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As smartphone and wearable device ownership increase, interest in their utility to monitor physical activity has risen
concurrently. Numerous examples of the application of wearables in clinical and epidemiological research settings already
exist. However, whether these devices are all suitable for physical activity surveillance is open for debate. In this article, we
discuss four key issues specifically relevant to surveillance that we believe need to be tackled before consumer wearables can be
considered for this measurement purpose: representative sampling, representative wear time, validity and reliability, and
compatibility between devices. A recurring theme is how to deal with systematic biases by demographic groups. We suggest
some potential solutions to the issues of concern such as providing individuals with standardized devices, considering summary
metrics of physical activity less prone to wear time biases, and the development of a framework to harmonize estimates between
device types and their inbuilt algorithms. We encourage collaborative efforts from researchers and consumer wearable
manufacturers in this area. In the meantime, we caution against the use of consumer wearable device data for inference of
population-level activity without the consideration of these issues.
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As smartphone and wearable device ownership increases in the
population (Statista, 2021), interest in their utility to monitor physi-
cal activity has risen concurrently (Wright et al., 2017). It is attractive
to consider the research potential in extending the concept of the
“quantified self,” where individuals measure their own biological,
physical, behavioral, and environmental information, to the collab-
orative sharing of such data (Swan, 2013). Reduced cost and
participant burden, continuous monitoring over long time periods,
and access to retrospective data are among the potential advantages
of such methods over research-grade devices or questionnaires.

Numerous examples of the application of wearable devices
in clinical and epidemiological research settings already exist
(Bassett et al., 2019; Hicks et al., 2019; Strath & Rowley,
2018; Wright et al., 2017). Consumer-grade wearable devices
and smartphone applications also appear to be effective compo-
nents in interventions to increase activity levels (Laranjo et al.,
2021). However, whether they are currently suitable for popula-
tion surveillance is open for debate (Fulton et al., 2016; Mair et al.,
2021; Omura et al., 2021; Strain et al., 2019). In this commentary,
we will discuss four key issues that need to be tackled before
consumer wearables can be considered as a potential surveillance
measurement method. These are summarized in Figure 1. Wider
issues more pertinent to other study designs are discussed in more

detail elsewhere (Bietz et al., 2016; Cho et al., 2021; Wright
et al., 2017).

Definitions

We use the term “consumer wearable devices” to cover any device
that can be worn on the person that provides feedback to the user on
their physical activity. This covers both monitors (usually wrist-worn
smartwatches) and smartphones, and any hybrid system. Consumer
wearable devices almost ubiquitously use accelerometer sensors to
detect movement, but gyroscopes, magnetometers, barometers (alti-
meters), global positioning systems, and optical sensors (photo-
plethysmography) can be included to augment the inference of
physical activity levels or provide additional metrics. Data may be
stored on the device initially, with most offering Bluetooth connec-
tivity to phone or tablet apps. Some also have the ability to extract and
share, at a minimum, summary statistics relating to activity levels.

We define physical activity surveillance as the monitoring of
physical activity behaviors in a sample representative of the target
population with the aim of identifying differential levels by socio-
demographic subgroups and monitoring population trends (Omura
et al., 2021).

Representative Sampling

There have been extensive discussions about the merits of repre-
sentative sampling for different study designs employed in epi-
demiological research (Richiardi et al., 2013; Rothman et al.,
2013). However, all agree that when trying to describe a popula-
tion, as surveillance systems aim to do, a representative sample is
essential.

As one of the purported benefits of surveillance using con-
sumer wearables is that individuals are already collecting the data
(Mair et al., 2021), we will first discuss issues relating to
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representativeness that may arise if a random probability sample
was drawn from existing consumer wearable device owners.

Samples that do not reflect the characteristics of the wider
population may yield biased prevalence estimates and associations
that are not generalizable beyond that sample. Traditionally,
statistical weighting procedures have been used to mitigate such
biases. Weighting usually involves multiplying the observations by
a factor, derived from the probability of participation, to compen-
sate for under- or over-representation in the sample (Gray et al.,
2013). The weighted sample should match the target population on
the key selected characteristics, such as age or affluence. In our
example of a sample consisting of existing consumer wearable
device owners, we would expect younger and more affluent
individuals to be over-represented, while older and less affluent
individuals would likely be under-represented as these character-
istics have been associated with device ownership and use (Bietz
et al., 2016; Pontin et al., 2021; Strain et al., 2019). As age and
affluence are also associated with activity levels, we would expect,
in an unweighted sample of consumer device owners that is likely
skewed toward younger age and greater affluence, physical activity
prevalence estimates to be higher than the true level in the general
population. Associations between activity levels and other factors
would not necessarily be generalizable to the whole population,
and in particular, the under-represented groups. These biases are
mitigated (although unlikely ever eliminated) in weighted analyses,
as the contribution of the data from under- and over-represented
groups in the sample to the population-wide estimates are adjusted
to reflect the sociodemographic composition of the target
population.

A key assumption of weighting is that those who do participate
in the research are similar to those who do not, with respect to the
outcomes of interest (Gray et al., 2013). It is therefore a concern if
there are very few individuals with a certain age or affluence profile
in the sample, as it is more likely that they would not be represen-
tative of the wider population with those characteristics. However,
even if these subgroups are well represented, the assumption may
still be violated when we investigate physical activity levels. In our
example, we are assuming that those in the sample and in the wider

target population with similar relevant characteristics such as age
and affluence, also have similar physical activity levels. Unfortu-
nately, we know this not to be true: we know consumer device
owners are more active than nonowners, even accounting for their
younger age and greater affluence (Ernsting et al., 2017; Omura
et al., 2017; Strain et al., 2019; Toepoel et al., 2021; Xie et al.,
2020). For example, Omura et al. (2017) found the prevalence of
sufficient activity to be 50% among U.S. consumer panel survey
respondents, but 70% when only considering those who were
current wearable device users. This is not a surprise, as a major
purpose of such devices is to change and monitor activity behavior
(Mercer et al., 2016). The implication is that, even if the weighted
sample matches the general population with regards to the distri-
bution of age, affluence, and other sociodemographic factors, the
prevalence estimates for physical activity are likely to be higher
than the true population level and associations may be biased.

This is why surveillance based on existing consumer wearable
device owners is more problematic than existing surveillance using
random population sampling with more traditional methods for
measuring physical activity. That being said, those who agree to
participate in existing surveillance systems may also give rise to
biased samples, as this design is also prone to differential response
rates across demographic group. However, it is unlikely that the
probability of response correlates with physical activity levels to
the same degree as consumer wearable device ownership, which
aim to change or maintain activity behavior. In other words,
responders and nonresponders to surveys with a population sam-
pling frame are likely to be more similar in their activity levels than
consumer wearable device owners and nonowners. Therefore, it is
more plausible that the key assumption of weighting holds in
existing surveillance systems when it comes to estimating physical
activity levels for a target population.

A potential solution may be to randomly sample from the
whole population, and then provide participants with a consumer
wearable device without the need to return it, utilizing an online
data transfer protocol. In the near future, this solution may even be
more cost-efficient compared with the delivery and return of
research-grade devices. It does, however, add an element of

Figure 1 — An overview of the four issues of using wearable devices for physical activity surveillance covered in this article. Created with
biorender.com.
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both research cost and participant burden back into the equation as
these would be data that most likely would not have been collected
otherwise. The approach would also miss out on retrospective data
collection prior to study initiation. It could also interfere with the
personal monitoring for those that did own a different device if
there are differences in the capabilities, output, or mechanism for
data transfer. Potentially most importantly, simply owning a device
does not necessarily mean individuals are motivated to wear or
charge it regularly, or download and share data with researchers
(Hendker et al., 2020; Patel et al., 2015).

Indeed, further biases may be introduced in the final sample
of data when considering the fact that only those willing to share
their device data will be represented in the data set, rather than all
device owners (Turner et al., 2021). Research suggests that privacy
concerns and organizational trust are key issues (Bietz et al.,
2016; Hyde et al., 2020; Toepoel et al., 2021). If consumer
wearable devices are to be considered as a physical activity
surveillance method, then population-specific preliminary work
should be undertaken to understand the above concerns and
solutions explored to alleviate them.

Representative Wear Time

Let us assume that we can obtain a representative sample of
participants who agree to wear a consumer wearable and share
their data for surveillance purposes. As would be the case for data
collected by research-grade devices, we then need to consider
issues of within- and between-person differences in wear time. A
key benefit of consumer wearable device data is the low participant
burden, so we will assume that we would not define a specific wear
protocol for study participants but merely encourage continuous
wear as is now common for studies involving wearables in general
and indeed recommended by manufacturers of consumer devices.
We then need to consider how best to summarize an individual’s
activity data to reflect habitual levels.

Day of the week is known to influence activity levels (Doherty
et al., 2017) and therefore traditional research methods tend to
sample time in a way that would capture this variation. For
example, activity questionnaires with reference time frames of
past week or month, or asking study participants to wear research-
grade devices for 7 days before returning the device to the research
team. A potential advantage of consumer wearable devices is that
measurement periods could be vastly extended, something that has
been shown to improve estimates of habitual activity (Aadland &
Ylvisåker, 2015; Bergman, 2018; Wareham et al., 2000). Season-
ality is another determinant of activity levels (Brage et al., 2020;
Strain et al., 2022) which surveillance studies tend to control for
either by sampling throughout the year, or at the same period for
each consecutive survey. Timing of measures would need to be
considered when summarizing individuals’ consumer wearable
device data. After settling on the duration and longer-term timing
of a measurement period, one then needs to assess whether the data
recorded during that period is representative of habitual activity,
because users may not wear devices continuously. Hendker et al.
(2020) observed a tendency for users to wear their device during
their most active periods of the day. This suggests we should be
cautious in assuming that nonwear time segments are missing at
random. We should hence also be careful with computing simple
averages of wear-time data with adjustment for wear time or
imputation of physical activity during nonwear time, which are
based on this assumption. Summation techniques that attempt to
limit diurnal bias by imbalances in nonwear through equal

weighting of the different times of the day may reduce the
magnitude of the bias, particularly the approaches based on
establishing within-person patterns for which the computational
basis is much larger for consumer wearables. However, wear data
may still be biased toward exercise event data, considering that
many consumer devices are marketed as “fitness trackers.”
Between-individual differences are also a concern here. Indeed,
Rising et al. (2020) identified distinct usage patterns among
consumer wearable device users, including “super trackers” and
“non-trackers,” each with their own distinct sociodemographic
profile. However, these should not be insurmountable issues.
Imputation methods may be developed with a greater understand-
ing of when and why users wear their devices. Or, alternatives such
as MX metrics (the X most active minutes of the day; Rowlands
et al., 2019), could be investigated regarding their robustness to
different wear patterns.

A purported key advantage of wearable devices is the long-
term nature of data collection, potentially even retrospectively
before a known study baseline. Of course, a surveillance system
aiming to understand such trends would not necessarily need
continuous monitoring, but even repeated measurements from
the same individual are not typical in surveillance study designs.
That said, such long-term trajectory data would be very useful for
surveillance, meaning within-person wear time variation over a
month-to-year time-frame requires attention.

A 2014 report claimed over half of U.S. consumers that
previously owned an activity tracker have ceased to use it, and
a third stopped using it within the first 6 months (Endeavour
Partners, 2014). Meyer et al. (2017) analyzed consumer wearable
device data from 104 participants of four separate physical activity
research studies over 2.5 years and identified 12 use patterns
including the descriptively named “try-and-drop,” “slow-start,”
“experimenter,” and “power user.” This points to the different
purposes for which people use wearable devices, in many cases to
aid behavior change (Mercer et al., 2016) and is a reminder that the
activity that is being captured may not reflect habitual behavior if
there are gaps in the wear time record. Again, potential biases may
be mitigated through the development of better imputation and
analysis techniques but for the time being, nonrepresentative time
sampling remains an important issue for data from wearables. This
may be particularly relevant to research interested in activity
variation due to the COVID-19 pandemic. Wearable device or
smartphone wear patterns may have changed as many populations
had their routines disrupted as they were subject to stay-at-home
orders.

Validity and Reliability

It is standard practice in research studies to test and document the
reliability and validity of all employed methods, so that the data
arising from these can be interpreted accordingly. Fortunately,
there are numerous studies investigating the validity and reliability
of the metrics derived from at least some consumer wearables
against research-grade devices in a mixture of laboratory and free-
living settings (reviews include Evenson et al., 2015; Fuller et al.,
2020; Feehan et al., 2018). A major challenge for the field,
however, is keeping up with the new market developments,
both in terms of hardware but also firmware and software upgrades
(Evenson et al., 2015; Henriksen et al., 2018). As the issue of
validity is not specific to surveillance, we point readers to summa-
ries in other articles for greater discussion (Strath & Rowley, 2018;
Welk et al., 2019; Wright et al., 2017). In short, the broad
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conclusions relating to the accelerometer-derived variables are
remarkably similar across devices. Step count is the most consis-
tently performing metric: correlations with direct observations and
research-grade accelerometry measures are over 0.80 (Evenson
et al., 2015). However, time spent in intensity bands or energy
expenditure is generally poorly quantified (Evenson et al., 2015;
Feehan et al., 2018; Fuller et al., 2020). Measures of reliability
across all devices and metrics are generally reported to be within
acceptable levels for scientific research (Evenson et al., 2015;
Feehan et al., 2018; Fuller et al., 2020). It is hard to assess whether
the validity is improving with technological developments because
there is also wide variety in validity study protocols (Cosoli et al.,
2020). The general use of proprietary algorithms and lack of
transparency in updates make this even harder (Feehan et al.,
2018). Any changes in the algorithms converting raw sensor mea-
surements to the metrics presented on the device, which are often
proprietary, pose issues for validity and also within-person compar-
isons over time. Although we are unaware of any analysis quantify-
ing the implications of a consumer wearable firmware update,
examples from research-grade devices indicate that this is an issue
worth highlighting. The low-frequency extension option in the
ActiGraph GT3X (ActiGraph, Pensacola, FL), extending the range
of detection at the lower end of the movement intensity spectrum,
increased the overall activity volume estimates by close to 10%
(Ried-Larson, 2012). Evenson et al. (2015) called for companies to
make firmware updates transparent to the public, while Wright et al.
(2017) offer an alternative solution as they describe how Withings
have agreed to notify of updates and provide conversions.

We might speculate that the higher error in the more complex
metrics, such as energy expenditure, is potentially due to the
tweaking of algorithm coefficients or the addition of a default or
user-provided value of body weight to the algorithm that may not
be estimated with similar precision compared with that measured in
a research study. Should this be the case, this provides a potential
avenue for improving the accuracy of derived metrics. It also is a
reminder of the importance of accurate demographic data, an
essential component to physical activity surveillance for the iden-
tification of at risk subgroups. Those considering a system to
collect physical activity data from consumer wearable devices
should also consider how such additional information will be
gathered, and how frequently it should be updated. Accessing
raw sensor measurements such as raw acceleration may be another
solution, bypassing algorithms designed to produce derived esti-
mates. This measurement in particular can be calibrated to local
gravity and provide brand-agnostic metrics of physical behaviors
(van Hees et al., 2014). However, it is not clear that all devices and/
or their cloud infrastructure store such raw information as it
requires a large amount of data storage capacity, let alone chal-
lenges of data transfer from device to smartphone.

Another option may be better integration of sensor data to infer
physical activity. Heart rate detection through photoplethysmo-
graphy is an increasingly common feature of smartwatches, while
skin temperature and galvanic response may also feasibly be
detected. The measurement of these biological signals, without
much on-board data processing, can also be directly validated
against research- or medical-grade measurements, for which indus-
try standards exist. Energy expenditure is more precisely predicted
from combined heart rate and accelerometer sensing than accel-
erometry alone when using research-grade devices (Brage et al.,
2015), and one would expect the same for consumer wearables,
provided similar methods for individually calibrating the heart rate
to energy expenditure relationship across a reasonable intensity

range were employed (Brage et al., 2007). However, more free-
living studies comparing consumer wearables against research-
grade devices are needed for all imbedded sensor elements that
provide measurements in a device, as well as their derived esti-
mates of activity.

Differential validity between devices may be overcome with
the earlier suggestion of providing the same type of devices to
potential participants. However, as described above, this may
create other biases and negates some of the main purported benefits
of wearable device data.

A further consideration is differential validity by wear position
(Düking et al., 2018). We know from studies using research-grade
devices that the validity of hip- or thigh-worn accelerometers is
different to those at the wrist and even between dominant and
nondominant wrists (White et al., 2016, 2019), so it is likely that
carrying one’s phone or wearable device in a trouser or breast
pocket, or even a bag, will affect measurement error. Mobile phone
data are likely to be particularly challenging in this regard; studies
have shown that preferred wear position for a mobile phone varies
by age, sex, and culture (Cui et al., 2007; Redmayne, 2017). Such
systematic biases by demographic groups are potentially problem-
atic for surveillance.

Compatibility Between Consumer Devices

Perhaps the greatest challenge for surveillance is the incompatibil-
ity of activity estimates between consumer wearables if one were to
accept any data generated from any of the thousands of device
models in use today. Concurrent comparisons of multiple con-
sumer wearable devices indicate a wide range of estimates for
moderate to vigorous physical activity, total daily energy expendi-
ture, and, to a lesser extent, step counts (Ferguson et al., 2015).
However, limiting surveillance efforts to one manufacturer or
model will only exacerbate the selection biases. Providing indivi-
duals with a device may overcome the issues raised in this
paragraph, but we have already raised the disadvantages of this
approach above.

We have previously proposed a harmonization approach to
deal with research-grade device comparisons (Pearce et al., 2020).
This involves using mapping equations from concurrent validity
studies to understand the relationship between two measurement
regimes and convert these such that they can be considered on the
same scale.

Extending this harmonization approach requiring direct vali-
dation to consumer wearable device data is a daunting prospect
given the sheer number of permutations of manufacturers, models,
firmware/software versions, and anatomical wear positions, which
may all influence the activity estimates in the stored record (Cho
et al., 2021). As a result, the relevant mapping equations are often
unavailable. It is also worth noting that the majority of validity
studies currently undertaken on consumer wearable devices
involve middle-aged adults of normal body mass index (Evenson
et al., 2015): A more representative basis would be required to
apply these methods in the context of population surveillance.

One solution could be a network harmonization approach
which estimates relationships between devices indirectly when a
concurrent direct validity study is not available (Pearce et al.,
2020). All devices have some relationship with each other, and
anchoring some of the most popular wearable devices (and algo-
rithm versions) to research-grade device methods would inform the
entire network allowing harmonization. On the consumer wear-
ables side, it is likely that some of the device comparison data have
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already been recorded and are held by companies; even those
comparisons would be strengthened by publishing the results and
combining them with other methodological comparisons.

It is clear that working with consumer wearable device
manufacturers in this way would help realize the public health
potential of the vast amounts of consumer wearable device data
collected, including its use for population surveillance. There are
many examples of successful large-scale collaborations with
companies such as Apple and Fitbit for epidemiological research
(Banks, 2020) but the true potential lies in the utilization of data
stemming from multiple types following successful data harmo-
nization. Using data directly from companies would be a new
model for population surveillance, potentially avoiding contact
with the individuals themselves. This poses additional chal-
lenges in obtaining additional demographic data that, as previ-
ously described, is essential. In addition, it is important to
remember that while companies have an interest in advancing
research and contributing to the common good, their business
model is paramount (Bietz et al., 2016) and so public health
researchers need to be realistic in expectations and requests. As
researchers, we also need to be aware of the potential risks
companies may take through data sharing (Bietz et al., 2016;
Hicks et al., 2019).

Conclusion

In this commentary, we have identified four key issues as the
biggest current challenges to the use of data from consumer
wearable devices in the surveillance of population physical activity
levels. We have suggested ways in which these challenges may be
mitigated or overcome in the future and we encourage collaborative
efforts from researchers and consumer wearable manufacturers in
this area. In the meantime, we caution against the use of consumer
wearable device data for inference of population-level activity
without the consideration of these issues.
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