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Site and participant information 
 

 

Supplemental Figure 1: Site distribution 

Quality control  
To assess quality of Freesurfer reconstructions we computed the Euler index (Rosen et al., 

2018). The Euler number is a quantitative index of segmentation quality and has shown high 

overlap with manual quality control labelling. In the full sample we found a small but 

significant difference in both hemispheres (Figure S2) with the autism group having overall 

worse scan quality (d = 0.176 and d = 0.187 for left and right hemisphere respectively). We 

excluded all subjects with a Euler score of 300 or higher in either hemisphere. After 

thresholding based on Euler indices and after re-running the sample consisted of 870 

individuals with autism and 870 neurotypical individual, matched on Age, Euler and IQ. 
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Supplemental Figure 2: Euler quality control 

Panels A and B list the Euler indices for both left and right hemisphere, p-values for group differences were 
established with two-sided permutation testing (20000 permutations), Cohen’s d was computed using custom R 

code https://github.com/mvlombardo/utils/blob/master/cohens_d.R. Panels C and D show the left and right 

hemisphere Euler distribution across the different sites included in ABIDE. Panel E shows 3 example scans for 
Euler indices of 50, 300 and 800 respectively. Raincloud plots were created using: 

https://micahallen.org/2018/03/15/introducing-raincloud-plots/ 

 

Sensitivity Analysis 
To further assess the potential impact of data quality in the present study we processed the 

resting-state fMRI data to obtain estimates of in-scanner head-motion in the form of framewise 

displacement. We found that similar to the Euler index there were systematic group differences 

in in-scanner head motion (Figure S3.A), we also find that there were small significant 

correlations between in-scanner absolute, negative and positive w-score ratios (r = 0.15, r = 

0.16 and r = 0.09 respectively, all p < .05, Figure S3.B). Then we assessed whether the extracted 

w-scores were spatially correlated with either Euler or head motion and found small (mostly 

negative) correlations ranging from r = -0.18 to r = 0.14 (Figure S3.C). Thus, we subsequently 

included both Euler index and framewise displacement as confound variables in all models. 

 

Then, to systematically evaluate whether either motion or reconstruction quality impacted any 

of our outcome measures we conducted a cross-validation analysis by systematically excluding 

the top 5% of motion subject and top 5% of Euler subjects and assessed the spatial correlation 

in resulting Cohen’s D maps (Figure S3.D). Resulting maps were highly consistent, with the 

lowest correlation (r = 0.7) between the sample with 95% and 75% of Euler subjects included, 

which is reflective of a decrease in sample size. We also assess the effect on the resulting one-

sample assessment of the w-score between a model including motion as a confound and a 

model not including the motion confound (Figure S3.E). This showed near perfect consistency 

in spatial topology (r = 1.00, p < .0001). In similar fashion we assessed the case-control 

differences in a model with and without motion (Figure S3.F) and again found high consistency 

in spatial topology (r = 0.96, p < .0001). 

 

To more specifically assess the relation between w-score ratios and head-motion we visualised 

their individuals correlations and observed that despite the small correlations there was little 

indication that high w-score ratio individuals (ratio > .5) were also the individuals with high 



motion (Figure S3G-I). To systematically assess their influence, we removed the top 5% of 

motion autism individuals. We then reassessed the correlation (Figure S3.J), the absolute w-

score ratio (Figure S3.K) and the spatial prevalence (Figure S3.L) and found this exclusion did 

not impact our original results. In the same manner we excluded the top percentage of autism 

individuals with a high Euler index from the analysis (Figure S3M-O) and again found no 

impact on our original results.  



 



Supplemental Figure 3: Sensitivity analyses 

Panel A shows the case-control difference in mean framewise displacement, indicating a significantly higher mean 
framewise displacement in the autism group t(1125.68)= 5.07, p < .001. Panel B shows the Pearson r correlations 

between age and the confound variables included in our models. Correlations not passing FDR correction of p <.05 

are marked with a cross. Panel C shows the spatial correlation of each ROI with the three included confound 
regressors in our model, all three show small correlations ranging from r = -.18 to r = .14 and were thus included 

in all subsequent analyses. Panel D shows the spatial correlation between Cohen’s D maps from analyses where 

subject with either high motion (upper triangle) or high Euler indices (lower triangle) were iteratively excluded. The 
fold refers to the cohorts of exclusion ranging from 1 = 5% exclusion to 5 = 25% excluded. Panel E shows the 

correspondence in the one-sample model with and without motion included. Models show highly similar spatial 

topology (r = 1.00, p < .001, BF =  Inf). Panel F shows the significant spatial correspondence for the between group 
linear mixed effects model (r = 0.96, p < .001, BF = Inf). Panel G shows the small relation between the absolute w-

score and mean framewise displacement (r = 0.15, p < .001, BF -4.89). Panels H and J shows the same for the 

positive (r = 0.09, p < .05, BF = 0.13) and negative (r = 0.16, p < .001, BF = -6.67) ratio’s respectively. Panel J 
shows the residual correlation between motion and the absolute ration after excluding the top 5% of motion subjects 

from the ASD sample (r = 0.10, p <.05, BF = - 0.43). Panel K shows the absolute w-score ratio with the dotted line 

indicating the cut-off of 0.5 after excluding the top 5% of motion individuals from the ASD sample. Panel L replicates 
the main figure 3 of this thresholded sample. Panel M shows the residual correlation between the absolute w-score 

ratio and the Euler index after thresholding the ASD sample at 5% of Euler scores (r = -0.07, p = .08, BF = 1.33). 

Panel N shows the absolute w-score in the thresholded sample with the dotted line indicating the 0.5 cut-off. Panel 

O replicated main figure 3 in this thresholded sample.  

 

 

Bootstrapping 
To assess the reliability of this w-score we bootstrapped the normative sample (1000 

bootstraps, with replacement) and computed 1000 bootstrapped w-scores for each individual 

and each brain region. To subsequently quantify the reliability of the w-score we computed an 

FDR corrected analogous p-value for each subject by computing the absolute position of the 

real w-score in the distribution of bootstrapped w-scores. The rationale being that if a real w-

score would be in the top 5% of the bootstrapped distribution it would likely not be a reliable 

score (e.g. the score would be influenced by only a small subset of the normative data). The 

median number of brain regions per subject with a significant p-value was 1 (out of 308), 

indicating that the w-score provides a robust measure of atypicality. 

 



 

Supplemental Figure 4: bootstrap validation 

Panel A shows the probability density distribution for the number of subjects likely to have an unreliable w-score in 

a given region. For a given region there is a median of 10 subjects (out of 699) for which the w-score is not reliable 

(e.g. has a p-value <0.05). Panel B shows the probability density distribution for the number of regions likely to 
have an unreliable w-score in a given subject. The median number of 'unreliable' brain regions per subject is 1. 

 

Comparison to centile modelling of normative deviation 
In order to assess the sensitivity of our approach in the present data we implemented the 

aforementioned bootstrapping procedure to identify robustness of outlier detection. In addition, 

we also conducted a centiles estimation that is relatively standard in for example epidemiology 

(Visser et al., 2009), similar to quantile rank maps (Chen et al., 2015) and arguably less 

sensitive to small sample uncertainty. Both approaches showed high significant correlation in 

determining whole-brain w-score ratios (r=0.87, p=4e-119 and r=0.66, p=5.7e-39 for ABIDE 

I and ABIDE II respectively). 



 

Supplemental Figure 5: Centile vs LOESS regression 

Scatterplot of the absolute ration of atypical regions in both ABIDE I and ABIDE II as 

computed using LOESS regression and centiles estimation. 

 

Individual summary ratios 
To isolate subsets of individuals with significant age-related CT deviance, we used a cut-off 

score of 2 standard deviations (i.e. w >= 2 or w<=2). This cut-off allows us to isolate specific 

ASD patients with markedly abnormal CT relative to age-norms for each individual brain 

region. We then calculated sample prevalence (percentage of all ASD patients with atypical w-

scores), in order to describe how frequent such individuals are in the ASD population and for 

each brain region individually. A sample prevalence map can then be computed to show the 



frequency of these patients across each brain region. We also wanted to assess how many 

patients have markedly atypical w-scores (beyond 2SD) across a majority of brain regions. 

This was achieved by computing an individual global w-score ratio as follows: 

 

𝑔𝑊 =
∑|(𝑤)| > 2
∑|(𝑤)| < 2 

 

We also computed global w-score ratios for positive and negative w regions separately. 

 

 

Supplemental Figure 6: Global individual W-Score ratios 

Panel A shows the distribution of absolute global ratio scores for each age-bin. There is a total of 14 subjects for 

which the ratio score exceeds 0.5 meaning they have more atypical than typical regions. Panels B and C show the 
same but stratified for positive and negative outliers.  
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Supplemental Figure 7: Outlier age distribution per brain region 

Probability density plots of the age of all outliers for each brain region. Left and right refer to 

left and right hemisphere. 

 

 

left right

0 10 20 30 40 0 10 20 30 40

Age

R
eg
io
n



Age-related CT deviance relationships with SRS and ADOS 
An additional advantage of the use of normative modelling over the traditional case-control 

modelling is that we can use the individualized deviation as a novel metric for finding 

associations with phenotypic features. Here we used w-scores to compute Spearman 

correlations for the most commonly shared phenotypic features in the ABIDE dataset: ADOS, 

SRS, SCQ, AQ, FIQ and Age. After correcting for multiple comparisons across phenotype and 

region (6 phenotypic measures * 308 regions = 1848 tests) we identified a number of brain 

regions that survive multiple comparison corrections for the SRS and ADOS scores 

(supplementary figure S8). SRS is associated with w-scores primarily in areas of lateral frontal 

and parietal cortex, while ADOS is associated with w-scores primarily in lateral and inferior 

temporal cortex. Notably, these regions are largely different from regions that appear to show 

on-average differentiation in case-control and w-score analyses. 

 

Supplemental Figure 8: Phenotype – W-Score correlations 

Spearman correlations between ADOS and w-score in the top panel. The lower panel shows 

the same for the SRS. 

 
 

 



Surface area, LGI and Volume 
We applied the same approach to quantify outlier contribution and assess overall variance 

contribution in surface area, LGI and cortical volume. All three metrics consistently showed 

strong influence of sex and scanner site as important covariates (S8). In addition, cortical 

volume also showed a strong influence of age. For all three measures all canonical case-control 

differences, derived from standard LME modelling, disappear when region-wise outliers were 

removed (S9-S11). This strongly suggest that the majority of broad case-control differences 

were driven by a subgroup of individual outliers. 

 

Supplemental Figure 9: Variance contribution across measures 

Gender and scanning site are the dominant sources of covariance 

 

 

Volume 

 

Supplemental Figure 10: Canonical case-control comparisons for cortical volume 

The top panel shows the canonical case-control output. No regions passed FDR when region-

wise outliers were removed nor on the one sample w-score test. 
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Supplemental Figure 11: Canonical case-control comparisons for local gyrification 

The top panel shows the canonical case-control output. No regions pass FDR when region-wise 

outliers are removed however in the w-score one sample test (lower panel) there are a number 

of regions that show significantly smaller LGI in ASD. 
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Supplemental Figure 12: Canonical case-control comparisons for surface area 

The top panel shows the canonical case-control output. No regions pass FDR when region-wise 

outliers are removed however in the w-score one sample test (lower panel) there are a number 

of regions that show significantly smaller surface area in ASD. 

 

Multivariate clustering 
Using t-Distributed Stochastic Neighbour Embedding (tSNE) was used to construct a distance 

matrix from the 308 ROI features. K-medoid clustering on this distance matrix was used to 

cluster subjects into maximally independent groups using the optimum average silhouette 

width (Hennig and Liao, 2013) to determine the optimal number of cluster.  This identified an 

optimal number of two clusters. Finally, we re-ran k-medoid clustering with 2 clusters and 

explored the overlap these clusters gave with diagnosis by visualizing the clustering onto the 

2-dimensional embedded space obtained from tSNE. 

 

Despite the limited main diagnosis effect on CT over the majority of brain regions and the fact 

that only a small subset of individuals appears to contribute to this difference, it may still be 

possible that the multivariate patterning in CT may capture some diagnostic effect. Thus, we 



performed exploratory clustering analysis to determine if raw CT values across the whole brain 

could be used to delineate the ASD group from the TD group. In addition, we reasoned a data-

driven clustering approach might also reveal subgroups within each group (Lombardo et al., 

2016). Results from clustering the neighbour embedded raw CT scores are shown in Figure 6. 

As can be observed in panel B, the within-group heterogeneity is entirely captured by 

normative heterogeneity and the overall density plots for both groups are close to identical. The 

pattern we find when projecting the whole brain raw cortical thickness into a 2-dimensional 

embedding most closely resembles the 3rd scenario outlined by Marquand and colleagues 

(Marquand et al., 2016), whereby disease related variation is nested with the normal variation. 

Our results show that, when it comes to whole-brain cortical thickness, the condition related 

variation is entirely nested within the neurotypical variation. Obviously, the present clustering 

and embedding approaches only provide one way of clustering or segregating case-control 

variation in cortical thickness. Other multivariate approaches that took into account a multitude 

of variables did reveal that multivariate clustering has the potential to identify subgroups (Hong 

et al., 2017). Additionally, other measures than CT might provide a different picture. In is 

interesting however to note that both dimensions were correlated with age. No correlations 

were observed with any of the other common phenotypic measures. Thus, this 2-dimensional 

embedding likely captures the variability in cortical thickness expansion and thinning over the 

course of development, but is not sensitive enough to pick up potential alterations in the overall 

trajectory of this process between groups. 

 

 

Supplemental Figure 13: tSNE Clustering 

Panel A shows the results from k-medoid clustering of the 2D embedding of the raw CT values as achieved by 
tSNE. K-medoid clustering clearly identifies 2 clusters. However, as Panel B shows, these clusters did not provide 

any meaningful distinction on diagnosis.  
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