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BACKGROUND. Myeloproliferative neoplasms (MPN), comprising polycythemia vera, essential 

thrombocythemia and myelofibrosis, are chronic hematological malignancies with variable 

progression rates. Genomic characterization of MPN patients offers the potential for 

personalised diagnosis, risk stratification and management. 

 

METHODS. We sequenced coding exons from 69 myeloid cancer genes in 2035 MPN patients, 

comprehensively annotating driver mutations and copy number changes. We developed a 

genomic classification for MPNs and multistage prognostic models for predicting individual 

patient outcomes. Classification and prognostic models were validated on an external cohort. 

  

RESULTS. 33 genes carried driver mutations in >4 patients, with JAK2, CALR or MPL mutations 

being the sole abnormality in 45% patients. The number of driver mutations increased with age 

and advanced disease. Driver mutations, germline polymorphisms and demographic variables 

independently predicted whether patients were diagnosed with essential thrombocythemia 

versus polycythemia vera, and chronic phase disease versus myelofibrosis. We defined 8 

genomic subgroups, exhibiting distinct clinical phenotypes, including diagnostic blood counts, 

risk of leukemic transformation and event-free survival. Integrating 63 clinical and genomic 

variables, we created prognostic models capable of generating personally-tailored predictions 

of clinical outcomes in chronic phase MPN or myelofibrosis. Predicted and observed outcomes 

correlated well using internal cross-validation and an independent external cohort. Even within 

individual categories of existing prognostic schemas, our models substantially improved 

predictive accuracy. 

 

CONCLUSIONS. Comprehensive genomic characterization identifies distinct genetic subgroups 

and provides an MPN classification based on causal biological mechanisms. Integration of 

genomic data with clinical parameters enables personalised predictions of patient outcome 

and will support management of MPN patients. 

  



 3 

INTRODUCTION 

 The myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders 

comprising polycythemia vera (PV), characterized by red blood cell over-production; essential 

thrombocythemia (ET), with elevated platelet counts; and myelofibrosis (MF), defined by bone 

marrow fibrosis1. PV and ET are chronic phase MPNs, while MF represents advanced disease, 

diagnosed either de novo or following ET or PV. Current classification schemes distinguish 

between MPN subtypes using clinical and laboratory features2–5, but there is uncertainty and 

controversy over where and how to draw dividing lines between them6,7. This debate is not 

easily resolved since MPNs exist on a phenotypic continuum, with overlapping distributions of 

hemoglobin levels, platelet counts and extent of marrow fibrosis.  

 Biologically, MPNs are driven by cardinal driver mutations in JAK2, CALR or MPL. Many 

patients have additional drivers spanning a wide range of cancer genes, with patient-to-patient 

variability in the genetic and clonal landscape8,9. Driver mutations correlate with phenotype 

and prognosis10–12, and mutation order can also influence disease phenotype13,14. This complex 

genetic landscape likely contributes to heterogeneity in diagnostic features and outcomes in 

MPNs. 

 In blood cancers, there has been a progressive shift away from clinical and 

morphological classification schemes to those based on genomics15, because such 

categorization relies on causative disease biology. Driver mutations are increasingly important 

in predicting clinical outcomes, but large, well-characterized cohorts are necessary for accurate 

prognostic models16. Recent studies have indicated this promise extends to MPNs10,17, but 

require larger cohorts and comprehensive gene sequencing to provide definitive answers. We 

report on a cohort of 2035 patients with long-term follow-up data, sequenced for coding 

mutations in known myeloid cancer genes, copy number changes and germline polymorphisms.     

 

METHODS 

Study samples 

Patient samples were obtained following written informed consent and ethics approval. Cohort, 

disease classification, and diagnostic review details are provided in the supplementary 

appendix. Tumor DNA was derived from blood granulocytes, bone marrow mononuclear cells 

or whole blood. The majority of patients did not have matched germline samples sequenced. 

The external validation cohort comprised 515 patients. We use the term ‘myelofibrosis’ to 

encompass both primary MF and post-ET/PV MF. 

 



 4 

Sequencing and analyses 

Custom RNA bait hybridisation capture for the full coding sequence of 69 genes, genome-wide 

single nucleotide polymorphisms (SNPs) for copy-number profiling, and germline loci 

associated with MPN or red cell variation18–20 (Tables S1-S2) was undertaken in 1887 patients. 

148 patients underwent whole-exome sequencing, as reported previously8. Further details are 

provided in the supplementary appendix.  

 

Clinical variables 

Baseline laboratory and clinical data from diagnosis were incorporated into prognostic models 

as detailed in the supplementary appendix. The median duration between diagnosis and 

sample acquisition was 49 days. Median follow-up was 93.8 months (range 0.03-523) from 

diagnosis and 72.0 months (range 0.03-360) from time of DNA sampling.  

 

Statistics 

Timing of mutation acquisition used Bradley-Terry modelling of pairwise comparisons of clonal 

fractions in individual patients13. Bayesian network analysis and Dirichlet processes identified 

genetic associations and subgroups. Random-effects Cox proportional hazards multistate 

modelling was used for outcome prediction, as detailed in the supplementary appendix.  

 

Study conduct 

JG and JN gathered and analysed data in collaboration with coauthors, and together with ARG 

and PJC designed the study and wrote the paper including the first draft. All authors vouch for 

the data, analyses and publication.  

 

RESULTS 

Spectrum of genomic changes in MPNs 

 The cohort of 2035 patients comprised 1321, 356 and 309 patients with ET, PV and MF 

respectively and 49 patients with other MPN diagnoses (Table S3). 33 genes carried driver 

mutations in ≥5 patients (Fig.1A; Tables S4-S5). JAK2, MPL and CALR accounted for 1831 driver 

mutations, compared to 1075 across other genes. Loss of heterozygosity (LOH) was frequent 

for JAK2V617F, especially in PV, but was infrequent for CALR and MPL (Fig.S1).  

 We identified 45 truncating mutations in the terminal exon of PPM1D in 38 patients 

(1.5%, Fig.1B), making PPM1D the 8th most commonly mutated gene in MPNs. These mutations 

have also been detected in solid tumors, and blood from both healthy individuals and patients 
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with breast/ovarian tumors, often after chemotherapy21,22. In our cohort, 10 patients had 

PPM1D mutations emerge during treatment with hydroxycarbamide, having not been present 

in an earlier sample. However, PPM1D mutations were also detected at, or within a month of, 

diagnosis in 20 cases. Analysis of single-cell derived hematopoietic colonies identified mutated-

PPM1D in a ‘triple-negative’ (unmutated-JAK2, -CALR or -MPL) ET patient, but also subclonal to 

JAK2V617F in a PV patient (Fig.1C). These data confirm that PPM1D mutations can occur within 

the MPN clone and be present at diagnosis, not always indicating age-related clonal 

hematopoiesis or therapy-related disease evolution.  

Mutations in MLL3 (Fig.1A, Table S4) were detected in 20 patients (1%), and were 

predominantly nonsense or frameshift as reported in AML23. Interestingly, seven had triple-

negative MPN, suggesting that MLL3 could be an important tumor suppressor gene in these 

patients. 

 There has been interest in whether mutations in JAK2 and MPL outside of known 

hotspots could be relevant to MPNs24,25. We identified non-canonical variants in JAK2 and MPL 

in 16 patients with triple-negative ET and 1 patient with triple-negative MF (Fig.1D). Of these, 

three groups of variants are likely relevant to disease pathogenesis: (i) JAK2R683G and JAK2E627A, 

reported in acute lymphoblastic leukemia where they result in constitutive JAK2 activation26–28, 

were identified in two ET patients, one of whom presented in childhood; (ii) JAK2R867 was 

mutated in 2 ET patients and is associated with familial thrombocytosis29; (iii) MPLS505N and 

MPLS204P  were identified in 4 and 5 ET patients respectively24. MPLS204P co-occurred with 1p-

LOH, suggesting a clonal advantage to acquired homozygosity for this variant.  

 

Factors influencing classification into ET, PV or MF  

 Currently, patients with MPNs are classified as ET, PV or MF based on clinical and 

laboratory criteria2–5, but the biology underlying these distinctions is incompletely understood. 

The number of driver mutations per patient was higher in MF than PV or ET (Fig.2A), as 

previously reported8, and increased with age of the patient (Fig.2B). 

 The distinction between JAK2V617F-mutated ET and PV rests on whether red cell mass 

or hematocrit is elevated. We found that acquired driver mutations correlated with 

hematological parameters (Fig.S2) and were the strongest determinants of a JAK2-mutated 

chronic phase patient being labeled as ET or PV, although germline genetic background and 

demographic factors were also relevant (Fig.2C,S2). 9p-LOH, causing JAK2V617F homozygosity, 

or a high JAK2V617F allele burden predicted a PV phenotype, as did mutated NFE2, a transcription 

factor critical to erythroid differentiation. Germline polymorphisms associated with red cell 



 6 

variables in the general population were distributed unevenly between ET and PV, with alleles 

associated with lower hemoglobin and higher platelets enriched in ET (Fig.2C). Furthermore, 

the JAK2 46/1 haplotype, associated with increased predisposition to MPNs18, predicted for PV 

(OR 2.3; CI95% 1.7-3.3; p<0.001), partly through increased odds of JAK2V617F homozygosity via 

9p-LOH (OR 2.7; CI95% 2.0-3.9; p<0.001). Older age and male sex also increased the odds of PV. 

These data show that the location of any chronic phase patient on the hemoglobin/red cell 

mass continuum is influenced by many factors, and that the use of any arbitrary threshold to 

label patients as ET or PV will fail to discriminate between patients with different underlying 

biological mechanisms.  

Mutations in spliceosome components, epigenetic regulators and the RAS pathway 

were the strongest predictors of accelerated phase (MF) versus chronic phase (ET or PV) 

disease, as were male sex, older age and germline loci associated with platelet count and red 

cell parameters within the normal population (Fig.2D).  

 The order in which mutations are acquired in MPNs has previously been shown to 

influence disease phenotype13,14. CALR and MPL mutations were more commonly early events, 

while mutations including NRAS, TP53, PPM1D and NFE2 were acquired significantly later in 

disease (Fig.2E,S3). Some of the earlier-occurring mutations in genes such as SF3B1 and 

DNMT3A, are also associated with age-related clonal hematopoiesis30,31, suggesting that some 

MPNs could arise from an antecedent asymptomatic clone. In patients with multiple mutations, 

JAK2V617F was more commonly a secondary event in patients with ET, and an earlier event in 

those with PV or MF (Fig.S4,S5), confirming and generalizing observations previously shown for 

JAK2 relative to TET2 or DNMT3A13,14. 

 

Genomic subgroups in MPN   

 Hematological malignancies may be subclassified using driver mutations that 

distinguish subgroups of patients32,33, by observing which pairs of genes are either mutually 

exclusive or co-mutated more frequently than expected. In our cohort, driver mutations 

showed complex patterns of assortment (Fig.S6). We used Bayesian modelling to identify 

genomic subgroups of MPNs with maximum within-group similarity and maximum between-

group discrimination.  

 We identified 8 genomic subgroups in MPNs defined by simple rules, with high 

reproducibility and low ambiguity in classification of individual patients (Fig.3,S7). TP53 

mutations, co-occurring with 17p aberrations and del(5q), identified the first subgroup. TP53 

mutations often occur later in disease (Fig.2E), but dominate the genomic and clinical features 
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of these patients regardless of the initial MPN driver. Mirroring other blood cancers with TP53 

mutations32,34, these patients have a dismal prognosis with a high risk of AML transformation 

(Hazard Ratio (HR) 15.5,  CI95% 7.5-31.4, p<0.001; HRs expressed relative to JAK2-heterozygous 

subgroup) and early death (HR 2.4, CI95% 1.6-3.6, p<0.001, Fig.3).  

The second subgroup was defined by the presence of one or more mutations in 16 

myeloid cancer genes, especially chromatin and spliceosome regulators, chr4q-LOH and 7/7q 

aberrations. This subgroup was enriched for patients with MF (OR 6.52, CI95% 4.9-8.7, p<0.001) 

and MPN/MDS overlap (including all 7 CMML/atypical CML cases), but also included 8.4% of ET 

and 11.5% of PV. Patients showed increased risk of MF transformation (HR 5.4, CI95% 2.7-11.0, 

p<0.001) and inferior event-free survival (EFS), regardless of MPN subtype or MPN phenotypic 

driver mutation (HR 2.6, CI95% 2.1-3.2, p<0.001). Patients with co-operating mutations in 

epigenome and splicing regulators have also been identified in MDS35 and AML32, suggesting 

that these genes identify groups of patients spanning traditional myeloid disease categories. 

 Patients not identified in the above 2 subgroups are classified by their dominant MPN 

phenotypic driver mutation. Patients with CALR mutations, significantly associated with 19p-

LOH and del(20q), or those with MPL mutations, universally presented with ET or MF. Those 

with MPL-mutated MF showed an elevated rate of AML transformation (HR 8.6, CI95% 1.4-49.1, 

p=0.02), but otherwise these two subgroups showed similar clinical course to the JAK2 

subgroups. Those with JAK2V617F heterozygosity comprised most of the JAK2-mutated ET 

patients, but also some PV and MF patients, and had generally favorable outcomes. The 

JAK2V617F homozygosity subgroup was enriched for NFE2 mutations and patients with PV. MF 

transformations occurred more frequently in this subgroup (HR 3.0, CI95% 1.3-6.6, p=0.007).   

 A seventh subgroup (36 patients; 1.8%) had identifiable driver mutations, but not one 

of the class-defining drivers identified above. These included patients with mutations in genes 

such as TET2 and DNMT3A, that are not disease-specific, and those with mutations associated 

with other myeloid malignancies (such as KIT in systemic mastocytosis). The eighth subgroup 

(192 patients; 9.4%) had no detectable driver mutations and may include patients with either 

MPNs carrying unidentified drivers or reactive thrombocytosis. Patients were typically young 

and female, with a diagnosis of ET. This subgroup had a particularly benign outcome, with only 

1 case of MF transformation (0.5%) and 2 of AML transformation (1%) during median follow-

up of 8.0 years (HR for EFS: 0.56, CI95% 0.38-0.78, p=0.005).  

 We applied our proposed classification scheme to an external cohort of 270 MPN 

patients (137 ET, 14 PV and 119 MF) that had sufficient genomic characterization to apply our 

flow-chart. Similar subgroup proportions were observed in the two cohorts (Fig.S7). 
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Factors influencing disease progression in MPNs 

 A key determinant of the management of MPN patients is predicted prognosis. 

Patients expected to have a benign future clinical course should have treatments aimed at 

minimizing thrombotic risk; those expected to progress to leukemia or myelofibrotic bone 

marrow failure may be candidates for intensive therapy or clinical trials of novel agents. To 

explore which variables predict disease progression, we developed a multivariate statistical 

model that estimates a patient’s probability of transition between stages of disease, namely 

chronic phase (ET or PV), accelerated phase (MF), AML and death.  

We determined the fraction of explained variability for each outcome attributable to 

different prognostic factors (Fig.4A). Death in chronic phase was predominantly influenced by 

age, with genomic features having little predictive power suggesting that once cytoreduction 

has achieved adequate control of blood counts, causes of death are dominated by those that 

would also occur in the general population36. These would therefore not be well predicted by 

the specific genomic features of the MPN. 

By contrast, genomic features played a substantial role in predicting progression from 

chronic phase to MF, and AML transformation (Fig.4A). CALR mutations were independently 

associated with increased risk of myelofibrotic transformation, as previously reported37. 

Mutations in epigenetic regulators, splicing factors and RAS-signaling were all predictive of 

myelofibrotic and leukemic transformation – some, but not all, of these associations have been 

identified previously10–12. Whether mutations were clonal or subclonal had little impact on 

prognosis (Supplementary Appendix). Clinical features of the disease, such as anemia, 

splenomegaly or thrombocytosis, still retained independent predictive power for 

transformation events suggesting that these variables reflect important features of disease 

state not captured in the genomic landscape. Outcomes in MF did not significantly differ 

whether the MF was primary or followed antecedent ET or PV. 

 

Personally tailored prognosis in MPN patients  

Current prognostic models for MPNs, focused on MF, use simple scoring systems, 

grouping patients into broad prognostic categories. As shown above, many factors influence 

clinical outcomes, with a wide range of effect sizes, meaning that current schemes discard 

information that is relevant to prognosis. We therefore explored whether our multivariate, 

multistate prognostic models could be used for individual patient predictions. 

The utility of personally tailored predictions can be assessed twofold – do they usefully 

discriminate between patients and are the predictions more informative than conventional 
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schemas? Regarding the first question, not only is our model able to generate a wide range of 

specific predictions (from long-term survival, death in chronic phase, myelofibrotic and 

leukemic transformation), these correlate well with observed outcomes (Fig.4B, 5, S8. Tables 

S6-S7), both on internal cross-validation as well as for an externally characterized cohort of 515 

MPN patients (137 ET, 188 PV and 190 MF). Internal cross-validation demonstrated 

concordances of 75%-84% for overall survival (OS), event-free survival (EFS, Fig.4B) and AML 

transformation, and good performance on absolute predictive accuracy (Tables S6-S7). 

Concordances were similar for the external validation cohort, despite the external cohort being 

diagnosed at another center, evaluated by different pathologists using different diagnostic 

criteria, and sequenced in a different facility using a different gene panel from the training 

cohort (Fig.4B). Thus, the model provides considerable discriminatory power that accurately 

generalizes to other real-world cohorts. Due to the existence of different diagnostic criteria, 

the model is not heavily reliant on the exact classification label of the patient. Indeed, removing 

the distinction between PV and ET, but simply retaining MF versus chronic phase disease, did 

not reduce the predictive accuracy of the model (Fig.S9). 

  Our model demonstrated superior performance compared to current major 

prognostic schemas in clinical use – IPSS38, DIPSS39 and High Molecular Risk10 for MF, and the 

IPSET score for ET40 (Fig.S9, Tables.S6,S7). Furthermore, we identified substantial 

heterogeneity in disease outcomes within individual prognostic categories of current 

prognostic schemas (shown for DIPSS, Fig.S10); this was especially prominent for ‘intermediate 

risk’ patients allowing for more informative predictions in a group with otherwise uncertain 

outcomes. This means that not so many patients need be screened before some emerge as 

having increased risk of poor outcomes (“numbers needed to test” across different scenarios 

in Table.S8). Inclusion of mutations and chromosomal changes beyond JAK2/CALR/MPL 

improved the predictive power of our prognostic models by up to 12% as measured by Brier 

scores and model concordance.  

 We have implemented a user-friendly calculator of individualized patient outcome 

online (https://jg738.shinyapps.io/mpn_app/) enabling exploration of patients in our cohort, 

and the generation of new patient predictions using available clinical, laboratory and genomic 

features. Further validation of our model using additional MPN cohorts will be important, given 

the bias towards ET patients in this study. 

 

Discussion 

https://jg738.shinyapps.io/mpn_app/)
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A major challenge is how we use our emerging understanding of the pathogenic 

complexity of MPNs to identify groups of patients with shared disease biology, such that 

existing and novel therapies can be better targeted to the most appropriate individuals. Current 

classification of MPNs suffers from disease heterogeneity within, and clinical overlap between, 

subtypes. A genomic classification has the virtue of identifying patients with shared causative 

disease biology, is stable over time, and does not rely on blood count thresholds for the 

assignment of particular disease labels.  

Of 8 MPN subgroups identified, the TP53-mutated group were genomically unstable 

and had poor outcomes – this same subgroup, with similar clinical implications, has been 

identified in AML and other hematological malignancies32,34. Likewise, the subgroup of MPNs 

with mutations in genes regulating chromatin and RNA splicing is mirrored in both MDS35 and 

AML32. In MPNs, these patients typically have myelofibrosis, although some have ET or PV, and 

have a relatively poor prognosis. Similar poor outcomes for chromatin/spliceosome subgroups 

are seen in MDS and AML. This raises the intriguing possibility that these driver mutations 

define a myeloid cancer of older patients that transcends traditional diagnostic categories.   

 Our model accurately identifies a minority of chronic phase MPN patients for whom 

there is substantial risk of disease progression. These patients should be the cohort targeted in 

clinical trials of novel therapeutic agents since they are the most likely to benefit and the trials 

will be more efficient if higher-risk patients are preferentially enrolled. Our model can also 

accurately identify the majority of chronic phase MPN patients who seemingly have a benign 

outlook at diagnosis. For these patients, experimental therapy would be unnecessary, and a 

conservative management strategy based on cytoreduction and reduction of vascular risk will 

suffice to give long-term, event-free survival. MPNs do continue to evolve, however, and it 

would be an interesting extension of this study to evaluate the opportunities offered by serial 

genomic profiling to update treatment choices if high-risk genomic changes emerge or if 

therapy drives further evolution. 

 Comprehensive gene sequencing of patients with blood cancers is becoming 

increasingly accessible and routine. Integration of clinical data with diagnostic genome profiling 

will provide prognostic predictions personally tailored to individual patients. In MPNs, this will 

empower the clinician and support complex decisions around the choice and intensity of 

therapy, recruitment into clinical trials and long-term clinical outlook.  
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Figure Legends 

 

Figure 1. Genomic landscape of myeloproliferative neoplasms. (A) Frequency of recurrently 

mutated genes and chromosomal abnormalities in the cohort. Mutations are stratified 

according to type, namely missense, nonsense, affecting a splice site or other (eg stop-gain/loss 

etc). Insertions and deletions are categorised by whether they resulted in a shift in the codon 

reading frame, by either 1 or 2 base pairs, or were in-frame. Chromosomal gains include whole-

chromosome gains (trisomy) and sub-chromosomal amplifications. Chromosomal losses 

include whole-chromosome deletions (monosomy) and sub-chromosomal deletions. *Loss of 

heterozygosity (LOH) was predominantly copy number neutral, but in some cases, 

chromosome losses could not be excluded. (B) Site within the gene and protein consequence 

of PPM1D mutations are illustrated.  PP2C, Protein phosphatase 2C domain (C) Clonal 

structures of two PPM1D-mutated patients determined by genotyping of hematopoietic 

colonies (BFU-E) derived from peripheral blood mononuclear cells. Each circle represents a 

clone; non-PPM1D mutated (black); PPM1D-mutated (yellow). The earliest detectable clone is 

represented at the top of each diagram, with subsequent subclones shown below. Somatic 

mutations acquired in each sub-clone are indicated beside respective nodes, and represent 

those that are acquired in addition to mutations present in earlier subclones. ET, Essential 

thrombocythemia; PV, Polycythemia vera (D) Site within the gene and protein consequence of 

non-canonical mutations of JAK2 and MPL are illustrated. V617F and exon 12 mutations in JAK2, 

and W515 mutations in MPL are not shown. Colored shapes represent the characteristics of 

the patient carrying the specific mutation (shape, MPN subtype; color, phenotypic driver). 

Mutations highlighted in red are likely to be relevant to disease pathology and where previous 

studies have demonstrated somatic acquisition, familial inheritance or functional 

consequences for the specific variants.  

 

Figure 2. Factors affecting disease classification at presentation and timing of somatic mutations. 

Histogram showing the frequency of driver mutations and/or chromosomal changes (gains, 

losses, or LOH) identified in (A) the different molecular subgroups of MPN (excluding 24 

patients with >1 detectable phenotypic driver mutation), and (B) according to patient age at 

diagnosis. ET, Essential thrombocythemia; PV, Polycythemia vera; MF, Myelofibrosis. (C-D) 

Forest plots showing the associations between genetic or demographic features and 

presentation with ET versus PV in JAK2V617F-mutated patients (C), and presentation in chronic 

phase versus MF across JAK2-, CALR-, or MPL-mutated patients (D). Significant associations 



 13 

from univariate analyses after correction for multiple hypothesis testing are shown. p-values 

are derived from logistic regression modelling, identifying independent associations. (E) Of 671 

patients that harbored more than one somatic mutation, the order of mutation acquisition of 

at least one pair of mutations was determined in 271 patients (40%). These ordered pairings 

were used to determine the relative probabilities of occurring first or second for a given pairing 

using Bradley-Terry modelling, providing an estimate of the overall timing of mutation 

acquisition. The horizontal axis shows the log odds of a gene occurring second in a gene pair. 

For example, compared to JAK2, PPM1D mutations have a log odds of 1.45, and therefore are 

e1.25=4.3 times more likely to occur secondary to JAK2. Any pair of genes can be assessed in this 

manner by calculating the exponential of the difference in log odds for Gene A and Gene B.  

 

Figure 3. Genomic sub-groups in MPN and phenotypic characteristics. Using a Bayesian 

clustering algorithm (Dirichlet process), patients could be classified into 6 distinct subgroups 

based on the presence or absence of mutations and chromosomal abnormalities. Remaining 

patients either had no detectable genomic changes or had clonal markers that were not 

defining for one of the 6 groups. The flowchart shows the logic allowing patients to be classified 

into the total of 8 groups. Proportions of patients with essential thrombocytosis (ET), 

polycythemia vera (PV), myelofibrosis (primary or secondary MF) or other MPN diagnoses are 

shown, as well as rates of overall survival and myelofibrotic or leukemic transformation for 

patients within the individual sub-groups. ^^Patients that have more than one mutation across 

JAK2, CALR or 20q-, and MPL can belong to more than one classification. $ at least a 10% clone, 

consider other diagnoses in such patients depending on the nature of the genetic aberration.   

 

Figure 4. Modelling outcome in patients. (A) Model predictions versus actual event free survival 

in patients. Comparisons of the actual event-free survival (EFS) versus the predicted EFS derived 

from multistate random-effects Cox proportional hazards modelling for patients in chronic 

phase (CP) and myelofibrosis (MF) patients, for both the training and external validation 

cohorts, are shown. Each cohort was split into equally sized subgroups of patients, and each of 

these subgroups is represented by a data point plotted according to the observed and 

predicted EFS, overall showing good correlation between predicted and actual outcomes for 

both training and external validation cohorts at several different timepoints (brown, 5 year EFS; 

blue 10 year EFS; red, 20 year EFS). (B) Transition states during a patient’s disease and the factors 

contributing to the risk of each transition. Patients may present in either chronic phase (CP, 

comprising patients with PV, ET or MPNu) or myelofibrosis (MF), as represented by the two 
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central red rounded rectangles. The patient may subsequently remain alive in these disease 

states, alternatively, the patient can transition to one of four states: (i) Death in CP, (ii) Death 

in MF, (iii) MF transformation of CP, and (iv) Acute myeloid leukemia (AML) transformation of 

either CP or MF. Individual models were created for each of these 4 disease-state transitions 

and combined into a single multistate model allowing for the prediction of probability of being 

each disease state occurring at any time-point in the future (up to 25yrs post diagnosis) being 

calculated on an individual patient basis. Pie charts show those variables that contribute the 

most to the predicted risk for each of the 4 transitions. These demonstrate the impact on 

disease transitions of both rare variables with a strong effect and common variables with a 

milder effect. Variables with a hazard ratio of >2.0 are written in blue letters, and those 

variables with hazard ratio <0.5 are written in orange letters. The number of patients 

presenting in CP and MF are shown in brackets alongside the numbers that transitioned to 

other states. Of note, patients may transition more than once during their clinical course, for 

example, from CP to MF, and then to AML. *Risk of AML transformation was highest for 

patients with MF.  

 

Figure 5. Personalised predictions of patient outcome. Each of the tiles represents the 

personalised predicted outcome of an individual patient. Two tiles (A) and (B) have been 

enlarged for illustrative purposes. The top left panel (A) depicts the predicted outcomes of a 

79 year old female patient who presented with ET with hemoglobin (Hb) 104g/l, white cell 

count (WCC) 8.4x109/l and platelet count (Plt) of 2300x109/l, mutations in CALR, SRSF2, IDH2 

and 18q loss of heterozygosity (LOH). For such a patient presenting in chronic phase (CP, 

comprising PV or ET), the model incorporates all clinical, demographic, laboratory and genomic 

parameters to predict the overall probabilities over time of (i) being alive in CP (grey), (ii) 

suffering death in CP (light blue), (iii) being alive in post-CP MF (brown), (iv) suffering death in 

post-CP MF (turquoise), (v) transforming to AML from CP (pink), or (vi) transforming to AML 

from post-CP MF (magenta). The varying probabilities of each of these transitions can be judged 

from the vertical axis and their respective Kaplan-Meiers over a 25 year time period shown 

along the horizontal axis. The labelled black curve shows the predicted Kaplan-Meier curve of 

overall survival. The patient in (A) transformed to myelofibrosis (MF) and died within 5yrs and 

this actual outcome is shown along the bottom of the plot where the length of the horizontal 

black line depicts the duration of follow-up, and the cause of death (if occurred during follow 

up) by the shading of the circle at the end of the black line.  
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 For a patient presenting in MF, as shown in panel (B), the same model predicts the 

probabilities of (i) being alive in MF (brown), (ii) suffering death in MF (turquoise) or 

transforming to AML (magenta) over 25yrs. This tile shows the predicted and actual outcome 

of a 57 year old male patient diagnosed with MF with Hb 125g/l, WCC 27x109/l and Plt 119 

x109/l, mutated TET2, ASXL1, CBL and BCOR along with chr7q- and 11q-. This patient died in MF 

within 2yrs as shown along the bottom of the plot. 

 All patients diagnosed in chronic phase (CP, namely ET or PV) or MF, with either a 

disease event (death or disease progression) or >10 year follow-up (>5yrs for MF patients), 

were ranked by their overall predicted event free survival (EFS). The predicted and actual 

outcomes for 36 individual patients in CP and MF evenly spaced across this ranking are shown 

in panels (C) and (D) demonstrating discrimination between patients in terms of event free 

survival and cause of death across the cohort.  
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