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Computational complexity continuum within Ising
formulation of NP problems
Kirill P. Kalinin1✉ & Natalia G. Berloff 1,2✉

A promising approach to achieve computational supremacy over the classical von Neumann

architecture explores classical and quantum hardware as Ising machines. The minimisation of

the Ising Hamiltonian is known to be NP-hard problem yet not all problem instances are

equivalently hard to optimise. Given that the operational principles of Ising machines are

suited to the structure of some problems but not others, we propose to identify computa-

tionally simple instances with an ‘optimisation simplicity criterion’. Neuromorphic archi-

tectures based on optical, photonic, and electronic systems can naturally operate to optimise

instances satisfying this criterion, which are therefore often chosen to illustrate the com-

putational advantages of new Ising machines. As an example, we show that the Ising model

on the Möbius ladder graph is ‘easy’ for Ising machines. By rewiring the Möbius ladder graph

to random 3-regular graphs, we probe an intermediate computational complexity between P

and NP-hard classes with several numerical methods. Significant fractions of polynomially

simple instances are further found for a wide range of small size models from spin glasses to

maximum cut problems. A compelling approach for distinguishing easy and hard instances

within the same NP-hard class of problems can be a starting point in developing a stan-

dardised procedure for the performance evaluation of emerging physical simulators and

physics-inspired algorithms.
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The recent advances in developing physical platforms for
solving combinatorial optimisation problems reveal the
future of high-performance computing for quantum and

classical devices. Unconventional computing architectures were
proposed for numerous systems, including superconducting
qubits1–3, field-programmable gate arrays4, optical parametric
oscillators5,6, memristors7, lasers8–10, photonic simulators11,12,
trapped ions13, polariton14,15 and photon16 condensates. An
attractive opportunity to show the advantageous performance of
one system over others becomes a demonstration of the plat-
form’s ability to optimise non-deterministic polynomial time
(NP-hard) problems that are computationally intractable for the
traditional von Neumann architecture machines. The intract-
ability is manifested in the exponential growth of the number of
operations with the problem size. From the computational
complexity theory perspective, the exponential growth does not
necessarily apply to all instances of an optimisation problem,
which is shown to be NP-hard in general, admitting the worst-
case scenario when a mere handful of instances are truly hard to
optimise. Selection of the hardest instances within NP-hard
classes could be the key to determining the computational
advantages of small and medium-size simulators and may lead to
a reliable generalisation of their optimisation performance to a
larger scale.

The hard optimisation problems from vastly different areas,
including the travelling salesman problem, spin glass models,
knapsack problem, integer linear programming, can be refor-
mulated to minimise spin Hamiltonians17, among which a special
place belongs to the Ising Hamiltonian. To minimise the Ising
Hamiltonian (‘solve the Ising model’), one needs to find N binary
spins si∈ {−1, 1} that minimise

HIsing ¼ � 1
2
∑
N

i;j¼1
Jijsisj � ∑

N

i¼1
hisi; ð1Þ

where Jij are real coupling coefficients and hi are external fields.
Solving the Ising model is NP-hard problem in general, with
computational hardness proven for certain coupling matrices18

(see Methods for details). The Ising Hamiltonian is universal,
meaning a fine-graining procedure exists to transform any clas-
sical spin Hamiltonian, continuous or discrete, with an arbitrary
coupling matrix to the low energy spectra of the universal model
such as the Ising model on the square lattice with fields19.

Given existing small and medium-scale simulators, considerable
attention is devoted to problems that can be mapped to the Ising
model with zero overhead. A common example includes the
maximum cut (MaxCut) class of problems in which one looks for
the cut of the given graph into two subsets with the largest number
of their connecting weighted edges. The subclass of unweighted
graphs is attractive for experimental implementation since it only
requires the realisation of antiferromagnetic couplings (Jij < 0) of
the same amplitude, i.e., Jij=−1 if spins i and j are connected, and
0 otherwise. Since the unweighted MaxCut problem is NP-hard20,
the instances of unweighted k-regular graphs, in which each spin
is randomly connected to k other spins, are often used to study
new and compare existing physical simulators5,11,12,21,22. The
3-regular MaxCut problems are used in the proposal of the
quantum approximate optimisation algorithm23 with its later
experimental demonstration on superconducting qubits24.

Another common practice is to consider the unweighted
MaxCut problems on circulant graphs. Circulant graphs are
defined by symmetric circulant adjacency matrices where (i+ 1)-
th row is a cyclic shift of i-th row by one element to the right.
Subclasses of circulant graphs include complete graphs, cyclic
graphs, Möbius ladder and many others25,26. Efficient quantum

walks are implemented on circulant graphs with sampling pro-
blems shown to be intractable for classical hardware27. The
complete unweighted graphs with antiferromagnetic couplings
can be optimised for large sizes up to 80,000 with the photonic
Ising machine11. The unweighted Ising model on the Möbius
ladder graph formally belongs to the MaxCut problem and has
the circulant adjacency matrix with nonzero elements of the first
row at 0, N/2, and N-th positions, where N is an even number.
For the Möbius ladder of size N= 100, the ground state can be
found with a probability of 21% for the coherent Ising machine
based on optical parametric oscillators5,28,29 and a success rate of
34% is demonstrated with optoelectronic oscillators30. The 3%
ground state probability is reported for the larger Möbius ladder
of size 300 on the analogue coupled electronic oscillator
machine31. The Möbius ladders become typical candidates for
evaluating the performance of physical platforms32,33 and an
exponential time increase on the graphs up to 800 nodes has been
reported34. Ordinarily, it is tempting to assume that choosing any
instance of a general class of NP-hard problems is equivalent to
considering a hard instance, thereby ignoring the possibility of
that instance being in the P-class.

In this article, we probe an instance complexity between the
two extremes. To detect easy instances within the Ising model, we
propose an ‘optimisation simplicity criterion’. We provide
numerical evidence of such optimisation simplicity for instances
covering a wide range of problems from spin glass models to
3-regular MaxCut problems. As an illustrative example of easy
instances of the unweighted 3-regular MaxCut problem, the
Möbius ladder graphs are shown to be polynomially solvable. In
particular, greater than 99% ground state probability can be
ensured with the quadratic increase in the number of time
iterations for the HT algorithm35 on graphs up to 10,000 size.
Moreover, the mathematical complexity of the weighted Ising
model on the Möbius ladder graphs is shown to be in P-class, and
the superlinear scaling for its computational complexity is
demonstrated with the exact commercial solver, Gurobi. With a
simple Möbius ladder at one end and hard random 3-regular
graph at the other, the relative computational hardness of inter-
mediate graphs with rearranged edges is investigated. The per-
centage of rewired edges in the Möbius ladder, which is required
to achieve an average hardness of an arbitrary 3-regular graph,
depends on the optimisation technique and can vary from 2–5%
to 40–50%, as evidenced by the time performance of several
heuristic algorithms and Gurobi solver. The Ising models satis-
fying the proposed optimisation simplicity criterion are not
limited to circulant matrices and include sparse and dense
interaction matrices of various topologies with or without a
magnetic field. For some Ising models, such as the Mattis model,
unweighted spin glasses on a torus, and biased ferromagnet on
the Chimera graph, we find that all instances are solvable in
polynomial time. There also exists a high probability of finding
simple small size random instances of NP-hard problems, as we
confirm for 3-regular MaxCut, Sherrington–Kirkpatrick, and
other spin glass models, with couplings taken from the Gaussian
and bimodal distributions. Understanding the average instance
complexity of NP-hard problems and having a robust way to
identify the polynomially easy instances could help evaluate the
general potential of small and medium-scale simulators in solving
hard combinatorial optimisation problems.

Results
The original work of Hopfield and Tank35 introduced an analo-
gue computational network for solving difficult optimisation
problems. The network, later termed the Hopfield-Tank (HT)
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model or HT neural network, is governed by the equations:

dxi
dt

¼ � xi
τ
þ ∑

N

j¼1
Jijvj þ Ibi ; vj ¼ gðxjÞ; ð2Þ

where xi(t) is a real input that describes the state of the i-th
network element at time t, τ is the decay parameter, J is the
symmetric coupling matrix, Ibi are the offset biases (external
fields) that can be absorbed into J by introducing an additional
spin, N is the size of the network, and g(xi) is the activation
function. The nondecreasing monotonic function g(xi) is designed
to limit possible values of vi to the [−1, 1] range and is typically
chosen as a sigmoid or hyperbolic tangent. The steady states of
the HT model (2) are the minima of the Lyapunov function E:

E ¼ � 1
2
∑
N

i;j¼1
Jijvivj � ∑

N

i¼1
Ibi vi þ

1
τ
∑
N

i¼1

Z vi

0
g�1ðxÞdx: ð3Þ

In the high-gain limit, when τ→∞ or g approaches a step
function g(x)= 1 (g(x)=−1) if x ≥ 0 (x < 0), the minima of E
occur at vi= {−1, 1} and correspond to the minima of Eq. (1). If
the high-gain limit conditions are violated (low-gain limit), the
minima of E are not necessarily at vi= {−1, 1} and can be inside
the hypercube [−1, 1]N. By projecting non-integer amplitudes of
the steady-state at the end of the simulation, the allowed mini-
miser of the Ising model is restored at the nearest hypercube
corner. Therefore, the HT network tends to locate local minima if
it minimises the Ising model at all, as has been recognised in
earlier works36. There exist simple coupling matrices J that can be
globally optimised even in this low-gain limit. For zero fields in
both limits, the steady states are completely characterised by the
coupling matrix eigenvalues λi and corresponding orthogonal
eigenvectors ei 2 RN ´ 1 with the coupling matrix expressed as
J ¼ ∑N

i¼1 λieie
T
i . In the presence of degenerate or zero eigenva-

lues, the eigenvectors form a subspace of rank lower than N.
Denoting components of v in the space of coupling matrix
eigenvectors as γi and the null subspace component as q, the
amplitudes and energy can be written as

v ¼ ∑
N

i¼1
γiei þ q; ð4Þ

E ¼ � 1
2
∑
N

i¼1
λiγ

2
i þ

1
τ
∑
N

j¼1

Z vj

0
g�1ðxÞ dx: ð5Þ

To minimise E, the components γi should be increased for
positive λi and decreased otherwise. This observation reveals the
nature of how the HT algorithm functions: it changes amplitudes
vi in a way that gradually favours the larger positive eigenvalues
λi37. Therefore, in the low-gain limit, the HT algorithm finds the
minimum of the Ising model that corresponds to the largest
positive (dominant) eigenvalue. Suppose this minimum happens
to be the global minimum, which is valid for many problems
selected for testing the Ising Hamiltonian minimisers. In that
case, the corresponding instances should be considered poly-
nomially simple for optimisation, as we further explain in
the paper.

The choice of the HT algorithm in our analysis is not acci-
dental and is prompted by its ability to replicate the dynamic
behaviour of many existing Ising simulators considered in optics,
photonics, and electronics. For instance, the recent memristor-
based annealing system operates as a Hopfield neural network7.
Another example is the coherent Ising machine on the optical
parametric oscillators that is commonly thought to be similar to
HT networks with nonlinear saturation of amplitudes and,
therefore, both are often compared21. For such gain-dissipative
computing machines, the successive better minima toward the
dominant eigenmode38 are achieved via a series of bifurcations39.

In general, the global minimum of the Ising Hamiltonian
would correspond to a nontrivial direction in the eigenspace of ei
in Eq. (5). This obvious yet substantial observation leads to our
proposal for ‘optimisation simplicity criterion’:

Proposition (Optimisation Simplicity Criterion—OSC). The
instance of a hard problem should be regarded as computation-
ally simple for optical and electronic analogue machines if the
ground state minimiser sgs of the Ising Hamiltonian HIsing is
located at the hypercube corner of the projected dominant
eigenvector emax, corresponding to one of the largest eigenvalues
λmax of the coupling matrix J:

Eλ ¼ minHIsing ¼ � 1
2
sTgsJsgs; sgs ¼ signðemaxÞ: ð6Þ

Without the loss of generality, the fields (the biases in HT
networks) are assumed to be zero since they can always be
incorporated into the coupling matrix J with an additional spin.
The OSC provides an upper bound for the ground state energy of
the Ising model. Eigenvalue analysis is common to many poly-
nomial time algorithms that approximate both lower and upper
bounds for optimal solutions to complex combinatorial
problems40,41. For the MaxCut problem, the eigenvalue mini-
misation is known to be equivalent to semidefinite
programming42, which in turn makes it equivalent to the eigen-
value maximisation that the HT algorithm does for the
Ising model.

The standard procedure for verifying whether a particular
instance satisfies the OSC would be to compare the upper bound
energy Eλ, which corresponds to the dominant eigenvector, with
the global minimum obtained with a physical simulator or an
optimisation algorithm. If these two energies coincide, the instance
should be considered trivial to optimise. The polynomial com-
plexity of instances satisfying the OSC could be recovered with the
HT algorithm Eq. (2), which is naturally designed to project the
input vector into a subspace that is dictated by the eigenvalues of
the coupling matrix. For instance, to violate the OSC, it is sufficient
to show that it has energy lower than Eλ. The complexity of the
instances that do not satisfy the OSC can be further assessed by
other means. For example, the optimality gaps could be evaluated
using the exact solvers such as Gurobi, or the time to solution
metric could be considered for heuristic solvers, as we show below.

Möbius ladder graphs. As an illustrative example, we apply the
HT algorithm Eq. (2) with a hyperbolic tangent activation function
to a particular topology of unweighted 3-regular graphs, namely the
Möbius ladder graph. The two representations of this cubic circu-
lant graph of size N are shown in Fig. 1a. When n=N/2 is an even
number, antiferromagnetic interactions cause lattice frustrations
that result in N degenerate ground states with two frustrated edges
(shown in red) between two domains of n anti-aligned spins and
the ground state energy of (3n− 4). Figure 1b demonstrates a
typical simulation of the HT network for the Möbius ladder of size
N= 1000. The ratio of the HT energy, found by associating spins
with the signs of amplitudes vi at the steady-state to the ground
state energy is defined as the proximity to the ground state. The
network operates in the low-gain limit (see Methods for para-
meters) and, hence, the amplitudes vi are not binary when the
steady-state is reached. Yet, by gradually favouring the eigenvectors
with larger eigenvalues, the HT algorithm moves spin states
through the hypercube interior over time and achieves the global
minimum, although the coupling matrix is modified by non-equal
continuous amplitudes vi in [−1, 1]. The necessity of homogeneous
amplitudes for minimising nontrivial spin Hamiltonians with gain-
dissipative networks was discussed recently43,44. All states of the low
energy spectra Eλi

in Fig. 1b correspond to the eigenvectors of the
largest eigenvalues of the interaction matrix, whose analytical
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expressions are available for the Möbius ladder as a representative
of circulant matrices.

To estimate the performance of optical and electronic Ising
machines, the Möbius ladder graphs, we determine the number of
HT time iterations for achieving the ground state with
probabilities greater than 50%, 70% and 99% for problem sizes
up to N= 10,000. The ground state probability is defined as the
fraction of simulations leading to the global minimum to the total
number of simulations. Figure 1c shows a polynomial (quadratic)

increase in the number of iterations with the graph size, which
confirms the optimisation easiness of such problems. The
quadratic slope remains the same for each range of the desired
ground state probabilities. The ground state probability decreases
for the fixed number of iterations, as demonstrated in Fig. 1d,
which suggests that the reported quick performance deterioration
of the physical Ising machines with the network size5,30 may be
caused by the fixed amount of internal system loops available in
that physical platform. The lack of frustration in the Möbius
ladders with odd N/2 does not necessarily mean that the ground
state is trivial to reach. We consistently observe that such non-
frustrated graphs require larger number of time iterations than
frustrated Möbius ladder graphs with even N/2. Since the
complexity of one-time iteration of the HT algorithm is
determined by the matrix-vector multiplication product as
OðkNÞ for k-regular sparse graphs, the time complexity for
globally optimising Ising Hamiltonian on the Möbius ladders
scales as OðN3Þ with the problem size.

Thus, the eigenvalue maximisation principle, which underlies
HT algorithm, ignores the energy profile of a simple problem that
satisfies the OSC. Even in the absence of a mechanism for
exploring the global energy landscape, network elements follow
eigenvectors with successively larger eigenvalues. The corre-
sponding consecutive energy states can differ by hundreds of
spins, while the Ising Hamiltonian energy monotonically
approaches the global minimum. This dynamic behaviour is
drastically different from both the Ising machines based on
equilibrium systems and optimisation methods, for which the
width and height of energy barriers are critical and occasional
increases in energy are common once the system escapes local
minima. For example, the exponential time scaling for the Ising
model on the Möbius ladders was recently reported for the
simulated annealing algorithm34, while unconventional comput-
ing platforms based on gain-dissipative networks can efficiently
find principal eigenvectors for million size problems45.

So far, we have discussed only the computational complexity of
the unweighted Ising model on the Möbius ladder graphs. It can
be seen that the mathematical complexity of minimising the Ising
Hamiltonian on the Möbius ladder topology is in P-class. Since
the Möbius ladder graph becomes a bipartite graph after the
removal of two nodes, it belongs to a family of weakly-bipartite
graphs46. However, the weighted MaxCut problem is in P-class
for weakly-bipartite graphs47 and, hence, the Ising model with
arbitrary couplings on the Möbius ladder graph is in P-class too.

With the understanding of what is essential for an individual
instance of the NP-hard problem to be counted as simple, we next
present a natural approach for restoring complexity and study the
continuous complexity transition from simple to hard instances
for Ising optimisation on physical Ising machines.

Interpolating between simple Möbius ladders and hard
3-regular MaxCut. We develop a procedure that allows us to
continuously ‘tune’ the graph from the Möbius ladders to random
3-regular graphs, the unweighted MaxCut problem on which is
known to be NP-hard, and thereby to probe the intermediate
problem computational complexity. To interpolate between two
extremes, we consider the following random rewiring procedure.
Starting from the Möbius ladder, we remove and reconnect a pair
of edges at random. For each subsequent iteration of the rewiring
procedure, a random pair among the original edges (if any) of the
Möbius ladder is selected. Hence, intermediate graphs are
quantified by the percentage of rewired edges in the Möbius
ladder. For the frustrated Möbius ladder graphs to violate the
OSC, the rearrangement of two edges is sufficient for any problem
size N as shown in Fig. 2a and works for about 85% of the Möbius

Fig. 1 Optimisation of the unweighted Ising model on the Möbius ladder
graphs with the Hopfield-Tank algorithm. a Illustration of the Möbius
ladder graph on Möbius strip and on the circular graph. Two possible
frustrated edges in the ground state are highlighted in red. b The evolution of
amplitudes vi and the corresponding proximity to the ground state (GS) are
shown for the Möbius ladder graph of size N= 1000 over Niter= 3000 time
iterations of the Hopfield-Tank algorithm. All low energy levels Eλi
correspond to the projected eigenvectors sign(ei) of the distinct largest
eigenvalues λi. c The number of time iterations Niter of the Hopfield-Tank
algorithm is shown for optimising the Möbius ladder graphs of sizes up to
N= 10,000 with desired ground state probability ranges of pgs∈ {50–55%,
75–80%, 99–100%}. The solid lines correspond to a quadratic fit confirming
that the Ising model on Möbius ladder graphs can be solved in polynomial
time. The number of algorithm runs per each graph size is fixed to 250. d
The ground state probabilities as a function of Möbius Ladder size are shown
for the fixed number of time iterations Niter∈ {10,000, 50,000, 250,000}.
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Fig. 2 Continuum complexity transition of the Ising model on 3-regular graphs. a, b The rewiring procedure of two edges for violating the optimisation
simplicity criterion in the Möbius ladder graphs of size N= 2n for any even N in (a) and most even N in (b). The removed and added edges are shown with
red solid and dashed green lines, respectively. c The Möbius ladder graphs are depicted in the upper panel with 10%, 60% and 100% of rearranged edges.
The relative computational hardness of the unweighted Ising model on the rewired Möbius ladder graphs is evaluated by the median time required for
reaching zero optimality gap with Gurobi solver and is shown in the lower panel for problem sizes 100, 200 and 300. The 100 random graphs are
optimised for each problem size for every percentage of rewired edges with shaded regions indicating an interquartile range. d The median time to solution
metric as a function of the percentage of rewired edges in the Möbius ladder graphs is shown for chaotic amplitude control and parallel tempering
methods. e The average computational hardness is evaluated by the median time required for reaching zero optimality gap with Gurobi solver for the
Möbius ladder graphs of sizes up to 500,000 with couplings from the unweighted, bimodal, and Gaussian distributions. The ten random graphs are
optimised for each problem size.
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ladders of size up to 1000 in Fig. 2b. Both configurations preserve
the ground state energy of (3n− 4) while making the rewired
graphs impossible to optimise with the HT algorithm in the low-
gain limit, even for the smallest problem sizes. For the Möbius
ladder with no frustration (odd n), the edges J12, JN−2,N−3 could
be rewired as J1,N−3, J2,N−2 to violate the OSC for any N ≥ 10.
Although satisfying the OSC is sufficient for the certain graph
structure to be simple, its violation does not necessarily make the
instance hard to solve. Other optimisation approaches have to be
tested to estimate the relative hardness.

One way to address the relative complexity is to use exact
solvers. For example, the commercial solver Gurobi48 employs
various pre-processing techniques and uses heuristics for
accelerating the branch-and-bound algorithm49 that can be
applied to mixed-integer programming problems. For problems
that cannot be exactly solved for a given time limit, Gurobi
evaluates the optimality gap defined as

OGAP ¼ Ebest � Elower bound

Ebest
; ð7Þ

where Ebest and Elower bound are the best objective and the lower
objective bound, respectively. The size of the optimality gap or the
time to reach a particular gap could be used as a performance
metric for the problem complexity50. Hence, the relative hardness
of the Ising model on the rewired Möbius ladder graphs can be
evaluated by the time it takes Gurobi to reach a zero
optimality gap.

Another way to evaluate the relative computational hardness is
to use heuristic solvers. We consider two physics-inspired
algorithms, namely parallel tempering (PT) and chaotic ampli-
tude control. The former51–54 is arguably the current state-of-the-
art algorithm that generally shows better or similar performance
over other heuristic methods55–57, while the latter is inspired by
the operation of the Ising machine based on optical parametric
oscillators44,58. The operational principles of both algorithms and
their optimal parameters are discussed in the Methods section.
The standard quantitative measure of performance of such
stochastic algorithms is the time to solution metric57,59, which
reflects the time it takes to find the ground state with 99%
confidence:

TTS ¼ trunR99 ¼ trun
log ð1� 0:99Þ
log ð1� pgsÞ

; ð8Þ

where trun is the time for running an algorithm once, R99 is the
number of runs for finding the ground state energy with a
probability of 99%, and pgs is the ground state success probability.

The computational complexity of the Ising model on 3-regular
graphs is interpolated between P and NP classes in Fig. 2c, d,
where we use the branch-and-bound, chaotic amplitude control,
and PT methods. For the branch-and-bound algorithm within
Gurobi solver, Fig. 2c shows the time to zero optimality gap
dependence on the percentage of rewired edges in the Möbius
ladder graphs of size N∈ {100, 200, 300}. For all sizes, the initial
exponential increase in time is followed by a plateau starting at
about 40–50% of rewired edges. For this percentage of rearranged
edges, the still recognisable original four-band structure of the
Möbius ladder graph has equivalent complexity of random
3-regular graphs for Ising model minimisation. Such equivalence
can be associated with frustrated (unsatisfied) edges, namely
edges with different signs of sisj and Jij, the number of which is
necessarily minimised at the ground state. Rewiring 40% edges in
the Möbius ladder for N= 100 introduces about 8% of frustrated
edges, which makes its complexity relatively similar to random
3-regular graphs with 8.6% of frustrated edges. For heuristic
algorithms, the optimised time to solution metric is shown in

Fig. 2d. For each percentage of rewired edges, we minimise the
time to solution with the machine-learner online optimisation
package60. Unlike the branch-and-bound exact solver, the smaller
number of rewired edges is required for achieving a time plateau
for the considered stochastic algorithms: the relative hardness of
the Möbius ladders with around 2% of rewired edges is equivalent
to the complexity of random 3-regular graphs. Similar to Gurobi
solver, the computational effort scales exponentially with the
number of rewired edges for the chaotic amplitude control
method, although a more modest speedup of 2–2.5 times is
observed with the PT.

Evidently, all three considered optimisation techniques can
successfully determine the relative easiness of the Möbius ladders
for the Ising model. The number of rearranged edges in the
Möbius ladder graphs, required for achieving the equivalent
computational complexity of random 3-regular MaxCut, depends
on the method’s operational principles. As assessed with arguably
state-of-the-art heuristics, this relative complexity of rewired
graphs leads to a practically significant result. One may consider
an existing physical platform that was previously tested on
Möbius ladders and construct the graphs with 2–5% of rewired
edges with minimal engineering adjustments. The global Ising
minimisation of such rewired Möbius ladder graphs would
suggest the physical platform’s ability to go beyond the eigenvalue
maximisation principle and potentially solve problems that are as
hard as random 3-regular MaxCut. Without rewiring, the average
computational complexity of the Ising model grows polynomially
with the Möbius ladder problem size, as demonstrated for
unweighted and weighted graphs with coupling values taken from
bimodal and Gaussian distributions in Fig. 2e.

General applicability of the optimisation simplicity criterion.
Any instance of a problem from the P-class is polynomially easy
to optimise, while for an arbitrary instance of NP-hard problem,
there is no guarantee that the instance is hard. Hardness cannot
be guaranteed by violating the proposed OSC, which in itself can
only help detect naturally easy instances of NP-hard problems.
With the addition of the rewiring procedure proposed above, the
relative computational complexity of random graphs can be
probed. Till now, the identified simple instances of Ising models
were limited to the Möbius ladder graphs. To emphasise the
general applicability of the OSC to instances of any NP-hard
problem, we show examples of simple graphs in a diverse set of
problems that are often chosen to evaluate the performance of the
Ising physical machines and computational algorithms.

We apply the OSC to the Ising models with dense, e.g., the
Sherrington–Kirkpatrick and the Mattis models, and sparse
coupling matrices, where besides 3-regular MaxCut, we examine
spin glass models of various topologies including torus, Chimera
graph, and 3-regular planar graphs. Where appropriate, in
addition to unweighted coupling matrices, we consider com-
monly chosen probability distributions for interaction strengths
such as bimodal, when couplings take values from {−1, 1} with
equal probability, and Gaussian when couplings are distributed
around zero mean with unit variance (for the full model
descriptions, please see Methods). Some of these models belong
to the P-class with all instances satisfying the OSC, e.g., the Mattis
spin model, unweighted spin glass on a torus, unweighted biased
ferromagnet on the Chimera graph, or unweighted ladder graphs
with a magnetic field (see Fig. 3). For other models, there exist
high chances of getting easy to optimise small size random
instances. Across all models, consistently greater probabilities of
simple Ising instances are observed for the coupling matrices with
values from bimodal and unweighted distributions compared to
the Gaussian distribution. Note that in the case of the weighted
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Möbius ladder graphs, the instances not satisfying the OSC
remain easy in terms of both mathematical and computational
complexities, as we previously argued.

When testing small-scale Ising simulators, the existence of
large fractions of easy instances of NP-hard problems should be
taken into account to avoid a misleading assessment of the
optimisation capabilities of the platform. A hard random instance
would possibly be generated for large problem sizes, while small-
scale simulators would likely face easy instances satisfying the
OSC. As Fig. 3 shows, the percentage of frustrated edges in the
ground state covers the entire range of possible values confirming
that the OSC could help identify simple graphs in low and highly
frustrated models.

Discussion
Classical and quantum physical systems as analogue simulators
can become a superior computational paradigm for solving
challenging optimisation problems. Identifying nontrivial and
truly hard instances of problems can help evaluate and generalise
small size Ising machines’ performance. Generally, whether a
problem could be considered easy to optimise depends on the
existence of an insight into its inherent structure. If there is a way
to move through the exponentially large space of possible solu-
tions to the global minimum in polynomial time, then the pro-
blem is in the P complexity class. To identify computationally
simple instances within the Ising model, we present an optimi-
sation simplicity criterion that is compact and simple to try: one
needs to confirm that the signs of the eigenvector, corresponding
to the largest eigenvalue of the coupling matrix, coincide with the
ground state spin configuration of the Ising model. For instances
satisfying the proposed criterion, there is an efficient polynomial
time algorithm, e.g., the HT algorithm. For Ising machines
employing this algorithm, the quadratic increase in the number of
iterations for optimising the Ising model on the Möbius ladder
graphs could be expected.

The identification of simple to optimise Ising coupling matrices
allows one to study the continuous computational complexity
transition within the same kind of NP-hard problem. For
example, the complexity was interpolated between P and NP-
hard classes for the K-satisfiability problem61. To probe an
intermediate computational complexity of the maximum cut
problem, we introduce a rewiring procedure from the Möbius
ladder graphs, the unweighted Ising model on which is in P, to
random 3-regular graphs, on which the Ising model is NP-hard.
In the case of exact optimisers such as the Gurobi solver, the
relative complexity can be evaluated by the size of the optimality
gap and time for reaching it, while for heuristic solvers, the time
to solution metric could be estimated. For the physical Ising
machines, the complexity could be expected to increase expo-
nentially until a certain percentage of rewired edges is reached,
making the relative hardness of the rewired graphs similar to
random 3-regular graphs. The threshold of the number of rewired
edges would depend on a particular machine and its operational
principles.

By further exploiting the Gurobi solver, we confirm the
superlinear scaling for the average computational complexity of
the Ising model on the Möbius ladder graphs with sizes up to
500,000 with couplings from the Gaussian, bimodal and
unweighted distributions. The mathematical complexity is also
shown to be in P-class for the weighted Ising model on Möbius
ladder graphs.

An analysis of the average-case hardness is critical to estab-
lishing optimisation performance of small size unconventional
computing systems. The general applicability of the proposed
criterion for detecting easy to optimise instances of NP-hard
problems is demonstrated on a diverse set of the Ising models
that includes sparse and dense interaction matrices, weighted and
unweighted models, bimodal and Gaussian coupling distribu-
tions, with and without a magnetic field, planar and nonplanar
geometrical topologies, low and highly frustrated models, regular
and not regular graphs. The established fractions of simple
instances for such computationally hard problems as 3-regular
MaxCut and various spin glass models can be viewed as a lower
bound of expected superior optimisation performance for
unconventional computing machines on such graphs. The
reported simplicity criterion is sufficient but not necessary for an
instance to be counted as easy to optimise. Hence, there exist
great opportunities for developing other simplicity criteria for
identifying easy instances of NP-hard problems. We anticipate
that our work will stimulate further studies of the average
instance hardness of NP-hard problems and will be followed by
other simplicity criteria.

The evidence we provided for the relative computational
hardness of specific Ising coupling matrices points to a promising
direction for many platforms to reveal their optimisation cap-
abilities to solve complex combinatorial problems. Performance
on easy instances of NP-hard problems, satisfying the proposed
OSC, does not demonstrate the overall potential of the platform
to optimise hard problems and could only confirm the ability of a
system to follow one of the largest eigenvectors. This applies to
both analogue classical Ising machines and quantum computers,
on which quantum-enhanced Ising optimisation has been
recently reported24.

Selection of the nontrivial or, even better, the hardest instances
available in the NP-hard complexity class could tell more about
the general optimisation capabilities of physical machines, even of
small size, and could lead to more accurate prediction of their
large scale performance. Using the rewired Möbius ladder graphs,
the optical, electronic and photonic systems could demonstrate
their ability to operate beyond the Hopfield-like networks in the
low-gain limit and uncover the beneficial internal physical

Fig. 3 Probability of finding easy instances for various Ising models.
Fraction of instances, satisfying the optimisation simplicity criterion, is
shown as a function of problem size N for Gaussian, bimodal, and
unweighted coupling distributions. The considered Ising models include
Sherrington–Kirkpatrick, 3-regular maximum cut, Mattis spin glass, spin
glass on a torus, Möbius ladder graphs, biased ferromagnet on Chimera
graph, planar spin glass within a magnetic field. The red dashed line
represents models which are polynomially easy to optimise across all
problem sizes. For each model, 1000 random matrices are generated per
each size, and the ground states are verified with the exact Gurobi solver.
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processes for solving challenging problems. As a result, archi-
tectures with better optimisation potential will mature faster,
approaching the demonstration of computational supremacy on
combinatorial optimisation tasks.

Methods
Algorithms. 1. Hopfield-tank neural networks. The numerical integration of the
HT algorithm (2) is performed in Fig. 1 by the Euler scheme with the discrete-time
step dt= 0.9 and random initial conditions. In all numerical simulations, a
hyperbolic tangent is used as an activation function g ¼ tanh x=x0

� �
and the

numerical parameters are τ= 1, Ib= 0, x0= 3. The polynomial fits are 0.006x1.986,
0.01x1.993, 0.026x2.006 for ground state probabilities 50%, 75% and 100%, respec-
tively. We note that for coupling matrices not satisfying the OSC, the HT neural
networks could still find energies lower than the energy corresponding to the
largest eigenvector by violating the low-gain limit.

2. Gurobi solver. The optimality gaps and times to reach them are obtained with
the Gurobi solver on a single core of Intel(R) Core(TM) i9-8950HK CPU 2.0GHz
in Fig. 2.

3. Chaotic amplitude control method. The chaotic amplitude control method is
an iterative scheme that is inspired by the operation of optical parametric
oscillators44 and based on the time evolution of equations:

dxi
dt

¼ ðp� 1Þxi � x3i þ ϵeiðtÞ ∑
N

j¼1
Jijxj ð9Þ

dei
dt

¼ �βðx2i � aÞei ð10Þ

where the signs of xi represent the Ising spins, p is the linear gain, ϵ is the coupling
strength scaling coefficient, ei is the error signal, β is the rate of change of error
signal, and a is the target amplitude. The dynamics of xi elements in Eq. (9) is
similar to a Hopfield network evolution with the addition of nonlinearity, while the
amplitude alignment of the network elements as in Eq. (10) was first argued to be
necessary for minimisation of both discrete and continuous spin Hamiltonians for
gain-dissipative simulators in62. Following44, the parameters a, p, and β are
dynamically adjusted as

a ¼ 1� tanhðδΔEÞ ð11Þ

p ¼ p0 þ tanhðδΔEÞ ð12Þ

dβ
dt

¼ γ; if t � tc < τ

0; otherwise

�
ð13Þ

where the baseline of the target amplitude a is set to one, δ is the sensitivity to
energy variations, ΔE= Ebest− E(t) is the difference between the best-found Ising
energy and the current energy at time t, p0 is the linear gain baseline. The
parameter β increases with a positive rate γ for the maximum allowed time τ,
otherwise is set to zero and tc is set to t, where tc is the last time when the best-
known energy Ebest was updated or β was reset. The numerical simulation of Eqs.
(9)–(13) could efficiently sample the low energy states of Ising Hamiltonian44 and
was recently implemented on a field-programmable gate array as chaotic amplitude
control method58.

We note that the parameters ei in Eq. (9) play a critical role in the algorithm’s
performance and make the local minima escape mechanism of the chaotic
amplitude control method somewhat similar to that of PT. Namely, the error
signals ei could be seen as a set of inverse temperatures, each applied to individual
spin. Hence, the energy landscape exploration within subspaces is performed
during network elements’ evolution at different temperatures. For spins whose
amplitude x2i is much less than the target amplitude a, the signals ei are large and
help the system to quickly settle in a local energy minimum within the phase space
of these spins (small temperature regime with a rough energy landscape for a
subset of spins). For spins with amplitudes close to the target value, the signals ei
are small and facilitate crossings over energy barriers within this phase subspace
(high temperature regime with a smooth energy landscape for a subset of spins).
The global optimisation could be then achieved due to fluctuations of ‘inverse
temperatures’ ei in time, which realise a continuous exploration of random spin
subspaces at low and high temperatures. The importance of multiplying the
interactions by amplitudes ei has also been argued in terms of the destabilisation of
low energy local minima58 and due to the energy-conserving rotary motion63.

4. Parallel tempering. PT, or replica exchange Monte Carlo method, takes
advantage of the dependence of the energy landscape on the temperature of the
system: a rough landscape at low temperatures becomes smooth at high enough
temperatures. In this algorithm51–54, multiple states (replicas) of a particular Ising
model are simulated independently at different temperatures with a Monte Carlo
algorithm. At low temperatures, the local exploration of an energy landscape is
realised, and replicas could quickly get trapped in local minima. In contrast, a
global exploration of energy profile is facilitated with replicas easily crossing energy
barriers at high temperatures. The global optimisation could be then achieved by

exchanging replicas at low and high temperatures. For the optimal performance of
PT, one needs to ensure the exchange in the reverse direction, which requires a
trade-off between two factors. On the one hand, the exchange mechanism is
accelerated once the acceptance probabilities for exchanges are high, which can
usually be achieved by increasing the number of replicas. On the other hand, the
larger number of replicas slows down the algorithm and increases the exchange
time between replicas at the lowest and highest temperatures.

Optimal parameters. For PT and chaotic amplitude control methods, the optimal
sets of parameters are determined with the machine-learner online optimisation
package (m-loop)60 over ten random problem instances for each rewiring percen-
tage per each problem size which results in a total of more than 150 graphs opti-
mised for each problem size. The time to solution has been used as a target function
for optimisation with the success probability calculated by running algorithms 30
times for each instance. The number of m-loop steps was fixed to 200. Both algo-
rithms are implemented in Python and translated to optimised machine code with
Numba, while Numba-compiled algorithms are known to approach a performance
similar to Fortran. The reported time to solution performance is achieved on a
single core of Intel(R) Core(TM) i9-8950HK CPU 2.0GHz.

For chaotic amplitude control method, the optimal time to solution for a given
rewiring percentage for each problem size is determined by optimising the
following seven parameters with the m-loop: number of iterations (Niter),
maximum number of iterations without energy change (Nτ), coupling strength (ϵ),
linear gain baseline (p0), rate of increase of β (γ), sensitivity to energy variations (δ),
and time step (dt). The averaged optimised parameters are listed in Table 1, where
the linear gain baseline is determined through the parameter α and the largest
eigenvalue λ0 of coupling matrix J as p0= 1− αλ0.

For PT, the optimal time to solution for a given rewiring percentage for each
problem size is determined by optimising the following five parameters with the m-
loop: the number of Monte Carlo sweeps (NMC), number of replicas (NR), number
of iterations for equilibration (Neq), low temperature (Tlow) and high temperature
(Thigh). Temperatures at each replica are set based on the geometric schedule54,57.
Compared to the pseudocode in57, our PT implementation includes an additional
extra hyperparameter Neq, which allows individual replicas to equilibrate over a few
Monte Carlo sweeps before exchanging states of neighbouring pairs of replicas. The
Metropolis update mechanism is used for the Monte Carlo simulations. The
average values of optimal parameters are shown in Table 2.

Ising models. In Fig. 3, the non-exhaustive list of problems in which one can find
polynomially easy Ising instances includes:

1. Sherrington–Kirkpatrick (SK) model of spin glasses64. The fully-connected SK
instances have a coupling matrix with elements from Gaussian distribution with
zero mean and unit variance (Gaussian-SK). The Gaussian-SK model is NP-hard65

Table 1 Optimal parameters for chaotic amplitude control
method.

Size Niter Nτ ϵ α γ δ dt

100 3100 500 0.25 1.94 0.015 6.1 0.026
200 5500 1250 0.22 1.93 0.007 5.2 0.02
300 6600 1400 0.26 1.22 0.006 5.1 0.031

The individual sets of parameters are selected for each rewiring of 3-regular graphs in Fig. 2 by
optimising time to solution for ten rewired graphs with the m-loop method. The presented
values are averaged over the percentage of rewired edges for each problem size. The optimised
parameters include number of iterations (Niter), the maximum number of iterations without
energy change (Nτ), coupling strength (ϵ), coefficient for the linear gain baseline (α), rate of
increase of change of error signal (γ), sensitivity to energy variations (δ), and time step (dt).

Table 2 Optimal parameters for parallel tempering.

Size NMC NR Neq Tlow Thigh
100 100 4 1.9 0.71 1.18
200 120 4.6 5.3 0.77 1.12
300 230 4.6 5.8 0.77 1.05

The individual sets of parameters are selected for each rewiring of 3-regular graphs in Fig. 2 by
optimising time to solution for ten rewired graphs with the m-loop method. The presented
values are averaged over the percentage of rewired edges for each problem size. The optimised
parameters include the number of Monte Carlo sweeps (NMC), number of replicas (NR), number
of iterations for equilibration (Neq), low temperature (Tlow) and high temperature (Thigh).
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though the ground state with precision of (1− δ) can be found in polynomial time
for any δ > 0 when the coupling coefficients are taken from the Gaussian
distribution with zero mean and variance σ= 1/N66. The probability of finding an
easy instance of the Gaussian-SK problem with the OSC decreases from 45–100%
for size N= 3–10 to 10–20% for 20–25 size. The SK model stays in the NP-Hard
class67 when the coupling values are chosen from bimodal distribution (bimodal-
SK). In this case, the probability of easy instances drops from 65–100% to 20% for
problem sizes 3–10 and 20–25, respectively. Both models have 100% simple
instances for N= 3 and all instances are simple for N= 5 in the case of bimodal
distribution. The unweighted SK model coincides with the complete unweighted
graphs, which were considered for the complexity continuum transition of k-
regular graphs and argued to be polynomially simple. We note that the ground
states of complete graphs of odd size starting from N= 43 can be confirmed up to 1
frustrated edge with Gurobi solver in 1200 s, so they were additionally verified with
the recent physics-inspired algorithms44,62. Both Gaussian-SK and bimodal-SK are
commonly chosen for comparing Ising physical machines22,68 and computational
algorithms44,57,69.

2. Mattis spin glass (Mattis SG) model70. In the Mattis model, random variables
ϵ are generated for each site i according to a specified probability distribution to
build separable spin interactions as Jij= f(Rij)ϵiϵj, where f(Rij) is the adjacency
matrix that specifies the topology of a graph. Such a model does not have
frustrations, and the ground state is identical to the configuration of the random
variables si= ϵi. Also, one may notice that the Mattis model is equivalent to gauge

transformation Jgaugedij ¼ JFijϵiϵj which conceals the planted ground state of the

problem with ferromagnetic couplings JFij . For both Gaussian and bimodal
probability distributions of couplings, all Mattis spin models’ instances satisfy the
OSC, which generalises to any problem size. Thus, the Mattis SG belongs to the P-
class. The Mattis model was recently used for evaluating the performance of
photonic Ising machines11,68.

3. Maximum cut on 3-regular graphs. In addition to unweighted 3-regular
graphs, we considered 3-regular MaxCut with couplings from bimodal and
Gaussian distributions. The bimodal 3-regular MaxCut exhibits a similar
probability of easy instances as unweighted 3-regular graphs, while the probabilities
for Gaussian 3-regular MaxCut are slightly higher on average than for Gaussian-
SK. Besides, the case of 3-regular graphs on the Möbius ladder is considered for
bimodal and Gaussian coupling distributions. The MaxCut problems are
commonly chosen for evaluating physical simulators21,22,24,30,71.

4. Spin glass model on a torus (SG-torus). A torus is represented by a two-
dimensional rectangular lattice with periodic boundaries in both directions and
nearest-neighbour interactions. The unweighted SG-torus model satisfies the OSC
for any problem size. The Gaussian SG-torus is less likely to have simple graphs
compared to Gaussian-SK, while the chances of about 40% hold even for a problem
size of N= 40 for bimodal SG-torus. The SG-torus models were recently used for
comparing the large scale performance of optimisation physics-inspired
algorithms57.

5. Planar spin glass within a magnetic field. One of the earliest proofs of NP-
hardness of the Ising model was demonstrated for a three-dimensional spin glass
and a planar spin glass within a uniform magnetic field hi=−1 and unweighted
antiferromagnetic interactions18. Conveniently for us, the Möbius ladder graphs
can be easily rewired to planar cubic graphs by avoiding the twist and becoming
ladder graphs. All unweighted ladder graphs with a magnetic field satisfy the OSC.
By exploiting the rewiring procedure with an additional planarity constraint, about
50% of random planar 3-regular graphs happen to be simple for a problem size of
20. We also note that all found planar graphs of size six are simple graphs.

6. Biased ferromagnet on Chimera graph (BF-Chimera). The model represents
an unweighted ferromagnetic coupling matrix on Chimera graph with fields
p(hi= 0)= p0 and p(hi= 1)= p1 where p0≫ p1 that bias si= 1 for all spins as the
global optimal solution. This model was introduced as a toy example to get an
intuition behind the optimisation behaviour of the D-Wave machine and classical
algorithms50. The BF-Chimera model has no frustration and its instances satisfy
the OSC and thus are in P-class. Though this is the only model in our list that was
not argued to be hard before, its presence here could serve for studying the
complexity of other known Ising models with Chimera topology. We note that
there could be an additional overhead due to topological embedding in simulators
where the long-range interactions are nontrivial to engineer, e.g., the Chimera
graphs for some Ising problems.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper. The code to construct the interaction graphs, including the Möbius
ladder, the rewired Möbius ladder, Sherrington–Kirkpatrick, and the 3-regular maximum
cut, as well as to run the commercial solver Gurobi and the HT neural networks, is
available at https://github.com/kir-kalinin. Additional data are available from K.P.K.
upon reasonable request.
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