 6.1. Relative proliferation of 6 OCCC cell lines and PEO1 after glycogen metabolism 
perturbation 

Cell line PYGL 
siRNA 
(normal 
conditions) 

PYGL siRNA 
(glucose 
deprivation) 

PYGL 
siRNA 
(hypoxia) 

GYS1 
siRNA 

R3401 
(PYGL inh) 

PEO1 11%*** 5%** 4%*** 47%** 8%*** 

TOV21G 25%** 40%** 56% 44%** 4%*** 

SKOV-3 53%* 32%** 32%** 56%* 3%*** 

JHOC-5 55% 3%** 8%** 75% 2%** 

JHOC-7 114% 97% 69% 120% 25%** 

JHOC-9 64%** 54%** 39%*** 78%*** 3%** 

OVISE 51%** 64%** 60%** 59%* 10%** 

MEAN 53%** 42%** 38%*** 69%* 8%*** 

*=0.01<p≤0.05; **=0.001<p0.01; ***=p≤0.001 

 

Figure 6.4. Effect of PYGL knockdown on proliferation in EOC cell lines 
A) Representative immunoblot showing PYGL expression following siRNA treatment in 7 EOC cell 
lines. B) Relative PYGL expression 72 hours after siRNA treatment in 7 EOC cell lines. C-D) Mean 
±S.E. relative glycogen levels 72 hours after siRNA PYGL knockdown under normal culture conditions 
(C) (n=4) or glucose deprivation (D) (n=2). E) PAS staining of JHOC-5 cells 96 hours after non-target 
(left panel) or PYGL (right panel) siRNA treatment. F-H) Relative mean ±S.E. proliferation by the SRB 
assay in 7 EOC cell lines 168 hours after PYGL knockdown under normal culture conditions (F), glucose 
deprivation (G) or hypoxia (H). 1,000cells/well, 4 technical replicates per each flask replicate (n=4). I) 
Colony Forming Assay for JHOC-5 cells cultured in limiting dilutions under normal culture conditions 
for 14 days. In each 6-well plate cell numbers plated (from top left to bottom right) were 25000, 12500, 
6250, 3125, 1565 and 782. Left panel: non-target siRNA; right panel: PYGL siRNA. J) Colony Forming 
Assay for SKOV3 cells. Set-up identical to that in (I). K) Cumulative results of the colony forming assays 
in PEO1, SKOV3, JHOC-5 and TOV21G cells under normal conditions, hypoxia and glucose 
deprivation. Cell numbers plated identical to (I). L) Mean ±S.E. relative glycogen levels 72 hours after 
siRNA PYGL knockdown under normal culture conditions in IOSE4 and IOSE4+HNF1B cells (n=2). M) 
Relative mean ±S.E. proliferation by the SRB assay in IOSE4 and IOSE4+HNF1B cell lines 168 hours
after PYGL knockdown under normal culture conditions. 1000cells/well, 4 technical replicates per each 
flask replicate (n=4). 
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deprivation and a small non-significant reduction under hypoxia. Across all 7 cell lines, the 

mean reduction in proliferation was 47%, 58% and 62% under NC, glucose deprivation and 

hypoxia respectively. I replicated the results of the proliferation assay in a colony forming 

assay where limiting dilutions of PEO1, SKOV3, JHOC-5 and TOV21G cells were plated and 

cultured for 14 days under NC, glucose deprivation and hypoxia (see section 2.23.5). 

Representative plates are shown in Fig. 6.4I-J and the results of cell number quantification by 

the SRB assay in Fig. 6.4K. The latter was performed as the colonies were too confluent and 

ill-defined to be reliably enumerated by the GelCount scanner software. Consequently, the 

results in Fig 6.4K reflect total cell numbers rather than numbers of individual colonies. Overall, 

PYGL knockdown again decreased cell numbers, especially under NC and hypoxia. Very few 

colonies were seen under glucose deprivation in both the non-target and the PYGL siRNA 

treated wells, implying a detrimental effect of glucose deprivation under the very low seeding 

density conditions of this experiment. The smaller magnitude of the effect of PYGL knockdown 

under NC and hypoxia in this experiment compared with the classic proliferation assay, could 

be due to recovery of PYGL expression as cell numbers were assayed 17 days, compared 

with 7, after knockdown. This hypothesis however, was not directly tested.        

 

The results observed in the EOC cell lines prompted me to investigate whether PYGL 

knockdown had similar effects in the non-malignant IOSE4 and IOSE4+HNF1B cells. siRNA 

PYGL knockdown approximately doubled the glycogen content of these cells (Fig. 6.4L). 

Knockdown significantly decreased proliferation in IOSE4+HNF1B cells by 51% (p=0.0005, 

n=4) but had no effect in IOSE4 cells (p=0.64, n=4) (Fig. 6.4M). 

 

The results presented in this section, show that glycogen actively participates in the cellular 

metabolism of all cells, even in conditions where plentiful glucose is available as an energy 

source. PYGL knockdown disrupts glycogen breakdown and markedly decreases 

proliferation. The lack of an effect on IOSE4 cells provides some preliminary evidence that 

disruption of glycogen breakdown may be selective for cancer cells.  

 

6.7. GYS1 knockdown and small molecule inhibitors of glycogen 

metabolism also decrease cancer cell line proliferation 

Although PYGL siRNA successfully inhibited PYGL as evidenced by the immunoblots (Fig. 

6.4A-B) and the increase in glycogen levels (Fig. 6.4C-D), it cannot be excluded that the effect 

on proliferation is mediated by a secondary, off-target effect. To control for this possibility, I 
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also checked the effects of GYS1 knockdown and small molecule inhibitors of glycogen 

metabolism. The rationale was that, if these interventions consistently showed an effect both 

on glycogen levels and proliferation, it would be very unlikely that they all shared an off-target 

effect on proliferation and the most parsimonious explanation would be that it is the 

perturbation in glycogen metabolism that reduces proliferation.   

 

I first used siRNA to knock down GYS1 expression under NC. Treatment with siRNA 

successfully decreased GYS1 protein expression by 60-94% in all 7 cell lines (Fig. 6.5A). 

Knockdown also showed the expected reduction in glycogen levels, as glycogen synthesis 

was inhibited. Glycogen levels decreased 72 hours after knockdown by a mean 56% in 5 of 

the 7 cell lines whereas there was no change in PEO1 and an unexpected increase in JHOC-

7 (Fig. 6.5B). Consistent with this, proliferation was decreased in all cell lines by a mean 31%, 

except for JHOC-7 (Table 6.1 and Fig. 6.5C). 

 

I then used the small molecule R3401 to inhibit PYGL. The half maximal inhibitory 

concentration (IC50) was calculated in JHOC-5 and TOV21G cells using 4 biological (flask) 

replicates and found to be 52 and 66μM respectively (Fig. 6.5D). At a concentration of 50μM, 

R3401 modestly increased glycogen levels by 16-72% (Fig. 6.5E), consistent with reports that 

PYGL phosphorylase activity is inhibited by approximately 60% at 125μM (Bergans et al. 

2000). Treatment with 150μM R3401 resulted in a dramatic decrease in proliferation in all 7 

cell lines, including the otherwise resistant JHOC-7 (Table 6.1 and Fig. 6.5F). The discrepancy 

between the concentrations needed to inhibit PYGL and the observed IC50 in the cell lines 

imply that part of this anti-proliferative effect may be mediated by targets other than PYGL.  

 

I next tried a second PYGL small molecule inhibitor, sc-203975. This compound exhibited poor 

solubility which limited testing to concentrations up to 1μM as at higher concentrations the 

DMSO vehicle had a substantial impact on cell viability by itself (e.g. no growth of SKOV3 or 

PEO1 cells when treated with 5% DMSO). At concentrations of 0.5 and 1μM, sc-203975 

showed no effect on either glycogen content (Fig. 6.5G) or proliferation (Fig. 6.5H). A third 

small molecule PYGL inhibitor, DAB, showed no effect on proliferation in TOV21G and   

JHOC-5 cells in concentrations up to 800μM (Fig. 6.5I). Treatment with 800μM DAB for 72 

hours increased glycogen content in PEO1 cells but not in SKOV3, JHOC-5 or TOV21G cells, 

implying insufficient PYGL inhibition in the OCCC cell lines (Fig. 6.5J). In accordance with its 

effects on glycogen, 800μΜ DAB significantly decreased proliferation in PEO1 cells by 53% 

(p=0.006) but showed no effect in the 3 OCCC cell lines (Fig. 6.5K).   
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Metformin has pleiotropic effects on carbohydrate metabolism, including a reduction in hepatic 

glycogen synthesis through effects on GYS1 regulatory proteins (Polakof et al. 2011; Radziuk 

et al. 2003). Therefore, I investigated the effect of metformin on glycogen content and 

proliferation in OCCC cell lines. Treatment with up to 5mM metformin very modestly affected 

proliferation in TOV21G cells without a clear dose-response relationship, whereas a reduction 

in proliferation was seen in JHOC-5 cells at concentrations above 1mM (Fig. 6.5L). Treatment 

with 4mM metformin for 72 hours reduced the glycogen content of SKOV3, JHOC-5 and 

TOV21G cells by 40-46% (Fig. 6.5M). This was accompanied by a modest, but statistically 

significant, 24-41% decrease in proliferation (Fig. 6.5N). Interestingly, both glycogen levels 

and proliferation increased in PEO1 cells (Fig. 6.5M-N), implying context-dependent effects of 

metformin on carbohydrate metabolism.        

 

6.8. PYGL Inhibition causes G2/M arrest but not induction of apoptosis or 

senescence 

An interesting question is how inhibition of glycogen metabolism can affect proliferation in a 

nutrient rich environment. PYGL knockdown has been reported to induce senescence in U87 

cells (Favaro et al. 2012) but is not known if this mechanism is operating in OCCC too. I, 

therefore,  investigated  the  mechanism  underlying  the reduction in proliferation after PYGL  

Figure 6.5. Effect of glycogen metabolism perturbations on proliferation 
A)  Relative GYS1 expression 72 hours after siRNA treatment in 7 EOC cell lines. B) Relative mean ±
S.E. glycogen levels 72 hours after siRNA GYS1 knockdown under normal culture conditions (n=2). C) 
Relative mean ±S.E. proliferation by the SRB assay in 7 EOC cell lines 168 hours after GYS1 
knockdown under normal culture conditions. 1,000cells/well, 4 technical replicates per each flask 
replicate (n=4). D) IC50 curves, as determined by the SRB assay after 168 hours, for R3401 treatment 
of JHOC-5 and TOV21G cells. 1000cells/well, 4 technical replicates per each flask replicate (n=4). E) 
Mean ±S.E. glycogen levels 72 hours after treatment with vehicle (0.17% DMSO) or 50μM R3401 (n=2). 
F) Relative mean ±S.E. proliferation by the SRB assay in 7 EOC cell lines 168 hours after 150μM R3401 
treatment under normal culture conditions. 1,000cells/well, 4 technical replicates per each flask 
replicate (n=4). G) Mean ±S.E. glycogen levels 72 hours after treatment with vehicle (1% DMSO) or 
1μM sc-203975 (n=2). Η) Relative mean ±S.E. proliferation by the SRB assay in PEO1 and SKOV3 
cells 168 hours after 0.5 and 1μM sc-203975 treatment under glucose deprivation. 1,000cells/well, 4 
technical replicates per each flask replicate (n=4). I) IC50 curves, as determined by the SRB assay after 
168 hours, for DAB treatment of JHOC-5 and TOV21G cells. 1,000cells/well, (n=4). J) Mean ±S.E. 
glycogen levels 72 hours after treatment of 4 EOC cell lines with vehicle (8% water) or 800μM DAB 
(n=2). K) Relative mean ±S.E. proliferation by the SRB assay in 4 EOC cell lines 168 hours after 800μM 
DAB treatment under normal culture conditions. 1,000cells/well, 4 technical replicates per each flask 
replicate (n=4). L) IC50 curves, as determined by the SRB assay after 168 hours, for metformin 
treatment of JHOC-5 and TOV21G cells. 1,000cells/well, (n=4). M) Mean ±S.E. glycogen levels 72 
hours after treatment of 4 EOC cell lines with vehicle (8% water) or 4mM metformin (n=2). N) Relative 
mean ±S.E. proliferation by the SRB assay in 4 EOC cell lines 168 hours after 4mM metformin treatment 
under normal culture conditions. 1,000cells/well, 4 technical replicates per each flask replicate (n=4). 
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siRNA knockdown in SKOV3, JHOC-5 and TOV21G cells. PYGL knockdown did not induce 

apoptosis, as evidenced by a lack of an increase in caspase-3 (Fig. 6.6A) and caspase-8 (data 

not shown) staining and a negative TUNEL assay (Fig. 6.6B) in all 3 cell lines. β-galactosidase 

staining after 24 hours X-gal incubation in the 3 cell lines and, additionally, in PEO1, did not 

show induction of senescence (Fig. 6.6C; TOV21G shows small numbers of senescent cells 

after non-target siRNA treatment that do not further increase with PYGL siRNA treatment). 

 

Cell cycle analysis after PYGL siRNA knockdown showed modest accumulation of cells in 

G2/M in JHOC-5 and TOV21G but not in SKOV3 cells (Fig. 6.7A). The percentage of cells in 

G2/M in JHOC-5, TOV21G and SKOV3 was 21%, 16% and 46% after non-target siRNA 

treatment and 32% (p<0.0001), 21% (p=0.002) and 46% (p=0.66) after PYGL siRNA treatment 

respectively. Subsequently, I investigated whether PYGL knockdown affected the expression 

of proteins involved in the G2/M checkpoint in JHOC-5 and TOV21G cells. Cdc25 expression 

was reduced in JHOC-5 and Cyclin B1 expression was reduced in TOV21G cells whereas 

Chk1 expression was unchanged (Fig. 6.7B); both observed changes are consistent with 

delayed cell cycle progression. Cdc2 (also known as Cdk1) was expressed in both JHOC-5 

and TOV21G cells, but Y15-phosphorylated Cdc2 was only detected in the latter (Fig. 6.7B). 

Consistent with inhibition of cell cycle progression at the G2/M checkpoint, the ratio of 

phosphorylated-to-total Cdc2 was increased after PYGL knockdown in TOV21G cells (Fig. 

6.7C). Of these proteins, only Cdc2 could be detected in the proteomics screen (see section 

6.11). Consistent with the immunoblot results, no significant change in total Cdc2 levels was 

seen by MS.  

 

6.9. PYGL inhibition does not have a major effect on glycolysis, the TCA 

cycle or ATP production 

Inhibition of glycogen metabolism could affect intracellular glucose-6-phosphate levels which 

sits at the branch point between glucose breakdown and glycogen synthesis (see section 1.4). 

Altered glucose-6-phosphate levels, in turn, could have a knock-on effect on glycolysis, the 

TCA cycle and associated pathways such as the pentose phosphate pathway and lipid 

synthesis. Therefore, using NMR (see section 2.19.1), I measured changes in medium and 

intracellular metabolite concentrations 96 hours after PYGL knockdown. Treatment with 

siRNA decreased PYGL mRNA levels by 81-85%. However, no major changes were seen in 

metabolite uptake from or excretion in the medium with the exception of a small reduction in 

pyruvate  uptake  that  was  only significant in JHOC-5 cells (Fig. 6.8A-B). Consistent with the  
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Figure 6.6. Effect of PYGL knockdown 
on apoptosis and senescence  
A-B) Caspase 3 expression (A) and TUNEL 
staining (B) 96 hours after non-target (left 
panels) or PYGL (right panels) siRNA 
treatment of SKOV3, JHOC-5 and TOV21G 
cells (bar=100μm). C) β-galactosidase 
staining after 24 hours X-gal incubation of 
PEO1, SKOV3, JHOC-5 and TOV21G cells 
treated with non-target (left panels) or PYGL
(right panels) siRNA (bar=100μm).  
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lack of an effect on glucose uptake, SLC2A1 mRNA levels were not affected by PYGL 

knockdown (Fig. 6.8C). Assessment of intracellular metabolite concentrations showed no 

changes in the major glycolytic molecules glucose, lactate and pyruvate, except for a small 

but significant increase in pyruvate seen in JHOC-5 cells (Fig. 6.9). Decreased concentrations 

of some (succinate, acetate) but not other (fumarate, citrate) intermediaries of the TCA cycle 

were seen in both cell lines. Interestingly, intracellular glutamine, which can serve as an 

alternate substrate in the TCA cycle showed a large, but not significant, increase in TOV21G 

cells (Fig. 6.9). No change was observed in membrane building blocks such as choline and 

phosphocholine, or the overall energetic state of the cells as measured by phosphocreatine 

and ATP concentrations, whereas the concentrations of some amino acids (phenylalanine, 

methionine, leucine) was increased in JHOC-5 cells (Fig. 6.9).  

  

Figure 6.7. Effect of PYGL knockdown on cell cycle progression 
A) Cell cycle phase distribution of TOV21G, JHOC-5 and SKOV3 cells 96 hours after non-target (left 
panels) or PYGL (right panels) siRNA treatment. B) Immunoblot showing Cyclin B1, Chk1, Cdc25, 
Cdc2 and pCdc2 (Tyr15) expression in JHOC-5 and TOV21G cells 72 hours after non-target (-) and 
PYGL (+) siRNA treatment. C) Quantitative assessment of the pCdc2/Cdc2 ratio for TOV21G cells 
(JHOC-5 cells did not show pCdc2 expression). 
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Figure 6.8. Effect of PYGL knockdown on metabolites in the culture medium 
A-B) Changes in metabolite concentrations in the medium 96 hours after siRNA-mediated PYGL
knockdown in JHOC-5 (A) and TOV21G (B) cells. Cells were cultured in DMEM medium with 3 flask 
replicates per cell line. Positive values indicate uptake from the medium (i.e. the concentration at 96 
hours is lower than the baseline) whereas negative values indicate release in the medium (i.e. the 
concentration at 96 hours is higher than the baseline). C) Change in SLC2A1 mRNA levels 72 hours 
after siRNA-mediated PYGL knockdown in JHOC-5 and TOV21G cells (n=2). 
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Figure 6.9. Effect of PYGL knockdown on intracellular metabolites 
Relative changes in intracellular metabolite concentrations 96 hours after siRNA-mediated PYGL
knockdown in JHOC-5 and TOV21G cells. Cells were cultured in DMEM medium with 3 flask replicates 
per cell line and values corrected for protein content.  
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6.10. PYGL knockdown impairs lipid metabolism but does not  result in 

ROS accumulation or induction of the unfolded protein response (UPR) 

pathway 

Glucose-1-phosphate (G-1-P), the main product of glycogen breakdown, interacts with L-

FABP to modulate PPARα function (Hostetler et al. 2010). PPARα is the main regulator of lipid 

β-oxidation (Dreyer et al. 1993) and I, therefore, hypothesised that PYGL knockdown would 

inhibit PPARα and result in lipid accumulation. CARS was used to image lipid droplets (see 

section 2.19.2) in a label-free manner. Consistent with the hypothesis, lipid droplet content 96 

  

Figure 6.10. Effect of PYGL knockdown on lipid droplet, reactive oxygen species (ROS) 
accumulation and the unfolded protein response   
A-B) Lipid droplet imaging (green) in JHOC-5 (A) and TOV21G (B) cells treated with non-target (left 
panels) or PYGL (right panels) siRNA. C-D) Quantitative assessment of lipid droplet accumulation in 
JHOC-5 (C) and TOV21G (D) cells treated with non-target or PYGL siRNA (n=10 75x75μm areas 
scanned per sample). E) Mean ±S.E. ROS accumulation 96 hours after siRNA-mediated PYGL
knockdown in JHOC-5 and TOV21G cells (n=5). F) Relative mean ±S.E. changes in mRNAs involved 
in the unfolded-protein response after siRNA PYGL knockdown (n=3 flask replicates per cell line).  
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hours after PYGL knockdown was increased in JHOC-5 cells 3.77-fold (p=0.0002) with a non-

significant trend (1.72-fold, p=0.19) in TOV21G cells (Fig. 6.10A-D).  

 

Impaired lipid oxidation or pentose phosphate pathway function after PYGL knockdown could 

alter the cellular ROS content. However, PYGL siRNA treatment did not result in any change 

in intracellular ROS in TOV21G cells (difference 9%, p=0.43) and decreased the ROS content 

of JHOC-5 cells by 43% (p=0.0008) (Fig. 6.10E). As increased ROS production generally 

induces apoptosis or senescence, the lack of ROS induction by PYGL knockdown is 

consistent with the results of the apoptosis and senescence assays reported in section 6.8 but 

suggest that any potential defect in lipid oxidation does not result in marked alterations of the 

cellular redox state. 

 

Another potential mechanism through which PYGL knockdown could affect proliferation is 

aberrant N-glycosylation of target proteins and induction of the unfolded-protein response 

(UPR) (Lecca et al. 2005; Philips et al. 2014). I therefore tested whether PYGL knockdown 

induced the expression of 5 core UPR genes (HSP90B1, HSPA5, PDIA3, XBP1 and ATF6). 

Contrary to my hypothesis, I found that expression of these genes was modestly (mean 

decrease 15-30%) but statistically significantly decreased in JHOC-5 cells whereas it did not 

change in TOV21G cells (Fig. 6.10F).    

 

6.11. PYGL knockdown does not markedly perturb the proteome but 

results in changes in Protein Kinase A signalling 

To gain further insights as to how PYGL knockdown affects proliferation, I tested its effects on 

the proteome in an agnostic manner. MS/MS was performed (see section 2.31 for details) in 

JHOC-5 and TOV21G cells 72 hours after siRNA PYGL knockdown using 3 flask replicates 

per cell line. 2776 proteins could be reproducibly detected and their differential expression 

after knockdown was assessed. As can be seen in Fig 6.11A, using a stringent threshold of 

corrected p=0.05, very few proteins showed change in expression, and these were mostly of 

low abundance.  

 

With a less stringent threshold of p=0.1, 100 proteins were differentially expressed in JHOC-

5 cells with the majority showing decreased expression after knockdown (Fig. 6.11B). 

Peroxiredoxin-3 (PRDX3), a protein with anti-oxidant function was significantly up-regulated, 
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a fact that could explain the reduction in ROS content seen upon knockdown in these cells 

(see section 6.10). Using MetaCore, pathways (Table A.15 in the Appendix) and metabolic 

networks (Table A.16 in the Appendix) related to protein kinase A (PKA) were significantly 

enriched among these 100 PYGL-regulated proteins  driven by a significant increase in the 

expression of the catalytic subunit PRKACA and a concomitant decrease in that of the 

regulatory subunit PRKAR2B (54% and 38% respectively).  

 

Similarly, in TOV21G cells, 111 proteins were differentially expressed, with PDZK1 (PDZ 

Domain Containing 1), a protein involved in ion transport and PPP6C (Protein Phosphatase 

6, Catalytic Subunit), a protein that regulates cell cycle progression, being among the top hits 

(Fig. 6.11B). As in JHOC-5, pathways related to PKA were significantly enriched among 

PYGL-regulated proteins (Table A.17 in the Appendix), driven in this instance by a 52% 

 

 

Figure 6.11. Effect of PYGL knockdown on cellular proteomics 
MS/MS was used to assay 2776 proteins in non-target (NT) and PYGL-siRNA (KD) treated JHOC-5 
and TOV21G cells (n=3 flask replicates). A) Q-Q scatterplots. Dotted lines delineate corrected 95% 
confidence intervals. B) Volcano plots. Horizontal dotted lines mark p=0.05. 
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decrease in the expression of the alternative regulatory subunit PRKAR2A. No enriched 

metabolic networks were identified at an FDR threshold of 0.1.   

 

Table 6.2. PYGL-regulated proteins in both JHOC-5 and TOV21G cells  

Protein Full Name Function LFC 
JHOC-5 

LFC 
TOV21G 

EIF2AK2 Eukaryotic Translation 
Initiation Factor 2-Alpha 
Kinase 2 

Inhibits protein synthesis -0.53 -0.77 

PRCP Prolylcarboxypeptidase 
(Angiotensinase C) 

Cleaves C-terminal amino 
acids in peptides such as 
angiotensin II, III and des-
Arg9-bradykinin 

-0.71 -0.79 

ACACA Acetyl-CoA Carboxylase 
Alpha 

Catalyses the carboxylation 
of acetyl-CoA to malonyl-
CoA, the rate-limiting step in 
fatty acid synthesis 

-1.06 -1.02 

ERLIN1 ER Lipid Raft 
Associated 1 

Mediates the endoplasmic 
reticulum-associated 
degradation (ERAD) of 
inositol 1,4,5-trisphosphate 
receptors (IP3Rs) 

-0.44 -1.07 

VPS25 Vacuolar Protein Sorting 
25 Homolog (S. 
Cerevisiae) 

Sorts ubiquitinated 
membrane proteins during 
endocytosis 

-0.64 -1.09 

MGEA5 Meningioma Expressed 
Antigen 5 
(Hyaluronidase) 

Removes O-GlcNAc 
modifications on serine and 
threonine residues 

-1.50 -1.19 

CCDC22 Coiled-Coil Domain 
Containing 22 

Regulates of NF-kB by 
interacting with COMMD 
(copper metabolism Murr1 
domain-containing) proteins 

-0.90 -1.21 

ENO2 Enolase 2 (Gamma, 
Neuronal) 

Glycolysis -0.91 -1.23 

ERAP1 Endoplasmic Reticulum 
Aminopeptidase 1 

Trims HLA class I-binding 
precursors so that they can 
be presented on MHC class I 
molecules 

-0.72 -1.25 

CHTOP Chromatin Target Of 
PRMT1 

Cell cycle progression; 
interaction with protein 
arginine methyltransferases; 
role in the activation of 
estradiol-dependent 
transcription 

-1.06 -1.49 

PPP1R21 Protein Phosphatase 1, 
Regulatory Subunit 21 

 -3.16 -2.80 

RFK Riboflavin Kinase Phosphorylation of riboflavin 
to form flavin-
mononucleotide (FMN), 
hence rate-limiting enzyme in 
the synthesis of FAD 

-1.69 -3.02 

Protein functions imported from www.genecards.org; LFC: Log2 fold change.   



157 

 

There was a significant overlap between the 100 PYGL-regulated proteins in JHOC-5 and the 

111 in TOV21G cells, with 12 proteins showing concordant significant changes (p=4.97x10-4). 

Table 6.2 summarises these proteins and their function. It is interesting to note that all 12 show 

decreased expression upon PYGL knockdown. Although no specific pathways were enriched, 

some of these proteins’ functions such as involvement in lipid synthesis (ACACA), post-

translational glycosylation (MGEA5), glycolysis (ENO2), endoplasmic-reticulum associated 

degradation (ERAD) (ERLIN1) and the cellular redox state (RFK) could be relevant to PYGL’s 

effect on proliferation.   

 

6.12. Discussion 

In this chapter, I have shown that, contrary to previous publications, OCCC cell lines are not 

more resistant to hypoxia or glucose deprivation. Driven by HNF1B overexpression and 

constitutive HIF1α expression, they accumulate large amounts of glycogen, which they can 

access under conditions of nutrient deprivation. Importantly, my results show that glycogen is 

continuously being turned-over and that perturbing glycogen metabolism by inhibiting either 

its breakdown or its synthesis has a pronounced effect on cellular proliferation, even when 

plentiful glucose is available to be utilised as a fuel source. The reduction in proliferation after 

glycogen breakdown inhibition is not due to increased apoptosis or senescence but could be 

due to G2/M checkpoint activation mediated by changes in lipid metabolism and PKA 

signalling.  

 

As OCCC arises from the hypoxic and iron-rich oxidative environment of endometriotic cysts, 

many authors have postulated that resistance to hypoxia and nutrient deprivation underlies its 

chemoresistance (Iida et al. 2012; Yamada et al. 2011). Stany et al (2011) reported that ES-2 

and TOV21G cells were more resistant to combined hypoxia (1% O2) and glucose deprivation 

(0.7mM glucose) than the HGS cell lines OVCA420 and OVCA429 using the CellTiter Blue 

assay at 72 hours. In contrast, using a panel of 6 OCCC and 4 non-OCCC cell lines, I found 

no difference in sensitivity to glucose deprivation, hypoxia or their combination with the SRB 

assay at 168 hours. The results were unchanged when I compared the 6 OCCC cell lines only 

with the 2 HGS cell lines. I used ES-2 cells as a non-OCCC cell line whereas Stany et al used 

it as an OCCC cell model. There is compelling evidence that ES-2 is not OCCC as it has TP53 

and BRAF mutations in the absence of ARID1A and PIK3CA mutations (Domcke et al. 2013), 

does not express HNF1B, both according to my results (see section 5.2) and others (Anglesio 

et al. 2013), and forms undifferentiated tumours when engrafted in immunosuppressed mice 

(Shaw et al. 2004). Both the CellTiter Blue (Niles et al. 2009) and the SRB (Vichai & Kirtikara 
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2006) assays are well validated and both Stany et al and I plated similar numbers of cells; 

therefore, the most likely explanation for the discrepant results is the limited number of cell 

lines tested by these authors and the shorter timeframe utilised. Interestingly, in my data there 

was a trend for glycogen-rich cell lines to be more resistant to glucose deprivation but not to 

hypoxia. In glycogen-poor cell lines, glycogen stores were depleted after 24 hours of glucose 

deprivation but most glycogen-rich cell lines still showed considerable residual glycogen 

stores (Fig. 6.2G) which may have been sufficient to sustain proliferation for longer. 

Furthermore, it has been recently reported that, in a large panel of cancer cell lines, impaired 

glucose uptake and mutations affecting mitochondrial complex I function are the main 

determinants of sensitivity to glucose deprivation (Birsoy et al. 2014). It will be interesting to 

investigate whether these mechanisms are operative in OCCC cell lines and whether the 

phenotype is modulated by glycogen. 

 

Using a colorimetric glycogen assay, I have shown that many OCCC cell lines have a glycogen 

content that is 10-fold higher than the HGS cell line PEO1. Far from being an inert pool, this 

glycogen is readily utilised when the cells are deprived of glucose. An unanswered question 

is what drives this profound glycogen accumulation in OCCC cells. Hypoxia and HIF1α 

induction have been consistently reported to cause glycogen accumulation in cancer cells 

(Favaro et al. 2012; Pelletier et al. 2012; Pescador et al. 2010). However, this does not explain 

why OCCC cells accumulate glycogen to a much greater extent than other cancer cells. My 

data show that HIF1A mRNA is detectable in OCCC cell lines cultured in 21% O2 at levels 6- 

to 15-fold higher than in PEO1 and do not increase further under hypoxia. Additionally, HIF1A 

knockdown resulted in a significant decrease in glycogen content. IL6 has been reported to 

lead to HIF1α induction in OCCC (Anglesio et al. 2011b). Although my results show that the 

IL6-IL6R axis is active in OCCC cell lines, IL6R knockdown did not affect the glycogen content 

of the cells, implying that other factors contribute to constitutive HIF1α expression in OCCC. 

One of those factors could be HNF1B, as HNF1B knockdown significantly decreased HIF1A 

expression in TOV21G cells. As shown in section 5.9, HNF1B overexpression also drives 

glycogen accumulation.  Therefore, it appears that constitutive HIF1α and HNF1B expression, 

acting synergistically, are behind the high glycogen content that characterises OCCC cells. 

 

The 2 rate limiting enzymes for glycogen metabolism, PYGL and GYS1, are expressed at high 

levels in the OCCC cell lines, even under normal culture conditions and, PYGL at least, is not 

further induced in hypoxia (Fig. 6.3). These observations imply that glycogen turn-over occurs 

in OCCC even under normal culture conditions. While this project was underway, it was shown 
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that PYGL knockdown reduced proliferation in U87 and MCF-7 cells cultured in hypoxia (0.1% 

O2) and 5 or 25mM glucose (Favaro et al. 2012). I hypothesised that in OCCC with its 

constitutive PYGL expression, an effect of PYGL knockdown would be evident under normal 

culture conditions as well. Remarkably, PYGL knockdown dramatically decreased proliferation 

in 5 of the 6 OCCC cell lines tested under all culture conditions (normal, hypoxia, glucose 

deprivation) and this effect was also seen in the HGS cell line PEO1. The results obtained 

with the SRB assay were then replicated using a colony forming assay. It is, however, 

conceivable that these observations are due to an off-target effect of the PYGL siRNA. The 

fact that similar findings were observed using shRNA by Favaro et al (2012) and that PYGL 

knockdown increased glycogen levels in accordance with predictions suggest that the 

observations are due, at least partly, to an on-target effect. As I showed in the previous 

chapter, HNF1B is a major driver of proliferation and the Warburg effect in OCCC cell lines.  

The fact that PYGL knockdown had no effect in the non-malignant IOSE4 cells but decreased 

proliferation in the HNF1B overexpressing isogenic IOSE4+HNF1B cell line suggests on the 

one hand that the siRNA used is not indiscriminately toxic to cells and, on the other, that PYGL 

function is necessary for cancer, but not normal, cell metabolism.      

 

To validate the siRNA findings, I then tested 3 different small molecule PYGL inhibitors. R3401 

modestly increased glycogen levels at a 50μM dose and dramatically decreased proliferation 

at a 150μΜ dose, which is the dose previously used in glycogen metabolism experiments in 

rat hepatocytes (Bergans et al. 2000), in all 7 cell lines. There are 2 potential explanations for 

these observations: either that more complete PYGL inhibition at high R3401 doses has an 

even greater effect on proliferation than siRNA knockdown, or that R3401 has significant off-

target effects. The fact that cytotoxicity occurred at doses that have little impact on PYGL 

activity (Bergans et al. 2000) supports the latter. Assessing glycogen levels after treatment 

with 150μM R3401 would have been informative but it was not possible to perform that 

experiment due to the very low cell yield after exposure to that R3401 dose. sc-203975 

exhibited poor solubility that precluded treatment of the cell lines with doses above 1μM. 

However, at the doses tested, no effect on glycogen or proliferation was seen. The results 

observed with DAB are interesting because, at an 800μM dose, glycogen was only increased 

in PEO1 cells that have low PYGL expression, but not in SKOV3, JHOC-5 or TOV21G cells. 

Mirroring this, proliferation was decreased in PEO1 but not in the 3 OCCC cell lines. Taking 

the 3 small molecule putative PYGL inhibitors together, it appears that effects on glycogen 

and proliferation are correlated, providing further support to the conclusion that the results 

observed with the siRNA are not due to off-target effects. Additionally, inhibition of the brain 

isoform of glycogen phosphorylase, PYGB, also decreases proliferation in a panel of cell lines 
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(Schnier et al. 2003) and sensitises cells to glucose starvation (Philips et al. 2014), further 

supporting the role of glycogen phosphorylase in sustaining cancer cell proliferation. 

Furthermore, if glucose flux through glycogen and access to glycogen stores is indeed 

important for continued proliferation in cancer cell lines, then inhibition of glycogen synthesis 

should have a similar effect on proliferation. Indeed, siRNA knockdown of GYS1 resulted in 

reductions in both glycogen and proliferation, albeit of lesser magnitude compared to PYGL 

knockdown. 

 

Metformin has pleiotropic effects on glucose metabolism and its effects on cancer cell 

metabolism and proliferation are the subject of considerable research efforts (Ben Sahra et al. 

2010). Reports have suggested an effect on both glycogen synthesis through GYS1 regulation 

(Radziuk et al. 2003) and on glycogenolysis (Ben Sahra et al. 2010). Treatment of SKOV3, 

JHOC-5 and TOV21G cells with 4mM metformin resulted in significant reductions in both 

glycogen content and proliferation (Fig 6.5M-N), consistent with an effect on GYS1. However, 

it is not possible to determine from these data how much of metformin’s anti-proliferative effect 

is mediated through inhibition of glycogen metabolism compared with its other actions on 

targets such as mTOR (Del Barco et al. 2011). It should also be noted that metformin had the 

opposite effect on PEO1 cells with increases in both glycogen content and proliferation. 

Similarly, it was recently reported that some MYC-driven cell lines are dependent on AMPK 

signalling (which is activated by metformin) for continuing proliferation and survival (Liu et al. 

2012). These observations should temper the enthusiasm for uncritical testing of metformin in 

a wide variety of tumours without consideration of the genomic and metabolic cellular context. 

Furthermore, I treated cells with 4mM metformin, a dose very similar to that used by other 

researchers in uterine serous (Sarfstein et al. 2013) or triple-negative breast (Deng et al. 2012) 

cancers. However, the peak plasma concentrations in patients with diabetes do not exceed 

30μM7, raising concerns about the applicability of cell line-derived observations in clinical 

practice.   

 

Taken together, my data show that perturbing glycogen metabolism, especially by inhibiting 

PYGL, is a valid therapeutic strategy. I was not able to perform animal studies to in vivo 

validate my findings. However, decreased tumour growth after PYGL knockdown was seen 

using U87 xenografts (Favaro et al. 2012), alleviating concerns that the cell line observations 

are an artefact of 2D culture on plastic. Two cell lines, PEO1 and JHOC-7, deserve special 

mention. The former provides evidence that targeting glycogen metabolism is applicable to a 

                                                
7 Metformin Summary of Product Characteristics (SPC); accessed at www.medicines.org.uk  
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wide variety of tumours and not just the glycogen-rich OCCC, corroborating previous findings  

in glioblastoma and breast cancer cell lines (Favaro et al. 2012) and a very recent report in 

UMUC3 bladder cancer cells (Guin et al. 2014). On the other hand, JHOC-7 was resistant to 

PYGL, GYS1 or HNF1B knockdown, hypoxia, glucose deprivation and even combined 

hypoxia and glucose deprivation. More detailed characterisation of this line may provide new 

insights into mechanisms of resistance to metabolism perturbations.      

 

An interesting question is how inhibiting PYGL affects proliferation. PYGL knockdown was 

shown to induce senescence in U87 cells (Favaro et al. 2012). However, I did not observe 

senescence induction in PEO1, SKOV-3, JHOC-5 or TOV21G cells. The low but readily 

detectable background senescence rate in TOV21G cells provided a useful internal positive 

control for the assay (Fig. 6.6C) and, therefore, my findings are unlikely to be due to an 

insensitive assay. Additionally, there was no induction of apoptosis in multiple assays 

(caspase-3 and caspase-8 IHC, TUNEL assay). Using flow cytometry, I observed an 

accumulation of cells in G2/M in JHOC-5 and TOV21G, but not in SKOV-3 cells, that could be 

the proximal reason for the decreased proliferation. The flow cytometry results were 

corroborated by changes in expression of proteins involved in the G2/M checkpoint.  

Nevertheless, it is not clear why knocking down PYGL would induce a G2/M arrest. To gain 

further insights, I measured changes in medium and intracellular metabolites after PYGL 

knockdown. In marked contrast to the effect of HNF1B knockdown (see section 5.8), PYGL 

knockdown did not affect glucose uptake, glycolysis, most TCA cycle metabolites and the 

overall cellular energetic state. However, lipid droplet accumulation was seen, predominantly 

in JHOC-5, but also in TOV21G cells, consistent with an inhibitory effect on PPARα mediated 

by altered glucose-1-phosphate levels (Hostetler et al. 2010). Reduced lipid β-oxidation can 

explain the small reductions seen in intracellular acetate and succinate. Furthermore, impaired 

lipid metabolism has been linked to G2/M arrest (Joe et al. 2010; Wu et al. 2012) and oxidative 

stress (Biswas et al. 2012) that could explain the effect on proliferation.  The latter though 

does not seem to be mediating the effects of PYGL knockdown in OCCC, as ROS levels were 

reduced rather than increased in JHOC-5 and showed no change in TOV21G cells. 

 

Another potential mechanism, through which glycogen metabolism perturbations could affect 

proliferation, is impaired or aberrant protein glycosylation (Tegtmeyer et al. 2014) leading to 

UPR induction (Chakrabarti et al. 2011; Lecca et al. 2005). However, in my study, core UPR 

genes did not show increased expression by qRT-PCR. These results do not support UPR 
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induction as the mechanism for the observed decreased proliferation but do not entirely 

exclude the possibility that aberrant glycosylation of some proteins or lipids may occur. 

 

Agnostic proteome analysis is a powerful tool in the search for changes in metabolism-

associated proteins that could explain the effects on proliferation. Out of 2776 assessed 

proteins, only 12 showed concordant changes in expression, a decrease in all cases, after 

PYGL knockdown. Some of these proteins could potentially explain the observed phenotype. 

For example, MGEA5 and ERLIN1 changes could lead to aberrant glycosylation and ERAD 

(Li et al. 2010; Lu et al. 2011), RFK to altered redox state (Park et al. 2012) or ENO2 to reduced 

glycolysis. However, in every one of these cases, other assays such as TUNEL and caspase-

3 imaging for apoptosis and measurements of total cell ROS, glucose, pyruvate and lactate 

are not supportive. Nevertheless, the proteomic data suggest that PKA signalling is perturbed 

following PYGL knockdown. PKA regulates lipid metabolism (Ermisch et al. 2011; Rodriguez-

Cuenca et al. 2012) as well the G2/M checkpoint through phosphorylation of Cdc25b (Cui et 

al. 2008) and effects on the centrosome (Terrin et al. 2012). PKA also regulates Cyclin D2 

(Muñiz et al. 2006) while PRKACA mutations and fusions have recently been implicated in 

adrenal adenomas (Beuschlein et al. 2014) and fibrolamellar hepatocellular carcinomas 

(Honeyman et al. 2014) providing further links between PRKACA and proliferation.     

 

Based on the above, a plausible explanation for the effect of PYGL knockdown on proliferation 

is aberrant PKA signalling leading to perturbed lipid metabolism and activation of the G2/M 

checkpoint. Another possibility is that low glucose-1-phosphate levels impair lipid oxidation 

and that in turn activates the G2/M checkpoint. In this scenario, impaired lipid synthesis due 

to reduction in ACACA expression could be contributory and the observed PKA changes are 

a compensatory response to the decreased PYGL expression. PKA is the prototypical cAMP-

dependent kinase (Cho-Chung et al. 1995) and is known to regulate GYS1 directly (Bouché 

et al. 2004) and indirectly through GSK3 (Pearce et al. 2010). More importantly, it can indirectly 

activate PYGL through its effect on phosphorylase kinase (Bouché et al. 2004; Brushia & 

Walsh 1999; Ortmeyer 1997). It is therefore of extreme interest to further explore whether 

PYGL knockdown affects the cellular cAMP pool and whether the observed changes in PKA 

signalling accentuate or attenuate the effect on proliferation. It should be also kept in mind, 

that PYGL may exert its effects partly through non-enzymatic mechanisms, as was recently 

demonstrated for the glycogen debranching enzyme AGL. The latter was shown to contribute 

to bladder cancer cell line proliferation through effects on glycine synthesis that were 

independent of its enzymatic activity (Guin et al. 2014).  Glucose flux experiments using 
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radiolabelled glucose molecules would be useful in clarifying the effects of PYGL knockdown 

on carbon handling and knock-on effects on pathways such as the pentose phosphate shunt. 

Additionally, more detailed in vivo studies are required as well as further characterisation and 

medicinal chemistry optimisation of PYGL inhibitors, currently under development as potential 

antidiabetic drugs (Agius 2010; Chrysina et al. 2011). 

 

To summarise, my results show a marked dependence of OCCC cell lines on intact glycogen 

metabolism for sustained proliferation. Constitutive HIF1α and HNF1B expression drive 

glycogen accumulation and inhibition of glycogenolysis results in G2/M arrest and a dramatic 

reduction in proliferation. Importantly, although the high glycogen content makes OCCC a 

useful model system, these observations seem to apply to a wider variety of cell lines, raising 

the possibility that reliance on glycogen metabolism is an underexplored vulnerability of cancer 

cells in general. Germline PYGL mutations are the cause of Glycogenosis Type VI (Burwinkel 

et al. 1998), a glycogen storage disorder with a relatively benign course (Ozen 2007), 

suggesting that PYGL inhibition in adult cancer patients may be feasible without excessive 

toxicity, a hypothesis supported by the lack of an effect of PYGL knockdown in non-malignant 

IOSE4 cells.   
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

The work presented in this thesis investigated the consequences of 3 signature events in 

OCCC pathogenesis: ARID1A mutations, HNF1B overexpression and glycogen accumulation. 

Experiments were carried out in a variety of systems including mouse uterus, reflecting the 

putative tissue of origin, mouse fibroblasts, immortalised human ovarian surface epithelium 

and cancer cell lines.  

 

ARID1A mutations occur at high frequency in uterus-derived cancers, including OCCC, OEAC 

and high-grade endometrial endometrioid cancer. When this project started in 2011, 

knowledge about ARID1A function in most tissues and contexts was limited but included a 

report that ARID1A was necessary for ER-mediated transactivation in breast cancer cell lines 

(Inoue et al. 2002). Therefore, I considered it was important to investigate the relationship 

between ARID1A and hormonal regulation of the uterus. I found limited evidence that Arid1a 

itself is hormonally regulated in the mouse uterus and no strong evidence, apart from 

moderate correlation between Arid1a and ER expression in the uterine stroma, that Arid1a 

regulates hormonal responses. Examining ARID1A-driven transcriptional programmes in 

mouse uterus, MEFs and human IOSE cells, I described a “core” set of ARID1A-regulated 

genes, centred on the G2/M checkpoint. Interestingly, preliminary evidence of an increase in 

proliferation after knocking-out Arid1a in the uterine epithelium, suggests a growth advantage 

for an endometrial clone acquiring an Arid1a mutation. 

 

Much work needs to be done to extend on these observations. First, the predictions from the 

gene expression arrays need to be validated at the protein level. An expedient way to achieve 

this would be to create MEFs from ROSA26Cre-ERT2-Arid1afl/fl mice and use tamoxifen to in vitro 

knock out Arid1a. If Arid1a regulation of targets such as Aurora kinases, Polo-like kinases and 

Cyclins B and D is confirmed, the effect of inhibitors could be tested in the MEFs and OCCC 

cell lines carrying ARID1A mutations in vitro and in vivo. Meanwhile, our understanding of 

Arid1a’s role would be improved by ChIP-seq studies in MEFs and uterus samples. 

Preparatory work has begun to optimise ChIP-seq protocols using antibodies against Arid1a 

and constitutive Swi/Snf components such as BAF155. BAF155 ChIP-seq with or without 

Arid1a knockout, correlated with the transcriptomic data, would provide valuable insights into 

Arid1a regulation of gene expression and the consequences of its loss. Finally, the role of 

Arid1a in the regulation of hormonal responses in the uterus should be studied in more detail 
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using the current tamoxifen-driven ROSA26Cre-ERT2 GEMM in addition to models of stromal 

Arid1a loss, perhaps driven by Amhr2-Cre. 

 

My studies expand on the previously reported data regarding the role of HNF1B in OCCC 

proliferation and metabolism. I was able to show that HNF1B expression promotes 

proliferation in all OCCC cell lines tested and, additionally, in IOSE. Furthermore, in 

accordance with other studies (Okamoto et al. 2013), I found that HNF1B is a major driver of 

the Warburg effect phenotype and that its overexpression directly leads to glycogen 

accumulation. However, the growth and metabolic advantage of HNF1B-overexpressing cells, 

particularly important considering OCCC’s origin in the oxidative and hypoxic environment of 

endometriotic cysts, is counter-balanced by a reduction in their metastatic and invasive 

potential. This important observation, only hinted at by previous work (Tomassetti et al. 2008), 

for the first time provides a biological explanation for the frequent early stage clinical 

presentation of OCCC. 

 

Important future work should aim to clarify whether HNF1B overexpression in benign 

endometriosis increases the risk of OCCC development. Given the rarity of OCCC, this would 

be a significant undertaking, necessitating an international collaboration in order to assemble 

an adequate number of cases and matched controls with available endometriotic tissue. 

However, if HNF1B overexpression in endometriosis substantially increases OCCC risk, it 

could potentially form the basis of a screening programme. Given my observations regarding 

migration and invasion, it would be interesting to investigate whether there is reduced HNF1B 

expression in advanced stage or recurrent OCCC. With that in mind, construction of a tissue 

microarray with sufficient representation of advanced stage cases has begun. Additionally, 

potential interactions and cross-regulatory loops between ARID1A and HNF1B require further 

study as my results suggest that ARID1A loss would suppress HNF1B expression and that 

HNF1B regulates various SWI/SNF components in an ARID1A non-mutated cell line. 

Furthermore, as HNF1B in my data regulated transcription factors involved in oestrogen 

signalling, it would be important to study whether HNF1B overexpression leads to loss of 

hormonal dependence in endometriosis. Finally, given its universal expression in OCCC, 

HNF1B could be a therapeutic target. So far, it has been proven difficult to target transcription 

factors but innovative work at our laboratory, led by Ms. Mareike Wiedmann, is exploring the 

feasibility of modulating HNF1B function by blocking its nuclear import signal. 
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Glycogen accumulation remains the most understudied cardinal feature of OCCC. I have 

shown that constitutive HNF1B and HIF1A expression in OCCC are driving this accumulation. 

Importantly, my results suggest that the accumulated glycogen does not constitute an inert 

fuel store, to be accessed only when the cells are under nutritional stress. Inhibition of 

glycogen breakdown resulted in a dramatic decrease in proliferation, even in the presence of 

plentiful extracellular glucose, implying a necessity for glucose flux through glycogen for 

sustained cellular growth. Given the fact that similar findings have been observed in cell lines 

with a lesser magnitude of glycogen accumulation [PEO1 in my studies, U87 and MCF-7 in 

the report by Favaro et al (2012)], and that germline PYGL mutations exhibit a mild phenotype, 

targeting glycogen breakdown may prove to be a valid treatment strategy for many cancers.  

 

In the first instance, my in vitro findings need to be validated with in vivo xenograft studies. 

The small molecule inhibitors I tested so far, exhibit considerable limitations such as probable 

off-target effects (R3401), poor solubility (sc-203975) or insufficient activity (DAB). However, 

PYGL inhibitors continue to be developed as anti-diabetes agents (Gaboriaud-Kolar & 

Skaltsounis 2013; Kun et al. 2014); investigation of such compounds as anticancer agents 

should be a priority. 

 

Taking into account the interplay between ARID1A and HNF1B, a speculative model of OCCC 

pathogenesis can be constructed (Fig. 7.1A). In this model, by chance, some endometriotic 

cysts contain HNF1B overexpressing cells, known to normally occur in the secretory 

endometrium. These cells have a growth advantage within the endometriotic cyst and expand. 

Accumulation of mutations in other genes such as in ARID1A, or in some cases modulation of 

other chromatin remodellers by HNF1B itself, eventually lead to invasive OCCC. In this model, 

ARID1A mutations are a later event and are not necessary for OCCC development. 

Additionally, HNF1B regulation of transcription factors such FOXA1 or FOS confers hormone 

independence. In an alternative model, ARID1A mutations occur first, promoting growth within 

the cyst; at that point either an OCCC or an OEAC can eventually develop. HNF1B 

overexpression occurs later, in a subset of ARID1A-driven atypical endometriosis, conferring 

hormone independence and leading to OCCC, whereas other mutations lead to hormone-

dependent OEAC (Fig. 7.1B). 

 

The predictions of these models should be testable using the Cheng endometriosis mouse 

model developed by the Charnock-Jones laboratory. As previously discussed, this model is 

based on local activation of oncogenic Kras in the endometrium of donor mice which is then 
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harvested and subcutaneously implanted in donor mice. We have begun preparatory work 

aiming to knock down Arid1a or overexpress Hnf1b using lentiviruses to transfect the 

endometrial fragments prior to implantation. If successful, this could lead to a GEMM of OCCC 

that will greatly facilitate future studies in the pathogenesis and treatment of OCCC. 

 

In conclusion, the work carried out in this thesis has contributed to the functional 

characterisation of OCCC driver events. The insights gained will help design better OCCC 

models and develop therapeutic strategies for this chemoresistant malignancy. 

 

 

Figure 7.1. Models of OCCC development 
A) In this model, HNF1B overexpression is the initiating event with ARID1A mutations occurring as a 
later event in a subset of OCCC. B) In an alternative model, ARID1A mutations occur first, predisposing 
to endometriosis-related cancer, either OCCC or OEAC. HNF1B overexpression in a subset of 
ARID1A-mutant cells leads to OCCC whereas other events (e.g. PTEN loss) lead to OEAC.  
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Appendix 

Table A.1. Pathways enriched in “High Arid1a” compared with “Low Arid1a” mouse uterine 
samples  

Pathway p value FDR 

Cell cycle - Role of Nek in cell cycle regulation 4.925E-08 3.32E-05 

Cell cycle - Spindle assembly and chromosome separation 6.207E-06 0.002089 

Cell cycle - Role of APC in cell cycle regulation 3.555E-05 0.005981 

Cell cycle - Start of DNA replication in early S phase 3.555E-05 0.005981 

Cytoskeleton remodelling - TGF, WNT and cytoskeletal 
remodelling 

9.553E-05 0.01101 

Cell cycle - The metaphase checkpoint 9.817E-05 0.01101 

Apoptosis and survival - Granzyme A signaling 1.473E-04 0.01304 

Development - PIP3 signaling in cardiac myocytes 1.744E-04 0.01304 

Development - HGF signaling pathway 1.744E-04 0.01304 

Development - Thromboxane A2 pathway signaling 2.510E-04 0.01689 

LRRK2 in neurons in Parkinson's disease 3.023E-04 0.01844 

Apoptosis and survival - BAD phosphorylation 3.473E-04 0.01844 

Protein folding - Membrane trafficking and signal 
transduction of G-alpha (i) heterotrimeric G-protein 

3.732E-04 0.01844 

Cytoskeleton remodelling - Cytoskeleton remodelling 3.836E-04 0.01844 

Apoptosis and survival - Endoplasmic reticulum stress 
response pathway 

4.898E-04 0.0206 

Translation - Regulation of EIF4F activity 4.898E-04 0.0206 

Cell adhesion - Tight junctions 5.705E-04 0.02259 

Apoptosis and survival - NGF activation of NF-kB 7.438E-04 0.02781 

Hypoxia-induced EMT in cancer and fibrosis 8.790E-04 0.03113 

Pathways list created and statistical analysis performed using MetaCore 

 

Table A.2. Process networks enriched in “High Arid1a” compared with “Low Arid1a” mouse 
uterine samples  

Process Network p value FDR 

Cell cycle – Mitosis 1.56E-05 0.001224 

Protein folding - Response to unfolded proteins 1.21E-05 0.001224 

Cell cycle – Core 2.85E-05 0.00149 

Protein folding - Folding in normal condition 3.874E-04 0.0152 

Cytoskeleton - Spindle microtubules 7.773E-04 0.01743 

Proteolysis - Ubiquitin-proteasomal proteolysis 7.537E-04 0.01743 

Cell cycle - S phase 7.35E-04 0.01743 

Cell cycle - G2-M 0.001214 0.02383 

Process networks list created and statistical analysis performed using MetaCore
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Table A.3. Top 30 pathways enriched in Arid1a-regulated genes in MEFs  

Pathway p value FDR 

Cytoskeleton remodelling - TGF, WNT and cytoskeletal 
remodelling 

6.945E-09 2.796E-06 

Cell cycle - Spindle assembly and chromosome separation 8.272E-09 2.796E-06 

Cell cycle - The metaphase checkpoint 3.534E-08 6.495E-06 

Cell adhesion - Chemokines and adhesion 4.683E-08 6.495E-06 

Cell cycle - Role of Nek in cell cycle regulation 4.804E-08 6.495E-06 

Cytoskeleton remodelling - Cytoskeleton remodeling 7.252E-08 8.171E-06 

Cytoskeleton remodelling - Regulation of actin cytoskeleton 
by Rho GTPases 

4.491E-07 4.337E-05 

Cell cycle - Initiation of mitosis 1.275E-06 1.077E-04 

Cell cycle - Chromosome condensation in prometaphase 1.606E-06 1.207E-04 

Cell cycle - Regulation of G1/S transition (part 2) 2.051E-06 1.387E-04 

Development - Alpha-2 adrenergic receptor activation of 
ERK 

4.581E-06 2.455E-04 

LRRK2 in neurons in Parkinson's disease 4.709E-06 2.455E-04 

Immune response - IL-1 signaling pathway 4.721E-06 2.455E-04 

Immune response - IL-33 signaling pathway 6.258E-06 3.022E-04 

Development - VEGF signaling via VEGFR2 - generic 
cascades 

7.255E-06 3.227E-04 

Regulation of CFTR activity (norm and CF) 8.010E-06 3.227E-04 

Blood coagulation - GPCRs in platelet aggregation 8.114E-06 3.227E-04 

Development - Role of IL-8 in angiogenesis 9.206E-06 3.457E-04 

Immune response - HSP60 and HSP70/ TLR signaling 
pathway 

1.401E-05 4.983E-04 

Development - S1P2 and S1P3 receptors in cell proliferation 
and differentiation 

1.671E-05 5.647E-04 

Development - Beta-adrenergic receptors transactivation of 
EGFR 

1.822E-05 5.843E-04 

Cytoskeleton remodelling - Integrin outside-in signaling 1.901E-05 5.843E-04 

Immune response - CD28 signaling 2.261E-05 6.645E-04 

Normal and pathological TGF-beta-mediated regulation of 
cell proliferation 

3.051E-05 7.465E-04 

Signal transduction - Activin A signaling regulation 3.051E-05 7.465E-04 

Chemotaxis - Inhibitory action of lipoxins on IL-8- and 
Leukotriene B4-induced neutrophil migration 

3.131E-05 7.465E-04 

Development - EGFR signaling pathway 3.234E-05 7.465E-04 

Neurophysiological process - Receptor-mediated axon 
growth repulsion 

3.312E-05 7.465E-04 

Development - Thrombopoietin-regulated cell processes 3.312E-05 7.465E-04 

Transcription - P53 signaling pathway 3.313E-05 7.465E-04 

Pathways list created and statistical analysis performed using MetaCore 
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Table A.4. Process networks enriched in Arid1a-regulated genes in MEFs  

Process Network p value FDR 

Cell cycle – Mitosis 6.366E-11 1.012E-08 

Cytoskeleton - Regulation of cytoskeleton rearrangement 3.817E-08 3.035E-06 

Cell cycle – Core 8.253E-07 4.374E-05 

Transcription - Chromatin modification 1.486E-06 5.909E-05 

Cytoskeleton - Spindle microtubules 6.152E-06 1.956E-04 

Cytoskeleton - Actin filaments 8.622E-06 2.285E-04 

Cell cycle - G2-M 2.324E-05 5.279E-04 

Cell adhesion - Integrin-mediated cell-matrix adhesion 3.054E-05 6.07E-04 

Signal transduction - Androgen receptor nuclear signalling 1.335E-04 0.002358 

Cell cycle - G1-S Growth factor regulation 2.453E-04 0.003108 

Development - Hemopoiesis, Erythropoietin pathway 2.541E-04 0.003108 

Apoptosis - Apoptotic nucleus 2.426E-04 0.003108 

Development - Regulation of angiogenesis 3.588E-04 0.003804 

Development - Skeletal muscle development 3.443E-04 0.003804 

Development – Neurogenesis - Axonal guidance 3.887E-04 0.003863 

Cell cycle - G1-S Interleukin regulation 4.212E-04 0.00394 

Inflammation - Amphoterin signalling 5.244E-04 0.004388 

Signal transduction - WNT signalling 5.106E-04 0.004388 

Cell adhesion – Cadherins 7.189E-04 0.005715 

Cytoskeleton - Cytoplasmic microtubules 7.807E-04 0.005911 

Translation - Regulation of initiation 8.199E-04 0.005926 

Proliferation - Positive regulation cell proliferation 0.001042 0.007202 

Development - Blood vessel morphogenesis 0.001108 0.007343 

Cell adhesion - Amyloid proteins 0.001803 0.01146 

DNA damage - DBS repair 0.001983 0.01213 

Cell cycle - G0-G1 0.002299 0.01354 

Reproduction - Feeding and Neurohormone signalling 0.004337 0.02378 

Cell cycle - S phase 0.005241 0.02567 

Immune response - TCR signalling 0.00505 0.02567 

Inflammation - Innate inflammatory response 0.005328 0.02567 

Immune response - BCR pathway 0.005538 0.0259 

Signal transduction - NOTCH signalling 0.006639 0.02932 

Signal Transduction - TGF-beta, GDF and Activin signalling 0.008502 0.03379 

Cell adhesion - Attractive and repulsive receptors 0.009803 0.03791 

Signal transduction - ERBB-family signalling 0.01001 0.03791 

Process networks list created and statistical analysis performed using MetaCore 
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Table A.5. Pathways enriched in Arid1a-regulated genes in both mouse uterus and MEFs  

Pathway p value FDR 

Cell cycle - Role of Nek in cell cycle regulation 3.322E-08 1.19E-05 

Cell cycle - Spindle assembly and chromosome separation 4.476E-08 1.19E-05 

Cell cycle - The metaphase checkpoint 1.434E-06 2.55E-04 

Cell cycle - Role of APC in cell cycle regulation 8.693E-05 0.01158 

Apoptosis and survival - Granzyme A signalling 6.131E-04 0.04668 

Cytoskeleton remodelling - RalA regulation pathway 6.131E-04 0.04668 

Cell adhesion - Gap junctions 6.131E-04 0.04668 

Pathways list created and statistical analysis performed using MetaCore 

 

 

Table A.6. Process networks enriched in Arid1a-regulated genes in both mouse uterus and 

MEFs 

Process Network p value FDR 

Cell cycle – Mitosis 1.473E-10 2.254E-08 

Cytoskeleton - Spindle microtubules 6.792E-06 5.057E-04 

Cell cycle – Core 1.322E-05 5.057E-04 

Cytoskeleton - Cytoplasmic microtubules 1.322E-05 5.057E-04 

Transcription - Chromatin modification 1.815E-04 0.005553 

Cell cycle - G2-M 4.003E-04 0.01021 

Cell cycle – Meiosis 0.001377 0.02658 

Reproduction - Spermatogenesis, motility and copulation 0.00139 0.02658 

Process networks list created and statistical analysis performed using MetaCore 
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Table A.7. Top 30 pathways enriched in ARID1A-regulated genes in IOSE4 cells  

Pathway p value FDR 

Cell cycle - Role of APC in cell cycle regulation 5.480E-11 4.302E-08 
Cell cycle - Regulation of G1/S transition (part 1) 3.341E-10 1.311E-07 
Cell cycle - Role of SCF complex in cell cycle regulation 7.655E-10 1.718E-07 
Cell cycle - The metaphase checkpoint 8.755E-10 1.718E-07 
Cell cycle - Chromosome condensation in prometaphase 2.251E-09 3.534E-07 
Cytoskeleton remodeling -TGF, WNT and cytoskeletal 
remodeling 

4.966E-09 6.497E-07 

DNA damage - ATM / ATR regulation of G2 / M checkpoint 1.063E-08 1.093E-06 
Cell cycle - Spindle assembly and chromosome separation 1.114E-08 1.093E-06 
Cell cycle - Influence of Ras and Rho proteins on G1/S 
transition 

1.310E-08 1.142E-06 

Cell cycle - Transition and termination of DNA replication 4.149E-08 3.257E-06 
DNA damage - ATM/ATR regulation of G1/S checkpoint 5.257E-08 3.668E-06 
Cell cycle - Initiation of mitosis 5.607E-08 3.668E-06 
Normal and pathological TGF-beta-mediated regulation of 
cell proliferation 

9.156E-08 5.437E-06 

Cytoskeleton remodeling - Cytoskeleton remodeling 9.696E-08 5.437E-06 
Development - TGF-beta-dependent induction of EMT via 
RhoA,  PI3K and ILK.  

1.419E-07 7.429E-06 

Aberrant B-Raf signaling in melanoma progression 7.832E-07 3.843E-05 
Development - Notch Signaling Pathway 1.357E-06 6.267E-05 
Immune response - TLR2 and TLR4 signaling pathways  1.509E-06 6.581E-05 
Development - TGF-beta-dependent induction of EMT via 
SMADs  

1.691E-06 6.986E-05 

Development - PEDF signaling 2.351E-06 9.229E-05 
Development - VEGF signaling via VEGFR2 - generic 
cascades 

2.569E-06 9.604E-05 

Development - PDGF signaling via STATs and NF-kB 2.794E-06 9.969E-05 
IL-6 signaling in multiple myeloma 4.570E-06 1.560E-04 
Development - NOTCH1-mediated pathway for NF-KB 
activity modulation 

6.657E-06 2.177E-04 

Development - WNT signaling pathway. Part 1. Degradation 
of beta-catenin in the absence WNT signaling 

1.003E-05 3.151E-04 

Cytoskeleton remodeling - Integrin outside-in signaling 1.094E-05 3.303E-04 
Immune response - HSP60 and HSP70/ TLR signaling 
pathway 

1.147E-05 3.334E-04 

Neurophysiological process - Receptor-mediated axon 
growth repulsion 

1.387E-05 3.889E-04 

Apoptosis and survival - Granzyme B signaling 1.699E-05 4.446E-04 
Cell cycle - Role of Nek in cell cycle regulation 1.699E-05 4.446E-04 

Pathways list created and statistical analysis performed using MetaCore 
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Table A.8. Process networks enriched in ARID1A-regulated genes in IOSE4 cells 

Process Network p value FDR 

Cell cycle - Mitosis 1.615E-14 2.584E-12 
Cell cycle - Core 5.416E-13 4.333E-11 
Cell cycle - G2-M 8.232E-13 4.391E-11 
Cytoskeleton - Spindle microtubules 2.635E-09 1.054E-07 
Cell cycle - S phase 6.152E-09 1.969E-07 
Cell adhesion - Integrin-mediated cell-matrix adhesion 1.151E-07 3.069E-06 
Signal transduction - NOTCH signaling 6.476E-07 1.480E-05 
Cell cycle - G1-S 1.326E-06 2.652E-05 
Development – EMT-regulation of epithelial-to-
mesenchymal transition 

2.008E-06 3.571E-05 

Signal transduction - WNT signaling 4.078E-06 6.524E-05 
DNA damage checkpoint  5.226E-06 7.601E-05 
Cell adhesion - Platelet-endothelium-leucocyte interactions 1.091E-04 1.454E-03 
Signal Transduction - TGF-beta, GDF and Activin signaling 1.556E-04 1.915E-03 
Development - Regulation of angiogenesis 1.817E-04 2.077E-03 
Inflammation - IL-10 anti-inflammatory response 2.018E-04 2.153E-03 
Inflammation - MIF signaling 2.856E-04 2.856E-03 
Development - Blood  vessel morphogenesis 3.467E-04 3.263E-03 
Cell cycle - G1-S Growth factor regulation 6.033E-04 5.363E-03 
Cytoskeleton - Intermediate filaments 8.130E-04 6.847E-03 
Cell adhesion - Amyloid proteins 1.092E-03 8.382E-03 
Apoptosis - Anti-Apoptosis mediated by external signals via 
PI3K/AKT 

1.100E-03 8.382E-03 

Development - Hemopoiesis, Erythropoietin pathway 1.258E-03 9.149E-03 

Process networks list created and statistical analysis performed using MetaCore 
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Table A.9. Pathways enriched in ARID1A-regulated genes in JHOC-5 OCCC cells  

Pathway p value FDR 

Cell adhesion - ECM remodeling 9.422E-06 0.0048 

Immune response - IL-1 signaling pathway 2.546E-04 0.065 

Role and regulation of Prostaglandin E2 in gastric cancer 4.634E-04 0.073 

Transcription - NF-kB activation pathways  5.768E-04 0.073 

Expression targets of Tissue factor signaling in cancer 9.412E-04 0.073 

Transcription - Role of AP-1 in regulation of cellular 
metabolism 

0.001 0.073 

Immune response - Role of PKR in stress-induced antiviral 
cell response 

0.0011 0.073 

Development - Prolactin receptor signaling 0.0012 0.073 

Apoptosis and survival - TNFR1 signaling pathway 0.0018 0.091 

Immune response - IL-15 signaling 0.0019 0.091 

Apoptosis and survival - FAS signaling cascades 0.002 0.091 

Pathways list created and statistical analysis performed using MetaCore 

 

 

Table A.10. Process networks enriched in ARID1A-regulated genes in JHOC-5 OCCC cells  

Process Network p value FDR 

Blood coagulation 1.403E-04 0.021 

Cell adhesion - Cell-matrix interactions 2.716E-04 0.021 

Proteolysis - Connective tissue degradation 0.0011 0.056 

Development - Regulation of angiogenesis 0.0014 0.056 

Inflammation - Interferon signaling 0.0021 0.064 

Cell adhesion - Platelet-endothelium-leucocyte interactions 0.0028 0.07 

Immune response - Th17-derived cytokines 0.0032 0.07 

Proteolysis - ECM remodeling 0.0046 0.089 

Process networks list created and statistical analysis performed using MetaCore 
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Table A.11. Top 30 pathways enriched in HNF1B-regulated genes in JHOC-5 cells  

Pathway p value FDR 

Development - Regulation of epithelial-to-mesenchymal 
transition (EMT) 

9.911E-11 6.353E-08 

Development - WNT signaling pathway. Part 2 1.831E-10 6.353E-08 

Cell adhesion - Chemokines and adhesion 4.281E-10 9.904E-08 

Cell adhesion - ECM remodeling 5.123E-09 8.889E-07 

Immune response - IL-17 signaling pathways 2.217E-08 3.078E-06 

Cytoskeleton remodelling - TGF, WNT and cytoskeletal 
remodeling 

3.482E-08 4.027E-06 

Development - TGF-beta-dependent induction of EMT via 
RhoA, PI3K and ILK. 

9.164E-08 8.239E-06 

DNA damage - Brca1 as a transcription regulator 9.621E-08 8.239E-06 

Cell cycle - Regulation of G1/S transition (part 1) 1.068E-07 8.239E-06 

Cytoskeleton remodelling - Cytoskeleton remodeling 1.898E-07 1.317E-05 

Immune response - IL-1 signaling pathway 2.387E-07 1.445E-05 

Immune response - HMGB1/RAGE signaling pathway 2.498E-07 1.445E-05 

Immune response - HSP60 and HSP70/ TLR signaling 
pathway 

3.568E-07 1.774E-05 

Neurophysiological process - Receptor-mediated axon 
growth repulsion 

3.580E-07 1.774E-05 

Cell cycle - ESR1 regulation of G1/S transition 4.697E-07 2.167E-05 

Immune response - MIF-induced cell adhesion, migration 
and angiogenesis 

5.292E-07 2.167E-05 

Immune response - IL-18 signaling 5.504E-07 2.167E-05 

Immune response - MIF-mediated glucocorticoid regulation 5.621E-07 2.167E-05 

Immune response - Role of PKR in stress-induced antiviral 
cell response 

9.779E-07 3.572E-05 

Development - TGF-beta-dependent induction of EMT via 
SMADs 

1.193E-06 3.966E-05 

Apoptosis and survival - Role of PKR in stress-induced 
apoptosis 

1.252E-06 3.966E-05 

Apoptosis and survival - Role of IAP-proteins in apoptosis 1.257E-06 3.966E-05 

Development - VEGF signaling via VEGFR2 - generic 
cascades 

1.553E-06 4.687E-05 

Immune response - CCL2 signaling 1.738E-06 5.027E-05 

DNA damage - ATM/ATR regulation of G1/S checkpoint 2.014E-06 5.59E-05 

PGE2 pathways in cancer 2.390E-06 6.106E-05 

Cell cycle - Nucleocytoplasmic transport of CDK/Cyclins 2.395E-06 6.106E-05 

Development - Role of IL-8 in angiogenesis 2.464E-06 6.106E-05 

Regulation of metabolism - Bile acids regulation of glucose 
and lipid metabolism via FXR 

2.791E-06 6.678E-05 

Apoptosis and survival - Regulation of Apoptosis by 
Mitochondrial Proteins 

3.152E-06 7.291E-05 

Pathways list created and statistical analysis performed using MetaCore 
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Table A.12. Process networks enriched in HNF1B-regulated genes in JHOC-5 cells   

Process Network p value FDR 

Cell cycle - Mitosis 9.885E-07 0.0001027 

Immune response - Antigen presentation 1.292E-06 0.0001027 

Reproduction - Feeding and Neurohormone signaling 3.568E-06 0.0001891 

Development – EMT - Regulation of epithelial-to-
mesenchymal transition 

5.066E-06 0.0002014 

Cell adhesion - Integrin-mediated cell-matrix adhesion 1.240E-05 0.0003943 

Signal transduction - ESR1-nuclear pathway 1.714E-05 0.0004542 

Transcription - Chromatin modification 2.179E-05 0.0004949 

Signal transduction - WNT signaling 3.618E-05 0.0007191 

Development - Regulation of angiogenesis 5.020E-05 0.0008371 

DNA damage - Checkpoint 5.265E-05 0.0008371 

Inflammation - MIF signaling 1.018E-04 0.001472 

Apoptosis - Apoptotic nucleus 1.391E-04 0.001843 

Development - Blood vessel morphogenesis 1.899E-04 0.002115 

Inflammation - Amphoterin signaling 1.913E-04 0.002115 

Inflammation - Interferon signaling 2.057E-04 0.002115 

Cell adhesion - Attractive and repulsive receptors 2.180E-04 0.002115 

Cell adhesion - Cell junctions 2.262E-04 0.002115 

Development - Hedgehog signaling 2.786E-04 0.002461 

Cell cycle - G2-M 3.861E-04 0.003231 

Development – Neurogenesis - Axonal guidance 4.422E-04 0.003515 

Cell cycle - G1-S Growth factor regulation 5.505E-04 0.004168 

Cardiac development - Role of NADPH oxidase and ROS 5.970E-04 0.004314 

Reproduction - FSH-beta signaling pathway 6.430E-04 0.004445 

Cytoskeleton - Regulation of cytoskeleton rearrangement 6.865E-04 0.004548 

Proliferation - Negative regulation of cell proliferation 7.850E-04 0.004993 

Apoptosis - Death Domain receptors & caspases in 
apoptosis 

9.906E-04 0.005953 

Proteolysis - Connective tissue degradation 0.001052 0.005953 

Cardiac development - Wnt_beta-catenin, Notch, VEGF, IP3 
and integrin signalling 

0.001059 0.005953 

Protein folding - ER and cytoplasm 0.001086 0.005953 

Apoptosis - Apoptotic mitochondria 0.001156 0.006127 

Signal transduction - Androgen receptor nuclear signaling 0.001592 0.008164 

Cell cycle - S phase 0.001739 0.008428 

Cytoskeleton - Spindle microtubules 0.001749 0.008428 

Cell cycle - G1-S 0.001824 0.00853 

Process networks list created and statistical analysis performed using MetaCore 
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Table A.13. Top 30 pathways enriched in HNF1B-regulated genes in TOV21G cells  

Pathway p value FDR 

Cell adhesion - Chemokines and adhesion 1.091E-15 7.704E-13 

Cytoskeleton remodelling - Cytoskeleton remodeling 8.065E-14 2.847E-11 

Cytoskeleton remodelling - TGF, WNT and cytoskeletal 
remodelling 

3.093E-12 7.278E-10 

Development - Regulation of epithelial-to-mesenchymal 
transition (EMT) 

1.862E-10 3.287E-08 

Cell adhesion - Histamine H1 receptor signaling in the 
interruption of cell barrier integrity 

4.294E-10 6.063E-08 

Neurophysiological process - Receptor-mediated axon 
growth repulsion 

1.916E-08 2.254E-06 

Cell adhesion - Cadherin-mediated cell adhesion 2.340E-08 2.36E-06 

Muscle contraction - Regulation of eNOS activity in 
endothelial cells 

3.816E-08 3.368E-06 

Cell adhesion - ECM remodeling 9.668E-08 7.181E-06 

Development - VEGF signaling via VEGFR2 - generic 
cascades 

1.017E-07 7.181E-06 

Cell cycle - Regulation of G1/S transition (part 1) 1.139E-07 7.31E-06 

Development - WNT signaling pathway. Part 2 1.486E-07 8.742E-06 

Cell cycle - Role of SCF complex in cell cycle regulation 1.979E-07 1.038E-05 

Immune response - C5a signaling 2.059E-07 1.038E-05 

Development - Gastrin in cell growth and proliferation 2.433E-07 1.145E-05 

Development - Thromboxane A2 pathway signaling 6.674E-07 2.945E-05 

G-protein signalling - Regulation of p38 and JNK signaling 
mediated by G-proteins 

1.120E-06 4.313E-05 

Cell cycle - Start of DNA replication in early S phase 1.161E-06 4.313E-05 

DNA damage - ATM/ATR regulation of G1/S checkpoint 1.161E-06 4.313E-05 

Development - S1P2 and S1P3 receptors in cell proliferation 
and differentiation 

1.735E-06 6.124E-05 

LRRK2 in neurons in Parkinson's disease 1.964E-06 6.343E-05 

Cytoskeleton remodelling - Regulation of actin cytoskeleton 
by Rho GTPases 

1.977E-06 6.343E-05 

Muscle contraction - S1P2 receptor-mediated smooth 
muscle contraction 

2.522E-06 7.742E-05 

Cytoskeleton remodelling - Fibronectin-binding integrins in 
cell motility 

4.262E-06 1.162E-04 

Immune response - MIF-induced cell adhesion, migration 
and angiogenesis 

4.429E-06 1.162E-04 

Development - TGF-beta-dependent induction of EMT via 
RhoA, PI3K and ILK. 

4.429E-06 1.162E-04 

Immune response - CCL2 signaling 4.445E-06 1.162E-04 

Development - TGF-beta-dependent induction of EMT via 
SMADs 

5.196E-06 1.31E-04 

Reproduction - GnRH signaling 6.248E-06 1.518E-04 

Signal transduction - PKA signaling 6.448E-06 1.518E-04 

Pathways list created and statistical analysis performed using MetaCore 
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Table A.14. Process networks enriched in HNF1B-regulated genes in TOV21G cells  

Process Network p value FDR 

Cell adhesion - Integrin-mediated cell-matrix adhesion 1.348E-09 2.157E-07 

Development - Regulation of angiogenesis 6.030E-09 4.824E-07 

Cytoskeleton - Regulation of cytoskeleton rearrangement 1.423E-08 7.591E-07 

Cell cycle - S phase 6.168E-08 2.467E-06 

Cytoskeleton - Actin filaments 1.850E-07 5.919E-06 

Development – EMT - Regulation of epithelial-to-
mesenchymal transition 

6.537E-07 1.743E-05 

Development - Blood vessel morphogenesis 2.029E-06 4.638E-05 

Signal transduction - WNT signaling 2.766E-06 5.347E-05 

Development – Neurogenesis - Axonal guidance 3.008E-06 5.347E-05 

Reproduction - FSH-beta signaling pathway 1.379E-05 2.033E-04 

Signal Transduction - Cholecystokinin signaling 1.398E-05 2.033E-04 

Development - Ossification and bone remodeling 6.702E-05 8.936E-04 

Cell adhesion - Cadherins 9.093E-05 0.001119 

Cell cycle - Core 1.371E-04 0.001567 

Proliferation - Negative regulation of cell proliferation 1.848E-04 0.001809 

Cell cycle - G1-S Growth factor regulation 1.856E-04 0.001809 

Signal transduction - NOTCH signaling 1.922E-04 0.001809 

Cell cycle - G1-S 2.116E-04 0.001881 

Reproduction - Feeding and Neurohormone signaling 2.268E-04 0.00191 

Cell adhesion - Amyloid proteins 3.378E-04 0.002577 

Cell adhesion - Cell junctions 3.382E-04 0.002577 

DNA damage - Checkpoint 4.460E-04 0.003141 

Cardiac development - BMP_TGF_beta_signaling 4.516E-04 0.003141 

Cell adhesion - Leucocyte chemotaxis 5.012E-04 0.003341 

Signal Transduction - TGF-beta, GDF and Activin signaling 5.623E-04 0.003599 

Inflammation - Protein C signaling 6.222E-04 0.003829 

Inflammation - Interferon signaling 9.374E-04 0.005555 

Signal transduction - ESR1-nuclear pathway 0.001388 0.007933 

Signal Transduction - BMP and GDF signaling 0.001458 0.008044 

Cell cycle - G0-G1 0.001726 0.009205 

Cell adhesion - Integrin priming 0.001869 0.009649 

Process networks list created and statistical analysis performed using MetaCore 
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Table A.15. Pathways enriched in PYGL-regulated proteins in JHOC-5 cells  

Pathway p value FDR 

Non-genomic action of Retinoic acid in cell 
differentiation 

8.979E-07 2.927E-04 

cAMP signalling 2.762E-06 4.501E-04 
Regulation of lipid metabolism by niacin and 
isoprenaline 

6.512E-06 5.927E-04 

ACM regulation of nerve impulse 7.273E-06 5.927E-04 
Regulation of CFTR activity (normal and CF) 2.949E-05 1.735E-03 
Constitutive and regulated NMDA receptor trafficking 3.193E-05 1.735E-03 
Erk Interactions: Inhibition of Erk 4.673E-05 2.176E-03 
BAD phosphorylation 1.089E-04 4.436E-03 
MIF - the neuroendocrine-macrophage connector 1.559E-04 5.648E-03 
CREB pathway 1.998E-04 5.857E-03 
Corticoliberin signalling via CRHR1  2.162E-04 5.857E-03 
Histamine signalling in dendritic cells 2.162E-04 5.857E-03 
PKA signalling 2.335E-04 5.857E-03 
Beta-adrenergic receptors signalling via cAMP 2.519E-04 5.865E-03 
Ca(2+)-dependent NF-AT signalling in cardiac 
hypertrophy 

3.595E-04 7.672E-03 

Role of Parkin in the Ubiquitin-Proteasomal Pathway 3.766E-04 7.672E-03 
Signalling of Beta-adrenergic receptors via Beta-
arrestins 

4.796E-04 8.993E-03 

Activity-dependent synaptic AMPA receptor removal  4.966E-04 8.993E-03 

Pathways list created and statistical analysis performed using MetaCore 

 

 

Table A.16. Metabolic networks enriched in PYGL-regulated proteins in JHOC-5 cells  

Metabolic Network p value FDR 

Phosphatidylcholine pathway 3.220E-03 8.935E-02 

L-arginine pathways  and transport 5.206E-03 8.935E-02 

Lyso-Phosphatidylserine pathway 6.701E-03 8.935E-02 

Metabolic networks list created and statistical analysis performed using MetaCore 

 

 

Table A.17. Pathways enriched in PYGL-regulated proteins in TOV21G cells  

Pathway p value FDR 

PKA signalling 2.508E-04 4.135E-02 

Regulation of CFTR activity (normal and CF) 5.007E-04 4.135E-02 

Cadherin-mediated cell adhesion 5.063E-04 4.135E-02 

Pathways list created and statistical analysis performed using MetaCore      
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