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In platforms we trust: misinformation on social
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Abstract

We examine the e�ect social mistrust has on the propagation of misinformation

on a social network. Agents communicate with each other and observe informa-

tion sources, changing their opinion with some probability determined by their

social trust, which can be low or high. Low social trust agents are less likely to

be convinced out of their opinion by their peers and, in line with recent empirical

literature, are more likely to observe misinformative information sources. A plat-

form facilitates the creation of a homophilic network where users are more likely

to connect with agents of the same level of social trust and the same social char-

acteristics. Networks in which worldview is relatively important in determining

network structure have more pronounced echo chambers, reducing the extent to

which high and low social trust agents interact. Due to the asymmetric nature
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Theory seminar group for their invaluable contributions to this paper.
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of these interactions, echo chambers then decrease the probability that agents

believe misinformation. At the same time, they increase polarisation, as disagree-

ing agents interact less frequently, leading to a trade-o� which has implications

for the optimal intervention of a platform wishing to reduce misinformation. We

characterise this intervention by delineating the most e�ective change in the plat-

form's algorithm, which for peer-to-peer connections involves reducing the extent

to which relatively isolated high and low social trust agents interact with one

another.

KEYWORDS: communication, networks, network design, misinformation, platforms.

JEL classi�cation: D82, D83, D85.

1 Introduction

It is well-documented that social media platforms, like Facebook, Reddit and Twit-

ter, are hotbeds of misinformation on matters ranging from politicians (Allcott and

Gentzkow, 2017), scienti�c discoveries (Naeem et al, 2020) and celebrity news (Arnold

et al, 2019). One aspect of this multi-faceted problem that has been well studied is the

role of echo chambers in the propagation of misinformation (see, for example, Acemoglu,

Ozdaglar and Siderius, 2021). Agents who believe misinformation are more likely to be

connected to others who also believe it, and so misinformation is able to propagate, at

least amongst a subset of the population. Reducing the prevalence of echo chambers is

therefore often seen as a key component of the battle against misinformation.

Here, I consider the other side of breaking echo chambers: people who are correctly

informed are exposed to falsehoods when doing so. On its face, this might not be a

concern - communication on social networks is commonly bidirectional, and, hence, at

the very least, there is less polarisation when such communication occurs. However,
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this thought does not take into account the role of social mistrust in the belief in and

sharing of misinformation on online platforms, a role which we examine in detail here.

Social trust and its e�ect on social media communication has become of increasing

interest to social scientists (Jennings and Stroud, 2021; Ognyanova, 2021; Hopp et al,

2020 and Kwon and Barone, 2020). Here, we de�ne social trust as the extent to which

a person believes that the speech or actions of others are true or motivated by good

intentions (Gambetta, 1988). Individuals with low social trust are thus less likely to be

convinced by the opinions of others than those with high levels of social trust.

Recent research shows that there is a link between social trust and misinformation -

speci�cally, followers and sharers of misinformative sources and content are more likely

to have low levels of trust in both other citizens and the mainstream media (Hopp et al,

2020). Experimental evidence suggests that people who believe misinformation are less

likely to be convinced out of their opinion even after being shown the truth (Rhodes,

2021) Furthermore, so-called countermedia information sources, who frequently purvey

misinformation, spread a narrative where most people should not be trusted as they

are either ignorant or actively nefarious (Rojas, 2010 and Allcott & Gentzkow, 2017),

indicating that there is a vicious cycle of low social trust individuals observe content

which fosters low social trust, whereby low social trust individuals seek out sources

which render them even less trusting of their peers.

Individuals with low social trust, then, have a worldview which has two character-

istics relevant to the spread of misinformation on social media. First, they are less

likely to be convinced by the opinions of high social trust individuals than the reverse.

Second, such users are more likely to believe misinformation in the �rst place. We

construct a model that captures both of these aspects of social mistrust, with the goal

of examining how they a�ect the spread of misinformation.
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In the model here, agents interact with each other and information sources on a

social network. Users can either be informed or misinformed and they have either low

or high social trust. Users are connected both with each other and information sources;

one type (�mainstream� information sources) which espouses the informed opinion, the

other, �countermedia� information sources, espouses the misinformed opinion. Users

exhibit both homophily, in the sense that they prefer to connect with users of the with

the same social characteristics and social trust level as them, and bias, in that low social

trust users prefer to connect to countermedia sources and high social trust users prefer

to mainstream sources.1

The agents communicate on a network that is shaped by a platform's algorithm,

which suggests which users an agent should follow, taking into account users' preference

for homophily and biases. The platform wishes to maximise the degree of the network,

and hence chooses an algorithm that reinforces these preferences. At the optimum, this

algorithm generates a stochastic block model, with types distinguished by both social

characteristics and level of social trust.

We characterise the distribution of opinions of the users as the number of agents

tends to in�nity. As the social trust of mistrustful agents decreases, the higher the

probability that a random agent believes misinformation: misinformation from coun-

termedia news sources is broadcast by users with low social trust to high social trust

individuals who are more likely to be convinced out of their belief in the truth than the

reverse.

This feature of the model is crucial to our main results. Echo chambers in this

context, rather than being a source of the spread of misinformation, protect high social

1Of course, there is likely to be a correlation between some social characteristics and social trust.
Our analysis is agnostic as to the extent and direction of this link, as none of the results depend on
any particular relationship between these two variables.
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trust users from being convinced by their mistrustful peers. The more agents value

homophily with regards to social trust (what we will term �interest-based� networks),

the more platform's algorithm ampli�es their inherent desire for echo chambers. This

reduces the extent to which low social trust agents interact with high social trust agents.

The more agents value interacting with agents who are socially similar to them, the less

direct salience their social trust is to network structure, increasing the extent to which

low and high social trust agents interact. The probability that a random agent believes

misinformation in such friendship networks, then, is greater than the same probability

in networks where agents have a direct desire to link to agents who have the same

worldview as them.

At the same time, friendship networks tend to be less polarised than interest-based

networks, as echo chambers increase the extent to which initial biases remain after

communication takes place. As such, we identify a potential trade-o� such that reducing

the prevalence of echo chambers increases the probability agents are informed but also

increases polarisation.

We then turn to the question of interventions in the network to reduce the extent

to which misinformation is believed. If the platform intervenes by reducing the proba-

bility that users observe one another (a �structural intervention�), then they optimally

intervene to reduce the extent to which the most isolated high social trust individuals

(i.e. those who are least likely to observe misinformation) interact with the low social

trust individuals who are most likely to observe misinformation. Such links are dispro-

portionately costly in terms of the spread of misinformation, as they are most likely to

lead to a more convincible agent being converted to believing misinformation.

Reducing the extent to which users observe countermedia sources is also a way

of reducing misinformation propagation. We characterise an in�uence measure that
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captures the optimal users to target with such an intervention, �nding that a reduction

in social trust increases in�uence, as does being well-connected in the network.

Literature review

Social trust is a well-contested term within the sociological literature (see Verducci and

Schröer, 2010 for an overview), but broadly can be thought of as being the belief that

other citizens (as opposed to political, social or media elites) will, for one reason or

another, act in a way that is, at best, to our bene�t, and at worse not to our detriment

(see Gambetta, 1988 and Warren, 1999 as examples). Of particular interest from our

perspective is Gambetta's (1988) observation that trust �is a particular level of the

subjective probability with which an agent assesses that another agent or group of

agents will perform a particular action�: the socially mistrustful agents in our model

are less likely to believe their peers than the socially trustful ones.

Our analysis �ts into a growing literature on the role of social trust as a driver of

polarisation and misinformation on social networks and in public life more generally.

People who are socially mistrustful are more likely to vote for a populist political

candidate (Hooghe and Dassonneville, 2018), spread countermedia content (Hopp et

al, 2020), were less likely to socially distance during the Covid-19 pandemic (Woelfert

and Kunst, 2020) and are more likely to believe conspiracy theories in general (Pierre,

2020).

Relatedly, a number of empirical papers have highlighted how exposure to opposing

viewpoints may have di�erential e�ects on di�erent users. For example, Bail et al

(2018) �nd that exposure to a Twitter bot with an opposing viewpoint actually increased

political polarisation amongst ideologically extreme right-wing subjects. These subjects
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are also less likely to reduce their belief in false stories that support their political

position than their left-wing counterparts according to Rhodes (2021). Both of these

studies provide justi�cation for the asymmetric communication mechanism that plays

a key role in our model.

A number of economic theory papers have tackled the question of fake news, which

can be broadly put into two categories: Bayesian agent approaches, in which fully ra-

tional agents choose whether to share a piece of content, often with the input of a

benevolent (Candogan and Drakopoulos, 2020 and Papanastasiou, 2020) or manipula-

tive (Chen and Papanastasiou, 2021 and Keppo et al., 2019) platform, and bounded

rationality or naive learning approaches (Nguyen et al., 2012, Toernberg, 2018 and

Mostagir, Ozdaglar, and Siderius 2020) in which agents update their beliefs heuristi-

cally on the basis of the opinion's of their neighbours.

Within the former strand of the literature, Acemoglu, Ozdagalar and Siderius (2021)

is the closest to this paper. There, echo chambers generate an incentive to share misin-

formation, as it is less likely to be identi�ed as such, with the platform exacerbating this

issue by selectively displaying misinformation to create a �lter bubble, which contrasts

with our �nding that echo chambers insulate high social trust users from observing

misinformation.

Our approach �ts more closely with those employing boundedly rational agents

and the naive learning on networks literature more broadly, which largely employs a

DeGroot-based social learning approach (see Golub and Jackson, 2010). Speci�cally, we

examine the case where there are agents who are naive learners who are in�uenced by

users who do not update their opinion, namely information sources. Yildiz et al (2013),

Sadler (2021) and Vohra (2021) all employ such agents in a naive learning framework,

though neither examine the case where other agents are di�erentially convincible.
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Anunrojwong et al (2020) utilise the naive learning framework to examine the case

where users observe both a platform and their peers, both of whom share content, in-

�uencing beliefs. The focus of their analysis is on the potential for the platform to drive

polarisation or consensus on an extreme viewpoint where interactions between agents

are symmetric. On the other hand, we examine the case where agents experience asym-

metric interactions, which drive polarisation and extremism even without the presence

of the platform, though its actions tend to exacerbate the spread of misinformation.

Perhaps the closest of the DeGrootian literature to our paper is Dandekar et al.

(2013), which examines the case where agents are more likely to believe evidence which

supports their current position, leading to the possibility of polarisation under ho-

mophily. By contrast, our analysis focuses on the extent to which homophily drives the

direction of beliefs in an environment where asymmetric interactions are independent

of belief: low social trust agents are more likely to believe misinformation, but even

when they do not, they are still less likely to believe their peers than their more trusting

peers are to believe them.

2 Communication

The model is in two parts: a network formation stage, in which users choose who they

are connected with, which generates a network G, and a communicate stage, in which

agents communicate in perpetuity on G. We consider the latter process �rst, before

examining the network formation process in Section 3.
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Communication and social trust

We consider agents interacting on a social network. Agents take two forms: �information

sources� and �regular agents�. Agents are linked by a graph G. Let S denote the set

of information sources and R denote the set of regular agents, with |S| = mS and

|R| = mR. If i, j ∈ R then if there exists an edge ij ∈ G, it is undirected, while if

i ∈ R and j ∈ S, ij is directed (there are assumed to be no links between information

sources).

Suppose that there are n agents (i.e. both regular agents and information sources)

and time is discrete. In period r, each agent, i, holds an opinion, vir ∈ {0, 1}, where 1

is an informed opinion and 0 is a misinformed opinion. In each period, a single regular

agent is chosen uniformly at random. The regular agent, i, observes a single agent, j,

chosen uniformly at random from their neighbourhood (i.e. any agent j where ij ∈ G).

Information sources are either �mainstream� or �countermedia�. If i is a mainstream

information source, they have belief vir = 1 for all r, while if they are countermedia then

vir = 0. Let S0 and S1 be the set of countermedia and mainstream sources respectively.

We assume that S0, S1 ̸= ∅.

If i observes j ∈ S (i.e. an information source) in period r then i adopts j's opinion

with probability 1 in r + 1.2

Meanwhile, if j ∈ R then the probability that i adopts j's opinion depends on i's

social trust. Speci�cally, agents can have two levels of social trust: �low� or �high�, such

that an agent i has social trust level δi ∈ {δL, δH} = ∆ with 0 < δL < δH ≤ 1. If the

link ij is realised in period r and j ∈ R, then an agent i adopts j's opinion in r+1 with

2We have adopt this assumption to focus our attention on interactions between regular agents.
Agents may well di�er in the extent to which they are convinced by information sources (and indeed,
this may also depend on the type of information source), and this could be incorporated into the model
easily.
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probability δi: that is, agents with low social trust are less likely to adopt the opinion

of an agent they observe with less probability than a high social trust agent is. Let RL

denote the set of low social trust agents, RH the set of high social trust agents.

The opinion forming process then forms a Markov chain. De�ne vS as the vector

of opinions of information sources, and vR
t the vector of opinions of regular agents at

time t. The following statement holds:

Proposition 1. Suppose G is connected and S is non-empty. Then, the Markov chain

vR
t has a unique steady-state distribution.

This result is similar to the one found in Yildiz et al (2013), but holds for the more

general case where agents are not convinced by the agent they observe with probability

1. We exploit the result in Proposition 1 throughout to examine how network structure

a�ects the steady-state distribution of beliefs.

An example of the communication process with social trust

Suppose that there are three regular agents, A, B and C, with the �rst two agents

having high social trust, the latter having low social trust, and two information sources,

one mainstream and one countermedia. We consider two network structures, shown in

Figure 1 below.
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Figure 1: Two realised communication networks, with A, B and C representing regular
agents.

Suppose �rst that δL = 0.2 and δH = 0.8. In network structure 1, on the right-hand side

of Figure 1, whereA,B and C are connected, the unique steady-state distribution is such

that agents A,B and C believe misinformation with probabilities 0.36, 0.36 and 0.81

respectively, and hence the probability that a random agent believes misinformation is

0.52. Compare this result to network structure 2. In that case, A,B and C believe

misinformation with probabilities 0.14, 0.32 and 0.87 respectively, and so the probability

a random agent believes misinformation is now 0.45. Reducing the extent to which high

social trust types are connected to low social trust types reduces the propagation of

misinformation, the result of the fact that communication between agents A and C

(who are connected in network structure 1 but not 2) is asymmetric, such that A is

convinced by C more often than the reverse.

Compare this result to the case where δL = 1 and δH = 1. Under network structure 1

and 2, agentsA,B and C believe misinformation with probabilities 1
4
and 1

8
, 1
4
and 1

4
, and

1
2
and 5

8
respectively. In both cases, however, a random agent believes misinformation

with probability 1
3
. Hence, in the case where there is no social mistrust, while the
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probability that di�erent agents believe misinformation is a�ected by network structure

(and therefore polarisation is too), average public opinion is not. These observations

will be formalised by our model.

3 Network formation and stochastic block models

Having outlined the communication process, we now consider network formation. Agents

are made aware of each other and information sources by a platform and choose whether

to connect with other agents, forming the network. The network formation process gen-

erates a sequence of stochastic block models, which we use to analyse the steady state

of the communication process. By modelling network formation explicitly, we are able

to consider how network structure is shaped by platform and user preferences, and, in

Section 6, how the platform can intervene to a�ect user beliefs.

Network formation and the platform

Throughout, we will assume that a regular agent, i is associated with both a level of

social trust, as discussed above, and a measure which captures social characteristics (e.g.

location, schooling, socioeconomic status etc) θi ∈ {θ1, ..., θt} = Θ, where |θi−θj| ∈ [0, 1]

measures how socially similar agents are.3

The network formation process, takes place in two stages: an awareness stage, in

which a platform partially determines the extent to which agents are aware of each

other; and a connection stage, in which agents choose to connect with agents that they

are aware of.

3Our analysis does not preclude there being a correlation between social trust and social charac-
teristics; we merely allow for the possibility that there are agents of both types of social trust within
each demographic group.
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First, we consider the connection stage. Regular agents can only connect with other

agents who they are aware of, can connect costlessly, and prefer connecting with agents

who are similar to them both in terms of social characteristics and social trust (which

can be thought of as a proxy for worldview more broadly). We assume also that regular

agents have preferences over information sources depending on their level of social trust.

Let θ̂ij = −|θj − θi| and δ̂ij = −1 if δi ̸= δj and 0 otherwise. We assume that

conditional of being aware of agent j, an agent i receives the following utility from

linking to them:

ui(θ̂ij, δ̂ij) =



αδ̂ij + (1− α)θ̂ij + εij if j ∈ R

(1− δi) + εij j ∈ S0

δi + εij j ∈ S1

where εij ∼ U [−1, 1] is an idiosyncratic shock which captures other bene�ts (for ex-

ample, �nancial) i receives from being connected with j and α ∈ [0, 1] measures

the relative importance di�erences in social trust and social characteristics have in

determining the utility generated by a link. We assume that εijs are i.i.d. De�ne

αδ̂ij + (1 − α)θ̂ij = γij < 0. Suppose i is aware of j with probability βij. The total

probability that ij ∈ R are connected is then wij = (βij + βji)
1+γij

2
and:

wS
ij =


(βij)[1− δi

2
] i, ∈ R and j ∈ S0

(βij)[
1
2
+ δi

2
] i, ∈ R and j ∈ S1

.

Now consider the awareness stage. Agent i is aware of agent j with probability βij = β+

β̂ij where β ∈ [0, 1) is the probability that i is aware of j without platform intervention

and β̂ij ∈ [0, 1− β] represents an increase in the awareness probability induced by the
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platform by e.g. suggesting to i that they follow j on a sidebar.4 Adjusting βij away

from β̂ij is costly to the platform - for example, making agents more aware of each other

decreases the prominence of advertisements. Speci�cally, we assume that the platform's

cost function is C(β̂) = χ
∑

i

∑
j β̂

2
ij = χ

∑
i

∑
j(βij−β)2, where β̂ is a mR×mR matrix

whose ijth entry is β̂ij and χ ∈ [0, 1].

De�ne E[D(β̂, β)] =
∑

i∈R E[di(β̂, β)] =
∑

j[wij + wS
ij], where di is i's degree. The

platform's payo� is increasing in the expected number of edges in the network, as

this is a proxy for the amount of time users spend on the platform, which in turn

determines platform revenues. The platform then solves the maximisation problem:

maxβ̂[D(β̂, β)− C(β̂)].

Network formation then takes place as follows. The platform chooses the matrix, β̂,

determining the matrix of awareness probabilities β. The pattern of awareness and the

idiosyncratic shocks are then realised and each agent simultaneously chooses whether to

connect to each of the agents they are aware of in the linkage phase of the game. Once

the network is formed, agents then communicate with one another under the process

described in Section 2.

Solving the platform's problem

We state the following result regarding the solution to the platform's optimisation

problem described above:

Proposition 2. Holding n �xed, the unique solution to the platform's optimisation

problem, β̂, generates a stochastic block model, G(m(n),W (α)), with discrete type

4Of course on real-world platforms, the innate probability that i is aware of j would itself be
correlated with i and j's characteristics, as well as the number of users on the platform. This could
easily be incorporated into the model, but would not materially a�ect the conclusions, so we maintain
this assumption for simplicity.
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space, T = {Θ×∆} = {T1, ...T2t}, a 2t×2t matrix of linking probabilities, W = W (α),

a number of agents, n, and a vector m(n) = (mR
1 (n), ...,m

R
2t(n),m

S
0 (n),m

S
1 (n)), where

|Ti| = mR
i (n) and |Si| = mS

i (n).

The unique solution to the platform's problem is such that if δi = δj and θi = θj, then

wik = wjk for all k. Hence, the solution to the platform's problem generates a single

stochastic block model, with types determined by both an agent's social trust, δi, and

the social characteristics measure, θi. The ijth component of the linking probability

matrix, W (α), is then the probability that a type i agent will observe a type j agent.

Upon the realisation of the idiosyncratic shock terms and the pattern of awareness, the

agents' linkage choice determine the realised network of this stochastic block model.

At this optimum, if i, j, k ∈ R then wij > wik if |δ̂ij| > |δ̂ik| and θ̂ij ≥ θ̂ik or θ̂ij > θ̂ik

and δ̂ij ≥ δ̂ik, i.e. there is homophily between groups both in terms of worldview and

social characteristics. In terms of information sources, let TL and TH denote the set of

types which contain agents with low and high social trust respectively. Then if Ti ∈ TH

and Tj ∈ TL and k ∈ S1 then wS
ik > wS

jk, with the reverse being true when k ∈ S0.

Homophily between groups takes two forms here: one relating to the social char-

acteristics measure θi and the other relating to social trust. How relatively important

these measures are for network structure depends on the parameter α. To see this,

suppose i, j ∈ RL and k ∈ RH with θ̂ij > θ̂ik. Then wij(α) is increasing in α and

wik(α) is decreasing in α. As α increases, the relative salience of similarities in social

trust increases and the importance of social similarities decrease. The optimal network

structure from the platform's point of view re�ects this, and hence low social trust

individuals become more (less) connected in expectation as α increases (decreases).
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Stochastic block models

Throughout, we will consider the expected beliefs of agents on a stochastic block model

generated by the platform's choice of the awareness matrix, β̂, prior to the realisation

of both the pattern of awareness and the idiosyncratic shock terms.

Formally, we take a sequence of stochastic block models {G(m(n),W (α))}n∈N in

order to analyse the distribution of beliefs as n → ∞. Doing so allows us to characterise

the distribution of beliefs held by agents in steady state, and, given the large number of

users of social networks, provide a good approximation of the distribution beliefs that

would be held by agents on social block models constructed in the manner described

above.

For a �xed n, let mS
i (n) denote the number of information sources of opinion i, and

mR
i (n) denote the number of regular agents of type Ti. We write:

limn→∞
mS

i (n)

n
= qSi , limn→∞

mR
i (n)

n
= qRi ,

as the limiting fractions of information sources with opinion i and regular agents of

type Ti respectively. Throughout, we will maintain the assumption that qS0 = qS1 ,

which, given the optimal expressions for wS
i0 and wS

i1, implies that each type observes

the same proportion of information sources, di�ering only in the relative amount of

misinformative sources they observe.5

Let ṽi(n, α) be a random variable denoting the beliefs of an agent i and distributed

according to the steady state of the model n. De�ne:

zj(n, α) :=

∑
i∈Tj

ṽi(n, α)

mR
i (n)

,

5This assumption simpli�es the analysis, but the model could easily incorporate agents who prefer
to observe fewer or more information sources than others, as well as correlations between social trust
level and these preferences.
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as the average opinion of type Tj agents. Let TR be the set of all types of regular agents.

Public opinion can then be de�ned as follows:

ẑ(n, α) =
1

mR

[
∑
Ti∈TR

mR
i (n)zi(n, α)].

We will often be interested in the limit of public opinion, limn→∞ẑ(n, α) = z̄(α). Finally,

we write Ḡ(W (α)) = limn→∞G(m(n),W (α)).

4 Opinion formation and social trust

We state an expression for the limit vector of equilibrium beliefs. We then use that

limit vector to examine the e�ect that our assumption regarding di�erences in social

trust across agent types have on public opinion.

The belief vector

We characterise the limit vector of the beliefs of regular agents. De�ne Ŵ (α) as the

2t× 2t trust-adjusted linking probability matrix whose ijth entry is qjδiwij(α). De�ne

the normalised degree of a type i regular agent as follows:

di =
∑
j∈T

δiqjwij(α) + qS1w
S
i1(α) + qS0w

S
i0(α).

Let Λ(α) denote a diagonal matrix whose ith component is di and M(α) := Λ(α) −

Ŵ (α). We de�ne a T × 1 column, zS whose ith entry is qS1w
S
i1 and z(n, α) is a T × 1

column vector whose ith entry is zi(n, α). The following Theorem holds:

Theorem 1. The limit vector of regular agent expected opinions, z(n, α), converges

almost surely to the expression:
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z(α) = M−1(α)zS.

The ith component of the vector zS, qS1w
S
i1, measures the direct e�ect information

sources have on the belief probabilities of an agent of type Ti's. The matrix M−1(α)

then measures the ampli�cation of information sources by regular agents on social

media: the higher the expected number of links between one agent type, Ti, and another,

Tj, the larger the e�ect that the information sources that a given agent of type Ti is

connected to have on an agent of type Tj, and vice versa.

The role of social trust

We can use the expression in Theorem 1 to understand the e�ect of a change in the

levels of social trust. We do so while holding the worldview parameter �xed, so as not

to change the proportion of countermedia sources shown to particular agents. from low

social trust individuals.

Proposition 3. A decrease in δL results in an increase in expected public opinion and

therefore a decrease in the probability that the average agent believes misinformation;

that is, dz̄(α)
dδL

> 0.

Proposition 3 highlights the e�ect that the presence of low social trust agents have on the

distribution of equilibrium beliefs. To see why it holds, �rst consider the case where the

network, G, is �xed. As the social trust of these agents decreases, the in�uence they have

on high social trust agents they connect to increases relative to those agents' in�uence on

low social trust agents. The expected proportion of countermedia information sources

observed by low social trust agents is higher than for agents with high social trust. It
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follows that the probability that misinformation is believed increases in this case, with

the opposite being true when δL increases.

A change in δL also implies a change in optimal network structure in equilibrium: an

increase in δL increases the proportion of countermedia information sources observed by

low social trust agents. This straightforwardly has the e�ect of increasing the probabil-

ity that a generic low social trust agent believes misinformation, which in turn increases

the probability that high social trust agents believe misinformation as well.

5 Network structure and echo chambers

We examine the e�ect that di�erent network types have on misinformation. Speci�cally,

we compare a network where there is more homophily with regards to social trust with

a network where social similarity is more important in determining who connects with

whom. In doing so, we also analyse the e�ect of echo chambers on the spread of

misinformation across the network.

Network types and misinformation

We observe that many large-scale online social networks can be categorised into two

broad classes. The �rst type, which we call friendship networks, are such that users

tend to be connected with others they have met, to at least some extent, o�ine, and

are thus associated with them by friendship, work or education. Examples of friendship

networks include Facebook and Snapchat. Interest-based networks, on the other hand,

involve agents interacting with people with similar worldviews or interests to them. The

most prominent example of an interest-based network is Twitter, but forum networks

and Reddit work in a similar way.
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In terms of our model, interest-based networks would be generated by a relatively

high value of α, the relative weight di�erences in social trust have on the probability

that an agent connects with another conditional on being aware of them. The platform's

algorithm would then be more likely to show agents with low social trust other agents

with this worldview. On the other hand, friendship networks would be generated by a

relatively low value of α, and as a result i's social demographic measure, θi, has more of

an impact on the strength of i's linking probabilities than in the interest-based network.

An example of these two networks is displayed below.

Figure 2: The black node represents a countermedia source, the grey node represents
a mainstream media source, and the other colours denote di�erent types of agent.
Speci�cally, the light and dark blue agents are of high social trust, with the other nodes
being low social trust, the light blue and orange types are maximally socially similar,
as are the dark blue and red types.

As highlighted in Section 3, the structure of the network has implications for the ex-

pected belief vector, z(α). We can examine how friendship networks di�er from interest-

based networks by de�ning two di�erent stochastic block models, G(m(n),W (αF )) and

G(m(n),W (αI)), where αF < αI . The following Theorem holds:

Theorem 2. Expected public opinion z̄(α) is increasing in α. This implies that the limit
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probability that a random agent is correctly informed in the friendship stochastic block

model is lower than in the interest-based stochastic block model; that is, z̄(αF ) < z̄(αI).

The result of Theorem 2 largely relies on the fact that communication between agents

with low and high social trust is asymmetric. When low social trust individuals com-

municate their opinion to high social trust individuals, the interaction is more likely to

lead to the latter adopting the former's opinion than the reverse interaction would do.

As low social trust agents are also more likely to believe misinformation, it follows that

such interactions will increase the average level of belief in misinformation.

In friendship networks, low and high social trust individuals are more likely to be

connected to each other, whereas in interest-based networks these agents are more

segregated from one another. As communication on the network is asymmetric, such

that low social trust types are less convincible than high social trust types, it follows that

the expected number of agents who believe misinformation is greater in the friendship

network than for the the interest-based network. As such, the interest based network

generates an echo chamber more e�ectively than the friendship network.

Theorem 2 also highlights the role of the platform's algorithm in the spread of mis-

information. By recommending countermedia sources to low social trust types, the

platform's incentive to maximise engagement straightforwardly increases the probabil-

ity that misinformation is believed. The role of platforms' algorithms in propagating

sources that are misinformative, which this mechanism within the model captures, is

well established.

However, the role of the platform goes beyond recommending countermedia sources.

The more salient social characteristics are (i.e. the smaller α is), the more the plat-

form's algorithm encourages users to connect to those who are similar in terms of those
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characteristics. When α < 1
2
then, the platform's algorithm acts to reduce the natural

echo chamber that exists due to the agents' innate homophily, and in turn increases

the probability that agents believe misinformation, with the opposite being true when

α > 1
2
.

Echo chambers

A way of conceptualising the result in Theorem 2 is as a statement about the e�ect of

echo chambers on opinions. While the potential role of echo chambers in the polarisation

of beliefs and ensuring that a proportion of the population will believe misinformation

has been analysed extensively, our results point to a mechanism that is often ignored. As

the segregation of di�erent viewpoints becomes more pronounced, the less interaction

there is between individuals who believe misinformation and those who do not. If the

latter are (on average) more convincible than the former, then echo chambers reduce

the spread of misinformation.

To better understand the interaction between echo chambers and social trust, we

de�ne δ̃ = δH − δL, and note that z̄(α, δ̃) is a function of a δ̃ as a result of the fact that

the matrix Ŵ (α, δ̃) is a function of δ̃. The following result holds:

Proposition 4. Suppose αF < αI . Then, when δ̃ > 0, z̄(αF , δ̃) < z̄(αI , δ̃) and when

δ̂ = 0, z̄(αF , δ̃) = z̄(αI , δ̃).

If δ̃ > 0, Ti ∈ TL and Tj ∈ TH then wij(αF ) > wij(αI) : the friendship model tends

to generate graphs that exhibit less homophily with regards to social trust than the

interest-based model, which implies the former exhibits less of an �echo chamber� ef-

fect. Proposition 4 then states that by protecting high social trust individuals from

misinformation, the interest-based model produces an outcome in which agents are less
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likely to believe that misinformation.

The two models only become equivalent in the case where agents have the same

level of social trust: when this holds, communication between agents more likely to be

connected with mainstream information sources and those more likely to observed coun-

termedia sources is as e�ective at changing opinions as communication in the reverse

direction. In the case where there are no di�erences in social trust then, the fact that

agents with mostly mainstream views are more likely to observe misinformed agents in

the friendship network than in the interest-based network is canceled out by the fact

that misinformed agents are more likely to be convinced out of their position by their

mainstream opinion holding peers.

Polarisation

While our main focus here is on the average belief in misinformation, it is also worth

commenting on polarisation. We de�ne polarisation as follows:

P (α) := limn→∞
∑
i

qi|zi(n, α)− z̄(n, α)|.

Polarisation then measures the expected deviation of the expected belief of a type i

agent from the average belief of a generic agent as n → ∞.

Proposition 5. Polarisation P (α) is increasing in α. The level of polarisation in the

friendship network is then less than in the interest-based network, P (αF ) < P (αI).

Echo chambers in this setting increase the probability that a random agent is informed

in steady state, but they increase polarisation. This follows simply from the fact that

the stronger the echo chamber is in equilibrium, the less interaction there is between

agents who observe countermedia sources with di�erent probabilities. If agents who are
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likely to have di�erent opinions to one another do not interact as much, low social trust

agents are more likely to believe misinformation, and high social trust agents are more

likely to be informed.

Taken together, Theorem 2 and Proposition 5 imply that, if the platform was in-

centivised to intervene in the structure of the network, there is a trade-o� between

polarisation and the probability that misinformation is believed by a random agent.

Often polarisation is discussed as being a fundamental part of the spread of misinfor-

mation. Here, as more pronounced echo chambers protect high social trust individuals

from being as exposed to misinformation, the problem of polarisation and the spread

of misinformation are two di�erent issues, and solutions to combat them may be con-

tradictory.

Note that this trade-o� would not exist without di�erences in social trust. In the

case where all agents have the same levels of social trust, network structure a�ects po-

larisation, but does not a�ect the average number of agents who believe misinformation,

as highlighted in Proposition 4 and the minimal example in Section 2. The introduction

of social trust (or, more broadly, agents who are di�erentially convincible) results in

network structure being a critical element in determining not just who believes what,

but the extent to which misinformation is believed. This facet of the model makes the

question of network design more pertinent, which we discuss in Section 6.

6 Network interventions

We consider a range of policy interventions which aim to reduce the extent to which

misinformation propagates through the network. To do so, we consider a �nite network

with large n, such that ẑ(n, α) is well approximated by z̄(α), and analye the e�ect of the
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platform intervening in the matrix of awareness probabilities. Speci�cally we consider

structural interventions, which involve changing the extent to which regular agents

are aware of one another, and interventions which reduce the extent to which agents

observe countermedia sources, characterising conditions under which these interventions

are particularly e�ective.

The e�cacy of algorithmic interventions

Much of our analysis will focus on the extent to which a change in the platform's algo-

rithm a�ects public opinion. A natural question before we conduct this analysis would

be whether some form of ex-post intervention on the structure of the network would be

more e�ective than intervening on the algorithm prior to the network's realisation. To

answer this question, we state the following Theorem:

Theorem 3. For any T ∈ T , limn→∞maxi∈T |E[∂z̄(α;β
∗)

∂βij
]−E[∂z̄(α;β

∗)
∂βkj

]| = 0 for all k ∈ T .

Theorem 3 states that, as n → ∞, an ex-ante marginal change in the awareness al-

gorithm of a random agent of type k has the same e�ect on public opinion as the

case where the platform knew which βij would be most e�ective at changing public

opinion at the margin. As such, Theorem 3 validates the e�ectiveness of interventions

in the network generating process, which would tend to require less information than

intervention on the realised network.

Structural interventions

First, we compare the relative e�ectiveness of interventions which directly decrease the

probability that one type of regular agent is aware of another type of regular agent,
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rather than a source of information. We call these interventions �structural interven-

tions�. We focus on structural interv.entions which change the probability that high

and low type agents interact with one another: such interventions will necessarily be

more e�ective in reducing the average belief in misinformation than other interventions;

a direct consequence of the result in Theorem 2.

We consider a marginal decrease in an individual awareness probability βij. Both

network structure and the number of agents who are of a given type will impact on

the overall e�ect such an intervention will have. To focus on the e�ects of network

structure, we examine a case that we will call type-symmetry, where for all i ∈ TL and

j ∈ TH , qi = qL and qj = qH . As agents of the same type are identical in expectation,

we can draw on the result in Theorem 1 to understand this marginal change in terms

of the interaction between types.

Proposition 6. Suppose Ḡ(W ) is type-symmetric. The following two statements hold:

(a) if i, j ∈ RL, k ∈ RH and zi < zj then |∂z̄(α;β
∗)

∂βik
| > |∂z̄(α;β

∗)
∂βjk

| and; (b) if s, t ∈ RH ,

v ∈ RL and zs > zt, then |∂z̄(α;β
∗)

∂βsv
| > |∂z̄(α;β

∗)
∂βtv

|.

Connections between low social trust agents who are most likely to believe misinforma-

tion and their more trusting peers are more in�uential in spreading misinformation than

links between those high social trust agents to other low social trust agents. Agents with

the highest belief in misinformation are relatively isolated (both directly and indirectly)

from high social trust agents, and therefore truthful information sources. As a result,

conditional on being observed such agents are most likely to espouse misinformation

which then convinces the high social trust agents they interact with.

Similarly, links between low social trust agents and agents who are most likely to

believe the truth are also relatively in�uential in spreading misinformation compared

26



with links to other high social trust agents. Again, the type that is least likely to

believe misinformation is relatively isolated from low social trust agents, which renders

the interactions they do have with such users relatively potent.

As such, the platform can intervene in intra-agent interactions most e�ectively by

lowering the extent to which relatively isolated, high social trust agents come into

contact with low social trust individuals who are themselves relatively less likely to

come into contact with correctly informed agents and information sources.

Intervening in information source recommendations

We now consider a marginal change in the mix of information sources users observe.

Clearly, to reduce misinformation it would be necessary to reduce the proportion of

countermedia sources observed by a given agent. However, which user(s) to target with

such an intervention is not trivial and will depend on network structure, as we show

below.

We de�ne the in�uence of an average type i ∈ T agent as ϕi :=
∑

j ςij, where ςij

is the ijth entry in the matrix K(α), a 2t × 2t matrix whose ijth entry is equal to

the ijth entry of M−1(α) times qi.
qj
. We also de�ne β̃i(j, k) := βij − βik, which allows

us to consider a change in the relative proportion of countermedia information sources

without changing the amount of information sources i observes overall. We make the

following observation:

Proposition 7. Suppose that i ∈ Ti, j ∈ Tj and kt ∈ St with ϕi > ϕj. Then | ∂z̄(α;β∗)

∂β̃i(k1,k0)
| >

| ∂z̄(α;β∗)

∂β̃j(k1,k0)
|.

Increasing the proportion of mainstream media sources observed by an agent decreases

the probability that every agent believes misinformation. The in�uence of t, ϕt, mea-
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sures the e�ect the information sources observed by an average t type agent have on

the opinions of other regular type agents, weighted by the total proportion of agents

who are of that type. Hence, if ϕi > ϕj, then the marginal e�ect of increasing the rel-

ative probability type is observe mainstream sources on public opinion is greater than

marginally increasing the same probability for type js.

To see a practical implication of Proposition 7, we �rst note that ∂ϕi

∂δL
< 0 for all i ∈

TL: low social trust individuals become relatively less in�uential as they become more

convincible. The intuition for this is that the matrix K(α) (and, equivalently, M−1(α))

measures the extent to which type i agents propagate the views of the information

sources they observe. When type is are more convincible, they are more likely to adopt

the position of their peers, and hence they are less in�uential overall.

The observations above imply the following result:

Proposition 8. Suppose Ḡ(W ) is type-symmetric such that qL = qH and so qi = q ∀i.

Then for any j ∈ TH , ∃i ∈ TL such that ϕi > ϕj.

In the case where types only di�er by their location in the network, for any high social

trust type, there exists some low social trust type who is more in�uential than them.

Speci�cally, if i and j have the same social characteristics (i.e. θi = θj) then if i ∈ TL and

j ∈ TH , then i is more in�uential than j. Both i and j occupy an equivalent position in

the network when qi = q ∀i. As a result, what determines the relative in�uence between

the two types is the extent to which they change their opinions when confronted with

agents with a di�ering viewpoint, and, as low social trust types are less convincible

than high social trust types, it follows that i is more in�uential than j.
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Optimal interventions

We can use the above analysis to assess when marginal interventions in which the

proportion of countermedia information sources agents observe is reduced are more

e�ective than marginal structural interventions. Let ∆S(α) = maxi,j∈R{|∂z̄(α;β
∗)

∂βij
|} and

∆I(α) = maxi∈R| ∂z̄(α;β∗)

∂β̃i(k1,k0)
|. We make the following statement:

Theorem 4. Suppose Ḡ(W ) is type-symmetric. Then the most e�ective structural

intervention, ∆S(α), is increasing in α. Furthermore, for any α, there exists δ̄ ∈ [0, 1)

such that if δ̃ < δ̄, then ∆I(α, δ̃) > ∆S(α, δ̃).

As low and high social trust agents become more connected, the di�erence in the belief

probabilities of the most misinformed and least informed agents becomes smaller. As

Proposition 6 implies, this results in the most e�ective structural intervention being

less e�ective, as agents with opposing opinions are less segregated. Hence, structural

interventions are relatively more e�ective in the interest-based network than in the

friendship network.

Now, consider the second statement in Theorem 4. If the di�erence in social trust

levels is su�ciently low, then intervening to reduce the proportion of countermedia

sources recommended by the platform's algorithm is more e�ective than any structural

intervention. As δ̃ decreases, the extent to which agents of di�erent types di�er in the

probability that they believe misinformation reduces, because, �rst, the di�erence in

convincibility between low and high social trust agents becomes smaller and secondly

the di�erence in the probability that a low and a high social trust agent observes

misinformation also decreases. When δ̃ = 0 both these di�erences are zero, guaranteeing

that intervening to reduce the probability that misinformation is observed in the �rst

place is more e�ective than a structural intervention.
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One further question that we have not yet addressed is the issue of polarisation. It

is fairly straightforward to see that structural interventions increase polarisation, while

reducing the probability that an agent or agents connect with countermedia sources

has the e�ect of reducing it. Hence, if the goal of the intervener is to both reduce

polarisation and the probability that agents believe social mistrust, the latter type of

intervention is superior. On the other hand, when α is large, structural interventions

are particularly e�ective, and may be worth the increase in polarisation associated with

them in some cases.

7 Concluding remarks

We have analysed an opinion formation model in which some agents have lower social

trust than others. Low social trust agents communicate asymmetrically with their

high social trust peers, as they are less convincible than them. We consider the case

where these mistrustful agents are more likely to propagate the misinformation spread

by countermedia sources. The asymmetry in communication results in agents being

more likely to believe misinformation in networks in which there is a relatively high

level of communication between high and low social trust agents, a result exacerbated

by the platform's desire to maximise engagement. However, such networks have less

polarisation than networks in which echo chambers are more pronounced, leading to a

trade-o� between these two features of opinion formation networks.

A key aspect of our analysis is the empirically established link between an agent

being mistrustful, believing misinformation and engaging with countermedia sources.

One aspect of these links which we have not explored is why low social trust agents

are attracted to following countermedia sources. While it is su�cient for our purposes
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that such a link exists, one explanation worth highlighting is that these sources present

narratives where people with mainstream opinions are either acting in bad faith or

have been tricked or hoodwinked into believing those opinions (see Harambam & Au-

pers, 2014, for example). There is then a feedback loop between viewing countermedia

sources and social trust, such that agents who have a slight preference towards coun-

termedia sources become less trusting of mainstream narratives, and as a result seek

out countermedia sources.

It should be noted that the model set-up leans heavily towards the current discourse

in Western countries like the United States and the UK where mainstream sources are

relatively trustworthy and countermedia sources are often misinformative.6 Mainstream

sources may not necessarily be trustworthy in other countries, where mainstream media

sources may echo government propaganda. For example, there is evidence that Face-

book was used to spread of pro-government and anti-Muslim misinformation during

the 2017 Myanmar genocide (see Whitten-Woodring et al. 2020). In this case, coun-

termedia sources would counteract rather than propagate misinformation. We have

not actively explored this possibility here, but note that our model provides a general

framework to analyse such questions.

We have focused largely on the implications of social trust on the spread of misin-

formation. However, the model here provides general insights as to how di�erences in

social trust interact with network structure in determining opinion formation in net-

work models. In models in which agents communicate symmetrically, network structure

shapes important variables like speed of convergence (e.g. Golub and Jackson, 2010)

or polarisation (e.g. Sadler, 2021) but it plays less of a role in determining the average

6This, of course, does not hold all the time even in Western countries, where, for example, main-
stream sources can be, for example, captured by corporate interests.
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belief of agents on the network.

Here, network structure, and speci�cally links between high and low social trust

agents have a crucial part to play in determining the extent to which misinformation

is believed. This opens up questions regarding the e�ect network structure has on

opinion formation when agents are susceptible to social biases, such as con�rmation

bias, stubborn beliefs and status quo bias.

Appendix

Preliminaries

Many of the results in the main text require evaluating various derivatives of the ma-

trix M−1(α). Throughout, we let rij represent the ijth component of M−1(α). It is

useful to de�ne the 2t × 2t matrices L(α) := −M−1(α)∂M(α)
∂α

M−1(α) and Lik(α) :=

−M−1(α) ∂M
∂wik

M−1(α).

It is also worthwhile establishing some facts about the matrices M and M−1. By

assumption, qSi = q for i = 0, 1 and wS
i0q+wS

i1q = q̄S for all i. As δi ̸= δj and each type

by de�nition have di�erent values for θk, then, the matrix M(α) is of full rank (i.e. has

rank of 2t) and is such that
∑

j mij = q̄S for all j. This in turn implies that each row

of the matrix M−1(α) sums to 1
q̄S
. To see this, let v be a 2t× 1 vector �lled with 1s and

hence M(α)v = v. Thus, M−1(α)v = M−1(α)M(α)v = v. We also let 1
1−q̄S

zS = z̃S.

We note that we can write M(α) = AD(α)Q, where A is a diagonal matrix with ith

component δi, Q is a diagonal matrix with ith component qi andD(α) is some symmetric

matrix. It follows that M−1 = Q−1D−1A−1, where D−1(α) is also a symmetric matrix.

We establish a further result which will be useful for proving the statements in the
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text:

Lemma 1. M is an M-matrix and hence M−1 is non-negative.

Proof. By de�nition, M is a Z-matrix (i.e. a matrix where mij ≤ 0 for all i ̸= j).

M is also strictly diagonally dominant by construction. It follows from the Gershgorin

circle theorem that the real parts of M 's eigenvalues are positive. M is therefore a

M−matrix. M is also non-singular by construction. The inverse of a non-singular

M -matrix is non-negative.

Proof of Proposition 1

Suppose �rst that there is a connected subgraph of regular agents, that is, a connected

graph such that for all i ∈ R, ∃j ∈ R such that ij ∈ G. As the graph is connected and

S0, S1 ̸= ∅, then it follows that there exists at least one link ij ∈ G, where i ∈ R and

j ∈ Sj for j = 0, 1. The fact that the subgraph of regular agents is connected and each

regular agent i changes their opinion with some positive probability if the link ik ∈ G

is realised in the communication game, it follows that vR
t is irreducible, and thus has

a unique steady state distribution. If the subgraph of regular agents is not connected,

then the same argument holds for each component of the regular agent subgraph.

Proof of Proposition 2

As per the expressions for wij and wS
ij in the text, and noting that |γij| < 1, D(β̂, β) is

a (weakly) increasing and linear function in β̂ij for all i, j. The cost function is C(β̂)

is convex and separable in each β̂ij. It follows that either β̂
∗
ij = 1− β (i.e. the solution

is not interior) or the solution to the �rst-order condition ∂D(β̂,β)
∂βij

− ∂C(β̂)
∂βij

= 0. If this

�rst-order condition is satis�ed, then:
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β̂∗
ij =



1+γij
4χ

if i, j ∈ R

2−δi
4χ

i, ∈ R and j ∈ S0

1+δi
4χ

i, ∈ R and j ∈ S1

.

Let T be such that if i, k ∈ T , then θi = θk and δi = δk. Then for any and j ∈ G and

i, k ∈ T, whether the solution is interior or not, β∗
ij = β∗

kj and β∗
ji = β∗

jk (and, in fact,

it is simple to see that β∗
ij = β∗

ji). As this applies to any θi ∈ Θ and δi ∈ ∆, it follows

that for each Ts ∈ T , it follows that if i, k ∈ Ts then, for the solution to the platform's

problem, wij = wkj for all j ∈ G, including when j ∈ S0 or S1. As |∆| = 2 and |Θ| = t,

it follows that |Θ×∆| = 2t, as required.

Proof of Theorem 1

To simplify notation we write D(β̂, β) = D as the total degree of G. In the communi-

cation game, an edge is realised with probability 1
D
. Let G̃(n) denote a Markov matrix

whose ijth entry can be written:

g̃ij =



δi
D

if i, j ∈ R and j ∈ Gi

1− di(µ
S
i +δiµ

R
i )

D
if i, j, ∈ R and i = j

1
D

i, ∈ R and j ∈ S

.

where µS
i =

∑
j∈S gij

di
, µR

i =
∑

j∈R gij

di
and di is the degree of i in G. Let G̃R(α, n) denote

the submatrix of interactions between regular agents and G̃S(n) denote the submatrix of

interactions between stubborn agents and regular agents. Let xR = E[vi|G(n,W (α))].

At steady state, it must be that:
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xR = G̃S(n)vS + G̃R(n, α)xR

where vS is the vector of information source opinions and vR is the vector of regular

agent opinions. It follows that:

xR = (I − G̃R(n, α)−1G̃S(n)vS.

We de�ne the R×R matrix Ḡ(α, n) as a matrix whose ijth entry is written:

ḡij =



δiwij(α)

E[D(n,α)]
if i, j ∈ R and j ∈ Gi

1− (
∑

j∈R δiwij(α)+
∑

j∈S wij(α)

E[D(n,α)]
) if i, j, ∈ R and i = j

wij(α)

E[D(n,α)]
i, ∈ R and j ∈ S

.

Let ϑi(n, α) =
∑

j∈R δiwij(α)m
R
j (n) +

∑
j∈S wij(α)m

S
j (n). De�ne H(n, α) as a 2t × 2t

matrix with entry ij :

hij =


δim

R
j (n)wij(α)

E[D(n,α)]
if i ̸= j

1− ϑi(n,α)
E[D(n,α)]

+
δi(m

R
i (n)−1)wii(α)

E[D(n,α)]
if i = j

.

H(n, α) is then a representative type matrix, with its ijth entry representing the ex-

pected interaction between an agent of type i and a random type j agent. De�ne:

x̄R(σ) = (I − ḠR(n, α))−1ḠS(n)vS and

ẑ(n, α) = (I −H(n, α))−1ẑS(n, α)
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where ẑS(n, α) is a column vector ith entry is
w̃ij(α)m

S
1 (n)

E[D(n,α)]
and ḠR(n, α) and ḠS(n)

denote the submatrices of interactions between regular agents and other regular and

information source respectively corresponding to the stochastic matrix G̃(n, α). It is

clear that if i ∈ Tj, then the ith entry of x̄(n, α) is equal to the ith entry of ẑ(n, α).

We now need to show that |x(n, α)− x̄(n, α)| →a.s. 0 and ẑ(n, α) → z̄(α). For the

�rst statement, we let An be a random square matrix where aii = 0 and aij = D(n, α)g̃ij.

An is then the sum of an upper and a lower triangular matrix, both of which have

independent entries for all π ∈ [0, 1]. The following statement holds, as shown in the

proof of Theorem 1 in Sadler (2021):

Lemma. (Sadler, 2021) There exist constants c, C > 0 such that: Pr(|x(n, α) −

x̄(n, α)| > k|vS |
n3/2 ) ≤ Ce−ck2 for all su�ciently large k. It follows from the Borel-Cantelli

lemma that |xR(n, α)− x̄R(n, α)| →a.s. 0 for all su�ciently large k.

To see that z(n, α) → z(α), note the following:

(I −H(n, α))−1ẑS(n, α) = (
E[D(n, α)]

n
I − E[D(n, α)]

n
H(n))−1E[D(n, α)]

n
ẑS(n, α),

which in turn equals (Λ̃(n, α)−Ŵ (n))−1zS(n),where Λ̃(n, α) is a diagonal matrix with

ith component E[ϑi(n,α)]−wii

n
. The limit of this expression as n → ∞ is then the statement

in Theorem 1.

Proof of Proposition 3

Public opinion, z̄(α), can be written: M−1(α)z̃SqT = z̄(α) where qT is a 1× 2t vector

with ith entry qi. The vector qT is independent of δL, but both M−1(α) and zS

are functions of it. We analyse ∂M−1(α)
∂δL

�rst. We note that M−1(α)z̃S(α)qT can be
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rewritten as QM−1z̃S1T . As per the preliminary analysis, M−1(α) = Q−1D−1(α)A−1,

and so QM−1z̃S 1T = D−1(α)A−1z̃S1T .

Note that both A−1 and D−1(α) are functions of δL. Let Y (α) = AD and so

Y −1(α) = D−1(α)A−1. Then ∂Y −1(α)
∂δL

= −Y −1 ∂Y
∂δL

Y −1. Consider ∂Y
∂δL

. This matrix has a

row of 0s for all rows corresponding to a type, j ∈ TH , but
∂yii(α)
∂δL

> 0 and
∂yij(α)

∂δL
< 0

for all j and i ∈ TL. Furthermore,
∑

j yij = 0 for all i, which implies that each row sum

of ∂Y −1(α)
∂δL

is equal to 0.

As D(α) is symmetric, and δi = δL for all i ∈ TL the above analysis implies that

the ith column sum of ∂Y −1(α)
∂δL

is negative when i ∈ TL and positive when i ∈ TH .

Combined with the fact th.at zS
i ≤ zS

k for i ∈ TL and all k with the inequality strict

when k ∈ TH and the row sum of ∂Y −1(α)
∂δL

is equal to 0, it must be that ∂Y −1(α)
∂δL

z̃SqT > 0.

Now consider the ∂zS

∂δL
. By the fact that β∗

ij = 1+δi
4χ

in forj ∈ S1 and zS
i = wi1q

S
1 ,

∂zS
i

∂δL
> 0 for Ti ∈ TH . Hence,

∂zS

∂δL
> 0 and so M−1(α)∂z̃

S

∂δL
qT > 0. The Proposition then

immediately follows.

Proof of Theorem 2

To consider the e�ect of a marginal change in α on z̄(α) we note that QM−1z̃S1T =

z̄(α). We know thatM−1(α) = Q−1D−1(α)A−1, and soQM−1z̃S1T = D−1(α)A−1z̃S1T .

Again, letting Y (α) = AD, we analyse ∂Y −1(α)
∂α

= −Y −1 ∂Y
∂α

Y −1.

Given the solution to the platform's maximisation problem, the matrix ∂D(α)
∂α

is such

that if i, j ∈ TL then dij < 0 and if k ∈ TH , dik > 0, with |dij| = dik if θj = θk. It

follows that dii = 0,
∑

j dij = 0 for all i and, as D(α) is symmetric, so too is ∂D(α)
∂α

. As

A is not a function of α, V (α) = ∂Y −1(α)
∂α

= −Y −1A∂D(α)
∂α

Y −1. Furthermore, each row

sum of ∂Y −1(α)
∂α

is equal to 0. Hence:
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∂z̄(α)

∂α
= −Y −1A

∂D(α)

∂α
Y −1z̃S1T . (1)

As ∂D(α)
∂α

is symmetric and δL < δH (and noting the negative sign in front of the above

expression) implies that
∑

i vij(α) < 0 if j ∈ TL and
∑

i vik(α) > 0 if k ∈ TH and∑
i∈TL |vij(α)| =

∑
i∈TH |vij(α)|. As zS

i ≤ zS
k for i ∈ TL and all k with the inequality

strict when k ∈ TH , it then follows that ∂z̄(α)
∂α

> 0.

Proof of Proposition 4

For the �rst statement, note that the proof of Theorem 2 only relies on zS
i < zS

j for all

Ti ∈ TL and Tj ∈ TH and δ̃ > 0: the precise values of zS
i and zS

j beyond this inequality

are not speci�ed. In other words, zS
i < zS

j always holds as long as δ̃ > 0. When this

inequality holds, that proof then continues to hold: it must be that ∂z̄(α,δ̃)
∂α

> 0 for all

values of α, and so z̄(αF , δ̃) < z̄(αI , δ̃).

Now, consider the case where δ̃ = 0. The proof of Theorem 2 implies that when

δ̃ = 0, ∂z̄(α,δ̃)
∂α

= 0 for all α, and hence, z̄(αF , δ̃) = z̄(αI , δ̃) at δ̃ = 0.

Proof of Proposition 5

Note that the result in the proof of Theorem 2 that L(α) = −Y −1A∂D(α)
∂α

Y −1 immedi-

ately implies that
∂zj(α)

∂α
< 0 and ∂zk(α)

∂α
> 0 for all j ∈ TL and k ∈ TH . Furthermore,

equation (1) in the proof of Theorem 2 implies that
∑

j∈TL qj|
∂zj(α)

∂α
| <

∑
k∈TH qk|∂zk(α)∂α

|.

The derivative ∂z̄(α)
∂α

=
∑

i∈T qi
∂zi(α)
∂α

. As
∂zj(α)

∂α
> 0 and ∂zk(α)

∂α
< 0 for all j ∈

TL and k ∈ TH and
∑

k∈TH
q
qk
zk(α) > z̄(α) >

∑
j∈TL

q
qj
zj(α), it then follows that∑

k∈TH qk(
∂zk(α)
∂α

− ∂z̄(α)
∂α

) > 0 and
∑

j∈TL qj(
∂z̄(α)
∂α

− ∂zj(α)

∂α
) =

∂
∑

j∈TL
qj |zj−z̄(α)|
∂α

> 0, which

implies the result.
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Proof of Theorem 3

Note from the proof of Theorem 1, there exist constants c, C > 0 such that: Pr(|x(n, α)−

x̄(n, α)| > k|vS |
n3/2 ) ≤ Ce−ck2 for all su�ciently large k and so |x(n, α)− x̄(n, α)| →a.s. 0.

This in turn implies that |z(n, α)− z̄(n, α)| = 0. Straightforwardly, for these statements

to hold, it must be the case that limn→∞maxi∈R,Ti
|E[vi(n)]−zTi

(n)| = 0, which then im-

mediately implies that limn→∞E[|vi(n, α)−vj(n, α)|] = 0 for any i, j ∈ T . This holds be-

cause if limn→∞maxi∈R,Ti
|E[vi(n, α)]−zTi

(n, α)| = 0, then both limn→∞maxi∈R,Ti
(E[vi(n, α)]−

zTi
(n, α)) = 0 and limn→∞mini∈R,Ti

(E[vi(n, α)]− zTi
(n, α)) = 0.

Noting that ∂z̄(n,α)
∂βij

is continuous for all i, j, it then follows that limn→∞maxi∈R,T |E[∂z̄(n,α)∂βij
]−

1
|T |

∑
k∈T

∂z̄(n,α)
∂βkj

]| for all T ∈ T , which implies the result.

Proof of Proposition 6

Letting luv(ik) represent the uvth component of Lik(α) = −M−1(α) ∂M
∂wik

M−1(α), then:

luv(ik) = (−qkδirui + qiδkruk)riv + (−qiδkrui + qkδiruk)rkv.

Note that, as stated in the preliminary section above,
∑

v ruv =
1
q̄S

for all u ∈ T . There-

fore, if zi < zj then
∑

u∈TL riu(α) >
∑

t∈TL rju(α) and
∑

u∈TH riu(α) <
∑

u∈TH rju(α).

Noting that
∑

v luv(ik) = 0 ∀u, this then implies that |
∑

v∈TL luv(ik)| > |
∑

v∈TL luv(jk)|

for all u (and so |
∑

v∈TH luv(ik)| > |
∑

v∈TH luv(jk)| as well).

We know that M−1(α)z̃SqT = z̄(α), and so ∂M−1

∂wuv
z̃SqT = ∂z̄(α)

∂wuv
. We have shown

that |∂z̄(α)
∂wik

| > |∂z̄(α)
∂wjk

| if zi < zj when zi, zj ∈ TL. To �nd the the expected e�ect of a

marginal change in the probability that a type u and a type v agent are connected as

n → ∞, we just normalise the above expressions by dividing by 1
quqv

. It then follows
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that |∂z̄(α)
∂βik

| > |∂z̄(α)
∂βjk

| if zi < zj when zi, zj ∈ TL and qi = qj. This latter condition is

guaranteed by type-symmetry.

Now, consider the case where zs > zt and zs, zt ∈ TH . It follows that
∑

u∈TL rsu(α) <∑
u∈TL rtu(α) and

∑
u∈TH rsu(α) >

∑
u∈TH rtu(α). As with the argument above, this

implies that |
∑

v∈TL luv(sl)| > |
∑

v∈TL luv(tl)|for all u. It then follows that, when qs = qt

that |∂z̄(α)
∂βsl

| > |∂z̄(α)
∂βtl

| if zs > zt.

Proof of Proposition 7

Let w̃0
s1 = wS

s1 − wS
s0. As M−1z̃SqT = z̄(α) and that M−1 is independent of w̃0

s1

(though it is not independent of wS
s1 or w

S
s0,

∂M−1(α)

∂wS
s1

= ∂M−1(α)

∂wS
s1

, and so ∂M−1(α)

∂w̃0
s1

=

0). Then, M−1(α) ∂zS

∂w̃0
s1
qT = ∂z̄(α)

∂w̃0
s1
. To �nd the expected e�ect of a marginal change

in the probability that a type i is connected to a single countermedia source, k, we

normalise this expression by dividing by 1
qsqS0

. Given the de�nition of K(α), 1
qsqS0

∂z̄(α)

∂w̃0
s1

=

(K−1(α) ∂zS

∂w̃0
s1
1T ) 1

qS0
, which then immediately implies 1

qsqS0

∂z̄(α)

∂w̃0
s1w̃

0
s1

> 1
qtqS0

∂z̄(α)

∂w̃0
t1
. It then

follows that ∂z̄(α)

∂β̂i(k1,k0)
> ∂z̄(α)

∂β̂j(k1,k0)
.

Proof of Proposition 8

Note from the preliminaries section that M(α) = AD(α)Q. When qi = q, it follows that

K(α) = qAD(α) and so 1
q
D−1(α)A−1. Observe that δL < δH and A and therefore A−1

are symmetric. Then it must be that
∑

k ςik >
∑

k ςjk, and so the Proposition holds.

Proof of Theorem 4

To see that the �rst part of the Theorem, note �rst that, as stated in Theorem 2,

L(α) = −Y −1A∂D(α)
∂α

Y −1 and the matrix ∂D(α)
∂α

is such that if i, j ∈ TL then dij < 0
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and if k ∈ TH , dik > 0, with |dij| = dik if θj = θk. It follows that for a type Ti ∈ TL,∑
u∈TL riu(α) is increasing in α, and

∑
u∈TH riu(α) is decreasing, with the opposite being

true for any type Tj ∈ TH .

As Proposition 6 shows, the above implies that |∂z̄(α)
∂wik

| is increasing in α for all i ∈ TL

and k ∈ TH (and similarly, |∂z̄(α)
∂wjt

| where Tj ∈ TH and Tt ∈ TL is increasing in α too).

This then implies that ∆S(α) is increasing in α when the type-symmetry assumption

holds.

For the second statement, we consider the derivative ∂M−1(α)
∂wik

= −M−1(α)∂M(α)
∂wik

M−1(α)

where i ∈ TL and k ∈ TH . As per the preliminary results, we write ∂M(α)
∂wik

= A∂D(α)
∂wik

Q,

where ∂D(α)
∂wik

is such that its iith and jjth component is −1 and its ijth and jith

component is 1, with every other entry equal to 0.

We note that Lik(α) = −D−1(α)A−1 ∂D
∂wik

Q−1D−1(α)A−1, which then implies that∑
s∈TH

qslst(ij) = − δH
δL
[
∑

s∈TL
qslst(ij)]. As M−1(α)zSqT = z̄(α), this implies that

|∂z̄(α,δ̃)
∂wij

| is increasing in δH
δL

and therefore decreasing in δH − δL, and, furthermore,

|∂z̄(α,δ̃)
∂α

| = 0 when δ̃ = 0.

At the same time, the proof of Proposition 7 shows that ∂z̄(α,δ̃)

∂β̂j(k1,k0)
> 0 for δ̃ = 0 as

M−1(α) ∂zS

∂w̃0
s1
qT > 0 for all α. Hence, even if ∆I(α, δ̃) < ∆S(α, δ̃) for some δ̃ and α,

by the intermediate value theorem, for any α, exists some δ̄ such that if δ̃ < δ̄ then

∆I(α, δ̃) > ∆S(α, δ̃).
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