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A NOTE ON THE FIBRES OF MORI FIBRE SPACES

GIULIO CODOGNI, ANDREA FANELLI, ROBERTO SVALDI, AND LUCA TASIN

Abstract. In this note we consider the problem of determining which Fano
manifolds can be realised as fibres of a Mori fibre space. In particular, we
study the case of toric varieties, Fano manifolds with high index and some
Fano manifolds with high Picard rank.
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Introduction

In algebraic geometry, one of the main goals is to classify algebraic varieties.
Rather than distinguishing varieties based on their isomorphism type, one can look
at their birational type, i.e. the structure of a non-empty Zariski open set of the
variety, which allows more flexibility in the choice of preferred model for the object
under scrutiny.
From this point of view, the study of the canonical bundle of a smooth projective
variety, that is, the determinant of the cotangent bundle, plays a central role in the
classification. There is a stark dichotomy between algebraic varieties that admit
sections of powers of the canonical bundle and those that do not.
In fact, while it is expected that the former are birational to a fibration in Calabi-
Yau varieties over a base of (log-)general type, using a suitable realization of the
Iitaka fibration, the latter are instead expected to be birational to a fibration in
Fano varieties over a smaller dimensional base.
The following definition gives the precise notion needed in the latter case. Let
us remind the reader that a normal projective variety is said to be Fano if the
anticanonical divisor is ample (and in particular it is Q-Cartier).

Definition 0.1. Let f : X → Y be a dominant projective morphism of normal
varieties. Then X is a Mori fibre space (or MFS ) if

• f∗OX = OY and dimY < dimX ;
• X is Q-factorial with klt singularities;
• the general fibre is a Fano variety and ρ(X/Y ) := ρ(X)− ρ(Y ) = 1.
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While it is a difficult problem to prove that a variety having no non-zero pluri-
canonical forms is birational to a Mori fibre space, in [BCHM10] the authors show,
among other things, that this is actually the case if instead the variety is assumed
to have a non-pseudoeffective canonical bundle – the two conditions being expected
to be equivalent as predicted by the existence of minimal models and the celebrated
Abundance Conjecture, cf. [KM98, Conjecture 3.12]. In view of these considera-
tions, it is natural to wonder about the following matter.

Question 0.2. What type of Fano varieties appear as fibers in a Mori fibre space?

Part of the difficulty in answering the above question lays in the lack of clarity
as to what fibers of a MFS one should actually consider. To this end, the notion of
fibre-like Fano variety was introduced in [CFST16]. For the sake of simplicity, we
only consider the case of smooth fibers.

Definition 0.3. A Fano manifold F is fibre-like if it can be realised as a fibre of a
Mori fibre space f : X → Y over the smooth locus of f .

Any Fano manifold with Picard number ρ = 1 is fibre-like, via the constant
map to a point. When ρ ≥ 2 the problem of determining whether a variety is
fibre-like or not is highly non-trivial. Mori showed in [Mor82, Theorem 3.5] which
Fano surfaces are fibre-like. In [CFST16], we systematically study fibre-like Fano
varieties by analyzing the action of the monodromy of the MFS on the Néron-Severi
group of a general fibre. Moreover, we fully characterize those threefolds that are
fibre like, cf. [CFST16, Theorem 1.4] and give the following sufficient condition for
fibre-likeness in any dimension.

Theorem 0.4 ([CFST16], Theorem 3.1). A smooth Fano variety F is fibre-like if

(1) NS(F )
Aut(F )
Q = QKF .

When F is rigid, then property (1) is equivalent to F being fibre-like.

In [CFST16], we also establish that the fibre-likeness of a Fano manifold F
implies an analogous necessary condition: namely, F fibre-like implies

NS(F )
Mon(F )
Q = QKF ,

where Mon(F ) is the maximal subgroup of GL(NS(F ),Z) which preserves the bi-
rational data of F .
Below we recall some of the consequences of our analysis. First, we construct a
large class of examples of fibre-like Fano manifolds.

Corollary 0.5 ([CFST16], Corollary 4.6). Let r, k, d be integers with n ≥ 2 and
kd < n+1. Then any smooth complete intersection of k divisors of degree (d, . . . , d)
in (Pn)r is fibre-like.

Moreover, since the notion of fibre-likeness is strictly intertwined with the mon-
odromy action, we show that it forces a high degree of symmetry on facets of the
nef cone of the variety. Recall that a facet of a polyhedral cone is just a maximal
dimensional face. As Fano varieties are Mori dream spaces, any facet G of the nef
cone F corresponds to a contraction π : F → G such that G = π∗Nef(G).

Corollary 0.6 ([CFST16], Corollary 3.9). Let F be a smooth fibre-like Fano vari-
ety. Let G be a facet of the nef cone of F corresponding to a contraction F → G.
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Then for any other facet H with contraction F → H we have that G and H are
deformation equivalent.

Let us point out that the definition of fibre-like can be extended to singular
varieties (cf. [CFST16], Definition 2.14) and all results illustrated so far still hold
in that setting.

In this note we show that various natural and interesting classes of Fano mani-
folds are fibre-like.

We first focus on smooth toric Fano varieties. If F (∆) is a smooth toric Fano
variety with associated polytope ∆, then F is said to be vertex-transitive if the
automorphism group of the polytope acts transitively on the set of vertices of ∆. A
vertex-transitive toric Fano manifold is fibre-like (see Lemma 1.2) and all the known
examples of toric fibre-like Fano varieties seem to be of this kind (cf. Question 4.1).

Among these, projective spaces and t-del Pezzo manifolds (see Definition 1.3)
are classical examples of vertex-transitive varieties. A generalisation of t-del Pezzo
manifolds has been introduced in [Kly84] and studied in [VK84]. We call those
Klyachko varities (see Definition 1.17). We show that Klyachko varities are vertex-
transitive and we show that they constitute a fundamental building block in the
theory of fibre-like toric Fano manifolds.

Theorem 0.7 (Propositions 1.13 and 1.23). Let F = F (∆) be a d-dimensional
vertex-transitive Fano manifold.

(i) If there are two vertices of ∆ that are not in the same face (i.e. ∆ is not
2-neighbourly), then F is a power of P1 or a power of t-del Pezzo manifolds.

(ii) If d ≤ 7, then F is a power of projective spaces or Klyachko varieties.

Next we look at Fano manifolds with high index. As mentioned above, fibre-
likeness is completely understood for surfaces and threefolds. Hence, here we focus
on Fano varieties of dimension at least 4.

For a Fano manifold F , the index iF is defined as the largest integer that divides
−KF in Pic(F ). The index is one of the most basic numerical invariants for Fano
varieties: there is a complete classification of Fano manifolds with Picard number at
least 2 and index i ≥ n−2 due to Kobayashi-Ochai [KO73] , Fujita [Fuj82a, Fuj82b]
and Mukai [Muk89]. Moreover, Wiśniewski [Wiś91] classified Fano manifolds with
index i ≥ (n+1)/2. Notice that the only case for which i < (n+1)/2 and i ≥ n−2
is i = 2 and n = 4.

When the Fano index is greater then the above bounds, we show that fibre-like
Fano varieties can be explicitly classified.

Theorem 0.8 (Propositions 2.2 and 2.3). Let F be a fibre-like Fano manifold with
Picard number ρ ≥ 2 and dimension n ≥ 4.

• If iF ≥ n+1
2 , then F ∼= Pn/2 × Pn/2 (n even) or F ∼= P

(

T
P

n+1
2

)

(n odd).

• If n = 4 and iF = 2 (i.e. F is a Mukai fourfold), then F is isomorphic to
one of the following:
(i) a double cover of P2 × P2 branched along a degree–(2, 2) divisor;
(ii) an intersection of two degree–(1, 1) divisors in P3 × P3;
(iii) P1 × P1 × P1 × P1.

Finally, we discuss families of Fano manifolds with high Picard number.
As there only exist finitely many families of Fano manifolds in any given dimension,
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there must be an upper bound on the Picard number in fixed dimension. It is a
natural question to ask whether it is possible to compute such bound.
The only known examples of Fano manifolds – other than products – of dimension
n ≥ 4 and Picard number at least n+5 are birational modifications of the blow-up
of P4 at 8 points in general position. These manifolds have been studied in [CCF17];
among other results, the authors showed that they are fibre-like. Here, we study the
only known examples of Fano manifolds – again, other than products – that have
dimension n ≥ 4 and Picard number at least n+4. These are birational modification
of Pn blown up at n + 3 general points, with n even. They are isomorphic to the
space of (m− 1)-planes in the intersection of two quadrics in Pn+2, where n = 2m.
Building on [AC17], we can prove the following result.

Theorem 0.9 (Theorem 3.2). Let n ≥ 4 be an even integer. An n dimensional
Fano manifold birational to the blow-up of Pn at n+ 3 general points is fibre-like.

The structure of the paper is as follows. Section 1 is dedicated to toric Fano
manifolds. In Section 2 we discuss the fibre-likeness of Fano manifolds with high
index. Section 3 is devoted to the study of certain families of Fano manifolds with
high Picard number. Finally, in Section 4 we present new questions and research
directions.

Acknowledgement. We like to thank Cinzia Casagrande for interesting comments
on this work. The second-named author has been supported by the DFG grant
“Gromov-Witten Theorie, Geometrie und Darstellungen” (PE 2165/1-2) and by
the Swiss National Science Foundation Grant “Algebraic subgroups of the Cremona
groups” (200021–159921). The fourth-named author is supported by the DFG grant
“Birationale Methoden in Topologie und Hyperkähler Geometrie”.

Notation. The term variety stays for separated, integral and proper scheme of
finite type over C. A manifold is a smooth variety. For the definitions of singularities
in the context of the minimal model program, see [Kol13, Section 2].

1. Toric Fano varieties

The first class of examples we want to discuss is given by toric varieties. We will
recall here only some notions and refer to [CLS11] for an exhaustive treatment of
the topic. Toric varieties can be described in terms of combinatorial data and this
makes them particularly suitable to test general conjectures on Fano varieties.

Let N be a free abelian group of rank n and set NQ := N ⊗Z Q. Let Σ ⊂ NQ be
a fan of a d-dimensional toric Fano variety F and let ∆ be the polytope associated
to the anti-canonical polarisation. Furthermore, M will denote the dual of N .

The vertices of ∆, denoted by V (∆), are the generators of Σ. We denote by O(σ)
the closure of the orbit corresponding to σ ∈ Σ, which is an irreducible invariant
subvariety.

Let A1 be the group of 1-cycles on F modulo numerical equivalence and set
N1 = A1 ⊗Q. Inside N1, we consider the Kleiman-Mori cone NE(F ) generated by
the effective 1-cycles. We have the following standard exact sequence (cf. [CLS11,
Chapter 4, Theorem 1.3])

(2) 0 → A1(F ) → ZV (∆) → N → 0,
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which by duality yields the following one:

(3) 0 → M → ZV (∆) → NS(F ) → 0.

1.1. Vertex-transitive Polytopes. The following definition of vertex-transitive
for polytopes is classical, although some authors refer to them as isogonal polytopes
(cf. [GO04, 19.5, Enumeration]).

Definition 1.1. A polytope ∆ is vertex-transitive if Aut(∆) acts transitively on
the vertices of ∆. If ∆ is associated to a toric Fano variety F , then F is vertex-
transitive.

This class of varieties is interesting from our prospective for the following reason.

Lemma 1.2. Vertex-transitive Fano manifolds are fibre-like.

Proof. Let F (∆) be a Fano toric variety and let G = Aut(∆). As explained in
the proof of [CFST16, Theorem 5.7], the exact sequence in (3) yields the following
sequence

0 → MG
Q → (QV (∆))G → NS(F )GQ → 0.

Then, F is fibre-like if and only if t− k = 1, where t is the number of orbits of the
action of G on V (∆) and k = dimMG

Q .
If F is vertex-transitive, then t = 1 and so [CFST16, Lemma 5.10] implies that

k = 0, which means that F is fibre-like. �

Denote by d the dimension of the toric Fano variety F and by m the number of
vertices of ∆.

The first non-trivial class of vertex-transitive Fano varieties are t-del Pezzo man-
ifolds.

Definition 1.3. The d-dimensional t-del Pezzo manifold Vd (with d even) is the
smooth toric Fano variety whose associated polytope has vertices

V (∆) = {e1, . . . , ed,−e1, . . . ,−ed, (e1 + . . .+ ed),−(e1 + . . .+ ed)},

where e1, . . . , ed is the standard basis of NQ.

Remark 1.4. In the literature on toric geometry, these manifolds are simply named
del Pezzo varieties. We added the prefix “t−” in order to distinguish them from
the del Pezzo manifolds appearing in Section 2.

T -del Pezzo polytopes are symmetric with respect to the origin, i.e., −∆ =
∆. Polytopes satisfying this condition are also said to be centrally symmetric,
cf. [VK84]. A classic result by Voskresenkii and Klyachko shows that del Pezzo
varieties are essentially the only centrally symmetric toric varieties.

Theorem 1.5 ([VK84, Theorem 6]). Let F be a toric Fano manifold such that ∆
is centrally symmetric. Then F is isomorphic to a product of projective lines and
t-del Pezzo varieties.

Coming back to vertex-transitive varieties, we can prove the following structural
result.

Lemma 1.6. Let F = F (∆) be a toric Fano manifold which is vertex-transitive.
Then there exists a unique vertex-transitive Fano toric manifold Fmin and a positive
integer n such that F ∼= (Fmin)

n.
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Proof. Let ∆ = ∆n1

1 ×. . .×∆nr

r be a prime decomposition of ∆. The automorphism
group of ∆ is given by (see for example [GH16, Theorem A])

Aut(∆) =
r
∏

i=1

(Aut(∆i)⋊ Sni
)

with its natural action on ∆.
Since Aut(∆) acts transitively on the vertices of ∆, the lemma follows immedi-

ately. �

1.2. Primitive collections. Primitive collections are an essential tool to study
the birational geometry of Fano toric varieties. We refer to [Rei83] and [Cas03] for
further details.

Definition 1.7. Let F = F (∆) be a toric Fano variety. A subset P ⊂ V (∆) is
called a primitive collection if the cone generated by P is not in Σ, but for any
x ∈ P the elements of P \ {x} generate a cone in Σ.

For a primitive collection P = {x1, . . . , xk} denote by σ(P ) the (unique) minimal
cone in Σ such that (x1 + . . .+ xk) ∈ σ(P ) . Let y1, . . . , yh be generators of σ(P ),
then

(4) r(P ) : x1 + . . .+ xk = b1y1 + . . .+ bhyh

where bi is a positive integer for all 1 ≤ i ≤ h: we have simply written the element
x1+ . . .+xk in terms of the generators y1, . . . , yh (the coefficients are positive since
(x1 + . . .+ xk) is in the cone σ(P )).

The linear relation (4) is called the primitive relation of P and the cone σ(P ) is
called the focus of P . The integer k is called the length of r(P ) and the degree of
P is defined as degP = k −

∑

bi.

Here it is convenient to write down explicitly the group of 1-cylces A1 of F as:

A1(F ) ∼=







(bx)x∈V (∆) ∈ Hom(Zm,Z)

∣

∣

∣

∣

∣

∑

x∈V (∆)

bxx = 0







.

The previous isomorphism is clear looking at the exact sequence (2). So it is
natural to identify primitive relations with the associated cycles. Moreover, we
work on Fano varieties, so degP = −(KF · r(P )) > 0 for all primitive relations.

Consider now a primitive collection P on F for which the relation r(P ) is ex-
tremal, meaning that it generates an extremal ray in NE(F ). One sees that the
exceptional locus of the associated contraction is given by O(σ(P )) and moreover,
according to the dimension of σ(P ), one recovers:

• divisorial contraction when σ(P ) is a one-dimensional cone and the con-
tracted divisor is precisely the one associated to the ray;

• Mori fibration, when σ(P ) coincides with the origin;
• flipping contraction otherwise.

Let us recall some useful results.

Proposition 1.8 ([Cas03, Prop. 4.3]). Let γ ∈ NE(F ) ∩ A1(F ) be a 1-cycle of F
for which (KF · γ) = −1. Then γ is extremal.
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Theorem 1.9 ([Rei83, Theorem 2.4], [Cas03, Theorem 1.5]). Let R ⊂ NE(F ) be
an extremal ray and let γ ∈ R ∩ A1(F ) be a primitive cycle. Then there exists a
primitive collection P = {x1, . . . , xk} such that

γ = r(P ) : x1 + . . .+ xk = b1y1 + . . . bhyh.

Moreover, for any cone ν = 〈z1, . . . , zt〉 which verifies

• {z1, . . . , zt} ∩ {x1, . . . , xk, y1, . . . , yh} = ∅; and
• 〈y1, . . . , yh〉+ ν ∈ Σ;

the following holds for all i = 1, . . . , h:

〈x1, . . . , x̌i, . . . , xk, y1 . . . , yh〉+ ν ∈ Σ.

Proposition 1.10 ([Cas03, Prop. 3.4]). Let P a primitive extremal collection for
F and write σ(P ) = 〈y1, . . . , yh〉. Then for any other primitive collection Q 6= P
for which P ∩Q 6= ∅, the set (Q \ P ) ∪ {y1, . . . , yh} contains a primitive collection.

The following observation is easy but useful for our analysis.

Remark 1.11. Consider a relation

a1x1 + · · ·+ akxk = b1y1 + · · ·+ bhyh

among the vertices of ∆, with ai, bj > 0 for all i, j.
If

∑

ai ≥
∑

bj, then [Cas03, Lemma 1.4] implies that 〈x1 · · · , xk〉 6∈ Σ.

We recall now the following definition.

Definition 1.12 (k-neighbourly polytope). A polytope is k-neighbourly if every
set of k vertices lies on one of its face.
A Fano variety F (∆) is k-neighbourly if the corresponding polytope ∆ is.

We want now to understand the structure of vertex-transitive polytopes: the
following result is the first step towards a classification of vertex-transitive those.

Proposition 1.13. Let F = F (∆) be a vertex-transitive toric Fano manifold. Then
either

(1) F = (P1)d or F = (Vk)
r for some r and k or

(2) ∆ is 2-neighbourly.

Proof. Let us assume that ∆ is not 2-neighbourly, which implies the existence of a
primitive collection with two elements. We claim that this primitive relation can
be assumed to be of the form

(5) x+ y = 0.

To show this, we assume such a relation does not exist and seek for contradiction.
Take a primitive collection P1 = {x1, x2} verifying the relation R1 : x1 + x2 = y1.
Let Aut(∆) act on P1 to obtain a family of primitive collections P = {Pi}1≤i≤r

with relations R = {Ri}1≤i≤r. Since the action is transitive by hypothesis, any
vertex of ∆ appears the same number of times as right hand side of these relations
and so the number of vertices m := #{V (∆)} divides r. This implies that the Pi’s
cannot be all disjoint, otherwise 2r = m. Hence we may assume that P2 = {x1, x3},
x2 6= x3, with relation R2 : x1 + x3 = y2.
The two relations R1 and R2 give x2 + y2 = x3 + y1, which implies, by Remark
1.11, that {x2, y2} is also a primitive collection. The two relations

R′ : x3 + y1 = z1 and R′′ : x2 + y2 = z1
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are extremal, so Proposition 1.8 and Theorem 1.9 imply that 〈y1, y2〉 ∈ Σ.
This is a contradiction, since y1 + y2 = x1 + z1. We proved the existence of (5).

Now act with Aut(∆) to get exactly m/2 relations of the same form. One can
verify that those are disjoint. Using the vertex-transitivity of ∆, we deduce that for
any vertex x̄ there is a vertex ȳ for which x̄+ ȳ = 0, i.e. ∆ is centrally symmetric.
Theorem 1.5 concludes the proof.

�

We study now the extremal contractions of 2-neighbourly vertex-transitive toric
Fano manifolds.

Lemma 1.14. Let F = F (∆) be a vertex-transitive, 2-neighbourly toric Fano man-
ifold. Then there exist an integer k ≥ 3 and a set of primitive collections

P = {Pi}i=1,...,r

such that r = m/k, |Pi| = k, σ(Pi) = 0 and Pi ∩ Pj = ∅ for any i 6= j. Moreover,
these are the only primitive relations with focus equal to zero.

Proof. The result in [Bat91, Proposition 3.2] implies that there exists a primitive
collection P1 with σ(P1) = 0. Define k := |P1|. Since ∆ is 2-neighbourly, we have
k ≥ 3.

Act with Aut(∆) to get a set of primitive collections P = {Pi}1≤i≤r verifying
σ(Pi) = 0 and for which

⋃r
i=1 Pi = V (∆). Let us prove they are disjoint, assuming

that Pi∩Pj 6= ∅ for some i, j and seeking for contradiction. Write Pi = {x1, . . . , xk}
and Pj = {x1, . . . , xh, yh+1, . . . , yk} with ys 6= xt for any s, t. Then

xh+1 + . . .+ xk = yh+1 + . . .+ yk.

Remark 1.11 gives the required contradiction, since xh+1, . . . , xk generate a cone in
Σ. Moreover one sees that there are no other primitive relations with focus equal
to zero. �

Proposition 1.15. In the notation of Lemma 1.14, assume that one of the relations
Pi is extremal. Then F (∆) = (Pk−1)r. On the other hand, if any of these relations
is not extremal then F does not admit any extremal contraction of fibre type.

Proof. Up to reordering, assume that P1 is extremal. Acting with Aut(∆), we de-
duce that all Pi’s are extremal. We claim these are the only primitive collections.
In fact, let P̃ be a primitive collection such that P̃ /∈ P and P̃ has minimal car-
dinality among the primitive collections which are not in P . We may assume that
P1 ∩ P̃ 6= ∅. Using Proposition 1.10, we deduce that the set (P̃ \ P1) contains a

primitive collection. Contradiction, since |P̃ | is minimal.
Note that k is the index of KF , dimF = d = (k − 1)r and ρ(F ) = r by [Bat91,
Corollary 4.4]. So apply [Cas06, Theorem 1] (Mukai’s conjecture) to obtain the
first part of the statement.

For the last part, just observe that an extremal contraction of fibre type would
provide a primitive collection P with trivial focus σ(P ) = 0. �

Lemma 1.16. Let F = F (∆) be a vertex-transitive, 2-neighbourly toric Fano man-
ifold. Then there are no extremal relations of the form

(6) x1 + . . .+ xk = by1.

In particular F does not admit any extremal divisorial contraction.
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Proof. Let us assume that an extremal relation of the form (6) exists and seek for
contradiction. Let R = {Ri}1≤i≤r be the set of extremal relations obtained acting
with Aut(∆) and denote with Pi the associated collections. Assume that x1 appears
only in one Pi. Since by transitivity any vertex appears the same number of times,
we get that the Pi’s are disjoint. In particular m = kr, where m = #{V (∆)}. On
the other hand, we have that m divides r, because any vertex appears the same
number of times as right hand side. This implies k = 1, which is a contradiction.

Hence there is an extremal primitive relation different from (6) of the form

x1 + z2 . . .+ zk = by2.

Assume y2 /∈ {x2, . . . , xk, y1} (the other case is analogous).
We have b1y2 + x2 + . . .+ xk = by1 + z2 + . . .+ zk, and, since ∆ is 2-neighbourly,
we know that 〈y1, y2〉 is a cone of Σ. Theorem 1.9 implies that 〈y2, x2, . . . , xk〉 ∈ Σ,
but this contradicts Remark 1.11.

�

1.3. Klyachko varieties. Looking for interesting examples of vertex-transitive
toric varieties, we found a generalisation of t-del Pezzo varieties, which were in-
troduced in [Kly84] and studied in [VK84].
Let us remark that our notation is not the same as Klyachko (cf. Remark 1.18).
Fix a basis e1, . . . , ed of a lattice N ∼= Zd, with d ≥ 2 and let k be a positive integers
such that (k − 1)|d.

Definition 1.17. The Klyachko variety of order k and dimension d is the toric
Fano variety W k

d with polytope ∆k
d ⊂ N having vertices

V (∆k
d) = {e1, e2, . . . , ed, e1 + . . .+ ed,

− (e1 + . . .+ ek−1),−(ek + . . .+ e2k−2), . . . ,−(ed−k+2 + . . .+ ed),

− (e1 + ek + . . .+ ed−k+2),−(e2 + ek+1 + . . .+ ed−k+3), . . . ,

− (ek−1 + e2k−2 + . . .+ ed)}.

Remark 1.18. When d is even, W 2
d is the t-del Pezzo manifold Vd.

In [VK84], the varieties W k
d are introduced as Pm,n. The dictionary between the

indices is:

d = (m− 1)(n− 1), k = m (or n).

As we will see in Lemma 1.19, our definition of k is consistent.

If W k
d is smooth (cf. Proposition 1.21), we can describe some birational geometry

of Klyachko varieties.
The 1-dimensional cones of the fan of W k

d coincide with the 1-dimensional cones

of the fan of the blow-up Zk
d of (Pk−1)

d

k−1 in k invariant points. This implies that
W k

d and Zk
d are isomorphic in codimension one and W k

d is a Fano model of Zk
d

(cf. Section 3 for other examples of fibre-like Fano manifolds obtained as small
modifications of blow-ups of projective spaces).

Lemma 1.19. For any integers d and m, W d+1
md = Wm+1

md .
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Proof. Assume m ≤ d and consider the vertices of W d+1
md :

{e1, e2, . . . , emd, e1 + . . .+ emd,

− (e1 + . . .+ ed),−(ed+1 + . . .+ e2d), . . . ,−(em(d−1)+1 + . . .+ emd),

− (e1 + ed+1 + . . .+ em(d−1)+1),−(e2 + ed+2 + . . .+ em(d−1)+2), . . . ,

− (ed + e2d + . . .+ emd)}.

The following transformation

e′mi+j := ed(j−1)+i+1

where i ∈ {0, . . . , d} and j ∈ {1, . . . ,m− 1} gives the identification.
�

We study now symmetries and singularities of Klyachko varieties.

Lemma 1.20. The Fano varieties W k
d are vertex-transitive, reflexive and have

terminal singularities, for all d, k.

Proof. Let us fix k and observe that Lemma 1.19 provides the following identifica-
tion: W k

k−1
∼= W 2

k−1.
Vertex-transitivity is proved by induction on d: assume that for any (k − 1)|d′

and d′ < d, the variety W k
d′ is vertex-transitive. We write the projections

πi : ∆
k
d −→ 〈ei+1, ei+2, . . . , ei+k−1〉

⊥,

with i = 0, . . . , d − k + 1. By inductive hypothesis, the images via the πi’s of
∆k

d are vertex-transitive and they are all isomorphic to ∆k
d−k+1. To prove the

transitivity for the whole polytope, we act with GL(NQ) to exchange the subspaces
〈ei+1, ei+2, . . . , ei+k−1〉.

We write now W = W k
d and ∆ = ∆k

d to simplify the notation and prove re-
flexivity. Look at the dual polytope ∆∗ ⊂ MQ: we claim that no lattice point lies
between the affine hyperplane spanned by the facets of ∆∗ and its parallel through
the origin. The claim holds for the hyperplane {x1 = −1} ⊂ MQ, so acting with
Aut(∆) on ∆∗ we conclude.

Terminality can be translated on polytopes with the condition

∆ ∩N = V (∆) ∪ {0}.

We assume there exists a non-zero v ∈ ∆∩N which verifies v /∈ V (∆) and seek for
contradiction. Without loss of generality, assume that v is not in the subspace H
generated by e1, . . . , ek−1 and let πH be the projection from H . Then the image
∆H := πH(∆) is a Klyachko polytope, πH(v) ∈ ∆H and πH(v) /∈ V (∆H) ∪ {0}.
Since W 2

d is terminal for d ≥ 2, we obtain terminality by induction. �

We analyse smoothness, together with Q-factoriality, for Klyachko varieties. It
turns out that these properties depend on some divisibility conditions on the indices
d and k (cf. [VK84]).

Let us fix some notation. For any positive d and k let dk be the smallest non-
negative integer r which verifies d ≡ r mod k.

Fix integers k ≥ 2 and h ≥ 1 and let {x1, . . . , xd} be coordinates on NQ. Then
define the following linear form on NQ:

Lk,h :=

k−3
∑

i=0

(xh+ik + xh+ik+1 + . . .+ xh+ik+k−2 − (k − 1)xh+ik+(k−1)).
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The following proposition already appeared in [VK84], in a different notation.

Proposition 1.21. The Klyachko variety W k
d is smooth if gcd(d− 1, k) = 1.

If gcd(d− 1, k) 6= 1, then W k
d is not Q-factorial.

Proof. The polytope ∆ := ∆k
d is not simplicial for d = (k−1)2, since the hyperplane

{Lk,1 + xd = 1} supports a facet of ∆ with k(k − 1) vertices.
On the other hand, we claim that the polytope ∆ is smooth for d = k(k − 1). To
show this, one can see that any facet of ∆ containing the vertex (1, 1, . . . , 1) also
contains at least (k − 1)(k − 2) + 1 elements of the standard basis. This implies
that the hyperplane

{a1x1 + . . .+ adxd = 1}

supporting the facet has (exactly as for the hyperplane {Lk,1 + xd = 1}):

• (k − 1)(k − 2) + 1 coefficients equal to 1;
• k − 2 coefficients equal to −(k − 1);
• k − 1 coefficients equal to 0.

One can verify that the vertices of all these facets give a basis of NQ. Using the
transitivity of Aut(∆) we obtain the claim.

The general result on smoothness is proved via induction on k and d. Two cases
are easy:

(1) k = 2 and any d;
(2) d = 2.

Take ∆k
d with k, d ≥ 3: if d < (k − 1)2 then ∆k

d
∼= ∆l+1

d , where l := k − dk and
d = l(k− 1). Since gcd(d− 1, k) = gcd(l+ 1, k) = gcd(l+ 1, d− 1), we conclude by
induction of k.

Assume now d > k(k − 1). Define h := d − k(k − 1) and take the plane H
generated by {eh+1, eh+2, . . . , ed} with projection πH . Let define ∆H := πH(∆k

d);
then ∆H = ∆k

h and gcd(d− 1, k) = gcd(h− 1, k). For any facet F of ∆k
h supported

on the hyperplane {P (x1, . . . , xh) = 1} we get a facet F ′ of ∆k
d supported on

{P + Lk,(h+1) + (xd−k+1 + . . .+ xd−1 − (k − 1)xd) = 1}.

Observe that |V (F ′)| = |V (F)|+ k(k− 1). So if ∆k
h is not simplicial, neither ∆k

d is
so. Analogously, one checks that ∆k

d is smooth if and only if ∆k
h is so. We conclude

via induction on d. �

Remark 1.22. As a consequence of the previous proposition, if k is a prime number
then W k

d is smooth, unless d ≡ 1 mod k.

1.4. Low dimension. The results and the methods of the previous subsections are
enough to classify all vertex-transitive Fano manifolds up to dimension 7. The result
is confirmed by Table 1, which collects the Fano toric manifolds up to dimension 8
which are fibre-like1.

Proposition 1.23. Let F = F (∆) be a d-dimensional vertex-transitive Fano man-
ifold. If d ≤ 7, then F is a power of projective spaces or Klyachko manifolds.

Proof. The result can be proven using the software MAGMA together with the
classification of smooth toric Fano varieties from the Graded Ring Database [BK+]
(cf. Table 1): giving as input a list of smooth Fano polytopes, MAGMA can check

1The table appeared in [CFST16] and has been obtained using the software MAGMA together
with the Graded Ring Database [BK+] (for further details on the classification, cf. [Øb07])
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in which cases Aut(∆) acts transitively on the vertexes2.
When the dimension is at most 4, we are able to provide the following short argu-
ment, which does not require computer computations.

Let us start with d = 2. If ∆ is not 2-neighbourly, then Proposition 1.13 implies
that F ∼= P1 × P1 or F ∼= V2. If ∆ is 2-neighbourly, then there is an extremal
collection P = {x1, x2, x3} for which σ(P ) = 0 and so, by Proposition 1.15, we
have F ∼= P2.

Assume now d = 3. If ∆ is not 2-neighbourly, then Proposition 1.13 implies
that F ∼= (P1)3. If ∆ is 2-neighbourly, then the extremal relations could only be of
the form x1 + x2 + x3 = 0 (contradiction by Proposition 1.15), x1 + x2 + x3 = y1
(contradiction by Lemma 1.16) or x1 + x2 + x3 + x4 = 0. In this last case, F ∼= P3

by Proposition 1.15.
Assume finally that d = 4. If ∆ is not 2-neighbourly, then by Proposition 1.13

we get X ∼= (P1)4, X ∼= (V2)
2 or X ∼= V4. If there is an extremal relation of the

form x1 + x2 + x3 = 0, then by Proposition 1.15 we have X ∼= P2 × P2.
Hence assume that ∆ is 2-neighbourly and let P be an extremal primitive collec-

tion. By Theorem 1.9 we have |P |+ |σ(P )| ≤ 5. By Lemma 1.16 we conclude that
there is an extremal relation of the form x1+x2+x3 = y1+ y2 or x1+ . . .+x5 = 0.
In the second case X ∼= P4 and so we can assume to have x1 + x2 + x3 = y1 + y2.
From here it is not difficult to see that one should have |V (∆)| ≥ 12, which is
impossible by [Cas06, Theorem 1]. �

Remark 1.24. The 8-dimensional polytope denoted by W̃ in Table 1 is not a
Klyachko variety and we do not have a classic description of it.

2. Fano manifolds of high index

An important invariant of a Fano manifold F is its index, iF , defined as the
largest integer that divides −KF in Pic(F ). There is a complete classification of
Fano manifolds with index iF ≥ n − 2 and iF ≥ (n + 1)/2. In this section we
investigate the fibre-likeness of these varieties, assuming n ≥ 4 (fibre-like Fano
3-folds have been classified in [CFST16]).

In [Wiś91], Wiśniewski classified Fano manifolds with index iF ≥ (n+1)/2. Let
us denote by Qj ⊂ Pj+1 the j-dimensional smooth projective quadric and by TPl

the tangent bundle of Pl.

Theorem 2.1. [Wiś91] Let F be a Fano manifold of dimension n and index iF ≥
(n+ 1)/2. Then F verifies one of the following:

(i) ρ(F ) = 1;
(ii) n is even and F ≃ P

n

2 × P
n

2 ;

2We briefly describe the MAGMA code. Given an integer i, the function
PolytopeSmoothFano(i) gives the polytope of the i-th toric Fano in the Graded Ring Database;
we denote by N the number of Fano polytopes in the database; at the end of a run of the following
code, the variable Pol will contain the list of vertex-transitive toric Fano polytopes in the Graded
Ring Database.
Pol:=[**];
for i := 1 to N do if #{{v ∗G : G in AutomorphismGroup(PolytopeSmoothFano(i))} :

v in Vertices(PolytopeSmoothFano(i))}
−Dimension(FixedSubspaceToPolyhedron(AutomorphismGroup(PolytopeSmoothFano(i)))) eq 1
then Pol:=Append(Pol,PolytopeSmoothFano(i));
end if; end for;
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(iii) n is odd and F ≃ P
n−1

2 ×Q
n+1

2 ;

(iv) n is odd and F ≃ P

(

T
P

n+1
2

)

;

(v) n is odd, O = O
P

n+1
2

and F ≃ P

(

O(1)⊕O
n−1

2

)

.

Let us note that in case (iv) (resp. (v)) of the above theorem F can be alterna-

tively described as a smooth divisor of degree (1, 1) in P
n+1

2 × P
n+1

2 (resp. as the

blow-up of Pn along a linear P
n−3

2 ).
Looking at the above list, we are able to classify fibre-like Fano manifolds with

high index.

Dimension # Vertices Description ID
2 6 V2 2
2 4 P1 × P1 4
2 3 P2 5
3 6 (P1)3 21
3 4 P3 23
4 10 V4 63
4 12 V2 × V2 100
4 8 (P1)4 142
4 6 P2 × P2 146
4 5 P4 147
5 10 (P1)5 1003
5 6 P5 1013
6 14 V6 1930
6 12 W 3

6 5817
6 18 (V2)

3 7568
6 12 (P1)6 8611
6 9 (P2)3 8631
6 8 (P3)2 8634
6 7 P6 8635
7 14 (P1)7 80835
7 8 P7 80891
8 18 V8 106303
8 15 W 3

8 277415
8 20 (V4)

2 442179
8 24 (V2)

4 790981

8 12 W̃ 830429
8 16 (P1)8 830635
8 12 (P2)4 830767
8 10 (P4)2 830782
8 9 P8 830783

Table 1. Toric Fano manifolds of dimension at most 8 that are
fibre-like (the entry of the last column is the ID number in the
Graded Ring Database [BK+]).
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Proposition 2.2. Let F be a fibre-like Fano manifold of dimension n ≥ 4, index
iF ≥ (n+ 1)/2 and ρ(F ) > 1.
If n is even then F is isomorphic to F ≃ P

n

2 × P
n

2 .

If n is odd then F is isomorphic to F ≃ P

(

T
P

n+1
2

)

.

Proof. Use Corollary 0.6 to show that cases (iii) and (v) are not fibre-like: (iii) is

clear, while (v) comes with a divisorial contraction to Pn and a fibration to P
n+1

2 .
Fibre-likeness of (ii) is a consequence of Theorem 0.4, where G = Z/2Z exchanges
the two factors, and case (iv) follows by Corollary 0.5. �

In [KO73] Kobayashi and Ochai proved that iF ≤ n + 1, where n = dimX
and equality holds if and only if F ∼= Pn. They also showed that iF = n if
and only if F is a quadric hypersurface. Fano manifolds with index n − 1 are
called del Pezzo manifolds and they have been classified by Fujita [Fuj82a] and
[Fuj82b], while Fano manifolds with index n − 2 are called Mukai manifolds and
their classification appeared in [Muk89]. In dimension n ≥ 3, del Pezzo manifolds
have index iF ≥ (n+ 1)/2 and they have already been studied in Proposition 2.2.
For n ≥ 5, also Mukai manifolds are included in Wiśniewski’s list, so we only need
to study the case n = 4, iF = 2 (see [Sha99, Table 12.7 ] for the complete list).

Proposition 2.3. Let F be a 4-dimensional fibre-like Fano manifold of index iF =
2 and ρ(F ) > 1. Then F is isomorphic to one of the following:

(i) a double cover of P2 × P2 branched along a degree–(2, 2) divisor;
(ii) an intersection of two degree–(1, 1) divisors in P3 × P3;
(iii) P1 × P1 × P1 × P1.

Proof. We follow the enumeration in [Sha99, Table 12.7 ] of the 18 families. Ap-
plying Corollary 0.6 to the cases

(1), (2), (3), (5), (6), (8), (9), (14), (16) and (17)

we immediately see that they are not fibre-like. Cases

(10) and (12)

are also not fibre-like, since they are obtained as a blow-up of Q4 but come with a
2-dimensional fibration over Pn−2. Cases

(13) and (15)

are P1-bundles over P3 or Q3 and the other ray of the nef cone corresponds to the
contraction of the section. The case which requires more care is (11), in which
case F is isomorphic to the projectivisation of the null-correlation bundle over P3.
Although the two extremal rays of the nef cone of F both yield fibrations, the
image of the fibration associated to the ray not inducing the bundle structure is
the quadric Q3, see [SW90, Proposition 3.4]. Hence, F is not fibre-like.
We now prove fibre-likeness for the remaining cases. Case (18) (corresponding to
case (iii) in our list), has an action of S4 and is clearly fibre-like because of Theorem
0.4. For Case (7) (corresponding to case (ii)), we can directly apply Corollary 0.5.
Let us analyse now the case (4) (corresponding to case (i) in our list): it is obtained
as a member of the linear system |2H1 + 2H2| in the toric variety Z with weight
data
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x0 x1 x2 y0 y1 y2 z
1 1 1 0 0 0 1 H1

0 0 0 1 1 1 1 H2

.

Since Z comes with a Z/2Z-action exchanging the divisors H1 and H2 we have

dimNS(Z)
Z/2Z
Q = 1 and we can apply [CFST16, Theorem 4.5] to conclude that case

(i) is fibre-like. �

3. Fano manifolds with high Picard number

Fano manifolds of a given dimension form a bounded family, so their Picard num-
ber is bounded. In spite of this boundeness result, their classification in dimension
at least four is an open and rather difficult problem. A first step towards such
classification would be to identify an effective bound on the Picard number of those
Fano manifolds that are not a product of lower dimensional manifolds. Already
this simpler problem is actually quite difficult. So far, the only known examples
of families of Fano manifolds of dimension n ≥ 4, which are not product and have
Picard number at least n+ 4 are

(i) a birational model of the blow up of Pn in n + 3 points in general position,
with n ≥ 4 and even;

(ii) a birational model of the blow up of P4 in 8 points in general position.

The first family appears in any even dimension, the second example is sporadic. In
this section we are going to show that all these examples are fibre-like. The first
family with n odd gives non-Q-factorial Fano varieties of Picard rank 1, see [AC17,
page 3029]. We do not know if there exists a general connection between having
high Picard number and being fibre-like.

The sporadic example is discussed in [CCF17]. There the authors prove, fol-
lowing [Muk05], that the Fano manifold under investigation is isomorphic to the
moduli space of rank two vector bundles on a del Pezzo surface of degree one.
Varying the stability conditions, the authors can explicitly describe the birational
geometry of the Fano manifolds. Thanks to this analysis, it is possible to describe
the automorphism group of the manifold, and to show the following result.

Theorem 3.1. [CCF17, Proposition 6.22] The Fano model of P4 blown-up in 8
points in general position is fibre-like.

We now focus on the first example. We use the results of [AC17] and [Rei72,
Section 3]. Take an even integer n = 2m ≥ 2 and consider a smooth complete
intersection Z of two quadrics in Pn+2. Let Fm−1 = Fm−1(Z) be the variety of
(m− 1)-planes in Z. This is a smooth Fano variety of dimension n. It can be seen
as a higher dimensional generalisation of the quartic del Pezzo surface and has been
extensively studied in the recent work [AC17].

The geometry of Fm−1 can be studied from another point of view, which we
briefly recall here (see the survey [Cas17] for the notation about Mori Dream
Spaces). Let X := Xn

r be the blow up of Pn at r points in general position.
Then it follows from [Muk05] and [CT06, Theorem 1.3] that X is a Mori Dream
Space if and only if n and r verify the inequality

(7)
1

n+ 1
+

1

r − n− 1
>

1

2
,

cf. [Cas17, Example 3.6].
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The manifolds appearing in Theorem 3.1 are, in this notation, obtained as Fano
models of X4

8 .
Look at Xn

n+3, with n ≥ 2 even. For this class, inequality (7) holds, so Xn
n+3 is

a Mori Dream Space and we can consider its Fano model Fn
n+3. Bauer in [Bau91]

proved that Xn
n+3 and Fm−1 are isomorphic in codimension one – see also [AC17,

Theorem 1.4]. By [AC17, Remark 4.10] it follows that Fm−1 is actually isomorphic
to Fn

n+3. In [AC17, Proposition 7.1] the authors describe the automorphism groups
of Fm−1 showing that

(

(

Z
/

2Z
)n+2

⊆

)

Aut(Fm−1) ⊆ W (Dn+3)

(

=
(

Z
/

2Z
)n+2

⋊ Sn+2

)

,

where W (Dn+3) is the Weyl group of automorphism of a Dn+3-lattice. The inclu-
sion (Z/2Z)n+2 ⊂ Aut(Fm−1) is an actual equality for a general choice of Fm−1.

The action of (Z
/

2Z
)n+2

can be described by presenting Z as the locus

n+3
∑

i=0

x2
i =

n+3
∑

i=0

λix
2
i = 0.

Then the group acts by changing the signs of the coordinates. We can use this to
prove the following.

Theorem 3.2. Let n = 2m ≥ 4 be an integer. Then the smooth n-dimensional
Fano variety Fm−1(Z) of (m − 1)-planes in the intersection of two quadrics Z ⊂
Pn+2 is fibre-like.

Proof. Consider the isomorphism H2(Fm−1,Z) ≃ NS(Fm−1). The action of G :=
(

Z
/

2Z
)n+2

via pseudo-automorphisms of Xn
n+3 is explicitly described in [Dol04,

Sections 4.4-4.6] (see also [AC17, Remark 7.2]). Let x0, . . . , xn+2 ∈ Pn be blown-up
points; we can assume that the first n+ 1 are the coordinate points and

• xn+1 = [1 : . . . : 1];
• xn+2 = [c0 : . . . : cn].

The pseudo-automorphism φn+2,n+3 : X
n
n+3 → Xn

n+3 is defined on Pn as ρ ◦ ι,
where ι : Pn

99K Pn is the standard Cremona involution and ρ is the diagonal
projective transformation [t0 : . . . : tn] 7→ [c0t0 : . . . : cntn]. Analogously, one
defines φi,j with i < j, which exchanges the exceptional divisors of Xn

n+3 and fixes

KXn

n+3
. This implies that NS(Xn

n+3)
G
Q = QKXn

n+3
. Moreover, the analysis in [AC17,

Proposition 5.4] implies that NS(Xn
n+3)

G ≃ NS(Fm−1)
G. So we apply Theorem 0.4

to conclude. �

4. Open questions

We conclude this note with some questions regarding fibre-like varieties that are
still open.

Since all the examples of smooth toric fibre-like Fano varieties are vertex transi-
tive, we ask the following:

Question 4.1. Is any fibre-like toric Fano manifold vertex-transitive?

Answering this question affermatively would give a complete classification of
fibre-like toric Fano manifolds.

On a different note, the study of fibre-like Fano varieties in positive characteristic
seems to be still very far from being satisfactory.
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After the recent developments for the MMP in positive characteristic for threefods
(cf. [HX15], [Bir16], [BW17]), the picture that we delineated in the Introduction
holds almost in the same way in characteristic > 5 as long as we only focus in
dimension 2 and 3. Hence, it is natural to try to extend the results in [CFST16]
to positive characteristic. If k is any algebraically closed field and F is a smooth
Fano variety over k, the definition of fibre-likeness still makes sense and one can in
particular ask the following:

Question 4.2. If char k = p > 0, are there sufficient or necessary conditions that
determine whether a smooth Fano F is fibre-like?

At present time, the situation appears to be quite obscure: we do not even know
if a del Pezzo surface of degree 8 is fibre-like in positive characteristic. The approach
outlined in [CFST16] relaying on the study of a suitable monodromy action on the
Néron-Severi does not generalize directly to this case.
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