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We present an implementation of a scalable path deviation algorithm to find the k most kinetically relevant
paths in a transition network, where each path is distinguished on the basis of having a distinct rate-limiting
edge. The potential of the algorithm to identify distinct pathways that exist in separate regions of the
configuration space is demonstrated for two benchmark systems with double-funnel energy landscapes, namely
a model ‘three-hole’ network embedded on a 2D potential energy surface, and the cluster of 38 Lennard-Jones
atoms (LJ38). The path cost profiles for the interbasin transitions of the two systems reflect the contrasting
nature of the landscapes. There are multiple well-defined pathway ensembles for the three-hole system,
whereas the transition in LJ38 effectively involves a single ensemble of pathways via disordered structures.
A by-product of the algorithm is a set of edges that constitute a cut of the network, which is related to
the discrete analogue of a transition dividing surface. The algorithm ought to be useful for determining the
existence, or otherwise, of competing mechanisms in large stochastic network models of dynamical processes,
and for assessing the kinetic relevance of distinguishable ensembles of pathways. This capability will provide
insight into conformational transitions in biomolecules and other complex slow processes.
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I. INTRODUCTION

Kinetic transition networks constructed by discrete
path sampling1–4 (DPS) or alternative5–13 methods pro-
vide a powerful framework for modeling many phys-
ical systems. The DPS methodology, where the N -
dimensional potential energy function V (rN ) is mapped
to a network of V nodes and E weighted and bidirec-
tional edges by determination of the transition states
connecting pairs of minima,14–18 avoids explicit simula-
tion of the dynamics. The framework is therefore par-
ticularly useful for modeling systems that feature broken
ergodicity.19 Kinetic transition networks determined by
DPS are an attractive coarse-grained representation of
the energy landscape, since they preserve the high di-
mensionality of the surface.20 The DPS framework has
provided insight into the thermodynamics and dynam-
ics of many systems, including atomic and molecular
clusters,21–24 biomolecules,4,25 and glasses.26

A simple way to gain mechanistic and kinetic infor-
mation from a transition network is to use Dijkstra’s
algorithm27,28 to determine the shortest path between
any pair of nodes that belong to two defined states A
and B, a ∈ A and b ∈ B, and calculate the contribution
of this discrete path to the steady state rate constant.28

However, in many physical systems there are liable to be
a multitude of kinetically relevant pathways,29 and com-
peting paths may exist in separate regions of the net-
work. A particularly pertinent question, and one that
is the subject of current debate,30–32 is the longstanding
problem of understanding whether protein folding takes
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place via multiple parallel pathways, or else by a sin-
gle and well-defined dominant pathway. There is there-
fore a need for algorithms that are capable of identifying
mechanistically distinct pathways covering the whole of
a transition network.

The problem of finding the k shortest paths between
source and sink nodes in a network is a fundamental
problem in computer science, and many algorithms to
solve the problem are known.33,34 Which algorithm pro-
vides the optimal solution depends on the properties of
the network being analysed, such as its sparsity. Kinetic
transition networks from DPS have weighted and bidi-
rectional edges, and are normally sparse, due to both
the connectivity of minima on a potential energy sur-
face being relatively low, even in high dimensions,35 and
also due to inexhaustive sampling. The networks typi-
cally range in size from tens to hundreds of thousands
of nodes. The less general problem of determining the
k shortest loopless paths between source and sink nodes
in a network36,37 is a significantly harder one.38 Some
classical algorithms for this problem scale poorly, such
as the algorithm of Yen,39 which has time complexity
O(kV (E + V log V )).

In previous work, the recursive enumeration algorithm
(REA) of Jiménez and Marzal40 was implemented to
solve the general k shortest paths problem for kinetic
transition networks.41 As for most general k shortest
path algorithms, the required input to the REA is an
initial shortest path tree. The REA can then find the
set of k shortest paths efficiently, specifically in O(E +
kV log (E/V )) time. If the edge weights of the transition
network are chosen appropriately (Section II.A), then
these are the paths that give the k largest contributions
to the steady state rate constant for the transition be-
tween the sets of endpoint nodesA andB. However, since
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the REA allows loops, the discrete paths may differ only
trivially from one another. In particular, typical reactive
trajectories on a transition network are liable to exhibit
‘flickering’ between nodes for which the transition rates
are fast compared to the rare barrier-crossing events be-
tween metastable states.42–44 Thus, practically, one finds
that in order to explore pathways existing in separate
regions of a transition network, and therefore obtain a
complete picture of the possible mechanisms for inter-
state transitions, one must run the algorithm for a large
number of paths k.45 The same problem affects other fast
algorithms for the general k shortest paths problem, such
as the algorithms of Martins and Santos,34,46–49 (time
complexity O(kV log V )), Eppstein50,51 (time complexity
O(E + V + k log k)) and Azevedo et al.52,53 (time com-
plexity O(kE)). No known algorithms for the k shortest
loopless paths problem achieve such favourable asymp-
totic time complexity. In any case, high-performance al-
gorithms for this less general problem, such as the algo-
rithm of Martins, Pascoal and Santos,34,37,38,54 may still
return successive paths that differ only trivially from one
another, i.e. by minor variations away from the dynam-
ical bottleneck region. In the context of transition net-
works, such pathways belong to the same ensemble of
trajectories.29

In the present work, we adopt an alternative algorithm
that is more appropriate for identifying mechanistically
distinct paths in a transition network. Hence we can
harvest representative pathways to assess the kinetic rel-
evance of, and competition between, distinguishable pro-
cesses. This capability will allow detailed insight into
the slow dynamics of complex systems, from the perspec-
tive of the underlying energy landscape. Specifically, we
utilise the algorithm of Frigioni, Marchetti-Spaccamela
and Nanni for the dynamic updating of shortest path
trees55 to find the k shortest loopless paths in a tran-
sition network. Following determination of the initial
shortest path tree, the algorithm runs in worst case time
O(k
√
E log V ) and memory costs scale linearly. Path de-

viation algorithms for solving the k shortest paths prob-
lem allow one to select a criterion for distinguishing suc-
cessive paths, which we here choose to be that each path
has a distinct rate-limiting edge. We subsequently refer
to the algorithm as the “k distinct paths” (kDP) algo-
rithm. We show that the use of this algorithm also allows
approximate characterisation of the transition state en-
sembles for interstate transitions, by determination of the
complete set of rate-limiting edges, which induces an A-B
cut in the network. The dynamical bottleneck region of
the energy landscape has a dominant effect on the nature
of slow transitions between metastable states,56,57 and
obtaining an accurate description of this region presents
a challenging problem.58,59

The algorithm described in Ref. 55 for the dynamic up-
dating of shortest path trees was first applied to analyse
transition networks by Noé et al.60,61 for a set of random
networks, and for conformational switching in polypep-
tides modeled with a coarse-grained potential. The tran-

sition networks were constructed from a mapping of the
stationary points on the potential energy landscape. Due
to computational limitations, the number of minima and
transition states in the networks were relatively small.
Initially the transition state energies were bracketed by
upper and lower bounds,61,62 only being determined ab-
solutely if the corresponding edges appeared in either of
the shortest paths given by Dijkstra’s algorithm based
on the upper or lower bounds. Hence the true Dijkstra
shortest path was not necessarily located. Furthermore,
the minima were determined by local minimisation after
uniform sampling, and edge connectivity was simply in-
ferred. This methodology is significantly different from
the DPS framework employed here. A further crucial dif-
ference between our approach and that of the previous
studies is in the definition of the edge weights. In the
original work, the edges were weighted according to the
inverse Boltzmann factors of the transition states, ne-
glecting dynamical prefactors. Determining the shortest
path in this way, with the total cost of a path being a
sum over transition states, is then conceptually similar
to finding the path of ‘maximum flux’ on the continuous
energy surface.63 This definition of the edge weights is
limited since the weights do not directly relate to tran-
sition rates, and the bidirectional nature of the edges of
a transition network is neglected. In the present work,
the edge weights are chosen so that their sum along a
discrete path is related to the negative logarithm of the
path contribution to the overall interstate rate constant
under a steady state approximation,28 as described in
Section II.A. The practical limitations of the methodol-
ogy described in Refs. 60 and 61 allowed for calculation
of only a small number of the most kinetically relevant
paths. The transition state ensemble was characterised
by an alternative greedy method. The implementation
used in the present contribution, where all edge weights
are known, is found to run to completion rapidly, even
for large transition networks. Indeed, for the benchmark
systems considered herein, the bottleneck of the compu-
tation is the determination of the initial shortest path
tree by Dijkstra’s algorithm.

We illustrate our results with two benchmark ki-
netic transition networks, for a roughened model three-
hole potential with a Poissonian node degree distribu-
tion, and for the cluster of 38 Lennard-Jones atoms
(LJ38).

21–24,64,65 The three-hole potential has been stud-
ied as a standard test system for methods to determine
reaction paths63,66 and for transition path theory.67,68

The LJ38 system has been investigated extensively in
many theoretical studies relating to flows on stochas-
tic networks,69–72 as well as in simulation studies, for
example by parallel tempering,73,74 direct transition cur-
rent sampling,75 Monte Carlo76 and other5,77,78 methods.
Both systems can be described in terms of double-funnel
energy landscapes.5,65
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II. METHODOLOGY

A. The energy landscape framework

Kinetic transition networks are constructed by the dis-
crete path sampling (DPS) method as described below.
Firstly, low-energy minima on the landscape, including
the global minimum, are located by basin-hopping.64,79,80

A discrete path (minimum-transition state-minimum se-
quence) connecting two chosen endpoint minima is then
determined as follows. A doubly-nudged81,82 elastic
band83–85 (DNEB) calculation is performed, and images
along the minimum energy path that are local maxima
are selected as transition state candidates. An attempt is
made to converge each transition state candidate tightly
by hybrid eigenvector-following86–88 (HEF). The pair of
minima connected by each transition state are located by
limited-memory Broyden-Fletcher-Goldfarb-Shanno89,90

(L-BFGS) local minimisation, following small displace-
ments along directions parallel and antiparallel to the
transition vector of the saddle point. Double-ended
searches are continued until a complete connected path
is found, with a Dijkstra-based missing connection algo-
rithm used to prioritise pairwise connection attempts.91

The minima and transition states are mapped to the
nodes and edges of a network, respectively. Given a net-
work constructed from one or more initial paths, further
sampling is achieved using many parallel interpolation
calculations. The priority values of connection attempts
for pairs of endpoint minima are based on one of a num-
ber of distance and barrier metrics.92,93

In the Dijkstra algorithm and in the k distinct paths
algorithm described herein, the edge weights Mαβ of the
transition network representing the A ← B interstate
transition are chosen to be the negative logarithms of
branching probabilities

Mαβ = − lnPαβ = − ln
kαβ∑
γ kγβ

∀ α, β. (1)

Here, Pαβ and kαβ are the branching probability and the
transition rate for the α← β internode transition, respec-
tively, and the sum is over all neighbouring nodes γ. In
the context of transition networks constructed by DPS,
the elements kαβ are the α ← β minimum-to-minimum
rate constants. The contribution of a single discrete path
a ← b, connecting endpoint nodes a ∈ A and b ∈ B, to
the overall steady state rate constant for the A← B tran-
sition is a product of branching probabilities for all nodes
along the path, weighted by the inverse of the waiting
time τb = 1/

∑
γ kγb for node b, and by the ratio πb/πB .

Here, π denotes an equilibrium occupation probability,
and πB =

∑
b∈B πb. The overall steady state rate con-

stant kSSAB is equal to a sum of individual contributions
kSSa←b from all possible a← b paths

kSSAB =
1

πB

∑

a←b

Pai1Pi1i2 . . . Pinbτ
−1
b πb, (2)

or, equivalently,

kSSAB =
1

πB

∑

b∈B

q+b πb

τb
. (3)

Here, q+b is the forward committor probability for node
b,56 i.e. the probability that the system, initially at node
b, will visit the state A before returning to B. i is used
to denote intermediate nodes, i /∈ A ∪ B. The Dijk-
stra and k shortest paths algorithms require positive edge
weights. If the edge weights are given by Eq. 1, and the
set B contains a single node b, then by comparison with
Eq. 2, the shortest a ← b path in the network, where
the total path cost is a sum over edge weights, is that
for which − ln kSSa←b is minimal. That is, the shortest
discrete path in the network is that which makes the
maximum contribution to the A ← B steady state rate
constant. Furthermore, the relative contribution of two
paths to the overall steady state rate constant is given
directly by the ratio of exponentials of path costs. If the
set B contains multiple nodes, then the additional fac-
tors of τ−1b πb must be accounted for. Estimates for the
minimum-to-minimum rate constants kαβ are obtained
here from harmonic transition state theory.94 However,
any appropriate unimolecular rate theory could be used,
including methods based on explicit dynamics.
Transition networks can be visualised as disconnectiv-

ity graphs,65,95,96 which preserve the full dimensionality
of the system, and therefore provide a faithful represen-
tation of the barriers and basins on the corresponding en-
ergy landscape. To construct a disconnectivity graph, all
nodes are initially considered to belong to the same set,
which is then cut at incremental threshold energies. The
cuts partition groups of nodes into disjoint sets, termed
superbasins. Nodes in the same superbasin at a given
threshold energy are mutually accessible, whereas a tran-
sition between different superbasins must proceed via an
edge with energy exceeding the threshold. The leaves of
the graph terminate at the energies of the corresponding
nodes.

B. Finding distinct pathways

We briefly describe the algorithm of Frigioni,
Marchetti-Spaccamela and Nanni55 in the form employed
here. That is, to iteratively find k pathways that are dis-
tinct, in the sense that they are disjoint with respect to
the identity of their rate-limiting edges. This statement
provides an intuitive and physical working definition for
what constitutes separate pathways that can be consid-
ered to differ non-trivially. The pseudocode for this “k
distinct paths” (kDP) algorithm is given as Algorithm 1.
Full details of the strategy for updating shortest path
trees, and proof of correctness, can be found in Ref. 55.
A step-by-step illustration of a single iteration of the al-
gorithm for a toy network is shown in Figs. S1-S10 of
the Supplementary Information. The main loop of Al-
gorithm 1 traces the shortest path tree, determines and
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blocks the rate-limiting edge (u, v), directed u ← v, of
the shortest path for the current iteration, and marks
u and all of the descendants of u in the transition net-
work as ‘red’, where u is a child of v in the tree. The
remainder of the operations in the main loop constitute
two sequential inner loops. The first inner loop of the
algorithm iterates over all red nodes, z, searching for the
best alternative route to z via a neighbour t of z that is
not red. If such a node exists, then z is added to a queue
with priority equal to the cost of the new route, and t
is set as the parent of z. The second inner loop of the
algorithm iterates over the red nodes z that have been
queued, searching for alternative paths to neighbouring
red nodes h via z that improve the cost of the path to
h. If a shorter path to h exists, then the tree structure is
updated accordingly, and h is queued with a new priority
value. In the present work, the input shortest path tree
that contains the first shortest path between two defined
states A and B is given by Dijkstra’s algorithm.

In Algorithm 1, the user defines a single node b ∈ B
that is the source node of the shortest path tree at ev-
ery iteration, along with a set of sink nodes {a} ∈ A. If
the set A has more than one member, then the short-
est A ← B path at the current iteration is that with
the lowest cost considering all nodes in A. Contributions
of individual paths to the steady state rate constant are
directly related to the path costs, by taking explicit ac-
count of the waiting time and occupation probability for
the node b ∈ B (Eq. 2). The definition of multiple sink
nodes is especially useful if the rate-limiting edges of de-
termined pathways tend to occur late along the pathway
in the A ← B direction, such that a cut separating the
source and sink nodes is rapidly induced in the network
as edges are blocked.

A second important consideration is deciding the cri-
terion for what constitutes a rate-limiting edge. Three
different definitions for the rate-limiting edge are con-
sidered; based on maximum edge weight, and based on
the energy barrier height or absolute transition state en-
ergy associated with the edge. The first two definitions
are conceptually similar, but the former accounts for the
branching probability, as well as for the explicit form of
the transition rates kαβ . Within the DPS framework, the
expression for the minimum-to-minimum rate constants
kαβ depends on the harmonic vibrational frequency of the
transition state. Blocking the edge corresponding to the
highest absolute transition state energy along a path is
the most useful way to explore mechanistically distinct
pathways if the sets of endpoint nodes are low-energy
states separated by a high energy barrier. The set of
rate-limiting edges then characterises the transition di-
viding surface separating the two basins corresponding
to states A and B,56 as discussed below. Blocking the
edge corresponding to the largest edge weight or barrier
height provides a more appropriate definition of paths
that can be considered to be kinetically distinct.

A by-product of Algorithm 1 is a set C of rate-limiting
edges. The distribution of transition state energies cor-

responding to edges in the set C gives an idea of the
landscape entropy contribution to A-B pathways, and
inspection of the configurations of the transition states
allows the identification of distinct transition state en-
sembles in the configuration space. The local densities of
states that appear in the transition state theory expres-
sion for the transition rates within the DPS methodology
account for local vibrational entropy. If there is a single
collection of dominant (i.e. low-energy) transition states
corresponding to the edges in C, then there is little com-
petition from alternative pathways. The landscape en-
tropy contribution of pathways to the overall interstate
rate constant is then small, and the dynamical bottleneck
of the transition is well-defined.61 Conversely, if there is
more than one collection of transition states in the set C
with similar energies, which can be identified as belong-
ing to distinct regions in configuration space, then the
reverse is true. The separation of transition state and
pathway ensembles may be quantified by order parame-
ters, or else by analysing the corresponding pathways for
the similarity of configurational changes along a partic-
ular pair of pathways,97 or for the cost of transforming
one path into another.

If the algorithm runs to completion, then the edges
in the set C constitute a cut in the network that par-
titions the A and B sets into two disconnected compo-
nents. The A-B cut in the transition network induced
by the cut set C is related to the concept of a transition
dividing surface,98,99 in a discretised space. A transition
dividing surface is a deformed plane in N − 1 dimensions
that partitions the N -dimensional potential energy sur-
face into reactant and product states, such that the flux
between reactants and products is maximal. However,
the edge weights of the kDP algorithm (Eq. 1) do not
constitute a flow, and C is not a minimum cut, and thus
does not represent maximum ‘flow’ between the A and
B sets. Nonetheless, the set C conveys similar informa-
tion to the rate-limiting cut discussed by Noé et al. in
Ref. 61. In the original work of Noé et al., practical limi-
tations prohibited the determination of more than a small
number of distinct paths, and hence of the complete cut
set. The notion of a ‘topographical ridge cut’, an approx-
imation to the transition dividing surface determined by
a greedy method, was introduced as an alternative. The
present formulation enabled us to rapidly determine the
complete cut set, even for the largest transition networks
considered.

The i-th distinct path is the member of the infinitely
large set of discrete paths associated with the i-th rate-
limiting edge that makes the largest contribution to the
steady state rate constant kSSAB . For a typical reactive
path, there are liable to be a number of unproductive
loops71 and, in particular, a large number of recrossings
of the transition dividing surface.98 Therefore the relative
contributions of two individual distinct paths to kSSAB , de-
termined via the ratio of path costs (cf. Eqs. 1 and 2),
may not necessarily be representative of the relative con-
tributions of the corresponding rate-limiting edges or sets
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of paths to the overall reactive A-B flux. To assess the
contributions of the rate-limiting edges contained in the
cut set C to the reactive flux, we could calculate the
steady state rate constant for the residual network at
each iteration of the kDP algorithm, using the graph
transformation (GT) method.42,100,101 The GT method
avoids evaluating the infinite sum over pathways in Eq. 2,
and instead iteratively removes nodes from the network
in a deterministic manner, and preserves the A ← B
mean first passage time by renormalisation of the branch-
ing probabilities and waiting times of nodes. We here
denote the A← B steady state rate constant calculated
using the GT method by kNGT

AB , after Ref. 42. Significant
decreases in kNGT

AB as specific edges are blocked would
suggest that these edges are well-defined reaction bot-
tlenecks. In contrast, if kNGT

AB decreases steadily as suc-
cessive rate-limiting edges are blocked, then this would
suggest that the set of reactive pathways for the A← B
transition has significant entropic character. When all
edges of the A-B cut set C are blocked, then kNGT

AB = 0.
This analysis is possible for small networks, but it is not
feasible to repeat the GT calculation multiple times for
large networks. An alternative and more scalable anal-
ysis is to calculate kNGT

AB at each iteration i of the kDP
algorithm in a cumulative manner. That is, to calcu-
late kNGT

AB for the network formed of the nodes and edges
that appear along the i distinct paths determined by the
kDP algorithm thus far. If the reaction bottleneck is
well-defined, then kNGT

AB for the accumulated network will
rapidly converge to a value close to the value calculated
for the complete network when a small number of specific
nodes and edges are included. If, however, the transition
path ensemble has significant entropic character, then
kNGT
AB will increase steadily as successive distinct paths

are added to the network.

C. Constructing model kinetic transition networks

Low-dimensional potential energy surfaces, where the
number of distinguishable configurational ensembles is
apparent, and the characterisation of dynamical bottle-
necks and pathway ensembles for interstate transitions is
tractable, can provide useful benchmarks. We can embed
a kinetic transition network onto a simple potential by as-
signing the location of stationary points. This procedure
essentially corresponds to a roughening of the potential
by superimposing small barriers on the smooth energy
surface. Furthermore, an artificial kinetic transition net-
work ought to have an ‘ideal’ node degree distribution
that follows a given statistical law commonly observed
for real-world networks. We present an algorithm for con-
structing such networks randomly, given as pseudocode
in Algorithm 2. Similar to the procedure described in
Ref. 60, the algorithm iteratively updates the positions
of nodes selected at random, one at a time, and also pe-
riodically updates the Euclidean cutoff distance d, below
which two nodes are considered to be connected by an

edge. Updates are accepted if they lead to a decrease in
the error between the observed node degree distribution
and the target distribution specified by the user. The
update loop terminates if the maximum number of iter-
ations nit is reached, or if the error value ǫobs associated
with the degree distribution decreases below the toler-
ance ǫtol. Then the energies Eu of nodes u are assigned
according to a potential energy function provided by the
user, and energies Euv of transition states correspond-
ing to the edges (u, v) are assigned according to a spec-
ified mean barrier height, with noise incorporated into
both. The target node degree distribution can be Pois-
sonian, power-law or Gaussian, all of which have been
reported for complex networks covering a variety of real-
world systems.102

III. RESULTS

A. Model network

Amodel kinetic transition network was constructed ac-
cording to Algorithm 2, with the node degree distribution
fitted to a Poisson form with λ = 8, and node energies as-
signed according to a shifted two-dimensional three-hole
potential67,68 V (x, y) with domain x, y ∈ [−2, 2]. Other
parameters of the algorithm were nV = 1000, d = 0.15,
σE = 0.04, µb = 0.2 and ǫtol = 0.05. The final net-
work consisted of 998 nodes and 3981 bidirectional edges.
The elements of the weighted adjacency matrix (Eq. 1)
were calculated according to a reduced temperature of
T = 0.6. The disconnectivity graph65,95,96 for the re-
sulting network is shown in Fig. 1a, and exhibits a clear
double-funnel topology, with a third, more shallow funnel
corresponding to values of x close to zero. The 2D po-
tential energy surface on which the network is embedded
is shown in Fig. 2a.
The kDP algorithm found 150 distinct paths in the

kinetic transition network before the pair of endpoint
nodes, chosen as the lowest-energy nodes of each of the
two major funnels, became disconnected. The A ← B
transition is in the direction of increasing x (see Figs. 1
and 2). The criterion for determining the rate-limiting
edge of a given discrete path was based on the cor-
responding transition state energies. The 150 distinct
paths of the network, and the 150 edges that are the rate-
limiting edges of each of the distinct paths, are shown on
the 2D potential energy surface in Figs. 2b and 2c, re-
spectively. The energy profiles and the costs of each of
the 150 distinct paths are shown in Figs. 3a and 3b, re-
spectively.
Immediately one can identify three ensembles of tra-

jectories on the underlying potential energy surface
(Fig. 2b). This result illustrates the ability of the kDP
algorithm to explore distinct regions of a transition net-
work, and hence separated regions of the underlying con-
figuration space. The 15 shortest distinct paths all follow
a similar route in the 2D space, with y initially increas-
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ing, starting from either endpoint minimum, but not en-
tering the third, more shallow basin centered at x = 0.
The next, approximately 60, distinct paths are mostly of
a second distinguishable pathway ensemble, with y ini-
tially decreasing, although some paths also belong to the
first ensemble. The energies of the transition states corre-
sponding to the rate-limiting edges of the paths compris-
ing this second ensemble are only slightly greater than
for the first ensemble, and the paths are slightly longer.
The profiles of path costs and of the steady state rate
constant for the residual network at each iteration of the
kDP algorithm (Fig. 3b) show that, although the first
pathway ensemble makes a dominant contribution to the
rate constant, the second ensemble is competitive, at the
relatively high reduced temperature of T = 0.6. Inter-
estingly, the second ensemble of pathways, i.e. those pro-
ceeding via the lower channel, becomes dominant at low
reduced temperatures (T ≈ 0.05), an effect which has
previously been termed ‘entropic switching’.67 Approxi-
mately 75 more distinct paths are determined before an
A-B cut is induced in the network and the kDP algorithm
terminates. These distinct paths mostly correspond to x
initially decreasing and y increasing, starting from the
B endpoint (with x ≈ − 1), and the transition states
associated with the the rate-limiting edges are located
at x ≈ − 1.8, y ≈ 0.8. This third ensemble of
pathways has highest-energy transition states with sig-
nificantly greater energies than for the first two ensem-
bles, and the total path costs are much greater. Analysis
of the steady state rate constant for the residual network
at each iteration of the kDP algorithm demonstrates that
this third ensemble of pathways makes a negligible con-
tribution to the rate constant at T = 0.6 (Fig. 3b).

There are three distinguishable transition state ensem-
bles in the 2D space, corresponding to each of the three
principal pathway ensembles described (Fig. 2c). The
existence of three distinguishable mechanisms is also ap-
parent from the energy profiles of the 150 distinct paths,
shown in Fig. 3a. The numbers of stationary points along
the distinct paths of the first pathway ensemble are small,
and the highest-energy transition states have relatively
low potential energies, V ≈ − 1. The distinct paths
of the second ensemble include a slightly greater num-
ber of stationary points than those of the first, and the
maximum energy along the pathways varies in the range
V ≈ − 1 to V ≈ 2.5. The distinct paths of the third
ensemble have a high maximum energy, V ≈ 2.5, and
are much longer than the paths of the first and second en-
sembles, proceeding via formation of a metastable inter-
mediate before traversing the high barrier. Visualisation
of the disconnectivity graphs including only stationary
points found along one discrete path, or a set of related
paths, provides a convenient means to compare pathway
ensembles, without requiring a low-dimensional projec-
tion of the network. From the disconnectivity graphs
for the networks composed of stationary points along the
first (Fig. 1b) and 150th (Fig. 1c) distinct paths, the dif-
ferences between the first and third pathway ensembles

are clear, including the fact that pathways of the third en-
semble enter the shallow basin at x ≈ 0. The REA,40,41

for the general k shortest paths problem, is very ineffi-
cient in exploring the multiple pathway ensembles (see
the Supplementary Information). The 50000 shortest
paths determined by the REA roughly correspond to the
first 5 distinct paths determined by the kDP algorithm,
even though analysis of the steady state rate constant
for the residual network suggests that approximately 100
shortest distinct paths are kinetically relevant (Fig. 3b).
There is evident correlation between the profiles of

path costs and of steady state rate constants for the resid-
ual (Fig. 3b) and accumulated (Fig. S12b of the Supple-
mentary Information) networks with increasing number
of distinct paths, at a reduced temperature of T = 0.6.
The network formed of the stationary points present
within the set of the 100 shortest distinct paths, which
comprises 182 nodes and 282 bidirectional edges, cap-
tures almost half of the rate constant of the complete
network (kNGT

AB = 1.48 × 10−3 compared to kNGT
AB =

3.83 × 10−3, respectively). Taken together, these obser-
vations suggest that, although for typical reactive A-B
trajectories there are significant fluctuations from the set
of distinct paths at a reduced temperature of T = 0.6,
the complete set of distinct paths appropriately charac-
terises all possible reactive paths on the network. That
is, although loops and deviations from the set of distinct
paths make non-negligible contributions to the reactive
flux, this mechanistic information is essentially redun-
dant, and hence the relative costs of the distinct paths
reflect the kinetic relevance of the corresponding rate-
limiting edges and sets of paths. It is in this sense that
the complete set of distinct paths is representative of all
reactive paths on the network, including those that are
rare. The landscape entropy contribution to the steady
state rate constant at a reduced temperature of T = 0.6
is large. This effect is reflected in the steady decrease
of the rate constant for the residual network, and in the
steady increase in the rate constant for the accumulated
network, with increasing number of distinct paths. Hence
there is no well-defined reaction bottleneck. The multiple
jumps in these profiles, and in the profile of path costs,
indicates that there are multiple pathway ensembles that
exist in separate regions of the pathway space, separated
by high energy barriers.

B. LJ38

Having established the ability of the kDP algorithm
to determine distinguishable ensembles of pathways in
configuration space, we now move on to a much larger
benchmark system, namely a kinetic transition network
for the cluster of 38 Lennard-Jones atoms (LJ38), consist-
ing of 63706 nodes and 203624 bidirectional edges. This
network was constructed by the discrete path sampling
method,1–4 as described in Section II.A, and the elements
of the weighted adjacency matrix (Eq. 1) were calculated
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FIG. 1: (a) Disconnectivity graph for the model kinetic transition network based on the three-hole potential, at an
energy threshold increment of ∆V = 0.25. The minima (that is, the leaves of the tree) are coloured according to
their position in the x direction (see Fig. 2a). (b) Disconnectivity graph including only the stationary points along
the shortest distinct path between the lowest-energy minima of the two major funnels. (c) Disconnectivity graph

including only the stationary points along the 150th shortest distinct path.
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FIG. 2: (a) The model Poissonian kinetic transition network embedded on the 2D three-hole potential V (x, y). The
pair of endpoint minima are marked in red. (b) The set of 150 distinct paths determined by the kDP algorithm for
the A← B interbasin transition before an A-B cut is induced in the network. (c) The set of 150 edges that are the

rate-limiting edges of each of the distinct paths.

for a reduced temperature of T = 0.05. Similar to the
model three-hole system discussed in Section III.A, the
potential energy landscape for LJ38 has a double-funnel
topology.22,65 We find that the physical features of the
set of distinct paths for the transition between the two
major basins in the network for LJ38 are significantly
different from the three-hole system.

The competing low-energy morphologies in the LJ38
kinetic transition network are an incomplete Mackay
icosahedron64 (denoted Ih) and a face-centered cubic (F )
structure. The latter structure is the global potential en-
ergy minimum, and corresponds to a much smaller region
of configuration space than icosahedral structures.14 The
F ← Ih transition takes place via initial formation of a
high-energy hexagonal close-packed (H) metastable in-
termediate, which subsequently forms a low-energy dec-
ahedral state that converts to the F structure by one

or more diamond-square-diamond rearrangements asso-
ciated with moderate barrier heights.103

We calculated the complete set of distinct paths for
the F ← Ih interbasin transition, associating the rate-
limiting edge with the transition state of highest energy.
We also calculated the complete set of distinct paths for a
transition from a high-energyH-type state to the F state,
which we denote the F ← H transition, defining the
rate-limiting edge as that with the greatest weight. This
transition is an example of a transition that is downhill
in energy. That is, there is a low energy barrier to escape
the slightly defective H state, and the F state is much
more thermodynamically stable than the metastable H
state. The kDP algorithm found 23460 and 11904 dis-
tinct paths for the respective transitions, before an A-B
cut was induced in the network. In both cases, the values
for the costs of successive paths converged after approx-
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(a) (b)

FIG. 3: Results of the kDP algorithm applied to the interbasin transition of the model transition network based on
the three-hole potential, at a reduced temperature of T = 0.6. (a) Energy profiles of each of the 150 distinct discrete
paths. The paths are coloured from blue (shortest distinct path) to green (150th shortest distinct path). (b) (Red)
Costs of the 150 distinct paths. (Blue) Steady state rate constant, calculated by the graph transformation method,

for the residual network at each iteration of the kDP algorithm.

imately 5000 iterations (Fig. S13 of the Supplementary
Information). Energy profiles of representative distinct
paths for these transitions are shown in Fig. 4. Profiles of
the path costs, and of the steady state rate constants for
the accumulated networks, for the 1000 shortest distinct
paths of the two transitions are shown in Fig. 5.

For the F ← Ih transition (Fig. 4a), the low-symmetry,
high-energy intermediate states formed by melting of the
initial Ih state are liquid-like, i.e. structurally disordered,
of similar energy and separated by low energy barriers.
The transition state ensemble for the F ← H transition
is similarly disordered (Fig. 4b). Therefore there is lit-
tle energetic preference for the transitions to proceed via

any particular set of intermediate structures. Further-
more, since the energy barriers for the interconversions
of these disordered structures are small, there is only a
slightly greater path cost associated with transitions via
a larger number of stationary points. It is not possible
to distinguish any well-defined alternative mechanisms
for either transition. That is, for both transitions there
is effectively only a single pathway ensemble, where in-
dividual paths are separated by low energy barriers in
pathway space. We therefore anticipate that, for higher
reduced temperatures, there are likely to be a large num-
ber of paths that have similar costs. However, the contri-
butions of individual discrete paths to the steady state
rate constant are exponentially sensitive to the heights
of the energy barriers along the paths (Eq. 2). Con-
sequently, as the reduced temperature is decreased, the
number of individual members of the single pathway en-
semble that are kinetically relevant decreases, until even-
tually the dynamical bottleneck of the reactive transition
becomes well-defined.

Indeed, we find that for both the F ← Ih and F ← H
transitions in LJ38, the landscape entropy contribution
to the steady state rate constant is small at a reduced
temperature of T = 0.05 (Fig. 5). The path cost pro-
files exhibit rapid decay of the relative contributions of
successive distinct paths to the steady state rate con-
stant. The rate constants for the accumulated networks
at each iteration of the kDP algorithm rapidly converge
to values close to those for the complete network within
a small number of distinct paths. For the F ← Ih
transition, the majority of the rate constant is achieved
for the network formed from the 116 shortest distinct
paths, comprising 358 nodes and 472 bidirectional edges
(kNGT

AB = 2.37 × 10−27 for the reduced network, com-
pared to kNGT

AB = 2.77×10−27 for the complete network).
The remaining contribution to the reactive flux is due to
small contributions from a large number of many alter-
native pathways (Fig. S13a). Similarly, for the F ← H
transition, the majority of the rate constant is achieved
for the network formed from the 307 shortest distinct
paths, comprising 876 nodes and 1188 bidirectional edges
(kNGT

AB = 4.50 × 10−11 for the reduced network, com-
pared to kNGT

AB = 5.23×10−11 for the complete network).
Again, the remaining contribution to the rate is a sum
of small contributions from many alternative pathways
(Fig. S13b). For both of these transitions, there are a
small number of significant jumps in the rate constant
profiles for the accumulated networks, indicating that the
dynamical bottlenecks of the respective reactive transi-
tions are well-defined at T = 0.05.

The landscape entropy contribution to the steady state
rate constant for the F ← Ih transition is significantly
greater at a higher reduced temperature of T = 0.15
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(Fig. S14). This effect is evident from the profile of dis-
tinct path costs, which is much flatter than for T = 0.05
(Fig. 5a), indicating that there are many kinetically rel-
evant pathways, with each individual pathway making
a comparable small contribution to the rate constant.
Likewise, the profile of the steady state rate constant
for the accumulated network at each iteration of the
kDP algorithm is much smoother than for T = 0.05.
The network formed from the 1000 shortest distinct
paths, comprising 1765 nodes and 2784 bidirectional
edges, captures only around two-thirds of the reactive
flux (kNGT

AB = 1.55× 10−6 for the reduced network, com-
pared to kNGT

AB = 2.21× 10−6 for the complete network).
These observations demonstrate that the dynamical bot-
tleneck of the F ← Ih transition is less well-defined at
higher temperature.

At the low reduced temperature of T = 0.05, where the
dynamical bottlenecks of the F ← Ih and F ← H tran-
sitions are well-defined, the profiles of the steady state
rate constants for the accumulated networks are charac-
teristically step-like. Small plateau regions in the pro-
files may arise if subsequent distinct paths involve only a
small number of nodes and edges that are not present in
the set of previously determined distinct paths. Further-
more, the inclusion of additional nodes and edges may
accommodate new paths that are similar to paths al-
ready existing in the network, and which therefore serve
merely to split the probabilities of existing paths, yield-
ing a negligible change in the rate constant. The steps
in the rate constant profiles correspond to the addition
of key edges to the network. With decreasing tempera-
ture, a small number of critical transition states have an
increasingly dominant effect. For instance, the second
jump in the profile of the rate constant of the accumu-
lated network for the F ← Ih transition at T = 0.05,
occurring with the inclusion of the 15th distinct path,
arises due to the addition of a single edge correspond-
ing to a transition state with a defective F -type struc-
ture. This low-energy transition state connects the rela-
tively small volume of configuration space corresponding
to F -type structures with the configurational ensemble
of disordered structures. Compared to alternative ‘late’
transition states for the F ← Ih transition, this key tran-
sition state separates the F -type and disordered configu-
rational ensembles by a relatively high energy barrier. It
can therefore be inferred that this transition state facil-
itates pathways for which the probability of recrossings
between the F -type and disordered states is small, and
hence the contribution to the reactive flux is substantial.
A similar effect is observed for the F ← H transition at
T = 0.05, where the network formed from the first 35 dis-
tinct paths makes a negligible contribution to the steady
state rate constant. It is only with the inclusion of the
next distinct path, which proceeds via the formation of
a more regular H-type intermediate structure, that the
accumulated network captures an appreciable fraction of
the rate constant. The preceding distinct paths feature
low energy barriers, and therefore the corresponding sets

of pathways are associated with a large number of re-
crossings and unproductive loops. After the formation
of a more regular H-type structure, however, it is im-
probable to return to the endpoint H state due to an
asymmetrical energy barrier that is large in the reverse
(F → H) direction. That is, compared to the more dif-
fusive dynamics104 for the previous distinct paths, where
all energy barriers are small, there is a sharp increase
in the committor function associated with the formation
of a more regular H-type intermediate. It is for this
reason that the reactive flux associated with pathways
proceeding via such a metastable state is high. These
observations demonstrate that caution must be exercised
in the interpretation of the distinct path costs, which
may not reflect the contributions of the corresponding
infinitely large sets of paths, represented by individual
distinct paths, to the reactive flux.
Differences between the profiles of distinct path costs

for the interbasin transitions of the three-hole potential
(Fig. 3b) and of LJ38 (Figs. 5a, S13a and S14) are in-
dicative of the contrasting characteristics of the underly-
ing energy landscapes, and hence of the transition path
ensembles, for the two systems. For the interbasin tran-
sition of LJ38, all reactive trajectories follow a broadly
similar mechanism. Effectively, there is only a single
pathway ensemble, and the transition state ensemble is
a set of disordered structures with similar energies. Con-
versely, for the interbasin transition of the three-hole
potential, there are several distinguishable ensembles of
pathways. That is, pathways of high probability are con-
tained within localised regions of pathway space that are
separated by high energy barriers. This leads to jumps in
the cost profile of successive distinct paths, as the kDP
algorithm explores pathways corresponding to separated
regions of configuration space. These separate pathway
ensembles are characterised by distinguishable transition
state ensembles. Conversely, the path cost profiles for
the interbasin transition of LJ38 at both low and high
reduced temperatures tail off smoothly, without signifi-
cant jumps. The disordered nature of the transition state
ensemble for the interbasin transition in LJ38 is appar-
ent from the disconnectivity graph,65 which, in contrast
to that for the network based on the three-hole poten-
tial (Fig. 1a), does not have a funnelled structure in the
high-energy region. The existence of a large family of ki-
netically relevant paths for both the F ← Ih and F ← H
transitions at a high reduced temperature, where each
successive path comprises a marginally greater number
of stationary points than the preceding path, may be a
consequence of the small-world character of the kinetic
transition network.105

IV. CONCLUSIONS

We have implemented an algorithm that is a member
of the path deviation family of methods for solving the
k shortest loopless paths problem, which allows efficient
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(a)

(b)

FIG. 4: Energy profiles of the first, hundredth,
thousandth and five-thousandth shortest distinct
discrete paths for transitions in LJ38, at a reduced

temperature of T = 0.05. (a) The F ← Ih transition.
(b) The F ← H transition.

identification of mechanistically distinct pathways in a
transition network. The algorithm is ideal for our pur-
pose, as it allows one to define a criterion for distinguish-
ing successive pathways. Here we impose the condition
that each path has a distinct rate-limiting edge compared
to all other paths. This constraint provides an intuitive
definition for paths that can be considered to differ non-
trivially from one another, and encourages the algorithm
to rapidly progress to separate regions of the network. A
by-product of the algorithm is a set of rate-limiting edges
that approximates the transition state ensemble. The
algorithm has favourable time and space complexity, an
essential consideration given the large size of kinetic tran-
sition networks constructed by discrete path sampling for

(a)

(b)

FIG. 5: Results of the kDP algorithm applied to
transitions in LJ38, at a reduced temperature of

T = 0.05. (a) The F ← Ih transition. (b) The F ← H
transition. (Red) Costs of the 1000 shortest distinct

paths. (Blue) Steady state rate constant, calculated by
the graph transformation method, for the accumulated
network composed of the distinct paths determined by

the kDP algorithm.

real systems of interest.

We have tested the method on two benchmark systems
that demonstrate the capability of the algorithm to ex-
plore pathway ensembles existing in separate regions of a
transition network, and therefore of the underlying con-
figuration space. Inspection of the cost profiles for the
distinct paths found by the algorithm, and analysis of
the steady state rate constants for the accumulated net-
works composed of the determined distinct paths, shows
that multiple kinetically relevant pathways are present
for both systems. Hence Dijkstra’s algorithm alone does
not give a complete picture of the dynamics, even in
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such simple cases. The contrasting path cost profiles
for the interbasin transitions of networks for the model
‘three-hole’ potential and for the LJ38 cluster reflect the
fact that the former system features multiple well-defined
pathway ensembles separated by high energy barriers in
the configuration space. This leads to jumps in the pro-
file of path costs as well-defined transition state ensem-
bles become blocked and the algorithm explores separate
regions of the network. Similarly, there are jumps in the
profile of the rate constant for the accumulated network,
as distinct paths belonging to separate pathway ensem-
bles are incorporated in the network. For the interbasin
transition in LJ38 there is effectively a single pathway
ensemble with many possible alternative disordered in-
termediate states following initial melting, and low en-
ergy barriers between these different structures. This is
evident from the distribution of energies for the tran-
sition state ensemble, which is relatively homogeneous.
This characteristic of the transition path ensemble is in-
dicated by the smooth tailing off of the profiles of the
path costs and of the rate constant for the accumulated
network. At lower temperatures, the reaction bottleneck
is more well-defined, and hence the contributions of suc-
cessive distinct paths to the steady state rate constant
decay more rapidly, and the rate constant for the accu-
mulated network also converges more rapidly.

The full set of rate-limiting edges that induces an A-
B cut in the network may be interpreted similarly to a
transition dividing surface of the corresponding continu-
ous configuration space.60,61 Thus, as a by-product of the
algorithm, we obtain a partition of the high-dimensional
configuration space, which characterises the dynamical
bottleneck of the A ← B interstate transition. This
region has a critical role in determining the dynami-
cal features of the rare barrier-crossing events between
metastable states.56,57

The k distinct paths algorithm is applicable to any net-
work where edge weights correspond to transition rates,
probabilites, or probability fluxes, such that suitable edge
weights for use with a shortest path algorithm can be
assigned (cf. Eq. 1). A notable class of transition net-
works is Markov state models12,13,106,107 (MSMs), net-
works parameterised by a transition matrix determined
from many short simulation trajectories. MSMs have
been used extensively to study biomolecular conforma-
tional transitions,13,107–109 and are amenable to analysis
by transition path theory110–112 to calculate important
dynamical quantities such as reactive fluxes. Stochastic
network models are also of fundamental importance in
many other domains, such as in systems biology,113,114

and in studies of epidemic spread115 and finance.116

Further work will focus on the analysis of existing ki-
netic transition networks, for which evidence for multiple
competing pathway ensembles, or otherwise, and assess-
ment of the kinetic relevance of alternative pathway en-
sembles, yields valuable insight into the underlying dy-
namics. Variations with temperature in the profiles of
distinct path costs and of steady state rate constants

for the accumulated networks formed from the distinct
paths reflect the entropic character of an interstate tran-
sition. The kDP algorithm therefore provides a novel
framework for understanding the fundamental features of
reactive transitions on energy landscapes. A particularly
interesting application is to conformational transitions of
biomolecules, for which patterns of dynamical behaviour
are closely related to biological function.4,25
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VI. SUPPLEMENTARY INFORMATION

The algorithm detailed in this paper for determining
k distinct paths in a transition network is available in
the Fortran 90 language as the KDISTINCTPATHS sub-
routine of the PATHSAMPLE program (http://www-
wales.ch.cam.ac.uk/PATHSAMPLE/), which is freely
available software under the GNU General Public
License. A Python implementation of the algo-
rithm and a C++ script to construct model kinetic
transition networks are publically available online at
https://github.com/danieljsharpe.
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4J. A. Joseph, K. Röder, D. Chakraborty, R. G. Mantell, and
D. J. Wales, Chem. Commun. 53, 6974–6988 (2017).

5S. V. Krivov and M. Karplus, J. Phys. Chem. B 110, 12689–
12698 (2006).

6F. Rao and M. Karplus, Proc. Natl. Acad. Sci. USA 107, 9152–
9157 (2010).

7N. M. Amato, K. A. Dill, and G. Song, J. Comput. Biol. 10,
239–255 (2003).

8L. Gong and X. Zhou, J. Phys. Chem. B 114, 10266–10276
(2010).

9F. Marinelli, F. Pietrucci, A. Laio, and S. Piana, PLoS Comput.
Biol. 5, e1000452 (2009).

10N. Singhal, C. D. Snow, and V. S. Pande, J. Chem. Phys. 121,
415–425 (2004).

11N.-V. Buchete and G. Hummer, J. Phys. Chem. B 112, 6057–
6069 (2008).

12G. R. Bowman, V. S. Pande, and F. Noé (Eds.), An Intro-
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15F. Noé and J. C. Smith, “Transition networks: A unifying
theme for molecular simulation and computer science,” in Math-

ematical Modeling of Biological Systems, Volume I., edited by



Identifying mechanistically distinct pathways in kinetic transition networks 12

A. Deutsch, L. Brusch, J. Byrne, G. de Vries, and H.-P. Herzel
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input : a kinetic transition network G with weights Muv for edges (u, v), directed u← v
shortest path tree T with costs D(u) for nodes u
source node b ∈ B
set of sink nodes {a} ∈ A
number of paths to compute k

output: set of k pathways P = {P1, P2, ..., Pk}
set of k rate-limiting edges C = {eRLE,1, eRLE,2, ..., eRLE,k}. eRLE,i = (u, v),

where u is the parent node of v in T , and the weight of the edge is MRLE,i

i = 1, Q← ∅ ; // Q is a minimum-priority queue of nodes

while i ≤ k do

Pi ← GetShortestPath(T ,A,B);
eRLE,i = (u, v)← GetRateLimEdge(Pi). e

′

RLE,i = (v, u);
MRLE,i ← inf, M ′

RLE,i ← inf;
if A and B are not connected then

break;
u and all nodes in the set Descendants(u,T) are coloured red;
foreach node z ∈ T that is red do

t← the neighbouring node t of z ∈ G for which D(t) +Mzt is minimal and such that t is not red;
if t == null then

UpdateParent(z,null,T), UpdateCost(z,inf);
else

UpdateParent(z,t,T), UpdateCost(z,D(t) +Mzt), Push(Q,z,D(t) +Mzt);

while Q 6= ∅ do
z ← Pop(Q);
foreach node h ∈ G that is a neighbour of z and is red do

if D(z) +Mhz < D(h) then
UpdateParent(h,z,T), UpdateCost(h,D(z) +Mhz), UpdatePriority(Q,h,D(z) +Mhz);

set all nodes to not red;
i← i+ 1;

if A and B are connected then

Pk ← GetShortestPath(T ,A,B);
eRLE,k ← GetRateLimEdge(Pk);

return P , C;

Algorithm 1: Outline of the “k distinct paths” algorithm to find the k shortest paths in a transition network that
are distinct, in the sense that each has its own unique identifying rate-limiting edge, given an initial shortest path

tree.
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input : Target node degree distribution P (k)
N -dimensional potential function V (rN )
function domain r1, r2, ..., rN ∈ [−rmax, rmax]
number of nodes nV, the n-th node has position vector rNn
distance threshold for determining node connectivity d
standard deviation of minima and transition state energies σE

mean energy barrier height µb

error tolerance for current Pobs(k) and target P (k) degree distributions ǫtol
maximum number of iterations nit

interval for attempting changes in distance threshold nintvl

output: A kinetic transition network G with fitted degree distribution and minima and transition state energies {Eu}
and {Euv}, respectively.

for n← 1 to nV do

rNn = (rn1, rn2, ..., rnN ), rni ← RandUnifFloat(−rmax,rmax);

G← GetEdges(RN = (rN1 , rN2 , ..., rNN ),d);
nstep ← 0, d′ ← d, ǫobs ← inf, ǫ′obs ← inf;
while nstep ≤ nit and ǫobs > ǫtol do

if nstep %nintvl == 0 then

d′ ← d · RandNormal(µ = 1,σ = 0.1), R′N ← RN ;
else

a← RandUnifInt(1,nV);

rNa = (ra1, ra2, ..., raN ), rai ← RandUnifFloat(−rmax,rmax);

R′N ← UpdateNodePosn(RN ,a,rNa );

G′ ← GetEdges(R′N ,d);
Pobs(k)← GetDegDistrib(G′);
ǫ′obs ← GetDegDistribErr(Pobs(k),P (k));
nstep ← nstep + 1;
if ǫobs < ǫ′obs then

ǫobs ← ǫ′obs, R
N ← R′N , G← G′, d← d′;

for node u in G do

Eu ← V (rNu )+ RandNormal(0,σE);
for edge (u, v) in G do

rNuv ← (rNu − rNv )/2;
t← FindHigherEnergyNode(u,v);
Euv ← Et + µb + RandNormal(0,σE);

return G← GetLargestConnectedComponent(G);

Algorithm 2: to construct a kinetic transition network corresponding to a roughened potential provided by the
user and with a node degree distribution fitted to a specified distribution. µ and σ denote the mean and standard

deviation of a Gaussian, respectively.


