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Figure S1  

(A) Confocal images of an EGFP-HDQ72 cell with an aggresome visible in the perinuclear area.  

(B) Proportion of EGFP-HDQ72 cells containing aggregates at different time points after tetracycline 

induction. Three independent experiments were performed with around 200 cells assessed per population 

per experiment. 
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Figure S2  

Quantification of aggregate in long distance motion (>2 μm). 35537 aggregates from normal cells and 

7410 aggregates from nocodazole treated cells were analysed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3  

Quantification of aggregate cluster numbers of different length scales. Cell samples were fixed and 279 

aggregate clusters were recorded and analysed by 3D SIM.   
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Figure S3

 

 

 

 

 

 

 

 

 

Figure S4 

Examples of binary images of aggregates used for gyration radius analysis. Scale bar: 1 μm.   

 

Video 1. High-speed SIM recording (2 Hz) of cytosolic polyQ aggregates. 

Video 2. High-speed SIM recording (6 Hz) of aggregate particles in quasi-random motion.  

Video 3. High-speed SIM recording (2 Hz) of small cluster motion within an aggresome.  

Video 4. 3D SIM reconstruction of an aggresome and small aggregate clusters.  

Video 5. 3D SIM reconstruction of a small, amorphous cluster. 

 

Mathematical model of aggresome growth 
 
To support and better understand the experimental observations, a mathematical model wasdeveloped to 

describe the formation and growth of the polyQ perinuclear aggresome. 

 

The system was modelled to be composed of a spherical aggresome, considered to be a fractal aggregate 

with well-defined radius of gyration and made of elementary building blocks (clusters), all with the same 

average size and effective diffusion coefficient. The aggresome is located at the centre of a cell modelled 

as a sphere. The cytosol is populated homogeneously by clusters taken to be spherical objects of identical 

size; the presence of monomeric polyQ is neglected. 

 

A spherical symmetry was assumed for the problem, so that the concentration of polyQ in the liquid phase, 

expressed as clusters/m3, depends on time and radial coordinates only. The model describes the growth of 



 S-5 

a single large aggresome at the center of the cell, neglecting the possibility of multiple aggresomes forming 

simultaneously. 

 

Transport of the clusters from the cytosol to the aggresome was modelled to be caused by a combination 

of Brownian motion along the radial direction and active transport through via MTs. The two contributions 

were considered to be independent from another, so when a cluster enters the MTOC region it is no longer 

affected by diffusive transport, which only takes place inside the cytosol. The initial concentration of 

clusters inside the cytolsol was estimated from analysis of the microscopy data. The analysis revealed that 

only 5% of the total clusters are under active transport at any time and this information was used to 

initialise the input parameters for the model. 

 

The model reduces to a moving-boundary Stefan problem where two distinct transport processes take 

place at the same time. This leads to two separate Cauchy problems, for diffusive and active transport, 

respectively, in a spherical geometry with a moving-boundary given by the interface between solid 

aggresome (growing as a function of time) and the liquid-like cytosol, which fills the surrounding space. 

Conservation of matter at the solid-liquid - (or aggresome-liquid -) interface is implemented to describe 

the quantity of polyQ migrating into the growing aggresome and to update the position of the radius of 

the increasing aggresome (the moving lower boundary of the domain where the differential equations are 

solved). 

 

The two Cauchy problems were formulated for diffusive and active transport as per equations (1)-(7). 

Every building-block (cluster) is either moving under Brownian motion in the cytosol or being actively 

transport (advected) inside one of the MTOC. The equations for the diffusive transport with boundary and 

initial conditions are: 
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while for the advective transport in the MTOC the following pure-advection equation was used with 

approproateboundary conditions: 

 

 

 

 

D is the diffusion coefficient, considered to be constant along the radial coordinate, Vr is the radial 

component of the advection speed inside the MTOC (taken to be independent of r, based on experimental 

evidence), R the radius of the growing aggresome corresponding to the position of the solid-liquid 

interface during time, Rcell the characteristic size of the cell,  the initial concentration of clusters inside 

the cytosol that are transported by Brownian motion, and  is the initial concentration of clusters inside 

the MTOC that are subsequently transported by pure advection to the aggresome. 

The update of the solid-liquid interface is obtained by enforcing conservation of matter at the aggresome 

interface r = R: the RHS of equation (8) below represents the flux of matter that is included in the solid 

phase during the time span δt. This leads to the deposition of an external shell of aggregates to the surface 

of the aggresome that causes an increase of the mass of the aggresome expressed in the LHS of (8). 

 

 

 

 

 

In this case τ represents the temporal variable integrated between t and t + δt, meanwhile q represents the 

amount of matter necessary to increase the system by a unit of volume. Because the aggresome is a fractal 

aggregate, its density (number of building blocks per unit volume) is not constant, and decreases over time 

because of the spatially self-similar nature of the growth process. It is possible to relate q(t) to the fractal 
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dimension df  of the aggresome and its radius of gyration R, and to the radius of the single building block 

(cluster) a via the following relation 

 

 

The fractal scaling prefactor kg and the fractal dimension df are related to the number of building blocks N 

inside the aggresome via the standard fractal scaling relation 

  

Even though q varies with time overall, it will be considered constant over the small time-step δt taken for 

the discretization of the transport equations. Dividing both intervals by δt and doing the limit for δt → 0 

we obtain 

 

 

 

 

Because the integrand function in (11) is continuous and limited inside every interval [t,t+δt] it is possible 

to apply the Mean Value Theorem (MVT) defined in (12) 

  

 

 

 

 

where tint is an intermediate point inside the interval [t,t + δt]. Applying MVT together with the definition 

of the first derivative IN (11) we obtain 
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Finally (13) can be reduced to the following final equation  

 

  

 

 

Equation (14) is numerically solved with an explicit first order finite difference scheme where q stays 

constant over each time span and equal to its value related to the lower limit of every interval; time step 

were chosen such that q was approximately constant over each time interval. 

2. Numerical solution 

 

The system (1)-(4) can be numerically solved by the Crank-Nicholson method: the continuous space 

coordinate is divided into a series of N discrete intervals and the implicit finite difference scheme is applied 

for j = n+1,..,N where n+1 is the node related to the solid-liquid interface; (16) is a general line of the 

linear system that needs to be solved. 

 

 

 

The values of the coefficients A(j), B and E(j) are reported in (17) - (19) 
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δr is the interval between two consecutive nodes and δt is the time step adopted in this work. 

The two boundary conditions (2)-(3) can be respectively written as 

  

 

 

The second represents a symmetry condition that, thanks to the use of a ghost node N +1: the Nth point of 

the grid can be used as a mirror between neighbouring cells so that coefficients of the last line of the linear 

system become 

 

 

  

Regarding the other Cauchy problem, it has been demonstrated that the analytical solution of a pure 

convection equation, knowing the initial concentration 
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Table 1: list of input data together with the respective SI units adopted in this work distribution  

Cliq,C 0, is 

  

In the main text we describe the theoretical approach to update the position of the solid-liquid interface, 

what follows is the explicit first order discretization adopted in this work 

 

 

  

The evaluation of qi at each time step can be done through equation (9), subsequent to evaluation of kg and 

df  via (10). Using experimental data these were determined to be kg = 1.75 and df = 2.08. The complete 

list of input data is shown in Table 1; the value of Vr is negative because the direction of the active transport 

is opposite to the radial direction as defined here. 

 
 

 

 

 


