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Abstract: This paper considers the problem of semi-parametric proportional hazards model fitting where
observed survival times contain event times and also interval, left and right censoring times. Although this is
not a new topic, many existing methods suffer from poor computational performance. In this paper, we adopt
a more versatile penalized likelihood method to estimate the baseline hazard and the regression coefficients
simultaneously. The baseline hazard is approximated using basis functions such as M-splines. A penalty is
introduced to regularize the baseline hazard estimate and also to ease dependence of the estimates on the
knots of the basis functions. We propose a Newton-MI (multiplicative iterative) algorithm to fit this model. We
also present novel asymptotic properties of our estimates, allowing for the possibility that some parameters
of the approximate baseline hazard may lie on the parameter space boundary. Comparisons of our method
against other similar approaches are made through an intensive simulation study. Results demonstrate that
our method is very stable and encounters virtually no numerical issues. A real data application involving
melanoma recurrence is presented and an R package ‘survivalMPL’ implementing the method is available on
R CRAN.

Keywords: asymptotic properties; automated smoothing; constrained optimization; interval censoring; semi-
parametric proportional hazard model.

1 Introduction

In this paper, we consider the problem of fitting semi-parametric proportional hazards (PH) models, also
known as Cox regression, where observed survival times contain event times and left, right and interval
censoring times. This type of data is also called the partly interval-censored data in [1]. We will present an
efficient algorithm to compute the constrained maximum penalized likelihood (MPL) estimate of PH models
where a penalty function is employed to regularize the baseline hazard estimate. This penalty function is
also used to relax dependence between the estimates and the knots of the basis functions employed to
approximate the baseline hazard. We will also provide asymptotic results for the constrained MPL estimates,
accommodating possible active constraints, i.e., baseline hazard parameters equal to zero.

Likelihood based semi-parametric PH model estimation for survival data with interval censoring has been
considered by many researchers; see, for example, [1-9], and references therein. Our method in this paper is
designed to estimate the regression coefficients and baseline hazard of the semi-parametric PH model.
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For these existing methods, there are two common issues: (i) the non-negative constraint on the baseline
hazard is not addressed properly; and (ii) the asymptotic covariance matrix for the regression coefficients
estimates can be difficult to compute.

Issue (i) is often addressed by transformations. For example, Joly et al. [4] adopt squared coefficients for
their baseline hazard approximation, and Cai and Betens [9] express the baseline hazard by exponentiating
a spline function. However, transformations do not provide ideal solutions. Indeed, the square coefficient
method can cause multiple local maxima to the objective function, resulting in algorithms sensitive to their
initial values, and exponentiating a spline function does not allow portions of the baseline hazard to equal
0, which can happen with long survival times, as well as lead to computational hardship when updating the
cumulative baseline hazard at each iteration after the spline coefficients are updated. This computational
hardship is mainly due to the integration component of the cumulative baseline hazard which has no closed-
form expressions in general, possibly leading to much longer computational time. Common approaches
to addressing issue (ii) include bootstrapping (e.g. [5]) and efficient score functions (e.g. [10]). However,
bootstrapping is computationally intensive, while efficient scores are generally difficult to compute.

Our approach is designed to address the above two common difficulties for likelihood estimates. In this
paper we first present a computationally efficient procedure for constrained MPL estimation of the PH model,
then we develop asymptotic properties for the constrained MPL estimates. As shown in our simulation study,
the asymptotic results produce accurate standard error estimates for both regression coefficients and baseline
hazard.

In Section 2 we develop an iterative scheme to solve this problem. Optimal smoothing using a marginal
likelihood is explained in Section 3. Asymptotic properties for these estimates are presented in Section 4,
with proofs given in Supplementary Material. Section 5 contains the results from a simulation study and also
the results from a melanoma data application. Concluding remarks are included in Section 6.

2 Penalized likelihood estimation

For individual i, wherei =1, ..., n, let Y, be the random variable representing the time to onset of the event-
of-interest. The value for Y; may not be obtained exactly and in this case we observe interval censored
times denoted by a bivariate random vector C; = (Cl.L, CIB)T, where Cl.L >0, CIR > CiL and the superscript T
denotes matrix transpose. Note that it is possible for Cl.L =0 or CIR = +00, corresponding to left or right
censoring respectively. For any i, we can observe either Y; or C; but not both. If C; is observed then we
know Y; € (CI.L, Cf). We assume independent interval censoring given the covariates. More specifically, this
independent assumption means that P(T; < t|C; = ¢}, C} = ¢}, Ct < T; < CY) = P(T; < t|ep < T; < c¥) (refer
to Chapter 1 of [6] and [11] for details).

Let §; be the indicator for event times and 5,'R’ 51.L and 51.1 be the indicators for right, left and interval
censoring times respectively. Clearly, §; = 1— 6} — &/ — 6. In this paper, we denote the observations for
subject i by (tl.L, t?, Xx;), where (tl.L, tf) can represent the observed event time (indicated by tl.L = tf) or censoring
times and X; is a p-row vector for values on covariates. Clearly, if tl.L = 0 the corresponding t? is the left
censoring time, while tf = oo gives tl.L the right censoring time. Note that for the cases of left, right and event
time, effectively only a single time point is involved, and so we can denote them by a single time ¢; (associated
with 51.L, SI.R or §;) when there is no confusion.

From the given observations, we wish to estimate the PH model:

h(t|x;) = hy(t) exp(x; ), oy

where h(t|x;) denotes the hazard function for individual i, h,(t) represents the baseline hazard and g is a
p-vector of regression coefficients. Let X be the model matrix whose ith row is given by x;. Clearly, it requires
ho(t) > 0 so that both h,(t) and h(t|x;) are valid hazard functions. Let H,(t) be the cumulative baseline hazard
function. Then, H(t|x;) = H,(t)exp(x;p) is the cumulative hazard function and S(¢|x;) = exp(—H(¢|x;)) is the
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survival function. Note that, to simplify notations, we will remove x; from h(t|x;), S(t|x;) and H(t|x;) when
there is no confusion, and respectively denote them by h;(t), S;(t) and H;(t).

In this paper we consider the MPL method to fit model (1), where h,(¢) and f are estimated simultaneously
and a penalty is used to regularize the h,(t) estimate. Since h,(t) is an infinite dimensional parameter,
its estimation from a finite number of observations is ill-conditioned. This problem can be addressed by
approximating h,(t) using a finite number of non-negative basis functions (e.g. [4]), that is

ho(®) = Y 0,u,(0), @
u=1

where () > 0 are basis functions and m can vary with sample size n but with a slower rate in that m — oo
as n — oo but m/n — 0. Note that m is related to the number of knots defining the basis functions. Possible
choices for basis functions include indicator functions, M-splines and Gaussian density functions.

The requirement that hy(f) > 0 can now be imposed more simply through 6 > 0, where @ = (0, ... ,0,,)"
and 0 > 0 is interpreted element-wise. Approximation using basis functions in PH models has been adopted
by many authors, including Zhang et al. [8] for spline based sieve maximum likelihood estimation, Cai and
Betensky [9] and Joly et al. [4] for respectively penalized linear spline and M-spline based MPL estimation,
and Ma, Heritier, and L6 [12] for constrained MPL estimation.

Using the notations introduced above, the log-likelihood for observation i is

1(B, 0) = 5,(log hy(t;) + x; + log S,(t)) + & log S;(t;)
+6; log(1 = Si(t;)) + &; log(S;(t;) — Si(£)). (3)

The log-likelihood from the entire data set is then

1(8,0) = ) (B, 6). )
i=1

In this paper we introduce an efficient algorithm to compute the penalized likelihood estimate of # and @
where a penalty function is used to regularize/smooth the h,(t) estimate. Another reason for a penalty is that
it will dampen non-important 8, to O and hence relaxes the potential influence of the number and location
of knots on the estimates. In fact, a penalty plays an important role for facilitating a stable computational
algorithm for our problem.

Thus, the MPL estimation of  and 0 is a constrained optimization problem:

(B, ) = argmax{ @(8,0) = 1($,0) - J(O)}, ©)

subject to @ > 0. In (5), 4 > 0 is the smoothing parameter and J(6) is the penalty function to regularize the
h,(t) estimate. For example, the well known roughness penalty [13]is J(0) = / h//(t)*dt = 0"RO, where matrix
R has the dimension of m X m with its (u, v)th element r,, = [ w! (] ()dt. Once 0is obtained, the MPL
estimate of hy(t) is hy(f) = ZZ;l@uq/u(t).

We propose an algorithm similar to the one developed in [12] to find the required estimates for § and
0, where 6 > 0. This is an alternating iterative method where each iteration involves two steps: firstly, g is
updated using the Newton algorithm, and then @ is computed from the multiplicative iterative (MI) algorithm
(e.g. [14]) which produces estimates satisfying the non-negativity constraint.

The Karush-Kuhn-Tucker (KKT) conditions for the constrained optimization (5) are 0®/0f ;=0, and
0d/06,=0if 6, > 0and 0d/00, < 0if§, =0, wherej=1,...,pandu=1,...,m.

In our algorithm, the vector g is first updated by the Newton algorithm at each iteration as follows:

(6)

o (pY, 9"‘))] ~ao(g®, o)

(c+1) _ k) (k)
= + ,
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where coik) € (0,1] is a line search step size for @(ﬁ("“), 9(")) > @(ﬁ(k), 6(")). Expressions for the first and the
second derivatives in (6) are available in Supplementary Material. Next, @ is updated by the MI algorithm to
give

k K
o+ — g 4 ,Mp® oD, %) @
2 00 ’
where D® is a diagonal matrix with diagonals 0,(]() / dflk) foru=1,...,m, where

d% =Y 5, (t) exp(x;*) + Y 68V, (t;) exp(x, )
i=1 i=1
s STEIPD)

21(6%)
7T sW(E) — sO(eR)

* 90,

n
i=

+
exp(x,-,B(kH)) + A [ ] +&,.

Here, ¥, (t) = /th/u(w)dw, [a]t = max{0,a} and &, is a small non-negative constant used to avoid
the possibility of zero d,; the size of &, will not affect the final solution of this algorithm but will affect its

convergence speed. In (7), wg‘) € (0,1] is a line search step size. Since this algorithm involves both Newton

(k)

. and co;k) can be determined efficiently by,

and MI steps, we call it the Newton—MI algorithm. Step sizes @
for example, the Armijo rule [15]; see also [16].

Following the same argument as in [14] we can show that (i) if oW is non-negative then is also
non-negative, and (ii) under certain regularity conditions, this Newton—MI algorithm converges to a solution

satisfying the KKT conditions.

9(k+1)

3 Smoothing parameter estimation

Automatic smoothing parameter selection is pivotal for successful implementation of the penalized likelihood
parameter estimation, particularly for users who are less experienced with manual selection of smoothing
values.

Akaike’s information criterion (AIC), cross validation (CV) or generalized cross validation (GCV) are all
possible choices for estimating smoothing parameter A, but in this section we particular apply the marginal
likelihood approach (e.g. [9]).

We adopt a quadratic penalty function J(8) = GTRO, which can be related to the normal prior distribution
for 0, N(Omxl,aéR‘l), where 0(29 =1/24. Thus, after omitting the terms independent of f, 6 and 0'(29, the
log-posterior is

1,8.0) = =" log 0} +1(8.6) - %GTRG. ®)

The log-marginal likelihood for o-é (after integrating out f and 6) is

In(03) = =" log o3 + log / exp <1(/3, 0) - Lizeﬁw) dpde. )
]

After applying Laplace’s approximation and plugging-in the MPL estimates for # and 6, we have

In(62) ~ —% log o5 +1(8.6) ~ 5 ;0"RO ~ _ log |G + Q(a;)(, (10)
o

where G is the negative Hessian from the log-likelihood (8, 6), G is G evaluated at ﬁ and @, and
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The solution of aé maximizing (10) satisfies

~ _ 0RO
oy = ,
m—v

(¢5))

where v = tr{(a + Q(&é))‘lQ(ag)}, which can be conceived as the model degrees of freedom. Active con-
straints of @ > 0 may bring difficulties to the matrix inversion in v. In this case, a modification similar to the
covariance matrix in Theorem 2 (using matrix U) can be adopted. A recommended procedure for identifying
active constraints is available in Remark 2 after Theorem 2.

Since B and 6 depend on aé, expression (11) naturally suggests an iterative procedure: with aé being

fixed at the its current estimate, the corresponding MPL estimates of f# and 6 are obtained, and then aé is

updated by (11) with the new /A3 and 0. This process is continued until the degree-of-freedom v is stabilized.
Results in Section 5 reveal that this iterative procedure usually converges quickly.

4 Asymptotic properties

In this section we present asymptotic results; these results are useful for conducting large sample inferences
without resorting to computer-intensive methods such as bootstrapping.

Let (B, hoo(t)) be the true parameters and (ﬂ ho(t)) the MPL estimates. Theorem 1 below provides
asymptotic consistency for ([3 ho(t)) when the number of basis functions m — oo but m/n — 0 and the scaled
smoothing value y, = 4/n — 0 when n — oo0. Let a and b be respectively the minimum and maximum of all
the observed survival times (including interval censoring but excluding 0 and o).

Theorem 1. Assume Assumptions A1-A4 in Supplementary Material hold. Assume h(t) is bounded and has up
tor > 1derivatives over [a, b]. Assume m = n’, where 0 < v < 1, and u, — 0 as n —» oo. Then, when n — oo,

1) I8 = Boll = O almost surely, and
() superaplho(t) — hoo(t)| — O almost surely.

Proof. See Supplementary Material Section S2.1. O

If following, for example [3, 8], or [17]; asymptotic normality results for 3 can be formulated from the
efficient score function. An efficient score can be interpreted as the orthogonal projection of the score for f
onto the space spanned by the score for h,(t) (for example, [18, 19] and [20, Chapter 2]). However, one issue
with this method is that efficient scores are generally difficult to compute. Moreover, people may also wish to
make inferences on quantities such as survival probabilities, thus it can be useful if the approximated h(t) is
included in the asymptotic normality. This motivates us to develop asymptotic normality results for ﬁ and 0
jointly.

One noticeable problem is that, if m increases with n, the length of 0 (i.e. m) can go to co when n — co. We
avoid this by fixing m to a finite number. This strategy also appears in [21] for semi-parametric partially linear
single index models. Yu and Ruppert [21] comment that this approach lies somewhere between parametric
and nonparametric modeling. A fixed m still allows the approximation given in (2) flexible enough to adapt to
different baseline hazard functions. The penalty function i is used to avoid over fitting. Therefore, m remains
in the asymptotic normal distribution. The MPL estimates [3 and O can still achieve \/ﬁ convergence rate in
this context. The simulation results reported in Table 5 demonstrate that the error in the estimation of h(¢) is
small when compared with its competitors.

The MPL estimate of 6(> 0) often encounters active constraints: i.e. 8, = O for some u. This happens
particularly when the number of knots is bigger than it should be. In this case, the penalty function will
dampen unnecessary 68,’s to zero. In Remark 2 below, we explain how to identify active constraints. Active
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constraints must be taken into consideration in the asymptotic covariance matrix as otherwise unpleasant
results, such as negative variances, can be produced [22]. In the following discussions, we follow [23] to
develop our asymptotic normality results for ﬁ and 0.
Letn = o, ,BT)T, whose length is a finite number m + p. The penalized likelihood in (5) can be expressed
innas
@) = lm) — (),

where J(17) = J(6). The MPL estimate of #, denoted by 7, is obtained by maximizing ®(#) with the constraint
0 > 0. Let i, represent the ‘true value’ of parameter 7.

We frequently experience active constraints when estimating € so this fact must be allowed when
developing asymptotic results. To elucidate discussions we assume, without loss of generality, that the first g
of @ > 0 constraints are active in the MPL solution. Correspondingly, define

_ T
U= [O(m—q+p)><q’l(m—q+p)><(m—q+p)] ’ 12

which satisfies UTU = Long+p)x(m—g+p)- I (12), O denotes a matrix of zeros and I represents an identity matrix.

Theorem 2. Assume Assumptions B1-B5 in Supplementary Material hold and the number of basis functions mis
fixed. Assume the scaled smoothing value y,, = o(n'/?). Assume there are q active constraints in the MPL estimate
of 0. Let F(n) = —E, [lim,_,n""'0°l(1)/dnon']. Then, when n — oo, \/n(#j — n,) converges in distribution to
N(0,F(1,)™), where F()~' = U(UTF(mU)-"U".

Proof. See Supplementary Materials Section S2.2. O

Remark 1. We comment that matrix ﬁ(n)‘1 is in fact very easy to compute. Firstly, UTF(1)U is obtained
simply by deleting the rows and columns of F(z) associated with the active constraints. Then (UTF(n)U)~! is
calculated. Finally, F()~! is obtained by padding (UTF(11)U)‘1 with zeros in the deleted rows and columns.

Remark 2. To implement the results in Theorem 2 (and also for Corollary 1), one must identify active con-
stralnts We suggest the following process for this task. At the end of running the Newton MI algorithm, often
some 0 are exactly zero with negative gradients, so they are active. Also, some 0 may be close to, but not
exactly, zero. In this case, we check the corresponding gradient values to see if they are negative. In our R
program, we adopt the criterion ‘5u < 1073 and the corresponding gradient less than —10~2’ to define active
constraints.

Finite sample (i.e. nis finite) inferences are required in practice. Corollary 1 below provides an approximate
distribution for 7j when n is large.

Corollary 1. Assume Assumption B1-B5 in Supplementary Material hold and assume the smoothing parameter
A < n. When n is large, the distribution for the MPL estimate 7} — 1, can be approximated by a multivariate
normal distribution with mean zero and covariance matrix

i) = A 5 A, 13

where

A@)™"' = UU"(2°L(H)/omon" + A0°] (1) /omon)U)'UT

The results in Corollary 1are useful in practice as they accommodate nonzero smoothing values and active
constraints. These results allow us to make inferences with respect to, for example, regression coefficients,
baseline hazard, cumulative baseline hazard and survival probabilities. Also, inferences on some predictive
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values can be made. The simulation results reported in Section 5 demonstrate that biases in the MPL estimates
are usually negligible when smoothing values are smaller than \/ﬁ

5 Results

5.1 Simulation results

To assess the performance of our estimator, we conducted two simulations respectively considering Weibull
and log-logistic baseline hazard functions. Observed survival times (tiL, t}‘), including event and interval
censoring times, were generated as follows. Let Y; denote a simulated event time, zF represents the chosen
proportion for event times, U', and U are uniform u(0, 1) random numbers and U} is a uniform u(U}, 1)
random number. Let y; and yy (with y; < yy) be two positive scalars. For given %, y; and yg, we generated
partly interval-censored survival times using the following procedure. For each i, we first generated uniform
numbers U}, UR and UF (uniform limits are specified above) and event time Y;. If UF < z* then we had an
event time so that ¢ = ¥ = Y;; otherwise, if y; U < Y; < ygU} we had an interval censoring with ' = y; U;
and t} = yrUR, if Y; < y, U} we had a left censoring with ' = O and t} = y, U} and if yy UR < Y; we had a right
censoring with t = yy UF and ! = co.

Table 1 provides more information for the simulations (associated results are in Tables 2-5 of this paper),
including the regression coefficients, X matrix, baseline hazard function, sample size and event proportion for
each simulation. The censoring proportion per censoring type is also indicated: Simulation 1 shows smaller
left censoring proportions and Simulation 2 shows larger interval censoring proportions.

Table 1: Parameters used for the simulations, where b, is a vector of Bernoulli variates with probability of success 7 = 0.5
(treatment predictor), and u, and u, are vectors for standard uniform random numbers.

Simulation 1 Simulation 2

Simulation parameters

B vector B =1[0.75,—0.50, 0.25]" B =1[0.25,0.25]"

X matrix X=[by, 5uy, 7u,] X=[by, 7u,]

Y distribution Weibull Log logistic

Baseline hazard hy(t) = 3t2 hy(t) = 4e?/[t(e? + t=4)]
yLand yg y.=0.9,yx=1.3 y.=0.5yx=1.1

Simulation scenarios

Sample sizes n=100, 500, 2000 n =100, 500, 2000
Percentages of events 7t = 0%, 25%, 50% 7t = 0%, 25%, 50%

Repartition of the censored observations by censoring type

Left censoring 17.90% 17.90%
Interval censoring 43.70% 60.80%
Right censoring 38.40% 21.40%

Specific estimator parameters

EM I-spline 3rd order I-splines 3rd order I-splines
AIC optimized n, for n =100, 500, 2000 AIC optimized n, for n =100, 500, 2000
MPL M-spline 3rd order M-splines 3rd order M-splines
n,=7,9,11forn=100, 500, 2000 n,=7,9,11 forn=100, 500, 2000
MPL Gaussian {,=035/{_,=0.4 §,=0.35{,=0.4

n,=17,9,11 forn=100, 500, 2000 n,=7,9,11 forn =100, 500, 2000
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Table 2: Simulation 1 results for B, where 8 = [B,, B,, ;17 = [0.75,—0.50, 0.25]T. Asymptotic standard errors for the convex
minorant estimator are missing due to unavailable inference for this estimator.

7t = 0% nt =25% 7t =50%
n=100 n=500 n=2000 n=100 n=500 n=2000 n=100 n=500 n=2000

Biases
IR PL —-0.226 —0.240 —0.237 —0.160 -0.177 —0.174 —0.093 —-0.115 —-0.118
M 0.150 —0.001 —0.045 0.126 0.065 —0.065 0.027 —0.076 —-0.199
EM-I 0.047 —0.006 —0.008 0.042 —0.003 —0.001 0.048 0.000 —0.003
MPL-M —0.044 —0.029 —0.012 —0.078 —0.030 —0.010 —0.072 —-0.027 —0.011
MPL-G —-0.016 —0.029 —0.013 —0.033 —0.032 —0.013 —0.028 —-0.027 —0.013
ps PL —0.203 —-0.226 —0.231 —0.141 —0.165 —0.170 —0.094 —0.109 —-0.114
CcM -0.119 —0.372 —0.487 —-0.377 —-0.470 —0.481 —0.353 —0.400 —0.394
EM-1 0.065 0.009 —0.004 0.056 0.008 0.001 0.036 0.004 —0.002
MPL-M —0.032 —0.016 —0.009 —0.067 -0.019 —0.007 —0.081 —0.022 —0.009
MPL-G —0.003 —0.017 —0.010 —0.021 —0.020 —0.010 —0.036 —0.023 —0.011
P PL —-0.207 —0.225 —0.235 —0.149 —0.168 —-0.174 —0.090 —-0.109 -0.117
M 0.142 —0.059 —0.153 0.066 —0.062 —0.180 —0.047 —-0.161 —0.255
EM-I 0.063 0.011 —0.008 0.053 0.007 —0.002 0.046 0.008 —0.003
MPL-M —0.027 —0.012 —0.011 —0.067 —0.020 —0.011 —0.074 —-0.019 —0.011
MPL-G 0.002 —0.012 —0.013 —0.021 —0.021 —0.014 —0.029 —0.020 -0.013

Mean asymptotic and Monte Carlo (in brackets) standard errors

A PL 0.273 0.117 0.058 0.257 0.110 0.055 0.244 0.104 0.052
(0.286) (0.123) (0.060) 0.271) (0.115) (0.057) (0.257) (0.113) (0.054)

™ - - - - - - - - -
0.357)  (0.121) (0.059)  (0.269)  (0.108) (0.060)  (0.230)  (0.103) (0.052)

EM-I 0.344 0.154 0.073 0.289 0.131 0.063 0.261 0.117 0.056
(0.358)  (0.149) 0.072)  (0.313)  (0.130) (0.064)  (0.282)  (0.118) (0.056)

MPL-M 0.325 0.142 0.071 0.281 0.124 0.062 0.252 0.111 0.055
(0.334)  (0.145) (0.072)  (0.280)  (0.126) 0.063)  (0.249)  (0.114) (0.056)

MPL-G 0.335 0.143 0.071 0.291 0.124 0.062 0.260 0.112 0.055
(0.333)  (0.145) (0.072)  (0.287)  (0.126) 0.063)  (0.257)  (0.115)  (0.056)

B, PL 0.100 0.042 0.021 0.096 0.041 0.020 0.092 0.039 0.019
(0.108)  (0.045) 0.023)  (0.106)  (0.043) (0.022)  (0.099)  (0.040) (0.020)

™ - - - - - - - - -
(0.140)  (0.066) (0.032)  (0.104)  (0.043) 0.021)  (0.100)  (0.040) (0.020)

EM-I 0.139 0.057 0.028 0.117 0.049 0.024 0.102 0.044 0.022
(0.144)  (0.057) (0.028)  (0.127)  (0.050) (0.025)  (0.110)  (0.044) (0.022)

MPL-M 0.118 0.053 0.027 0.102 0.046 0.024 0.091 0.042 0.021
0.133)  (0.054) (0.028)  (0.109)  (0.046) (0.024)  (0.097)  (0.041) (0.021)

MPL-G 0.125 0.054 0.027 0.109 0.047 0.024 0.097 0.042 0.021
0.127)  (0.055) (0.028)  (0.109)  (0.047) (0.024)  (0.098)  (0.042)  (0.021)

Bs PL 0.069 0.029 0.015 0.065 0.028 0.014 0.062 0.026 0.013
(0.076)  (0.030) (0.015)  (0.070)  (0.028) (0.014)  (0.067)  (0.026) (0.014)

™ - - - - - - - - -
(0.082)  (0.031) 0.017)  (0.061)  (0.026) (0.014)  (0.059)  (0.024) (0.013)

EM-I 0.086 0.043 0.019 0.076 0.037 0.016 0.068 0.032 0.015
(0.092)  (0.035) (0.018)  (0.079)  (0.031) 0.016)  (0.072)  (0.028) (0.014)

MPL-M 0.082 0.036 0.018 0.071 0.031 0.016 0.063 0.028 0.014
(0.085)  (0.034) (0.018)  (0.071)  (0.030) (0.015)  (0.064)  (0.026) (0.014)

MPL-G 0.086 0.036 0.018 0.074 0.032 0.016 0.066 0.028 0.014

(0.086) (0.034) (0.018) (0.072) (0.030) (0.015) (0.065) (0.027) (0.014)
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Table 2: (continued)

nt=0% nt=25% 7t =50%

n=100 n=500 n=2000 n=100 n=500 n=2000 n=100 n=500 n=2000

Root mean square errors

IR PL 0.576 0.467 0.433 0.544 0.419 0.377 0.516 0.377 0.322
M 0.612 0.348 0.261 0.533 0.344 0.277 0.480 0.343 0.397
EM-I 0.599 0.386 0.269 0.561 0.360 0.253 0.533 0.344 0.237
MPL-M 0.579 0.383 0.269 0.535 0.357 0.252 0.504 0.340 0.237
MPL-G 0.577 0.383 0.269 0.537 0.358 0.252 0.507 0.341 0.238
b, PL 0.385 0.348 0.343 0.357 0.305 0.296 0.332 0.261 0.246
M 0.390 0.444 0.495 0.464 0.489 0.491 0.450 0.451 0.445
EM-I 0.384 0.239 0.169 0.360 0.223 0.157 0.334 0.209 0.148
MPL-M 0.366 0.234 0.168 0.337 0.217 0.155 0.325 0.207 0.148
MPL-G 0.356 0.235 0.169 0.331 0.219 0.156 0.315 0.209 0.149
b3 PL 0.303 0.252 0.246 0.282 0.224 0.214 0.265 0.195 0.180
M 0.299 0.184 0.204 0.251 0.173 0.217 0.245 0.217 0.255
EM-I 0.306 0.188 0.135 0.283 0.176 0.125 0.270 0.167 0.119
MPL-M 0.293 0.185 0.136 0.270 0.173 0.125 0.259 0.164 0.119
MPL-G 0.293 0.186 0.136 0.269 0.174 0.125 0.256 0.165 0.120

95% coverage probabilities

B, PL 0.889 0.647 0.141 0.907 0.755 0.344 0.919 0.840 0.591
™ - - - - - - - - -
EM-I 0.911 0.945 0.952 0.900 0.935 0.950 0.896 0.938 0.951
MPL-M 0.951 0.945 0.953 0.955 0.951 0.945 0.953 0.938 0.943
MPL-G 0.952 0.943 0.952 0.959 0.948 0.946 0.951 0.941 0.944

B, PL 0.786 0.242 0.002 0.841 0.459 0.018 0.887 0.692 0.182
™ - - - - - - - - -
EM-I 0.953 0.949 0.948 0.923 0.948 0.940 0.935 0.940 0.960
MPL-M 0.925 0.945 0.944 0.927 0.939 0.934 0.901 0.937 0.945
MPL-G 0.951 0.946 0.944 0.950 0.935 0.935 0.942 0.938 0.948

p; PL 0.849 0.501 0.029 0.888 0.667 0.124 0.923 0.819 0.400
™ - - - - - - - - -
EM-I 0.836 0.956 0.949 0.856 0.965 0.971 0.872 0.961 0.963
MPL-M 0.945 0.959 0.953 0.946 0.952 0.958 0.933 0.956 0.949
MPL-G 0.952 0.961 0.948 0.956 0.953 0.959 0.956 0.954 0.949

Smallest root mean square errors per scenario as well as coverage probabilities below 0.9 appear in bold.

For MPL estimations in the simulations, we approximate h,(t) by either third order M-spline or Gaussian
basis functions, and their expressions are given in Supplementary Material. The smoothing parameter was
selected automatically as described in Section 3. We chose to place (interior) knots at quantiles of the finite
end points (excluding 0 and o) of the observed survival intervals boundaries or events (when available), as
this strategy performs better than equally spaced knots to our experience. The optimal number of knots can
be selected using a criterion such as AIC or BIC or GCV. However, as a result of the penalty function, the MPL
approach introduces certain degree of robustness to the knot selection. Therefore, in this simulation, we did
not optimize the number of knots (denoted by n,) for the MPL estimates as n, has a rather low impact on the
P and h,(t) estimates as long as n,, is not too large. The last portion of Table 1 exhibits parameters used for
M-spline and Gaussian basis. To assess the influence of n, on the performance of the MPL estimator, we also
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applied different number of knots on some of the simulated data. The corresponding results are available in
Table S4 of the Supplementary Material.

We compared the performance of MPL with M-spline basis (MPL-M) and with Gaussian basis (MPL-
G) against some other semi-parametric competitors. In particular, we considered the following methods:
(1) the partial likelihood (PL) estimator with the middle point to replace left or interval censoring; (2) the
convex minorant (CM) estimator of [5]; which also provides piecewise constant estimation to the cumulative
baseline hazard function; and (3) the more recent expectation-maximization I-spline (EM-I) estimator of [7];
which consists in a two-stage data augmentation algorithm. The partial likelihood, convex minorant and
EM-I estimates were respectively obtained by means of the ‘survival’, ‘intcox’ and ‘ICsurv’ R packages. For
EM-I, in order to achieve a fair comparison with our MPL results, we adopted the AIC based knots selection
strategy indicated in [7, Section 2.2] to define the optimal number of knots and knot placement strategy.
More specifically, for each simulated sample, we estimated the model parameters using 40 different knot
sequences, where 20 different number of interior knots (ranged from 1 to 20) were used for both the equal-
and quantile-spaced knot schemes. For each simulated sample, this computationally intensive procedure
thus considered 40 sets of parameters, among which the one corresponding to the smallest AIC estimate was
finally selected. The EM-I and CM estimators were developed for cases with 100% interval censoring, so that
we used observed event time ‘+/—’ a small epsilon (107%), as advised by the ICsurv package maintainer, to
handle non-censored times. Results obtained using different (but small) epsilon values (like 10~3) were very
similar.

We generated 1000 samples for each combination of sample size and proportion of events. Our MPL
estimator proved very reliable as we noted numerical issues in only 1 case (over 36,000 fits, i.e., 3 censoring
levels X 3 sample sizes X 2 spline functions X 2 simulations X 1000 Monte Carlo samples) for a sample with
n = 100 and 100% censoring when considering the Gaussian basis. This numerical issue was caused by a
negative degree-of-freedom in the smoothing parameter formula (11). Reducing the number of knots from 7 to
6 solved the issue. The EM I-spline method suffers from numerical instability. On average, among 720,000 fits
(i.e., 3 censoring levels X 3 sample sizes X 40 knot sequence X 2 simulations X 1000 Monte Carlo samples),
no estimates could be obtained in 7.5% of the cases for reasons unclear to us. After selecting the best knot
sequence based on the (non-missing) AIC criterion (i.e., 18,000 cases), parameter estimates were obtained
in all cases but inference was missing in 22.9% of the cases for at least 1 parameter due to non-positive
definite covariance matrices. This percentage was especially large with small sample sizes. In such cases, we
understand that the penalty used by the MPL is of a great help in stabilizing the estimates.

Tables 2 and 3 report, for all the simulations, biases, mean of the asymptotic and Monte Carlo (in brackets)
standard errors, root mean squared errors (RMSE) and coverage probabilities of the f estimates. For the RMSEs
we highlighted the smallest values and for the coverage probabilities we highlighted the values smaller than
0.9, indicating a poor coverage. The method of partial likelihood with mid-point imputation displays large
biases in all scenarios of both simulations, often leading to extremely poor coverage probabilities, such
as for f, in Simulation 2. The fact that coverage probabilities decrease when the sample sizes increase
is due to the combination of persistent biases and smaller standard errors, suggesting that this estimator
is not (always) consistent with interval censored data. As asymptotic inference was not developed for the
convex minorant method, no asymptotic standard errors are reported here. Similarly to the PL method,
the CM estimator often showed large biases compensated by small Monte Carlo standard errors sometimes
leading to the smallest RMSE in some cases. The presence of large biases and small Monte Carlo standard
errors suggests that computationally intensive bootstrap-based confidence intervals would also lead to poor
coverage probabilities. The EM I-spline estimator appears to have slightly larger standard errors for f; and f;
when considering small sample sizes in Simulation 1, and shows poor coverage probabilities for f, for almost
all sample sizes in Simulation 2 (when focusing on cases with available standard errors). We believe that the
coverage probabilities of the EM-I estimator could be improved by adopting the strategy described in Section
4 when active constraints are present.

In general, the coverage probabilities of MPL confidence intervals tend to be close to the 95% nominal
value in all simulations except for f, in Simulation 1 when sample sizes are small. Furthermore, with both
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small biases and standard errors, the MPL often obtained the smallest RMSE per scenario in both simulations.
Compared to the EM-I, our proposed MPL method proved numerically more stable with inference available
in all cases (through knot reduction in one case). It also proved faster as the penalty function automatically
evokes a type of knots selection so that the computer intensive AIC-based knots sequence optimization was
is not required. For the scenario of Simulation 1 considering a sample size n = 100 and 100% censoring, the
median run times of the MPL and EM-I estimators were respectively equal to 1.8 and 6.8 CPU-seconds when
considering the same 7 quantile knot sequence and tolerance value for convergence. When considering the
AIC knots selection described above (and considering 40 different knot sequences), the EM-I median running
time jumped to 771.4 CPU-seconds.

Results on ﬂo(t) are available in Tables 4 and 5. These results compare the MPL estimates of baseline
hazard with the Nelson—Aalen estimate for the partial likelihood method, the piecewise constant estimate
for the convex minorant method and the estimate for the EM I-spline method. Estimates of h,(t) were not
provided directly per se in the R packages of the competing methods where only cumulative hazard estimates
were provided. Estimates of h,(t) based on the Nelson—Aalen and convex minorant piecewise constant
cumulative hazard estimates were deduced by computing the difference in cumulative hazard estimates
between consecutive time points. For the EM-I estimator, estimates of h,(t) were obtained by using the
relationship between the M- and I-splines. These tables report biases, mean of the asymptotic standard errors
and mean of Monte Carlo standard errors (in bracket), RMSE values and 95% confidence intervals for /ﬁo(t) at
the 25th (¢,), 50th (t,) and 75th (t;) percentile, as well as the integrated discrepancy between the estimated
and the true h,(t) over an interval [0, t*], defined as

t

Dl e). 1)1 = [ [0 = o) at.

0

where t* corresponds to the 90th percentile. The smallest RMSE and integrated discrepancy values per
scenario and poor coverage probabilities (smaller than 0.9) were highlighted.

In general the Nelson—Aalen and convex minorant estimators obtained larger biases and standard errors,
leading to large RMSE and integrated discrepancy estimates, while the EM-I, MPL-M and MPL-G estimators
led to small biases and small errors in most cases. Focusing on the EM-I and MPL estimators, we can note that
the biases of the MPL were greater that the ones of the EM-I when estimating h,(t;) while the standard errors
of the EM-I appeared a bit larger than the ones of the MPL. The MPL-M estimator often got the smallest RMSE
and integrated discrepancy estimates. Regarding coverage probabilities, no estimator performed well in all
the cases. As expected, the coverage probabilities tend to improve when the sample size increases and/or
the percentage of censoring decreases. In Simulation 1, the coverage levels of our MPL estimators are poor
for hy(t;) especially when the sample sizes are small. Simulation 2 shows again poor coverage levels for the
MPL estimators at 75th percentile for small sample sizes. These can be caused by the fact that the numbers of
events at t; are extremely small.

Figure S1 in Supplementary Material displays the baseline hazard estimates obtained by competing
methods for the scenario considering of 7F = 0 and n = 500. In both simulations, the PL and CM methods
provided biased noisy estimates in agreement with the results of Tables 4 and 5. For the PL estimator, the
bump observed around the quantile 0.1 of the simulated survival times is caused by the midpoint strategy to
left censored data. More specifically, left censored events are shrunk towards zero with a maximum around
0.45 (which is half the maximum of 0.9 chosen for this type of censoring. Evidence of this is provided in
Figure S2, which shows a comparison of the interval and left censored times with the real ones, as well as the
estimated hazard and cumulative hazard estimates for a simulated dataset of Simulation 1). In contrast, both
the EM-I and MPL methods provided reliable estimates. EM-I was the least biased method and the MPL h,(t)
estimates appeared biased for large survival times. The MPL still obtained the smallest RMSE and integrated
discrepancy statistics in most cases due to its smaller variance.

Finally, to assess the impact of the number of knots n, on B and h,(t) estimates, we estimated the
parameters of the data sets generated in Simulation 1 by considering two different sets of knots for n = 100
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and n = 500. In fact, we increased n, to n, =9 for n =100 and n, = 11 for n = 500 and these results are
denoted as MPL-M(+2). We also doubled the number of knots, namely n, = 14 and n, = 18 for respectively
n =100 and n = 500, and their results are denoted by MPL-M(X2). The estimates were obtained from MPL
with M-splines. The results from these new n, are reported in Table S4 in Supplementary Material. They
suggest that a change in the number of knots has a low impact on the estimates. However, a large number of
knots can induce bias to the B estimates when n is small but their impact on the standard errors of these f
estimates are minor. A large number of knots can also impact ;1\0(1‘) when n is small, especially for large values
of t, leading to poor coverage probabilities.

5.2 Application in a melanoma study

In this section, we apply the MPL estimator with M-spline bases to fit a Cox model for the time of first local
melanoma recurrence for patients who were diagnosed with melanoma between 1998 and 2016 in Australia;
see [24] for some further information about a similar data set. Our data set, kindly provided by the Melanoma
Institute Australia, indicates the date of melanoma diagnosis (¢;) and the date of last follow-up (t;) with
recurrence status for 2175 patients. If a melanoma recurrence was observed, it also indicates when the first
recurrence was diagnosed (t,) as well as the date of the last negative check before recurrence (t,), if available.

Melanoma recurrence was observed for 37% of the patients. At time of last follow-up, 70.5% of the patients
were alive and 29.5% dead. Among the alive patients, 95% were with no melanoma, 4% with melanoma and
1% with unknown melanoma status. Among the dead patients, 18% were with no melanoma, 71% with
melanoma and 11% with unknown melanoma status. We set the melanoma diagnosis time as the time origin
for each patient. Times of first recurrence are typically interval censored as they occurred between patient
visits to the doctor. For a patient with non-missing ¢, and ¢,, the first melanoma recurrence is censored in
[t, — t4. t. — t4]. If a patient whose t,, is missing but ¢, is available, then melanoma recurrence is censored
in [0, t, — t4]. If ¢, is missing and the patient had melanoma at ¢;, then the recurrence time is censored in
[0, t; — t4]. If t, is missing and the patient had no melanoma at ¢, the recurrence time is (right) censored in
[t; — t4, 00). Cases with no observed recurrence and no known status at time of last follow up were considered
as missing.

We considered the following covariates in our model: (1) melanoma location at first diagnostic, which
is a categorical variable with levels ‘Head and neck’ (19.1%), ‘Arm’ (14.4%), ‘Leg’ (28.7%), ‘Trunk’ (37.8%);
(2) melanoma stage at first diagnostic according to Nelson-Aalen’s thickness scale, and this is an ordinal
variable with levels [0,1) mm’ (15.2%), ‘[1,2) mm’ (42.5%), ‘[2,4) mm’ (29.2%) and ‘4 mm and more’ (13.2%); (3)
gender, which is a categorical variable with levels ‘Men’ (58.1%), ‘Women’ (41.9%); (4) (centered) age in years
at first diagnostic, where the range of the non centred ages is [5, 94] and the mean of non centered ages equals
55.7 years. The contrasts were chosen so that the baseline hazard corresponds to the instantaneous risk to
have a first melanoma recurrence on the head/neck for a male of 55.7 years old who was initially diagnosed
with a melanoma of small size (<1 mm). We chose to model the baseline hazard function using 10 M-spline
bases (again no effort was made to optimize this number). Two of them were placed at the extremities of the
time range of interest and the others were placed at equidistant interval mid-points.

The hazard ratio estimates are exhibited in Table 6. Compared with melanoma that were first diagnosed
at the head & neck, melanoma at arm or trunk have significantly lower risk of recurrence. Initial melanoma
thickness is another strong risk factor for melanoma recurrence. A 10-year increase of age corresponds to
a significant (9-21%) risk increase of melanoma recurrence. Gender is marginally significant, with women
having a lower risk of melanoma recurrence than men.

The hazard ratio estimates from the competitors are available in Table S2 in Supplementary Material. In
this application example, all the methods, even the PL method with middle point imputation, lead to very
similar estimates, likely due to relative narrow censoring intervals (for both left and interval censoring).

The estimated baseline hazard function, together with its 95% pointwise confidence interval, is displayed
in Figure 1. This plot indicates that when the covariates are all set to their baseline values, the risk of melanoma
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Table 6: Hazard ratio estimates (eﬁ), hazard ratio 95% confidence intervals, and p-values of the significant tests.

HR estimates HR 95% CI p-Value

Location Arm 0.570 [0.429;0.757] 0.0001
Leg 1.008 [0.816;1.244] 0.9430

Trunk 0.802 [0.658;0.977] 0.0283

Thickness 1-2mm 1.245 [0.937;1.653] 0.1303
2-4mm 2.390 [1.804;3.166] <0.0001

4 mm and more 3.108 [2.295;4.208] <0.0001

Gender Female 0.843 [0.717;0.990] 0.0375
Centered age (10 years) - 1.148 [1.093;1.205] <0.0001

—— Estimate
Pointwise 95% conf. interval

0.15 —

0.10 —

Baseline hazard

0.05 —

0.00 : | |

0 5 10 15 Figure1: Plotsofbaseline hazard estimate and pointwise
Time (years) 95% Cl.

recurrence strongly and monotonically decreases during the first 5 years. After that, the risk decreases at a
slow rate to a level close to O during the next decade.

6 Conclusions

This paper develops a new computational procedure for the semi-parametric proportional hazards model
where survival time observations include left, interval and right censoring times as well as event times.
Since the baseline hazard is non-parametric and subject to a non-negativity constraint, we approximate this
function using a finite number of non-negative basis functions with corresponding coefficients constrained to
be non-negative. An efficient Newton—MI algorithm is developed. The asymptotic consistency results for the
estimates of regression coefficients and baseline hazard are established. Asymptotic normality results were
further developed to accommodate active constraints, which is of practical importance.

The simulation results reveal that our MPL estimator often produces more satisfactory results than its
competitors for both the regression coefficients and baseline hazard estimates. In particular, the MPL estimates
of regression coefficients can usually achieve smaller biases and standard errors than the competitors. The
95% confidence intervals from the MPL estimates also usually achieve better coverage probabilities (i.e. closer
to 95%) than the competitors. Other benefits of our MPL method include its lower sensitivity to choice of the
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knot sequence, including spacing and number of knots, as well as its ability to lead to positive definite
asymptotic covariance matrices for the estimated parameters and therefore enables inferences on hazard,
cumulative hazard and survival functions.

The Cox model fitting method described in this paper is implemented in an R package ‘survivalMPL’,
which is available at CRAN.
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