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ADER-WENO methods represent an effective set of techniques for solving hyperbolic 
systems of PDEs. These systems may be non-conservative and non-homogeneous, and 
contain stiff source terms. The methods require a spatio-temporal reconstruction of the 
data in each spacetime cell, at each time step. This reconstruction is obtained as the root 
of a nonlinear system, resulting from the use of a Galerkin method. It is proved here 
that the eigenvalues of certain matrices appearing in these nonlinear systems are always 
0, regardless of the number of spatial dimensions of the PDEs, or the chosen order of 
accuracy of the ADER-WENO method. This guarantees fast convergence to the Galerkin root 
for certain classes of PDEs.
© 2017 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Background

ADER-WENO methods have proved extremely useful in obtaining arbitrarily high-order solutions to problems involving 
hyperbolic systems of PDEs. For example, it has been demonstrated that for the same computational cost as a Runge–Kutta 
scheme of a certain order, one can obtain an ADER scheme of one higher order of accuracy (see Balsara et al. [1]). Addi-
tionally, Runge–Kutta schemes suffer from the presence of Butcher barriers (see Butcher [3]), limiting the order of temporal 
accuracy that one can comfortably achieve. There are no such limitations present in ADER-WENO schemes.

The cumbersome analytical derivation of the temporal derivatives of the solution required by the original ADER formu-
lation (see Toro [10]) has been replaced by the use of a cell-wise local Galerkin predictor. The predictor can take either a 
discontinuous or a continuous form (see Dumbser et al. [4] and Balsara et al. [2], respectively). The Galerkin predictor is a 
high-order polynomial reconstruction of the data in both space and time, found as the root of a non-linear system.

It has been conjectured that the eigenvalues of certain matrices appearing in these non-linear systems are always zero, 
leading to desirable system properties for certain classes of PDEs. It is proved here that this is in deed the case for any num-
ber of spatial dimensions and any desired order of accuracy, for both the discontinuous and continuous Galerkin variants. 
This result is independent of the choice of reconstruction basis polynomials.

The Einstein summation convention is to be assumed throughout this paper.

2. The ADER-WENO method

Take a non-homogeneous, non-conservative (and for simplicity, one-dimensional) hyperbolic system of the form:

∂ Q

∂t
+ ∂ F ( Q )

∂x
+ B ( Q ) · ∂ Q

∂x
= S ( Q ) (1)
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where Q is the vector of conserved variables, F is the conservative nonlinear flux, B is the matrix corresponding to the 
purely non-conservative component of the system, and S ( Q ) is the algebraic source vector.

Take the set of grid points x0 < x1 < . . . < xK and define �xi = xi+1 − xi . Take the time steps t0 < t1 < . . . while defining 
�tn = tn+1 − tn . Following the formulations presented in Dumbser et al. [5,6], Balsara et al. [2], the WENO method and 
Galerkin method produce at each time step tn a local polynomial approximation to Q on each space-time cell [xi, xi+1] ×
[tn, tn+1].

Define the scaled space variable:

χ i = 1

�xi
(x − xi) (2)

Take a basis {ψ0, . . . ,ψN } of P N and inner product 〈·, ·〉. This basis can either be nodal (ψi
(
χ j

) = δi j where {χ0, . . . ,χN }
are a set of nodal points, such as the Gauss–Legendre abscissae), or modal (such as the Jacobi polynomials).

The WENO method (as used in Dumbser et al. [8]) produces an order-N polynomial reconstruction of the data at time tn
in cell [xi, xi+1], using {ψ0, . . . ,ψN } as a basis. This is denoted:

w (x) = wγ ψγ

(
χ i (x)

)
(3)

This spatial reconstruction at the start of the time step is to be used as initial data in the problem of finding the Galerkin 
predictor.

Now define the scaled time variable:

τn = 1

�tn
(t − tn) (4)

Thus, (1) becomes:

∂ Q

∂τn
+ ∂ F ∗ ( Q )

∂χ i
+ B∗ ( Q ) · ∂ Q

∂χ i
= S∗ ( Q ) (5)

where

F ∗ = �tn

�x
F B∗ = �tn

�x
B S∗ = �tn S (6)

The non-dimensionalization notation and spacetime cell indexing notation will be dropped for simplicity in what follows. 
Now define the set of spatio-temporal basis functions:

{θk (χ, τ )} = {
ψp (χ)ψs (τ ) : 0 ≤ p, s ≤ N

}
(7)

Denoting the Galerkin predictor by q, take the following set of approximations:

Q ≈ q = θβqβ (8a)

F ( Q ) ≈ θβ Fβ (8b)

B ( Q ) · ∂ Q

∂χ
≈ θβ Bβ (8c)

S ( Q ) ≈ θβ Sβ (8d)

for some coefficients qβ , Fβ , Bβ , Sβ .
If {ψ0, . . . ,ψN } is a nodal basis, the nodal basis representation may be used:

Fβ = F
(
qβ

)
(9a)

Bβ = B
(
qβ

) ·
(

∂θγ

(
χβ, τβ

)
∂χ

qγ

)
(9b)

Sβ = S
(
qβ

)
(9c)

where 
(
χβ, τβ

)
are the coordinates of the node corresponding to basis function θβ .

If a modal basis is used, Fβ , Bβ , Sβ may be found from the previous values of qβ in the iterative processes described 
below.

For functions f (χ, τ ) = fχ (χ) fτ (τ ) and g (χ, τ ) = gχ (χ) gτ (τ ), define the following integral operators:

[ f , g]t = fτ (t) gτ (t)
〈
fχ , gχ

〉
(10a)

{ f , g} = 〈 fτ , gτ 〉 〈
fχ , gχ

〉
(10b)
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Multiplying (5) by test function θα , using the polynomial approximations for Q , F , B , S , and integrating over space and 
time gives:{

θα,
∂θβ

∂τ

}
qβ = −

{
θα,

∂θβ

∂χ

}
Fβ + {

θα, θβ

} (
Sβ − Bβ

)
(11)

2.1. The discontinuous Galerkin method

This method of computing the Galerkin predictor allows solutions to be discontinuous at temporal cell boundaries, and 
is also suitable for stiff source terms.

Integrating (11) by parts in time gives:([
θα, θβ

]1 −
{

∂θα

∂τ
, θβ

})
qβ = [θα, w]0 −

{
θα,

∂θβ

∂χ

}
Fβ + {

θα, θβ

} (
Sβ − Bβ

)
(12)

where w is the reconstruction obtained at the start of the time step with the WENO method. Define the following:

Uαβ = [
θα, θβ

]1 −
{

∂θα

∂τ
, θβ

}
(13a)

Vαβ =
{
θα,

∂θβ

∂χ

}
(13b)

Wα = [
θα,ψγ

]0 wγ (13c)

Zαβ = {
θα, θβ

}
(13d)

Thus:

Uαβqβ = Wα − Vαβ Fβ + Zαβ

(
Sβ − Bβ

)
(14)

This nonlinear system in qβ is solved by a Newton method. The source terms must be solved implicitly if they are stiff. 
Note that W has no dependence on q.

2.2. The continuous Galerkin method

This method of computing the Galerkin predictor is not suitable for stiff source terms, but it provides substantial savings 
on computational cost and ensures continuity across temporal cell boundaries.

{ψ0, . . . ,ψN } must be chosen in such a way that the first N + 1 elements of 
{
θβ

}
have only a spatial dependence. The 

first N + 1 elements of q are then fixed by demanding continuity at τ = 0:

q (χ,0) = w (χ) (15)

where w is spatial the reconstruction obtained at the start of the time step with the WENO method.

For a given vector v ∈ R(N+1)2
and matrix X ∈ M(N+1)2,(N+1)2 (R), let v = (

v0, v1
)

and X =
(

X00 X01

X10 X11

)
where v0 , X00

are the components relating solely to the first N + 1 components of v . We only need to find the latter components of q, 
and thus, from (11), we have:{

θα,
∂θβ

∂τ

}11

q1
β = {

θα, θβ

}11
(

S1
β − B1

β

)
−

{
θα,

∂θβ

∂χ

}11

F 1
β + {

θα, θβ

}10
(

S0
β − B0

β

)
−

{
θα,

∂θβ

∂χ

}10

F 0
β (16)

Define the following:

Uαβ =
{
θα,

∂θβ

∂τ

}11

(17a)

Vαβ =
{
θα,

∂θβ

∂χ

}11

(17b)

Wα = {
θα, θβ

}10 (
Sβ − Bβ

)0 −
{
θα,

∂θβ

∂χ

}10

F 0
β (17c)

Zαβ = {
θα, θβ

}11 (17d)

Thus:

Uαβq1
β = Wα − Vαβ F 1

β + Zαβ

(
S1

β − B1
β

)
(18)

Note that, as with the discontinuous Galerkin method, W has no dependence on the degrees of freedom in q.
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3. Conjecture

Extending the Galerkin method described in the previous section to three dimensions, the following system must be 
solved for q:

Uαβqβ = Wα − V 1
αβ Fβ − V 2

αβ Gβ − V 3
αβ Hβ + Zαβ

(
Sβ − Bβ

)
(19)

where now we have the 3 scaled spatial variables χ1, χ2, χ3 and G, H are the flux components in the second and third 
spatial directions, respectively. In the case of the continuous Galerkin method, it is assumed that (19) is to be solved for 
only the non-fixed degrees of freedom in q. The matrices V i

αβ are defined thus:

V i
αβ =

〈
θα,

∂θβ

∂χi

〉
(20)

For the discontinuous Galerkin method, Wα now takes the form:

Wα = [
θα,�γ

]0 wγ (21)

where �γ (χ1,χ2,χ3) is an element of the following set, enumerated by γ :{
ψi (χ1)ψ j (χ2)ψc (χ3) : 0 ≤ i, j,k ≤ N

}
(22)

For the continuous Galerkin method, Wα now takes the form:

Wα = {
θα, θβ

}10 (
Sβ − Bβ

)0 −
{
θα,

∂θβ

∂χ1

}10

F 0
β −

{
θα,

∂θβ

∂χ2

}10

G0
β −

{
θα,

∂θβ

∂χ2

}10

H 0
β (23)

Dumbser et al. [4] remark that for the continuous Galerkin case, the eigenvalues of U−1 V i are all 0 for 0 ≤ N ≤ 5, 
for i = 1, 2, 3. Dumbser and Zanotti [7] state the same result for the discontinuous Galerkin case. This implies that in the 
conservative, homogeneous case (B = S = 0), owing to the Banach Fixed Point Theorem, existence and uniqueness of a 
solution are established, and convergence to this solution is guaranteed. As noted in Dumbser and Zanotti [7], in the linear 
case it is implied that the iterative procedure converges after at most N + 1 iterations.

In Dumbser et al. [4] it is conjectured that the result concerning the eigenvalues of U−1 V i holds for any N , and any 
number of spatial dimensions. A solution to this conjecture is provided here. For the theory in linear algebra required for 
this section, please consult a standard textbook on the subject, such as Nering [9].

3.1. The discontinuous Galerkin case

First, given the basis polynomials {ψ0, . . . ,ψN }, define the following matrices:

ℵi j = 〈
ψi,ψ j

〉
(24a)

�i j =
〈
ψi,ψ

′
j

〉
(24b)

Note that ℵ is the Gram matrix, which by linear independence of {ψ0, . . . ,ψN } is invertible. Note also that if p ∈ P N

then p = a jψ j for some unique coefficient vector a. Thus, taking inner products with ψi , we have 
〈
ψi,ψ j

〉
a j = 〈ψi, p〉 for 

i = 0, . . . , N . This produces the following result:

p = a jψ j ⇔ a = ℵ−1x, xi = 〈ψi, p〉 (25)

Without loss of generality, take the ordering:

α = αt (N + 1)3 + αx (N + 1)2 + αy (N + 1) + αz (26)

where 0 ≤ αt, αx, αy, αz ≤ N . Using the same ordering for β , we have:

Uαβ = (
ψαt (1)ψβt (1) −�βtαt

) · ℵαxβx · ℵαyβy · ℵαzβz (27a)

V 1
αβ = ℵαtβt ·�αxβx · ℵαyβy · ℵαzβz (27b)

Thus:

U = C ⊗ ℵ ⊗ ℵ ⊗ ℵ (28a)

V 1 = ℵ ⊗�⊗ ℵ ⊗ ℵ (28b)

where Cij = ψi (1)ψ j (1) −� ji . Thus:
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U−1 V 1 =
(

C−1ℵ
)

⊗
(
ℵ−1

�

)
⊗ I ⊗ I (29)

Therefore:(
U−1 V 1

)k =
(

C−1ℵ
)k ⊗

(
ℵ−1

�

)k ⊗ I ⊗ I (30)

A matrix X is nilpotent (Xk = 0 for some k ∈N) if and only if all its eigenvalues are 0. The conjecture will be proved if it is 
shown that 

(ℵ−1�
)k = 0 for some k ∈N, as this would imply that 

(
U−1 V 1

)k = 0, and thus all eigenvalues of U−1 V 1 are 0.
Taking a ∈RN+1, define:

p = a0ψ0 + . . . + aNψN ∈ P N (31)

Note that:

(�a)i = 〈
ψi,ψ

′
0

〉
a0 + . . . + 〈

ψi,ψ
′
N

〉
aN = 〈

ψi, p′〉 (32)

Thus, by (25):(
ℵ−1

�a
)

i
ψi = p′ (33)

By induction:((
ℵ−1

�

)k
a

)
i
ψi = p(k) (34)

for any k ∈N. As p ∈ P N , 
(ℵ−1�

)N+1
a = 0. As a was chosen arbitrarily, 

(ℵ−1�
)N+1 = 0. Thus, the conjecture is solved.

This proof is easily adapted to show that U−1 V 2 and U−1 V 3 are nilpotent, and clearly extends to any number of spatial 
dimensions. No specific choice has been made for N ∈N and thus the result holds in general.

3.2. The continuous Galerkin case

In addition to ℵ, �, we now define ℵ′ , �′ where each new matrix is equal to the original, with its first row and column 
removed (the row and column corresponding to the constant-term polynomial ψ0). Take the following ordering:

α = αt (N + 1)3 + αx (N + 1)2 + αy (N + 1) + αz (35)

where now 0 ≤ αx, αy, αz ≤ N and 0 ≤ αt ≤ N − 1. Using the same ordering for β , we now have:

Uαβ = �
′
αtβt

· ℵαxβx · ℵαyβy · ℵαzβz (36a)

V 1
αβ = ℵ′

αtβt
·�αxβx · ℵαyβy · ℵαzβz (36b)

The proof for the continuous case follows in the same manner as the proof for the discontinuous case, with:

U−1 V 1 =
((
�

′)−1 ℵ′) ⊗
(
ℵ−1

�

)
⊗ I ⊗ I (37)
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