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A B S T R A C T   

Introduction: Post stroke emotionalism (PSE) is a common but poorly understood condition. The value of altered 
brain structure as a putative risk factor for PSE alongside routinely available demographic and clinical variables 
has yet to be elucidated. 
Methods: 85 patients were recruited from acute inpatient settings within 2 weeks of stroke. PSE was diagnosed 
using a validated semi-structured interview and standardised measures of stroke severity, functional ability, 
cognition, mood and quality of life were obtained. Neuroimaging variables (intracranial volume and volumes of 
cortical grey matter, subcortical grey matter, normal appearing white matter, cerebrum, cerebrospinal fluid and 
stroke; white matter hyperintensities; and mean cortical thickness) were derived using standardised methods 
from Magnetic Resonance Imaging (MRI) studies. The relationships between PSE diagnosis, brain structure, 
demographic and clinical variables were investigated using machine learning algorithms to determine how well 
different sets of predictors could classify PSE. 
Results: The model with the best performance was derived from neuroradiological variables alone (sensitivity =
0.75; specificity = 0.8235), successfully classifying 9/12 individuals with PSE and 28/34 non-PSE cases. 
Conclusions: Neuroimaging measures appear to be important in PSE. Future work is needed to determine which 
specific variables are key. Imaging may complement standard behavioural measures and aid clinicians and 
researchers.   

1. Introduction 

Emotional lability, the lessening of control over emotional expres-
sion such that individuals cry or laugh in response to minimally sad or 
humorous stimuli, can arise as a consequence of different neurological 
conditions, the most common being stroke [1,2]. Post-stroke emotion-
alism (PSE) affects one in five stroke survivors in the acute phase and 
one in seven post acutely [3]. Despite being a prevalent condition, the 
underlying mechanisms of PSE are not well understood. 

From a psychological perspective, the ways individuals cope with 
emotional outbursts may impact the duration of PSE episodes [4,5], and 
poor social support the persistence of the disorder [6]. Psychological 
factors however do not explain why PSE develops in the first place. 

Individual characteristics such as gender have been associated with PSE, 
for example PSE may be more common in women [2,7], but sex differ-
ences have not been replicated in multivariate analysis [8]. Associations 
between the clinical characteristics of stroke survivors and PSE have 
received more attention. Depression scores are higher [9], and the 
diagnosis of clinical depression more common [4,10,11] in individuals 
with PSE. Also, PSE is more prevalent in individuals with strokes that 
result in cognitive impairment, particularly frontal executive dysfunc-
tion [1,12–14], suggesting a neurological or neuropsychological basis to 
the condition. This has been supported by several investigations of the 
neuroanatomy of PSE. Lesions to frontal and subcortical regions [7], and 
to cerebellum and brainstem structures [1,7,13] are common findings 
for example. Disruption to the serotonergic system [15] and dysfunction 
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of cerebropontocerebellar pathways [13,16], particularly modulation of 
descending pathways from frontal and motor cortex to brainstem 
structures [1] have also been implicated. 

What is not yet clear is the value of neuroradiological measures 
alongside demographic and clinical data. In the current study, we used 
prediction models incorporating demographic, clinical and brain im-
aging data to determine whether a classification of PSE, diagnosed by 
clinical interview in a well defined series of individuals with stroke, is 
associated with a combination of non-radiological and radiological 
variables. Specifically, we wished to determine whether measures of 
gross brain integrity are putative risk factors when considered alongside 
routinely collected non-radiological clinical stroke data. 

2. Materials and methods 

2.1. Participants 

Participants were recruited between 1 October 2015 and 30 
September 2018 within two weeks of stroke from acute stroke units in 
nine hospitals in Scotland, UK as part of a longitudinal investigation of 
the epidemiology of PSE (the TEARS (Testing Emotionalism After Recent 
Stroke) study; NRS Research Network ID 18980). All participants were 
male or non-pregnant female, ≥18 years of age, with a confirmed clin-
ical diagnosis of ischaemic or haemorrhagic stroke. Individuals scoring 
<25 on the Frenchay Aphasia Screening Test [17] were excluded, as 
were individuals with subarachnoid haemorrhage, extra axial bleed, or 
Transient Ischaemic Attack (TIA). Individuals with severe concurrent 
medical conditions or with life expectancy <3 months were excluded 
also. All participants gave written informed consent or else had a proxy 
provide written consent on their behalf. 

PSE was diagnosed using a semi-structured interview, the TEARS - 
Diagnostic Interview (TEARS-IV). TEARS-IV comprises four sections on 
post-stroke crying: screen questions, case characteristics, frequency and 
impact. It has been validated in this population and is based on 
consensus diagnostic criteria for PSE [18,19]. These comprise: (1) 
increased tearfulness, (2) crying coming on suddenly with no warning, 
(3) crying not under usual social control, and (4) crying episodes 
occurring at least weekly [18]. The interview was administered by 
specialist stroke nurses who received training from a clinical psycholo-
gist and a liaison psychiatrist with expertise in stroke. Other interview- 
based assessments were the Abbreviated Mental Test [20] (AMT; a 
measure of cognition), Barthel Index [21] (BI; a measure of functional 
ability), Hospital Anxiety and Depression Scale [22] (HADS; a measure 
of mood), Euro-QoL [23] (EQ5D; a quality of life measure) and the 
National Institute of Health Stroke Scale [24] (NIHSS; a measure of 
stroke severity). A measure of social deprivation, the SIMD (Scottish 
Index of Multiple Deprivation [25] was recorded for each participant. 

Ethical approval for TEARS was provided by Scotland A Research 
Ethics Committee (IRAS Reference 157483). 

2.2. Brain MRI acquisition and processing 

Standard axial fluid attenuated inversion recovery (FLAIR) and 3D 
volumetric T1 sequences were obtained from NHS picture archiving 
communication systems (PACS) when available from routine (1.5T or 
3T) clinical scanning. White matter hyperintensity (WMH) volumes 
were segmented using a previously described method [26]. Briefly, a 
population norm was transferred [27] to each participant to provide an 
approximation of white matter volume. Hyperintense outliers on FLAIR 
were identified by transforming each voxel to a standard (z) score. 
Voxels with z ≥ 1.5 and within the approximated white matter volume 
were initially defined as WMHs. This initial estimate of WMH volume 
was smoothed with a 3D Gaussian kernel to reduce noise and account for 
partial volumes around WMH edges. Finally, these automated WMH 
estimates were visually checked and stroke infarcts removed by a 
trained image analyst (blinded to all other patient information) 

following STRIVE guidelines [28]. Additionally, hyperintensities were 
segmented using the automated lesion prediction algorithm [29], as 
implemented in the Lesion Segmentation Toolbox (LST) version 3.0.0 for 
SPM [30]. As this was a clinical dataset, not all cases had both T1 and 
FLAIR images; therefore we used the the lesion prediction algorthim 
[29] where the T1 was included as a reference if available. Outputs were 
visually inspected to check for gross anomalies. Normal-appearing tis-
sues, including cortical grey matter and cerebral white matter, and 
supratentorial cerebrospinal fluid were segmented using tissue norms, 
within-patient MRI intensities, and adjoining voxel data [31,32]. 
Cortical thickness was measured from normal appearing tissue volumes 
using a previously described method [33]. Table 1 provides an expla-
nation of the brain variables used in the study. 

All neuroimaging scans were normalised to Montreal Neurological 
Institute (MNI) space using a modified version of the segmentation al-
gorithm in Statistical Parametric Mapping software (SPM12); [34] de-
tails of the procedure are described elsewhere [35]. The dataset 
comprises participants with T1, FLAIR or both scans; we used T1 data 
when they were available, otherwise FLAIR images were used. All im-
ages in standard space were visually inspected. Lesion segmentation 
outputs from LST were spatially normalised to MNI space using the 
transforms from the normalisation procedure and used to determine 
lesion load (proportion of overlap between lesion and atlas region of 
interest [ROI]). The atlas consisted of cortical and subcortical regions 
from the Harvard–Oxford atlas [36] and white matter regions from 
Johns Hopkins University (131 ROIs in total) [37]. In order to reduce the 
number of predictors in an unbiased way, we first remove variables with 
zero variance and then applied a varimax rotated principal component 
analysis to remaining lesion load features. Components with eigenvalues 
greater than 1 were extracted for use in subsequent classification 
analyses. 

2.3. PSE classification 

There are many algorithms (or inducers) to tackle classification 
problems, with no clear guidelines about which to select for specific 
problems. We made use of different algorithms available in the MATLAB 
2019a Classification Learner application (for a similar approach see 
[38]): decision trees with (1) fine (100 branches), (2) medium (20 
branches) and (3) coarse (4 branches); (4) linear and (5) quadratic 
multiple regression; (6) logistic regression; naïve Bayes with (7) 
Gaussian and (8) kernel density support; support vector machines with 
(9) linear, (10) quadratic, (11) polynomial order 3, and Gaussian kernels 
scales of (12) 0.5, (13) 1.7 and (14) 6.9; nearest neighbour classifiers 
using (15) fine (1), (16) medium (10), and (17) coarse (100) neighbours 
and distance determined using (18) cosine, (19) cubic and (20) 

Table 1 
Location non-specific brain variables used in modelling.  

Variable Explanation 

Intracranial volume Volume of the brain and surrounding fluid 
Cortical grey matter 

volume 
Volume of grey matter around the edge of the brain 

Subcortical grey matter 
volume 

Volume of grey matter in the middle of the brain 

Normal appearing white 
matter 

White matter that looks normal 

Cerebrum volume Volume of the cerebrum (whole brain minus 
cerebellum) 

Cerebrospinal fluid volume Volume of fluid encasing the brain 
White matter 

hyperintensities P 
Hyperintensities (bright spots) in the white matter 
expressed as a proportion (P) of intracranial volume 

White matter 
hyperintensity volume 

Volume of hyperintensities (bright spots) in the white 
matter 

Stroke volume Volume of stroke 
Mean cortical thickness Average thickness of the cortex (grey matter around 

the edge of the brain)  
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Euclidean distance; ensembles using (21) adaptive (Ada) boosted trees, 
(22) bagged trees, (23) subspace with discriminant learner, (24) sub-
space with nearest neighbour learner and (25) random under sampling 
(RUS) boosted trees. 

2.4. Model building 

We built seven models in total in order to evaluate the performance 
of a range of predictors. As there were incomplete data for certain fea-
tures, the sample size per model varied. We chose not to use minimum 
complete datasets (i.e. exclude cases that had any missing data) as this 
would have reduced sample size. The sample size and features were as 
follows: (1) demographics (age, gender and SIMD; n = 71); (2) clinical 
assessments (AMT, BI, EQ5D HADS; n = 67); (3) summary of neuro-
imaging variables (all location non-specific: intracranial volume, cere-
brum volume, cerebrospinal fluid (CSF) volume, white matter 
hyperintensity, white matter hyperintensity volume, stroke volume and 
segmented lesion volume using LST; n = 46); (4) principal components 
of lesion load (which differs from the previous model in incorporating 
lesion location information; n = 58); (5) combining demographic and 
clinical data from models 1 and 2 (n = 65); (6) combining all brain 
variables from model 3 and 4 (n = 46); and (7) combining all variables 
(n = 41). For each model, the dependent variable was PSE diagnosis. 

We used five-fold cross validation to evaluate the models, whereby 
80% of the data is used for training and the model is tested on the 
remaining 20%. For each model, we obtained balanced accuracy, area 
under the curve, and specificity and sensitivity values. Model inference 
was determined using permutation testing (n = 1000), where on each 
permuted iteration the dependent variable was shuffled and model 
performance re-calculated for the null hypothesis (no relationship be-
tween predictors and dependent variable). Models were considered 
significant if the observed balanced accuracy survived p < 0.05. In order 
to determine variability in the performance, we also repeated the 
analysis 50 times where on each iteration the fold membership changed. 
A Wilcoxon test was conducted on the outcome of the 50 iterations 
between each model type, where differences in performance (p < 0.05) 
indicated overall advantage for a particular set of predictors. 

3. Results 

3.1. Patient characteristics 

Brain imaging data were obtained for 85 participants. As shown in 
Table 2, those recruited for imaging were, in general, younger, less 
impacted by their stroke (higher BI and lower NIHSS scores), less likely 
to have dementia (AMT higher), and less likely to have a total anterior 
circulation (TAC) stroke. Individuals with and without imaging data 
were similar in age, sex and in frequency of PSE. 

Table 3 shows demographic and clinical data on participants strati-
fied by PSE status (n = 20 with PSE, n = 53 with no PSE and n = 12 
whose PSE status was unknown). The only differences between in-
dividuals with and without PSE were in mood and functional ability: 
depression scores on the HADS (possible range 0–21) were 2.3 points 
higher for individuals with PSE (p = 0.030) and anxiety scores (same 
range) were 4.5 points higher (p = 0.001), and those with PSE were 
marginally less functionally impaired (p = 0.041). No single brain im-
aging variable differentiated the groups. 

3.2. Classification models 

The proportion of individuals with and without a diagnosis of PSE 
per model was as follows: (1) 19/52; (2) 20/47; (3) 12/34; (4) 14/44; 
(5); 19/46 (6); 12/34 and (7) 12/29. 

In the first instance, for each model configuration (1–7) we selected 
the inducer (out of 25 inducers) that produced the numerically highest 
area under the curve (AUC), which was equivalent to balanced accuracy. 

All models performed significantly better than chance. The first ‘de-
mographic’ model (age, sex and SIMD) produced an AUC of 0.5262 (p <
0.001) using a nearest neighbour classifer (with fine neighbours). The 
corresponding sensitivity and specificity figures were 0.2632 and 
0.7692, respectively. The second ‘clinical’ model (depression and 
cognition scores) produced an AUC of 0.6468 (p < 0.001) (sensitivity =
0.4; specificity = 0.8936) but combining variables from models 1 and 2 
did not improve the model, although it was still significantly better than 
chance (AUC 0.6453, p < 0.001) (sensitivity = 0.4211; specificity =
0.8696). The model with the best performance (mean highest AUC) 
resulted from brain summary variables alone, producing an AUC of 
0.7868 (p < 0.001) (sensitivity = 0.75; specificity = 0.8235): this rep-
resents successfully classifying 9/12 PSE and 28/34 non-PSE cases. The 
next best performing model was observed using the brain summary 
variables and lesion load variables, which produced a mean AUC of 
0.7255 (p < 0.001) (sensitivity = 0.8333, specificity = 0.6176). The 
model performance was not improved by using the lesion load variables 
alone (AUC = 0.6834, p < 0.001, sensitivity = 1; specificity = 0.1591) 
nor by combining all variables (demographic, clinical and neuroradio-
logical) together (AUC = 0.6983, p < 0.01, sensitivity = 0.5; specificity 
= 0.8966). 

We repeated this analysis by using the minimum complete datasets 
(n = 41) for all models. In this analysis, we found model performance 
increased as the model variable set increased; model 1 (median AUC =
0.5783) and 2 (median AUC = 0.6257) showed a relatively large in-
crease between models but performance plateaued from model 3 (me-
dian AUC = 0.6667) to 7 (median AUC = 0.6925). 

Finally, in order to compare model performance against each other, 
we iteratively generated model outputs 50 times, where on each itera-
tion the subject fold allocation was randomly shuffled (see Fig. 1). It was 

Table 2 
Patient characteristics cross-classified by recruitment to MRI imaging.    

No imaging MRI imaging p-value 

N  192 85  
Age at stroke 

(mean (SD))  
68.02 
(14.44) 

62.21 
(13.97) 

0.002 

Sex (n (%)) Female 85 (44.3) 37 (43.5) 0.999 
Male 107 (55.7) 48 (56.5)  

SIMD rank (mean 
(SD))  

2749.97 
(2031.49) 

2702.91 
(2032.78) 

0.861 

PSE (n (%)) No PSE at T0 113 (58.9) 53 (62.4) 0.584 
PSE at T0 42 (21.9) 20 (23.5)  
PSE at T0 
unknown 

37 (19.3) 12 (14.1)  

TEARS Score 
(mean (SD))  

2.81 (4.55) 2.17 (4.08) 0.303 

BI (mean (SD))  14.90 (5.69) 17.58 (4.08) <0.001 
AMT (mean (SD))  18.04 (3.32) 19.01 (2.23) 0.021 
HADS depression 

(mean (SD))  
4.85 (4.17) 3.79 (3.37) 0.054 

HADS anxiety 
(mean (SD))  

5.51 (4.47) 5.82 (4.76) 0.621 

Education (n (%)) Secondary 129 (70.5) 50 (65.8) 0.260 
University 28 (15.3) 14 (18.4)  
Other 20 (10.9) 12 (15.8)  

NIHSS (mean 
(SD))  

6.60 (6.00) 3.56 (3.48) 0.006 

Stroke type (n 
(%)) 

Infarct 171 (89.1) 78 (94.0) 0.292 
Haemorrhage 21 (10.9) 5 (6.0)  

Oxford class (n 
(%)) 

TAC 20 (11.0) 2 (2.4) 0.001 
PAC 78 (42.9) 23 (27.4)  
LAC 53 (29.1) 31 (36.9)  
POC 31 (17.0) 28 (33.3)  

Notes: AMT Abbreviated Mental Test; BI Barthel Index; HADS Hospital Anxiety 
and Depression Scale; LAC Lacunar; MRI Magnetic Resonance Imagine; NIHSS 
National Institute of Health Stroke Scales; PAC Partial Anterior Circulation; POC 
Posterior Circulation; PSE Post Stroke Emotionalism; SD Standard Deviation; 
SIMD Scottish Index of Multiple Deprivation; TAC Total Anterior Circulation; 
TEARS Testing Emotionalism After Recurrent Stroke. 
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found that model 3 (neuroradiology summary variables) produced a 
significantly higher AUC than all other models (Wilcoxon test: Zs >
5.471), except all brain variables (Wilcoxon test: Z = 2.849). The de-
mographic model was significantly worse than all other models, whereas 
the clinical model was similar to lesion load (and combinations of de-
mographic, clinical and all other variables). 

4. Discussion 

We have shown that the classification of PSE can be made more 
accurately using a summary measure of radiological data obtained from 
routine clinical imaging than it can from either demographic variables 
or measures of depression and cognitive performance, though all models 
did perform better than chance. Although previous studies have 

Table 3 
Patient characteristics stratified by PSE status.    

No PSE PSE Unknown p-value 

N  53 20 12  
Age at stroke (mean (SD))  63.57 (14.19) 55.30 (11.02) 67.75 (14.16) 0.024 
Sex (n (%)) Female 22(41.5) 10 (50) 5 (41.7) 0.800 

Male 31 (58.5) 10 (50) 7 (58.3)  
SIMD rank (mean (SD))  2589.31 (1977.78) 2349.42 (1885.30) 3965.30 (2312.37) 0.100 
BI (mean (SD))  17.83 (3.70) 18.50 (2.21) 14.92 (5.99) 0.041 
AMT (mean (SD))  19.29 (2.29) 18.50 (2.21) 18.33 (1.37) 0.300 
HADS-DEP (mean (SD))  3.19 (3.06) 5.50 (3.86) 3.33 (2.73) 0.030 
HADS-ANX (mean (SD))  4.46 (3.68) 8.95 (6.11) 7.17 (2.99) 0.001 
Education (n (%)) Secondary 32 (65.3) 13 (68.4) 5 (62.5) 0.909 

University 8 (16.3) 4 (21.1) 2 (25)  
Other 9 (18.4) 2 (10.5) 1 (12.5)  

NIHSS (mean (SD))  2.53 (1.87) 4.60 (4.88) 4.86 (4.18) 0.173 
Stroke type (n (%)) Infarct 50 (94.2) 19 (95) 11 (90.9) 0.893 

Haemorrhage 3 (5.8) 1 (5.0) 1 (9.1)  
Oxford class (n (%)) TAC 1 (1.9) 0 (0.0) 1 (8.3) 0.144 

PAC 12 (23.1) 6 (30.0) 5 (41.7)  
LAC 18 (34.6) 11 (55.0) 2 (16.7)  
POC 21 (40.4) 3 (15.0) 4 (33.3)  

T1 (mean (SD))  0.42 (0.50) 0.35 (0.49) 0.17 (0.39) 0.276 
FLAIR (mean (SD))  0.83 (0.38) 0.70 (0.47) 0.58 (0.51) 0.144 
Intracranial volume (mean (SD))  1396.05 (152.77) 1444.09 (146.74) 1379.46 (98.10) 0.473 
Cortical grey matter volume (mean (SD))  466.59 (76.39) 497.58 (49.71) 416.06 (9.16) 0.328 
Subcortical grey matter volume (mean (SD))  31.74 (4.95) 35.14 (2.62) 30.99 (1.52) 0.210 
Normal appearing white matter (mean (SD))  470.07 (106.14) 496.12 (83.53) 431.53 (19.92) 0.694 
Cerebrum volume (mean (SD))  974.26 (119.05) 1013.05 (114.84) 946.26 (61.83) 0.360 
Cerebrospinal fluid volume (mean (SD))  255.12 (54.167) 244.72 (38.55) 261.94 (63.81) 0.711 
White matter hyperintensities P (mean (SD))  9.16 (14.27) 2.79 (2.45) 10.67 (16.62) 0.244 
White matter hyperintensity volume (mean (SD))  20.94 (21.86) 9.05 (6.91) 24.15 (24.72) 0.124 
Stroke volume (mean (SD))  5.97 (12.68) 0.83 (0.85) 7.08 (7.48) 0.319 
Mean cortical thickness (mean (SD))  2.49 (0.16) 2.43 (0.20) NaN (NA) 0.552 

Notes: AMT Abbreviated Mental Test; BI Barthel Index; HADS Hospital Anxiety and Depression Scale; FLAIR Fluid-attenuated Inversion Recovery; LAC Lacunar; MRI 
Magnetic Resonance Imagine; NIHSS National Institute of Health Stroke Scales; PAC Partial Anterior Circulation; POC Posterior Circulation; PSE Post Stroke 
Emotionalism; SD Standard Deviation; SIMD Scottish Index of Multiple Deprivation; T1 Longitudinal Relaxation Time; TAC Total Anterior Circulation; TEARS Testing 
Emotionalism After Recurrent Stroke. 

Fig. 1. Variation in model performance for each of the highest performing configurations.  
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investigated group differences between individuals with and without 
PSE on clinico-demographic and neuroimaging variables, they have 
addressed only whether a feature stands out between groups, not the 
specific value of that feature in distinguishing between these in-
dividuals. This is because the situation is possible whereby a feature is 
more common in one group than another, but is not useful as a predictor 
overall because it might be relevant for a small – albeit statistically 
significant – subset of cases. In contrast, we tested the utility of features 
by conducting cross-validated prediction models and our approach 
determined how well predictive models generalise to new cases. 

The model with the best fit comprised brain summary variables. 
These variables were, in general terms, location non-specific, suggesting 
that the overall structure and health of the brain may be important in 
determining the presence of PSE. This finding corresponds with previous 
studies demonstrating that lesions in a wide range of brain areas, in 
individuals with different types of stroke, are associated with the con-
dition [16]. This is an important finding for at least three main reasons. 
Firstly, in stroke care settings, knowledge of risk factors can help clini-
cians identify individuals at greatest likelihood of developing PSE. PSE is 
reported to be both under-recognised and under-treated [39]. Secondly, 
awareness that brain integrity tends to be less good in individuals with 
PSE can help clinicians plan for treatment and management of the 
condition itself. In a recent study [40], experienced stroke professionals 
reported frequent use of a range of non-pharmacological interventions 
for PSE, including ‘provide education’, ‘teach relaxation techniques’ and 
‘modify patient beliefs (thought challenge)’. These particular techniques 
require new learning and cognitive flexibility, as well as the motivation 
and drive to apply them, and they are likely to be problematic for a 
proportion of individuals who experience PSE in the context of marked 
damage to the brain. Clinicians may need to adapt non-pharmacological 
interventions, perhaps simplifying materials, or else providing more 
opportunities for learning and consolidation. Thirdly, researchers 
should consider radiological data when assigning individuals to 
different treatments in intervention evaluation studies, perhaps strati-
fying for brain health, or controlling for its possible impact on outcome 
in intervention study analyses. 

This study was limited by the relatively small number of participants 
with full imaging and clinical data, and the small number of participants 
overall. Though stroke patients were drawn from a large sample 
recruited consecutively from multiple acute hospital sites with detailed 
clinical interviews and a comprehensive range of clinical assessments, 
those who received MRI brain scans were not fully representative of all 
stroke patients recruited to the study. Individuals who underwent 
magnetic resonance imaging were more likely to have less severe 
strokes. That said, 25% of the sample had PSE, a similar figure to the 
17% (95% CI 12–24%) found in a meta-analytic review of PSE preva-
lence in the acute phase post stroke [3]. Our figure may a little higher 
because our participants were recruited within two weeks of stroke as 
opposed to the 0–4 week interval in the meta-anlaytic study. We 
acknowledge that the models may not be generalisable to stroke survi-
vors at later, less acute stages of recovery. Intriguingly, it has been 
shown that although PSE is closely related to neurochemical changes 
associated with specific brain regions immediately after stroke, poor 
social support is a better predictor of PSE than brain related variables 
three months post stroke [6]. Future work should aim to investigate the 
relative importance of psychosocial variables and brain integrity in in-
dividuals for whom PSE is a chronic rather than acute condition. Brain 
integrity should include the presence or absence of microhaemorrhages, 
which were shown to be a pathomechanism of PSE in a Chinese sample 
recruited less acutely than the sample in our study [41]. Note should be 
made of psychoactive medication prescription. A recent Cochrane re-
view found that antidepressants (of a variety of drug classes) reduce 
emotionalism after stroke, and so this may have an impact on the 
prevalence and severity of PSE [39]; we did not record the use of these 
medications in our sample. 

In summary, our results suggest that the integrity of the brain 

determines, at least in part, who does and does not experience PSE 
following stroke. Althought the accuracy with which neuroimaging data 
classified PSE may be less good than required for clinical translation – in 
the best of our models just three in every four individuals with PSE were 
correctly classified – these data do appear to complement standard 
clinical-behavioural measures. 
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