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Abstract. The hybrid trapped field magnet lens (HTFML) is a promising device that is able to 

concentrate a magnetic field higher than an applied background field continuously, even after 

removing a background field, which was conceptually proposed by the authors in 2018. We have 

numerically investigated the HTFML performance, consisting of a REBaCuO cylindrical 

magnetic lens and REBaCuO trapped field magnet (TFM) cylinder, magnetized by pulsed fields. 

Single magnetic pulses were applied ranging from Bapp = 1.5 T to 5.0 T at the operating 

temperature of Ts = 30, 40 and 50 K, and the performance was compared with that of the single 

REBaCuO TFM cylinder. The HTFML effect was clearly confirmed for the lower Bapp values. 

However, for the higher Bapp values, the trapped field in the magnetic lens bore was nearly equal 

to or slightly lower than that for the single TFM cylinder because of a weakened lens effect due 

to magnetic flux penetration into the lens. A temperature rise in the REBaCuO magnetic lens 

and TFM cylinder was also observed. These results strongly suggest that lowering the 

temperature of the REBaCuO magnetic lens could enhance the HTFML effect even for higher 

Bapp.  

1.  Introduction 

Bulk superconductors can be used as trapped field magnets (TFMs), because they can trap a higher 

magnetic field by a strong ‘vortex pinning effect,’ which is proportional to the critical current density, 

Jc(B, T), and the diameter of the bulk. In particular, melt-processed single-domain REBaCuO 

superconducting bulks (where RE is a rare earth element or Y) are a possible candidate for strong TFMs, 

because their Jc significantly improves by lowering the temperature. Trapped fields over 17 T below 30 

K have been achieved using YBaCuO and GdBaCuO bulks by field-cooled magnetization (FCM) to 

date [1 - 3]. Bulk TFMs magnetized by FCM can trap a magnetic field nearly the same or slightly lower 

than the applied field, Bapp. However, such high applied fields are only available from specialized, 

expensive superconducting magnets in a limited number of facilities worldwide. For this reason, such 

high-strength TFMs magnetized by FCM are generally not practical for applications, although the 

technique is useful for characterizing a bulk’s maximum trapped field capability. Pulsed-field 

magnetization (PFM) is the most practical method to magnetize superconducting bulks because it is a 

faster magnetizing process than FCM (on the order of milliseconds) and is an inexpensive and mobile 

experimental setup using a copper pulsed magnet. However, the trapped field by PFM is much lower 
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than that by FCM because of a larger temperature rise resulting from the rapid and dynamical motion of 

the magnetic flux in the bulk during its magnetizing process [4 - 6]. The maximum trapped field achieved 

by PFM to date is 5.2 T at 29 K [7], which is significantly lower than that achieved by FCM; 17 T. 

A ‘magnetic lens’ using a cone-shaped superconducting bulk pair has also been investigated, in 

which the magnetic flux is concentrated in its bore, exploiting the ‘diamagnetic shielding effect’ of the 

superconducting material. The available magnetic field is higher than the applied field generated by the 

external magnetizing coil [8 - 10]. A concentrated magnetic field of Bc = 12.42 T was achieved at 20 K 

for a background field of 8 T by using a cone-shaped GdBaCuO bulk magnetic lens [9] and Bc = 30.4 T 

at 4.2 K was achieved for a background field of 28.3 T [10]. 

We proposed a new concept of the hybrid trapped field magnet lens (HTFML) in 2018, which 

combines an outer bulk TFM cylinder with an inner bulk magnetic lens [11]. In the HTFML, the TFM 

cylinder traps and provides a static magnetic field exploiting the ‘vortex pinning effect’ and the inner 

magnetic lens concentrates the magnetic field in its bore exploiting the ‘diamagnetic shielding effect’. 

The magnetic field generated in the HTFML bore is higher than that in the TFM cylinder itself. Using 

an MgB2 bulk cylinder and GdBaCuO bulk lens, the HTFML was predicted numerically to generate a 

concentrated magnetic field of Bc = 4.73 T with a background magnetizing field of Bapp = 3 T. With the 

HTFML consisting of  a GdBaCuO bulk cylinder and GdBaCuO bulk lens, a significantly higher Bc = 

13.49 T was predicted for a higher Bapp = 10 T. Recently, we have experimentally confirmed the HTFML 

effect using a setup with an MgB2 bulk cylinder and GdBaCuO bulk lens, and Bc = 3.65 T was achieved 

for Bapp = 2.0 T at 20 K [12]. If the HTFML concept can be realized and the trapped field is enhanced 

using PFM, the practical applications of such a configuration of superconducting bulks could be 

expanded widely.  

In the present study, we have carried out numerical simulations of the PFM of an HTFML consisting 

of an outer REBaCuO TFM cylinder and inner REBaCuO magnetic lens. The possibility of the magnetic 

field amplification by the HTFML using PFM is investigated.  

2.  Numerical simulation framework 

A three-dimensional (3D) numerical model was constructed based on our experimental setup for PFM 

[13], and numerical simulations were performed using the finite element method (FEM). The 

commercial software package, Photo-Eddy (Photon Ltd, Japan), combined with Photo-Thermo (Photon 

Ltd, Japan), was adapted for the analyses. Figure 1(a) shows the cross-sectional view of the numerical 

model used in the simulation. The REBaCuO cylindrical magnetic lens (10 mm in inner diameter (ID), 

30 mm in outer diameter (OD) and 7.5 mm in height (H)) and the REBaCuO TFM cylinder (ID = 36 

mm, OD = 60 mm, H = 20 mm) are placed on the cold stage, which are aligned along their central lines. 

A stainless steel (SS) ring 6.25 mm in H is set below the magnetic lens to align with the center of the 

TFM cylinder. The bottom surface of both the SS ring and TFM cylinder are thermally connected to the 

cold stage of the refrigerator by a thin indium sheet and cooled to operating temperatures of Ts = 30, 40 

and 50 K. The HTFML is magnetized by single pulsed magnetic fields ranging from Bapp = 1.5 T to 5.0 

T with a rise time of 13 ms and a duration of 200 ms using an outer solenoid magnetizing coil (ID = 100 

mm, OD = 120 mm, H = 50 mm).  

Figure 1(b) shows the top view of the magnetic lens and TFM cylinder. In the cylindrical magnetic 

lens, two slits of 10° wide are assumed, which are the same as those in the cone-shaped magnetic lens 

investigated in our previous works [11, 12]. The trapped field, BT, for the single TFM cylinder and the 

concentrated field, Bc, for the HTFML along the z-direction are calculated in the inner bore (r = z = 0 

mm). The electromagnetic and thermal behaviour during PFM are described by the fundamental 

equations shown elsewhere [14 - 16]. The power-n law (n = 20) was used to describe the nonlinear E–J 

characteristic of the REBaCuO superconducting bulks as 
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Figure 1. (a) Cross-sectional view and (b) top view of the HTFML model used in the numerical 

simulations. 

 

Figure 2. Temperature dependence of (a) thermal conductivity, , and (b) specific heat, C, of GdBaCuO, 

SS304 and indium assumed in the simulation. 

 

                                   
𝐸 = 𝐸𝑐 (

𝐽

𝐽𝑐
)
𝑛

, 

 

                                 

(1) 

where Jc is the critical current density of the bulks and Ec (= 10−4 V/m) is the characteristic electric field. 

For the REBaCuO bulks used in the numerical simulation, the magnetic field- and temperature-

dependent critical current density, Jc(B, T),  proposed by Kim et al. [17] was adopted using the following 

equation, 
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(2) 

where Tc is the critical temperature (= 92 K) of the REBaCuO superconductor, B0 = 1.3 T is a constant 

and  = 3.45 × 109 A/m2 is the extrapolated Jc value at T = 0 K and B = 0 T. The REBaCuO bulks are 

assumed to be isotropic and homogenous for simplicity. The temperature dependence of the thermal 
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properties (thermal conductivity and specific heat) of the materials (REBaCuO bulk, SS and indium) 

used in the simulation are from references [18 - 22], as shown in Fig. 2.  

3.  Results and discussion 

3.1.  Electromagnetic and thermal properties of HTFML magnetized by pulsed fields 

Figure 3(a) shows the time dependence of trapped field, BT(t), in the inner bore (r = z = 0 mm) for the 

single TFM cylinder magnetized by pulsed fields of Bapp = 3.0 T to 4.5 T at Ts = 40 K. The time 

dependence of the normalized background field, Bex(t)/Bapp, is also shown on the right vertical axis. For 

Bapp < 3.5 T, BT(t) took a maximum value and then reached its final value at t = 7 s with a slight decay. 

On the other hand, for Bapp > 4 T, a large decay of BT during the descending phase of the pulse (t ≥ 13 

ms) can be seen, and the BT(t = 7 s) value for Bapp = 4.5 T was in fact lower than that for Bapp = 4.0 T. 

These results come from the large temperature rise due to the rapid flux movement and the decrease in 

Jc(B, T) of the bulks related to the higher applied field. 

Figure 3(b) shows similar numerical results for the HTFML magnetized by pulsed fields of Bapp = 3.0 

T to 4.5 T at Ts = 40 K. Similar to the magnetization of the single TFM, for Bapp < 3.5 T, the concentrated 

magnetic field, Bc(t), took a maximum value and then reached its final value at t = 7 s with a small decay. 

However, the Bc(t = 7 s) value was higher than the BT(t = 7 s) for the single TFM; the Bc(t = 7 s) values 

for Bapp = 3.0 T and 3.5 T were 0.93 T and 1.61 T, respectively, which were higher than BT(t = 7 s) = 

0.55 T and 1.35 T, respectively, for the single TFM. These results suggest that the HTFML effect can 

be achieved by PFM for lower Bapp. However, for Bapp > 4.0 T, Bc(t) took a maximum, which was higher 

than BT(t) for the single TFM, but also suffered a larger decay of Bc(t) than BT(t) during descending 

phase of the pulse. The Bc(t = 7 s) value was 1.75 T for Bapp = 4.0 T, which was nearly the same as BT(t 

= 7 s) for the single TFM. In addition, for Bapp = 4.5 T, the Bc(t = 7 s) value was 1.48 T, which was 

smaller than BT(t = 7 s) = 1.72 T for the single TFM. The inset of Fig. 3(b) shows the magnitude of the 

flux flow, Bflow = BT
max – BT(t = 7s) (or Bc

max − Bc(t = 7s)), as a function of Bapp at 40 K. The Bflow value 

increased with the increase in Bapp for each case. The Bflow value for the HTFML was higher than that 

for the single TFM.  

 

 

Figure 3. Time dependence of the magnetic field, (a) BT(t) for the single TFM cylinder and (b) Bc(t) for 

the HTFML in the inner bore (r = z = 0 mm) at 40 K for applied fields of Bapp = 3.0 to 4.5 T. The 

normalized background field (dotted curve), Bex, is also shown on the right vertical axis. The applied 

field, Bapp, dependence of the flux flow, Bflow, is shown in the inset of (b). 

 

Figure 4 shows the time dependence of the temperature rise, T, in the TFM cylinder and the 

magnetic lens in the same HTFML device for Bapp = 3.0 T and 4.5 T at Ts = 40 K. The temperature was 

calculated at the outer edge of the TFM cylinder surface (r = 30 mm, z = 10 mm) and the inner edge of 
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the magnetic lens surface (r =5.0 mm, z = 3.75 mm), both of which are the locations of the highest 

temperature rise, being most exposed to the magnetic field. The T value in the TFM cylinder increases 

with the increase in Bapp, and the T(t) profiles have a two-step rise which is closely related to the rate 

of flux movement for the ascending and descending phases of the pulsed field, as indicated in previous 

research [19, 23]. The temperature rise takes a maximum at around t = 1 s, which was 6 K (Tmax = 46 K) 

for Bapp = 3.0 T and 22 K (Tmax = 62 K) for Bapp = 4.5 T. The large temperature rise leads to the 

degradation of the superconducting properties and causes noticeable flux flow, as shown in Fig. 3. In 

contrast, for the magnetic lens, the temperature hardly increased for Bapp = 3.0 T, for which the 

performance of the magnetic lens was affected minimally by the temperature rise. However, for Bapp = 

4.5 T, the temperature of the magnetic lens increases with increasing time and the maximum T was 6 

K, which reduces the Jc of the magnetic lens. It should be noted that the temperature rise of the magnetic 

lens was delayed compared to the TFM cylinder because of the magnetic shielding effect of the outer 

TFM cylinder.  

 

Figure 4. Temperature rise, T, in the TFM cylinder and magnetic lens in the HTFML as a function of 

time for Bapp = 3.0 T and 4.5 T at Ts = 40 K. The temperature was calculated at the outer edge of the 

TFM cylinder (r = 30 mm, z = 10 mm) and the inner edge of magnetic lens (r = 5.0 mm, z = 3.75 mm). 

 

Figures 5(a) and 5(b), respectively, show the time dependence of the magnetic field profiles of the 

single TFM and HTFML for Bapp = 3.0 T at 40 K during the descending phase of the applied pulse (t ≥ 

13 ms). In Fig. 5(a), the magnetic field was shielded by the TFM cylinder but slightly penetrated into 

the cylinder bore at t = 13 ms, which was as small as 0.1 T. The trapped field within the bore slightly 

increased with increasing time. A flat trapped field distribution with a maximum value of only 0.3 T 

was observed inside the bore in the case of the single TFM. Therefore, the applied field of Bapp = 3.0 T 

was not enough to fully magnetize the TFM cylinder. On the other hand, in the case of the HTFML, as 

shown in Fig. 5(b), the magnetic field which penetrated into the cylinder bore and passed through the 

slit of the magnetic lens was concentrated in the lens bore with time. Consequently, a concentrated field 

of about 1.0 T was achieved at t = 7 s. The magnetic field did not penetrate into the magnetic lens region 

(5 mm ≤ r ≤ 15 mm and −15 mm ≤ r ≤ −5 mm), which implies that a high Jc(B, T) for the magnetic lens 

could be maintained against the magnetic field in the cylinder bore. As a result, the concentration and 

amplification of the trapped field was realized for Bapp = 3.0 T. 

Figures 5(c) and 5(d), respectively, show similar profiles of the magnetic field for the single TFM 

and HTFML for Bapp = 4.5 T. In the case of the single TFM, the magnetic field penetrated significantly 

more into the cylinder bore at t = 13 ms, which was as large as 3.2 T. The magnetic field then decreased 

with increasing time, and finally reached 1.7 T at t = 7 s. For the HTFML, as shown in Fig. 5(d), the 

magnetic field penetrated into the lens bore at t = 13 ms, which was about 3.5 T and slightly higher than 
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that for the single TFM. The magnetic field in the lens bore decreased with increasing time due to the 

large flux flow and the final Bc(t = 7 s) value was 1.48 T, lower than the BT(t = 7 s) value for the single 

TFM. It should be noted that the magnetic flux penetrated and was trapped in the magnetic lens region, 

which leads to the decrease in Jc in the magnetic lens due to the increase in both temperature and 

magnetic field. This magnetic field trapped in the magnetic lens part generates an opposing magnetic 

field along the -z-direction in the lens bore [12]. As a result, the final Bc value at t = 7 s decreased, 

compared to the trapped field for the single TFM. 

 

 

Figure 5. Time dependence of the magnetic field profiles of (a) single TFM cylinder and (b) HTFML 

along the r-direction (z = 0 mm) for Bapp = 3.0 T at Ts = 40 K. Similar profiles are also shown for (c) 

single TFM cylinder and (d) HTFML for Bapp = 4.5 T at Ts = 40 K. 

3.2.  Temperature dependence of final trapped field and temperature rise of HTFML.  

Figure 6(a) shows the applied field dependence of the concentrated field, Bc(t = 7 s), and trapped field, 

BT(t = 7 s), at Ts = 30, 40 and 50 K. The applied field, Bapp, at which the magnetic flux penetrated into 

the TFM cylinder bore and the trapped field took a maximum, shifted to a higher field for lower Ts 

because the magnetic shielding effect of the TFM cylinder increases with increasing Jc. Thus, a higher 

applied field was required for the full penetration of the magnetic flux into the inner bore. The HTFML 

effect can be confirmed for lower applied fields at each Ts. For example, in the case of Ts = 50 K and 

Bapp = 2.5 T, the concentrated field Bc(t = 7 s) = 0.63 T was 1.8 times higher than the trapped field BT(t 

= 7 s) = 0.35 T, and at Ts = 30 K and Bapp = 3.5 T, Bc(t = 7 s) = 1.35 T was 1.35 times higher than BT(t = 
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7 s) = 1.0 T. However, it should be noted that for the higher applied fields, the maximum of the final 

concentrated field, Bc(t = 7 s), for the HTFML could not exceed the maximum trapped field, BT(t = 7 s), 

for the single TFM at each Ts.   

Figure 6 (b) shows the applied field dependence of the maximum temperature rise, Tmax, in the TFM 

cylinder and the magnetic lens in the same HTFML device at each operating temperature, Ts. The 

temperature was calculated at the outer edge of the TFM cylinder surface (r = 30 mm, z = 10 mm) and 

the inner edge of the magnetic lens surface (r = 5.0 mm, z = 3.75 mm). At each Ts, ΔTmax in each part 

increases with increasing Bapp due to the dynamic flux movement. ΔTmax increases for lower Ts, and 

ΔTmax in the TFM cylinder was twice or three times larger than that in the magnetic lens. Since the 

specific heat of the bulks decreases with decreasing temperature, as shown in Fig. 2(b), the increase in 

ΔTmax is reasonable for a lower operating temperature. In the magnetic lens, the small temperature rise 

implies that a large concentration of magnetic field can be expected if only the magnetic lens part is 

cooled further. For example, if the temperature of the TFM cylinder is 40 K and the magnetic lens is 

cooled to 20 K, the Jc(B, T) characteristics of the magnetic lens are improved and the HTFML effect for 

higher applied fields can be expected. In addition, a modified multi-pulse technique with step-wise 

cooling (M-MPSC) may be an effective method to enhance the HTFML effect [24, 25]. Using this 

method, the performance of the both TFM cylinder and magnetic lens could be improved. 

 

 

Figure 6. (a) Applied field, Bapp, dependence of the final concentrated field, Bc(t = 7 s), for the HTFML 

(solid line), and the final trapped field, BT(t = 7 s), for the single TFM cylinder (dotted line) at Ts = 30, 

40 and 50 K. (b) Bapp-dependence of the maximum temperature rise, Tmax, in the TFM cylinder and the 

magnetic lens at Ts = 30, 40 and 50 K. 

 

4.  Conclusion 

We have numerically investigated the performance of the hybrid trapped field magnet lens (HTFML) 

magnetized by pulsed fields, assuming a REBaCuO cylindrical magnetic lens and REBaCuO TFM 

cylinder. The important results and conclusions in this study are summarized as follows. 

 
(1) The HTFML effect was confirmed clearly for lower applied fields, Bapp, compared with the trapped 

field for the single TFM cylinder under identical conditions for Bapp and operating temperature, Ts. 

(2) For higher Bapp, the concentrated field for the HTFML was nearly equal to or slightly lower than 

the trapped field for the single TFM cylinder because of magnetic flux penetration and trapping in 

the magnetic lens.  

(3) To enhance the HTFML effect for higher Bapp, lowering the temperature of the magnetic lens with 

respect to the TFM cylinder is a possible solution because the Jc(B, T) characteristics of the 

magnetic lens would be improved, and the shielding effect will be enhanced further. 
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