
Environ. Res. Lett. 16 (2021) 043007 https://doi.org/10.1088/1748-9326/abde07

OPEN ACCESS

RECEIVED

31 January 2019

REVISED

15 January 2021

ACCEPTED FOR PUBLICATION

20 January 2021

PUBLISHED

29 March 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

TOPICAL REVIEW

Induced innovation in energy technologies and systems:
a review of evidence and potential implications for CO2
mitigation
Michael Grubb1, Paul Drummond1, Alexandra Poncia1, Will McDowall1, David Popp2,3,
Sascha Samadi4, CristinaPenasco5, KennethTGillingham3,6, Sjak Smulders7,MatthieuGlachant8,
Gavin Hassall9, Emi Mizuno10, Edward S Rubin11, Antoine Dechezleprêtre12 and Giulia Pavan13

1 UCL (University College London), Institute for Sustainable Resources, London, United Kingdom
2 Syracuse University, Maxwell School, Syracuse, NY, United States of America
3 NBER, Cambridge, MA, United States of America
4 Wuppertal Institute for Climate, Environment and Energy, Wuppertal, Germany
5 Department of Politics and International Studies (POLIS) and Centre for Environment, Energy and Natural Resources Governance
(C-EENRG), Department of Land Economy, University of Cambridge, Cambridge, United Kingdom

6 Yale University, Yale School of the Environment, Newhaven, CT, United States of America
7 Tilburg University, Tilburg, The Netherlands
8 MINES Paris Tech, PSL University, Paris, France
9 Warwick University, Coventry, United Kingdom
10 Sustainable Energy for ALL, Vienna, Austria
11 Carnegie Mellon University, Pittsburgh, PA, United States of America
12 Grantham Research Institute on Climate Change and the Environment, London School of Economics, London, United Kingdom
13 Compass Lexecon, Madrid, Spain

E-mail: m.grubb@ucl.ac.uk

Keywords: energy innovation, endogenous technological change, learning by doing, induced innovation, CO2 mitigation costs,
innovation policy, directed technological change

Abstract
We conduct a systematic and interdisciplinary review of empirical literature assessing evidence on
induced innovation in energy and related technologies. We explore links between demand-drivers
(both market-wide and targeted); indicators of innovation (principally, patents); and outcomes
(cost reduction, efficiency, and multi-sector/macro consequences). We build on existing reviews in
different fields and assess over 200 papers containing original data analysis. Papers linking drivers
to patents, and indicators of cumulative capacity to cost reductions (experience curves), dominate
the literature. The former does not directly link patents to outcomes; the latter does not directly test
for the causal impact of on cost reductions. Diverse other literatures provide additional evidence
concerning the links between deployment, innovation activities, and outcomes. We derive three
main conclusions. (a) Demand-pull forces enhance patenting; econometric studies find positive
impacts in industry, electricity and transport sectors in all but a few specific cases. This applies to
all drivers—general energy prices, carbon prices, and targeted interventions that build markets.
(b) Technology costs decline with cumulative investment for almost every technology studied
across all time periods, when controlled for other factors. Numerous lines of evidence point to
dominant causality from at-scale deployment (prior to self-sustaining diffusion) to cost reduction
in this relationship. (c) Overall innovation is cumulative, multi-faceted, and self-reinforcing in its
direction (path-dependent). We conclude with brief observations on implications for modelling
and policy. In interpreting these results, we suggest distinguishing the economics of active
deployment, from more passive diffusion processes, and draw the following implications. There is
a role for policy diversity and experimentation, with evaluation of potential gains from innovation
in the broadest sense. Consequently, endogenising innovation in large-scale models is important
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for deriving policy-relevant conclusions. Finally, seeking to relate quantitative economic evaluation
to the qualitative socio-technical transitions literatures could be a fruitful area for future research.

1. Introduction

The last few decades have seen a huge growth
of literature around the economics of technolo-
gical innovation from diverse perspectives. A com-
mon theme is that innovation is at least partly
entwined with, not separate from, economic and
policy conditions—it can be induced by these factors.
This could have important implications for the eco-
nomic effects of, and policy strategies towards, deep
decarbonisation—as suggested most powerfully by
the rapid development of modern renewable energy
technologies.15

However, innovation processes are complex and
hard to model. Most national energy-economy mod-
els, and large-scale global integrated assessmentmod-
els (IAMs) that seek to represent global energy
systems and their economic and environmental inter-
connections, often take energy technology cost devel-
opments as exogenous. In this case, any projec-
ted improvements are input directly in assumptions,
arriving like ‘manna from heaven’ in terms of mod-
elled future cost reductions. In addition (and perhaps,
partly in consequence), there is often also controversy
over the use of innovation-related arguments to jus-
tify policies which promote (currently) more expens-
ive technologies (OECD 2013)16.

This is partly because of complexity, in bothmod-
elling and policy appraisal, but also because the evid-
ence base on induced innovation remains diverse
and sometimes disputed, and quite poorly charac-
terised. Gillingham et al (2008) concluded a dec-
ade ago, following an extensive review of the repres-
entation of innovation dynamics across a range of
IAMs that ‘our ability to conceptuallymodel technical
change has outstripped our ability to validate models
empirically.’

It is almost a decade since Kemp and Pontoglio
(2011) described studies of the innovation effects of
environmental policies in terms of the ‘blind man
and the elephant’, and called for mixed-methods
approaches to try get a fuller picture of innov-
ation processes. This paper aims to answer that
call, through a systematic review of the empirical
literature on induced innovation in low-carbon
and energy-efficient technologies: specifically, the

15 By 2017 solar PV costs had fallen below what experts had earlier
predicted for the year 2030 (Nemet 2019). Auctions in many coun-
tries since then have seen prices below the cost of conventional
power generation (Bloomberg/CFLI 2019). See also section 6.
16 ‘Market-based approaches like taxes and trading systems consist-
ently reduced CO2 at a lower cost than other instruments. Capital
subsidies and feed-in tariffs were among the most expensive ways
of reducing emissions.’ (OECD 2013)

evidence on the extent to which ‘demand-pull’
forces induce technological innovation. Such lit-
eratures tend to be quite disparate, using some-
times radically different methodologies to look
at different aspects or metrics of innovation
processes.

Most of the studies included in well-known
reviews such as Popp et al (2010), extended in Popp
(2019) use patents as the major indicator of innov-
ation, as does the widely-cited analysis of the auto-
mobile sector by Aghion et al (2016). These represent
the tip of iceberg of hundreds of studies, which in this
reviewwe note now constitutes an emerging literature
quantifying the ‘elasticity’ of patent generation with
respect to market prices.

There is little overlap between these studies and
the more engineering-based experience curve liter-
ature which maps correlation between cumulative
deployment17 and cost reduction, as reviewed for
example for energy supply technologies by Rubin et al
(2015) and Samadi (2018), and for energy-demand-
side technologies by Weiss et al (2010). We do not
seek to duplicate these reviews, but rather, to comple-
ment them by exploring also evidence around cause-
and-effect from disparate sources, including quantit-
ative (econometric), qualitative and mixed-methods
studies.

In covering these other literatures, and by setting
both patent and experience curve metrics in a wider
view of innovation in our discussion (section 8),
we also explain the limited overlap between these
two disparate quantitative literatures, arguing that to
a significant degree they measure different parts of
overall innovation processes.

Other reviews explore the impacts of different
energy-climate policy instruments on varied out-
comes including innovation, such as Peñasco et al
2021, del Rio and Bleda (2012). Our topic also has
some overlap with reviews of the Porter hypothesis—
the idea that environmental regulation could stim-
ulate improved corporate performance (e.g. reviews
by Ambec et al 2013∗∗, Cohen and Tubb 2018)—
but only to the (limited) extent that those reviews
cover studies that assess the ‘weak’ and ‘strong’ forms
of Porter hypothesis for technologies (as opposed to
business practice) in energy (section 8, note 32).

Our review thus aims to provide a uniquely broad
coverage of findings from disparate areas that have so
far mostly been studied in isolation. It offers a first

17Cumulative deployment is generally interpreted as the total capa-
city manufactured or installed over time. Much literature also uses
the terms deployment and diffusion almost interchangeably; this
paper suggests a distinction between these (sections 2 and 9).
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attempt to systematically review the empirical evid-
ence for energy technology innovation induced by
demand-pull factors across these literatures. We also
explore the major factors that give rise to demand-
pull phenomena. From this, we seek to provide a
much fuller picture of the nature, drivers and poten-
tial implications of induced innovation, with particu-
lar relevance to the challenges ofmodelling and policy
for deep decarbonisation.

We start by outlining a general framework for
understanding some of the different ‘parts of the ele-
phant’ in section 2. Section 3 describes our focus and
methodology, and section 4 the broad characteristics
of the literature found. Section 5 presents our find-
ings concerning the impact of market-wide drivers
(focusing upon energy prices and carbon pricing).
Section 6 summarises the main findings concerning
the role of targeted demand-pull policy instruments,
in the context also of literature on experience curves,
delving into the specific conclusions concerning dif-
ferent component influences; section 7 considers the
cross-cutting and survey literature on policy mixes.
Section 8 considers emerging literature on macro-
economic dimensions. In section 9 we draw together
these findings into broader integrated conclusions
about the evidence on induced innovation, and finally
in section 10, we discuss the primary conclusions and
implications for energy system decarbonisationmod-
elling and policy.

2. Context: innovation processes in energy
technologies

Innovation is generally understood to be the out-
come of a system of interacting actors, technologies
and institutions (Freeman 1987, Hekkert et al 2007,
Gallagher et al 2012). Within that systemic context,
new technologies typically undergo a process of mat-
uration, from invention, through innovation and dif-
fusion: in this broad characterisation, we interpret
innovation as the multiple processes that improve
the realised characteristics of a technology (includ-
ing cost) as it evolves from invention to widespread
diffusion.

The resulting concept of an ‘innovation chain’ is
depicted in figure 1. This emphasises the different
stages, the feedbacks between them, and the way that
innovation in a given technology is situatedwithin the
broader innovation system context comprising the
knowledge processes, adoption stages, actors, and fin-
ancial resources involved, all of which of course also
interact.

Innovation studies traditionally distinguish
between ‘technology-push’ policies (for example,
research grants that directly aim at increasing the
supply of innovation) and ‘demand-pull’ factors that
create a market for innovations. Figure 2 repres-
ents schematically the shift from technology-push

to demand-pull as a technology matures, and cor-
respondingly, often from mainly public to primarily
private funding (this simplified linear form does not
capture the feedbacks, but the fact remains that any
technology needs to pass through all these stages to
reach maturity).

The impact of demand-pull on innovation likely
varies across sectors and will reflect, to an important
degree, how well the stages—the ‘push’ and ‘pull’—
are connected in each sector depending on their char-
acteristics. Sectors that are commonly recognised as
highly innovative, like IT and pharmaceuticals, typ-
ically spend 10%–15% of their turnover on R&D
(though in practice they still draw heavily on under-
lying public R&D)18. Grubb et al (2014)∗∗ suggest
that in these sectors, demand-pull is intrinsically a
powerful force for innovation because there is high
product differentiation, with huge profits for suc-
cessful new products. Moreover, for IT at least, the
‘technology-push’ is (or at least was) relatively cheap
and rapid. The profits from the Apple Mac and
iPhone alone, with product innovation and expan-
sion through rapid cycles, were enough to propel
Apple to being one of the biggest companies in the
world.

Energy is different. Some of the major energy-
using sectors, notably industry and transport, have
R&D intensities typically around 3%–5%of turnover;
the energy supply sector itself has traditionally
spent less than 1% of its turnover on R&D, a
huge discrepancy underlined by Grubb et al (2014,
ch 9)∗∗19. In these sectors, more efficient energy-
using technologies generally have to compete on
the basis of energy cost, rather than offering new
and better functionality. Energy supply technolo-
gies tend to be big, complex, expensive and slow
to develop; and new entrants must sell into estab-
lished markets dominated by incumbent industries
selling the same product—electrons, or hydrocarbon
molecules. Neither has scope for supernormal profits.
A broad literature exists on energy supply technolo-
gies and the ‘technology valley of death’, reflecting
large risks and much reduced incentives for private
innovation.

This specificity of the energy sector does not
make demand-pull forces irrelevant—indeed, that
same literature cautions against the state simply try-
ing to substitute with stronger technology-push (for
a recent review, of literature and case studies on

18 In The Entrepreneurial State (Mazzucato 2012)∗∗ underlined
that in fact government spending has had a hugely important role
in contributing, for example, to the technologies underpinning the
iPhone.
19 Literature comparing innovation across sectors seems limited,
but the observation goes back at least 20 years; Frank et al (1996)∗∗

observed that energy/environmental technologies received barely
2% of US Venture Capital, compared to over 15% in each of
biotech, health, and telecoms—remarkably similar to the data on
R&D spend reported in Grubb et al (2014)∗∗.
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Figure 1. The innovation chain, with feedbacks and broader context.
Source: adapted from Grubler and Wilson (2013), with authors’ permission.

Figure 2. Innovation chain from novel to mature technology, technology push and market pull.

both the ‘valley of death and the technology pork
barrel’, see Nemet et al (2018))∗∗. It does, how-
ever, justify the need for a detailed evaluation of the
evidence around how and when demand-pull forces
have influenced innovation in energy specifically,
and the role of varied forms of public demand-pull
policy.

The classic innovation chains as presented in
figure 1 suggests a simple step from market forma-
tion to diffusion and justifies a focus on the ‘RD&D’
stages—addressing the classically recognised market-
failure of spillover—assuming that the market can
then take over. In figure 2, however, we indicate

between these, a discrete step of deployment (and
to enhance clarity, suggest the preceding step as the
commercialisation dimension of market formation).
The literature often treats deployment and diffusion
as almost synonymous. In drawing conclusions from
the literature (notably, sections 6 and 8), we articu-
late why it seems useful to distinguish a distinct step
in which a technology is deployed at scale, before it is
cost-competitive with incumbents (without targeted
support) . As a technology—perhaps in combination
with changes in the surrounding system—becomes
more inherently competitive, it thus enters the phase
of self-sustaining diffusion.
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3. Focus andmethodology

Systematic reviews use a clear a priori strategy for
obtaining literature, and standardised process of
extracting and synthesising findings (Uman 2011).
The requirement for transparent research design
and justification of study exclusion criteria aims
to improve replicability and rigour of the review
(Tranfield et al 2003, Pullin et al 2018). In this section
we clarify the focus, and the three stages of review
as guided by Pullin et al (2018) guidelines for evid-
ence synthesis: search strategy; screening; and data
extraction.

Against the background sketched above, we made
four choices regarding the scope of this review:

First, our focus is on innovation in low-carbon
and energy-efficient technologies including both new
products and new production processes, with ‘innov-
ation’ reflected by ‘indicators’ of innovation activ-
ities and ‘technology outcomes’ mainly in terms of
cost reduction and energy-efficiency improvements.
Although the set of potential indicators of innovation
activities in the scope of our review is wide, the
available literature is heavily skewed towards a rather
narrow range of indicators of innovation processes.
There is a need to develop data on wider range
of innovation activities, including those related to
private R&D, finance, technology characteristics, firm
entry and exit dynamics, and others. This is import-
ant for developing a clearer picture of the diverse pro-
cesses that underpin energy innovation, as discussed
in sections 9 and 10. We do not consider other ways
in which innovationmay generate qualitative changes
in the services provided by energy technologies
(e.g. ‘smart’ energy appliances).

Second, we explore the role of ‘demand-pull’
factors in driving innovation, including both energy
prices and policy instruments, ranging from those
correcting broad market failures (e.g. carbon pri-
cing) to more targeted instruments (e.g. feed-in tar-
iffs (FiTs)). We have not sought to include studies
that focus solely on the impacts of ‘technology push’
(i.e. publicly-funded RD&D)—for which the pur-
pose, of driving innovation, is self-evident and evalu-
ated in other literatures—nor do we attempt to weigh
the relative importance between ‘demand-pull’ and
‘technology-push’ influences.

Third, we have not directly examined the impact
of demand-pull drivers on the simple diffusion of
technologies, nor on changes to firm-level compet-
itiveness (the Porter hypothesis literature), to main-
tain our core focus on innovation in technologies
and technological systems, and avoid conflation with
issues of individual and organisational behaviour.

Finally, beyond the usual scope of energy-
innovation studies, we also review the literature
that examines macro-level indicators of innovation
induced by demand-pull factors, to explore whether
innovation in specific technologies has produced

a measurable impact at sector and economy-wide
levels.

Because a primary interest of this review is
to explore how, as well as if, demand-pull factors
induce technology innovation, we include economet-
ric, qualitative and mixed methods empirical stud-
ies in our review. Whilst the econometric literat-
ure may demonstrate correlations or connections
between factors, it is less suited to empirically explor-
ing why they are connected. For the qualitative and
mixed-methods literature, the opposite is generally
the case.

3.1. Relational components of the innovation
process
We structure our review based on the framework
shown in figure 3. We delineate demand-pull drivers,
innovation activities and innovation outcomes as
numbered nodes in the innovation process. The focus
of the review, and consequently on our literature
search strategy, is on the nature of the links between
these nodes. We term these links ‘Search-Links’, and
denote them using numerals. The search links are
described as follows.

• Search-Link I (SL-I): the impact of demand-pull
drivers (1) on innovation activities—the com-
pressed innovation chain represented by (2)—and
outcomes (3). The literature on the former is large
and dominated by patent-based studies; fewer
look at outcomes such as cost. The drivers cover
bothmarket-wide (energy and carbon) prices (1a)
and targeted policies and instruments (1b); the
links covered include how these drivers impact
both activities (SL-I(i)), and innovation outcomes
(SL-I(ii)).

• Search-Link II (SL-II): the impact of (often cumu-
lative) deployment, the final element of (2), on
innovation outcomes (3), in particular cost reduc-
tion, drawing most directly from the ‘experi-
ence curve’ literature, along with other literatures
which examine cost decompositions, and qualit-
ative studies.

• Search-Link III (SL-III): sector- or economy-wide
‘macro’ outcomes (such as energy productivity)
(4) that can be attributed to technology innova-
tion induced by demand-pull drivers (1a and 1b).

These distinctions inform the design of our lit-
erature search methodology. Our review is limited
to published, English-language, peer-reviewed, aca-
demic journal articles that report empirical analysis
of the relationships described above. The review did
not impose any geographical or temporal constraints,
nor is the review restricted to any particular form of
analysis.
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3.2. Search strategy
Search terms for each of the three Search-Links
described in section 3 were developed iteratively
through author suggestions, trial database searches,
and consultationwith external subject-matter experts
(principally Lead Authors in the IPCC’s 6th Assess-
ment Report, through an information meeting in
April 2019). Terms for each Search-Link were tested
individually, and those which either had no impact
on the number of returned articles, or resulted in a
large number of irrelevant results, were substituted
or excluded. Specific points about the search strategy
to note:

Search-Link I: demand-pull drivers to innovation activ-
ities and technology outcomes.Themajormarket-wide
drivers comprise energy prices and carbon prices20.
Targeted demand-pull policies identified through
author consultation were dominated by FiTs, renew-
ables portfolio standards and auctions21.
Search-Link II: deployment to technology outcomes.
Due to the high volume and low specificity of results
pertaining to searches of technology deployment/dif-
fusion and innovation outcome and indicator terms,
our approach to Search-link II focused on energy

20 Our original search included terms regarding market structures
(particularly related to liberalisation and the degree of competi-
tion). We concluded that the literature in this area was too diverse,
as were the results (showing no consistent relationships of market
structure to innovation partly because of national specificities), to
draw useful conclusions in the context of this review.
21 The following energy-related demand-pull policies were expli-
citly searched: auctions, efficiency and technology standards,
renewables certificates, renewables portfolio standards, time-of-
use pricing, taxes and trading, feed-in-tariffs, network regulation,
capacity mechanisms, consumer subsidies, though any returned
demand-pull policy was considered in-scope during article
screening.

and decarbonisation technologies directly, using a
similar consultation and testing process, which we
combined with ‘learning’ process terms to capture
relevant experience curve literature.
Search-Link III: demand-pull drivers to macro
outcomes. This extends the Search-Link I terms to
include macro-level outcomes and related termino-
logy using the ‘OR’ and ‘AND’ Boolean functions,
with results largely a sub-set of results from Search-
Link I, though ‘macro’ studies that were retrieved
by Search-Link I but were not included in this sub-
set were subsequently transferred during screening
(a total of 40, of which 17 were retained).

Table 1 presents example search terms for each
link. For a full list of search terms, see appendix A.

Searches were conducted for each link between
April and June 2019 in the Web of Science Core Col-
lection database, selected for its comprehensive cov-
erage of science and social science literature. Terms
were formulated into Boolean search strings, using
term truncation where appropriate to allow for flex-
ible word permutations. In total, 4798 results were
generated (dominated by SL-I, which returned 3431
results).

3.3. Literature screening
Studies were considered in-scope if they (a) related
to energy generation technologies, the energy use or
efficiency of energy-using technologies, technologies
for energy efficiency, or low carbon technologies, (b)
examined the influence of demand-pull drivers on
innovation, (c) were based on empirical evidence and
presented original analysis, and (d) were published in
an English-language peer-reviewed academic journal.
For SL-II, studies on demand-side technologies were
considered in scope if the deployment and diffu-
sion of the technology may be reasonably considered

6
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Table 1. Structure of literature search strategy with example terms.

Search-Link Search string structure Example search termsa,b

SL-I: demand-pull drivers (1a
and 1b)→ innovation activities
(2) and technology outcomes (3)

[market-wide drivers OR demand-pull
policies]
AND
[innovation activities OR innovation outcomes]

• energy regulat∗
• carbon trad∗
• oil pric∗
• cost reduc∗
• increase∗ productivity
• patent

SL-II: deployment and diffusion
(2)→ innovation outcomes (3)

[energy generation, efficiency OR
decarbonisation technologies]
AND
[Technology innovation processes]

• wind
• carbon capture
• fuel cell
• batter∗
• learning-by-doing
• experience curve

SL-III: demand-pull drivers (1a
and 1b)→macro-outcomes of
technology innovation (4)

[market-wide drivers OR demand-pull policies]
AND
[innovation activities OR innovation outcomes
ORmacro-level innovation indicators]
AND
[macro-level terms]

• aggregate technology stock
• capital accumulation
• structural change
• absorption capacity
• endogenous growth

a Full search strings given in appendix A.
b ‘∗’ Indicates truncation.

an intentional result of government policy targeting
decarbonisation or energy efficiency. This allows the
link between demand-pull drivers of innovation, and
innovation outcomes, to be maintained.

Studies were screened against these criteria
(applied in parallel) first by title, then abstract, then
whether or not they had been subject to peer review,
and finally by full text. If at any stage at least one of
the criteria was found not to be met, the study was
screened out. In cases of uncertainty, a precautionary
approach was taken and articles were retained to the
next stage. Literature screening was carried out by
two of the principal authors. These authors worked
closely together and conduced double-coding of a
random selection of studies to ensure consistency of
approach. The final pool of studies were then dis-
tributed for data extraction and synthesis to different
author sub-teams (depending on specialisation and
interests), facilitated by the sub-division of demand-
pull drivers into market-wide (energy and carbon)
prices (1a) and targeted policies and instruments
(1b). Owing to the very different nature of their
research approach, qualitative and mixed method
studies were separated and reviewed independently
from quantitative literature. This left five categories
of studies that were evaluated separately by the author
sub-teams, as summarised in table 222.

Table 2 shows how the various screening stages
reduced the initial pool of 4798 results to 205 satisfy-
ing the inclusion criteria at the final screening stage.

22 Studies relevant to a particular evaluation group thatwere picked
up by an alternative Search-Link were transferred for evaluation as
appropriate. In cases where a study was relevant to more than one
evaluation group, it was reviewed under both groups though only
the distinct relevant data was extracted by each in order to avoid
duplication.

More than 80% of the studies initially retrieved across
all searches were excluded during the title screening
stage, mostly because they were not related to energy
or decarbonisation technologies (especially for SL-I,
where the search terms contained no specific con-
straint for energy generating, energy efficient or low
carbon technologies). A further 7% of the initial pool
were excluded following the review of abstracts, fre-
quently due to either a lack of focus on innovation,
or on the influence of demand-pull drivers. The
remainder of exclusions were generally due to the
lack of empirical evidence or (in a few cases) unclear
methodologies, discovered when reviewing full texts
of the remaining studies23. Accounting for studies
included in more than one Search-Link, a total of 197
unique studies were included in the final review.

Studies that were bought to the attention of the
authors during the course of the review, and which
satisfied the inclusion criteria but did not appear in
the initial search results, were subsequently added. An
additional 31 studies were added this way, producing
a final pool of 227 studies (with a total of 239 res-
ults across the five Search-Link categories, including
overlaps)24.

23 Our initial search also included studies around energy market
liberalisation and competition, later excluded (see note 6). Seven
further studies were subsequently screened out on this basis (from
SL-I), and are excluded from the ‘Full Texts’ values in table 2.
24 From section 5 onwards, single asterisks (∗) indicate studies
added to the review in addition to those produced by our systematic
search, through subsequent review and discussion with co-authors
and others, and which satisfy the eligibility criteria outlined above.
These studies are included in the statistics presented in figure 4,
below. Studies denoted by a double asterisk (∗∗) are studies that
fall outside the formal scope of the review, but which are cited
to provide wider context to the discussion. Such studies are not
included within the statistics reported in figure 4.
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Table 2. Screening statistics.

Screening stage

Search-Link Evaluation group Initial results Titles Abstracts Peer reviewa Full texts

SL-I(i) Energy and carbon
prices→ innovation
indicators and
outcomes (SL-I
quantitative)

1181 133 85 77 30

SL-I(ii) Targeted policies
→ innovation
indicators and
outcomes (SL-I
quantitative)

2250 320 189 166 36

SL-II Deployment
→ cost reduction
(experience curve
and related
quantitative
literature)

1082 205 92 92 63

SL-I and SL-II Qualitative and
mixed-method
literature

(identified from
above)

129 107 107 50

SL-III Demand-pull
drivers (1a and 1b)
→macro-level
indicators of
technological
change

285 67 62 60 26

Total 4798 854 535 502 205
a This explicit step was added to remove studies that are contained within Web of Science, but were not published in a peer-reviewed

academic journal (e.g. conference proceedings).

3.4. Data extraction
Following standard practice (Cohen and Tubb 2018,
Pullin et al 2018), publication-level information
(authors, title, year of publication), scope of ana-
lysis (geographical, technological, temporal), meth-
odological description (data source and observations,
key variables, methodology, utilisation of instru-
mental and lagged variables, robustness) and res-
ults (description, effect sign, effect size, significance),
were extracted for each study considered to be in in
scope. Cross-author consistency was tested through
trial data extractions for a common set of studies,
and the coding strategy was clarified or modified
accordingly.

4. Overall characteristics of the literature

Figure 4 provides a summary of the characteristics of
the resulting literature included in the review.

As illustrated by figure 4(a), studies most com-
monly examined SL-I (76), with a reasonably even
division between drivers 1a and 1b. The vast major-
ity of these used indicators of innovation (rather than
outcomes)—and particularly patent activity—as the
dependent variable. A total of 76 studies examined
SL-II, with a dominant focus on experience curves
in renewable energy technologies. Just 34 studies

examined SL-III. In total, around a quarter of stud-
ies (53) across all search-links employed qualitat-
ive or mixed-method approaches. Analysis of OECD
countries accounted for around three-quarters of all
studies, with Europe and the USA dominant, and
with non-OECD country studies overwhelmingly
concentrated on China (for which studies examin-
ing SL-III had a particular focus). Over 40% of all
studies reviewed examined innovation surrounding
renewable energy technologies, with the remainder
examining innovation across a range of sectors and
technologies—but with particular attention on the
manufacturing, automotive and buildings and appli-
ances sectors.

Figure 4(b) shows that the majority of studies
were published within the last decade (with almost
half published since 2016), with studies examining
SL-I driving this trend (although studies examin-
ing LIII increased substantially since 2016, with little
earlier literature apparent, implying a nascent yet
expanding field). Studies were published in 82 dif-
ferent journals (73 of which published four or fewer
of the studies reviewed, and 53 of which published
just one). As illustrated by figure 4(d), Energy Policy
was by far the most common, publishing over 20%
all studies reviewed.

The following sections present our specific
findings. From a standpoint of modelling and
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Figure 4. Characteristics of studies reviewed.
Notes: a cumulative number of studies across Search-Links, including overlapping studies; b total number of unique studies,
excluding overlaps; c value represents total number of results for geographies shown, excluding overlaps between Search-Links.
Geographies with <5 results are excluded from this chart. The total number of geographies examined is higher than the number
of studies, as some studies examine more than one geography. For experience curve studies that examine global-level dynamics,
geography is associated with the source of the cost data used.

policy, the issues of greater interest concern which
factors influence innovation. Consequently, section 5
assesses the evidence concerning the impact of
sector/market-wide drivers (1a: specifically, energy
and carbon prices), whilst section 6 explores the
conjoined evidence around the impact of targeted
policies and deployed scale (1b and SL-II). Section 7
considers policy packages and section 8 considers the
macro impact of induced innovation in the energy
sector (SL-III).

5. The impact of energy and carbon prices
on energy-related innovation

5.1. Overview
In a relatively early study of the effects of the sub-
stantial rise in energy prices during the energy crisis
of the 1970s, Lichtenberg (1986, p 75) found that
‘Energy price increases appear to have induced innov-
ation (measured by private R&D expenditure) both
directly, via their impact on the (U.S manufactur-
ing firms’) own energy costs, and indirectly via their
impact on customers’ costs’.

Subsequent research has tended to focus more
on patent generation as an indicator of innovation
induced by energy price dynamics. Relative to data
on private R&D, patent data are both more widely
available and provide greater detail on the types of
innovative activity (Popp 2019)∗∗. The greater variety
and granularity of such data, over a broader range of

technologies and longer time periods, has buttressed
and elaborated the broad conclusion that increas-
ing energy prices induces greater levels of innovative
activity surrounding demand-side technologies.

In addition to expanding patenting across fossil
fuels and many energy using technologies, the past
quarter century has seen an explosion of patenting
across most low carbon technologies, which as indic-
ated in figure 5 grew almost exponentially (except
for nuclear) from the late 1990s to 2010. The overall
volume was dominated by PV and electric vehicles,
with wind, batteries and biofuels patents also rising
sharply 2005–2010 (to the range 1000–2000 pat-
ents yr−1). Oil and gas exploration patents followed a
somewhat similar pattern. Since peaking in the early
2010s, patent counts for most energy technologies
have fallen, although they remained at higher levels
than in 200525.

Compared to the 27 studies (quantitatively) ana-
lysing the impact of energy and carbon prices on
patents, we identified only three which examined

25 Patenting for oil and gas exploration and development techno-
logies (drawn also from OECD patent stats, but a different data-
base) was higher until the early 2000s (rising from about 400 yr−1

to 750 yr−1 over 2000–2005), and also then increased but not to
the same extent; after a peak in 2013 they also declined sharply.
While a few recent working papers consider possible explanations
for the recent decline in energy patenting (e.g. Acemoglu et al 2019,
Ko et al 2020, Popp et al 2020)∗∗, the literature does not yet offer
definitive conclusions.
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Figure 5. Low carbon patents from 1990 by technology. The figure shows patent families (family size⩾2) by priority date, with
technologies identified using the CPC-Y02 classes. The data was taken from the OECD database of indicators of innovation in
environment-related technologies.
Source: (OECD n.d.).

explicitly their impact on innovation outputs
(i.e. technology cost or performance), namely Newell
et al (1999), Kim et al (2017) and Taghizadeh-Hesary
et al (2019).

5.1.1. Patent elasticities: an emerging metric
A common metric reported in the literature is the
price elasticity of patent activity—the ratio of change
in patents (either granted or applied for, depending
on the study), to the change in energy price (i.e. a
value of 0.5 indicates a 5% increase in patents for
every 10% increase in price)26.

Popp (2002) examined the effect of energy prices
on patent applications in the US from 1970 to 1994.
Across six supply- and five demand-side technolo-
gies he estimated a short-run price-to-patents elasti-
city (epp) of 0.03–0.0627 on aggregate, with a long-run
price elasticity five to ten times larger (0.35) in his
preferred specification. Verdolini and Galeotti (2011)
extended such analysis to 17 OECD countries for
1979–1998, also adding wind energy, finding consist-
ent positive short-run (1 year lag) effects with epp
averaging 0.04–0.0628. The largest study, by Kruse

26 All energy prices are final (end-user) prices (i.e. including taxes
and levies), unless otherwise stated. Studies vary in the type of
patents (e.g. applied or granted). For studies examining ‘clean’ or
‘green’ patents various definitions are used, with one important
reference point being the OECD Indicator of Environmental Tech-
nologies (see Haš̌cǐc and Migotto 2015).
27 All values are presented to two significant figure.
28 Note that in China, Li and Lin (2016) find a statistically insig-
nificant relationship between energy prices and patent applica-
tions across energy supply technologies over 1999–2013, which the

and Wetzel (2016), covered patent applications over
1978–2009 for 11 ‘green’ technologies in 26 OECD
countries, yielding a total of over 175 000 patent
counts, but found a statistically significant aggregate
epp (0.53 for a 1 year lag, rising to 0.85 for a 3 year lag)
only for the period since 1998.

Most studies examining the influence of energy
prices on patent activity (including those deriving
elasticities) find that results differ substantially
between technologies, and many studies focus on
the dynamics within a specific sector. We therefore
organise discussion of the findings around three sec-
tors: transport; electricity and industry; and buildings
and appliances. Table 3, below, presents the key elast-
icities of patent activity for the first two of these three;
the one study identified that attempted to generate
relevant elasticities for the building and appliances
sector Noailly (2012) found an insignificant connec-
tion for their primary, aggregate specification (but
positive results for specific, ‘portable’ technologies—
see section 5.4).

5.2. Transport
Using a methodology similar to Popp (2002), Crabb
and Johnson (2010) found an epp elasticity for energy
efficient vehicles in the USA (1980–1999) of 0.24 for
the cost of domestic oil production, and 0.36 for retail
gasoline price. Using a panel of 12 countries from
1990 to 2012, Kim (2014) find that higher gasoline

authors suggest is a result of energy prices being regulated to arti-
ficially low (and relatively constant) levels.
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Table 3. Energy price-to-patent elasticities (epp) (notes: values presented are from the primary or preferred specification of each study, as
either explicitly stated or inferred, unless otherwise indicated. Only statistically significant results are presented. ‘(A)’ denotes patent
applications, ‘(G)’ denotes patents granted.

Study Geography Years
Independent
variable

Dependent
variable Patent elasticity

Multi-sector

Kruse and Wetzel
(2016)

26 (OECD)
countries

1998–2009 Average energy
price

Ratio: green patents
(11 technologies):
all patents (A)

0.53a

Verdolini and
Galeotti (2011)

17 (OECD)
countries

1979–1998 Patents (12
technologies) (G)

0.4

Popp (2002) USA 1970–1994

Industrial energy
price

Patents (11
technologies) (G)

0.35

Oil and transport

‘Clean’ patents (G) 0.97Aghion et al
(2016)

80 countries 1986–2005 Fuel price

‘Grey’ (fuel effi-
ciency) patents (G)

0.28

1998–2009 Ratio: energy effi-
ciency in transport
patents: all patents
(A)

0.77aKruse and Wetzel
(2016)

26 (OECD)
countries

1978–2009

Average energy
price

Ratio: biofuel
patents: all
patents (A)

−0.64a

Guillouzouic-Le
Corff (2018)

22 (OECD)
countries

1985–2009 Household oil
price

Biofuel patents (A) 1.5

French civil law
countriesb

2.32Fredriksson and
Sauquet (2017)

Common law
countriesc

1986–2005 Fuel price ‘Clean’ patents
(G)

1.2

Kessler and
Sperling (2016)

1976–2013 Biofuel (2nd
generation) patents
(A)

0.25

Jang and Du
(2013)

1977–2010

Oil price

Ethanol patents (A) 0.04

Gasoline retail
price markup

0.45

Gasoline price 0.36

Crabb and
Johnson (2010)

USA

1980–1999

Domestic well-
head oil cost

Automotive
Energy Efficiency
patents (A)

0.24

Electricity and industry

Ratio: solar patents:
all patents (A)

1.12a

Ratio: energy stor-
age patents: all pat-
ents (A)

1.08a

Ratio: ocean energy
patents: all patents
(A)

0.61a

1978–2009

Ratio: CCS patents:
all patents (A)

0.56a

Kruse and Wetzel
(2016)

26 (OECD)
countries

1998–2009

Average energy
price

Ratio: geo-
thermal patents:
all patents (A)

0.37a

Ratio: ‘green’
patents: all
patents (A)

0.48Ley et al (2016) 18 (OECD)
countries

1980–2009 Industrial energy
price

‘Green’ patent (A) 0.34
Electricity price 0.87Brolund and

Lundmark (2014)
14 (OECD)
countries

1978–2009
Ratio: biomass:
light fuel oil price

Bioenergy patents
(A) −0.33

Vincenzi and
Ozabaci (2017)

11 (OECD)
countries

1990–2008 Electricity price Solar patents (A) 0.12

(Continued)

11



Environ. Res. Lett. 16 (2021) 043007 M Grubb et al

Table 3. (Continued.)

Study Geography Years
Independent
variable

Dependent
variable Patent elasticity

Multi-sector

‘Clean’ (utility)
patents (A)

0.61

Ratio: ‘clean’ pat-
ents: all (invention)
patents (A)

0.51

Lin et al (2018) 2000–2012 Industrial energy
price

‘Clean’ (invention)
patents (A)

0.38

Lin and Chen
(2019)

2006–2016 Renewable
patents (G)

0.78

Biomass patents (A) −0.41
Renewable (wind,
solar, geothermal,
ocean, biomass)
patents (A)

−0.72

Wind patents (A) −0.72

He et al (2018) 2006–2013 Electricity price

Solar patents (A) −0.8
Ye et al (2018)

China

2008–2014 Energy price Energy conserva-
tion and emis-
sion reduction
patents (A)

0.14

a Within their study covering data across 26 countries 1978–2009, Kruse and Wetzel (2016) also tested the more recent period

1998–2009. The result for biofuels changed from a negative influence to insignificant, whilst ocean and CCS technologies changed from

a positive to an insignificant influence. However, results for solar and geothermal increased in the value and significance, and energy

efficiency in transport and energy storage both moved from insignificant, to positive. The result for all technologies on aggregate also

changed from insignificant, to positive.
b Peru, Netherlands, Turkey, Italy, Belgium, France, Indonesia, Brazil, Luxembourg, Russia, Netherlands Antilles, Greece, Venezuela,

Argentina, Mauritius, Malta, Spain).
c Bermuda, Hong Kong, Belize, Dominica, Thailand, Singapore, South Africa, Israel, UK, Australia, India, USA, Ireland, Sri Lanka,

Cayman Islands, New Zealand, Barbados.

prices promoted patents in automotive technologies
and discouraged it on oil extraction. However, coun-
tries with larger oil endowments generated compar-
atively less patent activity on efficient or alternative
vehicle technologies.

5.2.1. Alternatively-fuelled vehicles
The impact of gasoline prices on innovation in altern-
ative fuelled vehicles appears particularly strong, and
path-dependent. Aghion et al (2016) find almost
unitary elasticity (epp = 0.97) between end-user fuel
prices and such patent generation; innovation in con-
ventional technology, including fuel efficiency, was
also stimulated, but to a lesser degree. They also
find evidence of innovation path dependency; firms
previously engaged in ‘clean’ innovation are much
more likely to continue to do so in response to fuel
price stimuli. Fredriksson and Sauquet (2017) find
that this effect is strongest for firms located in coun-
tries with French civil law, rather than those (mainly
Anglophone countries) with common law, suggest-
ing that the relative ‘rigidity’ of civil law may provide
greater certainty regarding future legislation and
lessen incumbents’ lobbying, increasing the incentive
to innovate.

Barbieri (2015) finds a positive effect of EU
transport fuel prices on global ‘green’ patenting by the
automotive sector worldwide (1999–2010) but with
the effect lower within the EU, where he argues that
vehicle taxation in the EU (inclusive of ownership and
circulation taxes, which increasingly reflected CO2

intensity) was instead the primary driver of vehicle
innovation. Barbieri (2016) builds on this to con-
clude, from a wider international dataset, that such
‘green’ patenting induces by fuel prices occurs at the
expense of, rather than in addition to, patenting in
‘non-green’ (gasoline) vehicle technology (though the
form and magnitude of the coefficients produced by
these two studies are difficult to interpret from the
information provided).

5.2.2. Biofuels
Jang and Du (2013) and Kessler and Sperling (2016)
examine how oil price increases enhanced biofuel-
related patenting in the USA, between the late 1970s
and early 2010s, Jang and Du (2013) found epp elasti-
cities of 0.04 (for ethanol-related technologies), while
Kessler and Sperling (2016) find a value of 0.24 (for
2nd generation biofuels only, using their preferred
patent classification method, but up to 0.64 using a
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differentmethod, and 0.4 for 1st generation biofuels).
However, both studies highlight the important role of
directed policy support (see section 6). Expanding to
22OECD countries over 1985–2009, Guillouzouic-Le
Corff (2018) finds (household) oil prices to be a huge
driver for biofuel-related patenting (epp = 1.5), but
Kruse and Wetzel (2016) find a far more complex
picture29.

In terms of innovation outcomes, studies that
explore the relationship between fuel prices and
vehicle efficiency (e.g. Li et al 2009∗∗) tend tomeasure
improvements in the average efficiency of new sales—
a function of technological improvement, but also
consumer choice—which are often not disentangled.
An exception is Knittel (2012)∗, who finds gasoline
prices to have been the principal driver behind a 60%
improvement in fuel efficiency in passenger cars and
trucks sold in the USA over 1990–2006, once the
counteracting influence of increasing vehicle weight
and engine power is controlled for (he concludes that
fuel economy standards played a small or insignificant
role during that period, when fuel economy standards
were unchanged—see section 6.3).

5.3. Electricity and industry
5.3.1. Energy prices
5.3.1.1. Electricity generation
Many electricity sector studies investigate induced
innovation in renewable generation technologies.
Bayer et al (2013) find that for 1990–2009, for each
$2 increase in oil price, patents filed for solar PV
and wind technologies increased 13% on average
over the following year (across 74 countries, with
the impact greatest outside the OECD). Within the
OECD, Cheon and Urpelainen (2012) demonstrate
that the marginal effect of increasing oil prices on
renewable patent applications increases with existing
share of renewables in electricity generation, which
(as with alternate vehicle technologies) suggests an
important role for the existing knowledge stock and
path dependency in innovative activity, found also by
Kruse and Wetzel (2016), who in their primary spe-
cification (1983–2009) find highly varied energy price
to patent elasticities across a range of 11 (low carbon)
supply and energy efficiency technologies, including
epp = 1.12 (solar PV); 0.56 (CCS); 0.37 (geothermal),
and 0.61 (ocean energy). Under their alternative spe-
cification (for the period 1998–2009), energy prices
also become influential for energy storage technolo-
gies, and more so for solar and geothermal, but insig-
nificant for ocean energy and CCS.

29 Kruse and Wetzel (2016) find negative epp =−0.64 for biofuels
(across 26 OECD countries, for 1978–2009)—perhaps reflecting
continued expansion of biofuel activities in some countries whilst
oil prices declined frompeak in 1980–2000—but this turns positive
(but insignificantly so) for the subsequent period of rising environ-
mental stringency and then rising prices (1998–2009). Their results
for vehicle energy efficiency patents alsomove from insignificant to
positive (and significant), for this period.

Vincenzi and Ozabaci (2017) find an impact of
electricity prices on patent applications for solar PV
(epp = 0.11–0.12) across several EU countries, Japan
and the USA, 1990–2008. In China, Lin and Chen
(2019) find for renewable energy patents over 2006–
2016, epp = 0.78. However He et al (2018) find a
negative relationship for 2006–2013 (up to −0.8 for
PV), which they attribute to inframarginal effects in
electricity pricing30. Brolund and Lundmark (2014)
find that across 14 OECD countries for 1978–2009,
the electricity price was a major determinant of pat-
ent applications for biomass electricity technologies,
with epp = 0.87.

5.3.1.2. Industry
Ley et al (2016) examine energy price-induced pat-
enting for 10 manufacturing sub-sectors (chemicals,
basic metals and paper, pulp and print, to wood and
wood products), across 18 OECD countries. These
industries account for over 95% of all ‘green’ patents
granted worldwide, for 1980–2009. Patent elasticities
increase with the lag period: for ‘green’ patents gran-
ted, epp reached 0.34 at a 5 year lag, and 0.48 when
considering green patents as a proportion of all pat-
ents granted. Adopting the same methodology, Lin
et al (2018) find ‘clean’ patent applications across 29
industrial sectors in China reaching epp = 0.61 (2000–
2012), however Ye et al (2018) find positive results
only after an in-year negative impact, attributable to
short-term budgetary constraints31.

Triguero et al (2014) find that on aggregate
for over 5000 small and medium-sized enterprises
(SMEs) based across 27 EU countries in 2011, energy
prices were not a significant determinant for in-
house innovation. However, as might be expected,
the influence was found to be much greater on
firms that are energy-intensive, have strong man-
agement and technological capacities and capabil-
ities, and engage with wider ‘knowledge networks’
(e.g. collaborate with research institutions). Garrone
et al (2017) come to a similar conclusion on the role
of energy intensity on response to fuel price stimuli
(although they do not distinguish between develop-
ment and adoption of innovations).

5.3.2. Energy taxes and carbon prices
Several studies have explored the impacts of energy-
related taxes and carbon pricing on manufacturing
in different European countries. In Austria, Germany

30 Specifically, they suggest lower prices increase the relative prof-
itability of low-marginal cost renewables (and thus incentive to
innovate), compared to a system heavily dominated by fossil fuel
incumbents, as electricity prices reduce (and vice versa).
31 For industries across China in 2008–2014, Ye et al (2018) find
in-year negative impact on patent applications for energy conser-
vation and emissions reduction technologies, turning to+0.14 The
authors suggest that R&D budget is initially diverted to pay energy
bills, but then firms begin to compensate and innovate to reduce
the additional cost burden, increasing the elasticity.
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and Switzerland, Stucki et al (2018) find that although
energy-related taxes are positively associated with
investments in internal process innovation in energy
efficiency and renewable technologies, they are neg-
atively associated with the propensity to create and
sell new energy-efficient or renewable products or
services. The authors explain this as the incentive to
invest in process innovations draws resources away
from investment in product and service innovations,
and indeed find this effect is reduced for firms operat-
ing at the technological frontier or have larger finan-
cial resources. Costa-Campi et al (2017) find the role
of general energy taxes negligible in driving private
environmentally-related R&D in the manufacturing
sector in Spain (2008–2013), however they find an
elasticity of 0.28 for more targeted pollution-related
taxes.

Many studies examine the influence of the
European Union Emissions Trading System (EU
ETS), which from 2005 created an EU-wide carbon
price for electricity generation and heavy industry.
Calel and Dechezlepretre (2016) found that the EU
ETS increased patent applications for technologies or
applications for mitigation or adaptation to climate
change by 9.1% (and 0.8% for other technologies,
suggesting no crowding-out), by firms accounting
for 80% of regulated emissions, for 2005–2009. How-
ever, Bel and Joseph (2018) find that the oversupply
of emission permits in the transition from Phase 1
(2005–2007) to Phase 2 (2008–2012) of the EU ETS,
reflected in repeated price collapses, dampened pat-
ent applications for mitigation-related technologies.

Six studies examine whether and how firms
realigned innovation activities in response to the EU
ETS using a qualitative or mixed-methods approach.
Most of these studies (Hoffmann 2007∗, Rogge and
Hoffmann 2010, Rogge et al 2011∗, Borghesi et al
2015b) reported that the introduction of the EU ETS
did indeed accelerate R&D activities within regulated
firms, particularly those reliant on coal, but a radical
shift in innovation strategy did not occur. Increased
R&D activity was largely focused on CCS and effi-
ciency, rather than renewables. Schmidt et al (2012)∗

found that the perceived stringency of Phase 3 (2013–
2020) increased RD&D investment in low-carbon
technologies by firms who perceive it as a threat to
their business (no such effect was found for Phases 1
and 2). Similarly, Gulbrandsen and Stenqvist (2013)
found the EU ETS to have influenced firm innova-
tion strategies, increasing focus on energy efficiency,
but it had not generated a sufficiently strong invest-
ment signal to scale up or deploy radical new techno-
logies. Interestingly, most of these studies note that
the EU ETS induced organisational changes in firms,
giving CO2 emissions greater managerial attention.

Similar results have been found by studies
examining other carbon pricing instruments.
Christiansen (2001) observations of the Norwegian
carbon tax suggest it contributed to incremental,

rather than radical, innovation in the oil and gas sec-
tor, such as development and adoption of efficient
processes and measures to reduce flaring. Scordato
et al (2018) note that the Swedish CO2 tax had an
influence on innovation leading to higher energy
efficiency in the domestic pulp and paper industry,
though it was perceived to have been minor relat-
ive to other drivers (such as rising power prices).
Kim et al (2017) found that carbon pricing has had
an insignificant influence on patent applications for
wind and solar PV across 16 OECD countries (for
1991–2006 and 1992–2007, respectively). Zhang et al
(2019) examined the role of the seven carbon pricing
pilot schemes introduced in China in 2013 on ‘green’
patent applications by regulated firms, and found a
significant positive correlation (over 2013 and 2014),
however the link was less strong for sectors in which
there is high levels of competition between regulated
firms, which the authors suggest reflects such firms
having fewer resources to invest in R&D.

One likely explanation for diverse findings con-
cerning the impacts of general energy taxation, and
particularly carbon prices, on renewables innovation
is the impact of other factors, and differences in the
degree to which they have been controlled for in the
studies examined. For example, aside from targeted
policies (considered in section 6), Hoppmann et al
(2013) found that increasing silicon prices drove the
direction of PV-related R&D towards interest in thin-
film technologies.

These findings appear to be partially echoed by
the few studies which attempt to explicitly examine
the link between energy and carbon prices and tech-
nology cost reduction, of which only two explore
renewables. Taghizadeh-Hesary et al (2019) find that
oil price rises are linked to reducing solar module
prices in the USA, Japan and China (but not Ger-
many and South Korea). However, they again found
that existing knowledge stock, along with interest and
currency exchange rates, to be of greater influence in
all five countries (from 1992 in Germany, Japan and
the USA, 1993 in South Korea, and 2007 for China, to
2015 in all cases). However Kim et al (2017), despite
finding carbon taxes to have an insignificant impact
on patent applications for wind and solar PV, found
they had a significant influence on reducing installed
system costs for these technologies (for wind power,
in particular).

Finally, we note that our review did not find a lit-
erature on the innovation effects of carbon pricing
via technology standards for carbon emissions, such
as a New Source Performance Standard (NSPS) for
power plant emissions. Compliance with standards of
this type often requires the installation of technology
(e.g. a carbon capture system) whose cost imposes
a carbon price indirectly. To date, however, stand-
ards of this type have not yet been imposed on car-
bon emissions. Nonetheless, evidence from studies
of other power plant emission controls suggests that
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indirect pricing of this type, were it to be adopted,
could have a significant impact on energy technology
innovation (e.g. Rubin et al (2007))∗∗.

5.4. Buildings and appliances
Just three studies focus on the impact of energy prices
or taxes on patenting in buildings-related technolo-
gies and appliances. Noailly (2012) found that end-
user energy prices of across 9 European countries did
not have a statistically significant impact on aggregate
patenting across the sector; however patent applica-
tions for visible, ‘portable’ technologies that may be
modified with relative ease by the building’s occu-
pant (e.g. boilers, lighting and air conditioning tech-
nologies), showed statistically significant elasticities
of 0.7 to over 1.15 (depending on the specification).
This contrasted sharply with the less visible and ‘non-
portable’ technologies that cannot be easily modified
by the occupant such as heat distribution, ventila-
tion and building materials. The authors suggest that
principal-agent issues may give rise to this disparity,
a conclusion echoed in other studies covering energy
efficiency technologies (e.g. Kruse and Wetzel 2016).

The second study, Costantini et al (2017), found
taxation on residential energy consumption to be
strongly linked to patent applications for energy-
efficient technologies in buildings across 23 OECD
countries (1990–2010) when controlling for a range
of other factors (including public R&D), which they
found to be significantly less influential. By contrast,
Girod et al (2017) found taxes on residential energy
consumption to be a negligible factor in the pat-
ent applications in the construction and lighting sec-
tor (1980–2009). The difference between these res-
ults may be in part explained by the design of the
individual studies.Whilst Costantini et al (2017) con-
sidered the ratio of energy tax to total price over time,
Girod et al (2017) employed a high-level proxy indic-
ator for the presence of energy taxes (and other policy
variables).

We identified only one, 20 year-old study of the
impact of energy prices on cost reductions in appli-
ances. Newell et al (1999) found that electricity and
natural gas end-user price increases induced cost
reduction in (room and central) air conditioners but
not in gas water heaters, although overall energy effi-
ciency improvements were induced in all three tech-
nology groups (5%–16% between 1973 and 1993—
up to half of the efficiency gains experienced over the
period). However, these conclusions are complicated
by the fact that the introduction of labelling require-
ments appears to have increased apparent price-
responsiveness.

5.5. Market-wide impacts on
innovation—qualitative insights and conclusions
From the econometric literature there is clear
and unambiguous evidence that energy and car-
bon pricing can substantially influence innovation,

primarily as measured by patents. Specifically, rising
energy prices and the introduction of carbon (and
other) environmental pricing has generally enhanced
patenting in low carbon and energy efficient techno-
logies, but the impacts vary substantially by techno-
logy and sector.

Other aspects of the econometric literature are
also striking. The impact of prices on patents tends to
be lagged, sometimes by several years, and those stud-
ies which include knowledge stock as a variable find
innovation to be path dependent—the propensity
to patent is greater when sectors have grown and
accumulated more knowledge on which to build.
The impact of energy prices and carbon pricing on
innovation in industrial efficiency (particularly for
more energy-intensive sectors) is clear, but incre-
mental; influence onmore radical innovation appears
lacking. Studies on patenting in renewable energy
usually find positive results (with higher elasticities
found for studies using electricity prices as the inde-
pendent variable, rather than a broader energy price
definition).

Other contextual conditions influencing innov-
ation could include the existence and/or credibil-
ity of transparent information (e.g. product labels),
national targets, and the wider political environment:
Kruse andWetzel (2016) for example suggest that the
higher patent elasticities they generally found after
1998 might reflect the adoption of legally-binding
emission targets under the Kyoto Protocol the year
before, thus sensitising industry and enhancing the
likelihood that low carbon innovation would prove
strategically valuable, as well as cost-saving given
higher energy prices.

In the econometric literature, the evidence linking
to innovation outcomes is far more skeletal. The rel-
ative paucity of such literature is perhaps a surprise.
Especially for energy efficiency, it relates in part to the
challenge of attributing sector-wide energy intensity
changes to technology innovation specifically, as dis-
cussed more broadly in section 8. For energy sup-
ply technologies, examining innovation outcomes is
complicated by the range of interconnected influ-
ences that contribute to cost reduction (in particular),
as illustrated in the next two sections.

Whilst econometric studies (whether on innova-
tion indicators or outcomes) aim to disentangle dif-
ferent influences, the qualitative and mixed-methods
literature tends to view the forces driving innovation
inherently as a mix of factors, of which energy and
carbon prices are just two examples. Many qualitative
and mixed-methods studies focus on the actions of
actors, and the (often multiple) rationales for those
actions, in which the distinction between innovation
‘indicators’ and ‘outcomes’ (see section 3) may also
be less clear-cut. A further complication is that sev-
eral such studies ascribe changes in the policy envir-
onment to moves in energy prices (e.g. Bergquist
and Soderholm (2016)), or policymaker expectations
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about future energy prices (Nemet 2009b). Price
shocks are often reported to have influenced sub-
sequent energy and innovation policies, which then
have more direct effects on innovation—particularly
regarding energy efficiency (e.g. Gulbrandsen and
Stenqvist 2013, Borghesi et al 2015b, Scordato et al
2018), but also energy-environmental policy more
broadly.

An important finding from such studies is that
the institutional context can influence the innovation
response to price changes. Institutional factors that
may inhibit innovation responses include an absence
of clear quality standards (e.g. Taylor 2008); unclear
regulatory regimes with weak compliance (Kivimaa
et al 2017); and weak networks between innovators,
users and finance (Skold et al 2018). Christiansen
described a case in which the presence of an inter-
mediary organisation to facilitate innovation boosted
the innovation response to a carbon tax (Christiansen
2001). These findings about the importance of the
institutional context are aligned with the large lit-
erature that describes innovation as the outcome
of a socio-technical system (Hekkert et al 2007∗∗,
Gallagher et al 2012∗∗, Geels et al 2017∗∗).

6. The impact of targeted demand-pull
policies and deployed scale on innovation

6.1. Introduction
This section probes the evidence on the interrela-
tionships between targeted demand-pull policies (Ib),
deployment (2), and the indicators and outcomes of
innovation (see figure 3). Assessment is complicated
by multiple factors, including the sheer diversity of
types of policy intervention, and the interrelationship
of the elements, including the bi-directional nature of
their relationships.

We take the approach, however, that it is pre-
cisely by considering these aspects together that
important insights can be gained from the literat-
ure. The assessed literature is large and diverse. Our
search (after screening) identified around 150 studies,
divided approximately equally between studies assess-
ing targeted policies, and those estimating experience
curves. For the former, the large majority evaluated
impacts on patents, and our analysis complements a
major review of the impact of ten policy instruments
(Peñasco et al 2021)∗∗, which also included innova-
tion. The next largest estimating the impact various
measures of eco-innovation, many of which are more
to do with business model rather than hard techno-
logy innovations. A small group of other studies, both
econometric and mixed-method, shed light on the
processes involved in other ways.

In this section, we evaluate first the quantitat-
ive literature on how targeted policy interventions,
grouped between economic incentives and regulatory
measures, have affected patenting. We then assess the

limited literature around the impacts of these inter-
ventions on innovation outcomes, before turning to
the experience curve literature. We seek to fill out the
picture by looking at additional evidence, including
feedback between deployed scale and indicators of
innovation, cost decomposition, and other evidence
gleaned from considering the feedbacks involved
(as illustrated generically in figures 1–3).

Many of these examine evidence relating to wind
and solar electricity. Because these draw on by far the
largest renewable energy resources globally, in recent
decades these have been a major focus of targeted
interventions in energy-climate policy, with impress-
ive developments in cost and capacity as shown in
figure 6. Over the past 2 decades, these technologies
have emerged from relative obscurity and high costs,
to being amajor part of national and global strategies,
based upon this rapid growth and increasing com-
petitiveness in many markets (note that the biggest
drop in PV prices corresponded to the period of fast-
est exponential growth, and followed the commodity
boom of the 2000s which drove up material (espe-
cially silicon) prices until the 2008 financial crisis).
They correspondingly dominate much of the relev-
ant literature (most of all, for experience curves) and
learning the right lessons is important.

6.2. Targeted economic incentives—impacts
on patents
The dominant instruments which create a direct eco-
nomic incentive to deploy clean energy sources have
either fixed the price (usually for 10–20 years), or
set a target quantity. In electricity, the former has
comprised FiTs, accompanied more recently and for
larger generators by auctioned contracts. The lat-
ter comprise renewable obligations, often known as
renewable portfolio standards (RPSs) implemented
with tradable certificates, widely used for electricity
particularly in the US, and more widely, as man-
dates for biofuels32. Instruments for demand-side
technologies have usually differed, with regulat-
ory instruments as considered in section 6.3 more
prevalent.

Most (though not all) of the literature finds that
targeted economic incentives have increased patent-
ing for solar PV and wind, and (echoing the literat-
ure on overall energy and price impacts) has begun to
estimate elasticities of response (e.g. the percentage
increase in patent applications for every percentage
increase in the FiT support level). One major found-
ational study (Johnstone et al 2010), using a panel
of 25 countries over 1978–2003, found that many
factors enhanced patenting, with some clear patterns:

32 A variety of terms are used, all of which refer either to obliga-
tions to secure a certain proportion of energy from renewables, or
the instrument used to implement this, variously terms tradable
green certificates (TGCs) or renewable energy certificates (RECs).
We use the generic terms renewable portfolio standards (RPSs) for
electricity and biofuel blending mandates for biofuels.
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(a) Onshore Wind (b) Solar PV (utility-scale) 
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Figure 6. Evolution of global installed capacity and global weighted-average installed costs for onshore wind (panel (a)) and
global installed capacity and cost of modules for utility-scale solar PV (panel (b)), 2000–2019.
Source: (Lafond et al 2018∗∗, International Renewable Energy Agency (IRENA) 2020).

in general, the broader the application of a meas-
ure (including overall public energy R&D expendit-
ure, and the adoption of the Kyoto Protocol), the
more statistically significant the result on aggreg-
ate renewables patenting. However, more targeted
instruments proved more important for particular
technologies. Intriguingly, they found specifically
that the (more broad-based) RPS enhanced patenting
in wind but not solar, whilst FiTs had a large impact
on solar but negative correlation with wind patenting
(which the authors describe as an unexpected result,
but do not elaborate further).

In one of the largest subsequent studies, cover-
ing 13 countries over 1978–2008, Palage et al (2019)
found that FiTs positively influenced solar PV pat-
ent applications with elasticities ranging from 0.11 to
0.20 (with the larger values found when employed
in combination with public R&D support), with a
lower but still statistically significant elasticity of RPS
stringency to patent applications of 0.03. Nicolli and
Vona (2016), based on 19 EU countries (1980–2007),
and Vincenzi and Ozabaci (2017), with 9 EU coun-
tries plus Japan and US, similarly find FiTs increased
patenting in solar PV, though the latter found greater
impact from changes in electricity prices (section 5).
The former also found that FiTs negatively influenced
patent applications for wind, whilst RPS had a posit-
ive effect (also for solar thermal). Like Johnstone et al
(2010) they suggest that an RPSmay stimulate greater
innovation in more mature technologies. However,
also as with Johnstone et al (2010), Nicolli and Vona
(2016) used a dummy variable found that expecta-
tions on the future policy context after signing the
Kyoto protocol appears to take the place of the pos-
itive effect of RPS. Horner et al (2013) find that RPS
in California, Texas and Minnesota were significant
drivers of wind-related patenting, where an increase
in the RPS annual obligation of 1 TWh would be
associated with an increase of around 2% in wind
patenting.

Grafstrom and Lindman (2017) and Schleich et al
(2017) found no impact of FiTs on patent applica-
tions for wind technologies across 12 OECD coun-
tries (1991–2011) and 8 EU countries (1991–2008),
respectively. However, in contrast to these two stud-
ies, along with Johnstone et al (2010) and Nicolli and
Vona (2016), Lindman and Soderholm (2016) con-
clude that for Denmark, Germany, Spain and Sweden
over 1977–2009, FiTs increased patent applications
for wind energy, with an elasticity of 0.3–0.4. The dif-
ference to Johnstone et al (2010) may be explained, as
the authors suggest, by the extended assessment hori-
zon; since the early 2000s, European countries have
reduced their FiT levels as costs have reduce. The dif-
ference with Schleich et al (2017) may be explained
by their use of a dummy policy variable that does
not adequately capture design features, such as level
or duration of support. As Lindman and Soderholm
(2016), Nicolli and Vona (2016) and Grafstrom and
Lindman (2017) all use a more detailed policy vari-
able representing actual levels of support provided by
FiTs, the difference could be explained through the
difference in geographic scope.

The results for other technologies are mixed.
For bioenergy, biofuels and fuel from waste tech-
nologies, Brolund and Lundmark (2014), across 14
OECD countries (1978–2009), found that FiTs have
increased patent filing, with elasticities increasing
with contractual agreement length, reaching 0.10–
0.24 for agreements longer than 10 years, but found
RPS to be an insignificant influence. Lundmark
and Backstrom (2015), across 13 OECD countries
(1979–2008), conclude that each $1 (US) MWh−1

increase in FiTs increased the patenting for bio-
technologies by 0.2%. Unlike Brolund and Lund-
mark (2014)—perhaps due to different definition
of the policy variable—they also found a posit-
ive (though modest) impact of RPS, with coun-
tries with RPS having double the rate of bioenergy-
related patent applications than thosewithout.Nicolli
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and Vona (2016) found both instruments to have
been an insignificant influence on biofuels and waste
patenting.

Johnstone et al (2010) and Nicolli and Vona
(2016) found FiTs and RPS to have been insignificant
in encouraging patenting for geothermal. Johnstone
et al (2010) find both measures to have been insig-
nificant with regard to marine energy patenting, but
Nicolli and Vona (2016) find them to have be neg-
atively associated. Although Boehringer et al (2017)
find FiTs to have had a positive influence on aggreg-
ate across range of technologies in Germany, they find
negative or insignificant influences at the individual
technology level (including for solar PV and wind)—
although when they test the effect of the interaction
between the average and technology-specific coeffi-
cients of FiT support, the effect becomes positive (and
significant) for all technologies examined, except
biomass.

For liquid biofuels, Guillouzouic-Le Corff (2018)
found biofuel blending mandates (equivalent to RPS,
requiring a certain percentage of biofuels in fuel sold)
in 22 OECD countries over (1985–2009) to have
increased production of the dominant first genera-
tion biofuels (ethanol), rather than stimulating new
innovation. Costantini et al (2015) find blending
mandates in (mostly) OECD countries (1990–2010)
to have had an impact on patenting for first genera-
tion technologies, but not on the overall rate of bio-
fuel patenting. For the USA (1997–2011), Jang and
Du (2013) found biofuel mandates to be an insigni-
ficant influence on patent activity. However, follow-
ing this, Kessler and Sperling (2016) found that fuel
mandates in the USA (1995–2010) enhanced patent-
ing in both first and second generation biofuels, but
with lesser effect on the latter33. Together, these stud-
ies suggest that blending mandates have potentially
rewarded incremental (but not radical) innovation,
akin to some of the findings for RPS.

Qualitative and mixed-methods studies on FiTs
have frequently observed that they induced firms to
increase innovation efforts (e.g. Borghesi et al 2015b,
Reichardt and Rogge 2016). They highlight that the
simplicity of FiTs enables entry of new and diverse
of market players. This serves to (a) help foster the
social legitimacy of the technology (e.g. McDowall
et al 2013, Chowdhury et al 2014), facilitating future
policy support; and (b) support the development of
a nascent industry and related advocacy coalition
(Hendry and Harborne 2011). Another key attribute
of FiTs, highlighted by Reichardt and Rogge (2016), is
that they reduce uncertainty faced by investors.

The qualitative and mixed-method studies focus-
sing on RPS find mixed results. Breetz et al (2018)
describe how they enabled the development of firms

33Driven by the introduction of the 2005Renewable Fuel Standard,
and the subsequent requirements of the 2007 Energy Independence
Security Act—RFS2.

that wielded political influence, thus developing the
advocacy coalition required to sustain policy and thus
reward innovation. However, McDowall et al (2013)
and Fevolden and Klitkou (2017) provide examples
of RPS policies that failed to generate durable
innovation, for reasons of both policy design
and policy framework instability, respectively in
Norwegian biofuels, and the UK non-fossil fuel
obligation34.

The econometric evidence in the literature on the
effect of other specific types of economic instruments,
such as grants, excise duties and tax credits—again,
largely confined to OECD experience—is small and
tentative. Investment incentive schemes are found by
Johnstone et al (2010) to have increased renewable
energy patent applications overall, however, within
the sample, results are only statistically significant
for geothermal, and biomass and waste. Brolund
and Lundmark (2014) similarly find an insignific-
ant effect on wind and solar PV patents, but con-
clude that targeted investment policies increase pat-
ent applications for biofuel and waste. Costantini
et al (2015) find that exempting biofuels from fuel
excise duties was the main factor inducing biofuel-
related patenting in OECD countries. Horner et al
(2013) find tax credits, either production or invest-
ment, not to have induced patent grants for wind
technology.

Beyond supply technologies, for the household
sector Girod et al (2017) find that investment sup-
port schemes in the form of grants for efficient appli-
ances and fiscal subsidies in the form of tax reduc-
tions, together with labelling instruments, have been
themost important driver for energy efficiency patent-
ing. However, in general, economic instruments have
been rarely applied on the demand-side, with direct
regulation much more prevalent.

Qualitative and mixed-method studies describe a
wide range of other instruments that were reported
to have positively influenced innovation activities by
firms, or outcomes of such activities. These include

34 In the case of Norwegian biofuels, the market support mechan-
ism (a biofuel mandate) was lower than the industry had expected,
and contained no sustainability criteria that would have suppor-
ted advanced biofuels. It was also introduced alongside a phasing-
out of the prior tax break for biodiesel. This shift led to a mar-
ket preference for imported corn- or sugar-derived ethanol, which,
coupled with the uncertainty induced by the conflicting policy sig-
nals, prevented companies developing advanced biofuels from rais-
ing capital. McDowall et al (2013) report the failure of the UK’s
Non-Fossil Fuel Obligation (NFFO) to drive significant innova-
tion activity in wind power. This introduced unfettered auctions,
leading to ‘winner’s curse’—almost half the winning bids never
proceeded to construction—with high investor risks and high bar-
riers to entry, undermining the establishment of a viable innova-
tion system for wind power technologies. Having invested in wind
R&D during the 1980s, the UK effectively lost its stake in onshore
wind manufacturing as Denmark and Germany established more
stable support systems. These examples illustrate the importance of
policy design, and its suitability to technologies at particular stages
of maturity.
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tax incentives for production or investment (Kamp
et al 2004, Nemet 2009b, Fevolden and Klitkou 2017);
eco-labelling (Ruby 2015, Borghesi et al 2015b); pub-
lic procurement (Fevolden and Klitkou 2017) and
programmes providing tax exemptions in exchange
for engagement in a set of eco-innovation related
activities (e.g. Scordato et al 2018).

6.2.1. Conclusions regarding impact of targeted
incentives on patents
A decade on from the seminal study of Johnstone
et al (2010), the literature appears to have rein-
forced their broad conclusion35, and added a signi-
ficant dynamic element to their insights. The secur-
ity and specificity provided by FiTs—particularly for
solar PV—created a strong incentive for innova-
tion and patenting particularly when combined with
wider trends in electricity and environmental policy,
including (energy and carbon) pricing and emission
targets as discussed in section 5. Other incentives
like RPS or investment supports play a more mod-
est, or relatively negligible role for those technologies
‘new to market’. However, these broader instruments
like RPS tend to encourage innovation—usuallymore
incremental—in the more mature technologies best
placed to capture the biggest share of this support at
least cost. Without an equivalent for FiTs for some
other technologies, including most obviously bio-
fuels, other instruments tended to play a stronger role.

Less clear in this account is the role of sector-wide
measures, notably renewable energy targets. Whilst
Johnstone et al (2010) and Nicolli and Vona (2016)’s
inclusion of a dummy variable for signing of the
Kyoto Protocol suggested it had a clear impact on
overall clean energy patenting, Nesta et al (2014) con-
cluded that it had no impact on renewable energy
patenting in the OECD. Vincenzi and Ozabaci (2017)
conclude that neither renewable energy targets nor
emission targets for Europe, Japan and the US had
impact on PV patenting.

6.3. Regulatory instruments—impact on patents
Efficiency andCO2 emissions standards establish lim-
its for energy and CO2 intensity for a given tech-
nology or technology group, and have been largely
applied in the building and transport sectors. For
the building sector, Kim and Brown (2019) con-
clude that minimum energy performance standards
(MEPS) for lighting across 18 OECD countries con-
sistently induced an increase in both domestic and

35 Johnstone et al (2010), as also quoted in Brolund and Lund-
mark (2014)—‘Targeted subsidies such as feed-in tariffs are more
efficient in stimulating innovations in newly-emerged and less
developed technologies with high operating costs, while more gen-
eral policies such as quota obligations with tradable green cer-
tificates stimulate innovations in mature technologies that have
already been subject to innovation and learning-by-doing cost
improvements’.

foreign patent activity (1992–2007). For MEPS con-
tained in building codes, Noailly (2012) concludes
that across seven EU countries, a 10% increase in
the stringency of insulation induced an increase
in energy efficiency-related patenting by 3% (1981–
2004). However, Girod et al (2017) found MEPS for
appliances and buildings across 21 EU countries to
be statistically insignificant in inducing patent applic-
ations in energy efficiency-related technologies (with
other instruments found to be more important, as
discussed below). The authors state the reason for
the difference with the finding form Noailly (2012)
requires further research, but suggest the reason may
be the difference in policy variable definition.

Results for vehicles appear to differ in particu-
lar between US and European studies, reflecting very
different policy regimes. Barbieri (2015) concludes
that announcements introducing planned increases
in the stringency of CO2 standards for vehicles in
the EU intensified the generation of green patents
in the transport sector, by firms based both within
and outside the EU (1999–2010). On average, each
1% reduction in maximum CO2 intensity permit-
ted generated an increase in patent applications by
0.56% (increasing to 1.39% for firms based in the
EU). However, for the US (1980–1999), Crabb and
Johnson (2010) found fuel prices to be substantially
more influential than corporate average fuel efficiency
(CAFE) in stimulating patents, echoing the findings
of Knittel (2012)∗ on efficiency improvements; how-
ever both of these reflect a period in which regu-
latory standards were largely static and the conclu-
sions are challenged by other evidence36. Sierzchula
and Nemet (2015) highlight that firms are hetero-
geneous in their innovation response to technology-
forcing regulations. They found that the stringency of
the California Zero Emission Vehicle mandate was a
significant factor in driving both patenting and pro-
totypes, but the picture is complicated by the diversity
of commercialisation strategies of the global auto-
motive companies subject to the regulation.

Literature on other environmental standards,
noted in our concluding discussion (section 9), sheds
additional light on regulatory impacts.

Qualitative and mixed-method studies have
explored several cases in which technology standards
have driven innovation responses in various sectors,
including buildings (Gann et al 1998), vehicles (Calef

36 Between 1984 and 2010, US CAFE standards remained essen-
tially static. A broader study of the impact of vehicle emissions reg-
ulation (Lee et al 2010)∗∗, covering the impact of US legislation
adopted from 1970 to 1998, finds that standards did have a sub-
stantial impact on both vehicle patenting and performance in the
US. The fact that the EU maintained high gasoline prices through
taxation for most of the period, whilst US gasoline prices reflec-
ted muchmore strongly the fluctuations in international oil prices,
could also explain some differences between US and EU findings
concerning the relative importance of price compared to regulat-
ory changes.
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and Goble 2007, Wesseling et al 2015), and in energy
efficiency (Ruby 2015). All those examined observe
innovation responses to regulation—though the risk
of publication bias should be noted (studies are more
likely to be conducted on regulations perceived to
have had an innovation outcome).

6.3.1. Conclusions regarding impact of regulations
on patents
The econometric literature linking patents to regu-
lations is more limited than for prices, presumably
because regulation is more specific and harder to
quantify in general for econometric purposes. This
more limited evidence base suggests regulations to
a major driver for buildings-related innovation, and
generally (though not universally) significant in
vehicles.

In general, the regulatory studies place greater
emphasis on case studies. Aside from reinforcing the
econometric findings, these illustrate some of the
mechanisms—and diversity—of responses. They also
shed light on the co-evolutionary dynamics, with
innovation driving regulation as much as the other
way around. Ruby (2015) observed that firms that had
developed high-efficiency circulator pumps sought
to establish a market by establishing a (government-
supported but voluntary) labelling scheme. This was
sufficiently successful to induce competitors to invest
in R&D to develop similarly highly-efficient pumps.
All these firms anticipated future regulation, and
this anticipation drove innovation efforts. Policy
makers became interested in the opportunity to drive
increased efficiency, and regulation—when it even-
tually came—drove both diffusion of the higher-
efficiency products and further innovation in higher-
performing pumps. Similarly, Wesseling et al (2015)
observed how the lobbying activities of specific auto-
motive firmswere influenced by their innovation cap-
abilities with regard to cleaner vehicles. Firms worked
to shape the regulatory environment to suit their
technology strengths, and as a result firms with good
low-emission vehicle technology became more sup-
portive of the policy.

6.4. The policy-deployment nexus: innovation
indicators and cost reductions
Compared to the extensive literature on how policies
have influenced patents—and equally extensive liter-
ature on experience curves summarised in the next
section—a much smaller literature tries to trace the
explicit impact of policies on innovation outcomes
(particularly cost reduction), and the feedback from
deployment itself to patenting.

Kim et al (2017) also examined the specific
impacts of RPS, FiTs and the combined effect of the
public procurement of renewable electricity and pub-
lic investment in facilities, infrastructure and systems,
on the installed cost of solar PV (1992–2007) and
wind (1991–2006), for up to 16 OECD countries.

They find that public procurement and investment
reduced the installed cost of both technologies; RPS
reduced PV costs; and FiTs did not have significant
influence on costs of either37. They also found that
cumulative capacity had a positive impact on pat-
ent applications across the range of OECD countries
(particularly for wind); and also influenced (but to
a lesser degree) installed costs (particularly for solar
PV). The results imply an increase in patent applic-
ations for solar PV and wind of 15.7% and 43.5%
for each doubling of installed capacity (as a pro-
portion of all patent applications), in turn imply-
ing ‘that the more the renewable energy technolo-
gies diffuse, the more learning and knowledge from
customers or stakeholders are undertaken, which
broadens the scope of new ideas and facilitates inven-
tions faster and easier’ (ibid, p 221). The results also
imply learning rates of 12.9% and 6.1%, respectively,
which the authors attribute to ‘learning-by-doing’
effects.

Tang (2018) found that both RPS and generation-
based tax credits had a positive influence on the
average capacity factor of wind farms in the USA
(2001–2012), whilst capital investment incent-
ives were insignificant. Note also a close relation-
ship of experience curve studies, reviewed in the
next section, with the implied impact of quantity-
based policies (RPS and biofuel blending) on cost
reductions (clearest where national targets domin-
ated an industries’ development, as with Brazilian
bioethanol).

For demand-side technologies, as noted in
section 5, Knittel (2012)∗ found gasoline prices rather
than CAFE standards to be a substantial driver of
increasing fuel economy for passenger cars and trucks
in the USA over 1980–2006. Newell et al (1999) found
energy efficiency regulations in the USA to have had
an insignificant influence on the cost of air condi-
tioners and gas water heaters, but as with energy
prices (discussed in section 5), they induced energy
efficiency improvements of 7.1% and 7.6%, respect-
ively, for room air conditioners and water heaters
between 1973 and 1993 (24% and 68% of the total
increase in efficiency over this period). By contrast,
van Buskirk et al (2014), Smith et al (2016) and Wei
et al (2017b) discussed in the next section, all find
increases in learning rates for lighting and various
appliances (largely in the USA) to be strongly correl-
ated to the introduction of energy efficiency standards
(see note 23 concerning US auto standards).

Some studies use technology deployment as a
proxy for policy presence or stringency on innovation
indicators or outcomes. For example, Dechezleprêtre
and Glachant (2014)∗ find annual additional wind

37 The authors suggest this is result of market competition induced
by RPS, stimulating cost reduction in technologies with the greatest
potential for it, such as solar PV.
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power production, as a proxy for deployment sup-
port, clearly enhanced wind patent filing across
OECD countries (1991–2008), with the time lags
in realised innovation making the causal direction
unequivocal. Both domestic and foreign deployment
positively affect innovation, but the marginal effect
of domestic policies is 12 times higher than that of
foreign policies. However, since for most countries
the total market is dominated by foreign deployment,
each 100 MW of wind energy capacity deployed, on
average, induced the development of one domestic
patent and two patents abroad.

Similarly, Peters et al (2012)∗∗ used annual
deployment of new PV capacity as a measure of
the level of PV deployment support policies, and
found that both domestic and foreign demand-pull
policies were important for the patenting in solar
PV across 15 OECD countries (1978–2005). Nemet
(2009b) documents an interesting absence of cor-
relation between investment in new wind capacity
(a proxy for demand-pull policies) and the number of
high-quality patent filings over the period 1975–2005.
In other words, deployment policies might induce
more incremental innovation, but not more radical
innovation.

Relatively few studies explicitly attempt to exam-
ine the link between deployment and patent activ-
ity in its own right. Boehringer et al (2017) finds
increasing installed capacity of a range of renewable
electricity technologies to have a substantial influ-
ence on patent applications, both in Germany and the
wider OECD. de Freitas and Kaneko (2012)∗ finds
a causal relationship between ethanol diffusion in
Brazil (measured by Brazilian consumption) and the
number of ethanol-related patents filed at Brazil’s
National Institute for Industrial Property.

6.4.1. Conclusions from econometric analysis of
policy-deployment with patent-cost reduction
feedbacks
A major challenge to interpreting innovation-related
data is the bidirectional nature of interactions, which
is a fundamental insight of the systems innovation
literature as discussed in section 2. This poses some
particular challenges for interpreting the impact of
demand-pull policies which, in one way or another,
drive deployment, but may also have wider influ-
ences on innovation processes. Nevertheless, the
predominant findings of literature in this section
clearly support positive bi-directional interactions,
with demand-pull policies associatedwith cost reduc-
tions, and consequent deployment clearly associated
with enhanced patents—all of which contributes to
interpreting the more extensive, but simpler, literat-
ure on correlations explored in next section.

6.5. Experience curves and beyond
While a substantial literature demonstrates the links
between demand-pull policies and patents, these

studies provide less evidence on the effects of
greater patenting on innovation outcomes, such as
cost reductions. This section summarises the main
findings from literature on ‘experience curves’ which
chart the relationship between cumulative deploy-
ment and cost reductions. We then consider the vari-
ous types of evidence around causality in this rela-
tionship.

6.5.1. Context
Stemming from techniques originally used byWright
(1936)∗∗, who observed that every time aircraft
production volumes doubled, the time required to
produce new aircraft reduced by 20%, ‘experience
curves’ (and their implied ‘learning rates’, defined
as the percentage reduction in costs for every doub-
ling of cumulative installed capacity)38 have been
used to examine the relationship between produc-
tion volumes and costs for numerous technologies
(e.g. Boston Consulting Group 1972) and further
extended to map costs as a function of cumulative
deployment, usually at a global level. The studies
reviewed in this paper derive experience curves and
subsequent learning rates for different combinations
of technologies, and use a range of deployment meas-
ures, cost measures, and methodologies.

Although Wright (1936)∗∗ concluded from his
observations that we ‘learn by doing’, the causal
(inverse) relationship between cumulative deploy-
ment and technology cost remains somewhat con-
tested in economics, and is not often applied within
energy-economy system modelling, for at least three
reasons. Firstly, in contrast to the grounding of pat-
ent elasticities in the theoretical basis of directed tech-
nical change by Hicks (1932)∗∗ there is less obvi-
ous, well established theoretical underpinning for
this relationship in mainstream economics. Secondly,
it introduces increasing returns to scale, which can
create path dependence and challenge the unique-
ness of economic equilibria, thus for example vastly
complicating the operation of optimising models.
Thirdly, the causality is unarguably bidirectional—
deploymentmay drive cost reductions, but the reverse
may also be expected. We take the view that these
factors only increase the value in probing the evidence
carefully.

Studies examining ‘single-factor’ experience
curves and learning rates derived from them are com-
mon (e.g. Junginger et al 2005, Garzon Sampedro
and Sanchez Gonzalez 2016), however they do not
attempt to disentangle the threads of the relationship
between deployment/diffusion and cost reduction,
which as illustrated by figure 3, is not simple or closed

38 We apply the term ‘experience curve’ rather than the often-
used ‘learning curve’, to avoid the inference that all cost reductions
observed may be attributed to ‘learning’. However, we continue to
apply the term ‘learning rate’ as defined above, but with the caveats
discussed below.
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(or unidirectional, as noted). Simple interpretations
of the results of such studies therefore run the risk of
attributing all cost reductions in a given technology
to ‘learning-by-doing’ induced by cumulative deploy-
ment. Two- ormulti-factor experience curves (Miketa
and Schrattenholzer 2004, Soderholm and Klaassen
2007, Yu et al 2017, Zhou and Gu 2019)—although
less prevalent—attempt to separate one or more
of these threads, which may include economies of
scale, changes in key resource costs, ‘learning-by
-searching’ (the fruits of continued public or private
R&D) and spillovers from other technologies or
sectors, tomeasure their relative influence. Themajor
factors that contribute to uncertainty and variability
in learning curve formulations are elaborated in Yeh
and Rubin (2012)∗∗.

6.5.2. Overview of experience curve literature
characteristics
We limited our search for experience curves (Search-
Link II) to conventional electricity generation
technologies, and other technologies for which
deployment may reasonably be considered to be the
result of (or substantially encouraged by) targeted-
demand pull policy interventions (see appendix B).
Of the initial pool of 1082 results, we retained 63
for review. The majority of the studies excluded
were so because they either reported previous res-
ults produced by other authors (as part of a liter-
ature review or as input to further work), or pro-
jected experience curves into the future, rather than
empirically deriving results from historic data (and in
many cases, both). A further 12 studies were added to
these results as they came to light through review-
ing the initial results, for this and other Search-
Links. Figure 7 presents the technology coverage
of the 75 studies that presented original empirical
results.

Of these 75 studies, 58 examine electricity gener-
ation technologies. Of these, 23 were also included
within a review by Rubin et al (2015)∗∗, and 45
were reviewed by Samadi (2018)∗∗. The remainder
were not covered in these reviews largely due to their
more recent publication. We also draw on the review
of experience curves of several demand-side tech-
nologies by Weiss et al (2010)∗∗, and review (the
few) relevant studies published since, for selected
technologies.

This section summarises and builds upon the
lessons learned in these previous reviews. The vast
majority of studies for electricity generation techno-
logies derive learning rates based on cumulative pro-
duction of capital stock (e.g. MW of installed capa-
city)39, whilst technology cost is represented most

39 The exceptions being seven studies that derive learning rates
based on cumulative energy generation (e.g. MWh), and six based
on technology ‘units’ installed, sold or produced.

commonly by the production cost or purchase price
per unit of installed capacity (52), followed by the cost
of per unit of electricity generated (usually a derived
levelised cost of electricity (LCOE)) (16)40. Most of
these studies derive one-factor learning rates, with the
limitations noted. Of these 58 studies, 26 studies each
derive experience curves for solar PV and onshore
wind, respectively (with some overlap).

6.5.3. Solar photovoltaic and wind energy
The modern wind power industry began in the
1970s and commercialised significantly for power
generation from the 1980s onward. As a technology
for grid-connected electricity production, solar PV is
a more recent entrant to the market, and has expan-
ded from amuch smaller base, butmore rapidly, since
about 2000.

(Figure 6) The studies calculating learning rates
for onshore wind and solar PV (26 each) all find clear
and unambiguously positive learning rates, but with
substantial variation reflecting differences in tem-
poral and geographical coverage, and specific metrics
used, as summarised in figures 8 and 9.

6.5.3.1. Photovoltaics
The global learning rate asmeasured by cost (or price)
per unit capacity has sustained at around 20 ± 6%
for most of the past 4 decades, although with two- or
multi-factor studies producing values at the lower end
of this range, and some outliers particularly during a
period (c.2003–2010) of supply-side bottlenecks with
high silicon prices. Variations between geographies
and over time were identified, there is little evid-
ence to suggest that learning rates have declined over
time—particularly when controlling for input prices
(notably silicon costs—see section 6.6). Learning
rates may differ somewhat between residential and
utility-scale systems, partly reflecting lower learning
rates (around 10%) observed in the non-hardware
‘balance of system’ costs (Elshurafa et al 2018)41,42.

6.5.3.2. Onshore wind
Studies focus on Europe (and particularly Denmark),
given the historic concentration of installed capa-
city (with many including data from the 1980s,
although relatively few extend their analysis signi-
ficantly beyond 2000). Observed rates for the price

40 For cost metrics, a few studies used other cost measures, includ-
ing engineering, procurement and construction (EPC) costs, or
cost components (e.g. balance-of-system (BOS) costs and non-fuel
operations and maintenance (O&M) costs).
41 This study is excluded from figure 8, as it is focus on BOS costs
means it is not directly comparable with learning rates for the tech-
nology more broadly.
42 Although not within he technical scope of this review, another
study examining BOS costs is Bollinger and Gillingham (2019)∗∗,
who find a learning-by-doing contribution of 15% to the one-
third reduction in BOS costs in PV installations in California
(2002–2012).
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Figure 7. Technology coverage of experience curve studies, for all technologies (panel A) and the electricity generation technology
subset (panel B).
Note: the total count of coverage for all technologies (87) exceeds the number of studies, as some studies examine more than one
technology.
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Figure 8. Learning rates for solar photovoltaic (PV), for cost/price of capacity and energy generated. Note: the primary result for
each technology and dependent variable from each study has been selected. In studies with more than one learning rate per
technology per dependent variable, the learning rate with the highest R2 value was selected for figures, or if not specified then the
longest data analysis period. If neither of these are specified, the highest rate was selected.

or cost of installed capacity tend to cluster at 5%–
15%, again with two- andmulti-factor studies produ-
cing results at the lower end. As innovation over time
(e.g. increasing turbine height, rotor blade diameter)
has led to increasing capacity factors, learning rates
for LCOE has tended to be slightly higher (8%–13%),
particularly as derived by studies using longer time

series data. We identified a single study in the peer-
reviewed literature attempting to derive an experience
curve for offshore wind. van der Zwaan et al (2012)
find an installed cost learning rate of 5% for offshore
wind in Europe (1991–2008), once the influence of
key commodity prices and supply chain constraints
are accounted for. However, the authors acknowledge
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that this is based on limited data with a poor
statistical fit.

6.5.4. Other electricity generating technologies
The limited literature relating to conventional
thermal power stations points to early learning but
subsequent literature is thin and experience var-
ied. Ostwald and Reisdorf (1979) and Colpier and
Cornland (2002) found significant deployment-
related learning for natural gas power plants in the
past; we did not find subsequent literature. For coal
power plants, deployment-induced learning appears
to have taken place throughout much of the last
century, although since the late 1960s, construction
costs appear to have largely plateaued (Ostwald and
Reisdorf 1979, Yeh and Rubin 2007, McNerney et al
2011).

More clearly, in many countries that have built
nuclear power plants, initial cost decreases have been
observed, followed by pronounced cost increases
since the late 1960, leading to negative learning rates
(Ostwald and Reisdorf 1979, Rangel and Leveque
2015, Lang 2017). However, these and various other
studies that examine trends and drivers in the cost

of nuclear (e.g. Grubler 2010∗∗, Kahouli 2011∗∗,
Berthélemy and Escobar Rangel 2015∗∗) typically
focus on a relatively limited time period (1970s–
1990s), and on installations in the USA and France—
countries which represent just a quarter of all nuc-
lear installations constructed. More recent evidence
fromother countries (such as Japan and South Korea)
suggests that costs elsewhere have remained stable or
even declined since this period (Lovering et al 2016∗∗,
Matsuo and Nei 2019∗∗).

Nuclear has relatively unique characteristics
among electricity generating technologies in use to
date, which may make attempting to discern drivers
of cost development particularly difficult, and highly
context-specific. Lovering et al (2016)∗∗ suggest that
even aside from changes in specific reactor techno-
logy and design, cost drivers such as utility structure,
reactor size, regulatory regime, and international col-
laboration have played a greater role in determining
trends in nuclear costs than any learning effects to
date; to which Eash-Gates et al (2020)∗∗ add labour
productivity trends.

Studies of bioenergy-based power generation,
which also generally uses conventional thermal power
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generation, have found positive learning for both
investment and LCOE-based costs. However, the
three studies reviewed are narrow in geography and
timeframe (Junginger et al 2006, Lin and He 2016,
Wang et al 2018).

6.5.5. Other technologies
6.5.5.1. Biofuels
Seven studies charting experience curves in bio-
fuels produced exceptionally divergent results
(see appendix B), with learning rates varying from
slightly negative to almost 40% between different
studies and periods. One major reason for this
appears to be the dominant role of the Brazilian bio-
fuels industry, with the derived data being strongly
influenced both by exchange rate fluctuations and
the vagaries of the sugar market. The studies tak-
ing the longest view—from the mid 1970s—have
gravitated towards a long-term average of 16%–
20% for Brazilian ethanol, though one of these sug-
gests much of this may have been due to exogen-
ous technology spillovers. Two studies of US eth-
anol find comparable but slightly lower learning
rates.

6.5.5.2. Demand-side technologies: household and
consumer goods
The seminal study of experience curves in demand-
side technologies (Weiss et al 2010)∗∗ found an
average, cross-technology learning rate of 18%
(±7%) across 15 technologies (mostly building and
appliance-related). However, rates of 20%–30% were
found for consumer electronics and components,
heat pumps, and compact fluorescent light (CFL)
technologies, with high learning in CFLs in particu-
lar reinforced by several subsequent studies.

6.5.5.3. Demand-side technologies: low-emission
vehicles
Early studies found relatively low rates of learning for
hybrid vehicles (well below 10%), probably in part
because initial deployment represented a very small,
loss-leading fraction of sales bymajor global car com-
panies (notably, Toyota), but potentially also because
relatively small difference to full-internal combus-
tion engine vehicles hybrid vehicles represent. Stud-
ies of both full battery-electric vehicles, and their
components—particularly lithium-ion batteries—
find consistently higher learning rates, mostly in the
range 9%–16%.

6.5.5.4. Demand-side technologies: energy storage
Learning rates for stationary battery technologies
(including lead-acid) have tended to find similar,
though perhaps slightly lower learning rates than
their mobile counterparts. Despite a huge variety of
competing technological options, learning rates for
stationary fuel cells seem to find consistently higher

learning rates, in the range 15%–25%, with a few not-
able, localised exceptions. For many of the designs,
the technologies remain in relatively early stages, and
the deployed base, modest.

6.5.6. Statistical conclusions on experience curves
In short, the general findings from experience curve
studies are unambiguous: excepting extremely large
and complex industrial facilities characterised by nuc-
lear and large coal power stations, expanding deploy-
ment and cost reductions have been clearly and pos-
itively correlated across a huge range of technologies.
The literature is strongly suggestive of higher learn-
ing rates in smaller, more modular and relatively
less complex technologies (as also concluded by e.g.
Malhotra and Schmidt 2020), with indications also of
higher learning rates in earlier stages of deployment,
implying declining learning rates as technologies
become more established and mature—though this
remains to be seen in some technologies, including
solar PV. The question is, what does this actually
imply about induced innovation?

6.6. Interpreting experience curves
As noted, experience curves measure a correlation,
not causation. The cost and diffusion of a technology
are influenced by amultitude of factors. The relation-
ship between them is complex, including (as emphas-
ised by Nordhaus 2014)∗∗, the feedback loop illus-
trated in figure 3, as technology improvements (in
cost or efficiency) should enhance diffusion. Only a
few of the experience curve studies analysed expli-
citly state this (e.g. Junginger et al 2005, Strupeit and
Neij 2017). Only one of the studies examined (Isoard
and Soria 2001) performs a statistical test for caus-
ality (a Granger test), and find that for solar PV and
onshore wind, cumulative installed capacity causes
capital cost changes for both technologies, without
feedback.

Some insights come from the relatively few studies
producing two- and multi-factor learning rates, the
majority (Klaassen et al 2005, Yu et al 2017, Zhou and
Gu 2019) of which suggest that R&D expenditures
are an important contribution to cost decreases—
although specific values differ considerably, and are
associated with high uncertainties. There are several
reasons for this, including difficulties with accur-
ately accounting for private R&D expenses due to a
lack of available data, and establishing an appropri-
ate time lag between R&D expenditure and its effect
on technology costs. Moreover of course deploy-
ment increases revenues which enhance not only
the incentive, but the financial capacity, for private
R&D, as noted below. Finally, R&D expenses tend to
increase over time, as do many other potential inde-
pendent variables (e.g. size of wind turbines), making
it difficult to separate the impacts made by each vari-
able. Söderholm and Sundqvist (2007, p 2575) find
that adding a time trend in their regression analysis
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leads to negative learning-by-searching (i.e. R&D-
related) rates that are no longer statistically signi-
ficant, as the time trend tends ‘to pick up most of
the variation previously ascribed to the R&D-based
knowledge stock.’

In addition, the studies of how targeted demand-
pull policies influence innovation already covered in
this section also clearly inform our understanding of
causality in experience curves. To the extent that tech-
nologies are deployedwhen they aremuch higher cost
than incumbents, it is reasonable to assume that the
direct feedback from cost reduction to deployment is
weak. Private investors are unlikely to deploy much
more of a technology which is still 50%more expens-
ive than incumbents, just because they were previ-
ously twice as expensive. There could of course be
some feedback to policies which support deployment,
which become less expensive as the cost difference
declines, as discussed in the qualitative and mixed
methods literature.

An important additional line of evidence for caus-
ality in learning curves comes from cost decompos-
ition studies. Several studies demonstrate that key
input prices, as well as various forms of economies
of scale (upsizing of technologies, more individual
plants per project, largermanufacturing plants for key
components) influence derived experience curves.
Input price changes have been shown to explain part
of the observed deviations from a constant learn-
ing rate for solar PV (de la Tour et al 2013, Gan
and Li 2015, Mauleon 2016, Trappey et al 2016),
onshorewind (Qiu andAnadon 2012, Partridge 2013,
Grafstrom and Lindman 2017, Yu et al 2017) and off-
shore wind (van der Zwaan et al 2012). The upsizing
of technologies has been shown to have a considerable
effect on early wind turbine cost developments
(Madsen et al 2003, Söderholm and Sundqvist 2007,
Yu et al 2017), while it has been suggested that the
continuous increase in the size of PV manufactur-
ing plantsmay explain a considerable share of historic
cost decreases of PV modules (Isoard and Soria 2001,
Yu et al 2011, Kavlak et al 2018).

Nemet (2006) and Kavlak et al (2018) apply
bottom-up cost models to identify the contribution
of different technical factors to overall cost changes
in solar PV. Their approach provides a rich descrip-
tion of the proximate factors resulting in declining
costs (such as module efficiency, or silicon usage),
which both studies then relate to the driving forces
of learning-by-doing, R&D, and economies of scale
in manufacturing processes. Both studies highlight
the major role played by both public and private
R&D in enabling the cost reductions observed, and
a strong role for economies of scale; Kavlak et al
(2018) find a smaller role for pure learning-by-doing,
though obviously there are linkages which are hard to
disentangle.

Kavlak et al (2018) also find an important
shift over time. Echoing the finding by Kruse and

Wetzel (2016) on patents noted earlier43 they estim-
ate that over 1980–2000, public R&D and spillovers
accounted for almost 50% of cost reductions, double
that attributable to economies of scale and learning-
by-doing combined. From 2001 to 2012, however,
these forces reversed: public R&D and spillovers
accounted for maybe one quarter of the observed
cost reduction, whilst scale economies and learning-
by-doing accounted for half. Moreover, Kavlak et al
(2018) suggest that the balance, attributed to private
R&D, was largely catalysed by policies to support
deployment (such as FiTs). This effect—of deploy-
ment support resulting in increased private R&D
expenditure—was observed by Hoppmann et al
(2013) with regard to the solar PV industry. Taken
together, these studies suggest that the cost reductions
observed in solar PV, commonly seen as an example
of learning-by-doing, are better understood as a pro-
cess of increasing returns associated with a combin-
ation of mechanisms, including scale economies and
induced private R&Dexpenditure alongside learning-
by-doing, as well as (for cost of energy), declining cost
of finance associated withmaturation of the industry.
Finally, we note that the balance between global and
local experience and cost trends, seems so far to be
little studied.

6.6.1. Conclusions on interpreting experience curves
The experience curve data charted in section 6.5
combines the impact of many factors, some easier
to disentangle and measure than others, but can-
not be neglected simply on grounds that ‘correla-
tion does not prove causation’. The causal-test, multi-
factor, and cost-decomposition studies reviewed in
this section complement the evidence surveyed in
sections 6.2–6.4, to fill out a broader picture of the
innovation dynamics at play, to which we return in
our discussion in section 9.

7. Policy mixes and survey evidence

As is evident from the previous sections, a relatively
large literature examines the impact on innovation of
energy prices, taxes, and a variety of more targeted
individual instruments, whilst the experience curve
literature tracks the simple correlation of deploy-
ment and cost reduction, as ‘learning rates’. In reality,
instruments are usually introduced as part of a policy
‘mix’, often to address deficiencies that an existing
instrument does not or cannot tackle, and learning
rates leave causality to be inferred.Moreover as noted,

43 Section 5; Kruse and Wetzel (2016) also note major changes in
patenting between technologies: ‘For biofuels and fuel cells, we see
a significant increase during the 1990s, after which patent activities
began to decrease. A completely different picture emerges for wind
and solar energy. Here, we observe an above-average growth start-
ing from the mid-1990s, with exceptionally high growth from the
mid-2000s.’
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the wider environment (including price shocks) often
stimulates more targeted policies. Relatively few stud-
ies explicitly examine the influence of instrument
mixes on either indicators (e.g. patents) or outcomes
(e.g. cost or energy efficiency) of innovation.

7.1. Patents
Palage et al (2019) found patent applications fol-
lowing public R&D support for solar PV increased
when combined with FiTs, across 13 countries (1978–
2008), although RPS schemes produced little mar-
ginal effect (possibly due to the stronger technology
selection pressures, discussed in section 6). Girod et al
(2017) found the number of ‘demand-pull’ instru-
ments for the residential and industry sectors to
enhance the generation of energy efficiency patents
in each sector, across 21 European countries (1980–
2009). Costantini et al (2017) reach a similar, but
more nuanced conclusion for the residential sector
for 23 OECD countries (1990–2010). They find that
a balance between technology-push and demand-pull
policy instruments in a policy mix, and comprehens-
ive mix of demand-pull instruments, both induce
greater patenting than an imbalanced and less com-
prehensive mix. However, they note that demand-
pull comprehensiveness does not necessarily equate
to instrument count, and simply adding instruments
without sufficient consideration for instrument inter-
action, may reduce the overall impact on innovation.

In contrast, Nesta et al (2014) finds a policy
instrument mix to have had no significant effect on
renewable energy patenting in the OECD (1976–
2007), when accounting for the endogeneity of
policy (i.e. when the increased likelihood of policies
to encourage renewable energy deployment being
introduced in countries that are already active in
their development) is controlled for. However, when
removing this control, the impact is positive, provid-
ing further evidence for the interrelated path depend-
ency in both technology and policy making.

7.2. Other innovation indicators
From their analysis of the Spanish manufacturing
sector (2008–2013), Costa-Campi et al (2017) con-
clude that a policy mix would encourage private R&D
to a greater degree than instruments applied indi-
vidually. For the Chinese manufacturing sector, Guo
and Wang (2018) find the combination of public
R&D support with environmental regulation to have
enhanced product innovation as measured by energy
efficiency, whereas environmental regulation alone
appeared insufficient.

7.3. Survey literature
A much wider literature derives evidence from sur-
veys, either self-constructed, or using well-known
international surveys as the European Community
Innovation Survey (CIS), or national equivalents.
These surveys tend to focus on the manufacturing

and service sectors, and include questions on the
role of public policy in inducing ‘eco-innovations’;
a term that may be broadly defined, and which may
include both product and process innovation (includ-
ing adoption of existing techniques, but which are
new to the firm), and span beyond energy and CO2

to all environmentally-related actions. Disentangling
the effects relevant to our scope of interest in this
review in many cases therefore proves challenging,
but is helped in some studies by a narrow defini-
tion of the policy variable. However, in many cases
policy variables are usually broadly defined (often
simply as a single policy or regulation ‘dummy’), with
specific instruments or instrument types often not
discernable.

However, a contribution of this survey literat-
ure is its ability to consider factors that econo-
metric studies often do not (or cannot) consider,
including innovation that is hard to patent or oth-
erwise difficult to quantify. Surveys may therefore
highlight factors relevant to a broad set of theoret-
ical approaches and explanatory variables concerning
innovation, including the ‘systems of innovation’ per-
spective, evolutionary economics and the resource-
based view of the firm (del Rio et al 2016). As they
stated, green innovation is not a systematic response
only to environmental policy instruments, but the
result of a mosaic of interactions with other factors.
Consequently, where identified in our search, we con-
sider these to be in scope.

Much of this survey literature focuses onWestern
European countries, particularly Germany andMedi-
terranean countries (Horbach et al 2012, Veugelers
2012, Cainelli and Mazzanti 2013, Crespi et al 2015,
Borghesi et al 2015a, Penasco et al 2017, Jove-Llopis
and Segarra-Blasco 2018,Weiss et al 2019a). Only two
studies were found on other countries—China (Liu
and Wang 2017) and Korea (Joo et al 2018). Des-
pite the caveats regarding definitional granularity dis-
cussed above, a common conclusion is that envir-
onmental regulation (Horbach et al 2012, Veugelers
2012, Borghesi et al 2015b, Penasco et al 2017, Joo et al
2018, Weiss et al 2019a) and future or expected reg-
ulation (Crespi et al 2015, Joo et al 2018) plays a key
role in promoting eco-innovation. Stucki et al (2018)
find energy-related taxes and regulations can reduce
product innovation if they do not create demand
for the product, although this effect is removed for
firms at the technological frontier. In China, Liu and
Wang (2017) found that regulation does not stim-
ulate corporate technological upgrading in China’s
energy intensive industry, but market-based policies
(i.e. economic incentives) do. Taken together—
between traditionally more and less market-based
economies respectively—this could be considered to
also point to the value of diverse incentives to stimu-
late innovation.

Grants, subsidies and other provision of public
financial support generates more mixed evidence.

27



Environ. Res. Lett. 16 (2021) 043007 M Grubb et al

Positive impacts are found mostly for technologies
and innovation associated to CO2 abatement tech-
nologies (Veugelers 2012, Cainelli and Mazzanti
2013, Jove-Llopis and Segarra-Blasco 2018) and for
national public aid (Penasco et al 2017). However
some authors find little impact on innovation
(Horbach et al 2012, Borghesi et al 2015b).

7.4. Qualitative andmixed-method literature
This literature also provides a rich insight into
the dynamic, complex interaction between policy
mixes and innovation. Such studies typically do
not attempt to disaggregate the impact of indi-
vidual instruments (and it is not always straightfor-
ward to identify the distinction between ‘demand
pull’ and ‘technology push’, as noted by Taylor
(2008)), but rather seek to observe the mechan-
isms through which a policy mix interacts and
generates innovation. This literature suggests that
interaction effects can be important (Nemet 2009a,
McDowall et al 2013, Ruby 2015, Reichardt andRogge
2016)—and both positive and negative (Borghesi
et al 2015b). Whilst policy instruments themselves
and their design are influential, such studies often
report that it is their interaction and characterist-
ics of the policy mix as a whole that are decisive in
terms of their impact on innovation—for example
by influencing the expectations of innovators about
the future market and policy conditions. This literat-
ure highlights the importance of consistency between
instruments, and between instruments and policy
strategy (Reichardt and Rogge 2016). Unsurpris-
ingly, policy processes and implementation issues
(such as lack of coherence, poor or inadequately
skilled enforcement) have also been observed to
determine the efficacy of instruments, quite apart
from the design of the instruments themselves
(Kivimaa et al 2017).

As with surveys, this qualitative and mixed
methods literature reveals some limitations of an
‘instrument-by-instrument’ view of policy. The wider
enabling policy environment—e.g. as reflected in
the borders of figure 1—cannot be fully separated
from the introduction of targeted instruments. These
factors include e.g. brokering, enabling, providing
information and building capacity (e.g. (Hasanbeigi
et al 2010), issuing and enforcing property rights,
developing and institutionalising safety and other
codes and standards, and adapting regulatory struc-
tures and permitting processes.

The impact of demand-pull instruments and
policy mixes also depends on industry structure. A
striking example of the complexities concerns power
networks, which as natural monopolies are typically
highly regulated. The difficulty of drawing general-
ised insights is then further compounded by policy
interactions, as clearly illustrated by the case of UK
electricity privatisation, with initial collapse of R&D
(Dooley 1998∗, Jamasb and Pollitt 2008)∗ and the

subsequent regulation of its networks, which involved
increasingly overt additional incentives for innova-
tion, and recovery of R&D spend (Jamasb and Pollitt
2015)44. Studies have noted several other ways in
which public authorities have used their influence on
network regulation to facilitate market formation for
emerging technologies. For example, in Denmark’s
early phase of developing offshore wind power, util-
ities were encouraged to experiment with offshore
wind, and were allowed to pass on costs to consumers
(Smit et al 2007), and several countries require grid
companies to cover the costs of connecting renew-
ables (Taylor 2008, Reichardt and Rogge 2016).

All these interactions constrain the conclusions
that can be drawn about the impact of any single
instrument, but is perhaps most limiting concern-
ing broad-based measures. For example, the EU ETS
has an impact on patenting which can be directly
measured, and compared against a ‘control’ of non
ETS firms below the threshold. But what about the
impact higher-up the supply chain (on technology
providers)? The impact downstream through cost
pass-through? The further effects through know-
ledge spillovers (positive) and product market rivalry
(negative), including across borders? The potential
crowding-out effects on other types of innovation
of all these impacts? Further general equilibrium
effects? Credibly assessing the full effect of broad-
based instruments like carbon pricing on innovation
is, in totality, infeasible.

Governments also influence expectations which
help shape private sector activity (Nemet 2009a,
Reichardt andRogge 2016). Expectations of the future
policy landscape can affect innovation (Ruby 2015),
which complicates analysis of the time-lags asso-
ciated with innovation responses to policy. Uncer-
tainty about future demand-pull policy appears to
weaken the amount of innovation, but it apparently
can also influence the direction, notably by changing
the extent to which policy induces radical innovation,
or incremental steps that mostly exploit existing tech-
nology designs (Nemet 2009a,Hoppmann et al 2013).

Finally, these wider activities can be strongly
influenced by the nature of the state (Hadjilambrinos
2000, Calef and Goble 2007, Mikler and Harrison
2012), such that the way in which technology support
programmes are selected, designed and implemented

44 After privatisation, the UK introduced a simple price regula-
tion for networks, based on retail price index minus an annual
improvement factor (‘RPI-X’). Network companies, not known
for their innovation, further reduced R&D spend to maximise
short term gains. To try and compensate for this, the regulator
then introduced a series of innovation funds and competitions,
requiring participation and co-financing of network companies
and some pass-through of R&D expenditures (Jamasb and Pollitt
2011, 2015), and then moved to a new form of price regulation
based on ‘Revenue= Investment, Innovation andOutputs’ (RIIO).
Disentangling the impact of liberalisation, funds, and new forms
of network governance to find general rules would thus be almost
impossible.
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can have significant national characteristics. Such
studies highlight that policy instruments that ‘work’
in one context might be less (or more) effective else-
where. Thus, conclusions may be robust, but still not
necessarily universally applicable.

8. Multi-sector andmacro-level
technological change

The highest-level approach to assessing induced
innovation examines the effect of regulation and
policy-induced price changes not on specific techno-
logy outcomes, but on broad sets of sectors or at the
aggregate macroeconomic level (table 1, Search-Link
III). Induced-technology effects at this level tend to be
observed and deduced from changes inmulti-sectoral
and aggregate energy use, and in aggregate productiv-
ity measures45.

The initial search for literature on broad multi-
sector and macro-level technological change identi-
fied 285 studies, of which only 26 peer-reviewed pub-
licationswere deemed in-scope. These predominantly
use econometric techniques to study the impact of
energy prices (10), or of energy or environmental
policy or regulation (9). Other independent variables
included foreign direct investment (3) and know-
ledge stock measures (3). Studies measured aggreg-
ate energy intensity and total-factor energy efficiency
(5 for each), whilst others estimated changes in total
factor productivity (TFP) due to environmental reg-
ulations or oriented towards green technologies (8).
These studies varied greatly in the rigor, clarity, repro-
ducibility or representative data sampling of their
empirical approaches: based on the quality of the
journals and our own assessments of these factors, we
focus our review on the highest-quality work, whilst
acknowledging the potential relevance of the broader
literature in this inherently complex field.

Aggregate technical change is traditionally meas-
ured in terms of changes in ‘TFP’, which is typ-
ically calculated by dividing GDP by the weighted
average of labour and capital inputs in an economy.
Section 5 noted clear evidence that energy price rises
have induced more private R&D and patenting in
energy, particularly energy-intensive industries, but
not necessarily overall. In terms of the direction of
innovation (e.g. towards low carbon technologies),
a natural aggregate indicator could be the carbon

45 This has some relationship to the literature on the ‘Porter hypo-
thesis’ that environmental regulation can enhance firm compet-
itiveness across sectors for which (positive) evidence is summar-
ised in two major reviews (Ambec et al 2013∗∗, Cohen and Tubb
2018∗∗). However, that literature is mainly at the micro/firm-
level and is not mainly about induced technological innovation,
but more often about innovation in firm practices and adoption
of better technologies—the impact of regulation/prices on profits
through ‘X-efficiency’. We however look for effects on technology
per se. Also, the Porter literature rarely focuses on energy or separ-
ates energy from other factors.

intensity of energy supply, or ratios of CO2 to
sectoral (value-add) or economy (GDP) outputs.
However, none of the relevant sector- andmacro-level
econometric analyses identified in our search tests for
such decarbonisation, and there are plausible reasons
for this46.

Correspondingly, the relevant macro-literature
concentrates on how energy efficiency or energy
intensity is impacted by energy prices, rather than
any specific low carbon policies. Even so, assess-
ment is intrinsically fraught with difficulties. At the
aggregate level, it is difficult to disentangle the drivers
of technology innovation from structural changes
(i.e. shifts between sub-sectors) and the multiple
effects of simple factor substitution (e.g. using more
labour instead of energy), capital substitution (using
more efficient equipment), import substitution
(e.g. outsourcing energy-intensive activities), and
behavioural innovations by firms (adopting more
efficient working practices or new-to-the-firm tech-
nologies). Equally importantly, TFP is affected by
numerous forces outside the energy sector, so it can
be challenging to pick up the (small) signal from any
energy-related results at all.

A huge literature documents the response of
energy demand to prices (usually by calculating price
elasticities of energy demand) and investigates how
the response changes under the influence of technical
change. The studies differ greatly in whether, and if
so how, they seek to disentangle this role of technical
change, which means also that our review covers only
a very small subset of the elasticities literature.

A small niche within the energy-elasticities liter-
ature considers whether elasticities are asymmetric—
that changes induced by large price rises do not
reverse when prices fall. This can be taken to indicate
induced innovation (which would not be expected to
reverse), but similar data also could reflect incorpora-
tion of some exogenous efficiency improvements into
capital stock. This small literature—not captured in
our search terms—was stimulated by studies point-
ing to such apparent asymmetry in gasoline demand,
which declined with the 1970s oil price shocks but

46 The biggest large-scale, cross-country drivers of change were the
oil shocks of the 1970s, and then early 2000s, without any overt
carbon-related signal. Initial responses did indeed include nuclear,
andwhere feasible, expansion of hydro, but these tended to be quite
overt, publicly driven rather than market-led induced innovation.
Significant demand-pull policies for renewable energy technologies
only emerged from the early 2000s. Given the time lags in com-
piling data, its acquisition, and publication in journals, not many
studies secured in our review go beyond about 2012, and none have
data beyond 2016. Innovation in new low carbon technologies such
as modern renewables, in volume terms has only become signific-
ant in a few countries in the last few years. As illustrated in figure 6
(section 6), the growth of renewables has been very rapid but even
by 2016, at a global level, only accounted for a small fraction of
overall energy supply in most countries. Hence, presumably, the
exclusive focus of sector- and macro-level econometric studies on
energy intensity.

29



Environ. Res. Lett. 16 (2021) 043007 M Grubb et al

did not rebound to nearly the same extent after
prices fell (Dargay 1992∗, Gately 1993∗∗, Walker and
Wirl 1993∗). Griffin and Schulman (2005)∗ chal-
lenged these studies’ interpretation, finding that the
effects could also be explained by stochastically vary-
ing exogenous trends, similarly with the subsequent
Agnolucci (2010) study of UK demand. This in
turn was disputed by Hunt and Ninomiya (2005∗)
for Japan, and Huntington (2010)∗ for US petro-
leum, and by Adeyemi and Hunt (2007∗, 2014∗) in
cross country studies. The conclusion of their 2007
study that ‘OECD industrial energy demand incor-
porates asymmetric price responses but not exogen-
ous energy-saving technical change’ was tempered
by a warning that this finding was not robust for
all countries and studies; their follow-up seven years
later, analysing 15 OECD countries over 49 years,
concludes that: ‘almost all of the preferred mod-
els for OECD industrial energy demand incorporate
both a stochastic underlying energy demand trend
and asymmetric price responses’ and they present
elasticity estimates for each of the four dimensions
implied47. In other words, the evidence is that energy-
saving innovation is a combination of both exogenous
and price-induced effects.

8.1. Multi-sectoral decomposition studies
A sizeable literature singles out the role of induced
technical change by decomposing observed changes
in energy use into components of structural change
and real efficiency improvements. Micro-level
decisions by firms and consumers to reduce energy
and develop energy-saving technologies translate into
aggregate energy reductions. Decomposition meth-
ods have been used to separate spending shifts within
firms/sectors and spending shifts between firms/sect-
ors. However this still says little specifically about
induced innovation unless separate components of
the decomposition can then also be related to determ-
inants like R&D, prices, regulations to test for an
induced technology channel.

Steinbuks and Neuhoff (2014) focus on the role
of technology embodied in the capital stock using
a panel model across five OECD manufacturing
sectors. They distinguish short-run price responses
(given vintage structure of the capital stock) from
long-run price responses (changes in the vintage
structure towards energy-efficient capital goods),

47 ‘Estimated long-run income elasticities (0.34–0.96); estimated
long-run price-maximum elasticities (−0.06 to −1.22); estimated
long-run price-recovery elasticities (0.00 to −0.27); and estimated
long-run price-cut elasticities (0.00 to−0.18)’.Hence they conclude,
‘when modelling industrial energy demand there is a place for
“endogenous” technical progress and an “exogenous” underlying
energy demand trend … any modelling strategy should start by
including both and only impose restrictions if accepted by the data’
(Adeyemi and Hunt 2014)∗. The niche nature of this literature to
date is reflected in the fact that their reference list, covering a 40 year
span, finds only about 30 studies, within which only about half a
dozen names feature prominently.

thus separating short-run substitution from long-run
investment response. Based on energy price series
together with other input prices and cost shares, they
find that technical change is responsible for at least
three quarters of the total efficiency improvement
across US manufacturing sectors. However, this still
does not separate the impact of regulatory policies or
directly relate to innovation—the model takes energy
efficiency improvements in capital as exogenous and
focuses on howprices lead this to be embodied in cap-
ital stock.

Moshiri and Duah (2016) decompose aggregate
energy demand in Canada into a scale, composi-
tion, and technique (intra-sectoral energy intensity
changes) effect. In regression analysis the compos-
ition effect is driven by price changes, as expected,
but the technique effect is significantly driven by
price changes in only a subset of specifications, which
implies some evidence of price-induced innovation.

SueWing (2008) assessed data for 35 industries in
the US, 1958–2000, in a model which also included
changes in quasi-fixed (capital) inputs and allowed
for exogenous (time-trend) energy saving/using tech-
nical change, whilst price-induced technical change
is measured by the effect of cumulative energy price
changes. They found that up until the 1970s energy
price shocks, innovationwas energy-using and almost
exclusively exogenous. In contrast, over the period
1980–2000 technical change became energy saving
and by 2000, 40% the reduction in aggregate energy
intensity coming from technical change was attrib-
uted to induced technical change (figure 7 in Sue
Wing (2008): 3.5/9= 0.39).

8.2. Determinants of economy-wide energy
demand
As an alternative to the decomposition method, a
number of studies estimate an aggregate production
function or frontier (which leaves intersectoral sub-
stitution implicit) and identify how price changes and
regulation have affected macro-economic measures
of energy efficiency, energy productivity, and energy-
biased technical change. Three different methods
allow varied measures of innovation: aggregate
energy demand studies; estimates of the determin-
ants of economy-wide factor-biased technical change;
and stochastic-frontier-analysis based on aggregate
energy-efficiency studies.

8.2.1. Aggregate energy demand studies
Aim to explain economy-wide energy demand or
intensity as a function of production inputs and other
determinants, such as R&D, regulation, and energy
price changes. If regulation decreases energy demand
ceteris paribus, this is viewed as implicit evidence
for induced technical change. The role of technical
change can only be separated from the role of sub-
stitution if the estimations control for the energy
price, asmeasured by the full user price and capturing
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the cost effects of regulation. Including controls for
aggregate (private and public) R&D expenditure dis-
entangles drivers as well as effectiveness and direction
of innovation48.

It turns out that very few studies that study
economy-wide energy demand control for all three
factors—R&D, price, and regulation. As a result, the
impact of specific regulatory policies on induced
innovation remains largely untested. Dong et al
(2018) control for R&D and price, and find a pos-
itive correlation between energy intensity and total
inhouse R&D at the provincial level in China; we
learn from this study that R&D has contributed to
energy saving in general, but cannot comment on
induced technical change. Fei et al (2014) use a sim-
ilar method for Canada, Ecuador, Norway, and South
Africa (1974–2011), but find no significant effect of
R&D on energy use. Taking a different approach,
Murad et al (2019) explain per capita energy con-
sumption from energy-efficiency patent applications
and a proxy for the energy price, using a time series
approach, finding that specific innovation (patents)
towards energy saving is effective.

8.2.2. Aggregate production function studies
Aim to explain energy-specific aggregate productivity
levels with policy and price shocks. Many economy-
wide studies estimate a production function that
allows for energy-specific technological change, but
few then measure if energy saving is related to price
and policy shocks. In one of the earliest studies,
Watanabe (1992) clearly identifies that innovation
in Japan was driven by response to the oil shocks—
including government R&D—substituting for oil.

Carraro and de Cian (2012) estimate an aggreg-
ate production function for 12 countries (West-
ern Europe and US, 1989–2001) on the basis of
national income, capital, labour and energy inputs49;
they find that the stock of (general) R&D has
a strongly significant positive partial-equilibrium
impact on energy-saving technological change, but
also increases energy-using capital investment; the net
effect is that more R&D increases energy demand.
The study finds clear evidence for endogenous factor-
specific technical change, but the study does not have
a measure of regulation so cannot separate explicitly
policy-induced innovation.

48 On the one hand, if the regression controls for total R&D and
energy price, the coefficient on energy regulation measures the
direction of innovation (and its strength) towards energy-saving
innovation (holding fixed total R&D). On the other hand, if the
regression includes energy-specific R&D and controls for the full
user price of energy, the coefficient on energy-specific R&D meas-
ures the effectiveness of R&D spending (holding fixed the direction
of R&D). The latter is not evidence of a policy-induced or price-
induced effect, unless the interaction of energy-specific R&D with
regulation and/or price is included.
49 They use CES (constant elasticity-of-substitution) specification
for the production function, which requires that factor prices and
time x factor input interactions are included.

Using a similar approach, Fisher-Vanden et al
(2006) estimate aggregate production possibilities in
China, with similar results, but also control for own-
ership structure and trade exposure to capture major
transformations in the Chinese economy. Using firm-
level data they find that technology development is
energy-saving, and capital-, labour-, and materials-
using. General R&D investment reduces economy-
wide energy intensity and the size of this effect is
similar to the effect of sectoral shifts (p 695), but this
study does not test separately for policy/regulation
effects.

Based on CES production function, Hassler et al
(2012)∗∗ also examined US energy and oil price
data, finding that the implied measure of energy-
saving technical change appears to respond strongly
to the oil-price shocks in the 1970s. In the short
run, they find low substitutability between energy and
capital/labour but much greater substitutability over
longer periods due to technical change.

8.2.3. Stochastic-frontier analysis
Aims to estimate the technical frontier and explore
what shifts this frontier. Using this to quantify aggreg-
ate energy-efficiency and its correlation with various
influences, Yang et al (2018) find that capital deep-
ening and foreign direct investment (FDI) improve
technical efficiency, whilst increased fossil energy use
and R&D intensity in general reduce technical effi-
ciency.

Zhang and Fan (2018) estimate an energy effi-
ciency frontier across Chinese provinces and then
test for the impact of the Chinese provincial pilot
CO2 emission trading systems launched from 2011.
Based on data to 2015, they do not find a statist-
ically significant trend break as evidence for policy-
induced innovation from these pilot systems. Zhu and
Ye (2018) find that environmental (SO2) regulation in
China is correlated with improved green technology,
and also find that spillovers from overseas foreign dir-
ect investment in developed countries increases green
technological progress, in developing/transition eco-
nomies reduces it.

Managi et al (2005) find that environmental reg-
ulation of oil and gas industries in the Gulf of Mex-
ico improved overall TFP, including both market-
able and environmental outputs, but not marketable
output alone. Several other studies also explore how
environmental regulation can influence TFP when
polluting inputs and pollution reduction are expli-
citly accounted for (sometimes called ‘green TFP’).
These include Song and Wang (2018), Tao and Li
(2018), Wang et al (2018), Zhang et al (2018) and
Shen et al (2019). Such studies use various frontier
analysis methodologies and sometimes quite limited
datasets, although collectively they tend to at least
suggest that there are some gains from innovation
induced by environmental regulation.
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8.3. Conclusions onmulti-sector andmacro-level
technological change
Overall, our review reveals that the aggregate sectoral
ormacro level literature is surprisingly limited, which
is likely a testament to the difficulty in extracting
robust findings. We do note that the findings tend to
complement the findings from section 5, that energy
price increases raised patenting levels, and innova-
tion has been embodied in the subsequent capital
stock. But few studies precisely pin down the con-
tribution of induced technology innovation at the
aggregate level. We see this as a nascent area that so
far has broadly (but not universally) been pointing
to an effect of environmental regulation on innova-
tion at the aggregate level. Overall though, there is
plenty of scope formore research to pinpoint the con-
tribution of induced technology innovation to resolve
tensions of economy and environment at macro
levels.

9. Interpretation: the processes of induced
innovation

If the study of innovation is, as Kemp and Pontoglio
(2011) suggested, like the proverb of the blind man
and the elephant, what light has our review shed on
its overall shape? First, we stress our conscious choice
to focus on the role of demand-pull factors. Public
investment, from universities to public R&D labs and
demonstration plants, is clearly important, but so is
innovation induced by demand-pull in many forms.
To pursue the analogy, if technology push repres-
ents the back of the elephant, our study explored the
front, recognising that neither is much use without
the other. The results of this review must therefore
be paired with reviews of studies examining the role
of technology push dynamics, to allow a more full
(but not necessarily complete) understanding of the
elephant.

We stress that our review has focused on energy,
and that sectors are different, as emphasised by the
data cited in section 2. For energy however, we con-
clude that the evidence, following the structure of our
review, is as follows.

9.1. Market-wide/energy and carbon pricing→
patents
Changes in energy prices and carbon pricing cre-
ates incentives first and foremost for incumbent
industries to improve performance of their existing
technologies, and to generate options to maintain
their comparative advantage in a higher fossil fuel
or carbon price world. The literature identifies both
lags between market impacts and patenting, and that
patents tend to be path dependent, building on earlier
ideas and progress.

Industrial energy users and vehicle manufactur-
ers clearly responded to the incentive of major energy
price rises, with corresponding (if less extensive)

evidence of impacts also from energy taxation and
carbon pricing. On the supply side, the oil price
shocks in particular also hugely enriched the oil com-
panies, enabling greater investment in R&D across
the board, particularly in oil exploration and devel-
opment, and biofuels which could also utilisemuch of
their existing expertise and assets. Hence, the strong
and unambiguous impact of market-wide changes on
patent filings in these areas.

Patents for renewable electricity sources were also
stimulated by the energy prices. They had less to
build on particularly after the first (1970s) oil shocks,
when the rise in government R&D probably played a
major role, and were less aligned to the core interests
of incumbent energy producers. Clean energy pat-
ents for wind and solar especially expanded far more
after about 2000 (see figure 5). As reviewed across
sections 5 and 6, the literature suggests that many
factors contributed to this, including strategic sig-
nalling (the adoption of the Kyoto Protocol in 1998,
with entry-into-force in 2005), renewed energy price
rises from early 2000s, and the more targeted incent-
ives discussed below.

The most notable lacunae observed are in build-
ings, where evidence of energy price rises stimulat-
ing innovation (including in appliances, with some
exceptions—e.g. Newell et al 1999) is both limited
and mostly inconclusive This, presumably, reflects
the large literature arguing that most building-related
decisions face multiple problems of split incentives,
low materiality, and various behavioural biases that
weaken any responses to price signals.

9.2. Market-wide/energy and carbon pricing→
outcomes
The major energy price rises correspondingly yielded
clear improvements in established areas, such as oil
extraction, industrial energy efficiency, and the effi-
ciency of vehicles. The outcome measures pick up
the value of additional elements of innovation which
yield cost reductions (such as deployment-induced
learning-by-doing, customer and market develop-
ment), but which may not be so readily patentable.
The limited numbers of studies exploring this link
do suggest a strong role for market-wide incent-
ives. In addition to the shale revolution, this is most
clearly in vehicle efficiency where a large, established
and innovation-intensive industry—in many juris-
dictions, prompted by regulatory sticks as well as
market carrots—clearly regarded improving vehicle
efficiency as an important selling point (and regulat-
ory hedge).

9.3. Targeted interventions→ patents
More specific demand-pull policies which target
emerging clean technologies provide relatively more
(and more direct) incentive for their deployment,
and hence for their commercialisation and learn-
ing including by new entrants. For the earlier stages
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of development, much of the relevant knowledge
may be codifiable, though propensity (or capacity)
to patent may be varied; incentives extend to more
radical innovations particularly where funding is rel-
atively generous and guaranteed, to cover the higher
risks. Hence the patterns found in PV and biofuels
(section 6), where more competitive instruments
(e.g. renewables obligation certificates (ROCs) and
portfolio standards) yield patenting on more estab-
lished technologies (e.g. PV silicon wafers, first
generation biofuels), whilst FiTs may incentiv-
ise more R&D in advanced and risky technology
(e.g. PV thin-film, second generation biofuels). How-
ever, the impact of different instruments on patenting
also varies with the stage of technological maturity—
the broader the instrument, themore likely are efforts
to focus on incremental improvements of technolo-
gies already in the market.

9.4. Targeted interventions→ outcomes
The most obvious impact of demand-pull instru-
ments, particularly those targeted upon emerging
technologies, is to increase the scale (and overall
value) of the associated industries. This has mul-
tiple channels of impact on innovation and cost
reduction.

First, it creates both incentives and resources
for potentially patentable innovations, though this
draws upon both technology-push and demand-pull;
the ‘multi-factor’ experience curve literature helps
to identify the contribution of other factors (like
public R&D) but still finds a large component of
deployment-related cost reduction.

Just a few studies trace causality directly, but
many others shed light upon it. The cost decompos-
ition studies indicate that as well as private R&D, the
impacts of enhanced deployment includes economies
of scale (at all levels of units, factories, and industry),
as well as learning-by-doing. Moreover, policy sup-
port for new industries also implies political support
for overcoming regulatory barriers (which otherwise
tend to favour incumbents), and to support institu-
tions and infrastructure which further reduce risks.
All this reduces financing costs, increases revenues,
and aids the growth of these technology-industries
with all the attendant tacit learning andmultiple scale
economies. These further reduce costs to the market.
The findings from the qualitative, mixed-methods
and survey literatures, underline further the way in
which increasingly competitive costs also enhance
confidence and market stability, feeding wider mar-
ket diffusion, and potentially creating a virtuous circle
(and hence, path-dependence) of establishing a new
technology-industry at scale (as now achieved for
wind and solar).

Most of the carbon-energy-policy related instru-
ments have created financial incentives in one form
or another, particularly for supply technologies.

Regulatory policies have also been important, either
in complementary support roles (e.g. industry codes
and standards), or as driving forces where price-
based incentives had obvious limitations (most not-
ably, the limited literature on energy-related innova-
tion in buildings).Wider literatures from SO2 control
(e.g. Taylor et al 2003, 2005)∗∗ and automobile regu-
lation (Lee et al 2010)∗∗ underline the contribution of
regulatory measures in driving innovations and cost
reductions from other environment-related regulat-
ory controls.

9.5. Broadening frameworks for understanding
induced innovation
Before completing with the evidence around policy
mixes and the multi-sector/macro literature, we seek
to locate the above findings in a broader framework
in the search for a more coherent picture of ‘the ele-
phant’. Specifically, in attempting to draw from this a
richer understanding of induced innovation, we sug-
gest two elements which can help to broaden tradi-
tional conceptions of innovation processes.

The first element is clarifying a distinct role for
deployment, as flagged in section 2, which notes
that the literature often considers this as synonym-
ous with diffusion. However, we have collected evid-
ence around the patent generation associated with
the early growth of renewables (and demand-pull
in energy efficient technologies), including the crit-
ical role of associated demand-pull policies, and dis-
cussed how studies of cost components help identify
mechanisms through which deployed scale leads to
cost reductions. Thus deployment can have a cru-
cial bridging role between initial commercialisa-
tion, and self-sustaining diffusion. We therefore sug-
gest that mechanisms of induced innovation can
be distinguished more clearly by considering a dis-
tinct step in which a technology is deployed at
scale, before it is inherently cost-competitive with
incumbents.

Crudely, we suggest deployment be particularly
associated with stages of market development driven
by actions taken with expectation of future bene-
fits, associated with scale or experience; whilst diffu-
sion is a more autonomous, self-sustaining process.
The motivation for such deployment is then expect-
ation of some benefits beyond the immediate reven-
ues. In the absence of policy, this may be loss-leaders
by industry (e.g. the Toyota Prius), commercialisation
being entwined with deployment to establish market
presence and delivery capability, brand, and customer
base. Conversely, public policies to drive deployment
might be (at least in part) motivated by expected
innovation benefits, thereby helping to build new
industries.More formally, in the context of the debate
about causality in experience curves, wemight tentat-
ively suggest a delineation of deployment as a stage of
market development in which the dominant causality
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Figure 10. Expanded innovation chain—the multiple journeys.
Source: developed and adapted from Grubb et al (2017∗∗).

is from scale to technological advance, whereas diffu-
sion is the succeeding stage, where established tech-
nology performance becomes the dominant driver of
market share, and any learning becomes a secondary
by-product.

This helps to frame an important question,
namely when and where the pull of established
markets, supported by public R&D, is sufficient to
form a vibrant innovation system. In the absence
of policy, commercialisation may be entwined with
deployment if there are either high revenues, or com-
mercially motivated loss-leaders. However, this is
far less evident for energy, for the reasons already
indicated in section 2 (e.g. lack of product dif-
ferentiation). With public policy, aside from pos-
sible short-term justifications, deployment may be
a strategic driven at scale by government incentives
(Grubb et al (2014) use the term ‘strategic deploy-
ment’), like FiTs, to build up new clean technology-
industries which may ultimately become competitive
with incumbents (particularly if policy also evolves to
factor in other externalities over time, as with carbon
pricing).

The second element in gaining a fuller pic-
ture is to recognise that the terrain of innovation
is not just wide—a long journey from invention
to mature technology widely diffused—but deep.
The core interests in considering the economics of
decarbonisation are to do with outcomes—more
efficient energy production and consumption, and

cheaper clean energy technologies. Technology cost
and performance is ultimately influenced by many
factors beyond ‘hardware’ alone. Figure 10 illustrates
multiple factors which need to develop on the jour-
ney from a new invention to its widespread diffu-
sion. In parallel to the technology journey itself, this
may require evolution of business structures and sup-
ply chains, the customer base, financing routes, regu-
latory environments, and potentially institutions and
infrastructure. Above and below this we suggest how
the evidence presented in this Systematic Review can
be related to these processes.

Clearly, the relative importance of these other
dimensions may depends on the technology in ques-
tion, context, and indeed, the organisations involved.
A technology which is developed by large incum-
bent industries, and which fits well with their com-
parative advantage and existing market structures,
will already have its financing structures and routes
to markets established, and may benefit little from
regulatory, institutional or infrastructure changes.
The competitiveness of radically new and disruptive
technologies however may hinge crucially upon these
factors, as underlined also by developments partic-
ularly in multi-level transition theories (e.g. Geels
2014)∗∗.

In general, all indicators are potentially relev-
ant, because though they overlap, they also point to
different dimensions of overall innovation.Moreover,
in this wider context, it seems that literature reviewed
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here is skewed towards a rather narrow range of indic-
ators of innovation processes. There is a need to
develop robust data on wider range of innovation
activities, including those related to private R&D,
finance, technology characteristics, firm entry/exit
dynamics, and others. This seems important for
developing a clearer picture of the diverse processes
that underpin energy innovation.

Correspondingly, policy-induced innovation,
particularly if seeking more radical transformation
of polluting sectors, cannot realistically resort to one
or two individual instruments (like R&D plus carbon
pricing). Nor indeed, is the choice of environmental
policy instruments a simple debate between market-
based and regulatory approaches. As suggested over a
decade ago in a review essay by Rosenbaum (2007)∗∗

if the goal is transformative, policy can hardly avoid
elements which do not fall easily into either category,
being more targeted at industrial strategy. In that
context, some demand-pull policy is necessary to
induce successful innovation, and the challenge is not
whether to do it, but how to do it well, as underlined
by Nemet et al (2018)∗∗.

The limited econometric literature on policy
mixes (section 7) seems to underline the relevance
of well-crafted ‘packages’ of complementary instru-
ments to encourage innovation (expressed through,
inter alia, patenting and cost reduction), whilst
qualitative, survey and mixed methods literatures—
including most case studies—underline the multi-
faceted complexity of real-world decisions on innov-
ation, influenced by a host of direct and indirect con-
siderations. Those literatures, complementing both
the ‘standing on the shoulders’ findings of patent lit-
eratures, and experience curve data defined in terms
of cumulative deployment, also underline the path-
dependent and self-reinforcing nature of some of
these processes.

Sector-wide and macroeconomic impacts
(section 8) necessarily involve all the above, but
crucially, also pick up the ‘crowding out’ impact
of switching innovation efforts from fossil fuel
technologies—and maybe from other sectors—to
low carbon and energy efficient technologies.

10. Conclusions and research gaps

Hicks (1932)∗∗ was right. The direction as well as
pace of innovation is influenced by economic
conditions, expectations, and experience. The
evidence drawn from almost half a century of
dramatic changes in energy markets, and growing
energy-environmental policy, yields at least three
broad headline findings.

(a) Demand-pull forces enhance patenting. Table 3
(section 5) summarises how patents across
numerous energy technologies and sectors have

responded to energy prices over the decades,
finding positive impacts in industry, electri-
city and transport sectors in all but a few spe-
cific cases. Studies of carbon pricing, and most
(though not all) more targeted interventions
(section 6) similarly show patents responding to
demand-pull incentives.

(b) Technology costs decline with cumulative deploy-
ment. Figures 7 and 8 (section 6) shows unam-
biguously positive correlations, as measured by
‘learning rates’, for all studies of wind and
solar energy across all time periods. The same
holds true for almost all the technologies stud-
ied, for both production and use of energy.
Numerous factors (including correlation of tar-
geted market subsidies and deployment with
patents but also many other lines of evidence),
point to dominant causality from deployment
(as we have defined it) to cost reduction in this
relationship.

(c) Overall innovation is cumulative, multi-faceted,
and self-reinforcing. Patent evidence points to
strong path dependence, with patents ‘building
on the shoulders’ of earlier developments. Aside
from the experience curve data, the qualitative
and policy mix literatures also point to the
importance of combined spillovers, technology-
push, and cumulative learning; the influence of
multiple policy incentives that enhance confid-
ence and shape expectations; and the reinforcing
tendency of successful, expanding technology-
industries to foster institutions and coalitions
that sustain progress.

The bulk of the evidence comes from micro-
economic analysis of patents, technology costs, and
processes, on which we have organised our search,
review and analysis through the four specific relation-
ships as set out in table 1, with results as summarised
in the previous section.

10.1. Implications for modelling
These findings have at least two broad implica-
tions for modelling. First, results from models which
assume technology costs to be either fixed, or to
change exogenously, need to be scrutinised to con-
sider whether endogenizing innovationwould change
their findings. In many applications, of modest
changes to national energy markets and systems, this
may be a reasonable assumption, but it should not
be just an unchallenged ‘default’. For models look-
ing at larger scale changes, in terms of global reach,
depth and/or timescale of transitions, assuming tech-
nology costs to be exogenous needs to be recognised
as an explicit assumption that is not supported by the
evidence.

We cannot draw meaningful conclusions about
the cost of deep decarbonisation using models which
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assume the cost of future low carbon technologies
to be unaffected by how strong are the incentives,
or much those technologies are actually deployed.
Nor of course would the standard exogenous assump-
tions make much sense for modelling the econom-
ics of policy directed at deploying new and expensive
technologies that have clear potential for economies
of scale and learning.

A recent review of evidence on wider dynam-
ics in relation to ‘Integrated Assessment Models’
(Grubb et al 2021) notes that, fortunately,many of the
more sophisticated IAMs now do include elements
of induced innovation, as do some recent stylized
models. Some also include the cumulative, path-
dependent nature of innovation. The review notes
the extent to which these factors may affect results,
particularly concerning optimal investment in a cost-
benefit setting.

Second, for this increasingly rich variety of
energy-economy models which do seek to endogen-
ise innovation, our results may help to inform the
characterisation and parametrisation of such mod-
els. Responding to the conclusion of Gillingham et al
(2008) cited in our introduction, our findings might
indeed help to inform choices between, and validate
the parameters for, a potentially bewildering variety
of such models which have lacked firm empirical
foundations.

10.2. Implications for policy
Our findings also have implications for policy.
This has not been our main focus, but some
seem inescapable—a study almost 2 decades ago
(Grubb et al 2002) identified five types of poten-
tial policy implications of induced innovation—
concerning long run costs; timing; policy instru-
ments & cost distribution; first-mover economics;
and spillover and leakage concerns.

Given the unambiguous finding thatmarket-wide
prices do generally influence patents, the case for
carbon pricing is enhanced further, in light of the
push it may give to low carbon innovation, ampli-
fied with path dependency (as found in the mod-
elling review cited above). However, carbon pricing
alone may be a very blunt way of stimulating innova-
tion, particularly for sectors like energy which have
very low natural levels of innovation as measured
by private R&D (and potentially, innovation biased
towards incumbent interests). As Grubb et al (2014)
later observed, ‘if the innovation chain is broken, car-
bon pricing alone will not fix it.’ The clear impact
of targeted demand-pull policies on innovation—
outcomes as well as patents—underlines that success-
ful innovationneeds pull aswell as push and thatwell-
designed, targeted policies may provide a far stronger
and more focused pull than any plausible level of
general carbon or other externality pricing. Such tar-
geting may also mean they have far less widespread

impacts on the economy and face far lower political
obstacles.

Essentially, as emphasised by Gillingham and
Stock (2018)∗∗, policy evaluation must consider
dynamic as well as static efficiency, and this may
change both the costs and optimal instruments asso-
ciated with decarbonisation policy.

Moreover, the qualitative, mixed methods, survey
and case study literatures all yield basically the same
message—that innovation is a complex and multi-
faceted process, with numerous interdependencies, as
well as uncertainties. Consequently, for a company,
innovation is a gamble, the case for which is influ-
enced by a wide variety of policy instruments, incent-
ives, and strategic signals about the extent to which a
government is really committed to a certain course,
e.g. in terms of decarbonisation or other sectoral
change. And for a government, policy likewise carries
uncertainty, enhancing the case for policy diversity,
experimentation, evaluation, and learning.

Without digging deeper into systems innova-
tion theories, the evidence does indicate that the
simple framing of ‘two market failures’—technology
spillovers plus externalities—is inadequate to the real
complexity of the challenge, and the various policy
implications noted flow from this.

10.3. Research gaps
Innovation is complex and limitations in knowledge
remain striking. The literature linking energy prices
to patents may be robust enough to generate elasticity
estimates, but only a minority of these studies con-
sider equally important questions: to what extent do
energy-related patent trends reflect substantial tech-
nical change away from fossil fuels? Or, is patenting
more about incremental innovations to help main-
tain the position of incumbent industries? This may
be crucial to judging the balance between broad and
targetedmeasures, if the latter aremore likely to bring
forth radical and disruptive technologies.

The gap in the literature on experience curves
is even more striking. Amongst almost a hundred
studies, few have any test for causality, taking it as
assumed that cost reductions are driven by deploy-
ment rather than the other way round. The idea
that deployed scale has predominantly driven cost
reduction has occasionally been formally demon-
strated, but mostly it rests on inference and assump-
tion. Our conclusions on causality are predomin-
antly inferred, most notably from cost decomposi-
tions and a wide body of case studies. It seems likely
that as technologies mature from initial deployment
to more self-sustained diffusion, the feedback from
cost reduction to diffusion grows, with ‘learning
rate’ correlations increasingly reflecting this two-way
relationship.

Beyond these two main areas of statistical stud-
ies are other outstanding questions. We did not
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find studies tracing the impact of technology pat-
ents (at scale) through to innovation outcomes (bey-
ond potentially, some case studies). Also as noted,
the complexities of disentangling specific innova-
tion from numerous other factors at the macro level
has limited the robust literature. Finally, a full wel-
fare assessment should seek to include environmental
costs and benefits as part of the overall macro metrics
(‘Green GDP’), adding more complexity; overall, this
remains an area for further research.

More obvious research gaps, lacking at least in
terms of formal tests, could be inferred from the
matrix of figure 10. The econometric literature has
focused heavily on patents, as patents are the most
readily-available data, but these only reflect codifi-
able (and codified) knowledge. The tacit knowledge
and capabilities associated with deployment contrib-
ute to the other main observable metric—final costs
or prices, but these aspects are little charted. Studies of
the contribution from the declining cost of finance as
a technology-industry matures has only just begun to
receive appropriate academic attention (e.g. Egli et al
2018)∗∗. It remains unclear how onemight test in any
quantified way the impact of the lower rows on final
costs. The contribution from appropriate regulatory
structures, supportive institutions, and infrastructure
is, in terms of quantified economic metrics, almost
uncharted territory at least as applied to the low car-
bon transition.

One can of course debate the semantics as to
whether this should be included as part of innova-
tion, but it certainly contributes to cost reduction.
Arrow (1971, p 224)∗∗ noted that ‘Truly amongman’s
innovations, the use of organisation to accomplish
his ends is among both his greatest and his earli-
est’; to which Williamson’s (2000)∗∗ review of insti-
tutional economics adds, ‘inasmuch as these two
work in tandem, we need to find ways to treat tech-
nical and organisational innovation in a combined
manner.’

Particularly given the scale of changes implied
by deep decarbonisation, it may thus be fruitful to
explore whether and how the quantitative techniques
developed in economics can be related to the qualit-
ative socio-technical literature on the wider dynamic
of—and obstacles to—transformation. The future
frontiers of research may be less about the drivers
of technology and patents per se, but—as the qual-
itative literature covered in this review suggests—
more about their co-evolution with the way society
organises its economic systems to support low carbon
innovation, in its many dimensions.
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available upon reasonable request from the authors.

Appendix A. Systematic search terms

A1. Search-Link I(i) terms
(((electricity OR energy OR fuel OR oil OR gas
OR coal) NEAR/0 pric∗) OR ((‘energy supply’ OR
energy) NEAR/0 shock∗) OR ((energy OR oil OR
fuel) NEAR/0 embargo∗) OR ((energyOR electricity)
AND ‘market competit∗’) OR ((energy OR electri-
city) AND libera∗))

AND

(((cost OR price) NEAR/0 (reduc∗ OR saving∗))
OR ((increas∗ OR improve∗) NEAR/0 (productivity∗

OR yield∗ OR output∗ OR ‘energy efficiency’))
OR ‘increasing returns to adoption’ OR ((induced
OR eco OR environment∗ OR ‘low carbon’ OR
techn∗ OR clean OR corporate) NEAR/0 innovat∗)
OR ‘learning-by-doing’ OR ‘learning-by-searching’
OR ((learning OR experience) NEAR/0 rate∗) OR
((experience OR learning) NEAR/0 curve) OR ((dir-
ected OR endogenous) NEAR/0 ‘techn∗ change’) OR
‘private R&D’ OR patent∗)

A2. Search-Link I(ii) terms
(((environment∗ OR energy OR climate OR eco)
NEAR/0 (polic∗ OR regulat∗)) OR ((demand OR
market) NEAR/0 pull) OR ((supply OR technology)
NEAR/0 push) OR ((energy OR electricity OR heat
OR fuel OR oil OR gas) NEAR/0 (auction OR tender
OR ‘efficiency standard∗’ OR ‘technology standard∗’
OR label∗)) OR ((green OR ‘renewable∗ obliga-
tion’) NEAR/0 certificat∗) OR ‘renewable∗ portfo-
lio standard∗’ OR ‘time of use pric∗’ OR ((carbon
OR emission∗ OR CO2) NEAR/0 (pric∗ OR tax∗ OR
trad∗)) OR ‘feed in tariff∗’ OR ‘feed in premium∗’
OR (energy AND ‘network regulation∗’) OR (capa-
city NEAR/0 (market OR mechanism∗)) OR ‘con-
sumer subsid∗’ OR ‘public procurement’)

AND

(((cost OR price) NEAR/0 (reduc∗ OR saving∗))
OR ((increas∗ OR improve∗) NEAR/0 (productivity∗

OR yield∗ OR output∗ OR ‘energy efficiency’))
OR ‘increasing returns to adoption’ OR ((induced
OR eco OR environment∗ OR ‘low carbon’ OR
techn∗ OR clean OR corporate) NEAR/0 innovat∗)
OR ‘learning-by-doing’ OR ‘learning-by-searching’
OR ((learning OR experience) NEAR/0 rate∗) OR
((experience OR learning) NEAR/0 curve) OR ((dir-
ected OR endogenous) NEAR/0 ‘techn∗ change’) OR
‘private R&D’ OR patent∗)

A3. Search-Link II terms
(‘wind’ OR ‘solar’ OR ‘photovoltaic’ OR ‘renewable∗’
OR ‘hydrogen energy’ OR ‘electric vehicle∗’ OR ‘elec-
tric car∗’ OR ‘hybrid vehicle∗’ OR ‘hybrid car∗’ OR
‘fuel cell’ OR ‘biofuel∗’ OR ‘biodiesel’ OR ‘biogas’
OR ‘biomass’ OR ‘bioenergy’ OR ‘Marine energy’ OR
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CCGT OR ‘natural gas’ OR ‘fossil fuel’ OR ‘carbon
capture’ OR ‘co2 capture’ OR ‘hydro’ OR ‘coal’ OR
‘CCS’ OR ‘nuclear’ OR (‘power’ AND technolog∗)
OR ‘power generation’ OR ‘geothermal’ OR ‘batter∗’
OR ‘CFL’ OR ‘compact fluorescent’ OR ‘heat pump∗’
OR ‘hydrogen’ OR ‘wave energy’ OR ‘tidal energy’ OR
((energy OR electricity OR power) NEAR/0 sector))

AND

(‘learning-by-doing’ OR ((learning OR experi-
ence) NEAR/0 rate∗) OR ((experience OR learning)
NEAR/0 curve))

A4. Search-Link III terms
(((environment∗ OR energy OR climate OR eco)
NEAR/0 (polic∗ OR regulat∗)) OR ((demand OR
market) NEAR/0 pull) OR ((supply OR technology)
NEAR/0 push) OR ((energy OR electricity OR heat
OR fuel OR oil OR gas) NEAR/0 (auction OR tender
OR ‘efficiency standard∗’ OR ‘technology standard∗’
OR label∗)) OR ((green OR ‘renewable∗ obliga-
tion’) NEAR/0 certificat∗) OR ‘renewable∗ portfo-
lio standard∗’ OR ‘time of use pric∗’ OR ((car-
bon OR emission∗ OR CO2) NEAR/0 (pric∗ OR
tax∗ OR trad∗)) OR ‘feed in tariff∗’ OR ‘feed in
premium∗’ OR (energy AND ‘network regulation∗’)
OR (capacity NEAR/0 (market OR mechanism∗))
OR ‘consumer subsid∗’ OR ‘public procurement’
OR ‘Tax reform’OR ((electricity OR energy OR fuel
OR oil) NEAR/0 pric∗) OR ((‘energy supply’ OR
energy) NEAR/0 shock∗) OR ((energy OR oil OR
fuel) NEAR/0 embargo∗) OR ((energyOR electricity)
AND ‘market competit∗’) OR ((energy OR electri-
city) AND libera∗))

AND

(((cost OR price) NEAR/0 (reduc∗ OR saving∗))
OR ((increas∗ OR improve∗) NEAR/0 (productivity∗

OR yield∗ OR output∗ OR ‘energy efficiency’))
OR ‘increasing returns to adoption’ OR ((induced
OR eco OR environment∗ OR ‘low carbon’ OR
techn∗ OR clean OR corporate) NEAR/0 innovat∗)
OR ‘learning-by-doing’ OR ‘learning-by-searching’
OR ((learning OR experience) NEAR/0 rate∗) OR
((experience OR learning) NEAR/0 curve) OR ((dir-
ected OR endogenous OR induced OR biased OR
‘energy using’ OR ‘energy saving’) NEAR/0 ‘techn∗

change’) OR ‘private R&D’ OR patent∗ OR ‘total
factor productivity’ OR ‘aggregate technology stock’
OR ‘capital accumulation’)

AND

(((‘general equilibrium’ OR macroeconomic)
NEAR/0 effects) OR spillover∗ OR rebound OR
‘structural change’ OR ‘absorption capacity’ OR
‘crowd∗ out’ OR ‘crowd∗ in’ OR ‘market structures’
OR Schumpeter∗ OR ‘endogenous growth’ OR
‘structural decomposition’)

Appendix B. Experience curves in
renewable energy sources and selected
demand-side technologies

B1. Solar PV
For solar PV, most studies produce learning rates
for unit prices or costs based on global cumulative
deployment. Of the rates presented in figure 8, 18
represent global learning rates for PV modules or
PV systems that cover a time period of 10 years or
more50. Fifteen of these rates were between 14% and
28%. Studies deriving two- or multi-factor experi-
ence curves, where factors such as R&D (Miketa and
Schrattenholzer 2004, Kobos et al 2006), and eco-
nomies of manufacturing scale (Yu et al 2011) are
controlled for, tended to be at the lower end of this
range. Some two- or multi-factor experience curve
studies (Yu et al 2011, de la Tour et al 2013, Gan and
Li 2015, Mauleon 2016, Trappey et al 2016) show that
for PV the effect on the learning rate of controlling
for input prices (especially the price of silicon) has a
varied impact on the learning rate depending on the
analysis period (as they themselves have shown vari-
ation over time).

The studies examined indicate there has been
little to no reduction in the learning rate over time.
While Nemet (2009b) found global learning rates for
PV modules appearing to decrease over sequential
10 year periods between 1976 to 2006, this finding is
strongly influenced by the temporary PVmodule cost
increases caused by supply constraints in the mid-
to late-2000s. When the subsequent easing of these
constraints are taken into account, however, Mauleon
(2016) found that such a long-term trend has not
been evident.

Only two studies calculated learning rates using
the (real or estimated) cost or price of electricity
generated. Zou et al (2016) calculate a rate of 25%
using a derived LCOE in China (1976–2009), whilst
Hong et al (2015)estimate a rate of 2.3% for the aver-
age traded power price for solar PV and total power
traded in South Korea (using a two-factor approach,
controlling for knowledge stock). They suggest this
may indicate a large technology gap with other high-
income countries—however as they use quarterly
data over a short period (2004–2011), they caution
against overinterpretation.

Studies published since the review by
Samadi (2018) have focused on learning rates in

50 Following Nemet (2009b) a minimum period of 10 years is
chosen here as for learning rates based on a shorter period of time
there is a higher risk of them being strongly affected by short-term
influences not correlated to deployment (for example by fluctu-
ations in input prices or by market imbalances leading to tempor-
ary deviations in the cost vs. price developments).
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individual countries and/or balance-of-system (BOS)
costs51.

For residential PV systems, Wei et al (2017b)
found a rate of 33% from 2006 to 2011 for Ger-
many and a rate of 20% from 2009 to 2011 for the
USA. These rates are higher than those evident in
previous years, and the authors speculate this may
be in part be due to changes in deployment pro-
grams in both countries52. Zhou and Gu (2019) con-
struct two-factor experience curves for both utility-
scale (>1.000 kW, for 2009–2016) and residential PV
plants (<10 kW, for 2007–2016) in the USA, finding
learning-by-doing-related learning rates of 7% and
11%, respectively (however they also find that public
R&D led to additional, and greater, cost reductions
over the observed period).

For non-hardware (e.g. planning and installa-
tion) costs of small-scale PV systems in Germany for
1991–2012, Strupeit and Neij (2017) find a learning
rate of 10%. The authors note that this rate is lower
than those typically found for hardware components
(e.g. modules and inverters), explaining the growing
share of non-hardware costs in PV systems over the
past few decades. They also identify a need for fur-
ther research to better understand the drivers of non-
hardware cost reductions. Elshurafa et al (2018) find
an average learning rate of 9% for BOS costs for res-
idential installations, but with considerable variation
between countries.

B2. Concentrating solar power (CSP)
Only two studies examined experience curves for
CSP. Hernandez-Moro and Martinez-Duart (2013)
derive a global learning rate of 11% for installed
costs for 1984–2010, with data dominated by para-
bolic trough (PT) systems, which by 2010 accounted
for over 90% of installations. Lilliestam et al (2017)
examined separate learning rates for PT and solar
tower (ST) installations, with results later corrected by
Lilliestam et al (2019). For PT installations with little
or no storage capacity, they find rates of 21% or 30%
for investment costs depending on the data source
used, for the period 2011–2014 (R2 = 0.97), with
a sixth of the improvement due to improved solar
resource for new projects (this rate remains unaf-
fected in their correction). The authors also exam-
ine data from 1984 and find a value of 2.7%, but
due to cost increases over 2008–2011, an experience
curve fit over the full period is extremely poor. No R2

value is provided for the learning rate to 2010 repor-
ted by Hernandez-Moro andMartinez-Duart (2013).

51 Balance-of-system costs refer to all non-module costs of an
installed PV system, such as the costs of converters, cables, mounts
and labour.
52Wei et al (2017b) stress that they do not have any hard evidence
for a causal relationship between learning rates and deployment
programs, but they speculate that deployment programsmay stim-
ulate new thinking among manufacturers and/or may incentivise
new product designs.

For PT installations with 6–8 h storage, Lilliestam
et al (2019) finds a (corrected) learning rate of 6.8%
(R2 = 0.513) for 2008–2017, or 7.2% (R2 = 0.149)
when focused on 2011–2017. For PT installations
with greater storage capacity and ST installations no
experience curves were discernible, largely due to the
very small number of installations.

B3. Onshore wind
Studies examining experience curves for onshore
wind focus on Europe—and particularly Denmark—
due to the historic concentration of installed capa-
city. The majority of these studies derive learning
rates using turbine prices or investment costs53, with
many using data extending back to the 1980s. Of the
18 learning rates for unit price or cost in figure 9
covering a period of 10 years or more, 15 cluster
between 5% and 15%, with rates derived frommulti-
factor studies again tending towards the lower end
of this range (e.g. Hansen et al 2003, Soderholm and
Klaassen 2007, Grafstrom and Lindman 2017).

For wind power, the relationship between rated
capacity and electricity generation is relatively com-
plex. Over time, changes in turbine design (such
as higher towers, longer rotor blades and improved
control electronics) increase efficiency and produce
higher capacity factors. As a consequence, in the 10
studies (and 11 learning rates) that employ LCOE as a
cost metric, learning rates are typically slightly higher
(at around 8%–13%, for studies covering 10 years
or more). A sub-set of studies derive rates using
both unit prices (or costs) and LCOE and installed
capacity; Neij et al (2004) for Denmark (1981–
2000), Papineau (2006) for Denmark and Germany
(1987–2000) and Williams et al (2017) for the world
(1984/1990–2015) all find higher learning rates using
LCOE (with Partridge (2013) deriving similar val-
ues for both metrics for India, 2006–2011). How-
ever, Lam et al (2017) find slightly lower learn-
ing rates using LCOE than for capacity for China
(2004–2012). The authors suggest this may be due
to a decrease in average estimated capacity factors in
China over the observed period, as the industry’s swift
expansion has run into location and infrastructural
constraints.

Three studies found were not examined by
Samadi (2018), due to their more recent publica-
tion. The first is Lam et al (2017), discussed above.
Williams et al (2017) derive a global learning rate
of 7% for project investment costs for 1984–2015,
and a rate of 9% for LCOE for 1990–2015, both
based on one-factor experience curves. The LCOE
rate increases to 10% and the curve’s goodness of
fit (R2 value) improves when site quality, material
costs and USD exchange rates are considered. Finally,

53 Investment costs are the full costs of installing a wind turbine.
The cost of the turbine itself constitutes about 70%–80% of the
total investment costs (Grafstrom and Lindman 2017).
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Zhou and Gu (2019) derive two-factor experience
curves for the USA for 2009–2016, finding a relatively
high learning rate of 18%, despite attributing 42%
of the observed cost reductions to public R&D. The
authors suggest this result reflects an increase in the
rate of learning, however this may be a faction of the
time period examined, which immediately followed
a period of high commodity prices, a high and value
of the US dollar, and supply constraints, all of which
subsequently reduced, along with wind power costs
(Wiser et al 2018)∗∗.

We identified a single study in the peer-reviewed
academic literature that attempted to derive an exper-
ience curve for offshore wind. van der Zwaan et al
(2012) find an installed cost learning rate of 5%
for offshore wind in Europe (1991–2008), once the
influence of key commodity prices and supply chain
constraints are accounted for. However, the authors
acknowledge that this is based on limited data with a
poor statistical fit.

B4. Bioenergy
Three studies derive learning rates for electricity gen-
erated from biomass. Junginger et al (2006) find a
rate of 23% for investment costs, and 9% for average
electricity production costs (8% formarginal produc-
tion costs) for biomass CHP plants in Sweden (1983–
2002). For biomass power in China, Lin and He
(2016) find rates of 5.6%–7.8% for investment costs,
and 2.2%–6% on an LCOE basis (2005–2012), which
the authors attribute to a combination of ‘learning
by doing’(LBD) and ‘learning by searching’ (LBS).
Wang et al (2018) find a similar value of 4.5% (2006–
2014) on a calculated LCOE basis, with a variable rep-
resenting a combined LBS and LBD influence stat-
istically significant, but a reasonably minor factor in
declining costs (compared to, for example, changes
in O&M costs). Junginger et al (2006) was also the
only study identified that derived learning rates for
average biogas production costs, finding rates of 15%
and 24% (1984–1991) in Denmark, depending on
the data sources used (with both exhibiting high
R2 values), but with no cost reductions found for
1991–2001).

Four studies examine the learning rates for
bioethanol in Brazil. In 1975, Brazil launched a
National Alcohol Program (Pró-Álcool), which set
(generally) increasingly stringent mandates for a per-
centage of bioethanol from sugarcane blended with
gasoline, with an objective to decrease oil depend-
ency, largely in response to the oil crisis of the early
1970s (Moreira and Goldemberg 1999)∗∗. The first
study was Goldemberg (1996)∗, which found a learn-
ing rate of 30% for 1982–1990, reducing to 10% over
1990–1995, with the authors ascribing this shift as
moving from a period of rapid expansion of produc-
tion and associated technological progress, followed
by stagnating production levels (as sugar was instead

exported rather than converted to ethanol, as world
sugar market prices in 1989/90), and a reduction in
the rate of technological progress and cost reduc-
tion (Moreira and Goldemberg 1999)∗∗. The second
study, Goldemberg et al (2004), found rates of 7%
for 1980–1985 and 29% for 1985–2002—seemingly a
reversal of those found in the previous study. How-
ever, the time periods examined enhance or dilute the
expression of different short-term phenomena. Over
1975–1985, bioethanol prices in Brazil were regulated
at the cost of production, after which they were set at
prices below production costs in an attempt to curb
inflation, artificially reducing costs. From 1997 prices
were liberalised, and in 1999 prices reduced sub-
stantially due to overestimated demand and excessive
harvest (before recovering the following year) (Bake
et al 2009)∗, skewing the (short-term) learning rate
derived.

However, Bake et al (2009) find a long-term learn-
ing rate of 20% for 1975–2004, and goes further
to construct learning rates for feedstock (sugarcane)
production costs and processing costs excluding
feedstock costs, deriving rates of 32% and 19%,
respectively. However, they note that the rates derived
by this and the studies described above are heavily
influenced by both a fluctuating currency exchange
rate (with analysis in all studies conducted in USD),
and calculations of pre-1975 cumulative production
(with bioethanol production in Brazil beginning in
1931). Subsequently, Chen et al (2015) found an over-
all learning rate of 16%, over a slightly extended time-
frame (1975–2010) and using different data sources.
They also find that the only statistically significant
driver of the cost reduction experienced to be exo-
genous spillovers rather than endogenous learning or
other phenomena, however the authors recommend
caution with this result, citing a limitation in the use
of aggregate industry-level data.

In 2005 Brazil launched a National Biodiesel Pro-
duction and Use Program (PNPB), also expressed
primarily as a blending mandate with diesel of
increasing stringency. Nogueira et al (2016) find a
learning rate of biodiesel production costs in Brazil
over 2006–2014 (during which the blending mandate
increased from 2% to 7%) to be negative, at −1.7%
(with−4.6% for 2006–2010, but positive at 40.7% for
2011–2015). The authors suggest the trend in prices
was driven largely by feedstock costs, with little tech-
nological progress achieved, although they attribute
the (substantially) positive learning rate in later years
also to economies of scale, as production shifted from
small to larger plants.

Two studies derive experience curves for (mainly
corn-based) bioethanol production in the USA. The
first is Hettinga et al (2009), which find a learning rate
of 18% for total production costs (1980–2005—with
a rate of 45% for corn production costs, and 13% for
ethanol processing costs). They estimate that 84% of
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the cost reductions achieved are due to technological
learning. Chen and Khanna (2012) employ the same
data as Hettinga et al (2009), and find a similar learn-
ing rate of 12% for 1983–2005. In addition, they find
changes in annual corn prices and LBD to account
for 95% of the cost reductions experienced in eth-
anol processing. However, both studies raise issues
with data, both in estimating cumulative production
before the time period examined, and on consistent
and reliable data on production costs.

B5. Demand-side and other technologies
Weiss et al (2010, p 411)∗∗ provided the first ‘compre-
hensive review of experience curve analyses for energy
demand technologies’, synthesising studies of 15 tech-
nologies (largely building heating, lighting and appli-
ances), and found an average, cross-technology rate
of 18% (±7). The learning rates for domestic appli-
ance technologies vary substantially (across both unit
price and cost, depending on the technology), from
9% (refrigerators) to 23% (washing machines—with
laundry driers, dishwashers, freezers and television
sets at 11%–16%—and residential heating, excluding
heat pumps, at 10%), and with substantial variation
within technologies. The authors explain differences
between technologies as result of changes in product
design and services over the time periods analysed
(and which are not considered in the rates derives),
and possible data issues in calculating cumulative
production for products that have been produced
commercially for around half a century. By contrast,
other consumer electronics, electronic components
and heat pumps exhibit high rates of 26%, 22% and
32% respectively, which the authors posit is due to the
use of reasonably novel materials and components,
forwhich a large potential formanufacturing (includ-
ing scale) efficiencies were possible. The authors sug-
gest that such efficiencies are less available in products
such as building insulation and glazing (with a rate
of 18%). Finally, they find average learning rates
of 21% for compact fluorescent bulbs (CFLs), and
16% for (electronic and magnetic) ballasts thereof.
However, for all rates presented, the authors high-
light that as study sample sizes are small, and with
each employing different performancemeasures, geo-
graphical boundaries, and timeframes, definite con-
clusions are difficult to draw.

Few studies since have sought to build upon
the rates synthesised by Weiss et al (2010)∗∗. Two
notable exceptions are Smith et al (2016) and Wei
et al (2017b), both of which derive experience curves
and assess correlations with technology deployment
programmes. Smith et al (2016) derived experi-
ence curves for CFLs for 1990–1997, and for 1998–
2007. For the first period, they find a global rate of
21%, and a rate of 22% for North America (con-
sistent with the average rate derived by Weiss et al
(2010))∗∗, but for the second period, they find rates of

51% and 79%, respectively. The authors suggest this
increase is due to technology standards and public
deployment programmes, coupled with technology
improvements, increased competition and a changing
trade environment. Using the same data, Wei et al
(2017b) produce the same results (and explanations)
for the USA. For electronic CFL ballasts, they find
rates of 8% (1986–1992) and 24% (1993–2005), and
16% (1981–1989) and 39% (1990–1993) for mag-
netic ballasts. These rates largely concur with those
reviewed by Weiss et al (2010), and in some cases
draw on the same data, with the authors also attrib-
uting the higher rates in later years, for electronic bal-
lasts in particular, to technology standards and CFL
deployment programmes. Wei et al (2017b) also find
time-varied rates for general service fluorescent light-
ing in the USA, of 21% (1960–1968, due to intense
market competition), 0% (1969–1985, due to market
consolidation and technological quiescence) and 42%
(1986–1994, due to state and federal standards).

A third study, van Buskirk et al (2014), finds that
learning rates for refrigerators, washingmachines and
air conditioning units in the USA, and refrigerators in
the Netherlands, all increased with the introduction
(or increasing stringency of) energy efficiency regula-
tions (in terms of both unit price, and lifecycle cost).

In the face of growing deployment, some recent
literature has begun to turn its attention to experi-
ence curves for hybrid-electric vehicles (HEVs) and
battery-electric vehicles (BEVs), and their key com-
ponents (particularly lithium-ion batteries). For the
Toyota Prius, the first mass-produced HEV, Weiss
et al (2012) find a learning rate (using retail prices as
a proxy for production costs) of 6% in the USA and
Germany (2000/2001–2010), but just 1% in its first
market of Japan, for 1997–2010 (the authors suggest
this lower ratemay be due to Toyota internally subsid-
ising the Prius during the first years of its availability).
Aggregated for all available HEV models, the study
finds learning rates of 8%–10% in the USA (1999–
2010) and 5% in Germany (2001–2010), with Weiss
et al (2019b) finding the rate for Germany remains
stable (6%) for 2010–2016.

For BEVs, however, Weiss et al (2019b) find a
much higher rate of 23% (also in Germany, for 2010–
2016), although Safari (2018) found a rate of just 9%
for the same years at the global level. Aside from the
different geographical scope, this difference may be
explained at least in part by issues of direct com-
parability of the product (BEVs and HEVs are not
homogenous, either between models or over time),
and the use of market prices rather than cost (and
thus (non-)consideration of geographically and time-
varied factors, such as sales taxes and profit mar-
gins). However, both rates are generally higher than
those found for HEVs, which Weiss et al (2019b,
p 1484), citing (Safari 2018), suggest is due to
‘rapid technological learning in the manufacturing
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of traction batteries, which constitute the largest
individual cost component of an electric power-
train…[which in turn] constitutes a higher share
in the overall production costs of electric cars than
it does in the production costs of plug-in hybrids’.
Matteson and Williams (2015) find a learning rate
of 22% for lithium-ion batteries for 1993–2005,
although the authors highlight that such batteries
were primarily used in small portable electronics dur-
ing this time. Nykvist and Nilsson (2015) conduced a
systematic reviewof 85 cost estimates (reported 2007–
2014) for lithium-ion batteries for use in BEVs spe-
cifically, and derived an average global learning rate
of 9%, with Schmidt et al (2017), deriving a global
rate of 16% for 2010–2016.

Schmidt et al (2017) also derive learning rates for
a range of battery and other technologies employed
for energy storage. They find similar rates for a range
of different systems and scales; 12% for both resid-
ential and utility-scale lithium-ion systems (based on
German market data for 2013–2016, and US data for
2010–2015, respectively), 13% for residential lead-
acid systems (for Germany, 2013–2016), and 11%
for utility-scale vanadium redox-flow systems (for the
USA, 2008–2015). Kittner et al (2017) find a global
learning rate of a 15.5% for lithium-ion cells over
1991–2015.Matteson andWilliams (2015) find learn-
ing rates of 10% and 4% for small (up to automot-
ive size) and large (including utility-scale) lead-acid
batteries (in the USA, 1989–2012), but with a poor
statistical fit. However, when the authors control for
material price volatility, the rates increase to 24% and
19% respectively (with R2 values improving consid-
erably).

Various studies derive experience curves for fuel
cells, largely for stationary applications. The first was
Staffell and Green (2009) who derive a rate of 19.1%–
21.4% for residential proton exchangemembrane fuel
cell (PEMFC) CHP systems in Japan (2004–2008),
revised to 15% with data extended to 2012 by the
same authors (Staffell and Green 2013), and to 18%
for with data extended to 2015 by Schmidt et al
(2017). Including derived rates in Korea (18%, 2006–
2010) and an anonymous manufacturer (15%, 2007–
2011 (Staffell and Green 2013)) derive an average rate
of 16% for PEMFC systems. Schoots et al (2010) cal-
culate learning rates for manufacturers of three types
of fuel cells used in transportation; alkaline (AFC),
phosphoric acid (PAFC) and PEMFC, and find rates
of 18% (1964–1970), 25% (1993–2000) and 30%
(2002–2005), respectively. For PEMFCs, the authors
also derive a global rate (across manufacturers) of
21%.

Rivera-Tinoco et al (2012) were the first to
derive experience curves for solid oxide fuel cells
(SOFCs), principally used for stationary purposes.
They derive an overall (global) learning rate of
35% for 1996–2008, but when excluding economies
of scale and automation effects, the rate reduces

for 20% for ‘pure learning’ phenomena (includ-
ing learning-by-searching). They also find varied
rates of 16%, 44% and 12% for the ‘R&D stage’,
‘pilot stage’ and ‘early commercial stage’ respect-
ively, with ‘pure learning’ rates of 16% (attributed to
pure learning-by-searching), 27% (with economies-
of-scale for component materials being dominant),
and 1% (with economies-of-sale for manufacturing
technologies dominant). Complementing the studies
described above, Wei et al (2017a) derive an experi-
ence curve for SOFC residential CHP systems in Japan
(which have deployed in parallel, but to a far lesser
degree, to PEMFC systems), and find a rate of 18%
for 2005–2015. The further indicate that ‘the observed
cost reduction can be explained by three compon-
ents [of] roughly comparable magnitude: economies
of scale, product design improvements, potential cost
reductions in installation cost and other soft costs,
and other factors’ (ibid, p 353). The authors also
find that for SOFC, molten carbonate (MCFC) and
PAFC systems in California, cost reductions (and thus
learning rate) have beennegligible (2007–2015, 2003–
2014 and 2001–2013, respectively). Various possible
explanations for this are provided, including the use
of (variable) system rather than fuel cell stack costs,
a lack of market competition, and manufacturers
recouping their investment costs through increasing
margins.
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