
Supplemental Text

In this Supplemental Theory Note, we provide additional details on the modelling

approach, analytical calculations underlying the results of the main text, as well as

controls and sensitivity analyses on how different parameter values affect the theoreti-

cal branching structure in relation to our dataset. We also consider alternative models

from our branching and annihilating random walk framework, to compare and contrast

them quantitatively with our data.

1 Models of the branching and annihilating random

walk

As detailed in the main text, our data indicate that ductal tips, both in mammary gland

and, by analogy, in kidney, elongate and branch stochastically as a default state. How-

ever, tips can also terminate at any stage during morphogenesis, and thereby become

irreversibly removed from the active pool of tissue precursors. In a first attempt to

model the dynamics, in the following, we will consider the case in which tip termina-

tion is mediated by contact between two actively proliferating tips. Interestingly, such

a model maps directly onto the problem of branching and annihilating random walks,

which have been extensively studied by the physics community.
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1.1 Description of the model

Classical branching and annihilating random walks (BARWs) are defined by a set of n

walkers undergoing random walks in d spatial dimensions with a diffusion constant D.

We denote as ri(t)i=1..n the position vector of each walker in space at a time t. In the

general case, walkers A can either branch into m+1 new walkers:

A→ (m+1)A , at rate rb, (1)

or they may annihilate into an inert state I when two walkers meet locally in space,

2A→ I , at a rate that scales with volume as ra. (2)

Here, the branch multiplicity m is a strictly positive integer. Walkers that fall into the

inactive state do so irreversibly and do not diffuse, nor interact with other walkers. The

total number of walkers, n, active or inactive, therefore evolves in time. We denote as

si(t)i=1..n the state of each walker (with active denoted by 1 and inactive as 0).

Defined in this form, this classical model has been studied extensively in the litera-

ture (Cardy and Tauber, 1996). Insight into the behaviour of the model can be gained

from the corresponding mean-field rate equation for the local density of walkers, n(t),

which takes the form:

∂tn(t) = rbmn(t)− ran(t)2 (3)

This equation predicts a pair of stationary solutions corresponding to an unstable in-

active state (n = 0) and a stable active state (ns = mrb/ra), for any positive value of m.

However, when fluctuations around the mean-field approximation are taken into ac-

count, the situation is revealed as more complex: In particular, it has been shown that

the system can belong to two distinct universality classes for either odd or even values

of m. For even values of m, the parity of the number of active particles is conserved
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upon branching, falling into the parity-conserving class, while the case of odd values of

m falls into the directed percolation universality class (Cardy and Tauber, 1996). The-

oretical analysis of these two classes has been facilitated by the fact that they can be

mapped on an Ising model, where branching and annihilation events can be mapped

onto Glauber and spin-exchange Kawasaki dynamics (Ódor, 2004).

Turning to the biological data, virtually all biological trees examined (kidney, salivary

gland, mammary gland) are driven by tips, often termed proliferative terminal end-buds

(TEBs), which either advance forward, producing in their wake the ductal structure, or

branch into two tips during a bifurcation event. In the case of mammary gland and

kidney morphogenesis, the focus of the current work, the ductal region deposited by

tips is inert, i.e. it does not proliferate further nor move. Moreover, most branching

events are observed to involve tip bifurcation in which a single active tip divides into

precisely two active tips.

Translated into the formalism described above, we therefore have m = 1, while the

rate of bifurcation, rb, and diffusion coefficient, D, can be fit from the kinetics of branch-

ing observed in vivo. Importantly, since the ductal trees constitute the past trajectories

of each individual active walker (or tip), we can therefore reconstruct quantitatively the

entire time course of the process from the analysis of the final branching structure in

space.

Looking at the actual trajectories in vivo (Figure 1A and Figure S1), one detail must

be amended straightaway. It is clear that the trajectories are not temporally uncorre-

lated random walks but, instead, display a typical persistence length that can again

be read from the biological data. We must therefore amend the previous model by

introducing a unit polarity vector pi, which specifies the direction of movement of a
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given walker (we take the local velocity v of each walker to be the same). This polar-

ity vector undergoes a persistent random walk with characteristic time τp. Translated

spatially, this means that the persistence length of ductal branches should be vτp and

the long-term (i.e. at time scales larger than τp) diffusion constant of a walker is v2τp.

1.2 Mean-field Fisher-KPP dynamics of front invasion

To account for the spatial dynamics of branching morphogenesis, we must amend the

mean-field theory above to take into account of the evolving spatial structure. In line

with the biological system, we take as an initial condition for branching morphogenesis

a single active walker positioned at one side of a finite domain (Figure S1 and Movie

S1). Branching morphogenesis then proceeds by invading into this domain. Following

classical results of simple branching processes (Haskovec et al., 2016; Brunet et al.,

2006), the spatial dynamics in d-dimensions can be written as
∂ta = D∇2a+ rba(1− a

a0
)

∂t i = rea+ rb
a0

a2

(4)

where a(r, t) and i(r, t) represent, respectively, the local concentration of active and

inactive particles and ∇2 denotes the Laplace operator. Related to the description

above, active particles diffuse with a diffusion constant D, branch at a rate rb and

annihilate when they meet, giving rise to a logistic growth term saturating at a density

a0. Inactive particles are constantly produced either when active particles move, or

when two active particles meet. Their coefficient of diffusion is zero, expressing the

fact that they remain immobile and inactive.

The first of these equations (4) translates to the well-known Fisher-KPP equation,

after Kolmogorov-Petrovsky-Piscounov, which has been widely used in the theory of
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stochastic processes as a simple approximation to describe front propagation (e.g. in

the study of advantageous genetic mutations) (Fisher, 1937). Note that the second

equation, describing the concentration of inactive particles, is slave to the dynamics of

the active particles, and does not provide any feedback. According to this dynamics,

the theory predicts that active walkers will form a sharp front (of characteristic length√
D/rb), which will invade the tissue as a solitary wave, with velocity V ∗ = 2

√
Drb. The

associated wave profile links the unstable (a = 0) solution at the growing front of the

ductal network to the stable (a = a0) solution at the back (heteroclinic orbit).

Active tips thus form a non-equilibrium stable steady-state (i.e. a constant density

profile in time, but which is driven by constant and compensatory creation/annihilation

events), which invades the unstable inactive state, a = 0. However, this solution poses

the problem that inactive particles keep being produced at the back of the wave, driving

a divergence in their concentration over time as i ∝ a0(re + rb)t. As the wave propa-

gates linearly in time, this translates into a linear concentration gradient towards the

back of the waves, i.e. the concentration becomes higher and higher as x→ ∞ with

slope a0(re + rb)/V ∗ ). Such behaviour is clearly untenable and unrealistic as a model

of branching morphogenesis, and argues for an alternative mechanism of active tip

termination.

1.3 A revised model of tip termination

From the biological perspective, the regulation of tip termination could constitute an

incredibly complicated process. For instance, one could envisage that each walker/tip

is specified early in development with disparate properties, and is programmed to ter-

minate at a given time. At each bifurcation event, a given tip would segregate into
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two tips which both inherit a defined differentiation program. At the other end of the

spectrum, one could envisage an extrinsic regulatory mechanism based, for example,

on hormonal levels (Sternlicht, 2005), where tips would be allowed to grow and branch

during a period T while they invade the full domain, and would be stopped and made

inactive by a global signal at the end of this period. One should note that this type of

dynamics would still leave a signature in the ductal structure such that the concentra-

tion of ducts close to the initial tip location should be higher than at the more distant

parts recently invaded.

Therefore, to define an alternative mechanism for tip termination, we returned to the

morphogenesis data of the mammary gland to explore whether there was evidence of

a simpler mode of regulation. A first obvious feature was that the density of ducts was

surprisingly homogeneous spatially, arguing against the simple model described above

(Figure 1B). A second conspicuous feature of the branching pattern was the rarity of

ductal crossovers (quantified in Figure 1C as the ratio between ductal crossovers and

the total number of branches in a gland, n = 14 glands in 7 mice). Moreover, we could

often observe inactive tips in the vicinity of existing ducts (Figure 1A).

We therefore considered the alternative hypothesis that active tips do not only only

annihilate when they come in proximity of one another, but also that they terminate

when they come into proximity of an inactive particle (i.e. the trailing ducts):

A+ I→ 2I , at rate ra (5)

Such a process drastically complicates the classical problem of BARWs, as it makes

it fully non-Markovian: Understanding the dynamics of active walkers A requires a

knowledge of the full history of the random walk, and not just the current spatial con-

figuration. (Alternatively, one can hide the non-Markovian character of the problem
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in the second species I, which previously was simply slave to the active particles.)

This bears some resemblance to generalizations of directed percolation models; in

particular, those which couple a directed-percolation process to a frozen field (Jensen

and Dickman, 1993). A key difference then becomes that there are infinite numbers

of absorbing states (as the configurations of the frozen field are taken into account),

as opposed to simply A = 0. However, in our model, the frozen particles I actively

feedback on the dynamics of A, a situation reminiscent of two-species epidemic type

models (Van Wijland et al., 1998; Rossi et al., 2000). In the following subsection, we

thus only concentrate on developing a mean-field theory for such modified two-species

BARW.

1.3.1 Mean-field Fisher-KPP pulse invasion

In the present of process (5), the continuous mean-field approximation to the dynamics

then modifies Eq. (4) to the form:
∂ta = D∇2a+ rba(1− a+i

n0
)

∂t i = rea+ rb
n0

a(a+ i)

(6)

where we renamed a0→ n0 for the sake of clarity. To proceed further, it is useful to non-

dimensionalize this set of equations. Rescaling all times by 1/re, all concentrations by

n0, and all distances by
√

D/re, and introducing the dimensionless ratio r̄ = rb/re, the

system of equations in one-dimension (coordinate x) can be written as:
∂ta = ∂ 2

x a+ r̄a(1−a− i)

∂t i = a+ r̄a(a+ i)

. (7)

Indeed, the parameter r̄ can also be removed by introducing two different scales for

the concentrations of a and i. However, we choose not to do so in order to be able to
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compare directly the magnitude of the two in a transparent manner, for reasons that

will become clear later on.

To seek a traveling wave solution for a and i, it is convenient to change coordinates

to the co-moving frame by defining a variable z = x−Vt, where V is the wave velocity.

The system of equations then becomes
−V ∂xa = ∂ 2

x a+ r̄a(1−a− i)

−V ∂xi = a+ r̄a(a+ i)

. (8)

Non-integrability of these equations prevents an analytical solution. Instead, we will

therefore first perform two approximations setting a� i in the first equation, and r̄(a+

i)� 1 in the second. This allows us to gain significant analytical insight into the dynam-

ics, and we will justify the two assumptions a posteriori. With these approximations,

the coupled equations take the form:
−V ∂xa = ∂ 2

x a+ r̄a(1− i)

−V ∂xi = a

(9)

Compared to the classical Fisher-KPP equation, an important difference is that the

negative feedback does not arise from a, but instead from the quantity i, which is

dynamically produced by a. This is known to produce so-called KPP pulses (Haskovec

et al., 2016) instead of KPP waves. Indeed, a now has a single stable state a = 0, and

the pulse joins an a = 0 front with an a = 0 back (homoclinic orbit).

However, the concentration of the “inhibitor”, i, adopts a different profile. The

steady-state concentration for i is harder to read from Eq. (9), but becomes obvious

after substituting the second equation for a into the first, and integrating once, leading

to:

−Va = ∂xa+ r̄i
(

1− i
2

)
. (10)
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Note that the constant of integration vanishes since all concentrations and their deriva-

tives must vanish at x→ ∞. It then becomes more apparent that i = 2, a = 0 is a stable

solution at the back at the wave, together with i = 0, a = 0 at the front. In contrast to

the pulse shape of the a profile, the concentration of inactive ducts i thus adopts a

traveling wave solution. From a physical perspective, this corresponds to the fact that

active walkers can freely diffuse at the front of the wave, in the absence of inhibitors,

but that they are trapped by inactive walkers at the back of the wave, and become

inactivated. These processes specify a ductal network of well-defined, homogeneous,

density i = 2 at which the gland is patterned.

Using usual methods for the analysis of such travelling pulses, we assume that

the profile at the front decays exponentially: a = Aeλ+z. Inserting this ansatz into the

linearised system of equations above, we obtain:

λ+ =
−V ±

√
V 2−4r̄

2

Similarly, at the back of the wave, with a = Aeλ−z, we obtain (noting that λ− must be

strictly positive),

λ− =
−V +

√
V 2 +4r̄

2

As λ± must be purely real, velocities below V ∗ = 2
√

r̄ cannot propagate. Moreover,

a classical result of such KPP systems is that the velocity selected is exactly V ∗, as

verified through numerical integration of these equations (Figure S4D-G). Therefore,

the decay length of the font and back of the pulse are given by
λ+ =−

√
r̄

λ− = (
√

2−1)
√

r̄

(11)

which predicts that the back of the pulse decays slower than the front.
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We now return to consider the validty of the approximations made above. At the

back of the pulse, i→ 2 and a→ 0, so that the first approximation a� i is trivially

satisfied. At the front of the pulse, it follows from the expressions above that a/i≈ 2r̄.

However, r̄ is the ratio of the time scale of tip elongation compared to tip branching. On

a discrete lattice, this would be the inverse of the average number of lattice steps which

the walker explores before a branching event. Therefore, having a sparsely branched

structure like the mammary gland imposes the condition r̄� 1, as opposed to r̄ ≈ 1,

which would give rise to a dense structure, and the assumption a/i� 1 can be made

with high precision. Similarly, r̄� 1 allows us to also validate a posteriori the second

approximation r̄(a+ i)� 1 (which, in fact, is exactly the same level of approximation as

the first one, comparing r̄ and O(1)). However, for the sake of completeness, we also

performed numerical integrations of the full equations for r̄ = 0.1 without approximation

(Figure S4E-F), as well as numerical integrations for r̄ = 1 (Figure S4G), when the

approximation becomes invalid, and verified that neither the phenomenology of the

solution, nor the pulse asymmetry, are qualitatively affected.

1.3.2 Numerical simulations

We then returned to the full simulation of the BARW model, and checked whether the

results matched the simple analytical theory described above. From previous work

on classical BARWs, we expect the mean-field theory to give a good insight into the

behavior for small fluctuations (i.e. small annihilation probability), while the active state

can be destroyed by these fluctuations when they become larger. We simulated a

quasi one-dimensional front invasion by considering an elongated two-dimensional

rectangular domain Ω of dimensions Lx and Ly < Lx, so that Ω = {(x,y) ∈ R2 : {x ∈
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[0,Lx],y ∈ [0,Ly]}}. The initial condition is a single active walker located at the left

side of the domain (0,Ly/2), with polarity facing the right/posterior side p = (1,0). We

fixed the length unit of the simulation by the elementary length of the random walk at

each time point l. Crucially, we made the most simple assumption for annihilation that

an active particle (tip) terminates deterministically when entering into an annihilation

radius Ra of any active or inactive particle belonging to a different duct. Therefore,

there is no need for implementing a rate of annihilation ra as it emerges from the

spatial interactions. We set the timescale of the simulation as the time τs for each

active particle to make an elementary step of length l = 1 in the direction p. Therefore,

the only truly free parameter of the numerical simulations is the branching rate rb,

which controls the final density of the ductal network and the average branch length

ld. More precisely, the key parameter in this problem is the dimension of the fat pad,

rescaled by the average branch length ld. For the default set of parameters used to

describe mammary gland morphogenesis, we thus use the experimentally measured

rescaled long and short dimensions of the mammary gland (resp. Lx/ld and Lz/ld,

Figure S1D). We ran 2000 full stochastic simulations, and averaged the results, which

are thus parameter-free predictions, i.e. do not involve the fitting of a free parameter.

Interestingly, we observed that the full simulation agrees qualitatively with the KPP

pulse theory described above. The active walkers invade the domain as a pulse with

a well-defined constant velocity, leaving behind a ductal structure of constant density.

Quantitative comparisons between the profiles of both a and i in the simulation also

agree well with the analytical theory (Figure 3 and Figure S4).
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1.3.3 Details of the statistical approach

To challenge quantitatively the goodness of the fits in the main text, as well as its

explanatory power, we verified the model predictions by calculating in both cases the

coefficient of determination R2, which is the simplest indicator of the goodness of a

fit. In addition, we calculated the standard error of the fit, S, which is an absolute

measure of the residuals of the fit, and has been shown to be more adapted for non-

linear fitting procedures (Brown, 2001). For a good fit, R2 should be as close to 1 as

possible, whereas S should be as close to 0 as possible. One should note that, for the

sake of completeness, we also calculated values of R2 by taking first the logarithm of

the data and predictions (which we denote as R2
log in the main text), given the power

laws seen in several quantities of the dataset. This measure is complementary, as it

gives comparatively more weight to the agreement between theory and experiments

for small parameter values. Importantly, we verified that we get excellent goodness of

fits measurements in each case.

Specifically, for the definition used in the main text, defining n as the number of the

points being fitted, ȳ = 1
n ∑

n
i yi

obs as the average of the observable, Stot = ∑
n
i (y

i
obs− ȳ)2,

and Sres = ∑
n
i (y

i
obs− yi

model)
2, the coefficient of determination is defined as R2 = 1− Sres

Stot
,

while the standard error of the fit is given by S =
√

Sres
n .

As described below, for the shaded areas of Figure 2E-F, we performed numerical

integrations for the experimentally observed average value of the branch lengths, as

well as for the values ± one standard deviation. For all three values of resulting rb es-

timate, we then performed at least 2000 numerical simulations and computed curves

for each case. The shaded area thus represent the sensitivity of the model prediction

with respect to one standard deviation variation of the key parameter rb. Moreover, to
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build the error bars shown in Figure 2E-F and 7C-D for the experimental values of the

cumulative subtree size distribution and subtree persistence, given the small number

of subtrees in each mammary gland, we used a bootstrapping method. This method

involves calculating the cumulative distribution function for a large number of artifi-

cial datasets, which are samples with replacement of the original dataset (i.e. sizes

or maximal generation, respectively, of subtrees), and calculating error bars, defined

here as confidence intervals of one standard deviation, from the resulting cumulative

distributions of each artificial dataset.

For the shaded areas of Figure 7A-B, we performed at least 1000 numerical simu-

lations using the default parameters (see below) and calculated in each case respec-

tively the branch number per generation and inactive versus total tip number. We then

computed averages and 95% confidence intervals from these simulations, which there-

fore express the stochastic fluctuations of the model for a given and constant value of

the annihilation radius Ra.

2 Sensitivity analysis - effect of parameter variations

on the predicted structure of the mammary gland

In this section, we explore further the overall robustness of your model with respect

with parameter variations, and show in particular that its predictions are insensitive to

details of the simulation scheme used.
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2.1 Analysis of final mammary gland morphology

2.1.1 2D branching morphogenesis in an unbound domain

As noted in the main text, we first explored the case of branching morphogenesis in

an unbound two-dimensional domain, in order to understand better the dynamics of

branching and annihilation in the absence of annihilating outer boundary. As predicted

by the KPP mean-field theory, we observed a characteristic pattern of radial expan-

sion at a constant velocity (Figure S2A), with the active tips residing at the front of

the invading wave. Importantly, we found a robust and characteristic convergence to

a non-equilibrium steady-state network configuration (Figure S2B), on the timescale

of a few generations, characterised by near-perfect balance between the rates of tip

branching and termination. This confirms the analytical arguments developed above.

In the following discussion, we now include annihilating walls, which represent the

boundary of the mammary fat pad. This is motivated by the fact that tips cannot cross

the boundary of the fat pad in vivo, and that numerous tip termination events can be

observed at these boundaries (Figure 1A and Figure S1A).

In the following, we successively study the sensitivity of the results presented in the

main text against different details of the numerical simulation scheme for the branching

and annihilating random walks presented in the main text. We show in particular that

the only key parameter influencing the results is the branching rate, for which we use

the experimentally measured value in the simulations.

2.1.2 Key parameters for the mammary gland simulations

Before performing a sensitivity analysis as a function of parameter values, we list the

default parameter set used in the main text for the numerical simulation of mammary
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gland morphology. Based on experimental measures (Figure 1), we set a rate of

branching of rb = 0.1, together with box sizes of Lx = 280 and Ly = 150. At each time

step (with step time τ = 1 used as the unit time), tips move forward by a length V τ = 1

(used as the unit length), along a polarity vector pi (specified in 2D by an angle θ ),

which diffuses by a random angle of amplitude δθ = π/10. We set the annihilation

radius to the characteristic width of a mammary duct, estimated at Ra = 3 in simulation

length units. Tips then terminate if they pass the bounds of the simulation box. With

these parameters, we find that the model can predict with high precision the distribution

of subtree size (defined as number of branches in a subtree, starting at branch level

6 from the embryonic rudimentary structure), as well as the subtree persistence (de-

fined as the fraction of subtrees present at level 6 which are still active at a given level,

or generation number). One should note that the broad nature of these distributions

is a strong indication of the fact that active tips (and by extension different subtrees)

compete neutrally: an ever-diminishing fraction of subtrees survives and colonizes an

ever-expanding part of the fat pad. This is also a signature of the predominance of

symmetric tip-bifurcations. Indeed, in a model where tips would divide asymmetrically

between an active tip and an inactive tip (in a stereotypical fashion at the tip level), the

aforementioned distributions would be sharply peaked around an average value, since

there would be little subtree extinction.

2.1.3 Effect of the branching rate

First, we show in the main text as confidence intervals the effect of variations in the

branch length, i.e. changes in the branching rate rb. We use the experimentally mea-

sured standard deviation of the mean branch length among different mammary glands,
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and thus simulate branching morphogenesis for rb = 0.085 and rb = 0.12, to build con-

fidence intervals of one standard deviation with respect to the branching rate (shaded

area in Figure 2D-F). As expected, lowering (respectively increasing) the branching

rate increases (respectively decreases) the average number of branches in a mam-

mary gland, and thus shifts significantly both the subtree size distribution and persis-

tence (Figure 2E-F, shaded area). Interestingly, this has relatively little impact on the

convergence towards balance between termination and branching (Figure 2D). More-

over, lowering (respectively increasing) the branching rate modifies the exponent of

the giant number fluctuations (Figure S5C and main text): larger values of the branch-

ing rate tile space more effectively, so that the exponent is reduced, indicative of lower

fluctuations. Conversely, smaller values of the branching rate approach the critical

point, enhancing density fluctuations.

2.1.4 Effect of the annihilation radius

Second, we investigated the sensitivity of our results with respect to the value of the an-

nihilation radius. As discussed in the main text, we do not expect this parameter to be

crucial in two-dimensions for persistent random walks, as the probability for two lines

to intersect is unity. Nevertheless, we wished to confirm this intuition quantitatively, and

therefore ran our numerical simulations for different values of the annihilation radius Ra

(a smaller value of Ra = 1.5 is shown in Figure S2D and a larger value of Ra = 3.75 is

shown in Figure S2E). As expected, lowering the annihilation radius slightly delays the

convergence towards balance between tip branching and termination (Figure S2F),

but this effect was very small, even for more than two-fold variations in the annihilation

radius Ra. Similarly, we observed that the cumulative subtree size probability is largely
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unaffected by large differences in Ra (Figure S2G).

2.1.5 Effect of the persistence length

Third, we investigated the sensitivity of our results with respect to the value of the

persistence length for the random walk. As stated above, we used a control value

of δθ = π/10. This was based on previous measurements of duct “tortuosity”, i.e.

the average real path length between consecutive duct branch points, Ld, was 6%

larger than its straight branchpoint-to-branchpoint value ld (Paine et al., 2016). For

small path fluctuations, h(x), with respect to the branchpoint-to-branchpoint axis x,

(Ld− ld)/ld ≈ h′(x)2/2≈ δθ 2/2; hence the value chosen. Again, we ran our numerical

simulations for different values of the persistence length, by varying the magnitude of

the angle variation at each step of the random walk, δθ . We considered both the limit

of an infinity persistent walk (δθ = 0, Figure S2H), and a lowly persistent random walk,

with an angle δθ doubled compared to its reference value (δθ = 2δθref, Figure S2I). Al-

though the microscopic morphology of the simulated glands was, as expected, slightly

different, we found again that these parameter changes do not significantly affect ei-

ther the evolution of the tip termination probability as a function of generation (Figure

S2J), nor the cumulative subtree size probability (Figure S2K). Again, this argues for

the robustness of our results with respect to even large perturbations of this parameter.

2.1.6 Effect of probabilistic annihilation

Fourth, although the mammary gland reconstructions indicate that the crossover be-

tween ducts is a rare event, it is not non-existent, as assumed in our simulations.

Moreover, although we assume that termination occurs deterministically at a fixed ra-
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dius between tip and duct, one expects the actual phenomenon to occur in a nois-

ier and more stochastic manner. To remedy both of this limitations, we modified our

simulations to allow for the possibility of crossovers, and implemented probabilistic

annihilation. In particular, we assumed termination events occur stochastically

A+ I→ 2I , at rate ra (12)

if an active tip A enters the vicinity of a duct, i.e. within the annihilation radius, Ra. One

should note that the reference simulation is simply the deterministic case of ra = 1.

In Figure S2L, we take ra = 0.2 and Ra = 5 (i.e. a larger annihilation radius than the

reference case, to compensate for the less likely annihilation, and obtained simulated

glands of comparable density).

As expected, although simulations now present a low but non-zero fractions of

crossovers (Figure S2L), we still observed in this case the same convergence towards

a balance between termination and branching (Figure S2N), with similar kinetics. In-

terestingly, the functional shape of the cumulative subtree size distribution was char-

acterised by decreased heterogeneity, with less very large subtrees compared to the

reference distribution (Figure S2O). This resembles the distribution that we previously

found using a mean-field limit of this problem, i.e. exponential tails, arising from the

stochastic choices of equipotent tips in a critical Galton-Watson birth-death type pro-

cess (Scheele et al., 2017). This is not surprising, as in the limit of very large annihila-

tion radii, the spatial advantage for a tip to be in a crowded region becomes vanishingly

small, converging towards the mean-field solution.
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2.1.7 Effect of the branching angle distribution

Fifth, we investigated the importance of the branching angle distribution in dictating the

final morphology of the mammary gland. In the reference simulations presented in the

main text, we used as an input for the branching angle distribution its experimentally

observed counterpart. Indeed, as measured from our full gland reconstructions, we

found that the branching angles of the two offsprings relative to the direction of the

ancestor branch do not show any significant correlation, although the relative angle

between the two offsprings are always above a minimum bound of roughly π/16. In

the simulations, we thus stochastically and independently chose both from a Poisson

distribution of parameter π/6 (together with a minimal bound of π/16).

However, we also wished to assess whether these choices of the branch angle dis-

tribution modified significantly our results. We thus modified our simulations by con-

sidering the branching angle between ancestor and offspring to be a given constant

of α = 50 degrees. As expected, we found a slightly more ordered gland morphology

(Figure S2M). Importantly, however, we found that the convergence towards a bal-

ance between tip termination and branching (Figure S2N), as well as the cumulative

distribution of subtree sizes, were only very weakly affected (Figure S2O).

2.1.8 Effect of additional self-avoidance

Finally, we wished to understand how our results would be modified if tips had addi-

tional self-avoiding properties, in addition to their previously-described branching and

annihilating properties. Self-avoidance has been proposed in the past, both in the con-

text of mammary and kidney development (Sternlicht, 2005, Davies et al., 2014), and

can be modelled microscopically in a number of ways. Here, we chose the simplest
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local implementation of such a self-avoiding rule. We assumed that a particle, located

at a position ri, can sense an average density vector pr
i arising from ducts and tips in

a repulsion radius Rr (sketched on Figure S5E) such that,

pr
i =

∑
j

|ri−rj|<Rr

(ri− rj)

| ∑
j

|ri−rj|<Rr

(ri− rj)|
. (13)

pr
i is thus a unit vector that weights equally every particle in a radius of Rr.

In order to implement repulsion, we thus considered that, at each random step

of the random walk with l = 1 in the direction pi (as described above), the particle

performs an additional displacement of − fr pr
i (with its polarity vector pi being updated

accordingly). Thus, positive values of fr correspond to self-avoiding random walks

(as the particle will tend to move away from denser regions), while negative values of

fr correspond to self-attracting random walks. fr thus represents the strength of the

self-avoidance bias on the random walk. We investigated moderate ( fr = 0.2, Figure

S5E-J) biases in our updated simulations in order to understand how this affects our

results. One should note that boundaries can also be represented formally as ducts

(with the same particle density), and included in Eq. (13), if one wants to assume

that the boundaries of the mammary fat pad repel active tips ( fr = 0.2, Figure S5G).

One should also note that one must have Rr > Ra in the simulations, i.e. a larger self-

avoidance radius than the self-annihilation radius, otherwise tips terminate before they

get a chance to sense their neighbours, and adapt their trajectories accordingly. In the

simulations of Figure S5F-J, we have used Rr = 2Ra.

When running these simulations, we found that simulated glands with higher de-

grees of repulsion grow to larger subtree sizes and density, as expected from their

repulsive properties, which allowed them to explore space more efficiently before ter-
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minating. However, the kinetics of convergence towards balance of tip termination and

branching is only very slightly delayed (one generation, Figure S5H). This is in large

part because, in two-dimensions, particles still annihilate at comparable rates given

the high probability of crossings.

However, one quantitative change arising from repulsion is the enhanced emergent

anisotropy of the branching random walk. To quantify this, we performed the same

quantifications of branch angle relative to the horizontal, as in the reference simula-

tion (Figure 4C), and compared the reference angle distribution with the distributions

in the different repulsive conditions. For small fr, we found that the bias towards dis-

tal orientations (angles close to 0) increased with increasing repulsion fr. Moreover,

including the repulsive effect of the boundary increased the bias even further (Figure

4D). This is expected, as boundaries are now expected to “guide” via repulsion the

tips in the proximal-distal direction. Interestingly, this thus predicts anisotropies which

are larger than the average experimentally observed value, arguing that this might not

be a key feature of the data. Moreover, the reference simulation already achieves a

relatively large value of anisotropy in the absence of any repulsion. This indicates that

self-avoidance could reinforce the emergent effects that we observe from branching

and annihilating random walks, but are not necessary qualitatively and quantitatively

to explain them. Of note, we did observe in our dataset some inter-gland heterogeneity

in the branch angle distribution anisotropy, with some glands displaying much more di-

rectional invasion than others. This could potentially be explained by various strengths

of the self-avoidance properties in different glands. Finally, we noted that self-repulsion

decreases density fluctuations (Figure S5F,G), which can be observed quantitatively

by a reduced exponent of giant number fluctuations (Figure S5J), as expected from an
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ordering repulsive mechanism.

2.2 Analysis of kinetics of mammary gland invasion

Here, we expand on the theoretical results shown in Figure 3 of the main text. As de-

scribed above, in addition to making predictions on the structure of the final mammary

glands, our theory makes key predictions on the kinetics of its spatial patterning, with

in particular a self-organisation of tips in a KPP pulse of asymmetric shape, travelling

at constant speed. We therefore sought to verify them by performing EdU pulses in

5w-old mice, and sacrificing the mice 4h later, to catch all of the cells which were prolif-

erative (or rather in S-phase) at that time. As shown previously (Scheele et al., 2017),

the overwhelming bulk of proliferative cells were localized in tips, with very few in ma-

ture ducts. Moreover, we examined both fourth mammary glands (n = 2) and third

mammary glands, (n = 2), and found consistent results, and in particular that active

tips localized as a pulse at the edge of the invasion front, as predicted theoretically.

One should note that although the bulk of proliferative cells are localized in this

pulse, one could also observe a fraction of tips which still contained a few proliferative

cells, and were localized further away from the invasion front. However, these tips were

always less proliferative than at the front, and were small, lacking the characteristic

“balloon shape” of front tips (Figure S4I), i.e. the so-called terminal end buds in the

literature. We also noted that these small “half-active” tips were typically localized at

the edge of the fat pad. It is therefore tempting to speculate that they represent formerly

active tips during their transition to termination. One can add them to the description

(which is formally equivalent to describing the localization of newly formed nephrons in

Kidney, as shown in Figure 6D and discussed below) by writing an additional equation
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for their concentration h as:

∂ta = ∂ 2
x a+ r̄a(1−a− i−h)

∂th = a+ r̄a(a+ i)− rhh

∂t i = rhh

(14)

where rh describes the rate of transition between half-active and inactive particles.

Within this framework, h adopts a spatial shape very similar to the one of active tips

(as its equation is slave to a as soon as h� i, which is typically the case, in common

with the limit described in the section above).

Although rh could be fit from the spatial distribution of half-active tips, its inclusion

here would unnecessarily over-complicate the analysis. Instead, in Figure 3D, we

limit attention to the concentration of active tips, i.e. tips which consist of over 50%

of proliferative cells (as assessed by EdU expression). Importantly, even with this

conservative definition of active tips, one still recapitulates a key prediction of the model

regarding the asymmetry of the pulse: the back decay is much slower than the front

decay. Moreover, although the model slightly underestimates the density of ducts and

active tips (Figure 3D), it still provides a very good prediction for the detailed shape of

both, with exponential decays on both sides of the pulse. In the front in particular, we

found that both tips and ducts decay with the same slope, as predicted. One should

note that, for the simulations underlying the theoretical curves of Figure 3D, we fit the

relative sizes of the fat pad by measuring it once again for the n = 4 glands used in

the EdU experiment, as these were larger than the previous dataset (by around 60%),

all other parameters being kept constant. Again, however, this did not change the

conclusion nor the simulated profile shapes of the glands.

Altogether, our modelling, combined with whole-gland reconstruction and EdU as-
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says suggest a detailed mechanism through which mammary tips are able to self-

organise into an invasion front and pattern the gland at constant density. In particular,

this does not need any encoded gradients to serve as a guide, as the anisotropy of the

invasion simply derives from the initial condition, i.e. the position of the first mammary

tip in the fat pad.

3 Alternative models of two-dimensional branching mor-

phogenesis

To underline the singular predictive nature of the BARW model, in this section we

consider the behavior of different models of branching morphogenesis inspired by past

proposals in the literature. In particular, we find that these alternative models are

inconsistent with various aspects of the data, both qualitatively and quantitatively.

3.1 Fractal patterning

Fractal patterns have been proposed in the past to explain the branching morphogene-

sis of the lung (Iber and Menshykau, 2013) and human mammary lobule (Honeth et al.,

2015). The emergence of fractality finds its origin in the aforementioned problem of

space filling for exponentially increasing tip numbers (if they simply divide symmetri-

cally). In our framework, the problem is abolished by termination, which regulates the

epithelial density. In the fractal branching concept, branch length and width diminishes

geometrically as a function of generation, so that an exponentially increasing number

of branches can fit in a finite space (it is not yet clear how such rules would emerge and

be implemented biologically). Importantly, key lines of evidence argue against such a
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model in the mammary gland (as well as the kidney):

• The branching pattern is not observed to be deterministic (viz. subtrees do not

show homogeneity in size) in these organs.

• The branching pattern cannot be explained by purely symmetrically dividing tips

(Figure 2B-D and Figure S1), i.e. the number of tips does not increase exponen-

tially with generation number.

• Average branch lengths and widths are seen to be independent of generation

number in the mammary gland (Scheele et al., 2017) (while it reaches a plateaus

in the kidney).

3.2 Branching and self-avoiding random walks

For kidney branching morphogenesis, a model of branching tips with self-avoiding

properties was proposed and compared to the first branching events in in vitro exper-

iments (Davies et al., 2014). An advantage of such a model to understand mammary

morphogenesis is that it avoids crossovers between ducts, thus reproducing a key as-

pect of the experimental data. However, a major contrast with our framework is that

the number of tips would still increase exponentially with generation number, as there

is no termination. Therefore, this model cannot explain the data, as the branching

pattern cannot be explained by purely symmetrically dividing tips (Figure 2D). More-

over, as mentioned above, a large degree of self-avoidance increase significantly the

anisotropy of the branching pattern to values which exceed the experimentally mea-

sured mammary anisotropy (Figure S5F,G,I).

This points to the fact that tip annihilation must be a key feature of any viable model
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of branching morphogenesis. However, we note that alternative sources of regula-

tion/termination could be conceived over that considered in the main text.

3.3 Regulation of branching and/or tip-tip interactions

Although we have so far placed emphasis on tip termination, the balance between pro-

liferation and termination could be enforced in a density-dependent manner. From a

mean-field perspective, these two options are formally identical and, therefore, cannot

be distinguished. However, in full spatial simulations, the two hypotheses yield crucially

different outcomes: Although a density-dependent regulation of branching can repro-

duce the constant average density of ducts (Figure S4A) as well as the pulse kinetics

of invasion, it yields numerous crossovers (on the order of the number of branches,

thus significantly overestimating the experimentally observed value of Figure 1C by an

order of magnitude).

Alternatively, we have also already explored above the the canonical form of BARWs

discussed in the physics literature, which posit that termination occurs only when tips

meet (instead of a tip and a duct). However, we show that this fails to reproduce even

qualitatively both the density profile of tips and ducts (tips form a front instead of a

pulse, and ducts are patterned according to a density gradient) and the absence of

crossovers between ducts (Figure S4C,D). Therefore, this model does not reproduce

the most elementary qualitative features of the data.

3.4 Stochastic termination, independent of spatial cues

Next, we explored the assumption that the frequencies of tip termination and branching

are encoded intrinsically, independent of any spatial information in the system. We
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thus parametrize termination based on the experimentally measured data (Figure 2D),

and implement it as a stochastic process, similar to the spatially-averaged model from

(Scheele et al., 2017).

Again, although the model faithfully “reproduces” the convergence towards balance

by construction, it also fails to predict key qualitative aspects of the data. In particular,

because it does not take into account spatial cues, it fails once again to reproduce the

absence of ductal crossovers. Moreover, because of the absence of self-organizing

properties arising from tip-duct interaction, active tips fail to self-organize into a sharp

pulse of active tips at the edge of the tissue (see Figure S4B for a typical numerical

integration), and are instead uniformly dispersed in the fat pad. Interestingly, because

invasion is not directional anymore, the trees fail to fill the entire fat pad, instead ex-

ploring the proximal part before stochastically terminating. Therefore, we get a very

poor fit to the angle probability distribution (R2 = 0.24).

The models above fail in particular because they do not take into account prop-

erly tip-duct interaction, strengthening our case that these interactions must form the

regulatory basis of any viable model of mammary branching morphogenesis. In the

following, we will explore models that keep tip-ducts interaction in one form or another,

to ensure that the ductal trees do not display crossovers, i.e. models that reproduce,

at least qualitatively, some basic aspects of the data. We will see, however, that this

still leaves room for widely different models, that we compare quantitatively to our data

to show whether and how they can be excluded.
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3.5 Branching and self-avoiding random walks with side-branching

One possible way to address the problem of tip termination above would be consider

a model based on a self-avoiding random walk with side-branching. This would cor-

respond to introducing two “classes” of tips and branches: the main branches/tips are

the same as that described above, and perform a branching and self-avoiding random

walk, maintaining a sufficient spacing between them to avoid termination. However,

we further assume that upon each branching event, there is a probability rs to initiate

side-branches, i.e. tips that are unable to branch again, and terminate after a short

typical length, regardless of the external environment.

This would thus be an alternative framework where termination is implemented “in-

trinsically” upon asymmetric branching, in opposition to the BARW framework above,

where termination is an extrinsic event based on local spatial rules and independent of

the branching events themselves. Indeed, the potential contribution of side-branching

has been hotly debated in the mammary field in particular (Sternlicht, 2005), as well

as its timing during pubertal development and pregnancy. Because of the self-avoiding

nature of the dynamics, crossovers are avoided and, because of intrinsic termination,

for rs = 1, the number of tips does not increase exponentially, and is intrinsically bal-

anced.

We therefore explored the possibility of mammary morphogenesis occurring se-

quentially, in the spirit of proposals such as in (Huebner and Ewald, 2014): An early

phase of largely symmetric branching serves to increase the net number of tips, as ob-

served experimentally, followed by a phase of purely asymmetric side-branching, with

main branches avoiding each other. For robustness, we tested two options for the av-

erage threshold generation number to move to a phase of side-branching: generation

79



n = 5 (Figure S3G and blue curves in Figure S3I-K) and n = 6 (Figure S3H and orange

curves in Figure S3I-K), and averaged in each case 1000 full stochastic simulations.

We took a large radius of repulsion Ra = Lx/20 and repulsion strength fr = 0.6 (as oth-

erwise ductal crossovers would occur with high probability). With these parameters,

one can obtain a satisfactory fit to the subtree persistence (Figure S3K).

Importantly however, this model missed key aspects of the experimental data:

• At these levels of repulsion (again, which are necessary to avoid crossovers),

the simulated ductal trees were highly directional, with an angle distribution that

fits very poorly with the data (Figure S3I, R2 = −4.1 and R2 = −2.8 resp.), as

it overestimates drastically the degree of directionality (as is obvious from the

simulation snapshots).

• Moreover, because of the absence of strong competition between subtrees, the

predicted subtree distribution fit poorly with the experimental data (Figure S3J,

R2 = 0.4 and R2 = 0.7, respectively), as it underestimates drastically the subtree

size heterogeneity. Note that calculating R2
log would provide an even worse cor-

relation, as the tails of model and data distribution diverge strongly.

3.6 Branching and annihilating random walks with external guid-

ance

Next, we considered a key alternative to our model, which involves the guidance

of tips by external chemical gradients/cytokines. Although such gradients have not

been found in the mammary gland, in vitro experiments have shown that mammary

organoids are seemingly attracted by beads soaked in FGF10 (Zhang et al., 2014),
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raising the possibility that such guidance cues may be operative in vivo. This ques-

tion is particularly topical, as such collective migration via external guidance is a key

feature of many morphogenetic events, reviewed for instance in (Huebner and Ewald,

2014).

More generally, whether morphogenesis proceeds via self-organizing features, or

via decoding positional information has been a fundamental debate over the past

decades in a variety of system, and is still largely unresolved (Kerszberg and Wolpert,

2007). We thus explored the possibility of external gradients guiding mammary mor-

phogenesis. Specifically, we retained the BARW framework defined above, but im-

posed an additional external guidance, i.e. a biased instead of isotropic random walk.

More precisely, at each step of a tip i in a direction pi, we imposed an external field

in the distal direction gx x, with gx > 0 (and calculated the updated unit vector pi in

the presence of this field). Thus, gx = 0 is our classical BARW framework developed

above, while increasing values of gx lead to more and more directional migration to-

wards the distal direction. In particular, we found that the effect of the perturbation

became noticeable when gx is of a comparable order of magnitude to the rotational

diffusivity of the tips (Figure S3A-C). We thus tested various values of gx = 0.05,0.1,0.2

(respectively blue, orange and yellow lines in Figure S3D-F) and averaged in each

case 1000 full stochastic simulations.

Importantly, this model also missed key aspects of the data:

• The main departure between simulation and experiment was, predictably, on the

anisotropy of the branching pattern. We computed for each value of gx, as for

the BARW simulations in the main text, the probability distribution of having a

branch at an angle θ ∈ [0,π] from the horizontal x. Crucially, this systematically
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overestimated the anisotropy, with increasing values of gx causing an increasing

anisotropy, and providing a very poor fit for the data (Figure S3D, R2 = −2.8 for

the best fitting case of gx = 0.05, thus a much worse fit than the control case of

gx = 0).

• Moreover, we also found that the predicted subtree size distribution (Figure S3E)

and persistence (Figure S3F) fitted increasingly poorly the experimental data

(respectively R2 = 0.82 to R2 = 0.56 and R2 = 0.93 to R2 = 0.83, for gx = 0.05 and

gx = 0.2). Note that, calculating R2
log would indicate an even worse fit, as the tails

of model and data distribution diverge strongly.

Finally, we sought to test more directly the existence of guiding chemical gradients

by performing a quantitative analysis of transplant experiments, as detailed in the main

text. Crucially, this showed that mammary stem cells transplanted in the center of a

fat pad could form branched structures which could propagate isotropically in the fat

pad, without large distal-proximal bias. This validates directly and quantitatively an

absence of a pre-determined chemical gradient, and lends strong support to our model

of emergent directionality arising from isotropic and local interactions.

3.7 Branching and annihilating random walks with side-branching

Next, even though this possibility is very close to the one considered in the main text,

we examined whether the data could accommodate a BARW framework coupled with

significant side-branching (defined as above as the generation with probability rs of tips

that are unable to undergo further branching). We therefore explored various values of

rs, all of the other parameters being the same as the default simulations from the main

text, and averaged in each case 1000 full stochastic simulations (Figure S3L-N).
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Importantly however, large values of rs again missed key aspects of the data. In

particular, increasing values of rs caused a higher and higher value of the subtree

persistence, as the perturbation decreased inter-tip competition. Therefore, the sim-

ulations with side branching systematically overestimated subtree persistence (Figure

S3O). At the same time, they also systematically underestimated subtree size hetero-

geneity, for the same reason as above (Figure S3P). Thus, including medium to large

values of rs (rs = 0.2 in blue, rs = 0.5 in orange and rs = 0.75 in yellow) systematically

worsened the fit of the model to the data (R2 = 0.91 for persistence and R2 = 0.85 for

size distribution for rs = 0.5), allowing us to rule out the possibility of a large fraction

of side-branching during 3-8 weeks pubertal dynamics. We note, however, that it has

been reported that side-branching could play a more dominant role later on after the

fat pad has been filled (Sternlicht, 2005).

3.8 Branching and annihilating random walks with large side-branching

and repulsion

Finally, we considered whether a large amount of “secondary phase” side-branching

could still accomodate the data if we added repulsion (again, in the presence of anni-

hilation as in the control simulation). We thus implemented the same two-phase model

of Section 3.5 (symmetric branching followed by a phase of side-branching with prob-

ability rs after an average generation of n = 6), again with repulsion. We used here a

repulsion radius of Ra = Lx/60 and a repulsion strength fr = 0.6 (although it should be

noted that these are not as crucial as in Section 3.5, as crossover here is avoided in

any case by the presence of annihilation).

Again, to explore the phase diagram, we tested various values of rs = 0.75, 0.9, 1
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(respectively blue, orange and yellow lines in Figure S3R) and averaged in each case

1000 full stochastic simulations. We show in Figure S3Q an example of a typical final

configuration for rs = 0.9. Here, although the model reproduces rather well the orienta-

tion of the tree, as well as its constant spatial density and absence of crossovers, the

key issue is again the low competition between subtrees, which causes a overestimate

of subtree persistence, and an underestimate of the heterogeneity of the subtree size

distribution (Figure S3R, R2 = 0.82 for rs = 0.75 to R2 = 0.82 for rs = 0.9 and R2 = 0.36

for rs = 1). Note that, once again, calculating R2
log would indicate an even worse fit, as

the tails of model and data distribution diverge strongly.

Therefore, while one can conceive of various alternative kinds of model to the

BARW with varying degrees of complexity, none of them appear to reproduce the full

dataset, reinforcing the seemingly unique predictive power of the BARW framework

proposed in the main text. In particular, these analyses emphasize that tip termina-

tion/annihilation is a key feature that any viable model must possess to understand

the data. More surprisingly, we note that more complex models (for instance involving

time-varying rules, side-branching and repulsion) do a worse job at predicting the data

that the simpler BARW model we propose.

4 Molecular basis for branching and termination in vivo

In this section, we discuss the rationale behind the perturbation experiments that we

performed to challenge our model, in particular the implantation of soaked beads dur-

ing pubertal branching morphogenesis to provide ectopic supply of various positive or

negative regulators of mammary branching. These experiments, shown in Figure 5

and Figure S5L-P, provides some hints on the underlying molecular regulation of the
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events of branching and termination, that we have so far addressed from a mesoscopic

perspective.

4.1 Details on the experimental approach

As discussed in the methods, soaked beads were surgically implanted on top of the

fat pad of third and fourth mammary glands, so that they did not physically prevent

the invasion of the mammary epithelium, but still delivered proteins in its vicinity. This

technique was used in particular with success in the context of chick limb development

(Fallon et al., 1994; Raspopovic et al., 2014). As a control that beads did not physically

prevent invasion, we implanted control beads soaked in PBS, and verified on whole

mounts that branches could grow below them (i.e. were overlayed in the maximum

intensity projections shown in main and supplemental Figures). To investigate both

positive and negative regulators of branching morphogenesis, we soaked beads in

either:

• TGF (Transforming Growth Factor)−β , which has been widely studied in the con-

text of mammary development as the key negative regulator of mammary growth,

both in vitro (Nelson et al., 2006) and in vivo (Silberstein, 2001), since the sem-

inar experiments of (Silberstein and Daniel, 1987) of implanting a large TGF-β

releasing pellet to show that it inhibits mammary invasion. However, it is still not

fully clear from a quantitative perspective if TGF-β acts mainly as a repulsive cue,

a negative regulator on branching, or a positive regulator on termination (Daniel

et al., 1989; Kahata et al., 2017), and what is the characteristic length scale of

this regulation.

• FGF10 (Fibrobastic Growth Factor 10), which has been identified in vivo as a key
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regulator of branching outgrowth in lung, prostate, salivary gland and pancreas

(Iber and Menshykau, 2013). FGF10 is the predominant stroma FGF ligand ex-

pressed during pubertal mammary morphogenesis, and directs mammary cell

migration in vitro (Zhang et al., 2014), raising the hypothesis that it can be in-

volved in branching initiation and guidance in vivo. However, its effect has not

yet fully been elucidated in the mammary gland in vivo, and in particular, a quan-

titative understanding of its contribution in terms of elongation, guidance and/or

branching remains in question.

Therefore, in addition to providing molecular mechanisms, such experiments have

the potential to clarify aforementioned issues of the relative contributions of guidance

and/or repulsion compared to branching and annihilation.

4.2 Details on the theoretical approach

In order to theoretically simulate the effect of the beads with respect to our BARW

framework, we first considered three possibilities: the beads would enhance locally

termination (in that case, we use the same termination radius for beads as ducts

for the sake of simplicity), that beads would inhibit locally termination (in that case,

we implemented that within the same radius, no termination could occur), and that

beads would enhance branching (in that case, we implemented that within a critical

radius, the branching rate was enhanced by a given factor hb, with hb = 2 in Figure 5C,

corresponding to the observed increase in branch rate, and hb = 3 in Figure S5L for

comparison).

We randomly positioned in simulations four clusters of 15 beads, to mimic the ex-

perimental configuration. A first thing we asked was the probability of bead-duct cross-
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over in all cases, to give a better perspective of how much cross-over is expected in

the control case. As shown in Figure S5L,O, in the control case of beads devoid of

any effect, the probability for cross-over was slightly below 40%, whereas by construc-

tion, the case of beads inducing termination displayed a zero-probability for bead-duct

cross-over.

4.3 Results

Importantly, when examining the mammary gland morphology in the presence of TGF-

β soaked beads, a first and key finding was the absence of any overlay between a bead

and a duct (Figure 5A and Figure S5M,O, n = 4 glands, around 50 beads in each). In

particular, in regions of high bead density, the fat pad remained entirely devoid of

any epithelial invasion, while in regions of lower bead density, one could observe tips

having stopped just before encountering the beads (with a characteristic distance of

100− 200µm, see blue asterisks on Figure 5A). The effect was particularly sticking

and significant when compared to gland morphology in the presence of control, PBS-

soaked beads, in which numerous duct-bead overlays were observed (Figure 5B and

Figure S5N), with a probability around 35% very close to the predicted value from the

model. This validate the assumption that control beads have no effect of the trajectory

of the BARW, and are thus an accurate and non-perturbative control. Importantly,

quantifying the average branchpoint to next branchpoint distance far from TGF-β1

beads demonstrated that there was no statistical different on the branching far from

the beads (Figure S5P). Comparison with the TGF-β1 beads thus demonstrates the

locality and effect of TGF-β1 in tip termination.

Next, we assessed the influence of ectopic delivery of FGF10 through the same

87



soaked beads approach. In proximity to the beads, numerous events of side-branching

could be observed (Figure 5C), as well as much shorter branchpoint to branchpoint dis-

tance. To quantify this effect, as well as its locality, we measured the average branch-

point to branchpoint distance in four settings: in regions close and far from the beads

(we calculated ”close” to the bead region as regions which are closer than 500µm to a

bead), both for control beads and FGF10 soaked beads. Importantly, when comparing

glands with control beads vs glands with FGF10 beads (n= 3 glands for FGF10 beads,

n = 3 glands for control beads), we could find no statistically significant difference be-

tween the branch length far from control beads, in proximity to control beads, or far

from FGF10 beads (adjusted P > 0.99 in all cases, from a Kruskal-Wallis test with mul-

tiple comparisons and correction). However, the branches close to FGF10 beads were

statistically much shorter (approximately twice shorter, P < 0.001 from a Kruskal-Wallis

test, in all comparisons with the three controls). We thus compared these glands with

FGF10 beads with numerical simulations locally enhancing branching rate by a factor

hb = 2 (Figure 5C), which reproduced well the enhanced branch density locally with

minimal directionality.

5 Sensitivity analysis - effect of parameter variations

on the predicted structure of the kidney

Having considered the application of the BARW model (and alternatives) to the mouse

mammary gland epithelium we now turn to consider in detail the modelling approach

used to simulate the three-dimension branching morphogenesis of the mouse kidney.

In particular, we consider how the three-dimensionality of the kidney influences the
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analysis of the BARW model dynamics.

5.1 Details on the 3D numerical simulations of the BARW model

To address the dynamics of the BARW in 3D, we parametrise the model in spherical

coordinates (r,θ ,φ), with the initial condition of a single active tip positioned at coordi-

nate r = 0 with orientation θ = π/2 and φ = 0. Tips branch at a rate rb and terminate

deterministically if they enter into a radius of Ra of another duct. Upon bifurcation of a

tip i, two offspring tips are produced, at an angle αi from their ancestor duct. Based on

previously published data on kidney branching, αi is chosen randomly from a uniform

interval [αo− δα,αo + δα], with αo = 50◦ and δα/α0 = 1/3 (Short et al., 2014). One

should note that the results depend only very weakly on these parameters. Moreover,

the two offspring tips adopt experimentally a diametrically opposite position, and we

therefore pick randomly the angle β ∈ [0,2π] for the plane of this bifurcation (see Figure

S6A for a schematic).

The angles (θ1, φ1) of offspring 1 can thus be calculated from the angles (θ , φ ) by

solving the equations:
cosθ1 sinφ1 cosθ sinφ + sinθ1 sinφ1 sinθ sinφ + cosφ1 cosφ = cosαi

−cosθ1 sinφ1 sinθ + sinθ1 sinφ1 cosθ = sinβ sinαi

(15)

and the angles (θ2, φ2) of offspring 2 can be calculated by the same system of equation

(15) by substituting β → β + π. This guarantees that there is both an angle of αi

between the directions of ancestor and offsprings, as well as that the two offsprings

go in diametrically opposite directions relative to this angle.

Furthermore, as detailed in the main text, one must specify the anisotropy of kidney

expansion in the simulations (Figure S6B-C), as this does not appear to arise from the
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redirection or annihilation of tips going along the short axis. Indeed, if that were the

case, one would see, by analogy to the mammary gland expansion, that only tips

along the long axis are proliferative. In contrast, both proliferation and nephrogenesis

in kidney are organised in continuous rims all across the surface of the developing

organ (Costantini and Kopan, 2010). Anisotropy does not seem to be driven either

by a much shorter branch length along the short axis, as we found that the average

branch lengths depends very little on the direction of growth (Figure S6E), whereas

the branch length distribution was consistently well-fitted by a single exponential with

a threshold (which we fit from the experimental value, see theory versus experimental

distributions on Figure S6F). Therefore, the simplest model of anisotropy is to assume

that the time scale of the branching and elongation process depend on the angles

(θ ,φ) of a given branch relative to the centre of mass, being rescaled by a factor

F (θ ,φ). We denote Lz the longest axis (θ = 0), Lx the shortest axis (θ = π/2,φ = 0),

and Ly the intermediate axis (θ = π/2,φ = π/2), which we measure experimentally as

Lx/Lz = 0.5 and Ly/Lz = 0.4. We thus parametrise kidneys as triaxial ellipsoids using

the formula:

F (θ ,φ) = Lz

√
sin2

θ sin2
φ

L2
x

+
sin2

θ cos2 φ

L2
y

+
cos2 θ

L2
z

. (16)

Finally, although the global distribution of branch lengths in kidney is well-fitted by

a single exponential (Figure S6D,F), indicative of a stochastic branching with constant

rate rb, it has been shown that the first bifurcations are more regular and stereotypic

(Sampogna et al., 2015; Short et al., 2014), intervening dominantly in a single plane

and along the future long axis of the kidney. To be able to make accurate experimental

predictions later, we thus grew a “seed” kidney for n = 5 generations of bifurcations, at

a deterministic branch length of 1/rb, before using the stochastic branching dynamics
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described above. (Note, however, that we still allow for annihilation in the early phase,

with the same annihilation radius, for the sake of simplicity and consistency.) Such a

modelling is clearly a simplification, as finer dependencies of the branch length and

width with generation number have been reported in the past (Short et al., 2014).

However, our goal here is to define basic design principles of kidney growth, and we

thus neglect such “second-order” features.

5.2 Sensitivity analysis of the final kidney morphology

In this section, we turn to a sensitivity analysis of 3D BARW to understand how vari-

ations in the parameters of the model affect quantitatively and qualitatively the results

that we observe for kidney morphogenesis.

5.2.1 Key parameters for the default kidney simulations

Once again, before performing a sensitivity analysis as a function of parameter values,

we list the default parameter set used in the main text for the numerical simulation of

kidney morphology. Numerical simulations were performed in three-dimensions. At

each time step (with τ = 1 again used as the unit time), tips move forward by a length

V τ = 1 (again used as the unit length), along a polarity vector pi, or angle θ , which

diffuse by a random angle of amplitude δθ = π/10 (as in the case of mammary gland

simulations). We set the branching rate to rb = 0.2 and finding a best-fit value for Figure

6D for the annihilation radius of Ra = 1.3 in simulation length units (so that the only key

parameter controlling the kidney morphology is R′a = rbRa = 0.26). Note that the bias

towards ductal termination at the largest generation numbers is partially an artifact of

the analysis, as these represent tips at the periphery of the kidney (Figure 6E) that
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remain proliferatively active but, without “progeny” yet, are counted as “terminated”.

5.2.2 Mapping between simulated and real embryonic time

In contrast to the mammary gland, where we only investigated either the final state of

the mature organ, or the steady state of the invasion front, here we wished to under-

stand quantitatively the full developmental time course of embryonic kidney formation

(as assayed experimentally by (Sampogna et al., 2015), the results of which we re-

analyzed here). As shown previously (Sampogna et al., 2015), the speed of kidney

branching morphogenesis (defined as the characteristic time to form a branch) decays

in time during embryogenesis (even though the average branch size decays slowly in

time). This means that simulated time will depend non-linearly on real embryonic time.

For the sake of simplicity, we thus assumed constant time-invariant properties in the

simulations, and then linked simulated time to embryonic time by fitting the average

number of branches at that developmental time (from E11 to E19, see Figure S6G).

All of the results presented in Figure 7A,C,D are thus obtained using the simulated

embryonic time correspondence shown on Figure S6G.

5.2.3 Giant density fluctuations in kidney

In order to assess giant number fluctuations in the experimental data, without being

corrupted by boundary effects, we only examined the detailed reconstructions of E17

to E19 kidneys (n = 3, average shown on Figure 7E; results for different time points

were consistent, as indicated by the small error bars), performing the analysis in a

rectangular three-dimensional box around the center of gravity of each kidney, that

thus excluded boundary effects. Results consistently showed robust power law de-
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pendences with exponents larger than 0.5, indicative of giant number fluctuations. This

indicates the generality of the results uncovered in mammary gland morphogenesis.

We then performed the same analysis for the density fluctuations of the simulated kid-

ney, on E19-equivalent trees, again avoiding the edges of growth to prevent boundary

effects from corrupting the data.

5.2.4 Effect of the annihilation radius

In contrast to the case of two-dimensional BARWs, the value of the annihilation radius

Ra plays a crucial role in three dimensions. As mentioned above, this is because

vanishingly small radii Ra give rise to vanishingly few crossovers/terminations in three

dimensions. Thus, the radius Ra becomes a key parameter, and has to be fitted with

respect to the kidney data in order to be able to make quantitative predictions, as

discussed in the main text and in the sections above.

We therefore wished to understand how variations of this parameter translate to

the morphology, heterogeneity and detailed topology of the kidney simulations. First,

we suppressed all annihilation events (Ra = 0) to check whether the heterogeneity

of the branch level distribution could stem from purely stochastic branching and size

anisotropy. Importantly, this provided a very poor fit to the data (first panel, Figure

S6J), showing the importance of annihilation for heterogeneity.

Next, we performed the same three-dimensional simulation as in the control for

large (Ra = 0.5Rref
a ) or small (Ra = 2Rref

a ) values of the annihilation radius (respectively

centre left and centre right on Figure S6I, to be compared to the left panel for control).

As expected, large radii enhance the heterogeneity of the simulated kidneys, as seen

by a broadening of the segment distributions as a function of generation and at differ-
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ent developmental timings (second panel on Figure S6J). This translates into a larger

nephron to active tip ratio (Figure S6K), largely overestimating the experimentally ob-

served values. Conversely, small radii decrease the heterogeneity of the simulated

kidneys (third panel on Figure S6J), and underestimate the nephron to active tip ratio

(Figure S6K).

Interestingly, one can observe that such changes in the radius Ra produces large

variations in the predicted observables of kidney morphology, and both alternative

values of Ra provide worse fits for the current data set. This confirms the importance

of this parameter, and argues that it can be estimated rather precisely from our fitting

procedure.

5.2.5 Effect of additional self-avoidance

Although the model performs well to reproduce key features of the kidney structure,

topology and nephrogenesis pattern, as is obvious qualitatively from the three-dimensional

reconstructions, and quantitatively from the giant density computation of Figure 7E, it

overestimates the spatial density fluctuations, so that experimental reconstructions

were consistently more ”ordered” than their simulated counterpart. As mentioned

above, it has been proposed that kidney has self-avoiding properties (Davies et al.,

2014), in a Bmp7-dependent manner, as inhibition of Bmp7 function in cultured kid-

neys causes collisions between tips and ducts. However, another interpretation of this

data, would be that collisions are avoided instead by termination, rather than repulsion.

Notably, evidence in favour of this is obtained from culture studies of two kidney buds

in close proximity (reproduced in Figure S6M from (Davies et al., 2014)). Indeed, when

we simulated two trees growing in a similar geometry to the experiments, both for the
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case of pure termination without repulsion (Figure S6N) and pure repulsion without

termination (Figure S6O), we found that the simulations with termination reproduced

better the presence of numerous (terminated) tips in the contact zone between the two

kidneys, whereas the pure repulsion simulations displayed an absence of tips at the

contact zone, as they avoided the zone by adoption of diverging flow motion. These

observations lend further qualitative support for the regulatory basis of the current

modeling scheme.

As mentioned in the sections above, tip repulsion without termination cannot ex-

plain the experimental data. However, to expand our analysis, we questioned whether,

when applied to the in vivo kidney data, a degree of self-avoidance coupled to the

BARW framework would improve the theoretical predictions. As the avoidance strength

fr is increased, the number of annihilation events diminishes, and the branching topol-

ogy thus becomes more deterministic, and characterised by more peaked distributions.

However, this could be counteracted by increasing in concert the annihilation radius

Ra. In particular, we found that for an annihilation radius of Ra = 2Rref
a and fr = 0.3

together with a repulsion radius of Rr = 6, all other parameters being maintained the

same (see Figure S6I for a typical simulation output showing higher order than con-

trol simulations), we could still obtain good fits for the nephron versus tip number as

a function of time (Figure S6L), as well as for the number of branches per generation

distributions at all time points (Figure S6J, bottom). Moreover, in these simulations,

the spatial variations in density were markedly reduced (Figure 6E), so that the expo-

nent of the giant number fluctuations observed experimentally could be predicted with

much better accuracy compared to the non-repulsive case. This argues that some

self-avoidance may cooperate with annihilation in kidney morphogenesis, and defines
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quantitatively tools to assess both contributions from in vivo data.

5.2.6 Effect of the growth anisotropy

We then turned to explore the contribution of the anisotropy in promoting subtree het-

erogeneity in the kidney. We therefore performed numerical simulations with the same

set of parameters as wild-type, only in isotropic growth conditions (Lx = Ly = Lz, Figure

S7A). As expected, the key phenomenology of a self-organised pulse of active tips

at the edges of the kidney was not affected by changes in isotropic conditions (Fig-

ure S7A). Moreover, we observed similar kinetics and scaling laws in the number of

nephrons versus tips as a function of time. A key difference was observed in the num-

ber of branches per generation as a function of time. Indeed, we observed a marked

reduction in the width of the distribution, as expected from reducing the anisotropy-

induced growth advantage of subtrees in favorable directions (Figure S7B).

5.3 Proximity to the critical point

Finally, we wished to assess systematically how the stochasticity of branching mor-

phogenesis could lead to a stochastic transition to a fully annihilated state. Indeed,

within the mean-field theory, annihilation of the entire tree can never happen, as any

non-vanishing value of the branching rate is sufficient to yield a steady state non-zero

density of active tips. However, fluctuations, when taken into account through the full

numerical simulations, are able to destroy this active steady state, implying a non-zero

probability for full tree annihilation.

We thus varied the frequency of termination by performing a parameter sweep in

the annihilation radius Ra. (Although the branching probability rb could also have been
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used as a converse variable, this is computationally more intensive as it requires sim-

ulating many particles for the low branching rate limit.) We otherwise used the same

parameter set as in the control kidney simulations (non-repulsive), although we used

three-dimensional isotropic simulations without a deterministic seed here, in order not

to confound the analysis. For obvious technical reasons, we cannot simulate kidney for

an infinite amount of time, so that finite-size effects are expected, i.e. full annihilations

which might occur later than the threshold simulation time are discarded. However,

the frequency of such events become vanishingly small in time, and only matter in the

very close vicinity to the critical point. We used the criteria that trees reaching 100,000

particles are considered non-annihilated/survivors, ran at least 1000 simulations per

parameter value (see Figure S7E-G for representative examples), and calculated the

tree survival probability as a function of the annihilation radius.

Importantly, and in qualitative agreement with the literature (Cardy and Tauber,

1996), we found that above a threshold in the annihilation radius Ra, the tree survival

probability vanishes, while it continuously increases below this threshold, indicative

of a continuous phase transition (Figure 7F). Below a secondary lower threshold, we

also noticed that survival always occurs. Interestingly, both these thresholds are larger

than the control value used to fit the in vivo kidney data (the same is true of mammary

glands and two-dimensional simulations), by ratios of 2 and 3, respectively (Figure 7F,

dashed vertical line). This is expected from a biological perspective, as one wishes to

avoid tree extinction before it grows to a mature size. However, as discussed in the

main text, in mutant conditions, the value of the annihilation radius could be closer to

values allowing for tree extinction, a hypothesis to be confirmed in subsequent studies

which could shed new light on branching pathologies.
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6 Vitamin A deficient kidney

In this last kidney-related section, we now apply the analyses above to understand per-

turbations to normal kidney development. In particular, we re-analyzed a data set from

the segmentation of the E15 mouse kidney on animals maintained on a low vitamin

A diet (Sampogna et al., 2015). This phenotype is particularly interesting because,

although the branching rate and total number of branches are maintained in this con-

dition, it was found that kidney became much more heterogeneous with, in particular,

an increase of the maximal branch generation number attained at E15 (some 3 gener-

ations more than wild-type, P < 0.05), and thus a correspondingly decreased number

of mid-generation branches.

We therefore sought to test whether our model could be applied to understand

this new phenotype. Given the sensitivity analysis developed above, we first tested

whether a change of anisotropy in kidney shape could explain this behavior, but found

no significant changes in the kidney aspect ratio compared to wild-type (P> 0.1 both for

Lx/Lz and Ly/Lz). However, a key geometric change was that Vitamin A deficient kidney

was much smaller, behaving as a scaled down version of their wild-type counterparts

(occupying on average 35% of normal wild-type volume, P < 0.05). Therefore, as a

consequence, the density of tips at the outer surface rim was nearly twice as large in

the Vitamin A deficient kidneys as wild-type.

This means that, although the branching rate is identical, the elongation rate of tips

must be reduced in Vitamin A deficient kidneys, and lead us to the hypothesis that this

could explain, by itself, the enhanced heterogeneity, by increasing tip-tip competition.

Indeed, for lower characteristic branch lengths, crowding-induced terminations are ex-

pected to arise earlier. Guided by our previous results, we therefore sought to check
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whether this single geometric change in elongation rate of kidney would reproduce

quantitatively the phenotypic differences between the wild-type and Vitamin deficient

kidney. We thus decreased the elongation rate by a factor two in the simulations,

and kept all other parameters constant, which lead to the correct reduction in kidney

volume at E15 (Figure S7H,I for comparison of wild-type and mutant simulations).

We then computed by the same methods as before the predicted average number

of branches per generation, for the same total number of branches. Importantly, we

found that the simulations for Vitamin A deficient kidneys displayed on average two

more generations than simulations for wild-type kidneys (Figure S7J), closely mirror-

ing the data. Moreover, the model provided an overall excellent prediction (R2 = 0.98,

S = 6) for the Vitamin deficient data. This validates our model of crowding-induced

termination by showing that one can predict kidney structure from simple geometric

properties such as average branch length. Interestingly, one should note that, in the

Vitamin A deficient kidneys, nephrogenesis is also impaired (Sampogna et al., 2015).

This displays an additional layer of complexity compared to our framework, as we have

made the simplifying assumption to equate inactive tips with tips fusing to glomeruli to

initiate nephron formation. This hints, in particular, to the fact that crowding tip termina-

tion could be a distinct, not-fully overlapping property of nephron initiation, something

that would need to be tested, for instance, by combining large-scale reconstructions

with EdU assays.
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7 Branching and annihilating random walks arising from

a generic reaction-diffusion mechanism

In this section we investigate whether and how BARWs can be implemented from

canonical, “off-the-shelf”, molecular regulatory programs of the type present in epithe-

lial cells. To this end, we made use of the framework of reaction-diffusion systems,

which have been widely and successfully studied since Turing’s seminal work (Tur-

ing, 1990) to understand collective biological phenomena. In the original concept of

Turing, and later used to explain neural impulses, a diffusible activator A both self-

activates and activates another diffusible molecule I. This second molecule I is an

inhibitor, negatively regulating A as well as itself. Under general conditions on the dif-

fusion coefficients, this system was shown to generate arrested phase separation into

complex motifs with a well-defined length scale (dots on an hexagonal lattice, stripes,

reconnected labyrinths, etc.).

Later, through the seminal work of Meinhardt and collaborators (Meinhardt, 1982)

this formalism was extended to show that the inclusion of a third molecular component,

functioning as a substrate for the first two, allowed for the formation of branched struc-

tures. Recently, Guo and colleague have revisited this paradigm (Guo et al., 2014)

using the following four-species system, including an activator A, an inhibitor I, differ-
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entiated inactive cells Y , and a substrate S:

∂tA = cA2S
I −µA+DA∇2A+ρAY

∂tI = cA2S−νI−DI∇
2I +ρIY

∂tS = c0− γS− εY S+DS∇2S

∂tY = dA− eY + Y
1+ fY 2

(17)

where c, µ, ρA, ν , ρI, c0, γ, ε, d, e and f are coefficients of interactions, and DA, DI and

DS are coefficients of diffusions (for details see (Guo et al., 2014)). Although this model

adds quite a bit of complexity to the original Turing system, numerical analysis shows

that it is able to reproduce the different modes of branching morphogenesis observed

in vivo. In particular, increasing the parameter ε, which quantifies the consumption of

the substrate by the epithelium, switches from a mode of side-branching to a mode of

exclusive tip-splitting morphogenesis.

Interestingly, although the authors concentrated in their study on the mode of branch-

ing, we performed numerical integrations of these equations for longer times and no-

ticed that the branching pattern also displayed an annihilating property (Figure S7N).

Indeed, whereas classical Turing patterns reconnect, giving rise to complex multi-

graphs, there is a substrate here, which is continuously consumed by differentiated

cells in the ductal network. As the substrate mediates the activator self-reinforcing

loop in the equations for A and I, when a growing tip approaches an existing duct, it

feels a substrate depletion which stops it.

Thus, these results show that phenomenology of the BARW framework can be en-

capsulated from a more molecular perspective from a Turing-like model from reaction-

diffusion systems.
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