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The dynamics and mixing properties of vortex rings
obliquely impacting a density interface

Benjamin Michael Jackson

This thesis presents an experimental investigation into the dynamics and mixing properties
of vortex rings obliquely impacting the density interface in a two-layer density stratification.
For turbulent two-layer zero-mean-shear flows, the classical grid-mixing experiments of
J.S. Turner (J. Fluid. Mech, 33:639–656, 1968) demonstrated the intermittent interaction
of strong, coherent eddy-like structures with the density interface to be a dominant mixing
mechanism. Previous studies have made an analogy between this mixing mechanism and the
mixing induced by a vortex ring vertically impacting the density interface in an otherwise
stationary flow, to study the mixing mechanism in isolation. Our research extends this analogy
by investigating vortex rings obliquely impacting the density interface, at propagation angles
θ0 ≤ 25◦ relative to the vertical.

The dynamics of the ring-interface interaction were explored using a double-pulsed laser
system to take two-dimensional planar simultaneous Particle Image Velocimetry (PIV) and
Laser-Induced Fluorescence (LIF) measurements. To be able to obtain a high signal to
noise ratio in all the observable velocity scales of the flow, we developed a ‘multi-frame’
PIV algorithm that makes use of interrogating pairs of PIV images at several different time
intervals apart. This algorithm was used to process our PIV data, and can easily be adapted
to process PIV data for other flows with regions of localised turbulence.

Ring–interface interactions are classified as ‘penetrative’ or ‘non-penetrative’, corre-
sponding to whether downward entrainment across the interface occurs or not. For both
types of interaction, our PIV/LIF measurements reveal that oblique ring impacts lead to an
azimuthally asymmetric production of baroclinic vorticity, triggering instability mechanisms
that are not present in the θ0 = 0◦ case. With the aim of investigating the influence of θ0

on the mixing properties of the ring–interface interaction, experiments were conducted in
which a periodic sequence of 600 vortex rings were generated to mix an initially two-layered
stratification. Insights made after the completion of these experiments revealed that, in the
non-penetrative regime, the system converges to a state where a significant fraction of the
total mixing is convective, as opposed to being directly associated with the ring interacting
with the interface. It is argued that the high mixing efficiency observed is attributable in
large part to the convective mixing, rather then directly to the ring–interface interaction as
has been previously reported. These results are discussed and contextualised with previous
grid-mixing experiments.
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Chapter 1

Introduction

1.1 Context

Vortices are almost ubiquitous in fluid dynamics, appearing in a wide range of industrial,
astrophysical, environmental and biological settings. Since the development of the vorticity
equations by Helmholtz (1858) over 160 years ago, the wealth of research devoted to the
subject of vortex dynamics has led to a rapid advancement in our understanding of many
fluid dynamical phenomena, including atmospheric processes, boundary-layer separation
and free-surface interactions, to name but a few. Such advances have enabled us to make
accurate weather predictions, travel by air and improve the efficiency of a many industrial
processes, with technologies such as centrifugal separators.

Some of the greatest challenges facing fluid dynamicists today concern the nature of
turbulent flows. As suggested by Davidson (2013), turbulent flows can be classified for
incompressible fluids as ‘a spatially complex vorticity field which advects itself in a chaotic
manner via the Biot-Savart law’. Such flows can be further complicated by a number of
physical features, including non-uniformities in the density stratification, the geometry of
domain boundaries and their response to large-scale rotation. An important environment in
which these three complicating features play a significant role is the oceans. This has made
their accurate modelling incredibly challenging, even with the aid of today’s most advanced
super computers.

One aspect of turbulence in density-stratified flows is the mixing of scalar fields, such
as salinity or temperature. Scalar mixing consists of two physical processes that occur
simultaneously: the stirring of scalar iso-surfaces, and the enhancement of diffusion as
a result of the stirring-induced intensification of the scalar gradients and the associated
temporary increase in interfacial area over which diffusion can occur. Mixing of the density
field can be quantified as the irreversible increase in gravitational potential energy that results
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from a given energy input. This quantification allows for the efficiency of a mixing event to
be defined, as the ratio of the irreversible increase in potential energy to the total energy input
into the system (Winters et al., 1995). While evaluating the mixing efficiency η of discrete
events in closed systems is generally achievable, as common definitions are inherently non-
local, it becomes much more challenging to appropriately characterise the mixing efficiency
for a number of different system types. Examples of such system types include coastal
formations such as estuaries where there is significant spatio-temporal variability in the
dynamics and mixing of the flow (Geyer et al., 2008), and Rayleigh-Taylor-type setups
where measurements of η can depend on ‘dynamically isolated’ regions of the fluid domain
(Davies Wykes et al., 2015).

A particular challenge of ocean modelling, and one that motivates this thesis, is improving
our ability to account for the spatio-temporal variability of the mixing efficiency of different
dynamical processes that play a significant role in the energetics of the ocean. A substantial
majority of the energy input into the oceans is contributed by lunisolar tides and shear-driven
forcing by surface winds (Wunsch and Ferrari, 2004). Determining the magnitude at which
these energy inputs drive vertical fluxes of heat, salt and momentum in the upper-mixed layer
of the ocean is a major component in ocean circulation models (Ferrari and Wunsch, 2009).
Appropriate parameterisation of these fluxes is essential for modelling the ocean state under
different conditions, which would be beneficial for assessing the potential future impact of
different climate-change scenarios (Ivey et al., 2008).

An important component of the community-wide effort in pinning down the intricacies
of turbulent mixing in density-stratified flows has been the carrying out of small-scale
laboratory experiments in tanks, usually with either linear or two-layer salt stratifications.
Such experiments have the advantage of being able to isolate particular features of turbulent
mixing for their concentrated analysis, such as the formation of layers developing from
an initially linear density stratification (Park et al. (1994), Holford and Linden (1999),
Oglethorpe et al. (2013)), or the turbulent entrainment across a sharply stratified density
interface (Turner (1968), Woods et al. (2010), Shravat et al. (2012)). This thesis contributes to
this endeavour by considering the dynamics and mixing properties of vortex rings obliquely
impacting a sharply stratified density interface.

1.2 History of the ring–eddy analogy

Vortex rings are toroidal fluid structures consisting of concentrated vorticity. In their
simplest form, they are axisymmetric and propagate along their symmetry axis, under their
own self-induced velocity field. Vortex rings naturally form in a wide and surprising range
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of different contexts, including the diastolic phase of the cardiac cycle (Töger et al. (2012))
and the acceleration of charged ions travelling through superfluid helium (Rayfield and Reif
(1964)). Academic interest in vortex rings (and vortex pairs) for high Reynolds number
flows increased considerably in the early 1970s, motivated in large part by furthering the
understanding of the roll-up process of wing-tip vortices and the evolution of the wake
that flying aircraft leave behind (Crow (1970), Moore and Saffman (1972), Didden (1979)).
The relatively simple geometry and compact nature of vortex rings has lent themselves to
serving as a useful case study for a wide variety of fluid dynamical phenomena, including
vortex–vortex interactions, boundary-layer separation and turbulent entrainment. This has
led vortex rings to being a relatively well-understood vortical structure (though there is still
much more to be learned).

Initial motivation for the application of vortex rings to the problem of stratified turbulent
mixing can be attributed to the grid-mixing experiments of Turner (1968) and the observations
of Maxworthy (1972). Turner investigated the mixing induced in a two-layered density
stratification by a vertically oscillating grid of horizontal bars. Separate experiments were
conducted using either salt or temperature as the density-stratifying agent, and oscillating
grids placed in either one or both of the fluid layers, away from the interface. For the range
of Richardson numbers considered, Turner observed that the grid-induced mixing sharpened
the density interface, and the rate of mixing in one layer was independent of whether stirring
was being induced in the other layer. Turner attributed the latter observation to statistical
independence of the largest eddies that interacted with the interface, concluding that these
eddies must be responsible for the majority of mixing that occurs.

Experiments were conducted by Maxworthy (1972) to clarify the structural characteristics
of vortex rings in real flows, and the discrepancies that emerge when compared to classical,
idealised vortex-ring models. Maxworthy highlighted the similarity between the observed
entrainment processes of the vortex ring and those at a turbulent–laminar interface, leading
Maxworthy to suggest that vortex rings could be treated as idealised eddies to investigate the
mechanisms that allow turbulent interfaces to remain sharp. This, along with the grid-mixing
observations from Turner (1968), motivated Linden (1973) to make use of this ring–eddy
analogy by considering isolated vortex rings vertically impacting a density interface, as a
model for the turbulent entrainment process observed by Turner (1968). Note that, throughout
this thesis, we refer to the entire evolution of the interaction between the vortex ring and the
interface as the ‘ring–interface interaction’ and the associated mixing as a ‘mixing event’.

For experimental studies, the ring–eddy analogy is attractive for three reasons. Firstly,
the flow conditions that initiate the ring formation process can be made repeatable using
simple experimental technologies, allowing for the production of highly reproducible eddy
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structures. Secondly, for suitable Reynolds number, vortex rings remain laminar as they
propagate from the ring generation site to the mixing site, retaining their structure and losing
only a small amount of energy in their wake or to viscous dissipation. Experiments are
therefore deterministic up to the stage where significant mixing begins to occur. Thirdly,
theoretical models for axisymmetric vortex rings in homogeneous fluids allow for bulk
properties of experimentally produced vortex rings to be estimated by measuring easily
observable quantities, such as the propagation speed of the ring or the ring diameter. For
example, Norbury rings (Norbury, 1973) can be compared with the experimentally produced
vortex rings to provide an estimate for the amount of kinetic energy being delivered to the
mixing site.

In addition to conducting a series of shadowgraph experiments, Linden (1973) developed
a theoretical model to estimate the entrainment rate of an ensemble of independent eddies
mixing at a density interface. An entrainment law for the ring-induced mixing was derived
by assuming the rate at which energy is made available for mixing scales with the buoyancy
response timescale of the perturbed interface during the ring–interface interaction. The
entrainment law is given by

ue

U
∼ Ri−3/2

0 , (1.1)

where ue is the entrainment velocity, U is the propagation speed of the ring and Ri0 is the
bulk Richardson number, given by

Ri0 =
ρ2−ρ1

ρ1

ag
U2 , (1.2)

for ring diameter a and upper and lower-layer densities ρ1, ρ2 respectively. The relation
given by Equation (1.1) is consistent with the observed entrainment law by Turner (1968)
when salt was used as the stratifying agent.

It has only been in the last few years that the ring–eddy analogy has been revisited. The
mixing induced by the periodic generation of vertically propagating vortex rings in an initially
two-layered stratification was investigated experimentally for 4 ≲ Ri0 ≲ 12 by Olsthoorn
and Dalziel (2015). It was found that the initial interface remained intact and was sharpened,
tending to a constant thickness. While direct measurement of the entrainment velocity was
not possible due to the imposed period of consecutive ring generations, the change in height
of the interface was used to determine an entrainment volume, which was shown to have
an inverse dependence on Ri0. The mixing efficiency η of the system was found to be
independent of Ri0 over the range of Ri0 considered, with η ≈ η0 = 0.42. Though there was
an uncertainty of approximately 20% in estimating the kinetic energy of the ring and hence
η0, this did not effect the main result, which was the independence of η on Ri0. The estimate
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for η0 was supported by Olsthoorn and Dalziel (2018), who constructed a one-dimensional
model for the evolution of the energetics of the periodic-ring-mixing system, which found
values similar to η = 0.42 for the mixing efficiency.

To understand how the dynamics of the ring–interface interaction allowed the mixing
efficiency determined in Olsthoorn and Dalziel (2015) to be so high, three-dimensional
velocity fields of the ring–interface interaction for vertically propagating vortex rings were
constructed by Olsthoorn and Dalziel (2017) using a novel PIV approach. Three cases were
considered, parameterised by

(ReD, RiD) = (1600, 0.98), (2400, 1.7), (1600, 2.4) . (1.3)

Here, RiD = DRi0/a and ReD = DRe0/a, where the bulk Reynolds number Re0 is defined as

Re0 =
Ua
ν

, (1.4)

where ν is the kinematic viscosity. Note that in Olsthoorn and Dalziel (2017), for practical
considerations, the Reynolds and Richardson numbers were constructed using the diameter
D of the tube from which vortex rings were generated, rather than the ring diameter a. It was
noted however that a/D≈ 1.25 for all cases, consistent with the experiments of Maxworthy
(1977).

The cases given by Equation (1.3) were classified as deeply penetrative, partially penetra-
tive, and non-penetrative respectively, according to the maximum penetration depth into the
lower layer achieved by the vortex ring. A Crow-like instability with modal structure was
found to develop in the vorticity baroclinically produced by the distortion of the interface.
By considering different Re0, Olsthoorn and Dalziel (2017) demonstrated that the dominant
mode of the instability was controlled by the bulk Reynolds number, with modes 8 and
10 emerging as dominant for DRe0/a = 1600, 2400 respectively. It was argued that the
instability mechanism was responsible for the high mixing efficiency of the ring-induced
mixing, as it allowed for the efficient transfer of the kinetic energy of the ring to smaller
lengthscales before the turbulent breakdown of the instability structure.

For the cases of (Re0, Ri0) considered, Olsthoorn and Dalziel (2017) determined a
timescale τI associated with the growth of the Crow-like instability and showed this to
depend inversely on Ri0,

UτI

a
∼ 1

Ri0
. (1.5)

The relation given by (1.5) indicates that, for Ri0 ≳ 1, the rate at which the instability grows
will exceed the buoyancy-response rate of the interfacial recoil, allowing for the stratification
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Fig. 1.1 Plot of the regions in the (Ri0, Re0) parameter space that have been explored in
experimental studies in the context of the ring–eddy analogy for vertically propagating vortex
rings impacting a density interface. The legend items correspond to studies by Linden (1973),
Olsthoorn and Dalziel (2015) and Olsthoorn and Dalziel (2017). The divide between regions
A, B and C mark possible transition regions in the nature of the turbulent entrainment induced
by the ring–interface interaction.

instability to develop. Conversely, for Ri0 ≲ 1, the interface would rebound before the
stratification instability is able to develop. It was suggested by Olsthoorn and Dalziel (2017)
that the subsequent dynamics for Ri0 ≲ 1 may be responsible for a reduction in the mixing
efficiency, though this was not investigated.

In summary, Figure 1.1 plots the regions of the (Ri0, Re0) parameter space where the
impact of a vertically propagating vortex ring at a density interface has been investigated
experimentally in the context of using vortex rings to model the turbulent entrainment process
at a sharply stratified interface. The divide between regions A and B represents a transition
at Ri0 ∼ 1 where, as Ri0 increases, the Crow-like instability identified by Olsthoorn and
Dalziel (2017) is allowed to grow before the buoyancy response of the interfacial recoil. The
divide at Ri0 ∼ 30 between regions B and C highlight a transition for high Ri0 indicated
by Fernando and Long (1985) for grid-generated mixing, where for sufficiently large Ri0,
the sole mixing mechanism at the interface is wave-breaking. In this large Ri0 regime, the
largest turbulent eddies are effectively flattened by buoyancy force, arresting the splashing
mechanism of the ring–interface interaction described by Linden (1973).
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1.3 Motivation and thesis outline

In this thesis, we extend the analogy made between vortex rings and turbulent eddies by
investigating the family of oblique ring impacts onto the density interface. Previous studies
employing the ring–eddy analogy have restricted their attention to vortex rings propagating
normal to the density interface. For the range of (Re0,Ri0) considered by Olsthoorn and
Dalziel (2015, 2017), their results suggest that it is the timescale for the growth of the
Crow-like stratification instability non-dimensionalised by the advective timescale a/U that
sets the entrainment coefficient, as opposed to the similarly non-dimensionalised timescale of
the buoyancy response suggested by Linden (1973). From physical intuition this is perhaps
not so surprising, as it is the stratification instability that appears to be providing the pathway
for energy to be efficiently transferred from larger to smaller scale structures, where diffusive
processes become more effective at converting mechanical energy into internal energy.

Assuming the stratification instability mechanism is primarily responsible for the mixing
energetics, then the usefulness of the ring–eddy analogy for studying eddy-induced mixing
is limited if attention is restricted to the case of normal ring impacts. This is because the
azimuthal symmetry of the ring–interface interaction leads to a stratification instability
that appears to be unique in the broader class of eddy–interface mixing events, thus the
associated mixing properties are unlikely to be representative of general eddy–interface
mixing events. This motivates our investigation of oblique ring impacts. By breaking the
azimuthal symmetry, a wider range of dynamics will be exhibited in the ring–interface
interaction, which we will show to have important consequences for the mixing that occurs.
By considering this larger class of ring–interface interactions, further insights into the nature
of eddy-induced mixing events can be made that the ring–eddy analogy has been unable to
provide in previous studies.

Figure 1.2 sketches a vortex ring obliquely impacting a sharply-stratified density interface.
We define the propagation angle, θ0, as the angle the central axis of the vortex ring makes with
the vertical. The dimensionless parameters that govern the evolution of the ring–interface
interaction are taken to be Re0, Ri0, and θ0. There are four additional parameters that
can play a role in governing the evolution of the ring–interface interaction: the Formation
number, Fp, which controls the core-thickness of the vortex ring relative to the ring diameter,
the Schmidt number Sc = ν/Dρ (where Dρ is mass diffusivity), the thickness δ z/a of
the density interface, non-dimensionalised by the ring diameter, and the distance between
the ring-generation site and the density interface. Our experimental procedure ensures
that variation in these parameters across the experiments conducted for this thesis is small
enough not to compromise comparisons of different experiments with the same values for
(Re0, Ri0, θ0).
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Fig. 1.2 Diagram of a vortex ring of diameter a propagating obliquely towards a sharply strat-
ified density interface at propagation speed U and propagation angle θ0. Here, the illustrated
two-dimensional cross-section coincides with the central plane of the flow. Richardson and
Reynolds numbers Ri0, Re0 are defined based on bulk properties of the vortex ring and the
fluid density of each layer. The parameters presented here will be used throughout this thesis.

The rest of this thesis is organised as follows. In Chapter 2, we review theory and
literature relevant for understanding the dynamics and mixing properties associated with
oblique ring–interface interactions. Then, in Chapter 3 we discuss in detail our experimental
setups and methodologies for the experiments reported in this thesis. To improve the
dynamic-velocity-range of double-frame single-pulse PIV measurements, we have developed
an algorithm that locally optimises the time separation between camera frames to reduce the
local relative measurement error. This algorithm is introduced in Chapter 4. To the best of our
knowledge, to date there has been no systematic attempt to describe dynamically the family
of interactions resulting from a vortex ring impacting a sharply-stratified density interface.
In Chapter 5, simultaneously obtained PIV and LIF data are presented of the ring–interface
interactions for a range of parameters in (Re0, Ri0, θ0)-space. The mixing properties of
oblique ring–interface interactions is then investigated in Chapter 6, by conducting periodic-
mixing experiments similar to those conducted by Olsthoorn and Dalziel (2015). Finally, in
Chapter 7 we give a final discussion on the findings in this thesis and potential avenues for
future research.



Chapter 2

Underlying Theory and Literature

Following our introductory chapter, which provided the historical context and motivation
for this thesis, Chapter 2 reviews theory and literature important for understanding the
dynamics and mixing properties of oblique ring–interface interactions. In Section 2.1, we
cover fundamental theory and governing equations related to rotational and Boussinesq flows.
Then, in Section 2.2, we give an overview of theoretical models for vortex rings, as well as
covering literature related to their formation process and their stability. As there has been no
previous systematic attempt to describe the dynamics of oblique ring–interface interactions,
in Section 2.3 we review the interactions of vortex rings with no-slip walls, free surfaces
and density interfaces, to provide insights on the interaction this thesis considers. Finally,
in Section 2.4, we review aspects of the stratified turbulence literature related to mixing
energetics, as well as discussing in more detail the previous studies using the ring–eddy
analogy that were introduced in Section 1.2.

2.1 Vortex dynamics: fundamental theory

This section provides an overview of the mathematical and physical underpinnings of
rotational flows that are important in understanding the dynamics of vortex rings. We begin
by introducing definitions used to describe rotational flows. We then state classical theorems
relating to vortex flows, that we provide the proof for later in the section. We derive the
vorticity equation for incompressible, boussinesq fluids from the Navier–Stokes equation.
Finally, we discuss the contribution of terms that arise in the vorticity equation and how they
affect the vorticity distribution. Much of the theory reviewed in this section can be found in
Chapter 1 of Green (1995).
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2.1.1 Definitions

By Helmholtz’s decomposition theorem, any fluid flow in 3D space xxx ∈ R3 with velocity
field u(xxx) ∈ R3 (which is twice-continuously differentiable and decays faster than |xxx|−1 as
|xxx| → ∞) can be written as

u = ∇∇∇ϕ +∇∇∇×ψψψ , (2.1)

where ϕ is the ‘scalar potential’ and ψψψ is the ‘vector potential’. This decomposition yields

∇∇∇·u = ∇
2
ϕ , ωωω = ∇∇∇×u =−∇

2
ψψψ . (2.2)

From Equation (2.2), it follows that ϕ satisfies Laplace’s equation for incompressible
flows. The second relation of Equation (2.2) relates the ‘vorticity’, denoted ωωω , to the vector
potential. As the curl of the velocity field, the vorticity evaluated at a point xxx is oriented with
the local rotational axis of the flow, with its magnitude proportional to the local rotation rate.
When there is no vorticity in a flow, the flow is said to be ‘irrotational’.

If the vorticity field is known, it is possible to invert the second relation of Equation (2.2)
using the ‘Biot-Savart law’ to obtain the rotational component of the velocity field,

urot (xxx, t) =
1

4π

∫
V

ωωω (xxx′, t)× (xxx− xxx′)dV ′

|xxx− xxx′|3
. (2.3)

Note that the decomposition given by Equation (2.1) does not uniquely define ϕ and ψψψ .
Therefore the Biot-Savart law only defines the velocity to within an irrotational flow.

Closely related to the vorticity is the ‘fluid circulation’, Γ, an integral parameter given by

Γ =
∮

∂S
u ·dlll , (2.4)

where Γ is evaluated on the closed contour ∂S bounding a surface S. By applying Stokes’
theorem in Equation (2.4), the circulation can be equivalently expressed as the integral of the
vorticity component normal to the surface S around which Γ is evaluated, i.e.

Γ =
∫

S
ωωω ·nnn dS, (2.5)

where nnn is the normal pointing outwardly from the surface. The representation of Γ given
by Equation (2.5) motivates the interpretation of the vorticity as a circulation density. The
circulation is one of a number of parameters that are used to characterise vortical structures.

As the vorticity field is divergence free, in an analogous way to the streamlines of a
fluid flow, we can define a ‘vortex line’ to be a curve that is everywhere tangent to the local



2.1 Vortex dynamics: fundamental theory 11

vorticity field. Related to this notion is a ‘vortex tube’, defined as the set of all vortex lines
passing through a simply connected surface in space. Thus at all points xxxS on the surface
of a vortex tube, we have ωωω · nnn(xxxS) = 0. The term ‘vortex filament’ is commonly used to
describe a vortex tube with cross-sectional area that is small relative to the other lengthscales
exhibited in the flow.

2.1.2 Theorems and governing equations

With the definitions above, we now review four classical theorems relating to rotational
flows, which we provide the proofs for sequentially in this section. These theorems are all
attributable to Helmholtz (1858). The first theorem states:

T1. Vortex tubes cannot be open ended: they must terminate at a boundary (solid or
fluid-fluid interface), or form a closed loop in the fluid.

The second to fourth are Helmholtz’s vortex theorems, which hold for inviscid fluids under
conservative body forces, where variations in the fluid density can be neglected. These can
be stated as:

T2. The circulation around a vortex tube, evaluated by a simple, closed contour that
traverses the tube on its surface, is independent of the contour that is chosen. Moreover,
this circulation does not vary in time.

T3. In the absence of boundaries, fluid material elements that are initially irrotational will
remain irrotational.

T4. Vortex lines are material lines, convected with the local fluid velocity.

Theorem T1 is set apart from the others as it can be deduced solely from kinematic principles.
In other words, this theorem requires no constraints on the flow dynamics to maintain its
validity, as will be demonstrated shortly. For Helmholtz’s theorems (T2-4), despite the
required constraints on the flow dynamics, it can be helpful to think of them as approximately
true when the effects of viscosity and rotational body forces are negligible.

Theorem T1 can be derived by integrating ∇∇∇·ωωω over a finite volume V with bounding
surface ∂V . The divergence theorem gives∫

V
∇∇∇·ωωω dV = 0⇒

∫
∂V

ωωω ·nnn dS = 0. (2.6)

Consider now a portion of a vortex tube with volume V , outer surface S0 and cross-sectional
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Fig. 2.1 Illustration of a portion of a vortex tube, with one vortex line marked on the vortex
tube surface. Velocity and vorticity vectors are drawn to aid the visualisation of the flow
associated with the vortex tube.

surfaces S1, S2 at its ends, as illustrated in Figure 2.1. Noting that ωωω ·nnn = 0 on S0, Equation
(2.6) gives ∫

S1

ωωω ·nnn dS+
∫

S2

ωωω ·nnn dS = 0. (2.7)

As nnn is the outward pointing vector, from (2.5) we can write
∫

S1
ωωω ·nnn dS = Γ1,

∫
S2

ωωω ·nnn dS =

−Γ2 in Equation (2.7), thus giving
Γ1 = Γ2. (2.8)

This completes the proof for theorem T1 — if a vortex tube were open ended, the
circulation conservation law given by Equation (2.8) would necessarily be violated. Thus
vortex tubes must terminate at boundaries or form closed loops. The conservation law also
demonstrates that as the cross-sectional area of the vortex tube decreases, the average vorticity
on that cross-sectional surface must increase, and vice versa.

The proof above demonstrates that the circulation evaluated around a vortex tube is
independent of the integration contour, as required for the first part of theorem T2. To prove
the latter part of this theorem, we derive the material evolution equation for circulation.
We begin with the momentum equation for incompressible, Newtonian fluids subject to a
conservative body force,

ρ
Du
Dt

=−∇∇∇P+ρ∇∇∇ζ +µ∇
2u , (2.9)

where ρ is the fluid density, D/Dt = ∂/∂ t +u ·∇∇∇ is the material time derivative, P is the
fluid pressure, ζ is the body force scalar potential and µ is the dynamic viscosity. Dividing
Equation (2.9) by ρ and integrating over a closed contour C, applying the chain rule gives

DΓ

Dt
=−

∮
C

∇∇∇P
ρ
·dlll +

∮
C

∇∇∇ζ ·dlll +
∮

C
ν∇

2u ·dlll +
∮

C
u · D(dlll)

Dt
. (2.10)
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As C is closed, the second integral on the right-hand side of Equation (2.10) is zero by Stokes’
theorem. By considering the evolution of a material loop over a small time interval, it can
be shown that D(dlll)/Dt = du. Therefore, as u is single-valued on C, the last integral in
Equation (2.10) is also zero, giving

DΓ

Dt
=−

∮
C

∇∇∇P
ρ
·dlll +

∮
C

ν∇
2u ·dlll , (2.11)

where ν = µ/ρ is the kinematic viscosity. For barotropic flows, we have P = P(ρ), thus the
first integral on the right-hand side of Equation (2.11) will vanish as ∇∇∇(P)/ρ is single-valued
on C. If the flow is inviscid, we have ν = 0 and the last integral will also vanish. Therefore,
provided the flow is inviscid, barotropic and subject only to conservative body forces, the
circulation around a material loop is shown to be constant, with Equation (2.11) reducing to

DΓ

Dt
= 0 . (2.12)

Theorem T2, along with Equation (2.12), is commonly referred to as Kelvin’s Circulation
Theorem (Thomson (1868)), despite Helmholtz’s proof published ten years earlier. From
Equation (2.11), we see that the effects of viscous dissipation and baroclinicity (the generation
of vorticity through misalignments between pressure and density gradients) are capable of
causing the circulation around a vortex tube to vary in time.

To prove theorems T3 and T4 we first derive the vorticity equation. We start with
the conservation of momentum equation given by (2.9), where we take the body force
to be gravitational (giving ζ = −gz). The density and pressure can be decomposed into
a horizontally and temporally averaged hydrostatic component and a perturbation to the
hydrostatic regime, given by

P = Ph(z)+ p′ (xxx, t) ; ρ = ρ0 +∆ρh(z)+ρ
′ (xxx, t) ;

dPh

dz
=−g(ρ0 +∆ρh) . (2.13)

Substituting Equation (2.13) into Equation (2.9) gives

ρ0
Du
Dt

+
(
∆ρh +ρ

′)Du
Dt

=−∇∇∇p′−gρ
′ẑzz+µ∇

2u . (2.14)

The form of Equation (2.14) is convenient for applying the Boussinesq approximation,
which we adopt throughout this thesis. The Boussinesq approximation assumes that variations
in density are small, and the effect of density variations on a fluid’s inertia are small relative to
the buoyancy force, which remains dynamically significant. Mathematically, the Boussinesq
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approximation can be expressed as

∆ρh , ρ
′≪ ρ0 ,

∣∣∣∣Du
Dt

∣∣∣∣≪ g . (2.15)

Applying the Boussinesq approximation (2.15) allows us to neglect the second term on the
left-hand side of Equation (2.14). Then, by dividing through by ρ0 we obtain

Du
Dt

=− 1
ρ0

∇∇∇p′− gρ ′

ρ0
ẑzz+ν∇

2u , (2.16)

where ν is assumed to be constant.
Noting that (u ·∇∇∇u) = ∇∇∇

(1
2u2)−u×ωωω and ∇∇∇× (u×ωωω) = ωωω ·∇∇∇u−u ·∇∇∇ωωω , we obtain

the vorticity equation for an incompressible flow by taking the curl of Equation (2.16), giving

Dωωω

Dt
= (ωωω ·∇∇∇)u+

g
ρ0

ẑzz×∇∇∇ρ
′+ν∇

2
ωωω . (2.17)

The last term on the right-hand side of Equation (2.17) represents the viscous diffusion
of vorticity, which has greatest impact where vorticity gradients are at their highest. The
penultimate term represents ‘baroclinic’ torque, generating vorticity when pressure gradients
and density gradients are misaligned. In many stratified flows and environments, baroclinicity
is an important mechanism for the generation of vorticity.

The first term on the right-hand side of Equation (2.17) represent the enhancement of
vorticity due to vortex stretching. To develop intuition for this mechanism, consider an
inviscid, homogeneous flow, so the last two terms of Equation (2.17) can be neglected. The
vorticity equation then becomes

Dωωω

Dt
= (ωωω ·∇∇∇)u . (2.18)

This evolution equation for ωωω is of the same form as that for the length of an infinitesimal
segment, lll, of a fluid material line. It therefore follows that the following relation must hold
for all time,

lll =Cωωω , (2.19)

where C is a constant (see Section 1.3.4 of Green (1995)).
From Equation (2.19) we see that stretching a segment of fluid with vorticity increases

the vorticity magnitude of the segment. This result is consistent with our understanding of
vortex tubes given by theorem T1. In order to maintain uniformity of circulation along a



2.2 Vortex rings 15

vortex tube, the vorticity must intensify where the cross-sectional area of the tube decreases,
i.e. in regions of the vortex tube that are being stretched.

We are now in a position to prove theorems T3 and T4 (albeit for flows under gravitational
body forces rather than a general conservative body force, but the chain of logic is more or
less identical). Theorem T3 is deduced from Equation (2.18). For flows with uniform density,
we see that if a material element is initially irrotational, then initially we have Dωωω/Dt = 0,
thus vorticity cannot be generated and the material element will remain irrotational for all
time. This theorem only holds true in the absence of boundaries. At a boundary, it is possible
to obtain a singularity in the ν∇2ωωω term of Equation (2.17), which would act as a source of
vorticity.

Theorem T4 is deduced from Equation (2.19). If there are no density variations in the
flow, then vortex lines are coincident with material lines for all time, being convected with
the local fluid velocity. For such flows, the topology of vortex tubes is preserved: closed
vortex loops remain closed and knotted vortex structures remain knotted in the same way
(Moffatt (1969)).

For homogeneous flows, the action of viscosity is necessary for the topology of vortex
lines to change, with the rate of deviation between material lines and vortex lines propor-
tional to the component of vorticity diffusion perpendicular to the material lines, ∇2

⊥ωωω , as
demonstrated in Kida and Takaoka (1994). This mechanism is responsible for many vortex
interaction phenomena observed in turbulent flows.

2.2 Vortex rings

In the previous section we reviewed fundamental properties of vortex dynamics that
are important for understanding the vortical flows that are presented in this thesis. In this
section, we begin our discussion of vortex rings. In general, the term ‘vortex ring’ is used
to describe closed vortex tubes enclosing a region of concentrated vorticity, with the vortex
lines comprising the tube selected using some threshold of the vorticity magnitude. In their
simplest form, vortex rings are axisymmetric, toroidal fluid structures with azimuthal vorticity
that propagate in the direction of their symmetry axis, under their self-induced velocity field.
A diagram of an axisymmetric vortex ring is given in Figure 2.2(a).

This section focuses on vortex rings in homogeneous fluids. We begin by presenting
theoretical models of axisymmetric vortex rings. We then continue with a discussion on
the formation process of vortex rings in laboratory experiments and related models for their
development. We end this section with a discussion on the instability mechanisms exhibited
by vortex rings.
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Fig. 2.2 (a) Diagram of the cross-section of an axisymmetric vortex ring, with radius a,
circulation Γ0 and propagation speed U . The vortex core has core size b and vorticity
distribution ω(xxx). The core region D has been drawn with circular cross-section for simplicity.
(b) Sketch of the relationship between the Cartesian and cylindrical coordinate systems.

2.2.1 Axisymmetric models

Much of the theory discussed in this subsection can be found in Akhmetov (2009) and
Green (1995). For axisymmetric flows, it is convenient to use a cylindrical coordinate system
(r,φ ,z), with the z-axis coinciding with the axis of symmetry. A sketch of the coordinate
system is given in Figure 2.2(b), including the associated unit vectors r̂rr, φ̂φφ and ẑzz. Note
that the flows discussed in this subsection are without swirl (∂/∂φ = 0, uφ = 0), giving
ωωω = ω(r,z)φ̂φφ .

In an inviscid, homogeneous fluid, the vorticity equation is of the form given by Equation
(2.18). This allows us to reduce Equation (2.18) and the incompressibility condition to give
conservation equations

D(ω/r)
Dt

= 0 , (2.20)

∇∇∇·u =
∂uz

∂ z
+

1
r

∂ (rur)

∂ r
= 0 . (2.21)

The incompressibility condition (2.21) allows us to introduce an axisymmetric stream-
function ψ defined by u = ∇∇∇× (ψ/r)φ̂φφ , giving

uz =
1
r

∂ψ

∂ r
, ur =−

1
r

∂ψ

∂ z
, ω =−∇

2
(

ψ

r

)
=−1

r

(
∂ 2ψ

∂ z2 +
∂ 2ψ

∂ r2 −
1
r

∂ψ

∂ r

)
. (2.22)
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If the vorticity field is known, Equations (2.22) allow us to apply the Biot-Savart law (given
by Equation (2.3)) to evaluate the streamfunction in terms of the vorticity,

ψ(x) =− r
4π

∫
ω(x′)
|x−x′|

dV ′ . (2.23)

In addition to the circulation Γ, for axisymmetric flows without swirl there are two further
invariants of the flow that can be simply defined in terms of ω and ψ: the hydrodynamic
impulse III and the kinetic energy Ek. In general, these invariants are given by

III =
1
2

∫
V

ρxxx×ωωω dV , Ek =
∫

V
ρu · (xxx×ωωω)dV . (2.24)

For a uniform density fluid, substituting ω and ψ reduces Equations (2.24) to

Iz = πρ

∫
∞

0

∫
∞

−∞

ωr2 dzdr , Ek = πρ

∫
∞

0

∫
∞

−∞

ψω dzdr . (2.25)

Note that, while the derivation of Iz in Equation (2.25) is straightforward, the derivation for
Ek is less trivial. The derivation for Ek can be found in Section 3.11 of Saffman (1995).

The circulation can be evaluated by taking the integration contour to be the boundary of
a semi-infinite (r,z) plane of constant φ = φ0 (shaded blue in Figure 2.2(b)). This leads to a
simple expression for the circulation,

Γ =
∫

∞

0

∫
∞

−∞

ω dzdr . (2.26)

If the vorticity distribution is entirely contained within a finite volume, the integral limits of
the invariants can be replaced with finite limits, providing the integration volume encloses all
of the vorticity.

The invariants given by Equations (2.25) and (2.26) restrict the way in which the flow
can evolve, thus providing some insight into the flow behaviour in these idealised fluid
environments. Note that, in the presence of viscosity, only the impulse Iz remains invariant -
kinetic energy is lost through viscous dissipation and there can be a reduction in circulation
due to the diffusion of vorticity across the central axis of the ring, leading to its annihilation.

The discussion up to this point has concerned general inviscid, axisymmetric flows
without swirl. We now consider the particular case of a vortex ring. From Equation (2.20) it
follows that the quantity ω/r is constant for material elements in the flow. In the reference
frame moving with the vortex ring, if the flow is steady then the streamlines of the flow do
not evolve in time. In this case, the quantity ω/r depends only on the streamfunction ψ ,
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Model U Ek Iz

Hill 1
5

Γ0
R

2
35πρΓ2

0R 2
5πρΓ0R2

Lamb Γ0
4πa

(
ln
(8a

b

)
− 1

4

) Γ2
0aρ

2

(
ln
(8a

b

)
− 7

4

)
πρΓ0a2

Table 2.1 Table presenting propagation velocity U , kinetic energy Ek and impulse Iz for the
Hill’s spherical vortex and Lamb’s thin-core cross-section models.

giving rise to the steadiness condition,

ω

r
= f (ψ) . (2.27)

This condition can be substituted into the expression for ω given in Equation (2.22) to obtain
a PDE in the streamfunction ψ ,

∂ 2ψ

∂ z2 +
∂ 2ψ

∂ r2 −
1
r

∂ψ

∂ r
+ r2 f (ψ) = 0 . (2.28)

To make progress in solving Equation (2.28), it is necessary to prescribe the function
f (ψ). In doing so, one is making assumptions about the vorticity distribution in the flow.
In the classical models of Hill (1894) and Lamb (1932), it is assumed that the vorticity is
concentrated in a core region D (shaded blue in Figure 2.2(a)) with characteristic length scale
b. It is also assumed that in the interior of D, the function f is constant. This can be written
as

ω

r
= f (ψ(xxx)) =

A xxx ∈ D

0 xxx /∈ D
. (2.29)

An analytic solution to Equations (2.28) and (2.29) was discovered by Hill (1894), who
took D to be a sphere of radius R. In the limit of of a thin vortex ring with circular cross-
section, where b/a≪ 1 and ln(b/a) ∼ 1, an approximate solution was found by Lamb
(1932), correct to O(b/a). Derivations for these solutions can be found in Akhmetov (2009).
Expressions for U , Ek and Iz are presented in Table 2.1 in terms of a prescribed circulation
Γ0 and the length scales associated with Hill’s and Lamb’s models. These expressions
demonstrate that the vortex ring dynamics have a significant dependence on the geometry of
the vortex core, even in the absence of viscosity.

Using the same form of vorticity distribution given by Equation (2.29), Norbury (1973)
performed numerical calculations to determine a family of steady inviscid vortex rings of
varying aspect-ratio, of which Hill’s and Lamb’s vortex rings are end members. These
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(a) (b)

(i) (ii)

Fig. 2.3 (a) Plots of the core boundary for Norbury’s rings for a range of values of α ,
duplicated from Norbury (1973). (b) Diagram of Maxworthy’s bubble entrainment model,
where the left-hand side (i) prohibits the shedding of vorticity into the bubble exterior, and
the right-hand side (ii) allows for the formation of a wake behind the vortex ring where
deposited vorticity can annihilate. This diagram is duplicated from Maxworthy (1972).

rings are parameterised by a non-dimensional mean core radius 0 < α ≤
√

2, defined by
AD = πL2α2, where AD is the cross-sectional area of D and L is the vortex ring radius.
Norbury rings provide a useful comparison to experimentally produced vortex rings, allowing
quantities such as the kinetic energy and impulse to be estimated when their precise value
cannot be determined. Plots of the core cross-sectional shape are given in Figure 2.3(a).

When viscosity is introduced, the assumption that the flow remains steady in these models
can no longer be made. For instance, if Hill’s spherical vortex is to satisfy the Navier-Stokes
equation at r = R, vorticity must be allowed to diffuse at the vorticity discontinuity. For
thin-core models, Saffman (1970) extended Lamb’s model to include viscosity and predicted
a slowing of the ring, given by

U =
Γ0

4πa

[
ln
(

8a
be

)
−0.558+O

(
νt
a2

)1/2
]
, (2.30)

where be ∼ (νt)1/2 is an effective core radius. Saffman demonstrated that if the thin-core
approximation is retained for a viscous vortex ring, a contradiction can be reached at large
times by considering the invariants of the flow. The circulation would remain constant as the
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core-concentrated vorticity cannot self-annihilate at the central axis of the flow. The impulse
Iz = πρΓ0a2 given in Table 2.1 would also remain constant, yet experimental observations
demonstrate that the vortex ring radius a increases in time. The conclusion reached is that
vorticity cannot be confined to a thin core in vortex rings and the circulation must be allowed
to decrease.

The last model presented in this section, derived by Maxworthy (1972), predicts the
formation of a wake behind the vortex ring, a feature that is observed in experimentally
produced vortex rings. Maxworthy assumes that the fluid volume travelling with the vortex
ring remains similar at all times and that the vorticity is continuously distributed throughout
this volume (referred to by Maxworthy as the ‘bubble’). If one assumes that no vorticity is
shed into a wake (as illustrated in Figure 2.3 (b)(i)), the impulse contained within the bubble
volume remains constant at all times. In this case, by considering the bubble boundary layer
diffusing vorticity into the outer irrotational fluid and the inevitable re-entrainment of this
newly contaminated fluid back into the vortex ring, one can derive the following power laws:

V ∼ t, a∼ t1/3, U ∼ t−1, Γ∼ t−2/3 . (2.31)

It is the last scaling in (2.31) where a contradiction is reached. As vorticity is confined to the
bubble, the circulation can only decrease due to the annihilation of vorticity along the portion
of the central axis contained within the bubble volume. This annihilation would lead to an
alternative scaling for the circulation, Γ ∼ t−1/3, which is inconsistent with Maxworthy’s
model. To resolve this, the vorticity must be allowed to cancel across a longer portion of the
central axis. By allowing some vorticity to be shed into a wake behind the bubble where it
can self-annihilate (as illustrated in Figure 2.3 (b)(ii)), Maxworthy obtains Γ∼ t−2/3, thus
recovering self-consistency of his entrainment model.

2.2.2 Formation process

One of the primary limitations of the models outlined in Section 2.2.1 is the uncertainty
associated with the assumed vorticity distribution of the vortex core. In the absence of
instabilities and other disturbances, the vorticity distribution of experimentally produced
vortex rings is determined by two mechanisms: the ring-formation process and the diffusion
of vorticity after its formation. Whilst the latter is at least described simply by the vorticity
equation (2.17), the former is far more complex and varied.

There are a number of techniques used to produce vortex rings (examples are outlined
in Shariff and Leonard (1992)). For each case, the ring vorticity distribution is controlled
by the flow conditions local to the ring generation site. In particular, the impulse generation
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method for producing the ring, the geometry of any confining boundaries at the generation
site and the local fluid stratification will all play a significant role in determining the final ring
vorticity distribution. Each case demands its own analysis to better understand the structure
of the vortex rings that are produced.

In this subsection, attention is restricted to the ring generation technique we employ in the
experiments conducted for this thesis, which is to generate rings at the outlet of a cylindrical
tube with constant circular cross-section. In particular, we review previous research relating
the control parameters to the properties of the vortex ring that is produced. The reader is
referred to Section 4.1 of Green (1995) and Section 2 of Shariff and Leonard (1992) for
further discussion of the ring-formation process.

The production of a vortex ring is initiated when a piston-like mechanism delivers an
impulse to the fluid within the tube, causing some of this fluid to be ejected from the tube
outlet. When this happens, a cylindrical vortex sheet containing azimuthal vorticity forms
in the viscous boundary layer on the inside of the tube walls, due to the no-slip boundary
condition on the walls. As the vortex sheet exits the tube, it separates at the edge of the tube
outlet and rolls up into the developing vortex-ring core, continually entraining irrotational
fluid from its surroundings during the process. This leads to the vortex rings increasing in
diameter as it develops. The formation process ends shortly after the piston stops, when
vorticity ceases to be fed to the vortex ring. Dye visualisation snapshots of the formation
process are given in Figure 2.4, reproduced from Didden (1979).

It is the nature in which the vortex sheet rolls up into the vortex ring-core that determines
the vortex-core structure. Defining a Reynolds number Rep = UpDp/ν for the formation
process, where Up is the piston speed and Dp is the tube diameter, Saffman (1978) argues
that, for Rep≫ 1, the effect of viscosity is small on the formation process, with its main
effect being to remove a singularity at the centre of the developing vortex core. Then, on
dimensional grounds, it would follow that

2a
Dp

= f
(

Lp

Dp

)
,

Γ

UpLp
= g

(
Lp

Dp

)
, (2.32)

for a vortex ring produced from a circular tube, where Lp is the total piston stroke length
travelled over the formation process and a is the ring radius (as defined by Figure 2.2 (a)).

The precise form of the functions f and g will depend on both the evolution of the piston
velocity profile Up(t), and the geometry of the ring generation site. For a ring generated
from a circular hole, the contact angle between the tube interior and the rest of the fluid
domain (denoted α in Figure 1 of Gharib et al. (1998)) influences the vorticity distribution of
any vortex rings that are generated from that hole. This motivates the distinction between
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Fig. 2.4 Snapshots of the ring-formation process, using dye to visualise a central plane of
the vortex ring. The tube diameter is 5 cm and the piston speed is 4.6 cm/s, giving Reynolds
number Rep = 2300. Figure reproduced from Didden (1979).

‘tube’ openings (corresponding to small α) and ‘orifice’ openings (corresponding to small
π/2−α), introduced and investigated by Pullin (1979).

The relations given by Equations (2.32) suggest that the Formation Number, Fp = Lp/Dp,
can be used as a control parameter for the structure of generated vortex rings. Related to
Fp is the formation time, tp =Upt/Dp, a dimensionless time that varies between 0 and Fp

over the ring-formation process. Here, Up is the piston speed time-averaged over the period
between the initial and final motion of the piston.

The experimental work conducted by Gharib et al. (1998) investigated the influence of Fp

on vortex-ring formation. Gharib found that a limiting formation number Fp = Fp,lim exists
where the generated vortex ring attains maximal circulation from the formation process. For
formation numbers Fp > Fp,lim, any surplus circulation produced by the formation process
would contribute to a trailing jet behind the ring. For tube and orifice openings, Gharib
investigated with different piston velocity profiles and exit diameters, finding the limiting
formation number for all cases to lie in the range of 3.6−4.5. The numerical simulations of
Rosenfeld et al. (1998) were presented as a continuation of Gharib’s experimental work. We
will not go into the details here, but the findings of these simulations were in broad agreement
with the experiments.
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Motivated by Gharib’s finding of the Fp,lim, analytic models were developed indepen-
dently by Mohseni and Gharib (1998) and Linden and Turner (2001) to explain the physical
mechanisms that set the value of Fp,lim. Both models employ a ‘before and after’ calculation,
matching the parameters associated with a plug of fluid (of length Lp, diameter Dp and
velocity Up) ejected from a tube, with the parameters associated with the Norbury family of
steady rings (of radius X and velocity U , see Norbury (1973)).

The matching calculations for the non-dimensional ring circulation ΓR, impulse IR and
kinetic energy Ek,R are given by

UXΓR =
1
2

UpLp, (2.33a)

UX3IR =
1
4

πUpD2
pLp, (2.33b)

U2X3Ek,R =
1
8

πcU2
pD2

pLp, (2.33c)

where Linden and Turner introduced c < 1 as the fraction of kinetic energy that is injected
from the plug fluid into the ring. Denoting Equations (2.33) as (a), (b) and (c) respectively,
by taking (b)/(a) and (c)/(a)2 and eliminating X/Dp to combine them, we obtain a condition
for the formation number,

Fp =
Lp

Dp
=

√
π

2
c

I1/2
R Γ

3/2
R

Ek,R
. (2.34)

Additionally, we obtain a condition relating the volume of the ring to that of the plug fluid Vp

by taking (c)/(b)2, giving
X3

Vp
=

2Ek,R

cI2
R

, (2.35)

where Vp =
1
4πD2

pLp. Plots of Equations (2.34) and (2.35) are shown in Figure 2.5, where
evaluation of these equations is made for the family of Norbury rings. For this case, all
ring parameters are a function of the non-dimensional mean-core radius, α (introduced in
Section 2.2.1). The volume of fluid Vc carried within a Norbury vortex core and the volume
of irrotational fluid Ve carried along with the core are distinguished.

The model presented by Mohseni and Gharib (1998) employs the Kelvin–Benjamin
variational principle for steady-axis touching rings, where an energy constraint limits the
maximum energy carried by a vortex ring with touching cores. This method yields a second
relation for Fp in addition to Equation (2.34), thus requiring a particular value for α for both
relations to be satisfied. Mohseni and Gharibs’ analysis predicts α ≈ 0.3, corresponding
to Fp,lim ≈ 3. Slightly higher values than the predicted ring velocity yields estimates of
3 ≲ Fp,lim ≲ 4.5, consistent with the observations of Gharib et al. (1998).
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(a) (b)

α α

Fp

Vc +Ve
Vp

Vc
Vp

Fig. 2.5 Taking c = 1, plots of (a) (2.34) and (b) (2.35) for the ring core volume (dashed) and
total volume carried by the ring (solid), non-dimensionalised by the plug volume. The graphs
are plotted for Norbury rings, using tabulated values from Norbury (1973). Plot duplicated
from Linden and Turner (2001).

However, Mohseni notes that the corresponding value of the Norbury mean-core radius
α is considerably smaller than

√
2, indicating a core-touching vortex is not a good approx-

imation to the rings produced at the limiting formation number. A similar observation is
made by Linden and Turner (2001) who note that Figure 14(c) of Gharib et al. (1998) shows
the vortex ring appears to have two well-separated cores. These observations cast doubt in
the validity of applying the Kelvin–Benjamin variational principle in predicting the limiting
formation number for this context.

The model presented by Linden and Turner (2001) considers the volumetric constraint
given by Equation (2.35), where calculations are plotted in Figure 2.5(b). The calculations
demonstrate that for α ≳ 0.42, corresponding to Fp ≳ 3.5, the ring is unable to accommodate
all the plug fluid. This limiting value is consistent with the observations of Gharib et al.
(1998), predicting that for larger formation numbers, some of the circulation-carrying plug
fluid will inevitably be left behind in the ring’s wake. For α ≲ 0.42, although the volume
of the ring exceeds the plug volume, it is seen in experimentally-produced vortex rings that
some of the plug fluid is typically left behind in the wake of the ring (Maxworthy, 1972).

Linden and Turners’ analysis demonstrates that, for vortex rings generated from a circular
tube, it is a volumetric constraint that sets the limiting formation number where a single vortex
ring is produced, rather than the energy constraint associated with the Kelvin–Benjamin
variational principle. Linden and Turner also point out that the matching analysis above
could be reused with a more sophisticated model for the ejected fluid, or with experimental
data rather than the Norbury family of rings, to make different predictions on the limiting
formation number.
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a/2

bk−1

(a) (b) (c)

Fig. 2.6 (a) Illustration of the Widnall instability with 8 peaks and wavenumber k. The
unperturbed ring, whose centreline is indicated by the blue dashed circular line, has core
diameter b and ring diameter a. (b) Photograph of a vortex ring exhibiting the Widnall
instability, with 9 peaks. (c) Photograph of the Widnall instability viewed from the side.
Photographs reproduced from Krutzsch (1939).

We note that, for other tube/orifice ring generation setups, it is conceivable that the
Kelvin–Benjamin energy constraint may become the limiting factor over the volumetric
constraint in setting the maximum formation number in producing a single ring. Mohseni
and Gharib (1998) speculate, for example, that a piston-tube setup with a time varying exit
diameter might be capable of producing thick-core rings similar to Hill’s vortex, in which
case the Kelvin–Benjamin variational principle may apply. However, we are unaware of
any experimental attempts made to produce thick-core rings with α →

√
2 so we make no

definitive statement about this possibility.

2.2.3 The Widnall instability and the stability of vortex tubes

The Widnall instability (Widnall and Tsai, 1977) is a three-dimensional, short wavelength,
azimuthal instability that can be exhibited by vortex rings. These waves are observed to
be the dominant instability in the laminar stage of a vortex ring’s development and are
capable of being excited without the forcing of an externally induced flow. The Widnall
instability generates waves that deform the centreline of the vortex core and are stationary in
the reference frame moving with the bulk motion of the ring. An illustration and photograph
of the Widnall instability are given in Figure 2.6.

In this subsection we walk through the theory associated with the Widnall instability so its
development can be understood. We begin with a brief historical overview of developments
made in understanding the stability of vortex tubes. We then derive the dispersion relation
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for small sinusoidal perturbations to a cylindrical vortex column of uniform vorticity. Of the
waves permitted by this dispersion relation, attention is then restricted to the mode types that
possess the largest growth rates. These modes are then linked to the Crow Instability and
Widnall Instability. We end this subsection with a brief discussion on the number of peaks
that are expected to appear on the ring core when subject to the Widnall instability.

The earliest, commonly referenced observation of the instability now named after Widnall
goes back to Krutzsch (1939). Interest in this phenomenon was rekindled just over 30 years
later, with Crow’s study on the related problem of the stability of a pair of vortex filaments
(Crow, 1970). This later study was motivated by the need to understand the decay of trailing
vortices behind aircraft, as this flow could pose a threat to other aircraft. Analytical studies
on the stability of cylindrical vortex tubes in the presence of axial flow (Moore and Saffman,
1972) and an externally imposed strain field (Moore and Saffman (1975), Tsai and Widnall
(1976)) followed shortly after. Attention was also given to the stability of vortex rings at this
time, with analytical (Widnall and Sullivan (1973), Widnall et al. (1974), Widnall and Tsai
(1977), Saffman (1978)) and experimental studies (Liess and Didden (1976), Maxworthy
(1977)). More recent studies have given considerable insights into the stability of vortex
rings in stratified environments and in the presence of boundaries. We defer our discussion
on such cases to Section 2.3.

The first analysis on the stability of vortex tubes in inviscid, homogeneous flows can be
attributed to Lord Kelvin (Thomson, 1880). For base flows of the form uuu =U0(r)φ̂φφ , Kelvin
considered small sinusoidal perturbations flows of the form ṙ = ur cos(kz)sin(mφ + st) , rφ̇ =U0 +uφ cos(kz)cos(mφ + st) ,

ż = wsin(kz)sin(mφ + st) , p = P0 + p1 cos(kz)cos(mφ + st) ,
(2.36)

where P0 =
∫

U2
0 /r dr is prescribed by the 0th order radial component of the Euler equation

and (k,m,s) are the perturbation wavenumbers, with m restricted to taking integer values.
Kelvin gave particular attention to perturbations of a cylindrical column of uniform vorticity
2Ω surrounded by irrotational fluid. The base flow is given by

U0(r) =

Ωr r ≤ R

Ωa2/r r ≥ R
. (2.37)
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By using Equations (2.36) and (2.37) to linearise the Euler and continuity equations, it is
possible to obtain the second order ODEs governing the evolution of w:

d2w
dr2 +

1
r

dw
dr
− m2

r2 w+β
2w = 0 r ≤ R

d2w
dr2 +

1
r

dw
dr
− m2

r2 w− k2w = 0 r ≥ R
, where β

2 = k2 4Ω2− (s+mΩ)2

(s+mΩ)2 . (2.38)

The general solution of Equation (2.38) can be written as follows:

w =

C1J|m|(β r)+C2Y|m|(β r) r ≤ R

C3I|m|(kr)+C4K|m|(kr) r ≥ R
, (2.39)

where Ci are constants, J|m|, Y|m| are the order m Bessel functions of the first and second kinds
respectively, and I|m|, K|m| are the order m modified Bessel functions of the first and second
kinds respectively. Regularity at the origin and at infinity demands C2 =C3 = 0. Then, by
imposing continuity of perturbation components of the flow at r = a, a dispersion relation is
determined,

κ2

ξ

J′|m|(ξ )

J|m|(ξ )
=−κ

K′|m|(κ)

K|m|(κ)
− smκ

√
ξ 2 +κ2

ξ 2 , (2.40)

where κ = ka and ξ = βa. The quantity s is equal to +1 or−1. In the laboratory frame, waves
corresponding to s = 1 move against the rotation of the column and waves corresponding to
s =−1 move with the rotation of the column. These waves are referred to respectively as
‘retrograde waves’ and ‘prograde waves’.

For the case m = 1, κ = 1, plots of the left-hand side (black) and right-hand side (red
for s = 1, blue for s = −1) of Equation (2.40) are given in Figure 2.7 (a) as a function of
ξ . For each κ , m, the dispersion relation is satisfied for a discrete spectrum of frequencies,
s = ωn(κ,m), n = 0,1,... , determined by the intersection points where the two sides of (2.40)
are equal.

Returning to Equation (2.38), it follows that the frequencies ωn(κ,m) are given by

ωn(κ,m) = Ω

−m+
2sκ√

ξ 2
m,n +κ2

 , (2.41)

where ξm,n = ξm,n(κ) is determined implicitly by Equation (2.40). The function ξm,n is
continuous, with ξn(κ)→ jm,n as κ → 0, where jm,n is the nth root of Jm(ξ ). The waves
permitted by Equation (2.41) are referred to as ‘Kelvin waves’. For the cases n = 0, 1, 2, plots
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Fig. 2.7 For m = 1, using red and blue for retrograde and cograde waves respectively: (a)
Taking κ = 1, plots of the left-hand side (black) and right-hand side of the dispersion relation
(2.40) as a function of ξ . (b) For n = 0, 1, 2, plots of the frequencies ωn(κ,1) given by (2.41)
as a function of κ . Arrows are used to indicate the direction of increasing n.

of ωn(κ,1) are given in Figure 2.7 (b) for s = 1 (red) and s =−1 (blue). Arrows indicate the
direction of increasing n. Note only the retrograde waves admit a solution for n = 0.

The discussion up to this stage has allowed us to reach Equation (2.41), the general
solution to the dispersion relation (2.40), obtained for the vortex considered by Thomson
(1880). There are an infinite number of solutions, each of which have their own associated
dynamics. For our purposes, it is in our interest to restrict attention to the waves that are
most unstable linearly, as these will tend to dominate the development of the flow when it is
subjected to small amplitude perturbations.

As m is restricted to taking integer values, it is natural to partition the waves into separate
families, each corresponding to a particular value of m, allowing the kinematics of each
family of waves to be described separately. Calculations demonstrating the behaviour of
Kelvin waves with different azimuthal wavenumbers are given in Appendix A. The waves
corresponding to m = 0 are ‘varicose modes’. For such waves, there is no azimuthal variation,
and the vortex column broadens and narrows with cos(kz)sin(st). The waves corresponding
to |m| = 1 are ‘bending modes’ - these are the only types of Kelvin wave that lead to a
deformation of the centreline of the vortex column. As such, one might expect these modes
to be the most unstable to the influence of an externally imposed plane strain field. The
waves corresponding to |m| ≥ 2 are ‘fluted modes’. For a given slice z = z0 of the vortex
column, fluted modes exhibit m peaks and troughs on the column boundary.

A physical argument is given to demonstrate that our attention can be restricted to the
stationary bending modes, corresponding to |m|= 1 and ωn→ 0. This is the family of waves
from which the Crow and Widnall instabilities are generated. Suppose a weak, irrotational
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plane strain field of rate ε ≪Ω, normal to the z-axis, acts on the vortex column described
by Equations (2.36) and (2.37). Consider its effect on a cross-section of the vortex column
at a fixed z-plane. As ε ≪Ω, deformations of the cross-sectional surface due to the strain
field can be considered as negligible, so the cross-sectional surface remains approximately
circular. Then, the main effect of the strain on the cross-sectional surface is to advect it
within the z-plane, and its effect on the vortex column is to deform its centreline. As it is
only the bending modes that correspond to a deformation of the centreline, it is reasonable to
expect that the bending modes will be the most unstable modes to the imposed strain field.

Now, suppose the column experiences a small, purely helical wave disturbance, described
by Equation (2.36) for m = 1, s = ω . If ω = O(1)≫ ε , the self-induced rotation of the wave
will convect fluid away from the principal straining axis at a sufficient rate to stabilise the
wave. Marginal stability of the wave occurs for ω = O(ε), and as ω→ 0, the strain is able to
destabilise the wave, stretching the vortex column along the principal straining axis. We can
therefore expect that the stationary bending modes will be most unstable to the influence of
the strain field.

Returning to Equation (2.41) and Figure 2.7 (b), we find that for for all n, there exists a
critical wavenumber κc,n = kc,na such that ωn(κc,n,1) = 0. Moreover, from the symmetries
of Equation (2.38), we have

ωn(κ,m) = ωn(−κ,m) =−ωn(−κ,−m). (2.42)

Therefore, for all n, the critical wavenumbers corresponding to the nth bending mode of
m = 1 and m =−1 are equal. Moore and Saffman (1975) used these symmetry properties to
demonstrate that, for a vortex column undergoing weak O(ε) plane strain, a resonance will
occur between the nth bending modes corresponding to (m1,m2) = (−1,+1) for an O(ε)

band of axial wavenumbers, centred around the critical wavenumber kc,n. This resonance
corresponds to a superposition of two helical waves with equal amplitude and pitch and
opposite chirality, forming a plane sinusoidal wave which is aligned with the stretching
plane of the strain field. The analysis of Moore and Saffman (1975) can be generalised to
demonstrate resonances between modes with |m1−m2|= 2, though, consistently with our
previous argument, the (m1,m2) = (−1,+1) resonances appear to have the largest growth
rates (Kerswell (2002)).

From Figure 2.7 (b), the first three dimensionless critical wavenumbers for |m|= 1 are

κc,0 = 0 , κc,1 = 2.504 , κc,2 = 4.35 . (2.43)
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Fig. 2.8 Illustration of the Crow Instability. Figure modified from Leweke et al. (2016). Each
vortex tube diverges along the stretching plane of the strain field induced by the other.

Stability analyses taking the long wavelength limit κ ≪ 1 can only predict the instability
associated with the zeroth stationary bending mode. The Crow instability for a pair of
counter-rotating vortex tubes of equal strength Γ0 is an example of this (Crow (1970)). An
illustration of the Crow instability is given in Figure 2.8. For tubes of radius a separated a
distance b≫ a apart, the tubes are unstable to symmetric long wave disturbances due to the
weak straining field induced by each tube acting on the other, causing them to diverge along
the principal straining planes of the mutually induced strain fields.

In the case of a vortex ring, with core diameter b and ring diameter a (see Figure 2.6
(a)), an additional constraint on the axial wavenumber is that ka must be an integer, so
the waves can fit onto the ring. Therefore, unless the ring is thin (with small aspect ratio
δ = b/a≪ 1), it is not possible for the zeroth bending mode to become unstable. A stability
analysis applying the long wavelength limit to thin vortex rings was carried out by Widnall
and Sullivan (1973). However, the instability they predicted occurs at a wavelength that is
too short for the long wavelength limit to apply.

An extensive stability analysis for short waves on thin rings of constant vorticity was
carried out by Widnall and Tsai (1977), up to O(δ 2). In their analysis, they demonstrate
that the effects of ring curvature are much smaller than the effects of the ring-induced
strain field on setting the growth rate and wavenumber of the instability that develops,
validating the use of the Kelvin wave analysis. Their analysis is in good agreement with
the previous experimental observations presented in Widnall and Sullivan (1973). The
instabilities associated with the first and second bending modes are found to have similar
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growth rates, suggesting that either mode could be excited on a vortex ring. An observation
of a bimodal instability by Maxworthy (1977), where two distinct wavelengths appear
simultaneously on the ring, supports the notion that either mode can dominate the instability.
However, as the effect of viscous damping will be more significant for shorter wavelength
modes, it is the first bending mode that is generally associated with the Widnall instability.

Up to this point, the discussion on stability has been restricted to inviscid vortex tubes of
uniform vorticity, surrounded by irrotational fluid. Experimentally produced vortex rings
however have peaked, continuous vorticity distributions. Widnall et al. (1974) investigated
numerically the dispersion relation for waves on a straight vortex filament with a continuous
vorticity profile, given by

2Ω(r) =


(
r2−a2)2 r ≤ a

0 r ≥ a
. (2.44)

They found that there was a small shift in the critical wavenumbers (for example, κc,1 ≈ 2.7,
compared with κc,1 ≈ 2.5 from Equation (2.43)), improving the level of agreement with
their previous experimental observations (Widnall and Sullivan (1973)). The example given
by Equation (2.44) illustrates that, for peaked vorticity distributions, there will be some
deviation of the critical wavenumbers from the predictions made in the Kelvin wave analysis.
This is further complicated by the ambiguity in defining a core radius when the vorticity
distribution is continuous. Nonetheless, the Kelvin analysis still provides a helpful estimate
of where the critical wavenumbers might lie.

A prediction for the number of waves that appears on a vortex ring produced from a tube
was made by Saffman (1978). Using the predicted propagation velocity of thin vortex rings
of uniform vorticity from Fraenkel (1972), an estimate for the number of waves N on the
ring is given by

N = kR =
kae1/4

8
eŨ , where Ũ = ln

8b
a
− 1

4
. (2.45)

In the experiments of Liess and Didden (1976) and Maxworthy (1977), however, it was
observed that, for fixed Ũ , the number of waves would vary by up to a factor of 3 with the
piston Reynolds number, defined in Section 2.2.2 as Rep =UpDp/ν . Saffman showed that
the predicted number of waves is dependent on the assumed ring vorticity distribution. By
assuming the ring vorticity distribution was the same as that derived by Moore and Saffman
(1973) for the trailing vortices produced by an elliptically loaded wing, Saffman (1978)
obtained a prediction for the number of waves dependent on the piston Reynolds number
Rep and formation number Fp. His prediction was found to agree extremely well with the
experimental observations of Liess and Didden (1976) and Maxworthy (1977).
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2.3 Vortex-ring interactions

The subject of this thesis is the dynamics and mixing properties of vortex rings obliquely
impacting the density interface in a two-layer stratification. In this section, we examine other
examples of vortex ring interactions to gain physical insights that may aid our interpretation
of the vortex ring interaction this thesis considers. Normal and oblique ring impacts with
three different types of interface are considered: a flat, no-slip wall; a deformable free surface
where surface tension and surface shear stress can be neglected; and a density interface
between two miscible fluids of comparable density. Table 2.2 provides an overview of the
ranges (where available) of Re0, θ0 and Ri0, investigated in the studies referenced for these
three types of interface interactions. Finally, in Section 2.3.7 we briefly examine vortex rings
propagating through a weak, linear stratification.

2.3.1 Normal impact on to a no-slip wall

The dynamics of a vortex ring impacting a flat, no-slip wall at propagation angle θ0 = 0◦

(where θ0 is the angle between the central axis of the ring and the vertical) has received
considerable attention in the literature, with many theoretical, numerical and experimental
studies (e.g. Walker et al. (1987), Lim (1991), Swearingen et al. (1995) and Cheng et al.
(2010)). This ring-wall interaction provides a useful and relatively simple case study to
illustrate more general features of evolving vortex structures in wall-bounded turbulent flows.
In this discussion the vortex ring is propagating vertically downwards onto a flat, horizontal
no-slip wall.

When the ring first feels the presence of the wall, we can treat the flow as inviscid before
viscous effects become significant. At this stage, the ring evolves as though it was interacting
with its mirror image, through the wall. The vortex ring is stretched by the interaction with
the mirror ring, leading to an increase of the ring radius that is indicated by the dashed arrows
in Figure 2.9 (a). To preserve the ring volume, this expansion is accompanied by a decrease
in the core size, and hence an intensification of the vorticity to preserve the ring circulation.

Inviscid theory predicts that the vortex ring radius increases without bound as the ring
moves progressively closer to the wall. This prediction quickly breaks down as viscous
forces become significant. As the ring approaches the wall, the no-slip condition induces
the production of vorticity within a viscous boundary layer on the wall, directly beneath
the ring. This secondary vorticity, of opposite circulation to the ring, is advected outwardly
from the central axis of the ring by the ring-induced motion and separates from the viscous
boundary layer, after which it begins to surround the ring, as illustrated in Figure 2.9 (b).
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Reference Interface Re0 θ0 Ri0

Walker et al. (1987) No-slip 105−3000 0◦ N/A
Lim (1991) No-slip 700−1070 0◦ N/A
Swearingen et al. (1995) No-slip 645 0◦ N/A
Cheng et al. (2010) No-slip 100−1000 0◦−40◦ N/A
Ersoy and Walker (1987) No-slip Not specified 10◦−30◦ N/A
Lim (1989) No-slip 600 38.5◦ N/A
Verzicco and Orlandi (1994) No-slip 600 0◦, 38.5◦ N/A
Liu (2002) No-slip 600, 1000 38.5◦ N/A
Couch and Kreuger (2011) No-slip 2000−4000 30◦−87◦ N/A
New et al. (2016) No-slip 2000, 4000 30◦−75◦ N/A
Song et al. (1992) Free surf. 9100−32200 0◦ N/A
Tyvand and Miloh (1994) Free surf. High limit 0◦ N/A
Quayan and Chu (1997) Free surf. High limit 0◦ N/A
Archer et al. (2010) Free surf. 3700−11100∗ 0◦ N/A
Bernal and Kwon (1989) Free surf. 2660∗ 0◦ N/A
Lugt and Ohring (1994) Free surf. 100∗ 45◦ N/A
Ohring and Lugt (1996) Free surf. 100−200∗ 20◦, 45◦ N/A
Gharib and Weigand (1996) Free surf. 1150∗ 83◦ N/A
Zhang et al. (1999) Free surf. 470−1570∗ 10◦−30◦ N/A
Dahm et al. (1989) Dens. int. 2000−16000∗ 0◦ 4.3−275∗

Stock et al. (2008) Dens. int. High limit 0◦ 0−0.1∗

Advaith et al. (2017) Dens. int. 1350−4600 0◦ 0.1−4
Yeo et al. (2020) Dens. int. 1000−4000 0◦ Not specified
Linden (1973) Dens. int. 360−1080 0◦ 1.6−51
Olsthoorn and Dalziel (2017) Dens. int. 1250−3500 0◦ 0.75−12.3
Stock (2006) Dens. int. High limit 45◦ 0.1−1.0∗

Kuehn et al. (2010) Dens. int. 470−1570∗ 35◦−85◦ 0.0006−3.15

Table 2.2 Table of studies referenced in Section 2.3 that investigated the dynamics of vortex
rings impacting either no-slip surfaces, free surfaces (‘Free surf.’) or density interfaces
(‘Dens. int.’). Where applicable, the range of Re0, θ0 and Ri0 investigated for each reference
are given. Starred (∗) parameters under the Re0 and Ri0 columns correspond to alternative
definitions of the Reynolds and Richardson numbers that incorporate the ring circulation Γ.
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Fig. 2.9 Sketches of the early stages of a ring interacting with a no-slip wall, for normal and
oblique impacts. (a) As the ring approaches the wall, its radius increases, as indicated by the
dashed arrows. (b) Proximity of the ring with the wall leads to the generation of secondary
vorticity at the wall. (c) For oblique impacts, secondary vorticity is generated to a greater
extent by the side of the ring nearer the wall.

The surrounding secondary vorticity prevents the unrestricted expansion of the vortex ring
predicted by inviscid theory, and causes the ring to rebound slightly from the wall.

The subsequent development of the primary ring and secondary vorticity has a significant
dependence on the Reynolds number Re0 (introduced in Equation (1.4)). Walker et al. (1987)
conducted dye visualisation experiments to characterise this flow for 105 < Re0 < 3000. For
the lowest Re0 investigated, no significant boundary layer separation appears to occur and
the primary ring is dissipated by viscous action of the wall. For Re0 ≳ 250, an adverse radial
pressure gradient along the wall cause boundary layer separation of the secondary vorticity,
which can lead to the formation of a secondary vortex ring. In the absence of instabilities, the
secondary ring will propagate around the primary ring before travelling through the primary
ring’s centre and re-merging with the wall-bounded secondary vorticity. For Re0 ≳ 470,
azimuthal instabilities develop in the flow. The structure of these instabilities, and their ability
to trigger the turbulent breakdown of the flow, both depend on Re0. In all cases, the viscous
action of the wall and the annihilation of vorticity between the primary and secondary ring
structures will promote the dissipation of the flow.

The stability characteristics of the secondary ring differ fundamentally from that of an
isolated vortex ring. Swearingen et al. (1995) demonstrated using the long wavelength
approximation that thin vortex rings are unstable to long wavelength perturbations, which is
not the case for isolated vortex rings. The strength of the secondary ring instability is found
to be dependent on the relative positions of the two rings and the ratio of the primary and
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(a) τ = 0.572 (b) τ = 2.288 (c) τ = 4.004

Fig. 2.10 Photographs of a dye visualisation of a vortex ring impacting a wall at an oblique
angle, taken from a single experiment with (Re0,θ0) = (600,38.5◦). The ring is moving
towards the reader, with Region A of the ring impacting the wall first. The dimensionless
time τ = t/t0 is normalised by an advective timescale t0 = D0/U0 = 1.716 s, where D0 is the
diameter of the tube outlet and U0 is the ring propagation speed. Note that τ = 0 corresponds
to Figure 4a of Lim (1989). Photographs selected from Figure 4 of Lim (1989).

secondary ring circulations. This is consistent with the instability of a vortex tube of weaker
circulation in a counter-rotating vortex pair (Bristol et al. (2004)).

2.3.2 Oblique impact onto a no-slip wall

In addition to the Reynolds number, the dynamics of a ring obliquely impacting a flat, no-
slip wall has a significant dependence on θ0, the initial propagation angle that the translational
velocity of the ring makes with the vertical before it interacts with the wall. This interaction
has received relatively little attention compared to its normal counterpart. Specific cases of
the interaction in (Re0,θ0) space are presented by Ersoy and Walker (1987), Lim (1989) and
Verzicco and Orlandi (1994). Recent studies have explored more extensively the range of
dynamics for different cases of (Re0,θ0), using numerical simulations (Liu (2002), Cheng
et al. (2010)) and laboratory experiments (Couch and Kreuger (2011), New et al. (2016)).

Here we describe the case of a moderate propagation angle, similar to the case presented
by Lim (1989) for Re0 ≈ 600, θ0 = 38.5◦. It is worth noting that significant dynamical
changes in the behaviour of the interaction were demonstrated by Cheng et al. (2010)
for 100 ≤ Re0 ≤ 1000, 0◦ < θ0 < 40◦, and New et al. (2016) for Re0 = 2000, 4000 and
30◦ < θ0 < 75◦. As such, it should be noted that the case presented in this section is only
representative of the interaction dynamics for a narrow range of (Re0,θ0).

As the vortex ring approaches the wall, secondary vorticity is generated by the near side
of the ring interacting with the wall due to the no-slip boundary condition, as illustrated in
Figure 2.9 (c). This secondary vorticity interacts with the ring, leading to some vorticity
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annihilation at the near side of the ring and a local increase in the ring core pressure. This
results in an azimuthal pressure gradient in the ring core, leading to a transport of the core
fluid from the near side to the far side of the vortex ring. The dye visualisations presented by
Figures 2.10 (a) - (c) clearly illustrate this transport.

Figure 2.10 (b) indicates the presence of bi-helical vortex lines that wind around the
circumferential axis of the ring. These are accounted for by the circumferential variations of
the ring-core size and vorticity that develop due to the variation in stretching along the ring.
Liu (2002) observes that the helical winding becomes more pronounced for larger values of
Re0. As the flow continues to evolve, a secondary vortex loop develops and forms around the
portion of the ring that was initially furthest from the wall, as shown in Figure 2.10 (c). The
pressure-driven flow accompanied with viscous diffusion continues to weaken the primary
ring vorticity until it eventually breaks where it first made contact with the wall.

2.3.3 Normal impact on to a deformable free surface

The evolution of a vortex ring impacting a deformable free surface at θ0 = 0◦ has been
previously investigated (Song et al. (1992), Tyvand and Miloh (1994), Quayan and Chu
(1997), Archer et al. (2010)). Most of the early studies of this interaction were motivated
by a growing interest in the satellite detection of ship wakes. More broadly, this interaction
provides a useful case study for better understanding of how vortical structures evolve when
near a free surface.

Experimental observations of the free surface deformation resulting from the ring impact
were made by Song et al. (1992) using shadowgraph imaging and a capacitance probe to
quantify the surface deformation. The ring was visualised using hydrogen bubbles. While
the ring remains laminar as it nears the free surface, axisymmetric waves are produced on the
free surface and propagate radially outwards. Shortly after the ring impacts the free surface,
the ring destabilises, breaking down and leading to the formation of several smaller U-shaped
vortices which connect to the free surface and also propagate outwards. The instability
of the primary ring is associated with the generation of short surface waves with complex
three-dimensional structure, and is likened by Song et al. to the Crow instability.

Archer et al. (2010) used numerical simulations to investigate the instability of the primary
ring structure. In these simulations, the ring exhibits a small amplitude Widnall instability
prior to the ring-surface interaction, as can be expected for isolated rings with suitable
Reynolds number. Associated with the initial instability, the radial structure of the ring core
comprises inner and outer regions, which undergo small oscillatory displacements in opposite
directions to one another, moving along the local principal straining axis. The interaction of
the ring with the free surface leads to both the outer core vorticity being deposited onto the
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free surface and the rotation of the perturbed inner core structure in the azimuthal plane of
the ring. This realignment of the instability structure allows the Crow instability to further
destabilise the ring by amplifying the radial perturbations that had initially developed due to
the Widnall instability.

2.3.4 Oblique impact on to a deformable free surface

The oblique impact of a vortex ring on to a deformable free surface has been studied
primarily to examine the mechanism of a vortex connecting to a free surface (Bernal and
Kwon (1989), Lugt and Ohring (1994), Ohring and Lugt (1996), Gharib and Weigand
(1996), Zhang et al. (1999)). The connection process is made possible by the free-slip
condition, where the kinematic and zero shear-stress boundary conditions permit surface-
normal vorticity at the surface. The U-shaped vortices observed by Song et al. (1992) is an
example of this process. The connection process is not possible for the case of a no-slip wall,
as only surface parallel-vorticity is permitted on the boundary, thus vortex lines are forced to
remain closed in the fluid.

Early observations of the ring connection process were made by Bernal and Kwon
(1989) using dye visualisation techniques, for rings initially travelling parallel to the free
surface. In these experiments, the ring is seen to break at the portion of the ring nearest the
free surface, and reconnect to the free surface at its open ends, forming a single U-shaped
vortex. This process is elucidated by Gharib and Weigand (1996), who use shadowgraph and
PIV to investigate the case where the vortex ring is initially travelling at a shallow attack
angle towards the free surface (corresponding to θ0 = 83◦). By considering the pre-impact
symmetry plane of the interaction, Gharib and Weigand (1996) demonstrate that production
of surface normal vorticity cannot occur on the symmetry plane but must take place on
either side. The amplification of secondary vorticity in these side regions coupled with the
free-surface condition of zero shear stress (requiring the formation of a boundary layer) leads
to the inevitable formation of a U-shaped vortex connecting to the free surface.

The ring-connection process was explained through the surface-boundary-layer struc-
ture by Zhang et al. (1999), who used numerical simulations to study the ring impact for
propagation angles θ0 ≥ 60◦ and small Froude numbers FrΓ, given

Fr2
Γ =

Γ0

g1/2(a/2)3/2 , (2.46)

where Γ0 is the initial circulation of the ring and a is the ring diameter. In this study, a
Cartesian coordinate system is used where the portion of the vortex ring nearest the free
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Fig. 2.11 Schematic illustrating the transformation of surface parallel and surface normal vor-
ticity components during the vortex connection process. Duplicated from Zhang et al. (1999).
Note that the terms ‘vortex stretching’ and ‘vortex turning’ used here relate respectively to
the vorticity parallel and vorticity normal components of the vortex stretching term in the
vorticity evolution equation given by Equation (2.17).

surface before impact has its vorticity aligned with the y-axis, and the z-axis is normal to the
undisturbed free surface, pointing outwardly.

By considering the surface normal and parallel components of the vorticity equation that
are responsible for vortex stretching, vortex turning and vortex diffusion, Zhang et al. (1999)
demonstrate that the surface boundary layer consists of two regions. The outer ‘blockage
layer, with thickness δ b comparable to the characteristic length scale of the flow, is where
surface normal motion is restricted due to the kinematic boundary conditions, leading to the
reorientation of surface parallel vorticity towards the surface normal. The inner viscous layer,
with thickness δ ν ∼ Re−1/2, is due to the vanishing of shear stresses required by the dynamic
boundary conditions. Here, remaining surface parallel vorticity is rapidly diffused and surface
normal vorticity is strengthened, facilitating the vortex connection to the free surface. A
schematic illustrating the transformation mechanism of surface parallel and surface normal
vorticity is given in Figure 2.11.

The free-surface boundary layer has similar structure to the boundary layer first identified
by Hunt and Graham (1978) for free-stream turbulence near a no-slip wall, where surface
normal turbulent velocities decay in the outer ‘source’ region of the boundary layer, and
turbulent fluctuations decay to zero in the inner viscous region. The similarity between
the two boundary layer types is mainly attributable to the restriction of surface normal
motion imposed by the kinematic condition near the boundary. Therefore, provided surface
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deformations are small, the theory developed by Hunt and Graham (1978) is applicable to
turbulent flows near free surfaces and to a lesser extent, fluid-fluid density interfaces.

2.3.5 Normal impact with a density interface

The normal impact of a vortex ring onto a density interface between two fluids has been
investigated extensively, motivated by better understanding vortex interactions with stratified
environments both in geophysical and industrial flows. Examples include the interaction
of wakes produced by marine vessels with the seasonal thermocline, the interaction of
convective thermals with atmospheric inversion layers, and the behaviour of turbulent flows
at flame fronts (Dahm et al. (1989), Marcus and Bell (1992), Stock et al. (2008), Advaith
et al. (2017), Yeo et al. (2020)).

Study of the vortex ring–interface interaction has also been motivated by better under-
standing the entrainment process and mixing at turbulent density interfaces, using the vortex
ring as a model turbulent eddy to isolate the eddy entrainment mechanism (Maxworthy
(1972), Linden (1973), Olsthoorn and Dalziel (2015, 2017, 2018)). The ring–eddy analogy
also provides the motivation for our study of oblique vortex ring impacts at a sharp density
interface. As the ring–eddy analogy was previously discussed in Section 1.2, here we restrict
our attention to the dynamics of the induced flow.

The first investigation of the ring–interface interaction was made by Linden (1973), who
conducted laboratory experiments using shadowgraph to visualise the flow. Vortex rings were
generated in the upper layer and made to propagate vertically downward towards the interface.
The focus of this study was to develop a theoretical model for the turbulent entrainment
process induced by the vortex ring impinging on the sharp interface, which is discussed in
greater detail in Section 2.4.2). Linden demonstrates that the maximum extent to which the
ring penetrates the interface is proportional to the square of a Froude number Fr, given by

Fr =
U

(ag∆ρ/ρ1)
1/2 ∼ Ri−1/2

0 , (2.47)

where a and U are the diameter and propagation speed of the vortex ring respectively, ∆ρ is
the density step at the interface, ρ1 is the upper layer density and g is the acceleration due to
gravity. This is equivalent to being proportional to the ratio between the bulk kinetic energy
of the vortex ring and the potential energy strength associated with the density jump at the
interface.

The interaction was reexamined later by Dahm et al. (1989), who used a combination of
dye and LIF experiments and numerical simulations to investigate the flow both for ‘thin’
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interfaces (where the interfacial thickness δ z is small relative to the ring diameter a), and
‘thick’ density interfaces (where δ z∼ a). By considering the vorticity evolution equation on
a thin interface, Dahm demonstrates that in the Boussinesq limit, the production of baroclinic
vorticity at the interface is governed by the product of the Atwood number, A, and the ratio R
of hydrostatic to hydrodynamic pressure gradients at the interface. These are given by

A =
∆ρ

ρ2 +ρ1
, R =

a3g
Γ2 , (2.48)

where ρ2 is the lower layer density of the ring and Γ is the initial circulation of the ring. The
product AR relates to the Froude number introduced in Equation (2.47) by AR∼ Fr−2 ∼ Ri0,
since the ring circulation scales as Γ∼ aU .

For AR ≳ 1, Dahm et al. (1989) observes that the ring is unable to penetrate the interface.
Baroclinic vorticity generated at the interface pinches off to form a secondary ring around
the outside of the primary ring and just above it. The primary ring inducts the secondary ring
through its centre, leading to the ring diameter increasing for the primary ring and decreasing
for the secondary ring. This observation was also made by Marcus and Bell (1992), who
point out the similarity between the no penetration case and the case of a ring normally
impacting a no-slip wall. Dahm et al. (1989) observes the development of a wavy instability
on the secondary ring due to the compressional and extensional strains exerted by the primary
ring, a feature also present in the no-slip wall case.

For small values of AR, the ring is able to penetrate the interface deeply. The vortex ring
transports a substantial volume of upper layer fluid into the lower layer region, both via the
ring atmosphere and its wake. Horizontal buoyancy gradients at the interface between the
transported upper layer fluid and the surrounding lower layer fluid lead to compression of the
vortex ring and a rapid production of baroclinic vorticity. This secondary vorticity erodes
the primary ring structure, eventually leading to the turbulent breakdown of the ring and a
considerable amount of mixing.

Recent advances in technological capabilities have led to the ring–interface interaction
being reexamined. In particular, Olsthoorn and Dalziel (2017) used a two-dimensional
stereo-PIV technique to reconstruct three-dimensional velocity fields of the ring–interface
interaction. This reconstruction was achieved by repeating each experiment multiple times,
taking measurements at a different horizontal plane for each experiment. Three cases
were studied: (RiD,ReD) = (2.4,1600), (1.7,2400) and (0.98,1600), corresponding to non-
penetrative, partially penetrative and deeply penetrative ring impacts. Note that Olsthoorn
and Dalziel (2017) use the vortex-ring-tube diameter D rather than the ring diameter a in
defining the Reynolds and Richardson numbers, so RiD = DRi0/a and ReD = DRe0/a.
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(a) (b) (c)

Fig. 2.12 Horizontal slices plotting the vertical velocity of the ring–interface interaction,
demonstrating the modal structure of the stratification instability. Cases (a), (b) and (c)
correspond to (RiD,ReD) = (2.4,1600), (1.7,2400) and (0.98,1600) respectively, and have
respective mode numbers 8, 10 and 8. Figure duplicated from Olsthoorn and Dalziel (2017).

These experiments demonstrated that the mode number of the ‘Crow-like’ instability
that develops during the interaction is controlled by the Reynolds number, an observation
consistent with the prediction of Saffman (1978) for the unstratified case. Figure 2.12
demonstrates this Reynolds number dependence. For all three cases, the instability structure
was primarily expressed through the vorticity that had been generated baroclinically. By
considering the angular distribution of vertical velocity at different heights, the timescale τ

of the instability growth is shown to have an inverse dependence on the Richardson number
Ri0. The scaling is given by

Uτ

a
∼ 1

Ri0
, where Ri0 =

g∆ρ

ρ1

a
U2 . (2.49)

For Ri0 ≳ 1, the scaling predicts that the ring instability is able to grow significantly before the
interface rebounds, whereas for Ri0 ≲ 1, the buoyancy response will inhibit the development
of the ring instability. Selected photographs from one of our preliminary dye experiments
for the parameters (Re0,Ri0,θ0) = (2070,4.6,0◦) are presented in Figure 2.13 to showcase
the distortion of the density interface in the regime where the Crow-like instability is able to
develop.

2.3.6 Oblique impact with a density interface

The case of a vortex ring obliquely impacting a density interface is the subject of this
thesis. To the best of our knowledge, there have only been two previously published studies
that have considered this interaction, by Stock (2006) and Kuehn et al. (2010).
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Fig. 2.13 Selected photographs of the vortex ring–interface interaction for (Re0,Ri0,θ0) = (2070,4.6,0◦), taken from a dye visual-
isation experiment where the lower layer is dyed green to visualise the distortion of the density interface. Here, the ring diameter
a = 4.9 cm and the ring propagation speed U = 42.2 cm s−1. Small perturbations to the flow in the upper layer were found to heavily
compromise the symmetry of the instability. The time interval over which the four photos were taken is approximately 2.5 seconds.
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Numerical simulations of the ring impact for θ0 = 45◦ were presented in the PhD
dissertation of Stock (2006) for AR = 0.1,0.3 and 1, where A and R are defined by Equation
(2.48). The interaction was considered as one of a number of case studies to test the
regularised inviscid vortex sheet method Stock developed, the numerical method being the
primary focus of Stock’s thesis. The analysis given for these simulations are brief, but
interesting features are observed.

For AR = 0.3, as the ring approaches the interface, vorticity is generated baroclinically
first by the portion of the ring closer to the interface. The strength of this secondary vorticity
relative to the secondary vorticity produced along the rest of the deformed interface is
responsible for the deformation of the ring, causing it to bend. The simulation was not run
much further than this point as it became difficult to discern the actual ring dynamics from
numerical instabilities.

For AR = 1, the strength of the stratification is much greater, with the ring only weakly
distorting the density interface. A secondary vortex ring forms from the baroclinically
produced vorticity and is swept around the outside of the primary ring. This leads to a
three-dimensional instability exhibiting bi-helical vortex lines, similar to those observed
by Lim (1989) for the case of an oblique ring impact at a no-slip wall. Stock attributes a
hastening in the turbulent breakdown of the ring to this instability.

Dye experiments were conducted by Kuehn et al. (2010) to visualise the trajectory of the
vortex ring, so its change in propagation angle as it interacted with the stratification could
be measured. A discussion was given as to whether a generalised version of Snell’s law
could be made to predict the evolution of the vortex ring trajectory. It was concluded that
such a law would need to account for the structural evolution of the vortex ring as the flow
evolves. No further attempt was made to describe the internal dynamics of the vortex ring
and the experimental technique used provides insufficient resolution to discern any particular
features of the ring’s internal structure.

2.3.7 Vortex rings propagating through a weak, linear stratification

In this section, we briefly cover vortex rings propagating through a weak, linear stratifi-
cation, to support some of the assumptions made in Section 6.3.2 for our periodic-mixing
experiments. Previous studies of this interaction include Maxworthy (1977), van Atta (1989),
Orlandi et al. (1998), and Scase and Dalziel (2006). Here, we restrict our attention to the ob-
servations of Maxworthy (1977), for vortex rings propagating vertically downwards through
the stratification.

Figure 2.14 (a) illustrates the experimental setup used by Maxworthy (1977) for observing
vortex rings propagating through a linear stratification. Vortex rings first propagate through
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(a) (b)

Fig. 2.14 (a) Illustration of the experimental setup used by Maxworthy (1977) to observe
vortex rings propagating through a linear stratification. A plot of the the ambient density
profile ρ∞(z) and a sketch of the ring diameter D(z) as it propagates through the stratification
are both provided. (b) Sketch of the vortex ring after it has propagated well into the linearly-
stratified region. Three distinct regions emerge: the core of the ring, a mixed intermediate
region, and the ambient. Vorticity is produced baroclinically at the interfaces between
adjacent regions. Figures reproduced from Maxworthy (1977).

an unstratified region with density ρ0 and depth 50 cm, enabling them to fully form before
then entering a region of linearly stratified fluid, of depth 150 cm and density increasing
from 1.00 g/cm3 to 1.15 g/cm3. In Figure 2.14 (a), Maxworthy sketches the evolution of the
ring diameter as it propagates through the tank, first expanding in the unstratified region
(consistent with the model of Maxworthy (1972) described in Section 2.2.1), before then
diminishing in size as it propagates through the linearly stratified region.

Figure (b) provides a detailed sketch of the vortex ring after it has propagated well into
the linearly-stratified region, illustrating the dynamical behaviour of the flow observed by
Maxworthy. When the ring first enters the linearly-stratified region, all fluid moving with the
ring has density ρ0. As the ring continues to propagate, the portion of the ring external to the
core is first to mix with the surrounding ambient, creating mixed fluid with an intermediate
density ρI(xxx, t). It is this intermediate fluid that is rejected into the wake of the ring. Due
to there being very little entrainment across the interface between the core of the ring and
the intermediate fluid, the ring retains a self-similar form, and the core of the ring retains
its initial density to a good approximation. Over time, baroclinic vorticity production at
the interface between the core of the ring and the surrounding fluid leads to this interface
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destabilising, enabling some of the core fluid to be entrained into the intermediate fluid and
exposing more of the ring core. This process leads to a gradual reduction in the size and
circulation of the ring until its ultimate collapse.

2.4 Aspects of stratified mixing

The last section of this chapter covers aspects of stratified mixing that are relevant to our
analysis of a periodic sequence of vortex rings mixing an initially two-layered stratification.
In particular, we restrict our attention to mixing and how mixing efficiency is quantified, and
to revisiting the ring–eddy analogy following its introduction in Section 1.2.

2.4.1 The energetics of mixing

Scalar mixing consists of two physical processes that occur simultaneously: the stirring
of scalar iso-surfaces, and the enhancement of diffusion as a result of the stirring-induced
intensification of the scalar gradients and the associated temporary increase in interfacial
area over which diffusion can occur. The ring–interface interactions considered in this thesis
can be thought of as events that result in mixing of the density field. For salt solutions, the
fluid density takes the form

ρ = ρ (SSS,T,P) , (2.50)

where Sk is the concentration of solute sk, T is the temperature and P is the pressure.
Throughout our experiments, as the fluid depth was kept at less than 60 cm, variations in
pressure had a negligible effect on the fluid density. Also, as the fluid was kept to being close
to thermal equilibrium with the laboratory environment, variations in fluid temperature were
sufficiently small that ring-induced mixing of the temperature field had a negligible effect
on the density field when compared with the mixing of the solute-concentration fields. We
therefore restrict our definition of mixing in this thesis to mixing of the solute-concentration
fields. This can effectively be thought of as mixing of the density field, assuming a linear
equation of state for the fluid density. This assumption is valid for our purposes given the
solutes and range of solute concentrations we use to stratify the fluid.

Mixing can be quantified as the irreversible increase in gravitational potential energy (PE)
that results from a given energy input that stirs the fluid (Winters et al. (1995)). To distinguish
between reversible and irreversible changes in PE, Winters et al. (1995) partitioned PE into
background and available potential energy (BPE and APE). The BPE of a system is the
minimum potential energy realisable following an adiabatic rearrangement of the density
field ρ(xxx, t) to a sorted density field ρs(z, t), and the APE is the excess potential energy in
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addition to the BPE that makes up the total PE. For a closed system, the BPE and APE can
be written as

BPE =
∫

gρsz dV , APE = PE−BPE =
∫

g(ρ−ρs)z dV . (2.51)

The total amount of energy available in the system for mixing (AE) is the sum of kinetic
energy (KE) and APE, which can be written as

AE = KE+APE =
∫

g(ρ−ρs)z+
1
2

ρ|uuu|2 dV . (2.52)

A system can only be in a steady state of rest when AE = 0, in which case KE = 0, PE = BPE
and the BPE increases only through heat diffusion and molecular diffusion of any solutes
present in the fluid.

An irreversible mixing rate M was introduced by Peltier and Caulfield (2003) to dis-
tinguish between increases in BPE associated with an initial kinetic energy reservoir and
increases associated with molecular diffusion of the mean density profile. This leads to the
energetic pathways between KE, APE and BPE to be written as

d
dt

KE = H− ε ,

d
dt

APE =−H−M , (2.53)

d
dt

BPE = M+Dρ .

Here, H is the buoyancy flux, allowing for the direct transfer from KE to APE and vice-
versa; ε > 0 is the kinetic-energy dissipation rate; and Dρ is the rate at which the potential
energy would increase in a stable stratification at rest, encapsulating both heat and molecular
diffusive processes. Given an initial source of KE that leads to a temporary increase in APE,
Peltier and Caulfield (2003) associate irreversible mixing with an imperfect return of APE
back into the KE reservoir, with the fraction of energy not transferring back to KE instead
transferring to the BPE reservoir via diffusive processes.

An important property of turbulent mixing processes that is useful to characterise is the
‘mixing efficiency’, that is the increase in BPE of a system as a proportion of the energy
expended in carrying out the mixing process. A number of measures have been introduced to
estimate this quantity, the most common of which are listed in Table 1 of Gregg (2018). From
the energetic pathways given by Equations (2.53), Peltier and Caulfield (2003) introduce
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instantaneous and cumulative measures of the mixing efficiency, ηI and ηC, given by

ηI =
M

M+ ε
and ηC =

∫ T
0 M(τ)dτ∫ T

0 M(τ)dτ +
∫ T

0 ε(τ)dτ
. (2.54)

For ηC, time T is selected such that the mixing and dissipation associated with the mixing
process occurs over the time interval [0,T ]. For our periodic mixing experiments presented
in Chapter 6, we introduce and make use of a modified form of ηC to estimate the mixing
efficiency of the ring–interface interaction, taking into account the increases in BPE associated
with heat flux through the tank walls.

As discussed by Tailleux (2009), while the APE framework introduced by Winters
et al. (1995) and developed further by Peltier and Caulfield (2003) is valid for Boussinesq
flows with a linear equation of state, their results do not generalise to fluids with non-linear
equations of state, or compressible flows. For our experiments, we are able to assume the flow
is Boussinesq and the equation of state is linear, allowing us to adopt the APE framework.

2.4.2 Turner’s mixing box and the ring–eddy analogy

This last section complements our discussion of Turner (1968), Maxworthy (1972),
Linden (1973) and Olsthoorn and Dalziel (2015, 2017, 2018) in Section 1.2 on the history
of the ring–eddy analogy by discussing in more detail the findings of Turner (1968) and
Linden (1973). The relevance of eddy-induced mixing to turbulent mixing in zero-mean
shear flows was first demonstrated by Turner (1968). Turner performed experiments in a
two-layer density stratification, using a vertically oscillating grid, in either one or both of the
fluid layers, to mix the stratification. Experiments were conducted for Ri ≳ 0.1, where the
Richardson number is defined by

Ri = g
∆ρ

ρ

1
ln2 , (2.55)

using the oscillation frequency n of the grid and a fixed lengthscale l imposed by the geometry
of the grid.

The purpose of Turner’s experiments was to demonstrate the effects of molecular diffu-
sivity on turbulent entrainment at a density interface. This was achieved by using salt and
heat in separate experiments as the single stratifying agent. For the case where only one layer
is stirred, Figure 2.15 (a) shows the measured rate of mixing as a function of the Richardson
number. For the entrainment velocity ue, Turner obtains the following functional form for
Ri ≳ 1,

ue

ln
∝ Ri−m , (2.56)
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(a) (b)

Fig. 2.15 Plots of the measured mixing rate as a function of Richardson number. (a) Ex-
perimental results when a single layer stirred. Filled black circles and empty black circles
correspond to experiments where heat and salt are the stratifying agents respectively. (b)
Experimental results when salt is the stratifying agent. White empty dots and black filled
squares correspond to experiments where one layer is stirred and both layers are stirred
respectively. Graphs reproduced from Turner (1968).

where m = 1 and m = 3/2 for temperature and salinity stratifications respectively.
The enhanced entrainment velocity associated with using heat instead of salt as the

stratifying agent was attributed to the thermal diffusivity of water being significantly larger
(by a factor of 700) than the molecular diffusivity of salt, effectively resulting in a higher
mass diffusivity for the heat experiments. At higher mass diffusivities, a greater amount of
diffusion can occur when fluid elements are displaced from their neutral-buoyancy level, thus
leading to a larger proportion of the work done to initially displace the fluid being converted
into background potential energy. The difference in functional forms for ue leads Turner
to conclude that the structure of the density interface depends on the interplay between
mechanical stirring, which sharpens the interface from the side that is being stirred, and
molecular diffusion, which tends to spread it out.

For each stratifying agent, Turner also compares the mixing rates for experiments when
either one layer is stirred or both layers are stirred. Figure 2.15 (b) presents the results
for when salt is the stratifying agent. For both salinity and temperature stratifications, no
significant change is observed in the mixing rate whether one or both layers are being stirred.
Turner attributed this indifference to the nature of the mixing at the density interface. In
particular, it was observed that the largest eddies that interact with the interface appear to be
responsible for the majority of mixing, through a process likened to the breaking of steep,
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forced internal waves. Turner argued that these mixing events were sufficiently uncommon
that both layers could be regarded as statistically independent from each other, as the mixing
sites cover only a small fraction of the interfacial area at any one time. This observation
motivated the study of eddy-induced mixing at a sharp density interface to better understand
turbulent mixing in zero-mean shear flows.

The suggestion that vortex rings could be used as idealised eddies to understand the
entrainment mechanism better at a turbulent density interface was made by Maxworthy
(1972). The first study utilising this analogy was presented shortly after by Linden (1973),
who conducted experiments where vortex rings vertically impacted a sharp density interface.
Experiments were carried out for a range of Reynolds numbers Re and Froude numbers
Fr, given by 360 ≤ Re ≤ 1080, 0.14 ≤ Fr ≤ 0.80. The Froude number here was defined
previously in Equation (2.47) and is related to the Richardson number defined in Equation
(2.49) by Ri0 = Fr−2, which lies in the range 1.5 ≲ Ri0 ≲ 51. Results were obtained using a
shadowgraph technique.

Linden proposes a model to predict the entrainment velocity at a turbulent density
interface by approximating the flow as a discrete number of energy-containing eddies, where
each eddy interacts with the interface in a similar way to the vortex ring. By equating the
rate per unit area at which kinetic energy is made available for entrainment at the mixing
sites to the rate of increase in potential energy of the system, Linden obtains an estimate for
the entrainment velocity,

ρD3U2

τl2 ∼ g∆ρdue =⇒ ue ∼
1
τ

ρ

g∆ρ

D3U2

l2d
. (2.57)

Here, τ is defined as the timescale at which energy is made available for mixing, ρ is the
mean density, d is the height at which fluid is raised by the recoil, and l is the lengthscale
of the interfacial distortion created by a single eddy interaction. The other parameters have
been defined previously by Equation (2.47).

Three assumptions are made to relate the entrainment velocity to the Froude number.
Firstly, the height d of the interfacial recoil is assumed to scale as d ∼ D. This was justified
by observing that the lengthscale over which mixing occurred in the vortex ring experiments
appeared to scale with the size of the ring, and that interfaces were observed to remain
sharp in the experiments of Turner (1968). Secondly, for the ring–interface interaction, it is
assumed that an energy balance exists between the initial bulk kinetic energy of the vortex
ring and the potential energy increase associated with the distortion of the interface. This
assumption yields the scaling

l
D
∼ Fr−1 , (2.58)
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which is shown to agree with experimental results for Fr ≲ 0.3, but is seen to break down for
larger Froude numbers. Note also that the energy balance assumed here neglects contributions
to the kinetic energy from the rotational component of the ring motion. Thirdly, the timescale
τ relating to the rate at which energy is made available for mixing is assumed to scale with
the buoyancy response timescale of the perturbed interface, giving

τ ∼
(

ρl
g∆ρ

)1/2

. (2.59)

Making these three assumptions, Linden obtains the following non-dimensional form of
the entrainment velocity,

ue

U
∼ Fr3 = Ri−3/2 . (2.60)

This scaling agrees with the experimental results of Turner (1968) for salinity stratifications
for the range of Froude numbers considered, which is expected as the vortex-ring interactions
entrain fluid in an analogous way to the dominant entrainment mechanism observed in
Turner’s grid-mixing experiments.



Chapter 3

Experimental Apparatus, Setup and
Methodology

In this chapter we discuss our methodology for carrying out the experiments conducted
for this thesis. In Section 3.1 we describe our procedure for creating a two-layer stratification
in the two experimental tanks we used. This includes a discussion on the design of a new
piece of apparatus that was essential for being able to conduct experiments in the larger of
the tanks we used. In Section 3.2, we talk through our setup and procedure for generating
reproducible vortex rings. Then, in Section 3.3 we describe the procedure for setting up our
PIV/LIF experiments, after which we describe our methodology for making PIV and LIF
measurements. Finally, in Section 3.4 we introduce the conductivity probe and thermistor
used to take vertical profiles for our periodic mixing experiments, as well as describing our
procedure for calibrating these two apparatus. The experimental setup and procedure for our
periodic mixing experiments is discussed in Chapter 6.

3.1 Creating a two-layer stratification

In this thesis, we investigate the influence that the propagation angle of a vortex ring has
on its interaction with a two-layer density stratification. Experiments were conducted in two
tanks: a smaller tank of size 500x200x500mm3 and a larger tank of size 1200x400x750mm3

(dimensions in Length x Width x Height). This section describes how we create a two-layer
stratification in each of these tanks.

Note that preliminary experiments (including those from which the photographs presented
in Figure 2.13 were taken) were conducted in the ‘Rayleigh-Taylor’ tank, developed by
Dalziel (1993). The filling methodology we employed for the Rayleigh-Taylor tank is similar
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to that described by Davies Wykes and Dalziel (2014), as well as the dye and lighting
arrangement used to produce Figure 5 of Davies Wykes and Dalziel (2014). Importantly, the
separating barrier between the two layers was removed slowly to minimise the amount of
mixing induced by the barrier removal. This ensured a sharp density (and dye concentration)
jump across the interface, enabling a high clarity in the distortion of the interface made by
impinging vortex rings (as showcased in Figure 2.13).

3.1.1 Filling the tank

We start by prescribing the height of the two fluid layers. This determines the fluid
volume required for each layer. We then prescribe the density of the two fluid layers. For
each layer, the desired density is achieved by mixing the appropriate mass of salt crystals
per litre to the required volume of fresh water. The fresh water is drawn from a break tank
feeding the lab that is, in turn, supplied by the water mains. The density of the solution
is then verified using a density meter (Anton Paar DMA 5000), which measures the fluid
density at 20◦C to a precision of 10−6 g/cm3. In the experiments conducted for this thesis,
the upper-layer fluid is a NaCl (sodium chloride) solution. When the refractive indices of the
two fluid layers must be matched, the lower layer is a NaNO3 (sodium nitrate) solution (this
is discussed in Section 3.3.1. Otherwise, the lower layer is a NaCl solution.

The upper-layer fluid is prepared in the tank being used for the experiment. The lower-
layer fluid is prepared in an external reservoir. The two solutions are left overnight to allow
any excess of dissolved gases to come out of solution from each of the fluid layers, after
which any air bubbles that had nucleated on the surface of the tank were removed using
a squeegee. Leaving the solutions overnight was necessary for our PIV/LIF experiments
to reduce the risk of bubbles blocking the cameras’ view of the flow, and was necessary
for our periodic mixing experiments to significantly reduce the risk of bubbles forming
at the tip of the conductivity probe, which could compromise the measurements made by
the probe. Leaving the solutions overnight was also helpful in allowing them to converge
towards thermal equilibrium with the laboratory environment, which we discuss further in
Section 3.1.4. After the two solutions have been left overnight, the tank filling process can
be completed.

Aside from the apparatus used to fill each tank, the tank-filling methodology is the same
for the two tanks that we use. Using a pump system with connected tubing, the lower-layer
fluid is injected into the bottom of the tank beneath the upper layer. The injection flow rate
is manually controlled using a digital interface on the pump system, taking care to ensure
that negligible mixing occurs between the two solutions in the tank. Initially, the injection
flow rate is kept low to prevent mixing between the two fluids. Once the density interface is
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Fig. 3.1 Sketch of the lower-layer height as a function of time during the lower-layer filling
process.

sufficiently far above the injection site, the flow rate is gradually increased up to a maximum
rate, after which the flow rate is kept constant. A sketch of the lower-layer height as a
function of time during the lower-layer filling process is given by Figure 3.1. Once the lower
layer has reached the prescribed height, the fluid injection is stopped and the tank filling
process is completed.

3.1.2 Lower-layer filling apparatus

Different digital pump systems were used for the two tanks during the lower-layer filling
process. For the smaller tank, fluid was driven through a Masterflex Easy-Load peristaltic
pump head (model no. 77202-60), which was fitted to a Masterflex L/S Digital Drive
(model no. 7551-00). For the larger tank, fluid was driven through a Micropump (model
no. GJ-N25.PF1S-A), which was fitted to a Masterflex Digital Gear Pump drive (model no.
75211-70). For each tank, the associated digital pump system was capable of delivering fluid
to the bottom of the tank at the required range of flow rates for the lower-layer filling process.

For each tank, different apparatus were connected to the pump tubing to transport lower-
layer fluid to the bottom of the tank. For the smaller tank, the tubing is connected to the top
end of a vertical cylindrical hollow rod of diameter 9 mm, which is made to stand in one
corner of the tank. Lower-layer fluid is injected into the tank from the opposite end of the
rod. A small sponge is fitted at the bottom end of the rod to diffuse the kinetic energy of
the injected fluid. This was sufficient to prevent significant mixing from occurring during
the filling process. This filling setup is identical to that used by Davies Wykes and Dalziel
(2014), and allows the filling process to take less than two hours to complete.

For the larger tank, it was necessary to replace the rod with a different apparatus that
could supply lower-layer fluid to the tank at higher flow rates without significant mixing
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Fig. 3.2 Sketch of the apparatus used to fill the larger tank. (a) View of the apparatus
positioned in the tank. (b) View of the underside of the apparatus from directly beneath it.
(c) Side view of the apparatus at the bottom of the tank.

of the two fluids. A sketch of the apparatus developed for this purpose is given in Figure
3.2. The apparatus is positioned against one of the narrow walls of the tank, as shown in
Figure 3.2 (a). Lower-layer fluid is pumped into the apparatus at the top of the tank, before
travelling to the bottom of the tank through a closed pipe of diameter 15 mm. The fluid then
enters and fills a horizontal cylindrical pipe of diameter 15 mm, labelled A, that spans the
width of the tank.

Figure 3.2 (b) shows a view of the underside of the apparatus, from directly beneath it.
Fluid enters the tank through a series of 80 small holes, labelled B, on the surface of pipe
A. Each hole has a diameter of Dh = 3 mm, and was cut to face radially from the centre of
the pipe. When the apparatus is positioned in the tank, half of the holes are centred at 3mm
above the tank base, and the other half are centred at 6mm above the tank base.

For the range of flow rates used, the volume flux Q of lower-layer fluid supplied to the
apparatus ranged from 4 ml/s ≤ Q≤ 40 ml/s. Therefore, assuming the volume flux through
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each of the holes is equal, fluid would enter the tank at a velocity Uh ranging from 0.7 cm/s
≤Uh ≤ 7 cm/s. Based on Dh and Uh, we can define a Reynolds number Reh for the flow
passing through each hole and a Richardson number Rih quantifying the relative strength
of the potential energy of the buoyancy difference of the two fluids compared to the kinetic
energy of the inflow. Writing Uh,min = 0.7 cm/s with rh =Uh/Uh,min ranging from 1 to 10,
for the range of flow rates used we have

(Reh, Rih) =
(

UhDh

ν
,

g∆ρ

ρ1

Dh

U2
h

)
=
(
20rh, 6r−2

h

)
, (3.1)

where we have taken ∆ρ/ρ1 = 10−2 as this corresponds to the lowest density difference
between the two layers that we used.

For the lowest flow rates (corresponding to Rih = 6 ≳ O(1)), the buoyancy force in
combination with the orientation of the pipe-exit holes causes the injected lower-layer fluid
to fall to the base of the tank before a significant amount of mixing can occur. Subsequently,
the lower-layer fluid spreads along the base of the tank as a laminar gravity current. As
Reh = 20∼ O(1), we were confident that negligible mixing would occur as the lower-layer
fluid settles from the pipe-exit holes to the base of the tank.

From the above analysis, we were confident that, using this tank-filling apparatus, we
could inject the lower layer into the tank whilst inducing negligible mixing between the upper
and lower-layer fluids. To keep the tank-filling time TF sufficiently low for our experiments,
it was necessary to resort to higher flow rates. At the highest flow rates used, from Equation
(3.1) we have (Reh, Rih) = (200,0.06). In this regime, the inflow consists of a series of
turbulent jets coming out of each of the holes, capable of generating significant mixing in the
presence of a stratification.

Figure 3.2 (c) shows a side view of the apparatus at the injection site. To prevent the
turbulent energy of the inflow from generating mixing at the interface at higher flow rates,
a flat horizontal plate is used to vertically confine the turbulent motion. The plate, labelled
C, is fixed to the apparatus at HI = 7.5 mm above the base of the tank. The plate spans the
width of the tank and protrudes LI = 100 mm into the tank.

Lower-layer fluid injected into the tank first enters the confined region between the tank
base and the plate. As the ratio of length to height in this confined region is about 13 to 14,
then towards the exit of the confined region, by the incompressibility condition we could
expect the vertical velocity component to be O(1)mm/s at the highest injection flow rates.
Once the injected fluid exits the confined region, due to an adverse pressure gradient caused
by the wall at the opposite end of the tank, the departing fluid would be pushed up by a small
amount as it expanded into the rest of the lower-layer fluid. Though we did not investigate
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the effect of this adverse pressure gradient in detail, by being aware of it, we knew to take
care in keeping the injection flow rates at an intermediate level while the density interface
was less than 2-3 cm above the confining plate to avoid inducing mixing.

By keeping the flow rate low initially to allow the density interface to pass above the
confining plate, and only gradually increasing the flow rate to its maximum after this point,
we were able to fill the lower layer in less than 90 minutes without inducing mixing at
the density interface. The filling time was short enough that, for our PIV/LIF experiments
presented in Chapter 5, the view of the interface through the cameras remained clear as
sufficiently few PIV particles had settled at the interface during the tank-filling process. This
was essential in allowing us to carry out our PIV/LIF experiments in the larger tank. Note
that as PIV/LIF experiments were not conducted in the smaller tank, a similar confining plate
was not required for the smaller tank as we could keep injection rates low to prevent mixing,
while not having to worry about the settling issue associated with the use of PIV particles.

3.1.3 Molecular diffusion and interfacial thickness

The sharpness of the density interfaces produced for our experiments was limited by
molecular diffusion, which acted to smooth the density field. Table 3.1 lists the diffusivities
of the various species used in our experiments. For an initially sharp and deep two-layer
stratification with ρ1 < ρ2 and evolving only via molecular diffusion with diffusivity κ , it is
simple to show that the evolution of the density field ρ(z, t) is given by

ρ(z, t) =
1
2
(ρ1 +ρ2)+

∆ρ

2
erf
(

z
2
√

κt

)
, (3.2)

where −1 < erf(x)< 1 is the error function.
Defining the thickness of the density interface as ∆H = 2Z(t) where Z is such that

erf(Z/(2
√

κt)) = 0.9, we can use the diffusivities given in Table 3.1 to estimate the thickness
of the density interface after the tank-filling process. Taking the tank-filling time TF to be 90
minutes (t = TF = 5400 s), we have interface thickness ∆Hρ ∼ 12.5−14.4 mm for the ionic
species present in our experiments, and ∆HLIF ∼ 6.8 mm for rhodamine 6G. These interface-
thickness estimates are consistent with our density measurements using the conductivity
probe and thermistor (introduced in Section 3.4) and with our LIF images.

Writing ∆hρ = ∆Hρ/a for the relative-interface-thickness of the density field where
a≈ 49mm is the vortex-ring diameter, we have ∆hρ ∼ 0.25−0.3 at the end of the tank filling
process. The range of ∆hρ was deemed to be sufficiently small so that the interfacial thickness
could be treated as constant across all PIV/LIF experiments. For our periodic-ring-mixing



3.1 Creating a two-layer stratification 57

Ion/dye Cl− Na+ NO−3 R6G

Diffusivity [10−9 m2/s] 2.032 1.334 1.902 0.4

Table 3.1 Table presenting the molecular diffusivities of chloride (Cl−), sodium (Na+) and
nitrate ions (NO−3 ), and the molecular diffusivity of rhodamine 6G dye (R6G). Data obtained
from Weast et al. (1984) and Gendron et al. (2008).

experiments presented in Chapter 6, the role of molecular diffusion on the evolving density
field is discussed in Section 6.1.1.

It is worth noting that, for our periodic-mixing experiments, the mixing produced by
vortex rings in the early stages of the initial adjustment phase will have a significant de-
pendence on the prescribed initial value for ∆hρ . This is because the interfacial thickness
is a control parameter for the interfacial gradient Richardson number, which will control
the amount of mixing produced both by the vortex ring, and by interfacial waves generated
by the ring’s impingement onto the interface. As we do not have access to apparatus with
sufficient precision to examine closely the relationship between the interfacial thickness and
the mixing produced by a single vortex ring, we do not explore this relationship further. For
our purposes, the important point is that the initial interfacial thickness is kept fixed to a good
approximation throughout our experiments.

3.1.4 Thermal effects

Using the methodology detailed above, we were able to generate two-layer stratifications
with moderately sharp density interfaces in both of the tanks that were used. Variations
in fluid temperature led to small differences between the prescribed stratification and the
final stratification that was produced. Here, we go through the procedures followed in our
methodology that impacted the temperature of each solution before the lower-layer fluid was
added to the bottom of the tank, and comment on the typical final temperature stratifications
that formed before the beginning of an experiment.

When the fresh water used for each solution was initially drawn from the break tank, it
was typically 2−3◦C cooler than the temperature of the lab, with the precise temperature
difference depending on the weather and the time of year. Solutions were then prepared
by dissolving salt crystals into the fresh water. For both salts used (NaCl and NaNO3), the
dissolution reaction is endothermic, meaning the reactions result in a cooling of the solution,
thus further increasing the temperature difference between the solutions and the lab.

When the solutions were left overnight, they warmed up as they converged towards
thermal equilibrium with the lab. This led to a reduction in the solubility of air in the
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solutions, leading to an excess of dissolved air which came out of solution. As mentioned in
Section 3.1.1, this was responsible for the nucleation and growth of air bubbles that formed
on the surfaces in contact with the solution. By leaving the solutions overnight, a substantial
majority of the initial excess of dissolved gases came out of solution, with any bubbles that
had formed being easily removable. This significantly reduced the risk of bubbles forming
during an experiment which could have impacted our ability to take measurements.

Two mechanisms primarily affected the temperature of the solutions as they were left
overnight: evaporative cooling at the free surface, and a heat flux from the laboratory
environment to the solutions, across the reservoir and tank walls. The effects of evaporative
cooling were mostly eliminated by closing the top of the tank and the reservoir, isolating
the solutions from direct exposure to the lab environment. Due to the reservoir walls being
thinner than the tank walls and having a similar thermal conductivity, the heat flux across the
reservoir walls was greater than the heat flux across the tank walls. This resulted in a faster
warming of the lower-layer fluid in the reservoir than the upper-layer fluid in the tank.

Figure 3.3 (a) shows a vertical profile of the fluid temperature as a function of height
for a typical experiment, measured using a thermistor a few minutes after the lower-layer
filling process had been completed. The positive temperature gradients in each layer indicate
that, within the measured region, each layer is thermally stably stratified. For this example,
the upper layer is cooler, which we attribute to evaporative cooling at the free surface and
convection mixing the cooled fluid throughout the upper layer. The lower layer is not cooled
in this way, allowing it to become warmer than the upper layer. As a result, the temperature
profile is unstably stratified in the vicinity of the density interface, allowing for double-
diffusive behaviour to develop in the flow. As the average temperature between the two
fluid layers was consistently less than 1◦C at the start of an experiment, any double-diffusive
effects in our experiments were negligible, so no attempt was made to mitigate them.

Figure 3.3 (b) shows the temperature of the laboratory over the course of a week in
September 2020, measured at a fixed position near the tanks. The blue lines correspond
to 8am for each day. Temperature fluctuations occurred over an hourly timescale due
to the air ventilation system, which was on between 8am and 8pm on weekdays. These
fluctuations could cause the air temperature to vary by as much as 1.5◦C over a 24 hour
period. For our periodic mixing experiments, which lasted about 18 hours, the temperature of
the stratification could vary by as much as 1◦C. For experiments where external heat fluxes
played a significant role in the energetics of the system, this is quantified and discussed. The
average temperature in the lab also changed from day to day and on a seasonal timescale due
to the varying weather, but these temperature changes had a small effect over the course of a
single experiment relative to the effect of the lab ventilation system.
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Fig. 3.3 (a) Example of a typical vertical profile of the temperature stratification, taken a few
minutes after the lower-layer filling process had been completed. (b) The temperature of the
laboratory measured using an RC-5 data logger (Elitech) for a week in September 2020. The
blue lines correspond to 8am for each day.

3.2 Vortex rings

In the experiments conducted for this thesis, a method was required for generating
reproducible vortex rings. The methodology we adopt is to generate vortex rings at the outlet
of a cylindrical tube with circular cross-section, by making use of a piston-like mechanism.
For details of the dynamics associated with the ring formation process, the reader is referred
to our discussion in Section 2.2.2. Here, we restrict out discussion to the apparatus and setup
used to generate vortex rings, and the controllable parameters that allowed us to generate
reproducible rings.

The methodology we used for generating vortex rings is similar to that used in many
previous studies (see Scase and Dalziel (2006), Bethke and Dalziel (2012), Olsthoorn and
Dalziel (2017) for example). A hollow, piece-wise cylindrical tube with circular cross-
section (hereafter referred to as a ‘ring tube’) was positioned in the tank, with one open
end fully submerged in the stratification and the other open end above the free surface of
the stratification. A closed section of tubing, filled with air, connected the end of the ring
tube above the free surface to a pair of bike pumps, with internal diameter DBP = 26 mm.
Actuation of the bike pumps delivers an impulse to the fluid contained within the ring tube,
causing some of the fluid to be ejected from the tube at its submerged end, forming a vortex
ring in the process.
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Fig. 3.4 (a) Simple illustration of the two ring tubes used, which both have an inner diameter
Dp = 39mm. Shading is used to indicate the cylindrical geometry of the tubes. (b) A
photograph of the angle setter. The ring tube in use is secured to the angle setter, which we
use to set the ring propagation angle θ0.

Two ring tubes were used in our experiments: a straight tube, and an angled tube. A
simple illustration of the ring tubes is given in Figure 3.4 (a). The straight tube is a hollow
cylindrical tube of length 650 mm and inner diameter Dp = 39 mm. The angled tube, which
also has an inner diameter of Dp = 39 mm, is a hollow, piece-wise cylindrical L-shaped tube,
consisting of two straight sections with a right angle at the connecting bend. The longer and
shorter section have lengths 720 mm and 240 mm respectively. For the angled tube, vortex
rings are generated at the outlet of the shorter section of tubing.

For a given experiment, the ring tube in use was fixed to the ‘angle setter’, an apparatus
allowing us to vary θ0, the propagation angle of the vortex ring with respect to the vertical.
A photograph of the angle setter is given in Figure 3.4 (b). Due to geometrical constraints of
the tanks, the use of two different tubes was required so we could investigate the full range
of propagation angles 0◦ ≤ θ0 ≤ 90◦, with the straight tube used for θ0 ≤ 30◦ and the angled
tube for θ0 > 30◦.

As with Olsthoorn and Dalziel (2017), the bike pumps were attached to a digitally
controlled traverse, which was actuated by a stepper motor. The stepper motor was operated
via a multi-functional instruments card, as were all the other digitally controlled apparatus
used for the experiments presented in this thesis. Two different cards were used in our
experiments: a DAQ device (National Instruments) for the PIV/LIF experiments, and a UEI
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card (PDL-MF, United Electronic Industries) for the periodic mixing experiments. Both
devices provided us with the same functionality for operating the stepper motor, allowing us
to follow the same ring generation procedure across all our experiments.

Control over parameters governing the ring formation process, in particular the ring
formation number Fp (defined in Section 2.2.2) and propagation speed U , was made through
control of the stepper motor operating the bike pump traverse. The stepper motor moves in
discrete steps, in response to discrete pulses sent via the instruments card. For each pulse,
the stepper motor rotates by a fixed angle, corresponding to a fixed linear displacement
∆zs = 0.33 mm of the bike pump traverse. For each vortex ring generation, we were able to
prescribe Fp and U through prescribing the traverse displacement profile, Zs(t).

The traverse displacement profile we used for our experiments is given by

Zs(t) = ∆zs

⌊
Ns

2

(
1+ tanh

[
Ns

ws

(
−Ts +2t

2Ts

)])⌋
, 0≤ t ≤ Ts , (3.3)

where the step total Ns is the total number of pulses sent to the stepper motor, the traverse time
Ts is the total time taken for the full displacement of the bike pump traverse, and ws is a non-
dimensionalised width. The notation ⌊.⌋ represents the floor function, outputting the largest
integer less than or equal to the input value. Figure 3.5 (a) plots the non-dimensionalised
displacement profile against time. The functional form of Zs(t) was motivated by allowing
the traverse to have a smooth acceleration and deceleration phase, increasing the repeatability
of the traverse displacement profiles between different ring generations of the same input
parameters.

The pulse total was kept fixed at Ns = 300 for all our experiments, which set the vertical
displacement of the bike-pump handles to LB = 99 m. Relating the total volume of air dis-
placed in the two bike pumps to the geometry of the ring tube, it follows that our prescription
of Ns sets the formation number at Fp = 2.3 for the ring formation process. At Fp = 2.3, from
Figures 2.5 (a) and 2.3 (a) we can see that vortex rings will have a moderate core thickness,
with a ratio of core to ring diameter b/a≈ 0.2. The dimensionless width was kept fixed at
ws = 0.06Ns for simplicity; the impact of varying ws has on the ring formation process was
not investigated. The traverse time Ts is the only parameter in Equation (3.3) that we varied,
allowing us to vary the propagation speed of the vortex ring without changing the functional
form of Zs(t).

For all experiments, the ring tube was positioned at height HB such that

(HB−H2)cosθ0

a
= 4 ,
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Fig. 3.5 (a) The non-dimensionalised displacement profile of the bike pump traverse used
to generate vortex rings. (b) Calibration curves for the straight (S) and angled (A) ring
tubes, where PIV measurements were used to relate the ring propagation speed U to the
traverse time Ts. Across all calibration measurements, precision errors for U were less than
±0.6 mm/s.

where H2 is the height of the density interface. In this way, the distance along the initial
propagation direction of the ring between the centre of the tube outlet and the interface
is 4a for all θ0. Therefore, assuming our vortex rings are reproducible for given Ts, the
amount of ring-transported kinetic energy delivered to the interface will be independent of
the prescription of θ0.

Figure 3.5 (b) plots the calibration data obtained from PIV to relate Ts to U for each
ring tube, as well as the corresponding fitted quadratic calibration curves. The calibration
curves were used to prescribe U in our experiments. To calibrate our bike pumps, PIV was
used to relate Ts to U , using the methodology detailed in Section 3.3. For each Ts, three
experiments were conducted, where a vortex ring was generated and propagated through
fresh water. For the jth experiment, the positions xxxi, j(t) = (xi, j,zi, j) (i = 1,2; j = 1,2,3) of
the two vortex-core cross-sections of the ring visible in the light sheet were measured using
the methodology detailed in Section 5.1. By making 120 measurements of xxxi, j(t) when the
center of the ring was between two and four ring diameters from the tube outlet, a velocity
measurement U j(Ts) ( j = 1,2,3) was obtained by taking the gradient of a line of best fit for
xxxi, j(t) against t, obtained using a least squares procedure. The measurement U j was taken to
be the propagation speed U of the vortex ring when at a distance 3a from the tube outlet.

We attribute the reduction in U for the angled tube relative to the straight tube at a given
Ts to energy losses at the bend of the angled tube. Here, a separating flow will develop as
fluid travels around the corner of the tube, resulting in an increase of the work required by
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the bike pumps to generate a vortex ring at a given velocity. For our PIV/LIF experiments,
we were able to measure U directly, which we always found to be in good agreement with
the calibration data. These calibration validations further increased our confidence in our
procedure for generating reproducible vortex rings.

3.3 Planar data acquisition

Implementing the methodology outlined in sections 3.1 and 3.2, we have a robust pro-
cedure for producing a sharp two-layer density stratification and generating reproducible
vortex rings. Using Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence
(PLIF), this section describes how, using two cameras, two-dimensional planar velocity
and density data was obtained in the larger tank that we used. First, we discuss our choice
of solutes for the upper and lower fluid layers to eliminate the effects of refractive index
variations in the stratification.

3.3.1 Refractive index matching

When light travels through a boundary between two optically isotropic media, the light
path is deflected according to Snell’s law:

n1 sinθ1 = n2 sinθ2, (3.4)

where θ1 is the angle of incidence, θ2 is the angle of refraction and n1,n2 are the refractive
indices of the respective media. The principle is illustrated in Figure 3.6. A change in light
refraction can lead to an inability to focus on regions in the field of view of a camera. As
PIV particles needed to be kept in focus so accurate velocity measurements could be made, it
was necessary to minimise refractive index variations in our experiments.

The refractive index n of a medium is dependent on several intrinsic properties of the
medium. For salt solutions, we assume n takes the form

n = n(SSS,λ ,T,P) , (3.5)

where Sk is the concentration of solute sk, λ is the wavelength of the light travelling through
the medium, T is the temperature and P is the pressure. To obtain a uniform refractive index
field n = n0, each of these parameters are considered.

A monochromatic light source of wavelength λ0 = 532 nm was used to illuminate the
flow, ensuring there was no dispersion of light due to n varying with λ . As the range of
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Fig. 3.6 Diagram illustrating the deflection of a light ray at the boundary between two
isotropic media, as described by Snell’s law given by Equation (3.4).

temperatures in the stratification was less than 1◦C and the fluid depth was typically less
than 60 cm, refractive index variations due to temperature and pressure were found to be
negligible. Thus, for our purposes, we were able to simplify Equation (3.5) and treat n as a
function of solute concentrations only, i.e. n = n(SSS).

Suppose we created a two-layer stratification with density difference ∆ρ = 10−2 g/cm3,
using fresh water to form the upper layer and sodium chloride solution to form the lower
layer. From Weast et al. (1984), the refractive index difference between the two layers
would be δn≈ 2.4×10−2. Using other solutes readily available in place of sodium chloride,
we similarly found that δn ≈ O

(
10−2). For a refractive-index difference at this order of

magnitude, we would have had an unacceptable loss of focus of the PIV particles in the flow.
Thus using a single solute to form our stratification was not feasible.

To minimise variations in n, we used the method of refractive index matching, which
makes use of two different solutes to produce solutions with different densities and matching
refractive indices. The technique was first introduced by McDougall (1979) to study plumes,
using magnesium sulfate and sugar as the two solutes. As discussed in Section 3.1.1, we used
NaCl and NaNO3 to create the solutions forming the upper and lower layers respectively.

The calibration we used between refractive index and fluid density for each solute was
carried out by Lefauve (2018), who used a handheld refractometer illuminated under a green
light source in an attempt to match the light wavelength λ0. The precision of this calibration
was found to be sufficient for our purposes. Density plots for each calibration measurement
of NaNO3 and NaCl against n are given in Figure 3.7.

At this stage it is unclear whether the mixing of index matched NaCl and NaNO3 solutions
will cause the refractive index to vary. Fortunately, there were no observable variations in
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Fig. 3.7 Plots of the density of sodium chloride (NaCl) and sodium nitrate (NaNO3) solutions
at 20◦C against the refractive index, n under green light. Data obtained by Lefauve (2018).

refractive index due to mixing in our experiments, so we did not investigate this possibility.
It is also worth noting that the molecular diffusivities of the two salts are sufficiently similar
(see Table 3.1) that we do not introduce any identifiable double-diffusive behaviour at the
interface, making NaCl and NaNO3 an ideal choice of solutes in our experiments.

3.3.2 Plane illumination

In this section, we describe how, using a laser system, we illuminated the plane coinciding
with the central axis of the vortex ring over its full trajectory. A Nano L 50-100 PIV pulsed
laser (Litron Lasers), located on the floor beneath the tank base, was used to illuminate
the flow. The laser system produces two 532 nm coaxial laser beams that can each be fired
independently at a repetition rate of up to 100 Hz. Each laser pulse carries 50 mJ of energy
and illuminates the flow for 8 ns. Optical lenses are attached to the laser system. Each laser
beam first travels through a concave lens that expands the beam, before travelling through
the subsequent lenses which ultimately leads to the formation of a light sheet. The resulting
light sheet passes through the base of the tank, illuminating a thin, near two-dimensional
region of the tank interior. A schematic of the experimental setup is given in Figure 3.8.
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Fig. 3.8 Schematic of the planar PIV/LIF setup. (a) Front view; the central plane of the light
sheet is aligned with the axis of the ring tube. (b) Plan view; two cameras (labelled ‘A’ and
‘B’) used to take measurements are positioned to have overlapping fields of view of the light
sheet. For ease of interpretation, we have omitted illustrations of the ring tube, angle setter
and tank filling apparatus in the plan view.

We use the subscript L to denote quantities associated with the properties of the light
sheet. Writing xxx = (x,y,z) for the position vector of the world coordinate system, the light
sheet has thickness ∆yL (x,z), light intensity IL(xxx) and an illumination period of tL = 8 ns
corresponding to each laser firing. The plane y = 0 is set to coincide with the central plane
of the light sheet, which is set up to be parallel with the direction of gravity through careful
alignment of the laser system.

The precise alignment of the light sheet was chosen to optimise the cameras’ view of the
illuminated flow. The positioning of the cameras with respect to the light sheet is discussed
in Section 3.3.3. After the light sheet had been correctly aligned, the ring tube was aligned
with the light sheet so that the symmetry plane of the ring–interface interaction during its
laminar phase would coincide with the central plane of the light sheet. The alignment of the
light sheet and the tube is discussed below. The laser was set to reduced power and safety
goggles were used during the alignment process to minimise the risk of eye damage.

There are six degrees of freedom associated with the precise alignment of the laser system
(and, in turn, the light sheet). Three of these are the translational positioning of the laser
system in the x, y and z directions, and the other three are related to the orientation of the
light sheet, by rotation of the laser system through the x, y and z axes. Translation in the y
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direction and rotation through the x and z axes required a much higher level of precision
for alignment of the laser system than the other degrees of freedom, and so are discussed
separately. By initially placing the laser system on the floor beneath the centre of the tank
(with the laser optics pointing upwards), there was no need for further alignment of the laser
system in the other three degrees of freedom.

Before orienting the light sheet, we first repositioned the laser system by translation in
the y direction, fixing the distance between the central plane of the light sheet and the tank
wall nearest the cameras (hereafter referred to as the ‘near-camera wall’). As the fluid in the
tank was seeded with tracer particles (as discussed in Section 3.3.4), the image quality could
be compromised if too many particles were obscuring the view of the light sheet. It was
therefore desirable for the light sheet to be as close as possible to the near-camera wall. Also,
it was necessary for the tank walls to have a negligible effect on the vortex ring dynamics.
As we choose to illuminate the central axis of the vortex ring, we positioned the laser so that
the central plane of the light sheet was two and a half vortex ring diameters (∼ 12.4 cm) from
the near-camera wall.

Once the laser system had been positioned, we oriented the light sheet to be parallel with
the near-camera wall. This requires rotational alignments of the light sheet, both through the
x and z axes. Rotational alignment through the z axis was achieved by using two white 1m
rulers, made to stand in the tank with the same orientation at different ends of the light sheet,
approximately 60 cm apart. The laser system was then rotated about the z axis so that the
light sheet hit both metre rulers at the same position to the nearest millimetre.

Rotational alignment through the x axis was achieved by observing the reflection of the
light sheet from the base of the tank back onto the laser optical lenses. A small target for
the reflection of the light sheet was made using yellow post-it note paper, which fluoresces
slightly under the light of the laser, making the reflection visible through the laser-safety
goggles. The target was securely fixed to the optical lenses. Using the target, the laser
was then levelled so that the reflection of the light sheet coincided with the centreline of
the optical lenses. With this methodology, the light sheet could be aligned with sufficient
precision for our purposes. Though the rotational alignment procedure could perturb the
initial y-position of the light sheet by a few millimetres, it was not necessary to correct for
this.

After aligning the laser system, we refocused the light sheet optical lenses to adjust the
thickness profile of the light sheet. In the y-z plane, the light sheet has an hourglass shape,
contracting to a minimum thickness of ∆yLmin before expanding again, as illustrated in Figure
3.9. The minimum thickness ∆yLmin ≈ 1 mm, corresponding to approximately 2% of the
vortex ring diameter. If the light sheet had been too thick, the ability to extract in-plane
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Fig. 3.9 Side-view illustration of the three-dimensional light sheet projected onto a camera
sensor and quantised onto the sensor array (defined in Section 3.3.3). The light sheet
thickness ∆yL has an hour-glass like shape. The z-position of the minimum thickness ∆yLmin
is adjustable by refocusing the laser optics.

velocity information from our PIV images would have been hindered, as would have the
ability to discern structural features of the ring–interface interaction in the central plane of
the light sheet from our LIF images. To reduce the light sheet thickness across the field
of view of the cameras to a suitable level, we refocused the light-sheet optics to move the
∆yLmin z-position to 2-3 cm above the prescribed height of the density interface.

After refocusing the laser optical lenses, we then aligned the cameras so they had clear,
overlapping views of the light sheet (as illustrated in Figure 3.8). The camera alignment is
discussed separately in Section 3.3.3. After aligning the cameras, we then aligned the ring
tube with the light sheet and the field of view of the cameras. Due to the considerable differ-
ence in refractive index between air and the salt solutions used for our PIV/LIF experiments,
the tube alignment procedure was carried out while the tank was partially filled with a NaCl
solution, of the same refractive index as the solutions used in our experiments. This was
done to reduce the risk of a slight misalignment of the ring tube with respect to the light
sheet passing through the two-layer stratification.

The ring tube was securely held in position by the angle setter (introduced in Section 3.2
and illustrated in Figure 3.8 (a)). Rotational alignment of the tube through the y axis was
made first, by using the angle setter to fix the propagation angle θ0. After this, we made
an approximate repositioning of the ring tube along the y axis, to a position where the tube
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would coincide with the light sheet when the laser is fired. The position where the tube is
held by the angle setter can be adjusted. By making use of this ability for adjustment, along
with the ability to move the angle setter along the x axis, we then moved the tube outlet in
the x-z plane to a suitable position given the field of view of the cameras.

The ring-tube-alignment procedure up to this stage was made by hand while the lasers are
off. Targets cut into the tube exterior were then used to facilitate the precise translational and
rotational alignment of the tube with the light sheet. The targets were positioned on the tube
so that they were fully illuminated by the light sheet only when the tube axis coincided with
the central plane of the light sheet. By using these targets while firing the laser at reduced
power, we aligned the ring tube by hand to the correct position.

Provided the ring tube had been correctly aligned with the light sheet, the central axis
of each vortex ring would remain in the central plane of the light sheet over the full ring
trajectory, assuming the trajectory was not perturbed by any residual motion in the tank. Two
processes that impart unwanted motion into the tank were addressed.

Firstly, the lower-layer-filling process introduces highly energetic fluid into the tank.
After the completion of the lower-layer filling process, we waited for the typical rms velocity
in the region of the fluid that the vortex ring would pass through to fall beneath 0.5 mm/s.
This took about five minutes. Though waiting longer would have allowed the typical residual
velocities to fall further, it would have also given more time for more PIV seeding particles
to settle at the density interface, eventually completely obscuring the cameras view of the
illuminated region of the density interface. We found that waiting five minutes was long
enough for the typical rms velocities to be sufficiently small for our purposes, and short
enough that the effect of additional particles settling during this time was not significant.

Secondly, the air flow due to the ventilation system in the lab was capable of imparting
significant kinetic energy into the fluid at the free surface. This effect was removed by using
black corrugated card to provide roofing at the top of the tank, sheltering the upper-layer fluid
from the air flow. By making these adaptions to our experimental procedure, we improved
our ability to ensure that the central axis of each vortex ring would remain in the central
plane of the light sheet over the full ring trajectory.

Through adjusting the focus on the laser optics and the power of the lasers, there was
some control over the thickness and intensity profiles of the light sheet, which could be finely
tuned with the camera optics to optimise the image quality for PIV and LIF data processing.
These considerations are discussed in more detail in Sections 3.3.4 and 3.3.5 respectively.
We now go on to describe our camera setup and calibration methodology.
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Fig. 3.10 Schematic of the timing sequence between the camera shutters opening and closing
for frame capture and the laser pulses, where the laser-pulse offset δ t is the time interval
between consecutive laser pulses and δT is the inverse sampling frequency of the camera.

3.3.3 Camera setup

Two cameras (Allied Vision Technologies, Bonito CMC-4000 4MP) were used to record
the evolution of the flow in the light sheet, from the instant the ring begins to distort the
interface, to the complete turbulent breakdown of the ring and the interface restoring from the
impact. Each camera has 4 Mpx resolution and was equipped with a 50 mm, f/1.4 Nikon lens.
One of the cameras, which we refer to as ‘Camera A’, was used to obtain PIV measurements.
The other camera, which we refer to as ‘Camera B’, was used to obtain LIF measurements.
The cameras are illustrated in Figure 3.8 (b).

Figure 3.10 illustrates the relationship between the frame capture of the cameras and the
pulsing of the lasers. The cameras and lasers were controlled through a DAQ Device (National
Instruments) that was programmed using DigiFlow, allowing for precise synchronisation
between the laser pulses and frame capture of the two cameras. The recording interval of
each camera frame overlapped with a single laser pulse, so each frame provided a near-
instantaneous snapshot of the flow. The offset δ t between laser 1 and laser 2 pulsing could be
made smaller than the inverse frame rate δT = F−1, allowing us to decrease the minimum
time interval between two snapshots. For our experiments, our precise choice of δ t was
motivated by our particular implementation of a PIV algorithm we developed, which we
discuss in Section 4.4.

Each camera was set with a frame rate of F = 160 fps, twice the repetition rate set for
each of the lasers. Based on the maximum repetition rates of each of the lasers, in theory it
was possible to set the frame rate at F = 200 fps, with the recording of each camera frame
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overlapping with a single laser pulse. However, due to technological issues that emerged
when attempting to control the cameras and lasers with the lasers firing towards the highest
possible repetition rates, we found that the highest repetition rate where we were able to
reliably acquire image sequences was at 80 Hz.

We refer to the photographs taken by Cameras A and B as ‘PIV images’ and ‘LIF images’,
respectively. A bandpass optical filter centred around 532 nm was attached to Camera A,
so each PIV image captured only the light scattered from the illuminated particles in the
camera’s field of view. A 570 nm long-pass optical filter was attached to Camera B, so for
each LIF image, only the fluorescing dye in the camera’s field of view was visible. Each
image recorded by one of the cameras is a two-dimensional projection onto the camera sensor
of the filtered light from the three-dimensional volume illuminated by a single laser pulse. A
schematic of this projection is given in Figure 3.9.

Each projection onto a camera was quantised onto the ‘sensor array’: a matrix with the
same size as the pixel resolution of the camera. The sensor arrays associated with Camera
A and Camera B are denoted A and B, and have two-dimensional pixel coordinate systems
(XA,ZA) and (XB,ZB), respectively. Each time the cameras (or light sheet) were repositioned,
a calibration was required allowing the measurements made in each sensor array to be
mapped back onto the region of the central plane of the light sheet in the field of view of both
cameras, which we refer to as the ‘image plane’. As discussed in Section 3.3.2, the world
coordinate system (x,y,z) is defined so the image plane is coincident with the plane y = 0.

This calibration was achieved using a grid, consisting of a rectangular array of dots
equally spaced 20mm apart, allowing a mapping between the pixel and world coordinate
systems to be constructed. After filling the tank with an NaCl solution of equal refractive
index to the salt solutions used in experiments, an image was taken with each camera of
the grid standing in the tank, coinciding with the central plane of the light sheet. Using
these calibration images, projection mappings PA : xxx 7→ XXXA and PB : xxx 7→ XXXB and inverse
mappings P−1

A , P−1
B were constructed by making use of the known dot locations in the

world coordinate system. The inverse mappings allow measurements to be mapped from the
pixel coordinate systems to (x,0,z) in the world coordinate system. The Jacobian of each
inverse function was used to convert differential quantities, such as the velocity field, from
pixel units to world units.

Bilinear mappings were constructed for PA, PB by using a least squares fitting proce-
dure. The rms error of PA, PB across our different camera calibrations was consistently
around 1 pixel, corresponding to 0.2 mm in the world coordinate system. This error corre-
sponds to less than 0.5% of the vortex ring diameter, and so was deemed negligible for our
purposes.
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Once the calibration between the pixel and world coordinate systems had been made, we
were ready to take quantitative measurements of the flow in the world coordinate system. The
next two subsections discuss the experimental considerations incorporated into our procedure
and methodology for obtaining PIV and LIF measurements.

3.3.4 Particle image velocimetry

The basic principle behind our PIV methodology to calculate velocity fields is as follows.
Tracer particles were seeded in the fluid to visualise the flow. As discussed in Section
3.3.3, the laser and cameras were synchronised so each frame capture coincided with a
single light sheet illumination. A bandpass optical filter centred around 532nm was attached
to Camera A so each PIV image captured only the light scattered from the illuminated
particles in the camera’s field of view. To calculate displacement vectors in the sensor
array of Camera A, pairs of PIV images were compared using a pattern matching algorithm
available with DigiFlow. This algorithm obtains displacement measurements by interrogating
the movement of groups of particle projections in small regions of the sensor array. A
second algorithm, which makes use of the displacement measurements made from the pattern
matching algorithm, was then used in conjunction with the camera calibration described
above to construct velocity fields in the world coordinate system.

The dynamical and optical properties of the particles used, the particle-seeding density,
the camera setup and the properties of the light sheet all play a crucial role in taking accurate,
high-resolution PIV measurements. The pattern matching algorithm and the algorithm used
for constructing the final velocity fields are also important; these are discussed separately
in Chapter 4. In this subsection, we restrict our attention to optimising the experimental
setup for taking PIV measurements. First, we discuss our choice of tracer particles. We then
describe our methodology for seeding the two fluid layers with particles. Finally, we discuss
adjustments made to camera A to produce high quality PIV images.

Tracer particles

To make accurate PIV measurements, the particles used must act as passive tracers in
the flow. The ability for particles to closely follow the fluid streamlines is characterised by
the Stokes number, the appropriate form of which is dependent on the particle size (Xu and
Bodenschatz (2008)). For particles smaller than the Kolmogorov lengthscale η , the Stokes
number StK is given by

StK =
1

18

(
ρp

ρf

)(
dp

η

)2

, (3.6)
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where dp is the particle diameter, ρp is the particle density and ρf is the density of the ambient
fluid. For StK ≪ 1, particles will faithfully follow the flow. It was important for us to verify
that the Stokes number is small for the tracer particles we used.

The settling velocity was also an important consideration for our choice of tracer particles.
During the lower-layer filling process, particles remain suspended in the fluid for approxi-
mately one hour. If the settling velocity is too great, particles will migrate to either the top
or bottom of their respective layers in this time, prohibiting the use of PIV. For spherical
particles at low Reynolds numbers, the settling velocity UUUg is given by

UUUg = d2
p
(ρp−ρf)

18µ
ggg, (3.7)

where µ is the dynamic viscosity of the fluid and ggg is the acceleration due to gravity (Stokes
(1851)).

Our third consideration was the particle image diameter, dA, i.e. the diameter of the
particle projections in the sensor array. Previous studies have demonstrated that the particle
image diameter strongly influences the accuracy of PIV measurements, with different optimal
values reported in the broad range of 2.0 to 3.0 pixels (Prasad et al. (1992), Westerweel
(1997), Wilson and Smith (2013)). It was important that our choice of tracer particles would
allow us to produce particle images of a suitable size with our camera and laser setup.

In our experiments, we used spheroidal polyamide particles (Orgasol 2002 ES5 NAT 3)
as tracer particles, with a distribution of diameters centred at dp = 50 µm and mostly lying in
the range 47 µm to 53 µm (information provided by the product data sheet). To determine
the particle density distribution, we created a linear stratification in a measuring jug and
added a small sample of particles. Figure 3.11 is a close-up photograph of the particle sample
after they have settled to their neutral-buoyancy level, where it is seen that the particles have
a bimodal density distribution. By taking samples of the fluid, the two bands were found
to be centred at ρp− = 1.023 g/cm3 and ρp+ = 1.025 g/cm3 respectively, with each band
exhibiting a range of approximately 10−3 g/cm3.

Calculations for StK and Ug are given in Appendix B. The order of magnitude estimate
for StK confirmed that the particles we opted to use would closely follow the streamlines of
the flow. Using the average of the density peaks ρp−,ρp+ and Equation (3.7), we obtain an
average value for the particle-settling velocity,

Ug (ρf) = 4.9(ρf−1.024)×103 mm/h, (3.8)

where ρ f is measured in g/cm3. We return to the settling velocity shortly in our discussion
on seeding the two fluid layers with particles.
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Fig. 3.11 Close-up photograph of tracer particles that have settled to their neutral-buoyancy
level in a linear stratification. Particles are seen to settle in two bands, with peaks at ρp− =
1.023 g/cm3 and ρp+ = 1.025 g/cm3 and each with an approximate range of 10−3 g/cm3.

Particle-Seeding

Before injecting the lower-layer fluid into the tank, we seeded each fluid reservoir with
tracer particles. For each reservoir, we used a 5 ml scoop to add a precise volume of particles
to a small beaker. A few millilitres of dishwasher rinse aid and some fluid from the reservoir
were then added to the beaker and the mixture was well mixed, creating a suspension in which
the particles did not clump together. This suspension was then poured into the reservoir and
mixed thoroughly, ensuring a uniform particle-seeding density distribution in the reservoir.

Over time, the particle-settling velocity will impact the initial uniformity of the particle-
seeding density distribution. For refractive-index-matched NaCl and NaNO3 solutions of
respective densities ρ1,ρ2, using Equation (3.8) and the refractive-index-calibration measure-
ments plotted in Figure 3.7, a minimum bound on the larger settling velocity in the two fluid
layers can be obtained,

max
ρ f=ρ1,ρ2

∣∣Ug (ρf)
∣∣≳ 22.5 mm/h . (3.9)

To retain a near-uniform particle-seeding density distribution in each refractive-index-
matched layer, we prescribed the upper and lower-layer fluid densities such that ρ1 <
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ρp−, ρp+ < ρ2. In doing so, particles from both the upper and lower layer would slowly
migrate and settle at the density interface. Eventually, the particle settling will lead to a dense
cloud of particles at the interface, obscuring the illuminated region of the interface from the
view of the cameras. This would prevent us from taking measurements at the interface and
so had to be avoided.

The effect of particles settling at the interface was primarily exacerbated by the filling
time required for the lower layer. We minimised the depth required of the lower layer (and in
doing so, the required filling time) by positioning the cameras so the bottom of the field of
view coincided with the base of the tank. In doing so, the lower-layer filling time could be
reduced to less than 90 minutes (as mentioned in Section 3.1.2), which helped to mitigate the
effect of particles settling at the interface.

We prescribed the upper and lower-layer fluid densities to be ρ1 ≈ 1.0185 g/cm3 and
ρ2 ≈ 1.0273 g/cm3 for all our PIV/LIF experiments, corresponding to a refractive index
n = 1.3378. This choice of fluid densities was empirically determined to be suitable with
regards to the particle-settling issue. We opted to prescribe ρ2 to be closer to the particle
densities than ρ1 as the entire vertical extent of the lower layer was in the field of view of the
camera, whereas the free surface was typically located ∼ 20 cm above the top of the field of
view of the cameras. Though this preference increased the accumulation of particles in the
upper layer settling at the interface, this was not found to be a significant problem.

It should be noted that the particle-settling velocity could be reduced by choosing a
smaller size of tracer particle. The other appropriate tracer particles we had at our disposal
have diameter dp = 20 µm and a similar density to the larger 50 µm particles. Using the
smaller particles would have reduced

∣∣Ug
∣∣ by over a factor of 6, effectively eliminating any

concerns associated with the particle-settling velocity. However, these smaller particles had
an image diameter dA ≈ 1 pixel with our camera and laser setup, smaller than the optimal
range of diameters for accuracy of PIV measurements (see the discussion above under the
heading ‘Tracer Particles’). As we were able to sufficiently mitigate the effects of particles
settling at the interface with the measures described above, we opted to use the larger 50
micron particles.

In addition to the tracer particles and the layer densities and heights, the average particle-
seeding density in the stratification was also an important consideration for the number
of particles that would settle at the density interface by the end of the lower-layer filling
process. The more tracer particles that are added to the stratification, the shorter the time
taken before the interface becomes unacceptably clouded with particles. However, if too
few tracer particles are added, the spatial resolution at which accurate PIV measurements
could be made would have been unacceptably compromised for our purposes. A suitable
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average particle-seeding density was determined through trial and error. Note that no rigorous
attempt was made to optimise the average particle-seeding density. However, the average
particle-seeding density we prescribed was deemed as being close to optimal, as we found
increasing the seeding density further lead to the interfacial region beginning to look blurry
in the view of the camera by the end of the tank-filling process.

Image quality

To improve the quality of the PIV images obtained, we made two adjustments to camera
A. Firstly, to avoid pixel saturation, we adjusted the camera aperture so that the brightest light
scattered by the particles corresponded to a pixel response that was just below saturation. By
using the camera aperture to make full use of the 8-bit range of the camera while avoiding
pixel saturation, we made the maximal increase possible for the signal to noise ratio of the
scattered light that is quantised onto the sensor array. This in turn improved the performance
of the pattern matching algorithms that were used for the PIV image-interrogation process.

Secondly, after focusing the camera onto the central plane of the light sheet (so that the
particle images are sharp and not blurred), the particle image diameter dA could be increased
by slightly defocusing the camera. As mentioned previously in our discussion on ‘Tracer
Particles’, optimal values for dA have been reported in the range of 2 to 3 pixels for the
improved performance of commonly used PIV pattern matching algorithms. We chose to
slightly defocus camera A so that the typical particle image diameters observed would fall in
this optimal range.

3.3.5 Laser-induced fluorescence

To track the distortion of the density interface and the development of any secondary
structures during the ring–interface interaction, we used the LIF imaging technique. This
technique requires the use of a fluorescent dye. When such a dye absorbs a photon at a given
wavelength, it will emit a photon a short time later at a longer wavelength (corresponding to
a lower energy). The dye we used is Rhodamine-6G (R6G), which emits photons at 570 nm
under the 532 nm light sheet. As discussed in Section 3.3.3, a 570 nm low-pass filter was
attached to Camera B, so for each LIF image, only the fluorescing dye in the camera’s field
of view was visible. As the diffusivity DR6G of R6G is similar to the diffusivities of the salts
used for the upper and lower layers (see Table 3.1), the dye could be treated as a passive scalar
in the flow. By adding R6G to one of the fluid layers in the two-layer stratification, using
camera B we were able to track the movement of the dyed fluid during the ring–interface
interaction.
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An example LIF image taken using camera B is shown in Figure 3.12. Before starting
the lower-layer filling process, we added a few millilitres of a 205 mg/l R6G solution into
the upper-layer fluid and mixed it thoroughly, so that the R6G concentration in the upper
layer was about 1.6× 10−2 mg/l. Despite the uniform concentration of R6G in the upper
layer, the initial light intensity profile of the upper layer observed through camera B will
have spatial variations due to the thickness profile of the light sheet and imperfections at the
base of the tank. In a similar way as with camera A, we adjusted the aperture of camera B so
that the brightest regions of fluorescing light would correspond to just below pixel saturation,
allowing us to make full use of the 8-bit digital range of the camera.

During the ring–interface interaction, as the dyed and undyed layers mix, the intensity of
the fluorescing light decreases proportionally, allowing us to locate regions of mixed fluid
easily. Using commonly known post-processing imaging techniques (Shan et al., 2004), it
was possible to perform a calibration to associate the intensity of the fluorescing light to the
fluid density at any given location on the image plane of camera B. For our purposes, the use
of any such post-processing techniques was not necessary as we only needed to be able to
differentiate between the upper and lower-layer fluids.

For each experiment at fixed (Ri,θ0), the laser was turned on 30 seconds before we started
recording, allowing it to warm up, and turned off immediately after recording a sequence of
LIF images. By having the laser turned on only when were conducting experiments, we were
able to avoid possible difficulties associated with LIF, such as photobleaching or quenching.

3.4 Vertical profiles

For the periodic mixing experiments presented in Chapter 6, a conductivity probe and
a thermistor were used to obtain vertical density and temperature profiles of the evolving
stratification. In this section, we go through the design and setup of the apparatus used
to make these measurements, and explain our methodology for calibrating the probe and
thermistor.

3.4.1 Apparatus and setup

For the experiments where a conductivity probe and thermistor were used, NaCl solutions
were used to form the upper and lower layers of the stratification. As sodium chloride is
an electrolyte, when it is dissolved into fresh water it produces an electrically-conducting
solution. This is because the sodium and chloride ions in the fluid, which carry positive
and negative charge respectively, are disassociated, allowing for their free movement from
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Fig. 3.12 LIF snapshot of the ring–interface interaction for (Ri0,θ0) = (1.18,15◦) during
the transition to turbulence. The fluorescing dye clearly marks large disconnected regions
of upper and lower layer fluid in the lower layer indicate significant out-of-plane motion.
The instability structures in convectively unstable regions of the flow are also clearly visible,
illustrating the presence of small length scales and high in-plane velocity gradients.
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one another. For the range of salt concentrations used in our experiments, the electrical
conductivity of the solution is a strictly increasing function of the salt concentration, for the
full range of temperatures seen in the two-layer stratification. Therefore, by measuring the
electrical conductivity and temperature of the fluid, we could uniquely determine its density.

The electrical conductivity of the fluid was measured using a conductivity probe. The
probe used for this thesis was designed by Stuart Dalziel in 1995, and has since been used
for a number of publications (e.g. Holford and Linden (1999), Davies Wykes and Dalziel
(2014), Olsthoorn and Dalziel (2015)). Figure 3.13 shows a schematic of the conductivity
probe. The probe consists of two concentric cylindrical electrodes that are separated by an
electrically insulating material. The inner electrode has an internal diameter DI = 2.3 mm,
and the outer electrode has an external diameter DO = 8.0 mm. Attached to the bottom of the
probe is a tip, made out of an acetal resin. At the end of the tip is a very narrow opening, of
diameter 0.3mm, allowing fluid to enter the interior of the probe.

The top of each electrode is connected to a bridge circuit. When an electrically-conducting
solution passes through the probe tip opening into the interior of the probe, a complete
electrical circuit is established between the two electrodes. Due to the narrow size of the
opening, the resistivity of the circuit is dominated by the fluid passing through the probe
tip opening. Therefore, as the electrical conductivity of the fluid is equal to the inverse of
its resistivity, the conductivity of the circuit, which is measured from the bridge circuit, is
approximately equal to the conductivity of the fluid passing through the probe tip opening.

The temperature of the fluid was measured using a P25 NTC thermistor (General Electric).
We chose to use this thermistor as its response time when plunged into water was sufficiently
short (∼ 23 ms) that we could treat the temperature measurements as instantaneously taken.
Another advantage of using this thermistor was that, as it is hermitically sealed, its calibration
remained stable over a long period of time. The thermistor was fixed to the narrow end of an
88cm lightweight tapered carbon boom (Hyperflight), varying from 5mm to 10mm across its
length. The carbon boom was chosen to carry the thermistor as it produced negligible mixing
when translated through the fluid stratification, because of its slender geometry. Note that the
probe similarly produced negligible mixing when translated through the fluid stratification.

The probe and carbon boom were secured to a carriage that held them vertically, at a
horizontal distance of 7 cm apart. The probe and boom were held such that the tip of the
conductivity probe and the thermistor were at the same vertical position, so that they were
sampling fluid from the same horizontal plane at any instance in time. The carriage was
attached to a traverse that was powered by a stepper motor, allowing the probe and thermistor
to be moved vertically through the stratification. The stepper motor was controlled in a



80 Experimental Apparatus, Setup and Methodology

0.3 mm Not to scale

4
m

m

10
m

m

85
0

m
m

Probe tip opening

Probe tip

Inner cylinder

Outer cylinder

Top of probe

O-ring

Acrylic collar

Epoxy resin

Heatshrink sleeving

Fig. 3.13 Schematic of the conductivity probe used in this thesis.
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similar way to the stepper motor used for the bike-pump traverse (discussed in Section 3.2).
This allowed for precise movement of the probe and thermistor through the stratification.

As mentioned earlier, we could treat the temperature measurements from the thermistor
as being instantaneously taken as it moved through the stratification. This was also possible
for the conductivity measurements from the probe. The probe samples the stratification
by continuously drawing fluid through the probe tip as the probe traverses. Fluid is drawn
through the probe by a hydrostatic pressure head. To create the pressure head, flexible tubing
was attached to the top of the probe and a syringe was used at the tube outlet to draw out the
air inside the probe and tubing. After removing the syringe, provided the tube outlet was
sufficiently below the free surface of the stratification, the resulting pressure head would
allow the probe to draw in and sample the fluid continuously.

A portion of the tubing near the tube outlet was fed through a digitally controlled pinch
valve, so siphoning of the fluid by the probe could effectively be turned on and off. During
experiments, the pinch valve was positioned roughly 1.5 m below the free surface. This
corresponded to a flow rate of about 0.1−0.2 ml/s through the probe, and a fluid velocity of
about 2 m/s through the probe tip opening, which was large enough for measurements from
the conductivity probe to be treated as instantaneously taken.

Note that additional details regarding the use of the conductivity probe and thermistor
for our periodic mixing experiment are discussed in Section 6.1. Additionally, a detailed
analysis of the conductivity probe is given in Appendix C.

3.4.2 Calibration

Calibration of the conductivity probe and thermistor was required so we could obtain
density measurements from our experiments. This involved two separate calibration pro-
cedures. Firstly, a calibration of the thermistor so that the thermistor readout voltage, TV,
could be related to the fluid temperature T . Secondly, a joint calibration of the probe and
thermistor so that the probe readout voltage CV, together with TV, could be related to the
fluid density when measured at 20◦C (which we denote as ρ20). By carrying out these two
calibration procedures, we were able to relate the readout voltages CV and TV to the fluid
density ρ when sampling the stratification.

The methodology for the two calibration procedures were similar. A 1600ml fluid sample
was prepared in a beaker and left in the refrigerator until it reached the lowest temperature
that was required for the given calibration being carried out. After this, the sample was
placed on a magnetic plate (Variomag Maxi Series, Thermo Scientific) that was positioned
beneath the probe and thermistor, and a magnetic puck was put in the fluid sample. The
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Fig. 3.14 Close-up photograph of the probe tip and thermistor submerged in a fluid sample
with the magnetic puck stirring the fluid.

probe and thermistor were then lowered into the fluid sample and the magnetic plate was
turned on. This caused the magnetic puck to spin, keeping the fluid sample well mixed.

Figure 3.14 shows a close up photograph of the probe tip and thermistor submerged in a
fluid sample with the magnetic puck stirring the fluid. After the magnetic plate was turned
on, we began sampling the fluid. The fluid was sampled at a rate of 2048 Hz for 3 seconds,
every 45 seconds. For each 3 second sampling period, the mean voltage from the probe and
thermistor were recorded (these were the values we denote as CV, TV respectively). The
sample was slowly heated as the motor actuating the puck warmed up. As this happened, the
puck ensured the temperature of the sample remained homogeneous. The motor provided
enough heat to the fluid sample for it to go through the full range of temperatures we required
for our calibrations.

To calibrate the thermistor, a pair of pre-calibrated thermocouples were used to measure
the fluid temperature T during each sampling period. Figure 3.15 (a) plots the thermocouple
measurements against the corresponding thermistor voltage. The thermistor voltage ranged
from 0 V to 10 V, which was set to correspond to temperatures ranging between 17◦C and
25◦C, covering the full range of temperatures recorded during our experiments. A quadratic
curve was fitted to the data using a least squares procedure, which was subsequently used to
calculate the temperature from the thermistor voltage, T = T (TV).
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Fig. 3.15 (a) Calibration curve relating the thermistor voltage output to the temperature of
the sampled fluid. (b) Example set of the data points taken for a probe/thermistor calibration.
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For each set of experiments that were conducted, a joint calibration of the probe and
thermistor was required to relate CV and TV to ρ20. Associated with each set of experiments
was a fixed prescription of the upper and lower-layer fluid densities. As the probe voltage
was quantised and limited to a maximum value (after which the voltage would start to clip), it
was desirable for the range of measured probe voltages to span as large a range of measurable
voltages as possible, thereby maximising the signal to noise ratio of the probe measurements.
This was achieved by making use of a rotary switch on the bridge circuit box, which provided
a choice of different resistors to connect to the electrical circuit of the probe. For each set of
experiments, the resistor was chosen which maximised the signal to noise ratio of the probe
measurements.

Another consideration before beginning the probe/thermistor calibration was to ensure
the probe tip material was fully saturated with water. When dry and first submerged in water,
the probe tip would start absorbing water, leading to a slight change in its geometry. This
was capable of having a significant effect on readings from the conductivity probe, because
the conductivity of the circuit is sensitive to changes in the geometry of the probe tip opening.
By ensuring the probe tip was already saturated with fresh water before calibration, we could
be confident that the effect of water absorption by the probe tip material would not impact
our probe measurements. Moreover, after calibration, it was necessary to keep the probe tip
constantly submerged in water so the calibration would remain valid for the experiments
to be carried out. When it was necessary to remove the probe tip from being submerged in
water, this was done for no longer than a minute, which was a sufficiently short amount of
time that the probe tip remained fully saturated.

For each probe/thermistor calibration, nine fluid samples of different densities were used,
following the procedure outlined above using the magnetic stirrer. Figure 3.15 (b) plots the
probe voltage against the thermistor voltage for the full set of data points taken from one of
our calibrations. The range of densities of the samples was chosen to cover the prescribed
upper and lower-layer densities for the associated set of experiments. The range of thermistor
voltages calibrated for covered the range of temperatures measured during experiments.

Similarly for the thermistor calibration, a polynomial surface was fitted to the data to
calculate the fluid density at 20◦C from the probe and thermistor voltages, CV, TV. The
polynomial fitting surfaces obtained from our calibrations were of the form

T (TV) =
2

∑
k=0

akT k
V , ρ20 (CV,TV) =

1

∑
k=0

4

∑
m=0

bk,mT k
VCm

V . (3.10)

The order of the fitting polynomials were chosen as they were of low enough order so as to
not introduce high wavelength deviations in the fitting surfaces from the calibration data,
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while providing a significantly smaller rms error compared to fitting surfaces of lower orders.
For example, we obtained an rms error of 2.2×10−5 g/cm3 for the calibration corresponding
to Figure 3.15 (b), which was sufficiently small for our purposes. By determining T and ρ20

for a given fluid sample, it was then possible to determine the density of the fluid. Across all
probe/thermistor calibrations carried out for our experiments, density measurements were
made with a precision error of less than 1×10−4 g/cm3, which was sufficiently small for our
purposes.

3.5 Summary

The experimental apparatus, setup and methodology presented in this chapter was used
to carry out the experiments presented in Chapters 5 and 6. We discuss the experimental
setup and procedure for our periodic-mixing experiments separately in Section 6.1.1. For our
PIV/LIF experiments, an algorithm was developed to increase the dynamic range over which
accurate velocity measurements could be made. We now move on to introduce this algorithm
in Chapter 4 and explain how we implement the algorithm to process our PIV data.





Chapter 4

A Variation of Multi-Frame PIV for
Localised Turbulence

As discussed in Section 3.3, Particle Image Velocimetry (PIV) was used to obtain near-
instantaneous velocity data as the vortex ring interacts with the density stratification. In
keeping with the discussion of our camera setup in Section 3.3.3, we use the term ‘PIV
images’ to refer to the photographs taken by a camera that captures the light scattered by
particles in the illuminated volume. We also use the terms ‘particle projection’, for the
light scattered by a particle onto the camera sensor, and ‘particle image’, for the individual
digitised and quantised particle projections on the sensor array (defined in Section 3.3.3).

The processing of a sequence of PIV images can be split into two components. Firstly,
a pattern-matching algorithm is used to compare pairs of PIV images to produce pixel-
displacement measurements. Note that in this chapter we use the term ‘image-pair interroga-
tion’ to refer to this algorithm being applied to a given pair of PIV images, and the compared
pair of PIV images is referred to as being ‘interrogated’. Secondly, an algorithm that makes
use of the pixel-displacement measurements is used to construct velocity fields of the flow.
For our PIV processing, we make use of the pattern-matching algorithms available with
DigiFlow, which are discussed in detail of Section 5.6.4.3 of Dalziel (2017).

In this chapter, we introduce the multi-frame PIV algorithm we have developed, which
makes use of the pattern-matching capabilities available with DigiFlow to increase the
dynamic velocity range in which a low relative measurement error can be obtained for the
constructed velocity fields in all regions of the flow. In Section 4.1, we introduce the concept
of a ‘multi-frame’ PIV algorithm, provide a short review of previously published algorithms
that make use of this idea and motivate the need for our particular algorithm. Then, in Section
4.2 we introduce the input parameters associated with each image-pair interrogation that we
vary when using our multi-frame algorithm. We introduce the multi-frame algorithm we



88 A Variation of Multi-Frame PIV for Localised Turbulence

have developed in Section 4.3. Then, in Section 4.4 we detail our particular implementation
of our multi-frame algorithm used for our experiments. Finally, in Section 4.5 we discuss
the advantage made through our multi-frame algorithm relative to the in-built functionality
available within DigiFlow, and discuss possible ways our algorithm could be developed
further.

4.1 Introduction

We define the ‘image-pair time step’, ∆T , as the separation interval between an inter-
rogated pair of images. For ‘multi-frame’ PIV algorithms such as the one presented in
this chapter, the principal idea is to make use of measurements made from interrogating
pairs of PIV images separated by several different image-pair time steps ∆T = ∆T (k) apart
(1 ≤ k ≤ K, ∆T (m) > ∆T (m+1)) when constructing velocity fields of the flow. At each in-
stance in time T (n) where a velocity field is to be constructed, calculations are performed
on each interrogation window to optimise k = ki j locally for the local flow and particle
imaging conditions (i and j are subscripts associating the image-pair-time-step index ki j

to a particular interrogation window). In doing so, measurement errors associated with
tracking the trajectory of particle images can be reduced significantly, thus allowing velocity
measurements to be made that more accurately represent the velocity field of the imaged
flow.

Though the concept of a multi-frame PIV algorithm is not new, it has received relatively
little attention in the literature. The earliest published study on the subject (Pereira et al.
(2004)) proposes an algorithm that uses local values for the signal to noise ratio SNR(n−1)

i j

and optimal k(n−1)
i j from the velocity field constructed at time T (n−1) to predict SNR(n)

i j and

the optimal k(n)i j for each interrogation window at time T (n). Local predictions for k(n)i j are

then adjusted using a set of validation criteria based on the predicted values for SNR(n)
i j and

k(n)i j , before obtaining the final values for k(n)i j that are used to construct the velocity field
at time T (n). The last validation criterion applied requires a linear variation between the
displacement over the initially predicted time step and the criteria-adjusted time step. Implicit
in this criterion is the assumption that the motion of particles is not significantly influenced
by flow dynamics of second or higher orders in time, over the range of possible optimal time
steps being considered. The viability of this assumption is dependent on the frame rate of the
camera as well as the dynamics of the flow.

A later study by Hain and Kähler (2007) argues that, to obtain a minimum measurement
error, the validation criteria should consider the curvature and acceleration of the particle
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images in addition to the correlation peak height and signal to noise ratio, so that second
order dynamics of the flow can be taken into account. To construct a velocity field at time
T (n) using the images taken at times T (n±X) (where the T (i) are equidistantly spaced apart in
time), the objective function(

sin(Xα)

Xα
−1
)2

+

(
σx

2rα sin(Xα)

)2

,

is minimised for each interrogation window to determine the local optimum choice of X .
Here, α and rα are the degree and radius of curvature of the trajectory of the group of particle
images local to the interrogation window, and σx is the measurement error associated with
the precise positioning of the particle images. Determination of optimal X is made iteratively.
Local determination of α and rα at time Tn is made by using the longest valid displacement
vector (made interrogating images at times Tn±M for maximum valid M), and the vector
measured interrogating images at Tn−M and Tn, assuming the trajectory of the particle images
is circular between Tn−M and Tn+M. The inaccuracy in determining α and rα is high, so a
3×3 median filter is applied to these parameters to reduce the level of noise.

Similar to the multi-frame algorithm concept, Persoons and O’Donovan (2011) propose a
‘multi-pulse’ algorithm, where a series of double exposure images are recorded at N different
pulse separations, with the successive images recorded cycling through the pulse separations.
Then, conventional multi-grid algorithms are used on each image to process the velocity
fields, after which composite velocity fields are constructed with a locally optimised pulse
separation. When the camera frame rate is significantly limited compared to the repetition
rate of the lasers, the highest speeds at which a multi-pulse algorithm could be used to obtain
accurate velocity measurements is significantly higher than the highest resolvable speeds if
a multi-frame algorithm were used. However, if there are no significant limitations in the
camera and laser technology used, multi-frame algorithms are arguably more flexible than
multi-pulse algorithms, as multi-frame algorithms are able to draw from several different
image-pair interrogations to construct a single velocity field, whereas multi-pulse algorithms
are more restrictive as measurements can only be made by interrogating images against
themselves.

For our PIV/LIF experiments, ideally we would have been able to obtain fully three-
dimensional near-instantaneous velocity and density data of the ring-interface interaction.
To do this, the recent plane-scanning technology developed for 3D PIV/LIF by Partridge
et al. (2019) would have been suitable. However, at present, the technology available
in our laboratory is incapable of scanning volumes at a fast enough rate to be able to
reconstruct near-instantaneous three-dimensional velocity and density fields of the ring-
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interface interaction. Moreover, no such technology has been developed anywhere else, to
the best of our knowledge. We therefore opted to take two-dimensional planar PIV and LIF
measurements of the flow instead.

Due to the limited repetition rate of the lasers, to obtain low measurement errors in the
fastest regions of the flow and regions of high vorticity, it was necessary to introduce a
time offset δ t between the ith pulses of the first and second laser that was smaller than the
inverse frame rate of the camera. When interrogating pairs of images separated in time by δ t,
the measurement error relative to the particle image displacement can be higher in slower-
moving regions of the flow, where the displacement is comparable to the precision error of
the sub-pixel and window-deformation techniques used in the pattern-matching algorithm.
Reducing the relative measurement error in these slower moving regions is desirable so that
the PIV measurements obtained in these regions perform better at characterising the flow.

To obtain a low relative measurement error in all regions of the flow, we have developed a
multi-frame PIV algorithm to process our PIV images. The algorithms developed by Pereira
et al. (2004) and Hain and Kähler (2007) we deemed as being unsuitable for our purposes as
they implicitly assume a range of suitable image-pair time steps exist for all regions of the
flow. In our case, we are restricted in the choice of image pairs we interrogate in the fastest
moving regions of the flow, and regions of high vorticity. Associated with this restriction are
additional considerations for constructing the final velocity fields, which are not accounted
for by Pereira et al. (2004) and Hain and Kähler (2007) as they do not pose a problem for
their cases. Also, the algorithm by Persoons and O’Donovan (2011) is not suitable as it
requires the timescale over which the Eulerian velocities vary to be sufficiently smaller than
the image-pair time steps, which is not the case for our experiments.

The algorithm we have developed assumes the use of pattern-matching algorithms capable
of making high-precision velocity measurements, such as those available with DigiFlow.
The algorithm is designed for flows where there are localised regions of turbulence in an
otherwise laminar flow, such as the ring-interface interactions considered in this thesis.
After introducing the notation and definitions required to explain our multi-frame algorithm,
separate discussions are given on the generalised algorithm and our particular implementation
of it. We conclude this chapter with a further discussion on how our multi-frame algorithm
could be extended further to increase its functionality.

4.2 Image pair interrogation

Displacement measurements of the particle projections on the plane of the camera sensor
are made by interrogating pairs of PIV images. We denote the ordered sequence of PIV
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T2n T2n+2 T2n+4T2n+1 T2n+3 T2n+5

δ t 2δT
Laser
pulses

t
T

∆T= (2n+3)δT + 1
2δ tT

= 2δT +δ t∆T

Fig. 4.1 Diagram illustrating how the parameters T , ∆T associated with an image pair
{Ii,I j} are defined, where image Ik is a snapshot of the flow at time Tk when the laser
pulses. In the illustrated case, (i, j) = (2n+2,2n+5).

images taken during an experiment as

Φ(δT,δ t) = {I0,I1, ...} ,

where δT , δ t are associated with the laser pulse timings initially defined in Section 3.3.3.
The kth PIV image Ik captures a snapshot of the projected positions of particles in the light
sheet, illuminated by the kth laser pulse, which fires at time

Tk = 2⌊k/2⌋δT +(k mod 2)δ t , (4.1)

where ⌊.⌋ denotes the floor function, outputting the largest integer less than or equal to the
input value.

Pixel-displacement measurements are made in the XXXA coordinate system of camera A by
interrogating the movement of particle images between pairs of PIV images

{
Ii,I j

}
. The

parameters T and ∆T , defined by

T =
1
2
(
Ti +Tj

)
, ∆T = Tj−Ti ,

uniquely identify the pair of PIV images that are being interrogated. The relationship of T
and ∆T with respect to the laser pulse timings δT and δ t is illustrated in Figure 4.1.

4.2.1 Measurement error of a single particle trajectory

To develop an understanding for how the choice of ∆T influences the accuracy and
precision of velocity measurements, consider first how the velocity of a single particle can be
estimated by sampling its position at two instances in time. For a particle with a trajectory
rrrp(t) that is sampled at times T± = T ±∆T/2, its actual displacement δδδ rrrp is related to the
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velocity drrrp/dt at time T , which is made explicit using a central difference approximation,

δδδ rrrp = rrrp(T+)− rrrp(T−)

= ∑
n odd

(∆T )n

2n−1n!
dnrrrp

dtn

∣∣∣∣
t=T

= ∆T
drrrp

dt

∣∣∣∣
t=T

+O(∆T 3)

⇒
δδδ rrrp

∆T
=

drrrp

dt

∣∣∣∣
t=T

+ εεε∆T 2 , (4.2)

where εεε = O(1). Equation (4.2) demonstrates that, provided |εεε∆T 2| ≪ |drrrp/dt| at time T ,
an accurate estimate of the particle velocity can be obtained using this sampling strategy.
Clearly, as ∆T → 0, Equation (4.2) becomes an equivalence, thus choosing a sufficiently
small sampling interval ∆T will guarantee an accurate estimate of the particle velocity.

For PIV, velocity measurements of particles illuminated by the light sheet are made
by interrogating the movement of groups of particle images on the camera A sensor. The
coordinate system calibration described in Section 3.3.3 associates the particle projection
positions on the sensor to the particle positions in the light sheet. The light scattered from an
illuminated particle at position rrrp(t) is projected onto the sensor, centred at a position XXX p(t)
with light intensity profile Ip(|XXX−XXX p(t)|). Each projection is then spatially discretised onto
the sensor array and the light intensity is quantised by the bit depth of the camera, giving the
particle images we see in the PIV images obtained. This discretisation and quantisation limits
the highest precision attainable for the velocity measurements obtained due to the uncertainty
in locating the precise positions of particle images on the camera sensor. This precision is
limited further both by the fill factor of the camera sensor (the fraction of each pixel that is
photosensitive), which is commonly around 50% for many cameras, and random electrical
noise associated with thermal fluctuations and variability in light sensitivity between pixels.

Consider again the trajectory rrrp(t) of a single particle in the flow. Writing RRRp(t) for the
estimate of XXX p(t) made using the discretised and quantised information available on the
sensor array, we can write the trajectory of the particle projection as

XXX p(t) = RRRp(t)+ηηη p , (4.3)

where ηηη p is the error associated with precisely locating the particle projection, arising due to
the discretisation and quantisation of the particle projection onto the sensor array. We assume
that RRRp(t) is accurate to the nearest pixel, ensuring |ηηη p| < 1 px, and that ηηη p is a random
variable, with mean ηηη p = 000 and variance σσσ2

ηηη p
= ηηη2

p.
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Suppose we estimate the velocity of the projection of a single particle on the camera
sensor by sampling its position at times t = T± as before. Writing δδδRRRp(∆T ) for the pixel-
displacement measurement and UUU p for the particle projection velocity, using Equation (4.3)
we have

δδδRRRp(∆T ) = RRRp(T+)−RRRp(T−)

= XXX p(T+)−XXX p(T−)+
√

2σσσηηη p

= ∆T
dXXX p

dt

∣∣∣∣
t=T

+
√

2σσσηηη p +O(∆T 3)

⇒
δδδRRRp(∆T )

∆T
=UUU p

∣∣
t=T +

√
2σσσηηη p

∆T
+ εεε∆T 2 +O(∆T 3) , (4.4)

where εεε = O(1) is defined in a similar way as for Equation (4.2). The left hand side of
Equation (4.4) is the measurement made for the particle projection velocity, which is given
in precise form by the first term on the right hand side of Equation (4.4). The second term
on the right hand side of Equation (4.4) represents the measurement error associated with
the precision limits of the camera, and the last two terms are associated with the nonlinear
behaviour of the flow.

From Equation (4.4), the relative measurement error (RME) for estimating the velocity
of the projection of a single particle on the camera sensor is given by

RME =

√
2|σσσηηη p |/∆T + |εεε|∆T 2

|UUU p|
∣∣
t=T

+O

(
∆T 3

|UUU p|
∣∣
t=T

)
. (4.5)

The expression given for RME clearly demonstrates the importance in choice of ∆T for
obtaining a small relative measurement error. As ∆T → 0, the precision error dominates the
measurement made for the particle projection displacement. For larger ∆T , the truncation
error εεε may become significant relative to the projection displacement measurement. Addi-
tionally, σσσηηη p might be expected to increase with ∆T , especially if out-of-plane velocity or
in-plane divergence is large. The optimal choice of ∆T for minimising RME will depend on
the local flow and optical conditions, and will therefore vary both spatially and temporally.

4.2.2 Interrogation windows

Rather than measuring the displacement of individual particle projections, PIV uses
pattern-matching algorithms to produce displacement measurements by interrogating the
movement of groups of particle projections in small regions on the camera sensor. For
each image-pair interrogation, displacement measurements are made by first subdividing
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∆T

dXA dYA

Fig. 4.2 Particle pattern-matching in two interrogation windows, separated by a time ∆T .
In this example, the measured pixel displacement is (δXA,δYA) = (6,0). The normalised
absolute difference signal is shown on the right, where (dXA,dYA) is the pixel deviation from
the measured pixel displacement.

the images into small, possibly overlapping regions, commonly referred to as ‘interrogation
windows’. For each interrogation window, a single displacement measurement is made
by using a pattern-matching function locally to determine the pixel displacement shift of
the group of particle images within the interrogation window. Figure 4.2 illustrates the
pattern-matching process.

Later stages of the pattern-matching algorithm determine the displacement to sub-pixel
accuracy, first by spatially interpolating the PIV images to allow smaller displacement shifts
to be probed, then by distorting the shapes of the interrogation windows to conform with the
in-plane velocity gradients in the flow. The details of these stages are discussed in Dalziel
(2017). In this chapter, our discussion on the interrogation windows is restricted to the size
and distribution of windows prescribed before the pattern-matching algorithms are initiated.
For our implementation of the pattern-matching algorithms, the interrogation windows are
initially square, equally spaced apart and are all of the same size (with the exception of
windows nearest the edge of the camera sensor), though in general this does not need to be
the case. For parameters and variables associated with the interrogation windows, we use the
subscript ‘I’ to avoid ambiguity.

Each interrogation window has size nI×nI in pixel units, where nI is chosen to be an
odd integer, so that each interrogation window is centred at an integer pixel position XXX I ,
hereafter referred to as an ‘interrogation point’. If an interrogation point is close to the edge
of the sensor array, its corresponding interrogation window may be reduced in size if its area
overlaps with the edge of the sensor array. For such cases, the interrogation point is positioned
as though the interrogation window had not been reduced in size. By adopting this strategy,
adjacent interrogation points are spaced equally a fixed pixel distance δ I apart. The choice of
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(A,XXXA)

nI

nI

(AI,XXX I)

XA

ZA

δ I

Fig. 4.3 Diagram illustrating the relationship between the sensor array A and the interrogation
array AI . Interrogation points XXX I , which are spaced a pixel distance δ I apart, are marked
with a red cross. A single interrogation window of size nI×nI pixels is shaded blue. The
displacement measurements δδδXXX I obtained from interrogating a pair of PIV images are taken
to be evaluated on the interrogation array.

nI plays a role in setting the finest spatial resolution at which accurate velocity measurements
can be made, and the choice of δ I plays a role in setting the amount of sampling of the PIV
images.

The full set of interrogation points on the sensor array A form a rectangular grid of
aI,X ×aI,Y points. We define the ‘interrogation array’, AI , as an aI,X ×aI,Y matrix for which
variables evaluated on AI are taken to be evaluated at the pixel-valued positions of the
interrogation points. In keeping with our notation convention for interrogation windows,
variables evaluated on the interrogation array are labelled with a subscript I. The relationship
between the sensor array of Camera A, the interrogation windows, the interrogation points
and the interrogation array is illustrated in Figure 4.3.

4.2.3 Measurement error of a group of particle projections within an
interrogation window

The purpose of the multi-frame algorithm we have developed is to reduce the RME of
displacement measurements to an acceptably low level across all regions of the flow. By using
interrogation windows to interrogate groups of particle projections rather than interrogating
the movement of single particle projections, additional considerations arise that should be
made when aiming to reduce the RME of a given measurement. Note that the functional form
of the RME given by Equation (4.5) remains valid to a good approximation when making
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displacement measurements using interrogation windows, though additional dependencies
arise relating to the parameters associated with the interrogation windows.

Some of these considerations have been discussed previously in Section 3.3, which we
will briefly re-iterate. As discussed in Section 3.3.2, the refractive indices of the upper
and lower-layer fluids are matched to avoid losing focus of particles in the light sheet. As
discussed in Section 3.3.4, the camera aperture is adjusted both to avoid pixel saturation
and to make full use of the 8-bit digitised signal, maximising the signal-to-noise ratio of the
light scattered by illuminated particles against any background electrical noise impacting the
PIV images produced. The camera is also slightly defocused to increase the particle-image
diameter dA to improve the performance of the pattern-matching process.

As discussed in Section 3.3.4, tracer particles are prepared so that there is an initially
uniform particle-seeding density distribution (though particles would gradually settle towards
the density interface). Writing Np for the mean number of particles per mm3 in the tank and
Np for the number of particle images within an interrogation window, the mean of Np can be
written in terms of the thickness of the light sheet ∆yL (x,z) and the size nI of interrogation
windows as

Np = n2
I ζ

2
∆yL (x,z)Np , (4.6)

where ζ is the mm/px scale associated with the area of the central plane of the light sheet
projected onto a single camera pixel.

Assuming a uniform velocity within an interrogation window, the standard deviation σσσηηη

of the sample mean of precision errors ηηη for measurements made in the window will scale as

|σσσηηη | ∼ N−1/2
p ∼ n−1

I . (4.7)

This motivates the use of larger nI where possible. Alternative strategies for decreasing
|σσσηηη | would be to increase ∆yL (x,z) or Np. For our experiments, increasing the light-sheet
thickness was not possible due to significant out-of-plane motion existing outside the central
plane of the ring-interface interaction. This would have impacted the ability to match patterns
in the interrogation windows both due to particles entering and leaving the light sheet, and
an increased disparity in particle trajectories projected onto a given interrogation window.

As discussed in Section 3.3.4, increasing Np significantly using 50µm particles would
reduce the visibility of the light sheet at the density interface (due to an increased number of
particles settling there). Alternatively, it would have been possible to increase Np by using
the smaller 20µm particles available to us. However, this would have led to a reduction in
the particle-image diameter dA, which would have also impacted the ability to match patterns
in the interrogation windows. Based on this consideration we opted to use 50µm particles.
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The spatial velocity gradients of the particle projections on the camera sensor affect both
the range of suitable nI and δ I . If significant spatial velocity gradients are present within a
single interrogation window, then, as only a single displacement measurement is made within
the window, it is not possible for the information extracted from interrogating that window
alone to deduce the velocity gradients present in that window. This can considerably affect
the accuracy of derived gradient properties such as the vorticity. Moreover, the ability to
match patterns in the interrogation window would be reduced due to differences in particle
trajectories within the same window. Later stages of the pattern-matching algorithms we
implement that are part of the in-built functionality of DigiFlow can take into account in-
plane velocity gradients to an extent by distorting the images to conform with the gradients
of the flow. Ideally, the optical conditions of the flow will allow a choice of nI and δ I

that are smaller than the length scale over which the curvature of particle trajectories vary
significantly.

For fixed nI , the choice of δ I effectively sets the average number of interrogation windows
covering each pixel. If δ I > nI then it is possible for regions of the PIV images not to be
compared by the pattern-matching algorithms, leading to an unnecessary loss of information
for constructing velocity fields of the flow. Conversely, taking δ I≪ nI can result in significant
oversampling of the PIV images, which can lead to high levels of noise particularly in the
gradients of the displacement measurements obtained.

Similarly to ∆T , the optimal choice of both nI and δ I will vary locally, both spatially and
temporally. The algorithm presented in this chapter focuses only on optimising ∆T spatially
and temporally, and assumes fixed values for nI and δ I . For all our experiments, we take
(nI,δ I) = (27,8), with the choice of δ I = 8 made as it was observed to be not too small so
as to introduce high levels of noise in the gradient of displacement measurements, while
being small enough to obtain an acceptably high spatial resolution in our measurements.
The distorted passes of the pattern-matching algorithm (part of the in-built functionality
of DigiFlow) carry out a local optimisation of nI based on a measure of how well particle
patterns match, with the size and the shape of the interrogation window changing on each
distorted pass. Note that a natural extension of our algorithm would be to incorporate an
ability to optimise locally the initial values of nI and δ I . Such an extension is left for future
work.

4.3 Multi-frame PIV algorithm

The multi-frame algorithm we have developed makes use of varying the interrogation
time step ∆T both spatially and temporally, increasing the dynamic velocity range at which
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T2n T2n+2 T2n+4 T2n+6T2n+1 T2n+3 T2n+5 T2n+7

Laser
pulses

t

∆T (k)
∆T (k)

T (k)
m

T (k)
m+1

T (k)
m = T (k)

0 +m∆T (k)

Fig. 4.4 Diagram illustrating how, for a PIV image sequence Φ(δT,δ t), the parameters T (k)
m

and ∆T (k) are defined for k < K. In the illustrated case, ∆T (k) = 4δT and ∆T (k)
= 2δT .

a low RME can be obtained. For a PIV image sequence Φ(δT,δ t), ∆T is restricted to
taking a discrete set of values, set by the laser pulse timings δT and δ t. For our algorithm,
image pairs are interrogated at K different time steps, ∆T (k), where ∆T (k) > ∆T (k+1) for
1 ≤ k < K. We take ∆T (K) = δ t, corresponding to the smallest utilisable time step, and
∆T (1) is chosen to obtain a low RME for the slowest resolvable regions of the flow. For the
ordered sequence of N(k) image pairs P(T (k)

m ,∆T (k)) (0≤ m < N(k)) interrogated at a given
time step ∆T (k), we denote the time step between successive image-pair mean times as ∆T (k),
so T (k)

m = T (k)
0 +m∆T (k).

Figure 4.4 illustrates the definitions of ∆T (k), T (k)
m and ∆T (k) for k < K. Apart from

the image pairs interrogated utilising the smallest image-pair time step ∆T (K), for each
image pair, we specify that the two images correspond to laser pulses generated by the same
laser (in particular, the laser that generates pulses at times T2m). This decision is made to
avoid possible increases in σσσηηη associated with a slight misalignment, or difference in light
intensity, between the light sheets generated by the two lasers we use. By restricting our
choice of image pairs in this way, for all k < K we have ∆T (k) = 2akδT and ∆T (k)

= 2bkδT
for integers ak, bk.

A pseudocode for the algorithm we have developed is given by Figure 4.5. The algorithm
starts by using function AAA to interrogate all specified pairs of images separated by the largest
time step ∆T (1), based on the input values N(1), T (1)

0 and ∆T (1). Subsequently, for each
∆T (k) used, the displacement measurements (δδδXXX I)

(k)
n = (δXI,δZI)

(k)
n, i j are evaluated on the

interrogation points specified by J(k)n and at time T (k)
n . Here, the input parameter J(k)n is an

array of indicator functions of the same size as the interrogation array, specifying for function
AAA the set of interrogation points where pixel-displacement measurements (δδδXXX I)

(k)
n are to be

produced. For the largest time step, J(1)n specifies that displacement measurements are made
at all interrogation points for the given nI and δ I to be used, where both nI and δ I are both
fixed input parameters.
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function MULTI-FRAME ALGORITHM(Φ(δT,δ t),{N(k),∆T (k),T (k)
0 ,∆T (k)}K

k=1)
for k = 1 to K

for n = 0 to N(k)

AAA ::: (δδδXXX I)
(k)
n ←−

[
P
(

T (k)
0 +n∆T (k)

,∆T (k)
)
, J(k)n

]
end for
if k < K

BBB ::: {J(k+1)
m }N(k+1)

m=0 ←− {(δδδXXX I)
(k)
m }N(k)

m=0
end if
CCC ::: {(∆∆∆XXX I)

(k)
m }N(K)

m=0 ←− {(δδδXXX I)
(k)
m }N(k)

m=0
end for
for n = 0 to N(K)

DDD ::: UUU I(T
(K)
n )←− {(∆∆∆XXX I)

(k)
n /∆T (k)}K

k=1

EEE ::: UUU(T (K)
n )←−UUU I(T

(K)
n )

FFF ::: uuu(T (K)
n )←−UUU(T (K)

n )
end for

end function

Fig. 4.5 A pseudocode for the multi-frame algorithm discussed in this chapter.

After producing displacement measurements (δδδXXX I)
(1)
n using ∆T (1), function BBB is used

to determine which regions of the flow require further interrogation using the next smallest
image-pair time step ∆T (2). To do this, a set of criteria are used on the displacement mea-
surements {(δδδXXX I)

(1)
m }N(1)

m=0 to determine the set of indicator arrays {J(2)m }N(2)

m=0 to be applied by
function AAA when producing the displacement measurements (δδδXXX I)

(2)
n . Suitable interrogation

criteria for determining the indicator arrays will depend on the dynamics of the imaged
flow. The interrogation criteria we use for our experiments are described in Section 4.4.
Also, using the displacement measurements (δδδXXX I)

(1)
n , function CCC uses a temporal interpola-

tion scheme to calculate displacement measurements {(∆∆∆XXX I)
(1)
n }N(K)

n=0 = {(∆XI,∆ZI)
(1)
n }N(K)

n=0 ,

which are evaluated at the image-pair mean times T (K)
n prescribed for interrogating images at

the smallest prescribed time step ∆T (K).
After using functions AAA-CCC with the input parameters associated with using the largest

image-pair time step, this process is then repeated for the next smallest time step ∆T (2),
and so on until this process has been carried out for all prescribed ∆T (k). Then, for each
image-pair mean time T (K)

n , function DDD uses a set of validation criteria on the pixel velocity
measurements {(∆∆∆XXX I)

(k)
n /∆T (k)}K

k=1 to construct pixel velocity fields UUU I(T
(K)
n ) defined on

the interrogation array, with px/s units. These velocity fields are then spatially interpolated
using function EEE to construct pixel velocity fields UUU(T (K)

n ) defined on the sensor array.
Finally, the function FFF uses the inverse mapping P−1

A constructed from the coordinate
system calibration (discussed in Section 3.3.3) to map the pixel velocity fields UUU(T (K)

n ) to
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fluid velocity measurements uuu(T (K)
n ) defined on the central plane of the light sheet, in m/s

units.
Implicit in the pseudocode given by Figure 4.5 is the choice of interrogation criteria

associated with function BBB, the temporal interpolation scheme associated with function CCC, the
validation criteria associated with function DDD and the spatial interpolation scheme associated
with function EEE. Our implementation of each of these for our experiments will be discussed
in Section 4.4.

4.4 Implementation of algorithm

For each PIV image sequence Φ(δT,δ t) recorded in our experiments, the frame rate of
the camera is set at 160fps (corresponding to δT = (1/160)s), and the laser-pulse offset is
set at δ t = (1/320)s. Then, from Equation (4.1), the laser pulse timings in seconds are given
by

{Tk}k≥0 = {0,1/320,4/320,5/320, ...}

and so on. Our choice of δ t is small enough to make accurate pixel-displacement measure-
ments in regions of high vorticity, including the primary vortex cores and any secondary
baroclinically generated structures. Also, our choice of δ t is large enough to allow image-pair
time steps to be employed that can ensure a low RME is attainable for all velocity scales
exhibited in the flow.

Input parameters we prescribe for the multi-frame algorithm are given by Table 4.1. We
write (An,Bn)

(k) for the subscripts of the nth image pair {IAn,IBn}(k) interrogated at the kth
image-pair time step ∆T (k), taken at times TAn and TBn . Six different ∆T (k) were used to select
image pairs to interrogate. As explained in Section 4.3, the nth constructed velocity field is
taken to be evaluated at time T (6)

n . For each k, we set A(k)
0 = 2m, where m is a non-negative

integer determined by choosing maximal T (k)
0 such that T (k)

0 ≤ T (6)
0 . For k ≤ 4, our choice of

∆ T (k) is made so that the time interval between two images comprising an image pair has
a 50% overlap with the time interval associated with the next image pair. For k = 5, 6, all
image pairs of the associated time step where A(k)

n = 2m are interrogated.
As discussed in Section 4.3, the algorithm begins by interrogating all specified image

pairs separated by the largest employed time step, ∆T (1), producing pixel-displacement
measurements (δδδXXX I)

(1)
n . When using DigiFlow, for regions of the flow where velocity scales

are too fast to resolve accurately using a given image-pair time step, spurious displacement
vectors may be outputted. To illustrate this by means of an example, Figure 4.6 (a) plots a
typical displacement array (δδδXXX I)

(1)
m from one of our experiments, with Figure 4.6 (b) plotting
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k ∆T (k) T (k)
0 ∆ T (k)

(An,Bn)
(k) s(k)

1 32δT 16δT 16δT (0,32) ,(16,48) , ... 4
2 16δT 16δT 8δT (8,24) ,(16,32) , ... 4
3 8δT 16δT 4δT (12,20) ,(16,24) , ... 4
4 4δT 16δT 2δT (14,18) ,(16,20) , ... 4
5 2δT 15δT 2δT (14,16) ,(16,18) , ... 4
6 δ t 16δT + 1

2δ t 2δT (16,17) ,(18,19) , ... N/A

Table 4.1 Table of the input parameters used to determine which image pairs are interrogated
in the implementation of our multi-frame algorithm. The nth image pair {IAn,IBn}(k)

interrogated at the kth image-pair time step ∆T (k) is taken to be evaluated at the time T (k)
n .

Interrogation points with pixel-distance measurements |(δXI,δZI)
(k)
n, i j|> s(k) are interrogated

further, utilising the time step ∆T (k).

the associated LIF field illustrating the ring-interface interaction. Regions with spurious
vectors are easily identified through the seemingly random curl of the pixel-displacement
field, coinciding with the location of the ring-interface interaction.

Using the displacement measurements (δδδXXX I)
(1)
n , robust selection criteria are necessary to

determine the full set of interrogation points that require further interrogation at smaller time
steps. The simplest solution would be to interrogate the entire image plane for all time steps
to be employed. However, this strategy can be computationally very expensive, both in time
and memory. For our experiments, for each T (1)

n , interrogation points (i, j) are identified
with pixel-distance measurements |(δXI,δZI)

(1)
n, i j|> s(1), where s(k) is the maximum distance

threshold associated with the time step ∆T (k) (for simplicity, we take s(k) = 4 for k≤ 5). The
smallest rectangle covering these interrogation points is determined. Then, this rectangle is
expanded by three interrogation points in each direction, and only the interrogation points in
the resulting rectangle are interrogated using smaller time steps. This interrogation strategy
ensures that slow moving regions outside the bounding rectangle are only interrogated at the
largest time step, thus greatly reducing the computational time associated with interrogating
image pairs at the smaller time steps.

Included in Figure 4.6 (a) is a drawing of the algorithm-produced rectangle bounding the
interrogation points identified for further interrogation using smaller time steps. The mini-
mum and maximum XA and ZA coordinates for each displacement array (δδδXXX I)

(1)
n determine

the indicator arrays J(2)n identifying the regions to be interrogated using the time step ∆T (2).
The process of interrogating image pairs at a given time step, identifying regions for further
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2

0

ωY(a) (b)

Fig. 4.6 (a) Example of a displacement array obtained using the largest image-pair time
step we employ using our PIV algorithm. The rectangle drawn encloses the region to be
interrogated at the next smallest time step. The scalar field is the curl of the pixel-displacement
field, denoted ωY . (b) LIF image of the ring-interface interaction at the instance in time
corresponding to the measured displacement array in Figure 4.6 (a).

interrogation, interrogating those regions at the next smallest time step, and so on, continues
until all image-pair time steps have been utilised.

The pixel-distance criterion described above does not guarantee the use of the smallest
time step ∆T (6) for interrogating regions where the trajectory of particles images is highly
curved, such as the core of the vortex ring, or regions where baroclinically-produced vorticity
rolls up into vortical structures. This is because the pixel distance measurements in these
regions are often small, but the curvature of the particle-image trajectories are sufficiently
large that measurements made utilising larger time steps might inaccurately represent the
flow. For our choice of ∆T (k), this consideration is particularly important for measurements
at the smallest time step because ∆T (k)/∆T (k−1) = 4 for k = 6, and is equal to 2 for all
smaller k. To account for this, an additional selection criterion based on the Q-criterion (Hunt
et al. (1988)) is used on the measurements made utilising the smallest time step to identify
these regions.

The Q-criterion is a method for vortex identification based on the pressure field p and the
second invariant Q of the velocity tensor ∇∇∇uuu, defined by

Q =
1
2
(
||ΩΩΩ||2−||SSS||2

)
, (4.8)
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where SSS and ΩΩΩ are the symmetric and anti-symmetric components of ∇∇∇uuu. The Q-criterion
identifies vortices as connected regions where the vorticity magnitude exceeds the strain-
rate magnitude (corresponding to Q > 0), and the pressure converges to a local minimum
somewhere interior to the connected region.

For two-dimensional PIV, out-of-plane velocities cannot be measured, so Q cannot be
calculated directly. However, as our measurements are made in the central plane of the
ring-interface interaction, we assume that out-of-plane velocity gradients are small relative
to in-plane velocity gradients during the laminar stage of the flow. We therefore use a
two-dimensional analogue Q2D of Q to identify rotational regions, given by

Q2D(u,w) =−
(
u2

x +w2
z +2uzwx

)
, (4.9)

where this formulation makes use of incompressibility to substitute vy =−(ux +wz).
To determine J(6)n , interrogation points are identified with either |(δXI,δZI)

(5)
n, i j|> s(5), or

(Q2D)
(5)
n, i j > Qmin, where Qmin is a prescribed minimum threshold. For each |(δXI,δZI)

(5)
n, i j|,

we take Qmin to be 5% of the maximal value exhibited by (Q2D)
(5)
n, i j. In the same way as

previously described, the smallest rectangle covering these interrogation points is determined,
then expanded by three interrogation points in each direction. Only the interrogation points
in the resulting rectangle are interrogated using ∆T (6). Figure 4.7 exhibits subsequent
displacement measurements made after producing the displacement measurements shown in
Figure 4.6 (a), for the image-pair time steps corresponding to k = 2, 4 and 6.

After producing all displacement measurements (δδδXXX I)
(k)
n , measurements are linearly

interpolated in time onto the times T (6)
n = (16+2n)δT +δ t/2. Defining r(k)m as

r(k)m =
T (6)

n −T (k)
m

T (k)
m+1−T (k)

m

,

for m such that T (k)
m < T (6)

n < T (k)
m+1, we define the time-interpolated displacement measure-

ments (∆∆∆XXX I)
(k)
n as

(∆∆∆XXX I)
(k)
n = (1− r(k)m )(δδδXXX I)

(k)
m + r(k)m (δδδXXX I)

(k)
m+1 . (4.10)

As displacement measurements are interpolated onto times T (6)
n , no interpolation is required

of the displacement measurements made utilising the smallest time step, and so these are
used directly in constructing the pixel velocity fields UUU I(T

(K)
n ).

A heuristic approach is used to construct the pixel velocity fields UUU I(T
(6)
n ) with the aim of

obtaining a low RME in all regions of the flow. For each T (6)
n , pairs of interpolated displace-
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Fig. 4.7 Following the displacement measurements shown in Figure 4.6 (a), from left to right,
displacement measurements produced utilising the image-pair time steps ∆T (2), ∆T (4) and
∆T (6). For each set of displacement measurements, the scalar background is the curl of the
pixel displacement field.

ment measurements P(k)
n =

(
(∆∆∆XXX I)

(k)
n ,(∆∆∆XXX I)

(k−1)
n

)
are considered sequentially, beginning

with the measurements made utilising the two smallest time steps, then those made utilising
the second and third smallest time steps, and so on until all such pairs have been considered.
By approaching pairs of displacement measurements in order of increasing image-pair time
step, spurious vectors such as those exhibited in Figure 4.6 (a) could be easily avoided
when constructing UUU I(T

(6)
n ) by keeping track of the interrogation points where suitable pixel

velocity vectors had already been determined.
When considering pair P(k)

n , two types of measurement-validation criteria are used on the
interrogation points (i, j) where a pixel velocity vector (UUU I)i j(T

(k)
n ) is yet to be constructed,

with an additional criterion applied to the measurements made utilising the smallest time step.
These criteria decide whether the velocity vector at (i, j) should be constructed using either
the pair P(k)

n , one of the pairs P(k+1)
n or P(k−1)

n , or a later pair that is yet to be considered.
By adopting this approach, each (UUU I)i j(T

(6)
n ) is constructed from at most two interpolated

displacement measurements.
For each T (6)

n , the pair P(6)
n is first considered. The first validation criteria applied are

based on pixel distance. Two maximum-pixel-distance thresholds, S0 and S1, are used. The
threshold S0 is applied so that, if |(∆XI,∆ZI)

(k)
n, i j|> (∆T (k)/∆T (k−1))S0 or |(∆XI,∆ZI)

(k−1)
n, i j |>
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S0, then

(UUU I)i j(T
(6)
n ) = αn, i j

(∆XI,∆ZI)
(k)
n, i j

∆T (k)
+(1−αn, i j)

(∆XI,∆ZI)
(k−1)
n, i j

∆T (k−1)
, (4.11)

where αn, i j is a weighting constant to be determined. This criterion places a maximal
limit on the pixel distance of the measurements that are used to construct (UUU I)i j(T

(k)
n ) for

k < 6, helping to avoid using spurious measurements that can be made when interrogating
image pairs separated by larger time steps. The threshold S1 is applied so that, if S1 <

|(∆XI,∆ZI)
(k−1)
n, i j | ≤ S0, then the velocity vector (UUU I)i j(T

(6)
n ) is to be constructed in the same

way as for Equation (4.11) by either using P(k)
n or P(k−1)

n . In our implementation of these
criteria, we take S0 = 5px and S1 = 2.5px, and apply these thresholds to all P(k)

n considered.
After applying the criteria for {S0,S1}, all remaining measurements that have not satisfied
any of the {S0,S1} criteria correspond to very slow-moving regions of the flow, and so are
constructed using P(1)

n .
Note that our prescription of S0 = 5px was chosen from an intermediate range of suitable

values for our purposes. While prescribing significantly smaller values of S0 would lead to
a larger RME in the constructed (UUU I)i j(T

(k)
n ), prescribing significantly larger values of S0

would risk spurious velocity measurements being accepted as valid. We prescribed S1 so that
S0/S1 = 2, equalling the smallest ratio of time steps ∆T (k)/∆T (k−1).

As previously discussed, a pixel-distance criterion alone cannot not guarantee the con-
struction of valid velocity vectors in regions where the trajectory of particles images are
highly curved. To account for this in our algorithm, for each T (6)

n we define a temporal
average of the second invariant tensor, Qn, as

Qn =
1
5

n+2

∑
m=n−2

Q2D(∆∆∆XXX I)
(6)
m , (4.12)

where Q2D is defined in Equation (4.9). We introduce a maximum threshold Qmax such that,
if (Qn)i j > Qmax, then the velocity vector (UUU I)i j(T

(6)
n ) takes the form of Equation (4.11)

with αn, i j = 1. Similarly to Qmin, by taking Qmax to be 5% of the maximal value exhibited by
(Qn)i j (across all n), we found that this criterion was sufficient in identifying regions where
particle trajectories are highly curved, thus ensuring that velocity vectors in these regions
would be constructed using displacement measurements made utilising the smallest time
step.
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The second validation criteria applied to all pairs P(k)
n compares the two interpolated-

displacement measurements by making use the variable R(k)
n , defined by

(R(k)
n )i j =

∥∥∥∥∥ ∆T (k)

∆T (k−1)
(∆XI,∆ZI)

(k−1)
n, i j − (∆XI,∆ZI)

(k)
n, i j

∥∥∥∥∥ . (4.13)

For (R(k)
n )i j ≲ O(0.1)px, pixel-displacement measurements made at (i, j) using the time

steps ∆T (k) and ∆T (k−1) are in close agreement, suggesting both measurements are suitable
for constructing a valid velocity vector for (UUU I)i j(T

(6)
n ). Conversely, if (R(k)

n )i j ≳ O(1)px,
the measurements agree less well, possibly due to the curvature of particle trajectories, or
to spurious measurements arising when utilising ∆T (k−1), due to the pixel displacements
of particle images being too large. If agreement between the measurements is poor, the
measurement made utilising the smaller time step is preferred to avoid making use of an
erroneous measurement.

In our algorithm, we introduce minimum and maximum thresholds Rmin = 0.1 px and
Rmax = 0.3 px for (R(k)

n )i j that are used to set the weighting constant, αn, i j, introduced in
Equation (4.11). These weighting constants are prescribed to be piecewise linear in (R(k)

n )i j,
given by

αn, i j =


0.5 (R(k)

n )i j ≤ Rmin

0.5
(

1+ (R(k)
n )i j−Rmin

Rmax−Rmin

)
Rmin ≤ (R(k)

n )i j ≤ Rmax

1 (R(k)
n )i j ≥ Rmax

. (4.14)

As large differences in αn, i j between adjacent interrogation points are susceptible to introduc-
ing high levels of noise in the velocity-gradient field, it is important that the profile prescribed
for αn, i j is continuous. The piecewise-linear profile given in Equation (4.14) was prescribed
for simplicity, and proved to be sufficient for our purposes.

By applying the measurement-validation criteria outlined above, initial guesses are
obtained for kn, i j and αn, i j, where kn, i j is defined as the value for k employed in Equation
(4.11). Based on our construction of (UUU I)i j(T

(6)
n ) given in Equation (4.11), we can define the

parameter Wn, i j = kn, i j +αn, i j, from which kn, i j and αn, i j can be extracted as kn, i j is taken
to be the largest integer less than Wn, i j. Figure 4.8 (a) plots the initial guess for the Wn array
associated with the flow also considered for Figures 4.6 and 4.7.

After obtaining initial guesses for kn, i j and αn, i j, three filters are applied to smooth the Wn

array, removing large discontinuities between adjacent interrogation points. Values for kn, i j

and αn, i j are then extracted from the smoothed Wn, i j array, then employed using Equation
(4.11) to construct the (UUU I)(T

(6)
n ) array. First, a 3× 3 median filter is applied to improve
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Fig. 4.8 Plots of Wn, i j = kn, i j +αn, i j, indicating both the image-pair time steps utilised at
each interrogation point to construct the PIV velocity field given in (b), and the weighting
constants α = αn, i j, defined in Equation (4.11). Plots are (a) before, and (b) after, three
filters are applied to the initial guess of the Wn array in the following order: a 3×3 median
filter, a 3×3 maximum filter, and a 5×5 low-pass convolution filter.

the level of similarity between Wn, i j and adjacent neighbours on the Wn array. Secondly,
a 3× 3 maximum filter is applied to replace the choice of kn, i j with that of the highest
neighbour. Finally, a 5×5 low-pass convolution filter is applied to smooth discontinuities in
Wn, i j between adjacent interrogation points. The filtered array is plotted in Figure 4.8 (b).

The filtered array Wn is then used in conjunction with Equation (4.11) to construct velocity
vectors (UUU I)i j(T

(6)
n ). The constructed velocity vectors are then spatially interpolated onto the

sensor array using a bi-cubic interpolation scheme (available using DigiFlow), then mapped
onto the central plane of the light sheet to produce fluid velocity measurements uuu(T (6)

n ).
It is important that quantities derived using velocity gradients, such as the vorticity,

divergence and the Q-field, are derived using the velocity vectors (UUU I)i j(T
(6)
n ) defined on

the interrogation array, rather than the velocity measurements uuu(T (6)
n ). If such quantities

are derived making use of spatially interpolated measurements, spurious features can arise
in these quantities that are not representative of the flow, and only arise as a result of the
particular spatial-interpolation scheme being used. We remove this possibility by deriving
vector-gradient quantities using the vectors (UUU I)i j(T

(6)
n ). After deriving these quantities
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on the interrogation array, in the same way as for the velocity vectors (UUU I)i j(T
(6)
n ), these

quantities are spatially interpolated then mapped onto the central plane of the light sheet.

4.5 Discussion

We have constructed a heuristic PIV algorithm that makes use of different image-pair
time steps to interrogate sequences of PIV images, with the aim of obtaining a low RME
in all regions of the flow. The algorithm we have developed makes use of pre-existing
pattern-matching functionality available within DigiFlow. We use our algorithm to process
all PIV images obtained from the experiments presented in Chapter 5, using the threshold
values specified in Section 4.4 for the parameters related to implementing the algorithm.

Figure 4.9 (a) plots the algorithm-constructed velocity measurements at the time coin-
ciding with the LIF image given in Figure 4.6 (b). For comparison, Figure 4.9 (b) plots the
velocity measurements constructed using the same parameters prescribed for the pattern-
matching functions used to construct the velocity field presented in Figure 4.9 (a), but utilising
only the smallest time step when comparing pairs of PIV images in all regions of the flow.
Figures 4.9 (c) and (d) re-plot the velocity measurements shown in Figures 4.9 (a) and (b),
with the vorticity colour map rescaled to visualise slower-moving regions of the flow more
clearly.

Away from the vortex ring, baroclinically-produced structures and the deformed regions
of the density interface, the vorticity field is smooth and the flow is irrotational to a high
approximation. A qualitative comparison between the measurements presented in Figure 4.9
demonstrates that our PIV algorithm is capable of significantly reducing the RME in slow-
moving regions of the flow when compared to the pre-existing PIV functionality available in
DigiFlow. This can be seen both in the improved resolution of the shear-generated vorticity
at the interface (labelled A) and the reduction of noise in the vorticity field regions external to
the vortex ring and any baroclinically-produced structures (for example, the region labelled
B). Our algorithm also appears to accurately resolve the baroclinically-produced vorticity
(such as the regions labelled C). As we do not have access to the full three-dimensional
velocity field at this time, it is difficult to say which velocity field more accurately represents
the baroclinically-produced vorticity. However, the level of agreement in the regions of high
vorticity between Figures 4.9 (a) and (b) supports the notion that both PIV approaches are
suitable for the interrogation of sequences of particle images.

To test our PIV algorithm against the pre-existing PIV functionality available in DigiFlow
in a rigorous way would be to generate a synthetic sequence of particle images, advect the
synthetic particle images using a known velocity field (such as a Rankine vortex), then test
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Fig. 4.9 (a) Example of a velocity field constructed using the algorithm presented in this
Chapter, at the time coinciding with the LIF image given in Figure 4.6 (b). (b) For comparison,
a velocity field evaluated at the same instance in time, utilising only the smallest available
time step in all regions of the flow. Labels correspond to features identified in the text. Plots
(c) and (d) correspond to (a) and (b) respectively, using a reduced scale in ωy to illustrate the
reduction in RME achieved using our algorithm in slower-moving regions of the flow. For all
plots, a subsample of the constructed velocity vectors are printed, with the largest velocity
vectors corresponding to approximately 11.5 cm/s.
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both algorithms on the synthetic PIV images and compare the velocity measurements against
the known velocity field. Such tests are not presented in this chapter, but should be carried
out using different known velocity fields to assess in a precise way the advantages associated
with using either PIV-processing approach. Without conducting such tests, based on the use
of our algorithm in our PIV/LIF experiments presented in Chapter 5, at the very least it can
be said with confidence that our algorithm significantly reduces the RME in near-irrotational
regions where the measured particle-projection pixel distance would be less than O(0.1)px if
utilising the smallest image-pair time step.

A natural extension of our PIV algorithm would be to incorporate a functionality that
allows for the interrogation window size and spacing (nI and δI) to vary locally depending
on the conditions of the flow. For instance, a criterion based on the Q-criterion could be
used to identify regions where particle trajectories are highly curved, motivating the use
of smaller nI and δI to improve the resolution of such regions. The investigation of such
possible extensions to our algorithm is left for future work.



Chapter 5

Influence of propagation angle on the
ring–interface interaction

Following our review of vortex-ring interactions in Section 2.3, this chapter investigates
the dynamics of a vortex ring obliquely impacting a density interface. Figure 5.1 sketches a
vortex ring obliquely propagating at an angle θ0 to the vertical before impacting a density
interface, with the physical parameters annotated that are used to define Re0 and Ri0. As
there has been no previously published systematic study on this type of vortex interaction,
the parameter space characterising such interactions remains almost entirely unexplored. To
the best of our knowledge, this experimental investigation is the first systematic study on
vortex rings obliquely impacting a density interface.

In this thesis we regard the evolution of the ring–interface interaction as being charac-
terised by the three-dimensional parameter space (Re0,Ri0,θ0). As discussed previously in
Section 1.3, the formation number Fp, the Schmidt number Sc, the thickness δ z/a of the den-
sity interface non-dimensionalised by the ring diameter, and the non-dimensionalised height
(HB−H2)/a between the ring-generation site and the density interface, will also impact the
evolution of the ring–interface interaction. However, in our experimental setup we keep these
four parameters fixed, with Fp = 2.3, Sc = 500− 700, δ z/a ≈ 0.3 and (HB−H2)/a ≈ 4.
Note that taking (HB−H2)/a≈ 4 was chosen as it is large enough that vortex rings are given
sufficient distance to fully form before interacting with the interface, while also being small
enough that vortex rings are unable to dissipate a significant proportion of its kinetic energy
before interacting with the interface.

The case of vertically propagating vortex rings impacting a density interface has been
studied previously (Dahm et al. (1989), Marcus and Bell (1992), Stock et al. (2008), Olsthoorn
and Dalziel (2017), Yeo et al. (2020)), and was discussed in Section 2.3.5. They concluded
that both Re0 and Ri0 play an important role in the evolution of the ring–interface interaction,
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Fig. 5.1 Diagram of a vortex ring of diameter a propagating obliquely towards a sharply
stratified density interface (at height z = H2) at propagation speed U and initial propagation
angle θ0. Here, the vortex-core cross-sections C1 and C2 coincide with the central plane of
the flow. Richardson and Reynolds numbers Ri0, Re0 are defined based on bulk properties of
the vortex ring and the fluid density of each layer. Note that the tube height z = HB is out of
view in this diagram.

with Re0 controlling the mode number of the instability structure that develops as the ring
interacts with the stratification, and Ri0 controlling the depth the vortex ring is able to
penetrate into the lower layer. To study the influence of θ0 on the ring–interface interaction,
we compare cases with equal Re0 and Ri0.

Using the methodology detailed in Chapter 3, this chapter presents two-dimensional PIV
data and LIF observations obtained from probing the dynamics in the central plane of the
ring–interface interaction. Ideally, we would have been able to obtain fully three-dimensional
near-instantaneous velocity and density data of the ring–interface interaction. As discussed
in Section 4.1, though the plane-scanning technology developed for 3D PIV/LIF by Partridge
et al. (2019) would have been suitable for this purpose, at present this technology is incapable
of scanning volumes at a fast enough rate to make use of in this investigation. Although we
were unable to probe the full three-dimensional evolution of the ring–interface interaction
in this way, our PIV and LIF observations provide useful insight into the three-dimensional
evolution of the flow.

As there has been no previously published systematic study of vortex rings obliquely
impacting a density interface, there are an abundance of questions that could be asked in
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investigating these interactions. The primary motivation of this experimental investigation
is to understand how deviating from θ0 = 0◦ in the parameter space characterising the ring–
interface interaction alters the dynamics associated with the interaction, and the implications
this may have for the ring-induced mixing and the ring-eddy analogy more broadly. As such,
we restrict our attention in this chapter to vortex-ring interactions with initial propagation
angles θ0 ≤ 20◦.

Our decision to restrict our attention to θ0 ≤ 20◦ was made for two reasons. First,
for experiments using the angled tube (corresponding to θ0 ≥ 30◦, it proved incredibly
difficult to keep the central axis of the vortex ring aligned with the central plane of the light
sheet throughout the interaction. We attributed this to the vortex ring interacting with the
interface for a relatively long period of time (compared to smaller angles of θ0), resulting
in the ring deviating from the central plane of the light sheet before impacting the interface.
Secondly, the dynamics of the ring-interface interaction varies significantly over the range
0◦ ≤ θ0 ≤ 20◦, deserving in itself a study with undivided attention. As a result, we opted to
prioritise studying interactions with θ0 ≤ 20◦, leaving interactions at higher θ0 to be studied
at a later time, when a three-dimensional PIV/LIF scanning system (such as that introduced
by Partridge et al. (2019)) becomes available that can scan the flow at a sufficiently high rate
to capture the full three-dimensional dynamics of the ring-interface interaction.

The coordinate system (x,y,z) we make use of in this chapter was shown in Figure
3.8, with x̂xx and ẑzz directions corresponding to the horizontal and vertical vector components
parallel with the central plane of the vortex-ring trajectory, and ŷyy corresponding to the out-of-
plane vector component, pointing away from the cameras. For each experiment, we take the
plane z = 0 to be at the density interface, by determining the position of maximal vertical
gradient in the horizontally averaged pixel intensity from one of our LIF snapshots, taken
before the ring perturbs the density interface. We take t = 0 to be the time when the ‘ring
centre’ (defined below in Section 5.1) is one ring diameter above the density interface, i.e. at
z = a. We take x = 0 to be the x component of the ring centre at t = 0.

Table 5.1 presents the parameters characterising the ring–interface interactions investi-
gated in this chapter. As discussed in Section 3.2, the traverse time Ts for the bike pumps
is prescribed, which sets the ring propagation velocity U . The range of θ0 considered cor-
responds to that investigated in our periodic-mixing experiments, which are presented in
Chapter 6. In Section 5.1 we introduce the quantities we make use of to infer properties of
the evolution of the vortex ring during its interaction with the density interface, as well as
describing how we use the PIV and LIF data to infer other aspects of the flow. In Section 5.2,
we analyse the evolution of the tabulated cases corresponding to (Re0,Ri0) = (1810,3.09),
discussing how varying θ0 impacts both the evolution of the primary ring and the emer-
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Ts [s] U [mm/s] a/U [s] Re0 Ri0 θ0

8.33 36.95±0.47 1.33±0.05 1810 3.09 0◦, 5◦, 10◦, 20◦

5.45 54.55±0.10 0.90±0.02 2680 1.48 0◦, 5◦, 10◦, 20◦

4.56 66.54±0.42 0.74±0.02 3270 0.98 0◦, 5◦, 10◦, 20◦

Table 5.1 Table of parameters for the experiments investigated in this chapter. The values and
precision errors for U and a/U are determined from our bike pump calibration, discussed
in Section 3.2, noting that measurements of the ring diameter were in the range a = 49.2±
1.0 mm.

gence of secondary structures in the flow. We carry out a similar analysis in Section 5.3,
restricting our attention to the lower Ri0 (and higher Re0) cases (Re0,Ri0) = (2680,1.48)
and (3270,0.98). We conclude this chapter in Section 5.4 with a summary of our findings
and a final discussion.

5.1 Observed measures

Before investigating the cases of the ring–interface interaction listed in Table 5.1, in this
section we lay out the measures we make use of to infer aspects of the evolution of the flow.
As previously discussed, we use PIV and LIF to probe the flow in the central plane of the
ring–interface interaction. By probing the flow in this way, two vortex-core cross-sections,
C1 and C2 (labelled in Figure 5.1) of the primary vortex ring are observable in our PIV
measurements while the primary ring remains intact.

To identify and track C1(t) and C2(t), a 5% maximum-threshold is first used on the
Q-field, Q = Q2D (introduced in Equation (4.9)), calculated from the earliest PIV velocity
field obtained at time T0. Using this threshold calculation, the area Ai(T0) and the centroid
xxxi(T0) of Ci(T0) (i = 1, 2) are determined. Subsequently, given Ai(Tm) and xxxi(Tm), the vortex
core Ci at time Tm+1 is identified by searching in the square region of size (

√
Ai(Tm)+4ζ )

centred on xxxi(Tm), after which Ai(Tm+1) and xxxi(Tm+1) are determined (here, ζ is the mm/px
scale). This strategy allows us to track C1 and C2 as the ring interacts with the density
interface.

Using the centroids xxx1, xxx2, we define the ‘ring centre’, xxx = (x, z), of the vortex ring as

xxx(Tk) =
1
2
(xxx1(Tk)+ xxx2(Tk)) . (5.1)
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Using the ring centre, we fix the time origin at time TK , where K minimises |z(TK)−a|. We
also define the ‘plane diameter’, D(Tm), given by

D(Tm) = |xxx1(Tm)− xxx2(Tm)| . (5.2)

In the case θ0 = 0◦, the plane diameter can be considered as equivalent to the ring diameter
(modulo any instabilities developing in the flow). For θ0 > 0◦, the structural evolution of
the vortex ring is partly influenced by the variation in buoyancy forces acting on different
portions of the ring, which can potentially lead to the ring deforming asymmetrically (such
as the vortex ring ‘bending’ identified by Stock (2006) and described in Section 2.3.6). As
such, the plane diameter should not be interpreted as equivalent to the ring diameter, but only
as a measure of the size of the ring.

By making use of xxx1 and xxx2, two different angles can be calculated, which we use to
infer aspects of the evolution of the ring–interface interaction. Firstly, the propagation angle,
θp(t), which we define as the angle the trajectory of the ring centre xxx makes with the vertical.
The angle θp(Tm) is given by

θp(Tm) = tan−1
(

dx
dz

)∣∣∣∣
t=Tm

. (5.3)

Here, the gradient dx/dz at t = TM is taken to be the gradient of the line calculated using
the method of least squares on the points xxx(Tk) for k = M−4, M−3, ..., M+4. Secondly,
the core angle, θc(t), defined as the angle that the line intersecting xxx1 and xxx2 makes with the
horizontal. This is given by

θc(Tm) = tan−1
(

z2− z1

x2− x1

)∣∣∣∣
t=Tm

. (5.4)

Figure 5.2 illustrates the angles θp(t) and θc(t). Before the ring interacts with the
interface, the two angles are equal, with θp(t) = θc(t) = θ0. Changes in θp(t) are associated
with changes in direction of the bulk motion of the vortex ring, whereas changes in θc(t)
are associated with differences in the forces acting on C1 and C2. The differences in the
inferences the can be made between probing the evolutions of θp(t) and θc(t) motivates the
use of both measures in our investigations of the ring–interface interaction.

The velocity-gradient fields we make use of in this chapter are the vorticity, ωy, the
Q-field, Q2D, and the two-dimensional divergence, ∇∇∇·uuu2D = ∂u/∂x+∂w/∂ z. These fields
are used in conjunction with the pixel-intensity fields (obtained using LIF), which allow us
to track the movement of the dyed upper-layer fluid and non-dyed lower-layer fluid in the
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θc(t)

U
θp(t)

Fig. 5.2 Diagrams illustrating the definitions of the propagation angle θp(t) and core angle
θc(t). Note that before the ring interacts with the density interface, the two angles are equal,
with θp(t) = θc(t) = θ0.

central plane of the flow. By making use of these fields and the measures outlined above,
we infer aspects of the three-dimensional evolution of the flow, both in the primary ring and
secondary structures that emerge in the central plane of the flow.

It should be noted that the ∇∇∇·uuu2D fields derived from our PIV measurements were found
to have a higher level of noise relative to the ωy and Q2D fields. The noise in the ∇∇∇·uuu2D field
does not appear to be a consequence of employing the PIV algorithm introduced in Chapter
4. We return to this point in Section 7.3. For the purposes of our analysis in this chapter,
the important point is that the ∇∇∇·uuu2D contours do a sufficiently good job of indicating the
regions of convergence on to or away from the central plane of the flow.

Using our LIF measurements, we define the maximum penetration depth Z(t) of the
vortex ring at a given time as the vertical distance between the resting position of the density
interface, and the z position of the most deeply penetrating upper-layer fluid into the lower
layer that is made visible by the light sheet. For a given experiment, the resting position
of the interface is determined by vertically averaging an LIF image where the interface is
unperturbed, then identifying the position of maximal gradient. For each LIF image, the
z position of the most deeply penetrating upper-layer fluid is determined by applying a
maximum filter to each row of pixels, then finding the lowest-lying row of pixels with a pixel
intensity greater than 0.3. In doing so, we are then able to determine Z(t) for each LIF image.

5.2 Non-penetrating rings at small propagation angles

The experiments presented in this section are those listed in the first row of Table 5.1, for
which (Re0,Ri0) = (1810,3.09) and θ0 ≤ 20◦. We describe these ring–interface interactions
as ‘non-penetrative’, as the maximum-penetration depth of the vortex ring into the lower
layer is less than one ring diameter, and the entirety of the mixing appears to occur only
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in the upper-layer region. Additionally, the θ0 = 0◦ case corresponds closely to the ‘non-
penetrative’ case (Re0,Ri0) = (2000,3.0) investigated by Olsthoorn and Dalziel (2017), who
present three-dimensional reconstructions of the velocity field.

In Section 5.2.1, we describe the evolution for the case θ0 = 0◦. Then, in Section 5.2.2
we discuss the influence of θ0 on the evolution of the primary vortex ring. Finally, in
Section 5.2.3 we demonstrate for the cases θ0 = 5◦ and 10◦ that significant azimuthal flow
arises during the later stages of the flow, which we attribute to azimuthal pressure gradients
developing as a result of the azimuthally asymmetric production of baroclinic vorticity.

5.2.1 Vertical propagation

LIF snapshots of the central plane of the flow are presented in Figure 5.3 for the case
θ0 = 0◦. For each sequence of snapshots, the first snapshot is taken at t = 1 s and consecutive
snapshots are separated in time by 0.5 seconds (or equivalently, starting at 0.75a/U and
separated in time by 0.375a/U). The presented snapshots showcase the full evolution of the
flow, from the ring beginning to impinge on the interface, up to the stage where the flow is in
a dissipative state of relaxation.

As the ring impinges onto and deforms the density interface, the deformation leads to
an azimuthally symmetric production of baroclinic vorticity on the deformed interface. To
help visualise this stage of the flow, Figure 5.4 (a) presents the LIF snapshot at t = 2.0 s,
overlaid with velocity vectors and ωy contours, with the blue and red contours respectively
representing anti-clockwise and clockwise in the central plane of the flow. The baroclinically-
generated vorticity is swept around the outside of the vortex ring and accumulates at the
upper rim of the deformed interface. Subsequently, the accumulated vorticity separates,
leading to the emergence of fine-scale coherent structures that develop as the flow continues
to evolve (exhibited from t = 2.0 s to t = 4.0 s in Figure 5.3).

As the interface begins to recoil after the ring reaches its maximum-penetration depth
into the lower layer (around t = 2.5 s), the upward motion of the deformed interface in
combination with the continuing production of baroclinic vorticity along the deformed
interface leads to the formation of a secondary vortex ring of larger diameter than the primary
ring. This secondary ring (hereafter referred to as the ‘recoil ring’) can be seen clearly at
t = 3.5 s, both in Figure 5.3 and Figure 5.4 (b). As the flow continues to evolve, the recoil
ring subsequently pinches off from the lower layer and self-propagates into the upper layer.
In doing so, the recoil ring enhances the ‘splashing’ mechanism first observed by Linden
(1973), which describes the transient enhancement of vertical buoyancy flux associated with
the ejection of lower-layer fluid into the upper layer.
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t = 1.0 s t = 1.5 s t = 2.0 s t = 2.5 s

t = 3.0 s t = 3.5 s t = 4.0 s t = 4.5 s

t = 5.0 s t = 5.5 s t = 6.0 s t = 6.5 s

t = 7.0 s t = 7.5 s t = 8.0 s t = 8.5 s

a

Fig. 5.3 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (1810,3.09,0◦). The time separation between
consecutive snapshots is 0.5 seconds, with the first frame taken at time t = 1 s. Note that the
advective timescale a/U = 1.33 s.
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(a) t = 2.0 s (b) t = 3.5 s

Fig. 5.4 LIF images at (a) t = 2.0 s and (b) t = 3.5 s, overlaid with a subsample of 50% the
PIV algorithm-constructed velocity vectors, and ωy contours, with the blue and red contours
respectively representing anti-clockwise and clockwise in the central plane of the flow. The
in-plane vorticity contours are drawn for |ωy|= 5, 15, 25 and 35 s−1. Note that the largest
velocity vectors in (a) correspond to a speed of 59.2 mm/s.

Flow in the azimuthal direction of the primary vortex ring appears to be small throughout
the ring–interface interaction, as there is no strong indication in Figure 5.3 of fluid structures
emerging in the central plane of the flow due to out-of-plane motion. We attribute this to the
azimuthal symmetry of the ring–interface interaction before the turbulent breakdown of the
flow.

5.2.2 Oblique propagation: evolution of the primary ring

In a similar way to Figure 5.3 for θ0 = 0◦, Figures 5.5, 5.6 and 5.7 present LIF snapshots
of the ring–interface interaction, exhibiting the evolution of the flow for the cases θ0 = 5◦,
10◦ and 20◦ respectively. Clear symmetry breaking is observed for θ0 = 5◦ and 10◦ in the
separated vortical structures and the recoil ring in the laminar stage of the flow, and for
θ0 = 20◦, the vertical buoyancy flux associated with the splashing mechanism appears to be
significantly reduced. These observations support the notion that the mixing energetics of
the ring–interface interaction may be significantly sensitive to θ0 over the range of angles
θ0 ≤ 20◦. Before returning to analyse these secondary structures in more detail, we first
consider the evolution of the primary ring as it interacts with the stratification.

Figures 5.8 (a) to (f) plot the observed measures of the vortex ring introduced in Section
5.1, in addition to the non-dimensionalised penetration depth Z(t)/a into the lower layer.
For each figure, data are plotted between t = 0 and t = 4 seconds. Vertical dashed lines are
drawn in plots (a) to (d), marking the instances in time that correspond to the first seven LIF
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t = 1.0 s t = 1.5 s t = 2.0 s t = 2.5 s

t = 3.0 s t = 3.5 s t = 4.0 s t = 4.5 s

t = 5.0 s t = 5.5 s t = 6.0 s t = 6.5 s

t = 7.0 s t = 7.5 s t = 8.0 s t = 8.5 s

Fig. 5.5 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (1810,3.09,5◦). The time separation between
consecutive snapshots is 0.5 seconds, with the first frame taken at time t = 1 s. Note that the
advective timescale a/U = 1.33 s.
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t = 1.0 s t = 1.5 s t = 2.0 s t = 2.5 s

t = 3.0 s t = 3.5 s t = 4.0 s t = 4.5 s

t = 5.0 s t = 5.5 s t = 6.0 s t = 6.5 s

t = 7.0 s t = 7.5 s t = 8.0 s t = 8.5 s

Fig. 5.6 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (1810,3.09,10◦). The time separation between
consecutive snapshots is 0.5 seconds, with the first frame taken at time t = 1 s. Note that the
advective timescale a/U = 1.33 s.
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t = 1.0 s t = 1.5 s t = 2.0 s

t = 2.5 s t = 3.0 s t = 3.5 s

t = 4.0 s t = 4.5 s t = 5.0 s

t = 5.5 s t = 6.0 s t = 6.5 s

t = 7.0 s t = 7.5 s t = 8.0 s

Fig. 5.7 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (1810,3.09,20◦). The time separation between
consecutive snapshots is 0.5 seconds, with the first frame taken at time t = 1 s. Note that the
advective timescale a/U = 1.33 s.
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snapshots presented in each of Figures 5.3 to 5.7. In plots (e) and (f), filled circles mark the
position of the ring centroids and ring centre every 0.5 seconds.

As the primary ring begins to feel the presence of the density interface, the plane diameter
D(t) increases due to the interaction of the ring with the baroclinic vorticity generated on the
deformed regions of the interface. For θ0 > 0◦, the portion of the vortex ring centred at core
C1 is in closer proximity with the interface than that corresponding to core C2. For t < 1, the
effect of this on the structural evolution of the ring appears to be small for the range of θ0

considered, though slight reductions in θc(t) are observed for θ0 = 10◦, 20◦.
For 1 < t < 2, D(t) continues to increase, reaching its maximum in all cases between

1.8 < t < 2. The vertical component of the buoyancy force acting on the ring leads to a
reduction in its bulk vertical momentum, the effect of which can be seen between 1 < t < 1.5
by the inflection points in Z(t) and the increase in θp(t) for θ0 > 0◦. For the obliquely
propagating cases, as C1 impinges on the interface before C2, there is azimuthal variation in
the total time-integrated vertical buoyancy force that has acted on the ring, which is maximal
at C1 and minimal at C2. Over 1 < t < 2, this leads to a reduction in θc(t) of about 60%.
Though we are unable to directly observe the structural evolution of the ring outside of the
central plane of the flow, the reduction in θc(t) in combination with the azimuthal variation
in time-integrated vertical buoyancy force (described above) suggest that the ring deforms as
it impinges onto the interface. Such deformations were observed in Lim (1989) and Stock
(2006), for the cases θ0 = 38.5◦ impacting a no-slip wall, and θ0 = 45◦ impacting a density
interface respectively.

For all θ0 considered, the ring reaches its maximum-penetration depth into the lower layer
around 2.3 < t < 2.5. Around this time, the propagation angle passes through θp(t) = 90◦,
indicating that the recoiling of the density interface is beginning to eject the vortex-ring fluid
back into the upper layer. For the case θ0 = 0◦, the vortex-core centroids move slightly in
the positive x-direction, leading to θp(t) increasing from 0◦ to 180◦ as the interface begins to
eject the ring fluid back into the upper layer, rather than θp(t) decreasing from 0◦ to −180◦.
Using least squares to fit a line through θc(t) for θ0 = 0◦ between t = 0 and t = 2 gives

θc(θ0 = 0◦, t) = 0.18−0.15t ,

indicating that the sign of dθp/dt as the interface recoils may be related to the precision
limit of 0.1 degrees for setting θ0 in our experiments. The subtle asymmetry of the 5th LIF
snapshot of Figure 5.3 at t = 3.0 s suggests that the precise value of θ0 for this experiment
may differ slightly from its nominal value. As the precision limit of θ0 is small compared to
the non-zero values of θ0 considered in this chapter, we do not pursue this further.
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Fig. 5.8 Plots of the observed measures of the vortex ring introduced in Section 5.1, in
addition to the non-dimensionalised penetration depth Z(t)/a into the lower layer. For each
figure, data are plotted between t = 0 and t = 4 seconds. Vertical dashed lines are drawn in
plots (a) to (d), marking the instances in time that correspond to the first seven LIF snapshots
presented in each of Figures 5.3, 5.5, 5.6 and 5.7. In plots (e) and (f), filled circles mark the
position of the ring centroids and ring centre every 0.5 seconds. The legend corresponding to
all plots is given in (b).
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The plane diameter D(t) decreases over the period 2 < t < 3, due to horizontal buoyancy
forces acting to compress the ring while it is surrounded radially by lower-layer fluid. For
2 < t < 2.5, a small increase is observed in θc(t) due to the horizontal buoyancy forces
pushing core C1 to the right more rapidly than the shallower C2, while the difference in
vertical positions of the vortex core is approximately maintained. This can also be seen in
the vortex-centre trajectories plotted in Figure 5.8 (e).

For 3 < t < 4, the density interface recoils, ejecting the primary ring back into the upper
layer. At this stage, secondary structures are starting to become the more prominent features
in the flow, and the flow appears to be transitioning into turbulence. For the cases θ0 = 5◦

and 10◦, the recoil ring (analogous to that described in Section 5.2.1) effectively guides the
primary ring back into the upper layer, causing θp(t) to further increase. To visualise this
stage of the flow, Figure 5.9 (a) presents the LIF snapshot at t = 4 s for the case θ0 = 10◦,
overlaid with velocity vectors and contours of Q2D to identify vortex cores C1 and C2 and the
cross-sections of the recoil ring (denoted S1 and S2) in the central plane of the flow.

Figure 5.9 (b) presents the corresponding LIF snapshot for θ0 = 20◦ at t = 4 s, with
overlaid velocity vectors and Q2D contours. From the plots presented in Figure 5.8, for
3.5 < t < 4 we see an increase in D(t), a decrease in θp(t) and a significant rightward drift in
xxx2, all in contrast to the evolution of these measures for smaller θ0. Comparing Figures 5.9
(a) and (b), these differences appear to be attributable to the recoil ring (labelled S) failing to
pass around the outside of the primary ring on the side of C2. In particular, the portion of the
recoil ring centred at S2 acts to advect the portion of the primary ring centred at C2 mostly
toward the right, as opposed to mostly vertically for the cases corresponding to smaller θ0.
As S2 is unable to pass around the outside of C2, the vertical buoyancy flux associated with
the splashing mechanism described in Section 5.2.1 appears to be significantly reduced.

5.2.3 Oblique propagation: azimuthal flow

For the cases θ0 = 5◦, 10◦, significant flow converging onto the central plane of the
ring–interface interaction is observed in the LIF snapshots presented in Figures 5.5 and 5.6,
emerging around t = 5 seconds for both cases. The flow converges onto the plane at two
locations, coinciding with the position of vortex-core cross sections C2 and S2. Here, we
argue that these flows are associated with azimuthal pressure gradients in the primary and
recoil rings, where a pressure minimum within each ring is located on the central plane of
the flow.

To help visualise the convergence of fluid at the location of C2, Figures 5.10 (a) and (b)
each present an LIF snapshot, for the cases θ0 = 5◦ at t = 5.5 s and θ0 = 10◦ at t = 6.5 s
respectively. Each snapshot is overlaid with velocity vectors, and contours where ∇∇∇·uuu2D > 0,
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(a)

(b)

C1 C2

S1

S2

C1 C2

S1

S2

Fig. 5.9 LIF snapshots at t = 4 s for the cases (a) θ0 = 10◦ and (b) θ0 = 20◦, overlaid with
velocity vectors and contours of Q2D = 1, 2, 3, 4 and 5 s−2. Vortex S and cores C1 and C2 are
labelled in both figures where they are made reference to in the text.
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associated with the flow converging onto the central plane at C2. Note that ∇∇∇· uuu2D > 0
corresponds to a source of fluid on the central plane (and a divergence of in-plane velocity
vectors), whereas ∇∇∇·uuu2D < 0 corresponds to a sink on the central plane (and convergence
of in-plane velocity vectors). By relating these figures to their corresponding LIF-snapshot
sequences (Figures 5.5 and 5.6), it can be seen that upper-layer fluid emerges into the central
plane around the location of C2, pushing outward the surrounding fluid in the central plane.

The in-plane divergence associated with S2 (identified in Figures 5.10 (a) and (b) by the
drawn circles) can be seen in Figures 5.5 and 5.6 by the emergence of lower-layer fluid at the
location of S2 from t = 5.5 s onwards, with the converging flow particularly pronounced for
the 5◦ case. Subsequently, for the θ0 = 5◦ case, the emerging lower-layer fluid appears to
undergo extensional straining along an axis at 45◦ to the vertical. This does not appear to
occur for the θ0 = 10◦ case, where instead the flow appears to be break down and enter a
state of dissipative relaxation.

Due to the oblique impingement of the primary ring on the interface, baroclinic vorticity
is produced azimuthally asymmetrically on the deformed interface, with a greater volume of
baroclinic-vorticity-carrying fluid swept around the side of C1 and entrained back through the
centre of the ring relative to C2. To understand the effect this will have on the primary ring,
consider the Biot-Savart law, which relates the vorticity field to the rotational component of
the velocity field by

urot (xxx, t) =
1

4π

∫
V

ωωω (xxx′, t)× (xxx− xxx′)dV ′

|xxx− xxx′|3
. (5.5)

As the baroclinic vorticity is of opposite sign to the vorticity of the primary ring, the rotational
velocity component associated with C1 reduces at a greater rate compared to C2, due to the
cancellation of vorticity in the integral of Equation (5.5) and the |xxx− xxx′|−2 scaling of the
integrand. The effect of this can be seen for example by the Q2D contours in Figure 5.9 (a),
where higher Q2D contours are observed on C2 and S2 relative to C1 and S1.

The decrease in urot at C1 leads to a local increase in pressure at C1, consequently
introducing a non-zero azimuthal pressure gradient in the primary ring. Assuming the
pressure along the primary ring decreases with increasing distance from C1 as a result of
reduced vorticity cancellation in Equation (5.5), it follows that a pressure minimum along
the ring exists at C2. It can similarly be argued that a pressure minimum along the recoil ring
exists at S2. The local pressure minima associated with each ring would explain the observed
flow at C2 and S2 converging onto the central plane.

Figure 5.11 presents LIF snapshots of the case (Re0,Ri0,θ0) = (2140,2.24,5◦), to illus-
trate the evolution of the recoil ring as the flow transitions to turbulence for a case with similar
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(a)

(b)

S2

S2

Fig. 5.10 LIF snapshots at (a) t = 5.5 s for θ0 = 5◦, and (b) t = 6.5 for θ0 = 10◦. Snapshots
are overlaid with velocity vectors and contours of ∇∇∇·uuu2D = 5, 10, 15, 20 and 25 s−1. Circles
are drawn to clearly identify the vortex core S2.
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t = 2.000 s t = 2.375 s t = 2.75 s t = 3.125 s t = 3.500 s

Fig. 5.11 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (2140,2.24,5◦). Each snapshot is labelled with its
associated instant in time. Red circles are drawn around the recoil ring cores exhibited in the
first snapshot for clarity.

Re0 but significantly lower Ri0. Red circles are drawn around the vortex cores associated
with the recoil ring in the first snapshot. Our observations indicate that the azimuthal flow
associated with the recoil ring for the case (Re0,Ri0,θ0) = (1860,3.09,5◦) does not manifest
itself in a similar way below some critical Richardson number Ric, where 2.24 < Ric < 3.09.
In an analogous way to the Crow-like instability identified by Olsthoorn and Dalziel (2017), it
is plausible that the disappearance of the azimuthal-flow structure is related to a transition in
the timescale dominating the evolution of the recoil ring, where for Ri0 < Ric the instability
leading to strong azimuthal flow is unable to develop before the turbulent breakdown of the
ring. We do not investigate this conjecture in any detail here, but such flow transitions imply
a sensitive dependence of the evolution of the ring–interface interaction on Ri0 for small θ0.

5.3 Penetrating rings at small propagation angles

The experiments presented in this section are those listed in the second and third rows
of Table 5.1, corresponding to (Re0,Ri0) = (2680,1.48) and (3270,0.98) respectively and
θ0≤ 20◦. The cases Ri0 = 1.48 and 0.98 are respectively above and below the case Ri0 = 1.24
described as ‘penetrative’ by Olsthoorn and Dalziel (2017), who show at this value of Ri0
for θ0 = 0◦ that the Crow-like instability they identify is unable to develop before the ring–
interface interaction loses coherence and transitions into turbulence. The cases considered in
this section also correspond to two of the three penetrative cases of (Re0,Ri0) investigated in
our periodic-mixing experiments presented in Chapter 6.

The layout of this section is similar to that of Section 5.2. In Section 5.3.1, we describe
the evolution of the two cases corresponding to θ0 = 0◦. Then, in Section 5.3.2, we introduce
LIF snapshots for the cases corresponding to θ0 > 0◦, identifying features in the flow that
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are not present in the θ0 = 0◦ case. In Section 5.3.3, we discuss the influence of θ0 on the
evolution of the primary vortex ring. Finally, in Section 5.3.4, we describe the secondary
structures that emerge in the flow when θ0 > 0◦ and offer explanations for their origins.

5.3.1 Vertical propagation

We first consider the case (Re0,Ri0) = (2680,1.48), for which selected LIF snapshots
of the ring–interface interaction are presented in Figure 5.12. Note that the time separation
between consecutive snapshots is not the same for all consecutive-snapshot pairs. Instead,
snapshots have been chosen to make the evolution of (visible) secondary structures in the
flow as clear as possible. To complement these snapshots, Figure 5.13 presents LIF snapshots
at t = 2.00 s, t = 2.75 s and t = 3.50 s, overlaid with velocity vectors and ωy contours.

For t ≲ 1 s, as the ring impinges onto the interface, baroclinic vorticity is produced on
the deformed interface and swept outwardly by the ring, accumulating on the rim of the
deformed area of the interface. The evolution of the flow up to this stage is similar to the
non-penetrative case investigated in Section 5.2.1. Shortly after the ring penetrates into the
lower layer (corresponding to z < 0), an in-plane stagnation point develops immediately
above the vortex ring, indicated first by the cross drawn in Figure 5.13 (a) at t = 2.00 s. This
stagnation point can be interpreted as the point along the central axis of the ring where the
ring-induced entrainment of fluid to pass through its centre is balanced by the flow induced
by the baroclinic vorticity, which attempts to eject the ring-entrained upper-layer fluid in the
lower layer back into the upper layer.

Two features of the flow are exhibited in all ring–interface interactions considered in
this section. Firstly, the ejection of ring-entrained upper-layer fluid from the lower layer
back into the upper layer by the surrounding baroclinic vorticity. Hereafter, we refer to the
ejected ring fluid in the lower-layer region as the ‘ejected fluid column’, or EFC. Secondly,
the baroclinic vorticity generated on the deformed interface between the ring-entrained upper-
layer fluid and surrounding lower-layer fluid in the lower layer. We refer to this interface as
the ‘baroclinic-vorticity column’, or BVC.

As the ring penetrates the lower layer and reaches its maximum-penetration depth (at
around t = 4 s), the interaction of the ring with the surrounding baroclinic vorticity results
in the outermost regions of the vortex-ring core being peeled away, leading to a reduction
in the ring diameter and the ejection of ring-entrained fluid into the EFC. The associated
reduction in circulation of the ring is made apparent by the |ωy|= 2 s−1 contours in Figures
5.13 (b) and (c) that extend from the ring into the EFC and above. As fluid leaves the
EFC and returns to the upper-layer region, the previously-described baroclinic vorticity (of
opposite circulation to the ring) accumulating immediately above the resting position of the
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t = 1.00 s t = 1.50 s t = 2.00 s t = 2.50 s t = 2.75 s

t = 3.00 s t = 3.25 s t = 3.50 s t = 3.75 s t = 4.00 s

t = 4.25 s t = 4.50 s t = 4.75 s t = 5.00 s t = 9.00 s

a

Fig. 5.12 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (2680,1.48,0◦). Each snapshot is labelled with its
associated instant in time. Note that the advective timescale a/U = 0.90 s.
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(a) t = 2.00 s (b) t = 2.75 s (c) t = 3.50 s

Fig. 5.13 LIF images at (a) t = 2.00 s, (b) t = 2.75 s and (c) t = 3.50 s, overlaid with
(sparsely drawn) velocity vectors and ωy contours, with the blue and red contours respectively
representing anti-clockwise and clockwise in the central plane of the flow. The in-plane
vorticity contours are drawn for |ωy| = 2, 15, 25 and 35 s−1. Black crosses are drawn to
identify the in-plane stagnation point separating the ring-entrained fluid and ring fluid ejected
by the surrounding baroclinic vorticity.

interface separates in discrete events, leading to the formation of secondary vortex rings. The
accumulated baroclinic vorticity can be seen in Figures 5.13 (b) and (c) shortly before two
distinct separation events, and the propagation of the secondary rings these events generate
into the upper layer can be seen in the subsequent LIF snapshots in Figure 5.12, made clear
by the lower-layer fluid entrained into the secondary-ring cores.

The BVC appears to remain stable for most of the ring–interface interaction, preventing
significant mixing from occurring between the lower-layer fluid and the EFC. As the interface
recoils during 4< t ≤ 5 seconds, the BVC begins to destabilise, indicated by the disconnected
patches of upper-layer fluid in the lower layer exhibited in Figure 5.12. These patches appear
to remain unmixed as they rise towards the upper layer, suggesting no significant mixing
occurs in the lower layer in this stage of the flow. The secondary rings that propagate into
the upper layer increase the vertical buoyancy flux associated with the splashing mechanism.
Consequently, the vast majority of mixing appears to occur in the upper layer.

The evolution of the ring–interface interaction is considerably different for the case
(Re0,Ri0) = (3270,0.98), as shown in Figure 5.14. The BVC is seen to destabilise as early
as t = 2.5s while the vortex ring is still penetrating into the lower layer, leading to a rapid loss
of coherence in the flow as it transitions to turbulence. This appears to result in a substantial
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t = 1.0 s t = 1.5 s t = 2.5 s t = 3.5 s t = 4.5 s t = 6.5 s

Fig. 5.14 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (3270,0.98,0◦). Each snapshot is labelled with its
associated instant in time. Note that the advective timescale a/U = 0.74 s.

increase in the total interfacial area between the lower-layer fluid and ring-entrained upper-
layer fluid relative to the case (Re0,Ri0) = (2680,1.48), indicative of a substantial increase
in the amount of upper-layer fluid mixed into the lower layer. Lower-layer fluid is ejected
into the upper layer, though unlike the (Re0,Ri0) = (2680,1.48) case, the associated vertical
buoyancy flux does not appear to be enhanced by the development of large-scale secondary
vortex rings. Nonetheless, the ejection of lower-layer fluid into the upper layer is suggestive
that significant mixing occurs in the upper layer as well as the lower layer.

5.3.2 Oblique propagation: a first glance

Before discussing the evolution of the primary ring and secondary structures in the flow
for the oblique cases in more detail, we briefly point out the similarities and differences in
the evolution observed in the central plane of the flow for given (Re0,Ri0) as θ0 increases.
We follow the order of our discussion given in Section 5.3.1, first considering the cases
corresponding to (Re0,Ri0) = (2680,1.48), then the cases corresponding to (Re0,Ri0) =
(3270,0.98).

For (Re0,Ri0) = (2680,1.48), Figures 5.15, 5.16 and 5.17 present selected LIF snapshots
of the ring–interface interaction for the cases θ0 = 5◦, 10◦ and 20◦ respectively. For θ0 = 5◦,
azimuthal asymmetries are apparent in the flow as early as t = 2.0 s, indicating that different
dynamics will be at play along the circumference of the BVC as the flow evolves, both in the
θ0 = 5◦ case and at larger values of θ0. In the view of the camera, the interface between the
right-hand side of the EFC and the surrounding lower-layer fluid will be more susceptible to
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having convectively unstable regions relative to the interface along the left-hand side, due
to the orientation of the EFC relative to the vertical. For clarity, hereafter we refer to the
right-hand and left-hand sides of the EFC as the ‘front’ and ‘back’ of the EFC respectively,
and the interfacial regions outside the view of the camera as the ‘sides’ of the EFC. The
terms front, back and sides are similarly applied to the BVC.

For the θ0 = 5◦ case, the structure of the lower-layer fluid ejected into the upper layer
between t = 2.50 s and t = 3.50 s has some resemblance to the analogous structure for the
θ0 = 0◦ case over the same interval in time (shown in Figure 5.12), though much of the
coherence is lost. Additionally, a substantial majority of the ejected lower-layer fluid visible
in the upper layer is above the back of the EFC; a feature also seen for the θ0 = 10◦ and 20◦

cases. We propose in Section 5.3.4 that this transport of lower-layer fluid is attributable to
the generation of axial vorticity, leading to a dipole that extends through much of the EFC.

For the θ0 = 5◦ and 10◦ cases, between t = 2.50 s and t = 3.50 s, lower-layer fluid
gradually enters the central plane of the flow immediately above the vortex ring in the region
occupied by the EFC, entering at the front and back of the EFC for the cases θ0 = 5◦ and
10◦ respectively (see Figures 5.15 and 5.16). Without being able to probe the full three-
dimensional evolution of the flow, it is difficult to identify the mechanisms responsible for
these out-of-plane flows. These flows may be attributable to the axial dipole described
above, to a slight misalignment between the light sheet and the central plane of the flow, or
to something else. As this flow does not appear to have significant consequences for the
subsequent evolution of the flow from our observations of the central plane, we do not pursue
this further.

For the case θ0 = 20◦ (with LIF snapshots presented in Figure 5.17), lower-layer fluid is
seen to roll up along the front of and immediately above the EFC from t = 3.0 s to t = 3.8 s.
Additionally, from t = 3.8 s to t = 4.6 s, upper-layer fluid is seen to converge onto the central
plane of the flow above the back of the EFC, in the central region of the ejected lower-layer
fluid residing in the upper layer. We return to these features in Section 5.3.4. For all cases
corresponding to (Re0,Ri0) = (2680,1.48), a substantial majority of the mixing appears to
occur in the upper layer.

For (Re0,Ri0) = (3270,0.98), Figures 5.18, 5.19 and 5.20 present selected LIF snapshots
of the ring–interface interaction for the cases θ0 = 5◦, 10◦ and 20◦ respectively. The cases
corresponding to θ0 = 5◦ and 10◦ are very similar to the θ0 = 0◦ case (for which LIF
snapshots are presented in Figure 5.14), insofar as the primary ring and the BVC rapidly
destabilise, and a substantial fraction of the total mixing appears to occur in the lower layer.
For θ0 = 20◦, the cross section of the EFC in the central plane of the flow thins from t = 2.0s
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t = 1.00 s t = 1.50 s t = 2.00 s t = 2.50 s

t = 2.75 s t = 3.00 s t = 3.25 s t = 3.50 s

t = 3.75 s t = 4.00 s t = 4.25 s t = 4.50 s

t = 4.75 s t = 5.00 s t = 6.00 s t = 8.00 s

Fig. 5.15 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (2680,1.48,5◦). Each snapshot is labelled with its
associated instant in time. Note that the advective timescale a/U = 0.90 s.
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t = 1.00 s t = 1.50 s t = 1.75 s t = 2.00 s

t = 2.25 s t = 2.50 s t = 2.75 s t = 3.00 s

t = 3.25 s t = 3.50 s t = 3.75 s t = 4.00 s

t = 4.25 s t = 4.50 s t = 5.00 s t = 6.50 s

Fig. 5.16 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (2680,1.48,10◦). Each snapshot is labelled with its
associated instant in time. Note that the advective timescale a/U = 0.90 s.



5.3 Penetrating rings at small propagation angles 137

t = 1.0 s t = 1.4 s t = 1.8 s

t = 2.2 s t = 2.6 s t = 3.0 s

t = 3.4 s t = 3.8 s t = 4.2 s

t = 4.6 s t = 5.0 s t = 5.4 s

Fig. 5.17 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (2680,1.48,20◦). Each snapshot is labelled with its
associated instant in time. Note that the advective timescale a/U = 0.90 s.
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t = 1.0 s t = 2.0 s t = 2.5 s t = 3.0 s

t = 3.5 s t = 4.0 s t = 5.0 s t = 7.0 s

Fig. 5.18 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (3270,0.98,5◦). Each snapshot is labelled with its
associated instant in time. Note that the advective timescale a/U = 0.74 s.

to t = 3.0 s, after which disconnected patches of upper-layer fluid emerge in the vicinity of
the EFC from t = 3.0 s to t = 4.0 s. We return to these structural features in Section 5.3.4.

5.3.3 Oblique propagation: evolution of the primary ring

Before considering in greater detail the secondary structures that develop in the flow, we
discuss the evolution of the primary ring for the case (Re0,Ri0) = (2680,1.48). Figures 5.21
(a) to (f) plot the observed measures of the vortex ring introduced in Section 5.1, in addition
to the non-dimensionalised penetration depth Z(t)/a into the lower layer. For the measures
derived from xxx1 and xxx2, data in Figures 5.21 (a), (c) and (d) are plotted up to the stage where
either C1 or C2 can no longer be reliably identified in the central plane of the flow using the
tracking method described in Section 5.1.

As the ring approaches the density interface, the plane diameter D(t) increases slightly
due to the interaction of the ring with the baroclinic vorticity developing on the deformed
regions of the interface, reaching a maximum in all cases at t ≈ 1.2 s. Similarly to the
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t = 1.0 s t = 2.0 s t = 2.5 s t = 3.0 s

t = 3.5 s t = 4.0 s t = 5.0 s t = 7.0 s

Fig. 5.19 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (3270,0.98,10◦). Each snapshot is labelled with its
associated instant in time. Note that the advective timescale a/U = 0.74 s.

t = 1.0 s t = 2.0 s t = 3.0 s

t = 3.5 s t = 4.0 s t = 5.0 s

Fig. 5.20 LIF snapshots of the evolution of the ring–interface interaction in the central plane
of the flow, for the case (Re0,Ri0,θ0) = (3270,0.98,20◦). Each snapshot is labelled with its
associated instant in time. Note that the advective timescale a/U = 0.74 s.
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Fig. 5.21 Plots of the observed measures of the vortex ring for the cases corresponding to
(Re0,Ri0) = (2680,1.48), in addition to the non-dimensionalised penetration depth Z(t)/a
into the lower layer. For plots (a), (c) and (d), data are plotted up to the stage where either C1
or C2 can no longer be reliably identified in the central plane of the flow. In plots (e) and (f),
filled circles mark the position of the ring centroids and ring centre every 0.5 seconds. The
legend corresponding to all plots is given in (b).



5.3 Penetrating rings at small propagation angles 141

non-penetrative cases presented in Section 5.2, this is accompanied with a reduction in the
core angle θc(t) due to the interface interacting more strongly with ring-core C1 relative to
C2. These features are evident in Figures 5.21 (a) and (c).

Similarly to the θ0 = 0◦ case, the ring is gradually eroded by the surrounding baroclinic
vorticity. The associated reduction in D(t) for t ≳ 1.2 s is demonstrated in Figure 5.21
(a). The observed linear reduction in D(t) can be predicted using the following argument.
Assuming the ring-volume V (t)∼ D3 and the peeling of the ring is reducing its volume at
a rate proportional to the interfacial area A between the ring and the BVC (which can be
assumed to scale as A∼ D2), then one obtains the following relation,

dV
dt
∼−A(t) ⇒ dD

dt
∼−1 .

The high level of agreement in the gradient of dD/dt suggests that over the range of θ0

considered, the propagation angle does not effect the rate at which fluid is ejected by the ring
into the EFC in a significant way.

As the ring propagates through the lower-layer region, the buoyancy forces acting on the
ring push C1 towards C2, leading to the observed increase in θc(t). This can also be seen in
the trajectories of xxx1 and xxx2 plotted in Figure 5.21 (e). Shortly before the ring reaches its
maximum penetration depth, the primary ring begins to destabilise as the straining induced
by the BVC begins to overcome the rotational motion of the ring. This transition can be
attributed to the reduction in the circulation of the ring as it is eroded by the surrounding
baroclinic vorticity.

Note that the evolution of Z(t) in Figure 5.21 (b) suggest that a change in regime is
observed between θ0 = 5◦ and θ0 = 10◦. While we currently have no explanation why such
a change in regime would occur, it is conceivable that such a transition may be the result of a
significant change in the turbulent breakdown of the ring between the θ0 = 5◦ and θ0 = 10◦

cases. Further work would be needed to explore this.
After the vortex ring breaks down significantly, the remaining core-entrained upper-layer

fluid begins to return to its neutral buoyancy level. Comparing the snapshots for 4 ≲ t ≲ 5
seconds between Figures 5.12 and 5.17 (corresponding to θ0 = 0◦ and 20◦ respectively),
it appears that the remaining core-entrained fluid is more effectively mixed into the lower
layer for the case θ0 = 20◦, despite penetrating less deeply into the lower layer compared
to the θ0 = 0◦ case. This is suggested by both the smaller structures of upper-layer fluid
and the lower light intensity of these structures in the LIF images for the θ0 = 20◦ case
(compared to the θ0 = 0◦ case), implying a greater amount of mixing has occurred. However,
confirming this would require an understanding of the dynamics outside of the central plane
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of the flow. Observations such as this raise the question of whether the mixing efficiency
of the ring–interface interaction for given (Re0,Ri0) might be maximised by prescribing a
non-zero value of θ0. This was one of our initial motivating questions for our periodic-mixing
experiments, introduced in Chapter 6.

Figures 5.18, 5.19 and 5.20 present LIF snapshots for the case (Re0,Ri0) = (3270,0.98),
for θ0 = 5◦, 10◦ and 20◦ respectively. In a similar way as for the θ0 = 0◦ case, the primary
ring and BVC rapidly destabilise. For the cases θ0 = 10◦ and θ0 = 20◦, the ring appears to
first destabilise at the side of the ring corresponding to C2, which we attribute to the interface
between this portion of the vortex ring and the lower-layer fluid directly above it being
Rayleigh-Taylor unstable.

5.3.4 Oblique propagation: secondary structures

Owing to the complex three-dimensional flow that develops on the BVC as it begins to
destabilise, here we restrict our attention to the coherent structures in the flow that can be
easily discerned from our observations of the central plane of the flow. In particular, we
discuss the evolution of the BVC and the structures that emerge as it destabilises, as well
as discussing the development of significant azimuthal flows, both along the surface of the
BVC and vortical structures that develop in the upper layer. Our discussion focuses primarily
on the ring–interface interaction corresponding to (Re0,Ri0,θ0) = (2680,1.48,20◦), then
relating the observed features to similar features that arise for other cases of (Re0,Ri0,θ0).

To help visualise the three-dimensional evolution of the flow for the case (Re0,Ri0,θ0) =

(2680,1.48,20◦), Figure 5.22 present panels of the in-plane vorticity ωy overlaid with
velocity vectors, LIF snapshots overlaid with vorticity contours, and LIF snapshots overlaid
with ∇∇∇·uuu2D contours for the times corresponding to snapshots 5-8 of Figure 5.17. Vorticity
contours are coloured in the same way as the vorticity fields, with blue and red respectively
representing anti-clockwise and clockwise in the central plane of the flow. The magenta and
cyan ∇∇∇·uuu2D contours respectively represent flow converging on to and diverging away from
the central plane.

First consider the panels in Figure 5.22 corresponding to t = 2.6 s. In panel (a1), the ωy

field clearly marks out C1 and C2, in addition to the cross-section of the BVC coinciding with
the central plane of the flow. This is confirmed by the overlap between the ωy contours and
the deformed density interface in panel (a2).

The bulk momentum of the ring and EFC has a non-zero horizontal component, due to the
initial non-zero bulk horizontal momentum of the vortex ring. Lower-layer fluid converges
onto the central plane in the wake region at the back of the ring and EFC, indicated by the
large magenta ∇∇∇·uuu2D contour in panel (a3). The velocity vectors in panel (a1) clearly show
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(See next page for figure caption.)
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t = 3.4s t = 3.8s
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Fig. 5.22 Plots of the in-plane vorticity ωy overlaid with velocity vectors, LIF snapshots
overlaid with vorticity contours, and LIF snapshots overlaid with ∇∇∇·uuu2D contours for the
times t = 2.6 s, 3.0 s, 3.4 s and 3.8 s. The magenta and cyan ∇∇∇· uuu2D contours respectively
represent flow converging on to and diverging away from the central plane.
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t = 3.4 s t = 3.5 s t = 3.6 s t = 3.7 s t = 3.8 s

Fig. 5.23 Close-up LIF snapshots of the small secondary vortices that develop on the leading
edge of the BVC as it begins to destabilise for the case (Re0,Ri0,θ0) = (2680,1.48,20◦).
The time interval over which the snapshots are taken correspond to the panels presented in
Figure 5.22 (c-d).

the horizontal direction of the flow at the back of the EFC as fluid enters this region, as well
as the near-stagnant flow at the front of the EFC. The (vertical) buoyancy forces acting on
the front and back of the EFC result in the back of the EFC moving towards the front of the
EFC (in the view of the camera, this appears as the left side of the dyed-undyed interface
moving towards the right side). To satisfy three-dimensional incompressibility in the EFC,
some of the EFC fluid must be displaced out of the central plane of the flow. This divergence
from the central plane is indicated by the elongated cyan contour in panel (a3) that stretches
across the entirety of the EFC.

As the flow evolves from t = 2.6 s to 3.4 s, the cross-section of the EFC in the central
plane of the flow becomes progressively thinner as the back of the BVC approaches the
front. While some of the EFC fluid is ejected into the upper layer, the strengthening of the
cyan ∇∇∇· uuu2D contours in the EFC shown in panels (b3) and (c3) indicates that EFC fluid
continues to be displaced away from the central plane of the flow. As the deformed interface
in the central plane remains largely laminar over this period of time, it is unclear whether
the deformation of the BVC is leading to a significant increase in the amount of mixing
occurring in the lower layer relative to the 0◦ case.

At t = 3.8 s, the destabilisation of the BVC becomes visible in the central plane of the
flow, with the front of the BVC organising itself into a series of small coherent vortices.
These vortices can be seen in panels (d1) and (d2) of Figure 5.22 by the concentrated
regions of negative ωy. Close-up LIF snapshots of the vortices are presented in Figure 5.23,
made apparent by the observed roll-up of lower-layer fluid. Such vortices do not appear to
develop for the θ0 = 5◦ and 10◦ cases, which is suggestive of a minimum-θ0 criterion for the
development of these vortices.
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Around the same time, a strong convergent flow onto the central plane develops imme-
diately above the density interface, indicated by the magenta ∇∇∇·uuu2D contours that emerge
at t = 3.8 s in Figure 5.22 (d3). By observing the subsequent evolution of the flow in the
snapshots presented in Figure 5.17, it can be seen that there is a strong convergence of
mostly upper-layer fluid into the central plane of the flow. This leads to both the pushing
of lower-layer fluid higher into the upper layer and splashing onto the density interface.
The associated splashing can be seen to occur for all cases with θ0 > 0◦ considered in this
section, with the splashing visible in the presented LIF snapshots at t = 4.5 s and t = 5 s for
(Re0,Ri0) = (2680,1.48) and (3270,0.98) respectively.

The particular physical mechanism leading to the strong in-flow is unclear. However,
one plausible explanation for its origin is that the converging upper-layer fluid has been
transported from the EFC by a vorticity dipole, that extends axially along the EFC. The
regions of in-plane divergence and convergence support this explanation, as they appear
consistent with the development of such a dipole, with two vorticity axes that are located
either side and equidistant from the central plane of the flow. One can then imagine that, as
upper-layer fluid is ejected from the vortex ring into the EFC, the ejected fluid is displaced
away from the central plane by the axial dipole, and circulates around the dipole as the
upper-layer fluid continues to rise towards the upper layer. If the strength of the dipole is
sufficient, then this transported upper-layer fluid would re-emerge in the central plane of the
flow towards the back of the EFC, possibly in a way similar to the convergent flow observed
for the case (Re0,Ri0,θ0) = (2680,1.48,20◦). Further work would be needed to confirm the
existence of this transport mechanism.

Figure 5.24 presents LIF snapshots of the ring–interface interaction for the case cor-
responding to (Re0,Ri0,θ0) = (2960,1.18,15◦), with consecutive snapshots separated in
time by 0.125 seconds. Note that this ring–interface interaction is an intermediate case in
(Re0,Ri0,θ0)-space of the ring–interface interactions considered in this section. While
vortex roll-up structures emerge on the leading edge of the BVC in a similar way to
the case (Re0,Ri0,θ0) = (2680,1.48,20◦), a striking difference is the emergence of dis-
connected regions of upper-layer fluid emerging in the lower layer. These can be seen
from the 4th snapshot onwards in Figure 5.24, and are also seen to occur for the case
(Re0,Ri0,θ0) = (3270,0.98,20◦) from t = 3.5 s onwards in Figure 5.20.

The disconnected regions of upper-layer fluid that emerge in the lower layer can only
be attributed to the structural evolution of the BVC as it destabilises, and is consistent with
the development of an axial vorticity dipole (described above). The complex cross-sectional
geometry of these disconnected regions indicates a significant increase in the interfacial area
between the ring-entrained upper-layer fluid and surrounding lower-layer fluid as a result
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Fig. 5.24 Selected LIF snapshots from the case (Re0,Ri0,θ0) = (2960,1.18,15◦), with
consecutive snapshots separated in time by 0.125 seconds. In this case, there is a clear
development of secondary vortices along the leading edge of the destabilising BVC, as well
as disconnected regions of upper-layer fluid indicating significant out-of-plane flow.

of the BVC destabilisation. If there is significant variation in the increase of this interfacial
area between different prescriptions of θ0, this would indicate that the amount of mixing
that occurs during the ring–interface interaction and the location of the mixing may have a
significant dependence on θ0 over the range 0◦ ≤ θ0 ≤ 20◦.

5.4 Summary

The experiments presented in this chapter represent the first systematic study on the
dynamics of vortex rings obliquely impacting a density interface. Two-dimensional PIV
and LIF measurements were made in the central plane of the ring–interface interaction for
a range of cases in the (Re0,Ri0,θ0) parameter space, including cases both when the ring
is able and when the ring is unable to penetrate the density interface. We have used our
two-dimensional observations to infer features of the three-dimensional evolution of the flow,
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identifying previously-undocumented dynamics of the ring–interface interaction for initial
propagation angles in the range 0◦ ≤ θ0 ≤ 20◦.

For non-penetrative vortex rings at propagation angles 5◦ ≤ θ0 ≤ 10◦, although the ring
partially reorients itself to impact more vertically on the density interface, the oblique impact
causes an azimuthally asymmetric production of baroclinic vorticity on the deforming density
interface. This results in the development of azimuthal pressure gradients both in the primary
vortex ring and the largest secondary vortex ring, made apparent by the convergence of
fluid onto the central plane in the regions coinciding with the cores C2 and S2. For the case
θ0 = 20◦, the secondary vortex core S2 is unable to pass around the outside of the primary
ring. This appears to reduce the vertical buoyancy flux associated with the splashing of the
interface as the density interface recoils from the vortex-ring impact.

For penetrative vortex rings, our observations of the θ0 = 0◦ cases corresponding to
Ri0 = 1.48 and Ri0 = 0.98 indicate that while the Crow-like instability identified by Olsthoorn
and Dalziel (2017) increases the interfacial area between the upper and lower-layer fluid, it
also acts to inhibit significant mixing from occurring in the lower layer. The most striking
differences in the evolution of the ring–interface interaction between vertical-impact and
oblique-impact cases were seen for θ0 = 20◦. In this case, a strong divergence from the
central plane is seen in the EFC as the fluid column destabilises, with a corresponding
convergence at the back of the fluid column. We propose that this is due to the formation
of an axial vorticity dipole that extends along the EFC and shortly above it. Additionally,
vortices are seen to emerge at the front of the fluid column, resulting from the development
of a shear and convection-driven fluid instability. Both features act to increase the interfacial
area between the ejected-fluid column and surrounding lower-layer fluid, enhancing the
amount of irreversible mixing that can occur in the lower layer.

The observed differences in the dynamics of the ring–interface interaction indicate that,
over the range of initial propagation angles 0◦ ≤ θ0 ≤ 20◦, the propagation angle may
play a significant role in the mixing that occurs, both in the location of mixing events
and change in vertical density profile that results from the ring–interface interaction. We
investigate the mixing induced by vortex rings interacting with density interfaces in Chapter
6. Although the experiments presented in this section correspond only to a small region of the
multidimensional parameter space governing the evolution of the ring–interface interaction,
a wide range of dynamical features were observed, indicating a sensitive dependency of the
control parameters on the evolution of the flow and the subsequent mixing that occurs. This
suggests that careful interpretation is required when attempting to relate findings employing
the ring-eddy analogy to properties of turbulent two-layer zero-mean-shear flows.



Chapter 6

Vortex-ring-induced mixing of an
initially two-layered density stratification

In the previous chapter, we investigated the differences in the dynamical evolution of the
ring–interface interaction between vertically and obliquely-propagating vortex rings over the
range of initial propagation angles 0≤ θ0 ≤ 20◦. Our observations revealed that breaking
the azimuthal symmetry associated with the θ0 = 0◦ case introduces significant changes
in the dynamical features of the flow, both for non-penetrative and penetrative types of
ring–interface interaction. This chapter investigates the implications such dynamical changes
have on the mixing properties associated with the interaction.

For the experiments presented in this chapter, we mix an initially two-layered density
stratification by generating a periodic sequence of vortex rings that are made to propagate
towards the density interface. Our experimental methodology is similar to that employed
by Olsthoorn and Dalziel (2015), who demonstrated for the range of parameters 1700 ≤
Re0 ≤ 2700, 4 ≤ Ri0 ≤ 12, θ0 = 0◦ that the periodically-forced stratification tends to a
self-similar form, corresponding to a Ri0-independent mixing-efficiency regime with mixing
efficiency ηc ∼ 0.42. Olsthoorn and Dalziel (2015) associate ηc to the mixing efficiency
of the ring–interface interaction, by envisaging a banding process in which vortex rings
mix with lower-layer fluid to form a new band of perfectly mixed fluid at the bottom of the
upper layer, which develops and maintains a weak, constant density gradient. The envisaged
process is described as analogous to the mixing induced by a buoyant plume in a filling box,
for which an analytic expression for the density profile is obtained by Worster and Huppert
(1983).

In keeping with the experiments presented in Chapter 5, we classify our experiments
into two different mixing regimes, ‘non-penetrative’ and ‘penetrative’. Figures 6.1 (a) and
(b) plot density profiles illustrating typical features of the evolving stratification in each
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Fig. 6.1 Representative examples of the density profiles taken after every 100 ring generations
for the cases in the (a) non-penetrative, and (b) penetrative, regimes respectively. Arrows
are included to indicate the evolution of time. The selected experiments are labelled A0
and Q0 in Table 6.2, corresponding to (Re0,Ri0,θ0) = (2960,6.30,0◦) and (2960,1.18,0◦)
respectively.

of the mixing regimes. In the non-penetrative regime (Figure 6.1 (a)), the initial density
interface is maintained as fluid is entrained from the lower layer into the weakly-stratified
upper layer. In this way, the experiments of Olsthoorn and Dalziel (2015) would be classified
as non-penetrative. In the penetrative regime (Figure 6.1 (b)), the initial density interface is
rapidly eroded and a partially-mixed middle layer is formed. This middle-layer stratification
weakens over time by the continual ring-induced mixing.

The initial motivation for carrying out the experiments presented in this chapter was to
investigate the functional dependencies of η on both a lower range of Ri0 relative to Olsthoorn
and Dalziel (2015), and for a range of non-zero propagation angles. While a Ri0-independent
regime has been linked to η for Ri0 ≥ 4, we can expect that η→ 0 as Ri→ 0, as there would
be almost no stratification to mix. Whether ∂η/∂Ri0 ≥ 0 for 0≤ Ri0 ≤ 4 or η(Ri0) attains
a maximum over this interval is one question these experiments aimed to address. We also
aimed to investigate the behaviour of ∂η/∂θ0 for a range of Ri0, to determine whether the
dynamical differences between vertical and oblique cases of the ring–interface interaction
have a significant impact on the mixing efficiency.

For non-penetrative mixing, insights made after the completion of the experiments
presented in this chapter have led to a revised understanding of how the ring-induced mixing
in the periodically-forced system should be interpreted. Crucially, we demonstrate that the
ring-induced mixing should not be regarded as simply produced by a periodic sequence
of ring–interface interaction events. We propose that the high mixing efficiency observed
should instead be attributed to the ability of the ring to transport a large volume of fluid
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from the top of the upper layer to the density interface, ring-induced upward entrainment
across the interface (leading to some mixing), and the subsequent development of convective
instabilities as the ring-mixed fluid finds its new neutral buoyancy level. Consequently, this
reopens the question of what is the mixing efficiency of a ring–interface interaction event.

This chapter is laid out as follows. In Section 6.1 we outline our methodology for
conducting the experiments presented in this Chapter. Then, in Section 6.2 we explain our
method for quantifying mixing efficiency in the periodically-forced system, and discuss the
measured mixing efficiencies from our experiments. In Section 6.3, we discuss in detail the
evolution of the stratification for the non-penetrative regime. Our findings are summarised in
Section 6.4.

6.1 Experimental methodology

6.1.1 Setup and procedure

The setup and procedure of our periodic-mixing experiments is similar to the experiments
carried out by Olsthoorn and Dalziel (2015). A diagram of our experimental setup is given
in Figure 6.2. These experiments were conducted in both the larger and smaller of our
experimental tanks, described in Chapter 3. The tank-filling methodology outlined in Section
3.1 was used to prescribe the upper and lower-layer heights H1, H2 and fluid densities ρ1, ρ2

respectively. To generate reproducible vortex rings, we follow the methodology outlined in
Section 3.2. For each of our experiments, we fixed the initial propagation angle θ0 and the
ring-tube height HB, which we define as the vertical distance from the base of the tank to
the upper edge of the ring tube outlet. Vertical profiles of the stratification were taken using
the conductivity probe and thermistor introduced in Section 3.4. Measurements were made
over a prescribed distance L, between the probe/thermistor resting position and the base of
the tank. The resting position was chosen to be approximately a couple of ring diameters
above the outlet of the ring tube to ensure measurements were made over the full extent of
the mixed region of the stratification throughout the experiment. The upper-layer height H1

was prescribed so the free surface is ∼ 5cm above the probe/thermistor resting position.
For each experiment, a periodic sequence of 600 vortex rings was generated to mix

the stratification. At the start of each experiment and after every 10 vortex rings, the
conductivity probe and thermistor were traversed through the stratification, sampling the
fluid to obtain vertical profiles of electrical conductivity and temperature (and hence, density).
Measurements were made only when the probe and thermistor were traversed downwards,
before being withdrawn to their starting position. For each sequence of 10 ring generations,
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Fig. 6.2 Diagram of the experimental setup of a typical periodic-mixing experiment.

a fixed inter-ring period τR between the generation of each vortex ring was prescribed. A
longer period τS between the last ring generation of one ring sequence and the first generation
of the next ring sequence was prescribed to allow the probe and thermistor to move through
the stratification sufficiently slowly so as to induce negligible mixing. Note that the effect the
speed of the probe had on the measurements that were made is analysed in Appendix C. By
prescribing the periods τR, τS, the time tn of the nth vortex ring generation is then given by

tn = nτR +
⌊ n

10

⌋
(τS− τR) . (6.1)

For reasoning similar to that outlined in Olsthoorn and Dalziel (2015), the choice of τR

was made to satisfy
τdissip < τR≪ τdiff , (6.2)

where τdissip is the timescale for the macroscopic motion within the sampled fluid domain to
dissipate, and τdiff is the timescale for molecular diffusion of the density profile. From our
PIV/LIF experiments, we found that τdissip increased for decreasing Ri0. For the lowest Ri0
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considered, the kinetic energy of the flow had significantly dissipated by ∼ 45 seconds after
the initial impact of the vortex ring with the density interface.

For a strongly-stratified region of vertical thickness l, the diffusion timescale is of the form
τdiff = l2/κ , where κ ∼ 1×10−9 m2s−1 is the molecular diffusivity of salt. In our mixing
experiments, stratified layers of approximately constant buoyancy gradients formed with
thicknesses in the range O(1) cm< l < O(10) cm. Taking l = 1 cm, we obtain τdiff = 105 s.
Alternatively, if we take l = 1 mm, which is an order of magnitude smaller in thickness
compared to the initial density interface, we obtain τdiff = 103 s. Based on the estimates made
for τdissip and τdiff, we took τR = 75 s for all our experiments.

The traverse time τS was prescribed by fixing the downward and upward probe/thermistor
traverse speeds U↓S , U↑S . For all experiments, we fixed the traverse speeds at U↓S = 10 mm/s
and U↑S = 6 mm/s, unless otherwise stated. We chose to fix U↑S at a lower speed than U↓S . This
is because when the probe and thermistor are being withdrawn from the base of the tank, they
leave a wake behind them, enhancing their ability to mix the stratification. The prescribed
speeds for U↓S , U↑S are small enough that the probe and thermistor induce negligible mixing
to the stratification relative to the ring-induced mixing.

Two additional steps were incorporated into our experimental procedure to improve the
performance of the conductivity probe. Firstly, before each experiment, using the probe
and thermistor we sampled the stratification five times over the period of one hour. This
helped to improve the consistency between successive conductivity profiles obtained in the
early stage of the experiment. We attributed this improvement in consistency to the probe
electrodes converging towards an electrochemical equilibrium with being traversed through
the density stratification, though we did not verify this hypothesis beyond demonstrating
increased consistency and improved salinity conservation in the probe measurements.

Secondly, immediately before each probe/thermistor traverse, we opened the pinch valve
for 90 seconds to flush the probe-interior with upper-layer fluid, removing the fluid siphoned
by the probe when sampling the fluid during the previous probe/thermistor traverse. The fluid
used to flush the probe was always taken from above the ring-tube outlet in a dynamically-
isolated region of the stratification, thus had no impact on the ring-induced evolution of
the stratification. Without flushing the probe, we found that the conductivity measurements
behaved erratically in the uppermost 5−10cm of the sampled stratification, consistently over-
estimating the density of the upper layer fluid. We attributed this behaviour to lower-layer
fluid held in the probe interior from the previous stratification sampling causing an increase
in the electrical conductivity of the circuit established between the two probe electrodes
and the bridge circuit. By flushing out lower-layer fluid held within the probe interior with
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Ring case 1 2 3 4

Ts [s] 6.25 5.45 5.00 4.56

U [mm/s] 48.55±0.22 54.55±0.1 60.25±0.32 66.54±0.42

Re0 = aU/ν 2390 2680 2960 3270

δKE [mJ] 0.413 0.549 0.699 0.935

Table 6.1 Table presenting the ring propagation speeds U , Reynolds numbers Re0 and kinetic
energy δKE for the vortex rings generated in our periodic-mixing experiments. The values
and precision errors for U are determined from our bike pump calibration, discussed in
Section 3.2. We label each ring case from 1 to 4 for ease of reference.

upper-layer fluid, the calibration-calculated densities in the unmixed upper layer much more
closely reflected the prescribed value of the upper-layer density.

It was also found that the conductivity profiles had a small but non-negligible dependency
on the traverse speed and probe-siphoning volume flux. This prompted us to carry out a more
thorough investigation of the conductivity probe, which is given in Appendix C. For our
purposes here, we were able to demonstrate that these dependencies had a negligible effect
on the conclusions we draw from our results.

6.1.2 Overview of input parameters

Vortex rings were generated using four different bike pump traverse times Ts, correspond-
ing to four different values for propagation velocity U and kinetic energy δKE, given in
Table 6.1. By varying Ts, we vary the bulk Reynolds number Re0 = aU/ν between the four
different vortex ring cases, with 2390≤ Re0 ≤ 3270.

We categorise the experimental results presented in this chapter into two groups: non-
penetrative mixing, corresponding to 3.67≤ Ri0 ≤ 6.30, and penetrative mixing, correspond-
ing to 0.98≤Ri0≤ 1.48. Non-penetrative-mixing experiments were conducted in the smaller
experimental tank of plan area A = 0.5×0.2 m2, with probe-traverse height L = 40 cm, tube
height HB = 30cm and lower-layer height H2 = 12cm. Penetrative-mixing experiments were
conducted in the larger experimental tank of plan area A = 1.2×0.4 m2, with probe-traverse
height L = 50 cm, tube height HB = 38.7 cm and lower-layer height H2 = 18.3 cm. The input
parameters for the experiments presented in this Chapter are given in Table 6.2, along with
labels which are used in conjunction with θ0 to uniquely identify each experiment (e.g. A10;
C0; Q25).
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Label Ring case ρ1 (g/cm3) ∆ρ×102 (g/cm3) Ri0 θ0

A 3 1.0017 4.635±0.025 6.30 0◦, 10◦, 20◦

B 1 1.0021 2.738±0.031 5.73 0◦, 10◦, 20◦

C 2 1.0021 2.736±0.017 4.56 0◦, 10◦, 20◦

D 3 1.0021 2.735±0.028 3.67 0◦, 10◦, 20◦

P 2 1.0021 0.879±0.025 1.48 0◦, 5◦, 15◦, 25◦

Q 3 1.0021 0.879±0.025 1.18 0◦, 5◦, 15◦, 25◦

R 4 1.0021 0.879±0.025 0.98 0◦, 5◦, 15◦, 25◦

Table 6.2 Table of parameters for the experiments presented in this chapter. A dividing
line separates the experiments associated with non-penetrative and penetrative regimes
(characterised by Ri0). The ring cases correspond to vortex-ring parameters given in Table
6.1. The labels associated with each Ri0 are used for reference throughout this chapter.

6.1.3 Data correction and validation

After carrying out a probe/thermistor calibration using the methodology outlined in
Section 3.4.2, measurements from the conductivity probe were seen to drift by O(10−2)V
day−1, leading to measurements for ρ20 drifting by ∆ρ20 ∼ O(10−4) g cm−3 day−1, with
the magnitude of the error in ρ20 depending on the choice of resistor in the bridge circuit.
Denoting the measured values and calibration-calculated values of the fluid density when
measured at 20◦C as ρ

(M)
20 and ρ

(C)
20 respectively, for a given experiment the drift δρ20 =

ρ
(M)
20 −ρ

(C)
20 was seen to correspond anywhere from ∼ 0% to 3% of the difference in ρ20

between the upper and lower layers of the initial stratification. As δρ20 also varied in ρ20 at
a given time, the probe drift could in turn lead to measurement errors of up to 5-6% for the
increase in potential energy of the system between two density profiles being taken.

To reduce the measurement error of changes in the potential energy of the system,
the probe measurements were adjusted for each vertical profile to fit the corresponding
probe/thermistor calibration. To do this, for each experiment we ensured that the traverse
length was long enough to sample regions of the stratification in the upper and lower layer
that were completely unmixed by the ring-induced mixing over the entirety of the experiment.
In these unmixed regions, we have ρ20 = ρ20,1, ρ20,2, corresponding respectively to the
prescribed values for the upper and lower layers of the initial two-layer stratification, and
temperature measurements are made with the thermistor. Using these known values, a bi-
iterative solver was used to invert the polynomial fitting surface for ρ20 defined in Equation
(3.10) to calculate the calibration-expected probe voltages C(C)

V,1,2 for the unmixed regions in
the upper and lower layer.
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For each vertical profile, probe measurement deviations ∆CV,1,2 for the upper and lower
layers are given by

∆CV,1,2 =C(M)
V,1,2−C(C)

V,1,2 , (6.3)

where the probe measurements C(M)
V,1,2 are calculated taking the mean probe measurement

in the top and bottom centimetre of the measured region of the stratification. In these 1cm
regions, we also calculate the mean of ρ

(M)
20 , which we denote as ρ

(M)
20,1 and ρ

(M)
20,2 for the upper

and lower layers respectively. Using the values calculated for ∆CV,1,2, ρ
(M)
20,1,2, we construct

an adjusted probe voltage profile C(A)
V (z) in the following way,

C(A)
V (z) =C(M)

V (z)+∆CV,1 +
ρ
(M)
20 (z)−ρ

(M)
20,1

ρ
(M)
20,2−ρ

(M)
20,1

(∆CV,2−∆CV,1) , (6.4)

where C(M)
V (z) is the measurement profile of the probe. This construction ensured that the

adjusted measurements for ρ20 would correspond to the prescribed values for ρ20,1, ρ20,2

in the unmixed regions of the upper and lower layers. Using C(A)
V (z), we then used the

probe/thermistor and thermistor calibrations to calculate vertical profiles for ρ20(z) and ρ(z).
For the rest of this chapter, we drop the superscript (A) and all derived quantities will

be calculated from voltage-adjusted measurements using Equation (6.4), unless otherwise
stated. To validate our measurements, we make a salinity-conservation check. The conserved
quantity in our periodic-mixing experiments is the mass of dissolved salt crystals in the
stratification. As this is not directly measurable, we make a salinity-conservation check by
using the following integral as a proxy,

S(k) =
∫ L

0
(ρ

(k)
20 (z)−ρ20,1)dz , (6.5)

for the kth probe/thermistor traverse. The integral S(k) can be interpreted as the salinity excess
of the stratification relative to a homogeneous system of the same salinity as the upper-layer
fluid. The integral was calculated for each probe/thermistor vertical profile, after adjusting
the probe voltage using Equation (6.4). For each experiment, S(k) varied by less than ±1%
from its mean value, which was sufficiently small to validate our probe-voltage adjustment
methodology.
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6.2 Energetics of sustained periodic forcing

Writing the increase in potential energy of the stratification due to the mixing induced
by the nth vortex ring generated as δPE(n)

R , we define the mixing efficiency η(n) of the nth
vortex ring as

η
(n) =

δPE(n)
R

δKE(n)
, (6.6)

where δKE(n) is the kinetic energy of the nth vortex ring. Our methods for quantifying
δKE(n) and δPE(n)

R are discussed respectively in Sections 6.2.1 and 6.2.2. Mixing-efficiency
measurements of the stratification as it evolves are then discussed in Section 6.2.3.

6.2.1 Quantifying kinetic energy

For simplicity, we assume in each experiment that all vortex rings have the same kinetic
energy before interacting significantly with the stratification, giving

δKE(n) = δKE . (6.7)

The vortex-ring kinetic energy δKE determined for each value of Ts is given in Table 6.1,
assuming the ring density ρR = 1.002 g/cm3.

By assuming axisymmetry of the vortex ring about its central axis, measurements of δKE
for each value of Ts are calculated from a consecutive sequence of 100 PIV velocity fields,
taken over 1.25 seconds. The ith measurement δKEi is given by

δKEi = 2π

∫
z

∫ 2a

r=0

1
2

ρR(u2
i + v2

i )H
(

2− |x
xxi− xxx|

Di

)
r drdz . (6.8)

Here, r is a radial coordinate with r = 0 corresponding to the central axis of the ring, (ui,vi)

are the velocity measurements from the ith velocity field made at each PIV interrogation
point, H is a Heaviside step filter, and xxxi and Di are the ring centre and plane diameter,
defined in Section 5.1. The Heaviside filter is applied to ensure velocity measurements made
in regions of the flow more than two plane diameters away from the centre of the ring do not
contribute to the estimated value of δKEi.

Figure 6.3 plots the measurements made for δKEi for the ring case corresponding to
Ts = 6.25s against the non-dimensionalised distance (zi−z0)/a0 between the ring-tube outlet
and the vortex ring, where the ring diameter a0 = 49.2 mm is taken to be fixed. The observed
linear reduction in δKEi is a feature consistent with the measurements corresponding to
the other cases, and can be attributed to both viscous dissipation and a loss of energy as
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Fig. 6.3 Representative plot of the vortex-ring kinetic energy measurements δKEi made over
a sequence of 100 consecutive PIV velocity fields, plotted against the non-dimensionalised
distance (zi− z0)/a0 between the vortex ring and the ring-tube outlet. A least squares
approach is used to fit a line to the data, indicated by the blue dashed line. For each ring case,
δKE is taken to be the value of the fitted line evaluated at (zi− z0)/a0 = 3.

fluid is rejected into the wake of the ring. For the representative case, an energy loss of
approximately 0.02 mJ/s is observed, corresponding to about a 5% loss per second of the
total ring energy.

In wanting to determine the mixing efficiency of the ring–interface interaction, it is
desirable for our prescription of δKE to closely reflect the amount of kinetic energy delivered
by the vortex ring to the initial density interface. We therefore choose to prescribe δKE as
the kinetic energy of the ring when it is a distance a0 above the density interface. Across all
experiments, to the nearest ring diameter, the distance between the ring-tube outlet and the
initial density interface is 4a0. Our prescription of δKE is therefore taken to be the value of
δKEi evaluated at (zi− z0)/a0 = 3. This is determined by using a least-squares approach to
fit a line to the data, indicated by the blue dashed line in Figure 6.3.
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6.2.2 Quantifying ring-induced increases in potential energy

Writing the vertical density profile after the nth ring has mixed the stratification as ρ(n)(z),
we write the increase in potential energy of the stratification between before and after the nth
ring-mixing event as

δPE(n) = A
(∫ L

0
gρ

(n)z dz−
∫ L

0
gρ

(n−1)z dz
)
. (6.9)

Here, A is the area of the base of the tank, L is the length traversed by the probe and thermistor
and ρ(0)(z) is the density profile of the stratification before any vortex rings are generated.

We decompose δPE(n) into contributions due to ring-induced mixing, δPE(n)
R , and contri-

butions due to temperature changes in the stratification, δPE(n)
T , giving

δPE(n) = δPE(n)
R +δPE(n)

T . (6.10)

To calculate η(n) using Equation (6.6), it is necessary to be able to quantify δPE(n)
T , so we can

infer δPE(n)
R . To do this, we first lay out all heat contributions to the energy budget, allowing

us to understand the evolution of the temperature stratification better in our experiments.
Heat contributions to our experiments can be compartmentalised into two categories:

ring-induced heat fluxes, and external heat fluxes. The ring-induced contributions to heat are
made through heat of dissipation and heat of dilution. These heat contributions were found to
be negligible, leading to temperature changes at most of O(10−3)K, which is demonstrated
in Appendix D. Temperature changes in the fluid system due to external sources are made
by the heat flux through the Perspex walls of the tank, and evaporative cooling at the free
surface. Assuming a linear temperature gradient across the Perspex walls between the fluid
system and lab environment, the heat flux H through each of the walls is given by

H
A

=−kp
Ta−T

wp
, (6.11)

where A is the area of the wall in contact with the fluid system, kp = 0.18W/m/K is the
thermal conductivity of Perspex, wp is the thickness of the walls and Ta, T are the air
temperature and fluid temperature respectively.

For all experiments conducted in each of the two experimental tanks, using Equation
(6.11) allowed us to verify that changes in the mean temperature of the stratification were
mostly attributable to the heat flux through the tank walls. The heat flux calculation consis-
tently over-estimated the observed increase in mean temperature of the stratification, which
we expected as evaporative cooling would be working to reduce the mean stratification
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temperature. No attempt was made to quantify the heat flux due to evaporative cooling
as doing so would require us to measure a number of additional variables, including the
temperature, velocity and relative humidity of the air directly above the free surface.

We estimate δPE(n)
T by calculating the potential energy of the stratification immediately

before the nth ring is generated, and determining what the change in potential energy would
be if the temperature field T is forward-advected to the time immediately after the nth ring
has mixed the stratification, with the salinity field (or equivalently, ρ20) remaining unchanged.
Writing ρ = ρ (ρ20,T ), our quantification for δPE(n)

T can be written as

δPE(n)
T = A

(∫ L

0
gρ

(
ρ
(n−1)
20 ,T (n)

)
z dz−

∫ L

0
gρ

(
ρ
(n−1)
20 ,T (n−1)

)
z dz
)
. (6.12)

Incorporated into δPE(n)
T are changes in PE due to diffusion of the temperature field, and the

ring-induced advection of the temperature field. These contributions to PE are small relative
to the contribution made by the heat flux through the tank walls and so are neglected.

From Equations (6.9), (6.10) and (6.12), the potential energy contribution made by the
mixing induced by the nth vortex ring is given by

δPE(n)
R = A

(∫ L

0
gρ

(
ρ
(n)
20 ,T (n)

)
z dz−

∫ L

0
gρ

(
ρ
(n−1)
20 ,T (n)

)
z dz
)
. (6.13)

6.2.3 Mixing efficiency measurements

As conductivity and temperature profiles are only taken after every 10 vortex-ring genera-
tions, ring-induced increases in potential energy are determined between consecutive profiles
being taken, then divided by the inter-measurement number of vortex rings to estimate the
mixing efficiency η(n) (introduced in Equation (6.6)). We denote the ring-induced increases
in potential energy made from the first n generated vortex rings as

ΣδPE(n)
R =

n

∑
k=0

δPE(k)
R , (6.14)

where ΣδPE(0)
R = 0. Figures 6.4 (a) and (b) plot ΣδPE(n)

R against n for the experiments
corresponding to Ri0 = 6.30 and Ri0 = 0.98 respectively. The observed evolution is repre-
sentative of the other non-penetrative and penetrative mixing experiments listed in Table
6.2. For non-penetrative mixing, we see that δPE(n)

R appears to converge towards a constant
for large n, corresponding to the constant mixing efficiency regime identified by Olsthoorn
and Dalziel (2015). A similar regime is observed for penetrative mixing, though greater
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Fig. 6.4 Plots of ΣδPE(n)
R against the number of ring generations, n for the cases (a) Ri0 = 6.30

and (b) Ri0 = 0.98. Colours correspond to the legend given in (b).

variation in δPE(n)
R is observed, possibly attributable to the variation in density gradients as

the stratification evolves.
Using Equation (6.14), we define the average mixing efficiency ηb

a of the kth vortex rings
with a < k ≤ b as

η
b
a =

ΣδPE(b)
R −ΣδPE(a)

R
(b−a)δKE

. (6.15)

Figure 6.5 (a) plots η600
200 against Ri0 for each of the experiments listed in Table 6.2. The

non-penetrative cases are broadly consistent with the mixing efficiency ηc determined by
Olsthoorn and Dalziel (2015), with a mean average mixing efficiency of 1.05ηc obtained.
Similar values for η600

200 are also obtained in the penetrative regime, with no indication of a
drop in mixing efficiency as Ri0 decreases. While we would expect η → 0 as Ri0→ 0 for
the ring–interface interaction, in the penetrative regime the initial interface erodes rapidly,
shown for example in Figure 6.1 (b)). The associated changes in the ring-induced mixing of
the stratification must be responsible for allowing η600

200 to be so high for low Ri0.
To relate ηn

0 to η in the penetrative regime requires averaging over a sequence of vortex-
ring generations small enough that the initial interface does not become significantly eroded.
Figure 6.5 (b) plots η80

0 against Ri0 for our penetrative-regime experiments. Due to both the
large cross-sectional area of the tank the ring-mixed fluid redistributes itself over, and the
measurement error of the conductivity probe as it moves through high conductivity gradients
(which we discuss in Appendix C), there is a high level of uncertainty associated with our
measurements of η80

0 . However, it can be seen that measured values of η80
0 are significantly
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Fig. 6.5 Plots of averaged mixing efficiencies from each experiment listed in Table 6.2 against
Ri0. (a) Plots of η600

200 against Ri0, where ηc = 0.42 is the mixing efficiency determined by
Olsthoorn and Dalziel (2015). (b) Plots of ηn

0 against Ri0, where n = 80 and n = 40 for the
penetrative and non-penetrative regimes respectively. Colours for (a) and (b) correspond to
the legend given in (b). (c) Plots of ηn

0 against n for experiments A0 and Q0, corresponding
to the non-penetrative and penetrative regimes respectively. Standard error bars are included
in all plots to illustrate the uncertainty associated with our measurements.

lower than η600
200 . This supports our assertion that, in the penetrative regime, η600

200 is unsuitable
as a proxy for evaluating the mixing efficiency of the ring–interface interaction.

For our non-penetrative-regime experiments, Figure 6.5 (b) plots η40
0 against Ri0. The

level of disparity between η40
0 and the corresponding values of η600

200 is substantial, with
0.4 < η40

0 /ηc < 0.8 and 1 < η600
200/ηc < 1.1. The data is suggestive that the ring-induced

mixing of the stratification, once it has converged to its self-similar form, is significantly
more efficient when compared to the mixing induced by the ring–interface interaction. To
understand why this is the case, we now consider in detail the evolution of the stratification
for non-penetrative mixing.
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6.3 Evolution of stratification for non-penetrative mixing

We describe the evolution of the stratification in the non-penetrative regime as comprising
of two stages. In keeping with Olsthoorn and Dalziel (2015), we refer to the first stage of the
evolution as the ‘initial-adjustment phase’ (IAP). The second stage of evolution is referred
to here as the ‘quasi-steady state’ (QSS). In Section 6.3.1 we describe the evolution of the
IAP, restricting our discussion to the case θ0 = 0◦. Then, in Section 6.3.2, we discuss the
evolution of vortex rings in the QSS and the associated mixing they induce. In Section
6.3.3, we describe the interplay between the mixing mechanisms in the QSS that appear to
be responsible for locking the evolution of the stratification into a state of constant upward
entrainment across the interface and constant mixing efficiency per ring generation. Finally,
in Section 6.3.4 we discuss the influence of control parameters on the evolution of the QSS.

6.3.1 The initial-adjustment phase

To visualise the evolution of the stratification in the non-penetrative regime, Figure 6.6
plots selected density profiles for the case corresponding to (Re0,Ri0,θ0) = (6.30,2960,0◦).
At the start of the experiment, the stratification has two layers with a diffuse interface of
thickness ∼ 2.5cm. Vortex rings impact the density interface but are only able to deform
the interface slightly due to the magnitude of the restoring buoyancy force relative to the
inertial force of the ring (characterised by high Ri0). The combined effect of the ring
transporting lower-layer fluid around its exterior into the upper layer, and the ‘splashing
mechanism’ described by Linden (1973), leads to the turbulent entrainment of lower-layer
fluid into the upper layer. The direction of entrainment leads to the creation of mixed fluid,
mostly with a low range of intermediate densities given by 0 < ρ ′ = ρ ′M ≲ 0.1−0.2, where
ρ ′ = (ρ−ρ1)/(ρ2−ρ1). Associated with this mixing is a decrease in the interfacial height
H2 and a slight sharpening of the density interface. The interface converges to an equilibrium
thickness that is maintained throughout the rest of the experiment.

For 30 ≲ n′ ≲ 120, the stratification is essentially three-layered, with a ‘middle-mixed
layer’ that forms and grows in thickness due to the ring-induced mixing. The interface
between the upper and middle-mixed layers progressively steepens, which is clearly visible
in Figure 6.6. In a similar way to Ri0, we can construct a bulk Richardson number RiM
associated with the ring interacting with the upper-middle interface, which will scale as
RiM ∼ 0.1Ri0 as ρ ′ ∼ 0.1 in the middle-mixed layer. For the range of Ri0 considered in this
section, we have RiM ∼ 0.3−0.6, indicating that the ring will be able to penetrate deeply
into the middle layer and the splashing mechanism will be able to eject middle-layer fluid
high into the upper layer due to the weak restoring buoyancy force. In a similar way as



164 Vortex-ring-induced mixing of an initially two-layered density stratification

0

hB

1
z/

L

0 1
ρ ′ =

ρ(z)−ρ1
ρ2−ρ1

Ring generations, n
0

30
60
90

120
150
200
300

400
500
600

Fig. 6.6 Non-dimensionalised density profiles selected to visualise the evolution of the
periodic-mixing system for case A0, corresponding to (Re0,Ri0,θ0) = (2960,6.30,0◦). Here,
the non-dimensionalised tube height hB = HB/L = 0.75, and unmixed upper and lower-layer
densities are ρ1 = 1.0017g/cm3 and ρ2 = 1.0481g/cm3 respectively.

for n′ ≲ 30, the splashing mechanism leads to the formation of a mixed region above the
middle-mixed layer, with ρ ′ ∼ 0.1ρ ′M ∼ 0.01. This mixed region grows in vertical extent due
to the successive ring mixing events up to the height of the ring-tube, at z = HB. The increase
in density of the middle-mixed layer and the decrease in H2 indicates that the generated rings
continue to be able to entrain and mix lower-layer fluid into the middle-mixed layer.

For 120 ≲ n′ ≲ 300, the interface between the middle-mixed layer and the mixed region
above is gradually eroded by the ring-induced mixing. The ring-induced splashing at the
eroding interface leads to the weakly mixed layer growing to slightly above the height of
the ring-tube opening, at z = HB +δHB (δHB ∼ 1cm in our experiments). After its erosion,
the stratification is again three-layered. The unmixed upper layer occupying the region
z > HB + δHB is effectively dynamically isolated from the ring-induced mixing for the
remainder of the experiment. The dynamically active region of the stratification can therefore
be regarded as two-layered, and so after this evolutionary stage of the experiment we refer to
the middle-mixed layer as the upper layer, and refer to the dynamically-isolated upper layer
as the ‘isolated layer’.
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Fig. 6.7 Non-dimensionalised density profiles after every 60 ring generations for the cases (a)
B0 and (b) D0. Red profiles mark the transition between the IAP and the quasi-steady state.

Figures 6.7 (a) and (b) respectively plot density profiles after every 60 ring generations
for the cases (Re0,Ri0,θ0) = (2390,5.73,0◦) and (2960,3.67,0◦), with red profiles marking
the end of the IAP. The IAP for these cases clearly follow a similar evolution to the case
illustrated in Figure 6.6. Note that for the case corresponding to Ri0 = 3.67, variations in the
upper-layer density gradient develop after the IAP. We return to this point in Section 6.3.4.

The homogenisation of the upper-layer density gradient over the IAP clearly demonstrates
that each ring induces mixing both in the upper layer and at the density interface. Additionally,
the mixing induced by each ring is seen to produce fluid with a range of intermediate densities,
as opposed to perfectly mixed fluid of a single density. These observations appear to be
in contrast to the banding process described by Olsthoorn and Dalziel (2015) for the QSS,
where each vortex ring is envisaged to produce a perfectly mixed layer of fluid at the bottom
of the upper layer. However, the evolution of the stratification associated with the QSS is less
clear, particularly the mechanisms in play that control the micro-structure of the upper layer.
To understand these mechanisms, we now consider the evolution of the stratification in the
QSS.

6.3.2 Ring evolution and mixing in the quasi-steady state

In the QSS, each ring generation can be thought of as a four-stage process: the formation
of the vortex ring; its propagation through the stratified upper layer; the interaction of the
ring with the density interface; and the relaxation of the system, where the fluid finds its new
neutral buoyancy level and the remaining kinetic energy is eventually dissipated. We now
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discuss each of these stages in turn, introducing the parameters that control the evolution of
each ring generation after the IAP.

The gradual development of the interface between the isolated and upper layers is
suggestive that the ring formation process may be playing a role in mixing the two layers.
However, it was observed in real time that the gradual development of the isolated–upper
interface is attributable to splashing that occurred at the interface shortly after each ring–
interface interaction, due to the lightest ring-entrained fluid finding its new neutral buoyancy
level and overshooting into the isolated layer under its own inertia. We therefore assume that
a negligible amount of fluid initially above the height of the ring tube is entrained into the
ring during the formation process. Additionally, assuming the entirety of the ring roll-up
process will occur within one ring-diameter of the tube-height opening, for simplicity we
take the ring density ρ

(n)
T of the nth generated vortex ring to be

ρ
(n)
T = ρ

(n)(z = HB−a/2) . (6.16)

We infer the dynamics of the ring propagating through the stratified upper layer from the
observations of Maxworthy (1977) on vortex rings propagating vertically through a linear
stratification. This comparison is justified for vertically propagating rings as the ring diameter
is much smaller than the density scale height in the upper layer, i.e.

a

ρ
(n)
T

∣∣∣∣dρ

dz

∣∣∣∣≪ 1 . (6.17)

We do not go into the detail of Maxworthy’s observations here, but importantly they justify
two further assumptions. Firstly, that the ring will retain a similar form as it propagates
through the upper layer, and secondly, that the dynamic pressure gradient induced by the
ring (that is radial in the frame of the ring core) allows the vorticity-concentrated ring core to
retain its initial density of ρ

(n)
T .

Conversely, as the ring propagates downward through the upper layer, the ring-entrained
fluid external to the core (its ‘atmosphere’) will gradually increase in density. This is due to
a proportion of the entrained fluid being continually rejected into the wake of the ring as it
becomes lighter than the surrounding stratification, which in turn leads to the ring entraining
heavier fluid from the ambient into the ring atmosphere. We can therefore approximate
the ring as comprising of fluid with two densities: the core, with density ρ

(n)
T , and the ring

atmosphere, with intermediate density ρ
(n)
I (z) such that

ρ
(n)
T < ρ

(n)
I (z)< ρ

(n)(z) . (6.18)
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As ρ
(n)
I (z) is set by the dynamics of the ring and the background stratification in the upper

layer, it follows that the evolution of the ring as it propagates through the upper layer is
controlled by Re0, θ0 and the gradient Richardson number Ri(n)g (z), which we define as

Ri(n)g (z) =
−g

ρ
(n)
T

dρ(n)

dz
a2

U2 . (6.19)

As the stratification evolves in the QSS, ρ
(n)
T strictly increases. A natural way to charac-

terise the interaction of the ring with the density interface would be to introduce a transitional
Richardson number, Ri(n)T , given by

Ri(n)T =
g(ρ2−ρ

(n)
T )

ρ
(n)
T

a
U2 . (6.20)

Note that Ri(0)T = Ri0, and Ri(n)T only decreases as ρ
(n)
T increases. Over the number of ring

generations each experiment is run for, Ri(n)T is seen to decrease linearly in the QSS to a good
approximation, by a constant δRiT per ring generation (corresponding to an approximately
constant increase in ρ

(n)
T of δρT per ring generation).

Figure 6.8 (a) plots δRiT against θ0 for our non-penetrative-regime experiments, where
δRiT is determined by fitting a line through Ri(n)T from n = 200 to n = 600 using a least
squares approach. Note that we return to the differences in the functional dependencies
of δRiT on θ0 for the different cases of (Re0,Ri0) in Section 6.3.4. Figure 6.8 (b) plots
Ri(n)T against n for the experiments corresponding to θ0 = 0◦. Across this sequence of
ring generations, we see a total reduction in Ri(n)T of 0.55− 0.75. If we assume that Ri(n)T

characterises the ring-induced mixing in precisely the same way as Ri0 characterises the
mixing associated with the ring-interface interaction, the observed reduction in Ri(n)T would
represent a significant change in the ring-induced mixing at the density interface.

As discussed in Olsthoorn and Dalziel (2015), in the QSS, the change in interfacial height
δH2 per ring generation is constant in a given experiment, and is seen to scale as δH2 ∼Ri−1

0 .
Figure 6.8 (c) plots the product of Ri0 and the non-dimensionalised interfacial-height change
AδH2/VR in QSS per ring generation against θ0. Writing H(n)

2 for the interfacial height
immediately before the nth ring generation, H(n)

2 is determined as the position at the interface
with maximal density gradient |∂ρ/∂ z|. Then, δH2 is determined by fitting a line through
H(n)

2 from n = 200 to n = 600 using a least squares approach.
The ring-induced upward entrainment of fluid across the density interface is seen to

be both independent to changes in Ri(n)T , and highly correlated with Ri−1
0 . Additionally, in

the early stages of the IAP, the ring-induced upward entrainment is also seen to depend on
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Fig. 6.8 (a) The average change in transitional Richardson number δRiT per ring generation,
against θ0. (b) Plot of Ri(n)T against n for the cases corresponding to θ0 = 0◦, demonstrating
the typical evolution of Ri(n)T in the non-penetrative regime. (c) The product of Ri0 and the
non-dimensionalised interfacial height change AδH2/VR in the quasi-steady state per ring
generation, against θ0. Standard error bars for (a) and (c) are included.

Ri0. If Ri(n)T characterised the interaction of the ring with the density interface during the
QSS in the same way that Ri0 characterises the ring–interface interaction, we would observe
a dependency of δH2 on Ri(n)T . As this dependency is not observed, we must conclude
that the upper-layer Ri(n)g (z) profile evolves in such a way that maintains a constant rate of
upward-entrainment across the density interface. We return to this shortly in Section 6.3.3.

When the vortex ring reaches the density interface, the buoyancy force arrests the down-
ward motion of the ring. The ring entrains fluid from the lower layer into the upper layer,
leading to some irreversible mixing. As the vortex ring transports fluid of density ρ

(n)
T to

the interface, in an analogous way to the ring-mixed fluid produced by the first 30 ring
generations in the IAP, we expect the ring-mixed fluid produced to have a distribution of
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densities, given by 0 < ρ
(n)
M < 0.1−0.2, where ρ

(n)
M = (ρ−ρ

(n)
T )/(ρ2−ρ

(n)
T ). Subsequently,

due to the weak stratification exhibited in the upper layer, the ring-mixed fluid redistributes
itself throughout the upper layer as it finds its new neutral buoyancy level.

Additionally, as the vortex ring breaks down, the fluid transported within the ring core (of
density ρ

(n)
T ) begins to return to its neutral buoyancy level as the hydrostatic pressure gradient

starts to dominate over the dynamic pressure gradient induced by the vortex ring. As the
core fluid and ring-mixed fluid finds its new neutral buoyancy level, convective instabilities
will develop, leading to further irreversible mixing. This mixing mechanism is not exhibited
in the ring–interface interaction, and so would appear to explain the relatively high mixing
efficiencies observed in the QSS compared to the IAP (shown in Figures 6.5 (a) and (b)).

6.3.3 Mixing equilibrium in the quasi-steady state

In the QSS, we observe over the range of parameters considered that the ring-induced
upward entrainment of fluid from the lower layer across the density interface is controlled
predominantly by two factors. Firstly, the increase in the ring density ρ

(n)
T . This is directly

associated with both the vertical confinement of the evolving stratification, imposed by the
prescription of the ring-tube height HB, and the mixing associated with core and ring-mixed
fluid finding its new neutral buoyancy level after each ring interaction with the density
interface. Secondly, the increase in the vertically-integrated buoyancy ⟨B(n)⟩ of the upper
layer. By buoyancy conservation, ⟨B(n)⟩ can be written as

⟨B(n)⟩=
∫ HB

H(n)
2

g
(

ρ
(n)(z)−ρ1

)
dz = g(H2−H(n)

2 )(ρ2−ρ1) . (6.21)

The increase in ⟨B(n)⟩ is directly associated with the upward entrainment of lower-layer fluid
across the density interface.

For a given experiment, in the QSS the stratification evolves so that ρ
(n)
T and ⟨B(n)⟩ follow

an equilibrium curve in (ρT ,⟨B⟩)-space, which we denote as ρT,e = f (⟨B⟩). A balance
is reached through a competition between two mixing mechanisms. First, the upward
entrainment of lower-layer fluid across the density interface, leading to an increase in ⟨B(n)⟩.
The associated strengthening of the stratification in the upper layer then leads to a decrease in
the kinetic energy delivered by subsequent vortex rings to the interface (hence inhibiting their
ability to entrain fluid upwardly across the interface). Second, the ring-induced transport of
fluid from the top of the upper layer to the interface and the subsequent convective mixing
that occurs, leading to increases in ρT . This reduces the buoyancy difference between the
ring-transported fluid and the upper-layer stratification, allowing subsequent vortex rings to
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deliver more kinetic energy to the interface (hence enhancing their ability to entrain fluid
upwardly across the interface).

From this perspective, the IAP can be viewed as a state before the equilibrium ρT,e =

f (⟨B⟩) is reached. If ρ
(N)
T > f (⟨B(N)⟩) for given N (which is the case at the start of the

IAP), the buoyancy upwardly entrained across the interface per ring generation decreases
as the ring-entrained upper-layer buoyancy inhibits subsequent vortex rings from mixing
at the density interface. This inevitably leads to ρ

(n)
T → f (⟨B(n)⟩). Conversely, if ρ

(N)
T <

f (⟨B(N)⟩) for given N, subsequent vortex rings would mix the upper-layer stratification,
homogenising it sufficiently so that the ring-induced upward entrainment across the interface
balanced the mixing of the upper-layer stratification, corresponding to ρ

(n)
T converging onto

f (⟨B(n)⟩). Over the range of parameters considered, the competition between these two
mixing mechanisms appears to be responsible for locking the evolution of the stratification
into a state corresponding to constant upward entrainment across the interface, and constant
mixing efficiency per ring generation.

6.3.4 Influence of control parameters on the QSS

The control parameters (Re0,Ri0,θ0), in addition to the vertical distance (HB−H2)/a,
will predominantly control how the stratification evolves in the equilibrium state described
in Section 6.3.3. To aid our discussion how the input parameters control the evolution of
the flow, Figures 6.9 (a) to (d) plot overlaid density profiles, comparing the evolution of the
stratification between θ0 = 0◦ and 20◦ for each of the cases of (Re0,Ri0) investigated. The
profiles plotted correspond to n = 120, 300 and 480, and black and red profiles correspond
to the cases where θ0 = 0◦ and θ0 = 20◦ respectively.

A striking feature of the compared density-profile pairs is the level of similarity in each
pair, particularly for the cases in Figures 6.9 (a) and (b), corresponding to higher values of
Ri0. In the large Ri0 regime, we have δH2 ∼ Ri−1

0 , and so the vortex rings are only able to
weakly scour the interface, upwardly entraining only a small amount of lower-layer fluid
across the interface. This implies that, for large Ri0, the dynamical differences of the ring
scouring the interface between the cases θ0 = 0◦ and 20◦ will only have a small effect on the
differences in the composition of mixed fluid after each interaction.

If this is the case, for large Ri0, we can expect that the majority of the mixing induced will
be associated with the previously-described convective instabilities. This would imply that
the mixing efficiency of sustained periodic forcing is controlled predominantly by the Ri(n)g (z)
profile (introduced in Equation (6.19)) in the upper layer. For 4≤ Ri0 ≤ 12, Olsthoorn and
Dalziel (2015) observe the stratification maintaining a self-similar form, with a weakly
stratified upper layer of constant density gradient. For the cases θ0 = 0◦, Figure 6.10 (a) plots
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Fig. 6.9 Non-dimensionalised density profiles after 120, 300 and 480 ring generations for the
cases (a) (A0, A20), (b) (B0, B20), (c) (C0, C20), and (d) (D0, D20) respectively. Black and
red profiles correspond to the cases where θ0 = 0◦ and θ0 = 20◦ respectively.

the mean upper-layer gradient Richardson number, Ri(n)g,U , which we define as

Ri(n)g,U =
1

HB−H(n)
2 −a

∫ HB−a/2

H(n)
2 +a/2

Ri(n)g (z)dz . (6.22)

Additionally, Figure 6.10 (b) plots the standard deviation of Ri(n)g,U , given by

std(Ri(n)g,U) =
1√

HB−H(n)
2 −a

√∫ HB−a/2

H(n)
2 +a/2

(
Ri(n)g (z)−Ri(n)g,U

)2

dz , (6.23)

to demonstrate how closely Ri(n)g,U approximates to exhibiting a constant gradient. Note that
we expect

Ri(n)g,U ∼ (HB−H2)
−1 ,
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Fig. 6.10 Plots of (a) Ri(n)g,U , and (b) std(Ri(n)g,U), against ring generation n for θ0 = 0◦. Cases
A-D correspond to the labels given in Table 6.2 and the black profiles in Figures 6.9 (a)-(d).

as the mixing equilibrium ensures that vortex rings are always able to upwardly entrain some
fluid from the lower layer across the interface.

The high level of overlap between cases A-C of Ri(n)g,U is suggestive that, after the IAP

for Ri0 ≳ 4, the mixing equilibrium discussed in Section 6.3.3 fixes Ri(n)g,U to evolve in
a way that is Ri0-independent to a high approximation. Assuming in this regime that
convective instabilities are responsible for the majority of the mixing, this may explain the
high, Ri0-independent mixing efficiency reported by Olsthoorn and Dalziel (2015). For case
D (corresponding to Ri0 = 3.67), an increase is observed in std(Ri(n)g,U), which appears to
be associated with the strengthening of the stratification towards the bottom of the upper
layer, exhibited in Figure 6.9 (d). This is suggestive of a transition in the non-penetrative
regime where the mixing induced by the ring interacting with the interface becomes a more
significant fraction of the total mixing as Ri0 decreases.

Another feature observed in the presented density-profile pairs in Figure 6.9 is that, in
the θ0 = 0◦ case, the periodically forced system is more effective at transporting buoyancy
towards the top of the upper layer. Conversely, in the θ0 = 20◦ case, vortex rings appear to be
more effective at inducing mixing towards the bottom of the lower layer, mixing with the fluid
upwardly entrained across the interface. Due to the non-zero bulk horizontal momentum of
the vortex ring for the θ0 = 20◦ case, it seems reasonable to expect that obliquely propagating
rings will be more effective at generating overturning events towards the bottom of the
upper layer, relative to the θ0 = 0◦ case. In turn, the mixing produced by these overturning
events would lead to an accumulation of more evenly mixed fluid at the bottom of the upper
layer, and less convective mixing as the overturning-mixed fluid would already be in close
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proximity to its neutral buoyancy level immediately after its generation. This suggested
mechanism would explain the observed decrease in δRiT for the θ0 = 20◦ case relative to the
θ0 = 0◦ case, shown in Figure 6.8 (a), and would be consistent with the larger discrepancies
between compared profile pairs being exhibited for smaller values of Ri0.

Unfortunately, the range of Re0 investigated here is not large enough to be able to attribute
features of the evolution of the stratification directly to the Reynolds number. However, as
Re0 increases, we do expect that the vortex ring would become more susceptible to developing
the Widnall instability, or other instabilities, as it propagates through the weakly-stratified
upper layer. Such instabilities may lead to some mixing occurring before the ring reaches
the interface, possibly accounting for the variations in dρ/dz in the upper-layer exhibited in
Figure 6.7 (b) and Figures 6.9 (c) and (d). To confirm this, further experiments would need
to be conducted that probe the evolution of the vortex ring in this stage of the flow.

6.4 Summary

In this chapter, we have conducted experiments in which vortex rings were generated
periodically, mixing an initially two-layered density stratification. Experiments were classi-
fied into ‘penetrative’ and ‘non-penetrative’ regimes, corresponding to whether downward
entrainment of upper-layer fluid into the lower layer occurred in addition to upward entrain-
ment of lower-layer fluid into the upper layer. It was demonstrated that, in both regimes,
the measured mixing efficiencies associated with the sustained forcing of vortex rings in the
QSS was significantly higher than mixing efficiencies associated with the mixing induced
by a relatively small number of vortex-ring generations. For the non-penetrative regime,
this called into question the association of the mixing efficiency ηc = 0.42 determined by
Olsthoorn and Dalziel (2015) with the mixing efficiency of a ring–interface interaction
between otherwise homogeneous layers.

In the non-penetrative regime, the stratification evolves such that, after the initial-
adjustment phase (IAP), an energetic balance is maintained between the ring-induced trans-
port of fluid from the top of the upper-layer to the interface, ring-induced mixing at the
interface, and convective instabilities that develop as the core and ring-mixed fluid rise to
find their new neutral buoyancy levels. Figure 6.11 sketches the evolution of the horizontally-
averaged density profile ρ(z) during a vortex ring mixing event after the IAP. Over the
range of parameters considered, the energetic balance locks the evolution of the stratification
into a state corresponding to a constant rate of upward entrainment across the interface
(proportional to Ri−1

0 ), and constant mixing efficiency.
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ρ(z)

z

Fig. 6.11 A simplified sketch of the horizontally-averaged density profile ρ(z) during the
lifespan of a vortex ring mixing event after the IAP. Each vortex ring entrains fluid from the
lower layer, after which convective mixing occurs as the ring-transported and ring-mixed
fluid rise to find their new neutral buoyancy levels.

We propose that the high mixing efficiency observed in the QSS should be attributed
to the combination of the mixing induced by the ring interacting with the interface and the
subsequent convective instabilities that develop after each ring interaction with the interface.
This proposition, in combination with our measurements of η40

0 in Figure 6.5 (b) (which fell
in the range 0.15 < η40

0 < 0.33 over the parameters investigated), suggests that the mixing
efficiency η of the ring–interface interaction between two homogeneous layers is significantly
lower than the reported value of ηc = 0.42. Moreover, the precise functional dependency
of η on Ri0 remains unclear, let alone its dependencies on other likely-important control
parameters, including Re0, θ0 and the interfacial thickness, δ z. Considerations relating to
future research in characterising η are discussed in Section 7.3.



Chapter 7

Conclusions

This chapter begins by presenting a summary to this thesis, given in Section 7.1. Then,
in Section 7.2, we relate our findings to Turner’s mixing box and the ring–eddy analogy.
Potential avenues for future research are suggested in Section 7.3, after which a final reflection
on this thesis is given in Section 7.4.

7.1 Thesis summary

The primary motivation of the research presented in this thesis was to understand how
the dynamics and mixing induced by a vortex ring, interacting with a sharply-stratified
density interface, change with respect to the initial propagation angle θ0 of the vortex ring
towards the interface. Olsthoorn and Dalziel (2017) identified a Crow-like instability for
the ring–interface interaction at θ0 = 0◦, which was seen to be effective at transferring the
energy of the ring to smaller scales for irreversible mixing. They associated the instability
with the unexpectedly high mixing efficiency of ηc = 0.42, reported earlier by Olsthoorn
and Dalziel (2015) for a periodic sequence of vortex rings mixing an initially two-layered
stratification. This called into question the usefulness of relating the ring–interface interaction
at θ0 = 0◦ to the ring–eddy analogy introduced by Maxworthy (1972) and Linden (1973),
as it remained unclear whether the associated dynamics and entrainment mechanisms were
highly unique in the broader family of eddy interactions with density interfaces. As such,
in this thesis we chose to restrict our attention to cases with θ0 ≤ 25◦, to investigate how
breaking azimuthal symmetry by introducing a small to moderate ring-propagation angle
would alter the dynamics and mixing properties of the ring–interface interaction.

This thesis has presented an experimental investigation into the dynamics and mixing
properties of obliquely propagating vortex rings interacting with a density interface. Before
presenting our results, an extensive review of background theory and literature relevant to
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our investigation was carried out in Chapter 2, which enabled us to infer three-dimensional
features of the ring–interface interaction from our two-dimensional measurements. Then, in
Chapter 3, we discussed the experimental apparatus, setup and procedures we made use of to
conduct the experiments presented in this thesis.

The dynamics of ring–interface interactions was investigated using two-dimensional PIV
and LIF measurements to probe the velocity and density fields in the central plane of the flow.
Observations from these experiments were discussed in Chapter 5. To reduce the relative
measurement error (RME) across all our velocity measurements, we developed a ‘multi-
frame’ PIV algorithm, that locally optimises the time separation ∆T between camera frames
to achieve the RME reduction. This algorithm, in addition to our particular implementation
of the algorithm for our experiments, was introduced in Chapter 4. Although multi-frame-
algorithm variants have been previously developed by Pereira et al. (2004), Hain and Kähler
(2007) and Persoons and O’Donovan (2011), we believe our algorithm is the first that takes
into account having only a single suitable image-pair time step available to construct low
RME velocity measurements in the fastest moving regions of the flow. As a result, our
algorithm is uniquely suited to PIV setups where the ratio between the two smallest available
image-pair time steps is greater than two, such as the setup for the PIV/LIF experiments
presented in this thesis.

Our PIV/LIF experiments presented in Chapter 5 represent the first systematic study
on the dynamics of vortex rings obliquely impacting a density interface. For both non-
penetrative and penetrative ring–interface interactions, a wide range of dynamical behaviour
was observed across the range of propagation angles (θ0 ≤ 20◦) investigated. Comparing
ring–interface interactions between the θ0 = 0◦ and 5◦ cases, the break in azimuthal symmetry
associated with non-zero θ0 leads to the triggering of different instability mechanisms that
may have significant consequences for the entrainment and small-scale mixing that occurs.
Indeed, our measurements of η40

0 and η80
0 in Figure 6.5 (b) are suggestive that the mixing

efficiency η of the ring–interface interaction may have a sensitive dependence on it control
parameters (Re0,Ri0,θ0) for the range of parameters investigated, possibly in addition to
other hidden dependencies. As such, it appears unlikely that η can be characterised by
having a parametric dependence on its control parameters, though it has been commonplace
to attempt to do so for other flows (Caulfield, 2021).

With the initial aim of probing the mixing efficiency of the ring–interface interaction,
experiments were conducted in which a periodic sequence of vortex rings were generated
to mix an initially two-layered stratification. Mixing-efficiency measurements made after
a small number of vortex-ring generations were shown to be consistently lower than the
measurements made after the sustained forcing of hundreds of vortex rings, indicating that
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additional mixing mechanisms may be at play after a finite number of ring generations. This
was found to be the case.

By analysing in detail the evolution of the stratification for non-penetrative mixing, a
balancing mechanism was identified between two mixing mechanisms. Firstly, the ring-
induced upward entrainment of lower-layer fluid across the density interface (inhibiting the
ability of subsequent vortex rings to entrain fluid upwardly across the interface). Secondly,
the ring-induced downward transport of low-density fluid from the top of the upper layer to
the interface and the subsequent convective mixing that occurs as the ring-transported and
ring mixed fluid rise to find their new neutral buoyancy levels in the upper layer (leading to
increases in the ring density of subsequent vortex rings, thus enhancing their ability to entrain
fluid upwardly across the interface). This balancing mechanism was found to regulate the
observed constant upward-entrainment volume (proportional to Ri−1

0 for Ri0 ≳ 3.5) across
the interface per ring generation, in addition to the mean gradient Richardson number Rig,U
in the upper layer, which was seen to evolve seemingly independently of Ri0 for Ri0 ≳ 4 for
θ0 = 0◦. We proposed in Chapter 6 that, for Ri0 ≳ 4, the occurrence of convective mixing, in
addition to the Ri0-independent evolution of Rig,U , were responsible for both the constant
mixing-efficiency regime identified by Olsthoorn and Dalziel (2015) and for their reported
mixing efficiency of ηc = 0.42 being so high.

7.2 Turner’s mixing box and the ring–eddy analogy

The mixing-box experiments of Turner (1968) conclude that the dominant mechanism
for entrainment across the density interface is the largest eddies intermittently interacting
with the interface in localised events, thus motivating the ring–eddy analogy. Figure 7.1 (a)
sketches the mixing-box experiment during an entrainment event. Relating our ring-mixing
experiments in the non-penetrative regime to the mixing-box experiment when grid-induced
stirring occurs only in the upper layer, it is reasonable to assume that Turner’s largest eddies
will entrain fluid across the interface and produce partially-mixed fluid with a distribution of
densities with 0 < ρ ′ ≲ 0.2. This partially-mixed fluid is then swept into the upper layer by
the less energetic eddies in the flow and mixed perfectly by the grid-generated turbulence.

Figure 7.1 (b) sketches the ring-mixing experiment during an entrainment event in the
non-penetrative mixing regime, after the initial-adjustment phase (IAP). As we have seen in
Chapter 6, ring-mixing events in the IAP lead to an accumulation of partially-mixed fluid
that ultimately occupies the entirety of the upper-layer region, after which the upper layer
exhibits a weak density gradient. Subsequently, vortex rings efficiently transport fluid from
the top of the upper layer to the interface, with a large fraction of the kinetic energy (KE) lost
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Fig. 7.1 Sketches of the entrainment events in (a) grid-mixing experiments, and (b) ring-
mixing experiments after the initial-adjustment phase. Horizontally-averaged density profiles
ρ(z) are provided for both sketches.

transferred to available potential energy (APE). After the entrainment event, the convectively
unstable ring-transported and ring-mixed fluid rise to find their new neutral buoyancy levels,
leading to highly efficient mixing as much of the APE in the system is directly converted to
background potential energy (BPE).

For both types of mixing experiment, the entrainment event at the interface is not
necessarily an efficient mixing event, and much of the total mixing that occurs happens
in the upper layer away from the interface. The fundamental difference between the two
experiments is the upper-layer mixing process. Grid mixing supplies a lot of KE to the
upper layer, a small fraction of which is able to entrain fluid across the interface. The rest
of the KE is highly effective at homogenising the upper layer, but a lot of this energy is
dissipated without increasing the BPE of the system, and so the mixing efficiency is very low.
Conversely, in our ring-mixing experiments, almost all of the mixing that occurs away from
the interface is convective mixing of the ring-transported and ring-mixed fluid. This leads to
a high overall mixing efficiency of the system, made possible by the inability to perfectly
mix the upper layer.

For non-penetrative mixing, our measurements of η40
0 suggest that the mixing efficiency

η of the ring–interface interaction takes a broad range of values over the range of parameters
investigated, with 0.15 < η < 0.33. While the error associated with these measurements is
non-negligible due to the precision attainable with the conductivity probe, the wide range of
measured values suggest that η is sensitive to the particular instability mechanisms of the
ring–interface interaction that transfer energy to the smaller scales for irreversible mixing. If
this sensitivity exists and is significant, then careful interpretation should be given in future
when attempting to relate the mixing properties of vortex rings to general eddies.
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7.3 Avenues for future research

There are a wide range of potential avenues to explore for future research that follow
naturally from the research presented in this thesis. Those that appear to be the most natural
next steps forward from our perspective are discussed in this section.

7.3.1 Multi-frame PIV algorithm

The multi-frame PIV algorithm we introduced in Section 4.3 only attempts to locally
optimise the image-pair time separation ∆T across all regions of the flow (with the aim of
obtaining a low relative measurement error for all velocity scales in the flow). To reduce
the finest spatial resolutions over which velocity gradients can be accurately resolved, an
additional functionality could be incorporated into our multi-frame algorithm that would aim
to locally optimise the interrogation window size nI and spacing δ I . In a similar way to our
optimisation strategy for ∆T , the optimisation of nI and δ I could be made by first interrogating
image pairs using the largest values of nI and δ I selected for use. Subsequently, criteria
based on the obtained pixel displacement and displacement gradient measurements could be
applied iteratively to determine which regions of the flow required further interrogation at
successively smaller values of nI and δ I .

The particular implementation of our multi-frame PIV algorithm for our PIV/LIF experi-
ments proved to be sufficient for our purposes, though there are a number of ways it could be
further improved. For example, a measurement-validation criterion based on the in-plane
divergence ∇∇∇·uuu2D could be incorporated to ensure that measurements made in regions with
with high ∇∇∇·uuu2D only made use of the smallest interrogation time step available. This would
help to reduce measurement errors associated with the pattern-matching algorithms used
having to account for a large change in the number of particle images in a given region of the
flow.

A natural extension of the implementation of our PIV algorithm would be to allow the
interrogation points selected for further interrogation at smaller image-pair time steps to
be disconnected on the sensor array. In this way, disconnected regions exhibiting high
velocities in the flow could be interrogated utilising smaller time steps without interrogating
the slower moving regions between them. This extension could significantly reduce the
total computational time required to process a sequence of PIV images using our algorithm,
particularly for turbulent flows where the turbulence is not localised.

As discussed in Section 4.5, it would be useful to use synthetic PIV images to test our
algorithm against the pre-existing PIV functionality in DigiFlow. Such tests could also



180 Conclusions

be used to understand how to optimise the parameters associated with our measurement-
validation and selection criteria for different types of flow and imaging conditions.

7.3.2 Ring–interface interaction dynamics

In a similar way to the experiments of Walker et al. (1987) for vortex rings normally
impacting a solid wall (discussed in Section 2.3.1) and complementing the experimental
observations of Dahm et al. (1989), it would be interesting to conduct dye experiments to
investigate the dependence of the ring–interface interaction at θ0 = 0◦ on Re0 for a large set
of Reynolds number in the range 100 < Re0 < 2000, for a small set of Ri0 (corresponding to
non-penetrative and penetrative cases). The easiest way to vary Re0 would be to vary the ring
diameter by using ring tubes with a range of different diameters. After calibrating each ring
tube so that the controllable piston parameters can be related to the ring propagation velocity,
Ri0 could be maintained after varying Re0 by adjusting the buoyancy difference between
the two layers accordingly. While such dye experiments may seem primitive compared to
current technological capabilities, they have the advantage of providing three-dimensional
visualisations of the flow with relative ease, making it possible to investigate a large number
of cases without requiring extensive computational resources to process and analyse data. By
conducting separate experiments either dyeing one fluid layer or dyeing the vortex ring, such
experiments would help characterise the Re0 dependence on the instability mechanisms that
develop. We would expect over the suggested range of Re0 that the ring–interface interaction
ranges from being almost entirely laminar in nature, to exhibiting the Crow-like instability
identified by Olsthoorn and Dalziel (2017).

Additionally, dye experiments such as those described above could be used to investigate
the influence of θ0 on the evolution of the ring–interface interaction for given (Re0,Ri0).
By conducting experiments for a similar range of Re0 and Ri0 suggested above, it would
be possible to assess (to a qualitative degree) the sensitivity of the instability mechanisms
that develop on θ0 for a range of Re0 and Ri0. Such an investigation would provide some
clarity over how much variation should be expected in quantities such as the entrainment
rate and the mixing efficiency to apparently small changes in the control parameters of the
ring–interface interaction. As a start, we suggest first considering small angles of θ0 such as
those investigated in this thesis, representing a small deviation in θ0 from the vertical case.

For high-resolution velocity and density measurements of the ring–interface interaction,
the PIV approach developed by Olsthoorn and Dalziel (2017) could be used to obtain
three-dimensional velocity fields for a wider range of Ri0 and Re0 at θ0 = 0◦, provided
the phase-locking of instabilities between consecutive experiments is a feature that can be
repeated. For θ0 > 0◦, the same PIV approach could be attempted, though it would rely
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entirely on the instabilities in the interaction being highly repeatable between consecutive
experiments. Otherwise, it may be worth waiting until in-plane scanning technology, such as
that developed by Partridge et al. (2019), is capable of scanning the flow at a fast enough
rate to resolve the three-dimensional evolution of the flow before revisiting the ring–interface
interaction. It is clear from our two-dimensional observations presented in Chapter 5 that
complex, three-dimensional dynamics are at play in the evolution of the flow that we have
not been able to fully observe. For now, making use of other experimental techniques such
as shadowgraphy is likely to provide further useful insights into how the flow evolves, and so
are encouraged.

In this thesis we have chosen to restrict our attention to cases where θ0 ≤ 25◦. Experi-
ments we have chosen not to include in this thesis looked at higher propagation angles, up to
θ0 = 75◦. Intermediate values of θ0 (30◦ ≲ θ0 ≲ 60◦) tended to produce overturning mixing
events, with lower-layer fluid entrained into the centre of the vortex ring on the side of C1

(defined in Section 5.1) leading to much of the mixing that was observed. For θ0 = 75◦ and
Ri0 ≳ 1, the vortex ring sweeps interfacial fluid along the interface, causing it to accumulate
closely behind the ring as it continues to propagate, leading to the formation of an interfacial
wave. This interfacial wave accelerates the ring on the side of C1, causing the trajectory of
the vortex ring to deviate away from the lower-layer region. Clearly much more work is
needed to understand the dynamics of the ring–interface interaction at the higher values of
θ0 not considered in this thesis, and the implications these dynamics have on the mixing
produced.

With continuous advancements being made in computational capabilities, high resolution
numerical simulations could be carried out to investigate the evolution of the ring–interface
interaction. Previous simulations for the θ0 = 0◦ case have been carried out using the vortex-
sheet method introduced by Stock et al. (2008), which could be adapted to investigate cases
with θ0 > 0◦. Alternatively, DNS could be used to model the ring–interface interaction, with
the flow initialised by prescribing an initial vorticity distribution for the vortex ring.

7.3.3 Conductivity probe design

Our analysis of the conductivity probe we made use of, which is presented in Appendix
C, reveals a design flaw associated with the probe that appears to be capable of introducing
important systematic measurement errors when the probe is traversed through and samples
a region with a high electrical conductivity gradient, such as a sharply stratified density
interface. The design flaw concerns the gap inside the probe head, between the exit of
the probe-tip region and the inner electrode. If the fluid in this gap is not flushed through
effectively by the siphoning of the probe, it is possible for the conductivity of the gap fluid to
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be substantially lower than the conductivity of the fluid passing through the probe tip. This
can lead to the probe-measured conductivity being significantly lower than the probe-tip-fluid
conductivity.

If a new design of conductivity probe could ensure a direct electrical connection is made
between the probe-tip fluid and the inner electrode, the design flaw described above would be
overcome. The testing of a redesigned probe could be carried out in the Rayleigh-Taylor tank
(designed by Dalziel (1993) and housed in DAMTP), which has the advantage of easily being
able to produce (almost) perfectly sharp density interfaces. Then, the ability of the redesigned
probe in resolving density interfaces of varying interfacial thicknesses (produced by leaving
the initial interface to diffuse) could be assessed in a precise way. If a redesign of the probe is
able to improve the probe performance sufficiently, the newly designed probe may be capable
of directly measuring the mixing efficiency η of the ring–interface interaction to a high level
of accuracy.

7.3.4 Eddy-induced mixing

The observed sharpening of the density interface at the start of the IAP in our ring-mixing
experiments is suggestive that the mixing induced during a ring–interface interaction depends
significantly on the (non-dimensionalised) interfacial thickness δ z/a. Indeed, if δ z/a = 0,
it seems fully reasonable to expect that there would be a critical Richardson number Ric
such that the mixing efficiency η = 0 for Ri0 > Ric. However, real density interfaces diffuse,
and so even for Ri0≫ 1, the ring will be able to entrain fluid from the diffuse interface and
generate some mixing. It is important to clarify how δ z/a will influence the ring-induced
mixing, and so we suggest that experiments should be carried out to assess this dependency.
Note however that obtaining a high level of accuracy in such experiments may require the
design of a new generation of conductivity probe, such as that described in the previous
subsection.

To obtain accurate measurements of the entrainment volume AδH2 of the ring–interface
interaction as a function of the various control parameters, our periodic-mixing experiments
could be adapted to have a period τG of weak grid mixing after every N ring generations,
to sweep the ring-mixed fluid at the bottom of the upper layer and mix it perfectly into the
upper-layer. Using the periods τR and τS defined in Section 6.1.1, the time tn of the nth
vortex-ring generation would then be given by

tn = nτR +
⌊ n

N

⌋
(τS + τG− τR) . (7.1)
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Such an experiment would require a calibration of the mixing grid to determine suitable
values for the grid-stirring frequency n and the period τG required to homogenise the upper
layer, as well as the fraction of the total entrainment across the interface attributable to the
mixing grid. Additionally, changes in Ri0 across a given experiment associated with increases
in the upper-layer density should be taken into account when relating measurements of the
entrainment volume to Ri0. It is worth clarifying that by introducing grid mixing, one loses
the ability to measure the mixing efficiency of the ring–interface interaction, as this requires
measuring the density distribution of the ring-mixed fluid before it is mixed further.

7.4 Final words

This thesis represents a modest but significant step forward in understanding the dynamics
of vortex rings obliquely impacting a density interface, and the associated mixing produced.
We have demonstrated a sensitive dependence of the interaction dynamics on θ0, supporting
the notion that the azimuthal symmetry of the θ0 = 0◦ case produces an eddy interaction with
unique instability mechanisms that may lead to their mixing properties being importantly
different in the broader family of eddy–interface interactions. We have also demonstrated
that the mixing efficiency η of the ring–interface interaction in isolation is much lower than
the reported value of ηc = 0.42, with our measurements indicating 0.15 < η < 0.33 over
the range of parameters investigated. Consequently, it appears that the mixing properties of
vortex rings at density interfaces are sensitive to their control parameters over the range of
Re0 considered, and so caution should be taken when relating the properties of eddy-induced
mixing to stratified turbulent flows.
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Appendix A

Kelvin Wave properties for different
azimuthal wavenumbers

To restrict our attention to the modes that are of most interest to us, it is instructive to
consider the properties of waves with different azimuthal wavenumbers. This can be done
effectively by considering the deformation of the vortex column. From (2.36), the column
surface rs is given by

rs = a− ur

α
cos(kz)cos(αt−mφ). (A.1)

Consider a slice of the column along a plane z = z0. From (A.1) we find that the rate of
change of the slice area is given by:

∫ 2π

0
ṙ dφ =

2πur cos(kz0)sin(αt) m = 0

0 m ̸= 0
. (A.2)

Equation (A.2) highlights m = 0 as an exceptional case, corresponding to “varicose” modes.
For such modes, the disturbance to the column is axisymmetric, with the column broadening
and narrowing periodically in the z-direction. Additional insight can be made by considering
the centroid velocity of our z0-column slice. The x-component is given by

d
dt

∫ 2π

0
xs dφ =

d
dt

∫ 2π

0
rs cosφ dφ =


πur

2
cos(kz0)sin(αt) |m|= 1

0 |m| ̸= 1
. (A.3)

Equation (A.3) demonstrates that for |m|= 1, the core centreline deviates from the z-axis in
an oscillatory fashion. The family of waves associated with |m|= 1 are “bending” modes,
their name being lent to the nature of deformation of the vortex column. Modes with |m| ≥ 2
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are called “fluted” modes. For such modes, the vortex boundary deforms into a petal-like
shape, with m peaks.



Appendix B

Tracer Particle Calculations

B.1 Estimation of the Kolmogorov Lengthscale

The turbulent energy cascade describes the process of larger eddies becoming unstable and
breaking up, transferring their energy to successively smaller eddies. Eventually the motion
for small eddies becomes stable as molecular viscosity becomes effective in dissipating the
kinetic energy (Pope (2000)). The size of the largest eddies that are stable due to viscous
dissipation is governed by the kinematic viscosity ν and the dissipation rate ε . Using these
parameters, a unique lengthscale can be created to characterise the size of these eddies. This
is the Kolmogorov lengthscale, η , which is given by

η =

(
ν3

ε

) 1
4

.

Making the assumption that the length and velocity scales associated with ε are the vortex
tube diameter 2R and the vortex ring propagation velocity U , we obtain the scaling

ε = νuuu ·∇2uuu∼ ν
U2

4R2 .

The kinematic viscosity ν = 10−6 cm2/s, the vortex tube diameter 2R = 4 cm and from the
bike pump calibrations in Section 3.2, the range of propagation velocities in our experiments
is 5cm s−1 ≤U ≤ 10cm s−1. Taking the maximal value of U , we obtain an estimate for the
dissipation rate in our experiments:

εmax ∼ 10−6× 10−2

(4×10−2)2 =
25
4
×10−6 m2s−3 . (B.1)
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Using B.1, we estimate the minimum value of the Kolmogorov lengthscale in our experi-
ments to be

ηmin ∼
(

4×10−12

25

) 1
4

≈ 6.3×10−4 m . (B.2)

B.2 Order of magnitude calculation of the Stokes Number

From Section 3.3.4, as the tracer particles we use have diameter dp = 5×10−5 m < ηmin,
the expression given in (3.6) for the Stokes number StK is appropriate for characterising the
ability of the particles to closely follow fluid streamlines.

As ρp is close to the density of freshwater, we take ρp/ρf ≈ 1. Substituting this approx-
imation, the particle diameter dp and the expression for ηmin given in equation (B.2), we
obtain

StK =
1

18

(
ρp

ρf

)(
dp

η

)2

≈ 1
18
×1× 5×10−5

6.3×10−4 ∼ O
(
10−4)≪ 1. (B.3)

As StK ≪ 1, we confirm that the particles we use act as passive tracers in the flow,
validating their use for PIV.

B.3 Calculation of the settling velocity

From equation (3.7), the settling velocity UUUg is given by

UUUg = d2
p
(ρp−ρf)

18µ
ggg.

As discussed in Section 3.3.4, the density distribution for the particles we use was found
to be bimodal, with strong peaks at ρp− = 1.023 g/cm3 and ρp+ = 1.025 g/cm3. As the
density distribution is narrow, for convenience in calculating UUUg we take ρp = 1.024 g/cm3.
Taking the units of ρp and ρf to be g/cm3, substituting ρp and dp into (B.3), we obtain

Ug =
(

5×10−5
)2
× (1.024−ρf)×103

18×10−3 ×−9.8 m/s

=
25×9.8

18
× (ρf−1.024)×10−4×103×3.6×103 cm/h

⇒Ug = 4.9(ρf−1.024)×103 cm/h.



Appendix C

Analysis of the conductivity probe

As discussed in Section 3.4, using the conductivity probe, electrical conductivity mea-
surements are made by sampling the conductivity of the circuit (hereafter referred to as
the ‘probe circuit’) that is established between the two electrodes that form the probe when
fluid is drawn through the probe tip. Additional steps were incorporated into our experi-
mental procedure for our periodic mixing experiments presented in Chapter 6, so that the
response from the probe more closely reflects its desired performance, which is to sample
instantaneously the electrical conductivity of the fluid in the stratification at the height of the
entrance to the probe-tip opening. To clarify the relationship between the vertical profiles of
the probe-measured electrical conductivity and the electrical conductivity profile of the fluid
in the stratification, we give a detailed analysis of the conductivity probe in this appendix.

C.1 Probe circuit

First, we clarify the relationship between the probe measurements and the electrical
resistivity of the fluid that closes the probe circuit, after which we discuss the relationship
between the circuit-closing fluid and the fluid stratification in the tank. Figures C.1 (a) and
(b) illustrates the probe tip, secured to the rest of the probe. There are three distinct regions
of fluid that require separate consideration as the electrical current flows from the outer
electrode to the inner electrode. Firstly, the volume of fluid carrying current from the outer
electrode, up to the probe-tip entrance. Secondly, the volume of fluid occupying the probe-tip
opening, and thirdly, the volume of fluid carrying current from the exit of the probe-tip
opening to the inner electrode. These regions are illustrated in Figure C.1 (a), and we denote
parameters associated with each of these regions with subscripts O (outer), T (tip) and I
(inner) respectively.
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Fig. C.1 Illustrations of the conductivity probe tip, secured to the inner and outer electrodes
that form the conductivity probe. (a) The shaded regions illustrates the different regions that
form the circuit-closing fluid, where the conductivity of the fluid plays a role in setting the
electrical conductivity of the circuit. (b) Illustration of the lengthscales Lk, Dk that set the
electrical resistivity Rk for each of the circuit-closing regions of fluid. For a full schematic of
the conductivity probe, see Figure 3.13.

Each region has associated lengthscales Lk, Dk (k =O, T , I) corresponding to the distance
the electrical current travels and the cross-sectional area through which it travels respectively.
These are illustrated in Figure C.1 (b). Due to the much greater electrical conductivity of
the electrode materials relative to the NaCl solutions we use in our experiments, the current
will preferentially travel up the probe through the inner-electrode material rather than the
probe-internal fluid. It follows therefore that LI ∼ DI , as DI is the confining lengthscale in
the probe interior. For the purposes of this discussion we take LI = 2DI , which is appropriate
for the specifications of the probe we use.

For a homogeneous fluid with electrical conductivity γ , the electrical resistivity Rk of
each region is given approximately by

Rk(γ)∼
Lk

γD2
k
. (C.1)

As the circuit-closing fluid is in series within the rest of the circuit, the electrical conductivity
C of the circuit is given by

C =
1

Rc +RO +RT +RI
, (C.2)
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where Rc is the total resistance associated with the circuit excluding the circuit-closing fluid.
As discussed in Section 3.4, the value for Rc can be set using a choice of resistors contained
within the bridge circuit, and is chosen based on the range of salinities used for a given set
of experiments to optimise the signal to noise ratio of the probe measurements. Variation
in Rc over a day to day timescale is responsible for the small drift between measured and
calibration-calculated values of the fluid density, the effect of which we mitigate using the
methodology outlined in Section 6.1.3.

From Equation (C.2), variation in C will occur primarily due to variation in resistivity
of the circuit-closing fluid. From Equation (C.1), for the specifications of the conductivity
probe, we have RO/RT ∼ 3.4× 10−3 and RI/RT ∼ 2.0× 10−2. Therefore, provided the
conductivity of the fluid in the tip region is not significantly higher than the conductivity of
the fluid in either the inner or outer region, variation in the conductivity of the circuit will be
dominated by the resistivity of the fluid passing through the tip region.

Figure C.2 plots the electrical conductivity γ of NaCl solution for the range of salinities
used in our experiments. To reduce the ratio γ2/γ1 between the conductivities of the lower
and upper-layer solutions across all our experiments, we avoid using fresh water to form our
upper layer, instead opting for a weak salinity solution with density ρ1 = 1.002±0.0003,
corresponding to γ1 = 8.7±0.6. In doing so, we reduced the maximum for γ2/γ1 across our
experiments from 100 to 12, thus reducing the contributions of RO and RI relative to RT by
almost a factor of 10.

As γ2/γ1 ≤ 12 for all our periodic mixing experiments and R0/RT ∼ 3.4× 10−3 for a
homogeneous fluid, it follows that (R0/RT )max ∼ 4.2×10−2 provides an upper bound for
R0/RT realisable in our experiments. As the sharpest density interfaces exhibited in our
experiments are approximately 1cm thick (which is equal to the length of the probe tip),
we expect the values realised for R0/RT throughout our experiments are sufficiently small
that we can neglect the effect of fluid in the outer-probe region impacting our conductivity
measurements.

Though it would have been possible to reduce the maximum γ2/γ1 further by prescribing
larger values for ρ1, ρ2, there was little room for improvement before the probe voltage CV

would begin to clip as it attains its maximum measurable value (we discuss this limiting
factor in Section 3.4). Choosing a stronger resistor in the bridge circuit would have resolved
the clipping issue, but at the expense of the signal to noise ratio of the probe voltage, which
would have reduced the precision of our measurements for δPE(n)

R by at least a factor of two
given the choice of resistors available. We deemed this loss in precision as unacceptable, and
therefore opted to prescribe the values for ρ1 given above.
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Fig. C.2 Plot of the electrical conductivity γ against the density ρ20 of NaCl solution at 20◦C,
covering the range of ρ20 used in our experiments. Data plotted from values tabulated by
Weast et al. (1984).

C.2 Sampling the density stratification

We now discuss how the fluid occupying the tip and inner regions will vary as the probe
traverses through and samples the stratification, and the effect this has on the conductivity
measurements. When the probe samples the stratification, fluid is siphoned through the probe
tip by a hydrostatic pressure head, controlled using a pinch valve (as discussed in Section
3.4). The siphoning volume flux QS ∼ 0.1−0.2cm3/s, and as the volume of the probe-tip
region VT = πD2

T LT/4≈ 2.83×10−4cm3, fluid in the probe-tip region is entirely replaced
by siphoning approximately every tS = 2ms. As the probe is traversed at speed U↓S = 10mm/s
when sampling and UStS ≪ 1mm, we can treat the replacement of fluid occupying the
probe-tip region as instantaneous.

C.2.1 Probe-tip region

The siphoning of fluid by the probe induces a velocity field in the vicinity of the probe-
tip entrance as fluid is drawn into the probe interior. The composition of fluid occupying
the probe-tip region at a given instant in time will predominantly depend on the density
stratification local to the probe-tip entrance, but will also carry some dependence on QS and
U↓S . In particular, the maximum vertical extent beneath the probe-tip entrance at which fluid
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is drawn into the probe will set a precision limit δ z for our conductivity measurements. It is
important to verify that this precision limit is smaller than the vertical lengthscale of strongly
density-stratified regions in our experiments.

To obtain an order-of-magnitude estimate for δ z, we model the traversing and sampling
of the probe as a point sink of strength QS traversed at speed U↓S vertically downwards in
a homogeneous fluid that is otherwise at rest. In the reference frame of the point sink, the
sink-induced speed at a distance R is given by U(R) = QS/(4πR2).

Consider the Lagrangian trajectory of a parcel of fluid at height Z(t) that is initially a
distance H directly beneath the probe tip. The evolution equation for Z(t) is given by

dZ
dt

=
QS

4π(H−U↓S t−Z)2
. (C.3)

Equation (C.3) can be non-dimensionalised by taking ζ = Z/H, τ = U↓S t/H and Q =

QS/(4πH2US), giving
dζ

dτ
=

Q

(1− τ−ζ )2 , (C.4)

where 0≤ ζ ,τ ≤ 1. It is possible to obtain an analytic solution for Equation (C.4), giving an
implicit equation for ζ ,

τ = f (Q,ζ ) =
tan(ζ/

√
Q)√

Q+ tan(ζ/
√

Q)
−ζ . (C.5)

Figure C.3 (a) plots the solution for ζ as a function of τ . Unsurprisingly, the substantial
majority of the elevation gained by the fluid parcel occurs in the near vicinity of the point
sink. It is easy to show that the fluid parcel coincides with the point sink for (τ,ζ ) = (τ0,ζ0),
where τ0 +ζ0 = 1. Using Equation (C.5), it follows that

(τ0, ζ0) =
(

1− π

2

√
Q ,

π

2

√
Q
)
.

For comparison to our experiments, we take QS = 0.2cm3/s, H = 500mm and U↓S =

10mm/s, giving Q≈ 6.4×10−6. The dimensional total elevation height of the fluid parcel is
then given by

Z0 = Hζ0 =

√
π

4

√
QS

U↓S
≈ 2.0mm . (C.6)

The value obtained for Z0 provides an estimate for the total elevation height of fluid in the
tank due to the siphoning and traversing of the conductivity probe. From Equation (C.5),
over 98% of the total fluid elevation is estimated to occur when the fluid is within 1mm of
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Fig. C.3 (a) From our point-sink model, plot of the dimensionless elevation height ζ nor-
malised by the height ζ0 obtained when the fluid parcel makes contact with the point sink.
The plot is given against the non-dimensionalised time τ = f (Q,ζ ), given by Equation
(C.5). (b) Plots of the probe-measured voltage profiles C(M)

V , taken before the start of an
experiment for three values of U↓S . Plots are given against the height (z−H2) [cm] relative to
the prescribed interface.

the probe-tip entrance. Based on this estimate, we can assume that for our experiments, the
flow induced by the probe siphoning as it traverses has a negligible impact on the evolution
of the stratification, and the composition of fluid occupying the probe-tip region at a given
time is made up of fluid from an O(1)mm-thick layer of fluid centred at the height of the
probe-tip entrance.

The functional form of Equation (C.6) indicates a dependence of Z0 on the siphoning
volume flux and the probe traverse speed. For fixed QS ≈ 0.1cm3/s and different values
of U↓S , Figure C.3 (b) plots conductivity profiles obtained when sampling a diffuse density
interface of ∼ 2 cm thickness. The differences between the profiles for −1 < z−H2 < 0 can
be attributed in part to the increase in Z0 for decreasing U↓S . This attribution is consistent with
the profiles exhibiting higher values for the conductivity at a given height for lower values
of U↓S , due to the ability of the probe to withdraw fluid from further beneath the probe-tip
entrance for the lower traverse speeds.

However, Figure C.3 (b) also exhibits discrepancies that cannot be attributed to selective
withdrawal. These discrepancies are observed throughout the lower layer, both in the probe-
measured lower-layer conductivity gradients dC2/dz and the average conductivities C2. The
conductivity gradients converge to 0 for decreasing U↓S , suggesting that the lower layer is
uniform rather than weakly stratified. This was important to verify to validate our tank-filling
procedure. We also see that C2 increases for decreasing U↓S . Our analysis above suggests that
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the differences in C2 are large enough that they cannot be attributable to the fluid occupying
the outer or tip regions of the circuit-closing fluid, and so they must be attributable to
differences in the composition of fluid occupying the inner-probe region for different U↓S .

C.2.2 Inner-probe region

Two time parameters play an important role in the composition of fluid occupying the
inner-probe region as the probe traverses through and samples the stratification. Firstly,
the time tI taken for an inner-probe-region-equivalent volume of fluid passes through the
inner-probe region. This is given by

tI =
πD2

I LI

4QS
∼ 0.1−0.2s , (C.7)

where the lengthscales DI , LI are illustrated in Figure C.1 (b), and QS varied between
0.1cm3/s and 0.2cm3/s across our experiments. Over time tI , the probe is traversed 1−2mm,
which is similar to the measurement precision of evaluating the conductivity at a given height,
set by the elevation height Z0 estimated by Equation (C.6).

Secondly, the time tF taken for the volume of fluid occupying the inner-probe region at a
given time to be completely flushed through by the fluid sampled by the probe. While it is
clear that the ratio τF = tF/tI ≥ 1 by volume conservation, the range of values τF might take
in typical experimental setups making use of the conductivity probe is less clear. If τF ≫ 1,
it is conceivable that a non-negligible disparity could arise between the probe-measured
conductivity and the conductivity of the fluid at the probe-tip entrance. Such a disparity
seems most likely to arise as the probe traverses through and samples a sharp density interface
separated by two uniform layers, with conductivities γ1, γ2 such that γ2/γ1≫ 1. In this case,
after the probe tip passes through the interface, if the typical inner-probe fluid conductivity
γI ∼ γ1, then the inner-probe fluid could play a non-negligible role in setting the electrical
conductivity of the probe circuit, given in Equation (C.2).

The plausibility of this scenario motivates considering the dynamics of the probe-siphoned
fluid as it enters the inner-probe region so that an estimate on the range of values τF is able
to take can be obtained. For the case of the probe traversing through and sampling a density
interface, once the pass tip passes through the density interface, the inner-probe dynamics can
be characterised by a dense fountain discharging vertically upwards into a radially-confined
duct. Unfortunately, we were unable to find any previously published studies on such flows,
and an investigation into the evolution of such a flow is not presented in this thesis.

For the case of the probe traversing through and sampling a uniform stratification, the
inner-probe dynamics is similar to that investigated by Revuelta et al. (2002), who studied
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Fig. C.4 Schematic of a radially confined axisymmetric jet flow. Figure duplicated from
Revuelta et al. (2002).

round laminar jets entering a radially confined duct. This flow depends mainly on two
parameters: the ‘expansion ratio’ ε = DT/DI , and the ‘jet Reynolds number’, ReI , which for
our experiments are given by ε ≈ 0.13 and

ReI =
UT DT

ν
≈ [1.41−2.83]× (3×10−4)

10−6 ∼ 420−850 . (C.8)

Figure C.4 shows a schematic of the axisymmetric flow investigated by Revuelta et al. (2002).
The schematic illustrates a ‘main recirculating region’, indicated by the closed streamlines
on either side of the incoming jet. The recirculating region extends from the jet opening into
the confined region a characteristic lengthscale lR, which is given by

lR =
1
2

DT εReI = 8.2−16.6mm (C.9)

for the conductivity probe.
Note that as lR/DI > 2, the recirculating region in the probe (which we assume exists

if uniform-density fluid is being siphoned) makes contact with the entirety of the portion
of the inner electrode in contact with the inner-probe region. This indicates the importance
of flushing through the recirculating fluid quickly as the probe traverses through a density
interface, as the electrical current established between the two electrodes will pass through
the recirculating region. Assuming a fixed expansion ratio, the jet Reynolds number will
control the rate at which fluid from the recirculating region is entrained into the jet. For the
conductivity probe, this will in turn control the flushing ratio τF .
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We now return to the discrepancy in conductivity profiles presented in Figure C.3 (b) for
z−H2 <−1. Note that, for these cases, the volume flux QS ≈ 0.1cm3/s, giving ReI ≈ 420.
As the probe traverses through and samples a density interface, if the probe fountain is unable
to quickly flush through the recirculating upper-layer fluid occupying the inner-probe region
with lower layer fluid, then there may be a period of time where the average conductivity of
fluid occupying the inner-probe region is significantly lower than the conductivity of fluid
occupying the probe-tip region. If the ratio RI/RT ∼ O(10−1) over this period of time, then
the probe-measured conductivity will incur a non-negligible decrease due to the increased
value of RI . This is consistent with the conductivity profiles presented in Figure C.3 (b).
Indeed, for smaller values of U↓S , as the probe-tip reaches a given height in the lower layer,
more time would have elapsed since the probe-tip passed through the density interface, giving
more time to flush the upper-layer fluid occupying the inner-probe region with lower-layer
fluid.

As UT = 4QS/(πD2
T ), prescription of ReI for inner-probe-fluid entrainment is entirely

controllable through QS for given DT . Control over QS was made by the vertical positioning of
the pinch valve relative to the free surface of the stratification. Most of our experiments were
conducted with QS≈ 0.2cm3/s, giving ReI ≈ 850. For these experiments, the probe-measured
conductivity was almost uniform throughout the entirety of the lower layer, suggesting that
for ReI ∼ 850 the probe jet is able to rapidly flush fluid occupying the inner-probe region.

The rest of our experiments were conducted with QS ≈ 0.1cm3/s, despite making no
re-positioning of the pinch valve or changing the prescribed height of the free surface. The
reduction in QS we attributed to a small blockage in the probe tip, though this was not
confirmed. To validate our data from these experiments, some of these experiments were
conducted using alternating traverse speeds for consecutive probe/thermistor traverses, to
assess whether the reduced ability of the probe jet at flushing fluid in the inner-probe region
had an impact on derived quantities, such as the potential energy of the system. Figures C.5
(a) and (b) respectively plot the salinity excess S(n) normalised by the mean value of S(n),
and the increase in potential energy PE(n)−PE(0), against the traverse number n. Both plots
are derived using the probe-voltage-adjustment methodology outlined in Section 6.1.3. The
plots indicate that, despite the increased probe-measured salinity excess for U↓S = 5mm/s, the
choice of U↓S had a negligible impact on the measured rate of increase in potential energy.

C.3 Summary

We have carried out an analysis on the performance of the conductivity probe as it
traverses through and samples a density stratification. The fluid occupying the probe-tip
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Fig. C.5 (a) Plot of the derived salinity excess S(n) normalised by the mean derived salinity
excess S against the traverse number n. (b) Plot of the potential energy gain PE(n)−PE(0)

in mJ against the traverse number n. Both plots are taken from a single experiment, where
alternating probe/thermistor profiles are taken at traverse speeds U↓S = 10mm/s (blue) and
U↓S = 5mm/s (red).

region was shown to consist of fluid occupying an O(1)mm-thick layer of fluid centred
around the probe-tip, demonstrating that the conductivity of fluid occupying the probe tip
is similar to the horizontally-averaged conductivity at the height of the probe-tip opening,
assuming the fluid is at rest. We argue that a non-negligible discrepancy between the probe-
measured conductivity and the conductivity of fluid at the entrance to the probe-tip opening
can arise due to the dynamics of the inner-probe region. This discrepancy can be reduced
significantly by appropriate prescription of the jet Reynolds number, which can be controlled
through the probe-siphoning volume flux.



Appendix D

Ring-induced heat fluxes

In this appendix we demonstrate that the ring-induced heat fluxes to the temperature
stratification in our periodic mixing experiments could be treated as negligible. This appendix
complements our discussion in Section 6.2 on the relative importance of different mechanisms
that impacted the change in potential energy of the fluid stratification in our periodic mixing
experiments.

Mechanical energy input: Using a Norbury model, the kinetic energy of each vortex
ring is given by

δKE =CKE

(
1
2

ρ0U2
p

)(
4π

3

(a
2

)3
)

(D.1)

For ρ0 ≈ 1002kg/m3, Up ≈ 0.06m/s, a ≈ 0.051m and CKE ≈ 7, we have δKE ≲ 10−3J.
Therefore, firing 750 vortex rings, the total mechanical energy input from the vortex rings
ME is in the range 0.5J < ME < 1J.

Heat of dissipation: Suppose (as a worst case scenario) that all the kinetic energy
was being converted to heat via viscous dissipation, and this heat contribution was being
made only to a 1cm thick horizontal layer of the stratification. The volume of this layer is
Vlayer = 4.8l, which has a mass of approximately 4800g. Therefore the energy contribution
per gram is

ME
Vlayer

= (0.5−1)/4800J/g = (1−2)×10−4J/g

This would contribute to a temperature change of ∼ 10−4/4.2K∼ 10−5− 10−4K, which
would make a negligible contribution to the density stratification.

Heat of dilution: For sodium chloride, the integral heat of dilution ∆Hd is the total
enthalpy change per mole of NaCl in a solution which is then infinitely diluted. For a solution
with initial state molality m[mol/kg], this is related to the ‘apparent molal relative enthalpy’
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Fig. D.1 Plot of Lφ for NaCl solution at 20◦C against fluid density and the molality. Data
plotted from Tables 22A and 22B of Clarke and Glew (1985).

Lφ (m)[J/mol] by
∆Hd(m→ 0) =−Lφ (m) .

When a solution of initial molality m1 is diluted to a final molality m2, the integral heat of
dilution is given by

∆Hd(m1→ m2) = Lφ (m2)−Lφ (m1) . (D.2)

Values for Lφ at 20◦C are given in Table 22 of Clarke and Glew (1985). The tabulated data is
given in Figure D.1, plotting Lφ against both the fluid density and the ‘molality’, which is
the number of moles of solute present in 1kg of solvent.

For low Richardson number mixing experiments, m ranges from 0.09 to 0.31; (weight %
from 0.5 to 1.8), over which Lφ ranges from 230 to 300, and the gradient of Lφ is steepest at
m = 0.31. Assuming the volume of fluid VR entrained by the vortex ring can be approximated
as a sphere of diameter a, then the volume is given by VR ≈ 70cm3. Therefore the mass of
the entrained fluid volume is about 70g.
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Suppose 100g of NaCl solution is diluted from initial molality m1 to final molality m2,
where ∆Hd(m1→ m2) =−70J/mol. An upper bound on this heat change is given by

70J/mol×0.31mol/kg×0.1kg = 2.17J,

which is a heat change of 0.0217J/g for a 100g solution, corresponding to a temperature
change of 5×10−3K. If this heat change is spread over a 1cm thick layer of our stratification,
the temperature change in 10−4K, which has a negligible effect on the density stratification.
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