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Task Encoding across the Multiple Demand Cortex Is
Consistent with a Frontoparietal and Cingulo-Opercular
Dual Networks Distinction
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Multiple-demand (MD) regions of the human brain show coactivation during many different kinds of task performance. Previous work
based on resting-state functional magnetic resonance imaging (fMRI) has shown that MD regions may be divided into two closely coupled
subnetworks centered around the lateral frontoparietal (FP) and cingulo-opercular cortex. Here, we used on-task fMRI to test whether
this division is apparent during the performance of an executive task. Furthermore, we investigated whether there is a difference in the
encoding of task between the two subnetworks. Using connectivity methods, we found that activity across the entire MD cortex is
correlated during task performance. Meanwhile, however, there was significantly stronger connectivity within each of the subnetworks
than between them. Using multivoxel pattern analysis, we also found that, although we were able to decode task-relevant information
from all regions of the MD cortex, classification accuracy scores were significantly higher in the FP subnetwork. These results suggest a
nested picture with MD regions as a whole showing coactivation and broad rule representation, but with significant functional distinc-

tions between component subnetworks.
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ignificance Statement

Multiple-demand (MD) regions of frontal and parietal cortex appear essential for the orchestration of goal-directed behavior and
problem solving. Understanding the relative specialization of regions within the MD cortex is crucial to understanding how we can
coordinate and execute complex action plans. By examining functional connectivity during task performance, we extend previous
findings suggesting that the MD cortex can be divided into two subnetworks centered around the frontoparietal (FP) and cingulo-
opercular (CO) cortex. Furthermore, using multivoxel pattern analysis, we show that, compared with the CO subnetwork, the FP
subnetwork manifests more differentiated coding of specific task events.
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Introduction

The performance of many different tasks involves coordinated
activity of a large-scale brain network variously termed the
multiple-demand (MD) cortex or cognitive control network.
Multiple studies have established that the same regions are co-
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activated when subjects are engaged in many kinds of goal-
directed behavior: the dorsolateral prefrontal cortex (DLPFC),
inferior frontal junction (IF]), intraparietal sulcus (IPS), dorsal
anterior cingulate cortex and presupplementary motor area
(DACC), and the anterior insula (AI) (Cabeza and Nyberg, 2000,
Duncan and Owen, 2000; Cole and Schneider, 2007; Duncan,
2010, 2013; Fedorenko et al., 2013).

An important requirement for goal-directed behavior is the
maintenance and execution of the relevant steps that lead toward
that goal. Within psychological paradigms, this often manifests as
explicit task rules. The primate literature is rich with evidence
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Figure1.  Taskrules. Subjects were trained to associate six different task rules with the color

of a border surrounding the trial stimuli. Rules were grouped into three categories—semantic,
lexical, and perceptual—with two alternative rules per category.

suggesting that the DLPFC is particularly important in encoding
task rules (Miller, 2000; Freedman et al., 2001; Kusunoki et al.,
2010; Buschman et al., 2012; Stokes et al., 2013). Furthermore,
through human functional magnetic resonance imaging (fMRI)
studies in particular, evidence has accumulated that the wider
MD cortex is also important in the learning and execution of
rules (Cole et al., 2011; Dumontheil et al., 2011; Woolgar et al,,
2011a, 2011b).

Itis apparent, however, that the component regions of the MD
cortex are far from homogeneous (Derrfuss et al., 2004; Ramnani
and Owen, 2004; Menon and Uddin, 2010; Crittenden and Dun-
can, 2014; Matsuyoshi et al., 2012; Shenhav et al., 2013). Indeed,
a particularly interesting line of investigation has indicated that
the broad MD system may be further divided into two closely
coupled subnetworks (Dosenbach et al., 2008). In proposing this
dual-network architecture, Dosenbach et al., (2006) have argued
for a distinction between a frontoparietal (FP) rapid adaptive
control network and a CO sustained task-set maintenance net-
work. They report that, across a variety of tasks, activation in the
EP subnetwork (DLPFC, IFJ, and IPS) was strongly associated
with trial-to-trial performance control, as demonstrated by sig-
nificant activation associated with individual events of a mixed
block-event-related design (Visscher et al., 2003). In contrast, the
CO regions (DACC, Al and anterior prefrontal cortex or APFC)
showed additional sustained activity throughout a task block.

A potential distinction between the two subnetworks has fur-
ther been demonstrated through analysis of temporal correla-
tions in resting-state data (Dosenbach et al., 2007). Dosenbach et
al. (2007) found that correlations between regions of interest
(ROIs) within each of the FP and CO subnetworks were signifi-
cantly stronger than between-network correlations. Further-
more, Nomura et al. (2010) found that lesion to an MD ROI
reduced the network integrity of the subnetwork to which it be-
longed significantly more than the subnetwork to which it did not
belong.

We also investigated whether separation of subnetworks is
also apparent when subjects are engaged with a cognitive task. To
test this, participants were required to perform an executive task
composed of six rules (Fig. 1) during fMRI. Although the resting
state is associated with unconstrained mind-wandering, the MD
regions are most strongly engaged during executive task perfor-
mance. Therefore, we performed a connectivity analysis over the
entire task period to investigate the integrity of the MD network
as a whole during task performance as well as the integrity of the
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CO and FP subnetworks within it. Furthermore, the present
study used multivoxel pattern analysis (MVPA) on fMRI data to
determine whether there are significant differences in the
strength of rule representation within FP and CO subnetworks.
We reasoned that, if the FP network is more engaged in the ap-
plication of task rules to incoming sensory information, then this
may require a stronger trial-specific representation of these rules,
which would be apparent as a stronger decoding of task in the FP
ROIs compared with the CO ROIs. A previous report based on
the same data focused on the default mode network and its link to
rule switching (Crittenden et al., 2015).

Materials and Methods

Subjects. Eighteen right-handed subjects (10 females) between 18 and 40
years of age were recruited from the Medical Research Council Cognition
and Brain Sciences Unit subject panel. Of 21 original subjects scanned, 3
had to be removed for excessive head movements (>10 mm translation
and/or 6° rotation). None of the subjects was colorblind or had a history
of neurological or psychiatric illness. The study was performed in accor-
dance with ethical approval given by the Cambridge Psychology Research
Ethics Committee. Subjects provided informed written consent and were
reimbursed for their time.

Task description. The task was created using the Psychophysics Tool-
box (Brainard, 1997) for MATLAB. Within the scanner, the stimulus
display was projected onto a mirror mounted to a 32-channel head coil.
Stimuli were rendered on a light gray background and subtended a visual
angle of ~7.9°.

Subjects were required to learn six different tasks. Each task was
associated with a different rule, with the appropriate rule determined
by the color border in which the task stimulus appeared. The six task
rules are shown in Figure 1. Rules were divided into three categories—
semantic, lexical, and perceptual—with two alternative rules per cat-
egory. For the semantic category, stimuli were pictures of real-world
objects. A red border was associated with the rule: “Is it larger than a
shoebox?,” blue with: “Is it living?” For the lexical category, stimuli
were four-letter strings with an empty space. A green border was
associated with the rule: “Does A in the empty space fit to make a
word?,” purple with “Does I fit to make a word?” For the perceptual
category, stimuli were pairs of geometric figures. A pink border was
associated with the rule: “Are figures the same height?,” brown with
“Are figures the same shape?” Shapes were regular polygons (triangle,
square, pentagon, and hexagon), which varied in color (blue, green,
red, and yellow), although color was always irrelevant. All questions
were framed in a true/false format (right thumb button press = true,
left thumb button press = false) so that arbitrary response mappings
for each rule did not have to be learned in addition to the rules
themselves. All categories included stimuli that required a positive
answer for both potential rules (25%), for one rule but not the other
(50%), or for neither rule (25%); therefore, subjects needed to re-
member and apply the correct rule on all trials.

Each trial began with the simultaneous appearance of the color
border and the task stimulus, which both remained until the re-
sponse. Subjects were requested to respond as quickly as possible. A
low tone was played to subjects if they made an incorrect response.
There was a jittered interval between the response to one trial and the
onset of the next. Interval jittering followed an exponential distribu-
tion between 1 and 11 s, with a mean of 4.1 s.

Procedure. Before scanning, subjects practiced the task until they had com-
pleted at least 20 trials with an accuracy exceeding 80%. Within the scanner,
subjects then completed four runs of 73 trials each. Discarding the first trial,
each run contained 12 trials with each task, divided equally between task
repetitions, within-category switches, and between-category switches. The
distinction between switch types has been described previously (Crittenden
et al.,, 2015) and is not relevant here. After scanning, when questioned, no
subjects reported having any sense of what task to expect from one trial to the
next.

fMRI acquisition. Scans were acquired with a 3T Siemens Trim Trio
scanner; 32 3 mm slices (0.75 mm interslice gap) in axial orientation
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gave an inplane resolution of 3 X 3 mm and were acquired using a TR
of 2 s. T2*-weighted echo-planar imaging (EPI) capturing blood ox-
ygen level dependent (BOLD) contrast was used with a flip angle of
78°. For both experiments, the first 8 images were discarded to avoid
T1 equilibration effects.

fMRI analysis. Images were preprocessed and analyzed with SPM8
(Wellcome Department of Cognitive Neurology). In the first prepro-
cessing step, individual data were checked visually to ensure that the
acquisition window was appropriately placed and that there were no
obvious artifacts or distortions, such as those caused by movement in
either the structural or functional scans. All images were then re-
aligned to the first image. Next, slice time correction and coregistra-
tion of the structural with the EPI images were performed. Finally,
data were normalized to the standard Montreal Neurological Institute
(MNTI) template and subjected to a high-pass filter with cutoffat 128 s.
For the connectivity analysis, data were smoothed with an 8 mm
full-width-half-maximum Gaussian kernel. For MVPA, unsmoothed
data were used.

ROIs were defined using data from Fedorenko et al. (2013), which are
available online at imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem. All
were bilateral and included the DLPFC, IFJ, IPS, AI, DACC, and
APEC.

Connectivity analyses were performed using the CONN toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012). Two sources of func-
tional data were used for the connectivity analysis: in the first analysis,
the EPI images that had been preprocessed as described but had
undergone no further statistical analysis were used; in the second
analysis, the residual images from a first-level general linear model
performed in SPM8 were used (details in Results). Connectivity
strength was calculated over the entire task period. Before subject-
level analysis, standard preprocessing and denoising procedures using
the default settings of the CONN toolbox were performed on the EPI
data using the BOLD signal derived from white matter masks and
CSF, as well as motion correction parameters from the realignment
stage of the spatial preprocessing as covariates of no interest. The data
were further band-pass filtered between 0.008 and 0.09 Hz. For
each subject, the bivariate Fisher-transformed correlation was
calculated for each pair of ROIs. Only ROI to ROI analyses were
performed. Subsequent analysis compared Fisher-transformed corre-
lation strengths within and between FP and CO subnetworks.

MVPA was performed using the Decoding Toolbox (Christophel et al.,
2012; Hebart et al., 2015). Before MVPA, fixed-effects analyses were
performed on each individual’s data using a GLM with separate regres-
sors for each of the six different rules. Each regressor was modeled as a
rectangular function from the onset of each stimulus to the moment of
response and convolved with the canonical HRF. The resulting 8 values
from each task produced by the subject-wise fixed effects analyses were
Z-scored across all voxels within each ROI. This step was intended to
reduce any impact of task differences in overall ROI activity. Pattern
discrimination between tasks was then estimated using pairwise classifi-
cation; that is, only one of the 15 possible task pairs was decoded at a time.
A support vector machine (LIBSVM) was used to train and classify data
from three of the four runs, with the remaining run used to test the
classifier. For each task pair, this procedure was repeated four times, once
for each left-out run (fourfold cross-validation). The classification accu-
racy (CA) for a given ROI was averaged across test-train splits, yielding a
single CA for each RO, in each individual, for each task pair.

Results

Behavioral results

Performance accuracy on all tasks was high, with the median
accuracy for all tasks >95% and an interquartile range of no more
than 6% for any task. The mean and SD of the response times
across the group for each task are shown in Table 1. By ANOVA
with Greenhouse—Geisser correction for sphericity, tasks differed
significantly in response time (F 3 ; 55 ;) = 8.86, p < 0.001). Table
2 shows the p-values resulting from two-tailed, paired ¢ tests of all
pairwise comparisons between tasks.
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Table 1. Mean response time (in milliseconds) of each task

“shoebox” “animal” “A” ‘1 “shape” “height”
Mean 1917 1514 1869 1852 1627 1790
SD 333 301 396 395 386 312
Table 2. p-values from pairwise comparisons

“shoehox” Tamimal” o rm “shape” “size”

“shoebox” —
“animal” <0.001 —
“A" 0.58 <0.001 —
“I" 0.35 <0.001 0.76 —
“shape” 0.003 0.216 0.03 0.01 —
“size” 0.067 <0.001 0.035 0.331 0.002 —

The p-values resulting from 2-tailed, paired t test of all pairwise comparisons between tasks are shown. Numbers in
bold represent significant differences after Bonferroni correction.

Connectivity results

We tested to what extent the MD network fractionated into the
two subnetworks defined by Dosenbach et al. 2008 when sub-
jects are in an active task state as opposed to a resting state.
Fisher-transformed correlation values obtained for each ROI
pair were averaged across subjects. The correlation matrix in
Figure 2a shows the mean Z-value for each pair of ROIs. Two-
tailed, paired t tests showed that all but eight pairs of ROIs
were significantly positively correlated (Bonferonni corrected,
p <0.05). All eight of these nonsignificant pairs were between-
subnetwork connections. Nonsignificant correlations are
shown as gray squares in Figure 2a.

To test for differences in connectivity strength within each
subnetwork and between subnetworks, paired ¢ tests were per-
formed as follows. Within each subject, the mean connectivity
between the FP ROIs was calculated, as was the mean connec-
tivity between the CO ROIs and the mean connectivity of FP
to COI ROIs. Because between-subnetwork correlations do
not include any hemispheric homologs (e.g., right and left
DLPFC), which we reasoned may be strong regardless of any
subnetwork distinction, these correlations were not included
in the within-subnetwork average correlation values. The
mean strength of these three connection types is shown in
Figure 2b. Two-tailed ¢ tests found significantly stronger con-
nectivity within than between subnetworks (FP vs between:
t1; = 6.73, p < 0.001; CO vs between: t;, = 5.07, p < 0.001).
Connectivity strength within the two networks did not differ
significantly.

In accordance with previous studies, the overall group
graph was thresholded at Z > 0.2 (Fig. 2c¢), as was done by
Dosenbach et al. (2007). At this threshold, 64% of all possible
between subnetwork connections remained intact (shown in
purple), whereas 100% of connections between the FP ROIs
(shown in yellow) and 93% of connections between the CO
ROIs (shown in red) were intact. When a stricter threshold of
Z > 0.5 was applied, only 11% of potential between-network
connections were still present, whereas 60% and 46% of
within-subnetwork connections were found for the FP and
CO, respectively. These data suggest that the association of
ROIs within the two subnetworks as defined in the dual-
networks architecture is generally stronger than between the
two subnetworks.

One concern with connectivity analysis on active task data
is that connectivity values may largely reflect common univar-
iate response to task events. To account for this, we performed
the same connectivity analysis on the residual data produced
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connectivity strength within each subnetwork and between the two subnetworks. Connections between hemispherichomologs (e.g., DLPFC—DLPFC) were notincluded. Significant differences at the
level p << 0.05 are shown. ¢, Graphs resulting from a threshold of 7> 0.2 and Z > 0.5. Yellow nodes and lines represent the FP ROIs and the surviving connections between them. Red nodes and
lines represent the CO ROIs and the surviving connections between them. Purple lines represent surviving connections between the two subnetworks. The smaller correlation matrix is the
thresholded and rescaled version of the matrix shown in a. All values below the threshold are shown as dark blue as given by the color scale.
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by the SPM GLM described as part of the MVPA pipeline. In
this analysis, responses to task events should be removed by
event regressors. As shown in Figure 3a, using residual activity
reduced overall connectivity strength compared with the pre-
vious method, but general trends were unchanged. Paired,
two-tailed ¢ tests revealed significantly greater connectivity
within the FP subnetwork compared with between the two

subnetworks (¢,; = 3.03, p = 0.007), but no significant differ-
ence between the CO subnetwork connectivity and the
between-networks connectivity nor between the two subnet-
works. As before, when thresholded at Z > 0.2 (data not
shown), the graph showed a strong connectivity pattern across
the MD network, particularly within the FP subnetwork.
However, because overall connectivity strengths were reduced
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by this method, the Z > 0.5 threshold was very strict, with only
3 connections surviving (data not shown). In Figure 3b, we
show an intermediate threshold at Z = 0.3, which shows the
FP network as 53% intact and the CO subnetwork as 27%
intact, whereas only 11% of between-subnetwork connections
survive.

MVPA results

Mean CA for each task pair (15 task pairs in total) in each ROI
is shown in Figure 4. Significance was determined by perform-
ing two-tailed Wilcoxon signed-rank tests against the chance
level of 50%, separately each task pair in each ROI and cor-
recting for multiple comparisons with a Bonferroni correc-
tion. Overall, there was relatively strong decoding of task pairs
in the FP subnetwork (across ROIs, 84% of task pair discrim-
inations significant), but comparatively weaker decoding in
the CO subnetwork (46% of discriminations significant). It is
apparent from Figure 4 that discrimination between task pairs
from the same category was much weaker than discrimination
between categories.

To compare task encoding between the two subnetworks, the
mean CA across task pairs was calculated separately for same-
category and different-category task pairs. Mean CA for each ROI
is shown in Figure 5a and the mean across all ROIs in each
subnetwork is shown in Figure 5b. A mixed-model repeated-
measures ANOVA was performed with hemisphere and subnet-
work as within-groups factors and size of ROI as a nuisance
covariate. This ANOVA was performed separately on the same-
category and different-category data. There was a significant ef-
fect of subnetwork in both same-category pairs (F; jo¢) = 7.8,

p = 0.006) and different-category pairs (F( 0 = 134.9,
p < 0.001), with no significant effects of hemisphere or subnet-
work X hemisphere interaction.

To determine whether the difference in pattern classification
could be explained by a difference in the underlying signal-to-
noise ratio between the two subnetworks rather than by a real
cognitive difference, we looked at the univariate signal within
each ROI. Performing a GLM on smoothed data gave 3 estimates
of each task relative to the implicit baseline in each ROL These are
shown in Figure 6a. Paired, two-tailed ¢ tests found each ROI to
be significantly stronger than baseline across subjects. Figure 6a
also demonstrates that the differences in decoding between the
two subnetworks is not simply a reflection of an underlying uni-
variate difference (Z-scoring before MVPA should largely ac-
count for this). As an estimate of the signal-to-noise within each
ROYJ, Figure 6b shows the T-value associated with the comparison
the t test of each B value against baseline. Again, the results imply
that there was no systematic difference in signal-to-noise in the
ROIs between the two subnetworks.

Recently, concern has arisen that reaction time (RT) may have
a confounding influence on CA scores, with larger RT differences
inflating CA (Todd et al., 2013). Others, however, have argued
that, when treated appropriately, RT has little influence on CA
(Woolgar et al., 2014). We investigated to what extent RT differ-
ences between different tasks, within each individual, may be
contributing to the CA of that task pair and whether this was
different for the FP and CO subnetworks. For each subnetwork,
we performed a regression analysis of CA on absolute difference
in RT. First, we extracted the CA associated with each task pair in
each ROl in each subject. We then calculated the mean CA across
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Figure 5.  Task decoding in FP and CO subnetworks. Blue indicates similar task decoding; orange dissimilar task decoding. Lighter colors indicate CO ROl and darker colors FP ROIs. a, Mean
classification accuracy across subjects associated with each ROl separately for similar and dissimilar tasks. CO ROIs are shown on the left, FP ROIs on the right. b, Mean classification accuracies after

averaging over CO and FP ROIs.

the component ROIs of the two subnet-
works in each individual, producing a 2D
matrix of CA values for 2 subnetworks X
15 task pairs in each subject. A similar ma-
trix was produced for absolute RT differ-
ences. Adopting the method described by
Klauer et al. (1998), we regressed CA on
RT within each subject separately for each
subnetwork, thus obtaining an estimate of
the slope (B) and intercept («) for each
subnetwork in each individual. Figure 7
shows the mean « and B values across par-
ticipants. If RT is exerting a significant ef-
fect on classification accuracy, one would
expect that the slope parameter would be
positive and significantly greater than 0.
Furthermore, if CA were wholly explained
by RT, one may expect that, when there is
a RT difference of 0 (i.e., at the intercept),
then that classification accuracy would be
close to chance (50%). The regression re-
vealed « values of 74.4% and 63.8% (Fig.
7a) for the FP and CO subnetworks, re-
spectively, which two-tailed, Wilcoxon
signed rank tests showed to be signifi-
cantly greater than 50% in both subnet-
works (FP: p < 0.001; CO: p < 0.001).
This indicates that, even with effectively
no RT difference, decoding of task was
strong. The regression also provided an
estimate of B, the mean of which, across
subjects, was positive for both the FP sub-
network (8 = 0.009) and the CO subnet-
work (8 = 0.003), as shown in Figure 7b.
This indicates, for example, that an RT
difference of 100 ms contributes an
~0.9% increase in CA score in the FP net-
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Figure 6.  Univariate activity across the MD ROls. @, Mean task-related change in 3 values relative to baseline in each of the MD ROIs
across participants. Results show that all regions were more active when engaged on the task, but there is no clear difference in activation
between the two subnetworks. b, t-values from a two-tailed, paired ¢ test of 3 values shown in a against the implicit baseline across
participants. Similar t-values give an indication that the signal-to-noise ratio of the univariate signal is comparable across the two
subnetworks.

work and a 0.3% increase in the CO subnetwork. Because the  significantly greater than zero in the FP subnetwork (p = 0.047),
mean RT difference between tasks in this experiment was 187 ms, ~ but not in the CO subnetwork (p = 0.30). Two-tailed, paired ¢
this could suggest that RT may have inflated CAby ~1.7% inthe  tests indicated a significant difference in « between the subnet-
FP subnetwork and by 0.6% in the CO subnetwork. The slopewas ~ works (p < 0.001), but no significant difference in 8 (p = 0.17).
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ing memory factor was more strongly as-
sociated with regions in the CO
subnetwork, whereas the reasoning factor
was more associated with the FP subnet-
work. Although an exact mapping be-
tween the present data and the functional
distinction of Hampshire et al. (2012) is
not immediately clear, one possible link
concerns the complexity of decision rules.
In typical reasoning tasks, correct choices
are often based on a complex set of con-
siderations, somewhat resembling the
current choice between six rules based on
stimulus category and frame color and
perhaps calling for strong involvement of
n.s. the FP subnetwork. Again, it is important
to appreciate that the distinction made by
Hampshire et al. (2012) was relative be-
cause all MD regions (i.e., both subnet-
works) showed activations even during

a 100 b o0.10
g 90
-4 0.08
* 7
— ey
£ 80 g
% < 0.06
[
a -
g 70 £
3 s
® 8 0.04
5 60 2
= o
S ]
5 0.02
[ . ey
_3 50
(%]
FP co FP co
Figure 7.  Mean parameter estimates of « and 3 after regression of classification accuracy on absolute response time differ-

ences. a, Mean value of c across participants for each of the two subnetworks. ¢ values for both subnetworks were significantly
greater than chance (50%) at the p < 0.05 level. b, Mean value of 3 across participants for each of the two subnetworks. Neither

was significantly greater than 0.

In conclusion, although it is possible that RT differences may have
contributed small increases in classification accuracy, we can be con-
fident that any influence is far from accounting for the full effect.

Discussion

The dual-networks architecture of top-down control proposes
that the MD system may be subdivided into two smaller subnet-
works: the FP control and the CO maintenance subnetworks.
Through a connectivity analysis of on-task fMRI data, we show
that there is a pattern of strong interconnectivity across the MD
system and that, as predicted by the dual-networks architecture,
the within-subnetwork connectivity is stronger than the between
subnetwork connectivity. In addition, we found very strong task
decoding across the FP cortex, which is consistent with other
studies (Woolgar et al., 2011a, 2011b), but we also found signif-
icantly stronger decoding of task across the FP subnetwork ROIs
compared with the CO subnetwork ROIs.

According to the dual-networks model, activity in the FP
subnetwork is linked closely to the processing operations of
individual trials. In addition to trial-specific activity, the CO
network has been associated with more sustained activation
that is thought to represent the maintenance of general task set
over the course of a block. Under this framework, it may be
that stronger rule discrimination in the FP subnetwork indi-
cates specialization for rapid and adaptive control, requiring
precise encoding of particular rules and stimulus information
bearing on a specific choice. In contrast, whereas there is also
representation of trial-specific information across the CO
ROIs, here, this representation may be more imprecise be-
cause these regions take on a broader or more temporally
extended role.

Using a large test battery, Hampshire et al. (2012) have re-
cently suggested that there are two major factors underlying hu-
man intelligence, which may be conceptualized as working
memory and reasoning. Interestingly, they found that the work-

the performance of tasks that loaded more
on their “nonpreferred” factor.

Another perspective may be offered
by the results of Seeley et al. (2007),
who reported a correlation between
connectivity strength and an anxiety
score selectively in the CO subnetwork,
whereas the FP subnetwork showed
a correlation between connectivity
strength and executive task performance. Seeley et al. (2007)
concluded that the CO subnetwork may represent a “salience”
network responsible for detecting important, behaviorally rel-
evant information and, to some extent, the coordination of
reward processing. In a different study, Sadaghiani et al.
(2015) found that connectivity between the CO subnetwork
(but not the FP subnetwork) and auditory cortex was posi-
tively correlated with performance in an auditory detection
task. Like Seeley et al. (2007), Sadaghiani etal. (2015) reasoned
that the increased correlation, before a correct detection of a
(relatively rare) tone, was indicative of the CO engaging with
salient external events.

In contrast to the CO subnetwork, Seeley et al. (2007) argue
that the FP subnetwork could be responsible for acting on
information that has been identified as salient, with responsi-
bility for specific attentional control and other executive func-
tions. The differential strength of rule decoding that we report
here could therefore be explained by the CO ROIs only requir-
ing a coarse representation of task information to detect the
most salient details of the presented display, whereas the FP
subnetwork requires a precise representation of specific task
information and content. It is worth noting that the CO con-
trol network and the salience network may occupy different
regions of cingulate and insular cortex (Power and Petersen,
2013) with different connectivity profiles (Touroutoglou et
al., 2012) and similar but distinct cognitive roles (Sadaghiani
and D’Esposito, 2015), although the MD ROIs used in this
study overlap both of these subnetworks.

Previous studies looking at individual decoding of rules
and other stimulus features in each MD ROI individually have
not reported a clear distinction between the FP and CO ROIs
in terms of decodability. For example, Woolgar et al. (2011b)
show that, although the effect size of decoding stimulus posi-
tion was stronger in DLPFC and IPS compared with Al and
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DACC, the effect size of decoding rule was approximately
equal in the DLPFC, IPS, and Al and the effect size of decoding
color was stronger in the Al than the DLPFC. Similar mixed
results were also reported in another study (Woolgar et al.,
2011a). Notably, the latter study found that classification ac-
curacies in DLPFC and IPS were susceptible to practice effects,
with the decoding of rule significantly weaker in a second test
session. Conceivably, use of a complex six-rule task, assessed
relatively early in practice, may have called for particularly
strong involvement of FP control in the current study.

In addition to the MVPA, we performed an active-state
functional connectivity analysis to assess whether fraction-
ation of the MD system, previously found in resting-state
functional connectivity analysis, is also apparent during task
performance. The question is particularly pertinent for MD
ROIs because they usually display a relative deactivation in the
resting state and their function is associated with active en-
gagement with the environment. Here, we found that our data
converged toward a nested system of two more tightly coupled
subnetworks that appeared to act together during task execu-
tion. At the lower threshold of Z > 0.2, many of the internet-
work connections remained, suggesting a considerable degree
of communication between all MD ROIs. However, at higher
thresholds (Z > 0.3 and Z > 0.5), the greater segregation into
FP and CO subnetworks became more apparent, although an
absolute separation of the two networks was not found.

In conclusion, the current study replicates the finding of an
integrated MD system with all regions coactivated and corre-
lated while performing a cognitive task. These results also
reaffirm the finding that the MD cortex may best be conceived
as the coupling of two more tightly interconnected subnet-
works centered around CO and FP cortex. Here, we also pres-
ent fresh insight into the differentiation of the CO and FP
subnetworks. Although both subnetworks code task rules,
they do so differentially, with decoding consistently stronger
in the FP subnetwork. Further work is needed to evaluate
boundary conditions on this finding and its functional signif-
icance in terms of stronger FP involvement in moment-by-
moment task operations (Dosenbach et al., 2008), CO
emphasis on event salience (Seeley et al., 2007), specific FP
involvement in complex choices (Hampshire et al., 2012), or
some other distinction. Meanwhile, our data confirm that a
broad distinction between FP and CO subnetworks provides
one useful step forward in dissociating the parts of a broad MD
system.
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