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Abstract

Viral superinfection occurs when multiple viral particles subsequently infect the same
host. In nature, several viral species are found to have evolved diverse mechanisms to
prevent superinfection (superinfection exclusion) but how this strategic choice impacts
the fate of mutations in the viral population remains unclear. Using stochastic
simulations, we find that genetic drift is suppressed when superinfection occurs, thus
facilitating the fixation of beneficial mutations and the removal of deleterious ones.
Interestingly, we also find that the competitive (dis)advantage associated with
variations in life history parameters is not necessarily captured by the viral growth rate
for either infection strategy. Putting these together, we then show that a mutant with
superinfection exclusion will easily overtake a superinfecting population even if the
latter has a much higher growth rate. Our findings suggest that while superinfection
exclusion can negatively impact the long-term adaptation of a viral population, in the
short-term it is ultimately a winning strategy.

Author summary

Viral social behaviour has recently been receiving increasing attention in the context of 1

ecological and evolutionary dynamics of viral populations. One fascinating and still 2

relatively poorly understood example is superinfection or co-infection, which occur when 3

multiple viruses infect the same host. Among bacteriophages, a wide range of 4

mechanisms have been discovered that enable phage to prevent superinfection 5

(superinfection exclusion) even at the cost of using precious resources for this purpose. 6

What is the evolutionary impact of this strategic choice and why do so many phages 7

exhibit this behaviour? Here, we conduct an extensive simulation study of a phage 8

population to address this question. In particular, we investigate the fate of viral 9

mutations arising in an environment with a constant supply of bacterial hosts designed 10

to mimic a “turbidostat,” as these are increasingly being used in laboratory evolution 11

experiments. Our results show that allowing superinfection in the long-term yields a 12

population which is more capable of adapting to changes in the environment. However, 13

when in direct competition, mutants capable of preventing superinfection experience a 14

very large advantage over their superinfecting counterparts, even if this ability comes at 15

a significant cost to their growth rate. This indicates that while preventing 16

superinfection can negatively impact the long-term prospects of a viral population, in 17

the short-term it is ultimately a winning strategy. 18
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Introduction 19

Bacteriophages (phages) are viruses that infect and replicate within bacteria. Much like 20

many other viruses, reproduction in lytic phage is typically characterised by the 21

following key steps: adsorption to a host cell, entry of the viral genetic material, 22

hijacking of the host machinery, intracellular production of new phage, and finally, the 23

release of progeny upon cell lysis. Phages represent one of the most ubiquitous and 24

diverse organisms on the planet, and competition for viable host can lead to different 25

strains or even species of phage superinfecting or co-infecting the same bacterial cell, 26

ultimately resulting in the production of more than one type of phage (Fig 1a) [1–3]. In 27

the following, we define infection terminology in line with Turner & Duffy [4], such that 28

co-infection occurs when two or more phage have successfully infected a single bacteria, 29

and superinfection occurs when there is a delay between infection by the first and 30

second phage. Therefore, all cells which have been successfully superinfected can be said 31

to be co-infected [4]. To account for different usages throughout the literature and 32

across fields, we also refer to multiple infections, to indicate any case where multiple 33

viruses exist within a single host simultaneously. 34

Interestingly, several phages have evolved mechanisms that prevent superinfection 35

(superinfection exclusion). This can be achieved at the early stage of infection, by 36

preventing further adsorption of phage, or at a later stage, by preventing the successful 37

injection of subsequent phage DNA [5,6]. For instance, bacteriophage T5 encodes a 38

lipoprotein (Llp) that is synthesised by the host at the start of infection and prevents 39

further adsorption events by blocking the outer membrane receptor site (FhuA 40

protein) [7, 8]. Bacteriophage T4 encodes two proteins, Imm and Sp, that prevent 41

superinfection by other T-even phages by inhibiting the degradation of bacterial 42

peptidoglycan, whose presence hinders the DNA transfer across the membrane [9, 10]. 43

Given that populations which allow and prevent superinfection both exist in the 44

wild, it is natural to wonder what impact either strategy has on the evolution of viral 45

populations. This question has been studied in various systems from the perspective of 46

intracellular interactions and competition [11–19]. Multiple infections allow for the 47

exchange of genetic material between viruses through recombination, which can increase 48

diversity and improve the efficiency of selection, but may also decrease fitness by 49

promoting the presence of deleterious mutants at low frequencies [20–22]. Additionally, 50

in RNA viruses with segmented genomes, multiple infections can lead to hybrid 51

offspring containing re-assorted mixtures of the parental segments (reassortment). This 52

mechanism can in principle improve selection efficiency, as re-assorted segments may 53

generate highly deleterious variants that will be easily out-competed by the rest of the 54

population [23]. Multiple infections can also lead to viral complementation, where 55

defective viruses can benefit from superior products generated by ordinary viruses inside 56

the host [23–27]. This process increases the diversity of the population, but also allows 57

cheating individuals to persist in the viral population for long times [23,24]. 58

The likelihood of multiple infections occurring increases with the number of free 59

phage available per viable host - multiplicity of infection (MOI) - and several 60

experimental systems have been used to study the impact of MOI on viral 61

dynamics [25,26,28–32]. For instance, high MOI in RNA phage ϕ6 has been shown to 62

result in a behaviour conforming to the Prisoner’s Dilemma strategy in game theory, 63

and a reduction in viral diversity [28–31,33]. Theoretically, the same question has been 64

investigated in different scenarios [34], in particular in the context of human 65

immunodeficiency virus (HIV) infections [20,21,35–40]. These studies have focused on 66

determining whether multiple infections preferentially occur simultaneously or 67

sequentially, in an effort to explain experimental data, and on the role of recombination 68

in the acquisition of drug resistance, showing that its impact depends on the effective 69

population size. The role of MOI has also been studied in terms of diversity and 70
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evolution of the viral population [20,21,37,41–46], with theoretical predictions 71

suggesting that multiple infection favours increased virulence, and that within-host 72

interactions can lead to a more diverse population. 73

Despite the active work in the area, several fundamental questions on the role of 74

superinfection exclusion on viral dynamics remain unanswered. First, while decreasing 75

MOI in viral populations that allow superinfection decreases the likelihood of 76

superinfection, it does not introduce a superinfection exclusion mechanism that prevents 77

superinfection altogether, making it difficult to draw conclusions about the 78

(dis)advantages of this viral strategy. Second, little is known about how the occurrence 79

of superinfection alone, before even accounting for the additional effects of any 80

intracellular interactions, impacts the evolution of viral populations, particularly when 81

it comes to fundamental evolutionary outcomes such as mutant fixation probabilities. A 82

quantitative understanding of this baseline behaviour is necessary to evaluate the 83

impact of the many additional intracellular interactions that can occur (recombination, 84

defective viruses, etc.). The limited work in this area has shown that in the absence of 85

intracellular interactions, high MOI in superinfecting viral populations can promote the 86

presence of disadvantageous mutants in the “short term,” and obstruct it in the “long 87

term” [47,48], but how the evolutionary outcomes in each case depend on the 88

parameters describing the viral life-cycle (adsorption rate, lysis time and burst size) and 89

the (dis)advantages of either strategy remain unclear. 90

Here, we explore how allowing or preventing superinfection impacts the evolutionary 91

fate of neutral and non-neutral variants in a simulated well-mixed phage population 92

with constant, but limited, availability of host. We choose to focus on superinfection 93

exclusion mechanisms that allow secondary adsorption events, but prevent DNA 94

insertion, so that in isolation the phage growth dynamics is the same in the two cases 95

and a direct comparison between the (dis)advantages of the two strategies is more 96

straightforward. We first quantify the effective population size of superinfecting (S) and 97

superinfection-excluding (SX) populations to estimate how these strategies affect 98

genetic drift. We then turn our attention to the effect of non-neutral mutations on (i) 99

the phage growth rate in isolation and (ii) their ability to out-compete the wild-type. 100

Having characterised both the neutral dynamics and the fitness of different variants, we 101

put both aspects together to explore the balance between drift and selection in 102

superinfecting and superinfection-excluding populations, showing that selection is 103

consistently more efficient in superinfecting populations. Finally, we study the 104

evolutionary fate of a mutation which changes whether an individual is capable of 105

preventing superinfection or not. Overall, this work establishes a baseline expectation 106

for how the simple occurrence of superinfection impacts fundamental evolutionary 107

outcomes and provides insights into the selective pressure experienced by viral 108

populations with limited, but constant host density. 109

Results 110

Computational modelling framework 111

We study the evolutionary fate of phage mutants using a stochastic agent-based model. 112

We simulate a well-mixed population of phages V interacting with a population of host 113

bacteria that is kept at a constant density, similarly to a turbidostat [49,50]. Each 114

phage has a defining set of life history parameters, namely an adsorption rate α, a lysis 115

time τ and a burst size β, and each bacteria can either be in an uninfected B or an 116

infected I state. 117

In each simulation time-step, adsorption, phage replication within the host and lysis 118

occur. The number of infecting phage VI in each step is drawn from a Poisson 119
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distribution whose mean corresponds to the expected value αV (B + I) in a well-mixed 120

population. The infecting phage are removed from the pool of free phage, and VI 121

bacteria, whether infected or uninfected, are chosen uniformly and with replacement to 122

be the infection target. In both superinfecting and superinfection-excluding scenarios, 123

the final lysis time τ of the host is set by the first phage to infect it and it is treated as 124

deterministic to limit the number of model parameters. This choice was made for the 125

sake of simplicity, given the complex and varied nature of superinfection 126

mechanisms [1–3]. A preliminary analysis of the effect of stochasticity in lysis time is 127

presented in S1 Appendix. In the case where multiple phage infect the same host in a 128

single time-step, the ‘first’ phage is chosen uniformly among those infecting the host. 129

Phage replication within the host post-adsorption depends on whether superinfection is 130

allowed or prevented: 131

Absence of superinfection: τ steps after the first adsorption event, the bacteria 132

will lyse, releasing new phage into the pool of free phage. The number of phage released 133

Y is drawn from a Poisson distribution with mean β. 134
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Fig 1. Modelling setup. (a): In superinfection-excluding scenarios, all of the
progeny released as the cell lyses are copies of the initial infecting phage, whereas when
superinfecting is permitted, the progeny are split between both types of phage. (b):
During superinfection, pseudo-populations pa and pb are used to represent the growth of
phage inside the host cells. These populations increase by 1 whenever a phage infects
the host, and each population increases by some fraction of its rate β/τ determined by
the relative size of the populations in the previous step. (c): An example realisation of
the simulation. The resident phage population initially grows until it reaches a steady
state, at which point a mutant phage is introduced to the population, and the
simulation is run until extinction or fixation of the mutant.

Presence of superinfection: Pseudo-populations tracking the growth of phage 135

inside the host are used (see Fig 1b). Because here we focus on the case of two 136

superinfecting phage populations, this results in two pseudo-populations pa and pb. 137

During the intermediate steps between the first adsorption event and lysis, in the case 138

where there is only one type of phage inside the host, that population will grow at a 139

constant rate β/τ , where β and τ are both specific to the type of phage (i.e. pa grows 140

at rate βa/τa and pb grows at rate βb/τb). This is to reflect previous reports of a 141
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positive linear relationship between lysis time and burst size [51]. In the event where 142

both types of phage are present within the host, to reflect the intracellular competition 143

for the host’s resources, each population increases by only a fraction of its potential β/τ 144

determined by the size of each population at that time, i.e. pa increases by an amount 145

βa/τa × pa/(pa + pb) and pb increases by an amount βb/τb × pb/(pa + pb). At the point 146

of lysis, the total number of phage released Y is drawn from a Poisson distribution with 147

mean pa + pb − Vn, where Vn represents the number that infected the host prior to lysis. 148

This is to ensure that, in the event where a cell is only infected by 1 type of phage, its 149

mean burst size remains β, regardless of how many phages had infected the cell until 150

that point. The number of phage released of one type Ya is then drawn from a binomial 151

distribution with Y attempts and probability pa/(pa + pb) of success, with any 152

remaining phage being the other type (Yb = Y − Ya). 153

Following lysis, the lysed bacteria are immediately replaced with a new, uninfected 154

host, resulting in a bacterial population of constant size. We also introduce a decay, or 155

removal, of free phage at rate δ, which accounts for natural phage decay and the outflow 156

of the turbidostat system. 157

Simulations were initialised with B0 uninfected bacteria and 2B0 “resident” phage, 158

and then run until the phage, uninfected bacteria and infected bacteria populations 159

each reached steady state values (Vss, Bss and Iss respectively), as determined by their 160

running average (Fig 1c). This steady state arises due to a balance between phage 161

production and loss and it is independent of the initial number of phages (S1 Fig). 162

Superinfection leads to a larger effective population size 163

First, we find that genetic diversity consistently declines faster in populations that 164

prevent superinfection, indicating a smaller effective population size Ne when compared 165

to superinfecting populations (see Methods). This can be intuitively understood by 166

considering that in the superinfecting scenario, each phage has more opportunity to 167

successfully infect a host cell, since secondary infections can result in the production of 168

some offspring when the cell lyses. Therefore, more phage are able to contribute to the 169

next generation, thereby slowing down diversity loss. 170

In addition, Fig 2 shows that in both superinfecting and superinfection-excluding 171

populations higher adsorption rate and burst size, and shorter lysis time result in larger 172

effective populations. This observation is, however, partially attributable to the change 173

in total phage population NT = (Vss + βIss), where Vss indicates the steady state free 174

phage population, Iss indicates the steady state number of infected bacteria, and so 175

βIss represents the number of phage that inevitably will join the free phage population. 176

Indeed, adsorption rate and lysis time impact both the effective and actual 177

population sizes in the same way (i.e. Ne/NT ≈ const.). By contrast, larger burst sizes 178

increase the effective population size less than the actual population size (Fig 2), 179

resulting in a decrease of Ne/NT . This can be interpreted by noticing that while 180

increasing burst size results in more phage, the number of phage that can actually 181

contribute to the next generation (i.e. the effective population size) is limited by the 182

number of bacteria that are available. Therefore, as burst size is increased, a larger 183

fraction of phage become wasted. 184

Neutral mutants are consistently more likely to fix in 185

superinfecting populations 186

To continue our characterisation of the neutral dynamics in both superinfecting and 187

superinfection-excluding populations, we turn to the fixation probabilities of neutral 188

mutants, and determine how they depend on the phage infection parameters. 189
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Fig 2. Effective population size. The effective population size in both
superinfecting (S) and superinfection-excluding (SX) populations as a function of
adsorption rate α, burst size β and lysis time τ . Effective population size are also
shown scaled by the size of the total phage population NT = (Vss + βIss). Parameters
used were α = 3× 10−6, β = 100 and τ = 15 unless otherwise stated. Throughout,
δ = 0.1 and B0 = 1000. Error bars are plotted but are too small to see. The data is
obtained from an average of at least 1000 independent simulations.

Because the total phage population size depends on the life history parameters, the 190

initial mutant frequency corresponding to one mutant phage inoculated in the 191

population also varies with life history parameters. To account for this effect, we 192

re-scale the fixation probability by the initial frequency of the mutant 193

f∗
0 = 1/(Vss + βIss), which is the same in superinfecting and superinfection-excluding 194

populations. Fig 3 shows that Pfix/f
∗
0 ≈ 1 as the parameters are varied, indicating that 195

the total number of phages for a given set of parameters is the main controller of 196

neutral dynamics. Indeed, we find that the impact of the life history parameters on the 197

probability of fixation is what one would intuitively expect (S2 Appendix): larger 198

adsorption rate and burst size, and shorter lysis time, increase the steady-state size of 199

the phage population, and reduce Pfix. By describing the average behaviour of our 200

simulations with a system of ordinary differential equations (ODEs), we confirm that 201

the ODE solution for the total phage population at steady-state NT is the same as in 202

the stochastic model (S2 Appendix). 203

Fig 3 also shows that, on average, neutral mutants in the superinfecting scenario are 204

more likely to fix than mutants in an equivalent superinfection-excluding population 205

(blue and red dashed lines in Fig 3 respectively). This result agrees with that found by 206

Wodarz et al. [48], who showed that in a superinfecting viral population, higher 207

multiplicities of infection slightly favoured rare neutral and disadvantageous mutants in 208

the short term. The intuition behind this observation can be explained in the following 209

way: at the moment that the mutant is introduced, all infected cells are infected by the 210

resident phage. In the superinfecting scenario, the mutant population can therefore 211

grow by infecting an uninfected cell, or by infecting an already infected cell, as this 212

secondary infection will lead to some fraction of the burst size being allocated to the 213

mutant type. While resident phage can replicate by infecting either types of host, the 214

resident population cannot further grow by infecting previously infected cells. This is 215

because all infected cells are already exclusively infected with resident phage, and 216

superinfection of resident infected cells by more resident phage does not result in any 217
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Fig 3. Fixation of neutral mutants. Probability of mutant fixation Pfix in the
superinfecting (S) and non superinfection excluding (SX) scenarios, scaled by the initial
frequency of the mutant f∗

0 = 1/(Vss + βIss), as a function of adsorption rate α, burst
size β and lysis time τ . Dashed lines indicate the average of the data for both the
superinfecting (blue) and superinfection-excluding (red) scenarios. These lines indicate
that neutral mutants in superinfecting populations experience a small advantage over
mutants in an equivalent superinfection-excluding population. Unscaled Pfix data can
be seen in S2 Appendix. Unless otherwise stated, the parameters used were
α = 3× 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000. The error in our estimate of the
fixation probability ∆Pfix is given by ∆Pfix =

√
nfix/n, where n and nfix represent

the total number of simulations and the number of simulations where the mutant fixes
respectively. The data is obtained from a minimum of 14 million independent
simulations.

more resident phage being produced. As a result, superinfection increases the mutant’s 218

chance of survival in the early stages in comparison to the superinfection-excluding 219

counterpart, similarly to conditions of high vs. low MOI [48]. 220

Higher growth rate does not translate into competitive advantage 221

To investigate the evolutionary fate of non-neutral mutations, we first characterise how 222

phage growth rate and competitive fitness is affected by changes to the phage life 223

history parameters, i.e., adsorption rate α, burst size β and the lysis time τ , relative to 224

the values used in our neutral simulations (Fig 3). 225
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Fig 4. Competitive vs isolated selective advantage. The selective advantage in a
competitive setting scomp as a function of the change in growth rate sgrowth, when
changing adsorption rate α, burst size β and lysis time τ . Straight line fits are shown as
dashed lines, with gradient σ such that scomp = σsgrowth. From the above data we find
σSα = 1.2324, σSXα = 1.2764, σSβ = 1.0432, σSXβ = 0.9134, σSτ = 0.3057 and
σSXτ ≈ 0. Resident parameters used were α = 3× 10−6, β = 100 and τ = 15. As before
δ = 0.1 and B0 = 1000. sgrowth determined from 500 simulations, and scomp determined
from 200 simulations. Error bars are given by the standard error on the mean of the
simulations. Error bars on x axis have been omitted for clarity, but are shown in S2 Fig.

April 26, 2022 7/21



S2 Fig shows that increasing burst size or adsorption rate results in a larger selective 226

advantage both in isolation and in direct competition (see Methods). However, while 227

variations in burst size affect similarly the phage growth rate in isolation and its 228

(dis)advantage in a competitive setting (sgrowth ≈ scomp, Fig 4), variations in 229

adsorption rate lead to a stronger competitive (dis)advantage than what would be 230

predicted by the growth rate (|sgrowth| < |scomp|). The intuition behind this result is 231

that increasing adsorption rate becomes particularly advantageous in a competitive 232

environment, as being the first virus to infect a host allows the virus to have largely 233

(superinfection scenario) or completely (superinfection exclusion scenario) exclusive 234

access to the host resources. 235

The impact of altering lysis time τ is surprising. S2 Fig shows that increasing τ 236

results in a reduced growth rate, as intuition suggests. Yet, in the 237

superinfection-excluding scenario no discernible impact on scomp is observed (Fig 4). 238

This result is supported by our ODE model (S2 Appendix), which shows that once the 239

system is at steady-state, alterations to lysis time offer no advantage to one phage over 240

the other (S3 Fig). We believe that this is a special feature of a turbidostat setting, as 241

lysed hosts are immediately replaced by uninfected cells, providing the same number of 242

viable hosts independently of the time needed by the phage to lyse them. By contrast, 243

in the superinfecting case, we are able to observe a selective (dis)advantage in direct 244

competition, although at a significantly reduced level compared to the change in growth 245

rate. We believe that this effect arises because, while the extracellular competition is 246

limited by the turbidostat setup, in the superinfecting scenario there is the opportunity 247

for some intracellular competition to occur, as mutants will grow at different rates 248

inside the host, resulting in different numbers of phage (both in total and 249

proportionally) being released upon lysis. We leave a full characterisation of the 250

relationship between growth rate in isolation and competitive fitness to future works. 251

Superinfection results in more efficient selection 252

Having characterised how changes to the phage infection parameters alter first genetic 253

drift and second fitness, we now put both ingredients together and investigate the 254

dynamics of non-neutral mutants. To this end, we simulate a resident phage population 255

to steady state, introduce a single non-neutral mutant and then run the simulation until 256

extinction or fixation occurs. 257

In agreement with our observations regarding the difference between growth rate and 258

competitive fitness, we find that the value of sgrowth is not sufficient to determine the 259

fixation probability of the corresponding mutant (Fig 5): a mutation associated with a 260

higher adsorption rate α increases the mutant’s chance to fix more than a mutation 261

which alters the burst size β and leads to the same growth rate. We also find that 262

beneficial mutations are consistently more likely to fix (and deleterious mutations more 263

likely to go extinct) in superinfecting populations (red) than superinfection-excluding 264

populations (blue). This suggests that superinfection improves selection efficiency, by 265

more readily fixing beneficial mutations and purging deleterious ones. 266

To provide a theoretical framework to our findings, we compare the simulation data 267

to the fixation probabilities one would expect in a corresponding Moran model. For 268

small selective advantage scomp, the probability of fixation is given by 269

Pfix =
1− e−Nescompf0

1− e−Nescomp
, (1)

where f0 is the initial frequency of the mutant in the population with effective 270

population size Ne [52, 53]. Our earlier results on neutral dynamics and fitness provide 271

independent measurements of the parameters in Eq. 1 for different values of α, β and τ : 272

April 26, 2022 8/21



-0.2 -0.1 0 0.1 0.2
10

-7

10
-6

10
-5

10
-4

-1 -0.5 0 0.5 1
10

-7

10
-6

10
-5

10
-4

S

S

SX

SX

S

SX

(a) (b)

Fig 5. Fixation of non-neutral mutants. Probability of mutant fixation Pfix as a
function of selective growth advantage sgrowth. Points indicate simulation results, while
lines indicate theoretically predicted values in a Moran model with equivalent
parameters (Eq. 1). Data points for the α and β mutants have been omitted from the
right hand panel for clarity. The error in our estimate of the fixation probability ∆Pfix

is given by ∆Pfix =
√
nfix/n, where n and nfix represent the total number of

simulations and the number of simulations where the mutant fixes respectively. Error
bars in the x-axis represent the errors on the growth rate fitness sgrowth that each burst
size corresponds to. These are calculated by fitting a linear relation to growth rate
measurements such that sgrowth = m(βmut − βres). The fractional error on the sgrowth

is then equal to the fractional error on the fitted gradient m. The data is obtained from
a minimum of 5 million independent simulations.

f0 = f∗
0 from our initial condition (i.e., 1/NT , where NT is the steady-state phage 273

population size when the mutant is introduced); Ne is measured from the decay of 274

heterozygosity (Fig 2); and scomp = σsgrowth is derived from our measurements of the 275

relationship between competitive and growth rate advantage (Fig 4). These theoretical 276

predictions are plotted without additional fitting parameters as lines in Fig 5. 277

Fig 5 shows that the theoretical prediction from the appropriately parameterised 278

Moran model matches the simulation data remarkably well, despite the complex internal 279

infection dynamic (see S3 Appendix for quantitative comparison). We note, however, 280

that the simulation data consistently fails to intersect at the same point when 281

sgrowth = 0 in the superinfecting scenario. This is because of the effect outlined in Fig 3, 282

where rare mutants initially experience a slight advantage in the superinfecting scenario 283

because they are able to increase in number by infecting both uninfected and infected 284

cells. To test the validity of our findings across parameter space, we also perform all of 285

the above analysis with different resident parameters, obtaining the similar results (S4 286

Appendix). 287

Superinfection exclusion slows down adaptability in the long run, 288

but is a winning strategy in the short term 289

Our findings imply that, even in the absence of intra-cellular processes such as 290

recombination, superinfection results in more efficient selection, so that beneficial 291

mutations are relatively more likely to fix, and deleterious ones are more likely to be 292

purged, leading to a fitter overall population in the long run. From the point of view of 293

viral adaptation, allowing superinfection ultimately seems like the better long-term 294

strategy. It is therefore puzzling why several natural phage populations have developed 295

sophisticated mechanisms to prevent superinfection, particularly given that employing 296

these mechanisms is expected to come with a biological cost, such as reduced burst 297
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size [54,55] or increased lysis time [56]. 298

To address this question, we consider the fate of mutations that either (i) remove the 299

mutant’s ability to prevent superinfection in a resident superinfection-excluding 300

population or (ii) provide the mutant the ability to prevent superinfection in a resident 301

superinfecting population. Fig 6 shows that if the mutant is neutral 302

(βmut = βres = 100), then the superinfection-excluding mutant is two orders of 303

magnitude more likely to fix than the expectation based on its initial frequency f∗
0 , and 304

that, by contrast, the superinfecting mutant is at least two orders of magnitude more 305

likely to go extinct. It should be noted that we actually find no instances of mutant 306

fixation in this case, but our detection power is limited by the number of simulation runs. 307

Here, we run at least 20 million simulations, and we can thus infer that Pfix ≪ 10−7. 308

This indicates that mutants which are able to prevent superinfection experience a very 309

strong selective advantage over their superinfecting counterparts, and vice-versa. 310
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Fig 6. Mutations which alter the ability to prevent superinfection. (a) The
probability Pfix of a mutant which prevents superinfection fixing in a population that
allows it, as a function of mutant burst size βmut. (b) The probability Pfix of a mutant
which allows superinfection fixing in a population that prevents it, as a function of
mutant burst size βmut. It can be seen that the superinfecting mutant requires a
significantly increased burst size to fix, and conversely the superinfection-excluding
mutant can fix, even if its burst size is greatly reduced. The error in our estimate of the
fixation probability ∆Pfix is given by ∆Pfix =

√
nfix/n, where n and nfix represent

the total number of simulations and the number of simulations where the mutant fixes
respectively. Error bars in the x-axis represent the errors on the growth rate fitness
sgrowth that each burst size corresponds to. These are calculated by fitting a linear
relation to growth rate measurements such that sgrowth = m(βmut − βres). The
fractional error on the sgrowth is then equal to the fractional error on the fitted gradient
m. The fixation data is obtained from a minimum of 20 million independent simulations.

To account for the possibility that superinfection exclusion comes at a cost in phage 311

growth, as preventing superinfection likely requires the production of extra proteins, the 312

resources for which could otherwise have gone to the production of more phage, we 313

consider the case where superinfection exclusion is associated with a reduction in burst 314

size [54]. Remarkably, we find that even when preventing superinfection carries a 315

burden of 7% reduction in burst size (sgrowth < −7%), the superinfection-excluding 316

mutant still fixes more often than a neutral superinfecting mutant (Fig 6). Conversely, a 317

minimum of 8% increase in burst size (sgrowth > 8%) is necessary to give a 318

superinfecting mutant any chance of fixing in a superinfection-excluding population. 319

This indicates that while allowing superinfection increases selection efficiency at the 320
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population level, preventing it is ultimately a winning strategy in the short term, 321

partially explaining why superinfection exclusion is so common in nature [5, 6]. 322

Discussion 323

In this work, we have considered the impact of either allowing or preventing 324

superinfection on the evolution of viral populations. Using a stochastic agent-based 325

model of viral infection, we have shown that allowing superinfection reduces the 326

strength of genetic drift, leading to an increase in effective population size. Weaker 327

fluctuations result in a higher efficiency of selection in viral populations, with beneficial 328

mutations fixing more frequently, and deleterious ones more readily being purged from 329

the population. Despite the long term, population-wide benefit of allowing 330

superinfection, we find that if a mutant arises which is capable of preventing 331

superinfection, it will fix remarkably easily, even if its growth rate is heavily 332

compromised. Conversely, if the whole population is capable of preventing 333

superinfection, mutants which allow it will have almost no chance of ever succeeding. 334

The evolutionary impact of superinfection (and more generally multiple infections) 335

has most often focused on the role of intracellular interactions and 336

competition [11–14,16–19], such as genetic recombination and reassortment [20–23], and 337

viral complementation [23–27]. A prevalent finding (amongst others) is that 338

recombination and reassortment can improve the efficiency of selection in viral 339

populations which do not exclude superinfection. Remarkably, our work demonstrates 340

that the basic occurrence of superinfection alone, absent of any recombination or 341

reassortment, is capable of increasing the selection efficiency. In this context, our results 342

provide a useful baseline for comparison when trying to assess the significance of each of 343

these more complex effects, which may or may not be present in different situations. 344

An unexpected finding of this work is that in the turbidostat system we consider, 345

while increased adsorption rate and burst size both increase the fitness of the phage 346

population in all respects, in the superinfecting scenario lysis time plays a significantly 347

reduced role in the competitive (dis)advantage experienced once the system has reached 348

a steady-state, and in the superinfection-excluding scenario it plays no role whatsoever. 349

While it has been demonstrated previously that changes to fecundity and generation 350

time can have different impacts on mutation fixation probability, even when they have 351

the same impact on long-term growth rate [57], our result is somewhat in contrast with 352

previous studies showing that well-mixed liquid cultures with an abundance of hosts 353

generally select for higher adsorption rates and lower lysis times [51,58–60]. The key 354

difference between such liquid cultures and the turbidostat system we model here is that 355

in the former host cells are not maintained at a constant density, but the phage 356

population continues to grow until no bacteria remain. This finding illustrates how the 357

presence or absence of a co-existing steady-state between phage and bacteria completely 358

alters the selective pressure on the phage with important implications for studies into 359

the co-evolution of phage and bacteria populations using continuous culturing 360

set-ups [61–63]. In particular, our results suggest that in an evolutionary experiment in 361

a turbidostat, the virus should evolve towards very large burst size even if this feature 362

comes at the cost of longer lysis times, especially if superinfection exclusion occurs [59]. 363

Reciprocally, detecting a selective pressure on lysis time could be used to identify 364

potential phages that allow superinfection, as, in this case, a shorter lysis time is slightly 365

advantageous all else being equal. 366

Following this, it is natural to wonder how the (dis)advantages and impact of either 367

strategy depends on the selective pressure experienced in different environments. The 368

relationship between viral fitness and the phage life-history parameters (adsorption rate, 369

lysis time and burst size) has been shown to be very context-dependent in both 370
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well-mixed and spatially structured settings. For instance, as noted previously, 371

well-mixed settings generally favour higher adsorption rates [64], but in spatially 372

structured settings phage with lower adsorption rates are more successful [65,66]. 373

Additionally, it has been shown previously that eco-evolutionary feedbacks at the edge 374

of expanding viral populations can result in travelling waves with vastly different 375

effective population sizes [67]. Given that competition for resources (i.e. viable hosts) in 376

spatially structured environments is local rather than global, phage are more likely to 377

be in competition with other genetically identical phage released by nearby cells. It is 378

therefore possible that superinfection exclusion proves less useful in this context than in 379

well-mixed environments where competition is global and phage are more likely to 380

encounter other genetically different viruses. All of this points at the role of 381

superinfection strategies and other social viral behaviour on the eco-evolutionary 382

dynamics of spatially expanding viral populations as an exciting avenue for future 383

research. 384

Methods 385

Measuring effective population size of the phage population 386

Consistently with previous work [52], we expect that the neutral standing diversity of 387

the phage population, quantified by the heterozygosity H, will decay exponentially at 388

long times due to genetic drift, so that H(t) ∝ e−2t/Ne (S4 Fig), with the decay rate in 389

units of generations being expressed in terms of an effective population size 2/Ne 390

(Moran model [52]). 391

We track the viral heterozygosity H as a function of time, which in a biallelic viral 392

population is given by 393

H = 2⟨f(1− f)⟩, (2)

where f and (1− f) represent the frequencies of two neutral viral alleles in the 394

population, and ⟨. . . ⟩ indicates the average over independent simulations. H(t) can be 395

understood to be the time-dependent probability that two individuals chosen from the 396

population are genetically distinct. 397

To determine the generation time T , we first calculate the net reproduction rate R0, 398

which represents the number of offspring an individual would be expected to produce if 399

it passed through its lifetime conforming to the age-specific fertility and mortality rates 400

of the population at a given time (i.e. taking into account the fact that some individuals 401

die before reproducing) [68]. R0 can be calculated as 402

R0 =
∑

ltmt, (3)

where lt represents the proportion of individuals (in our case, phage) surviving to age t, 403

and mt represents the average number of offspring produced at age t. 404

There are two mechanisms in our simulations by which phages can ‘die’ when 405

superinfection exclusion applies: either by decaying with rate δ, or by adsorbing to an 406

infected host with rate αIss. In a sufficiently small timestep ∆t, these rates correspond 407

to a proportion δ∆t and αIss∆t of the total phage, respectively. Equivalently, these can 408

be considered to be the probability that any single phage will die in the same period. 409

As a result, the probability of a phage surviving to age t is lt = (1− δ∆t− αIss∆t)t/∆t. 410

The average number of offspring mt produced at age t is 0 if t < τ , because we 411

assume that no phage is released before the lysis time. For t > τ , mt is given by the 412

probability of successfully infecting a viable host in a timestep ∆t, τ time earlier 413

(αBss∆t), multiplied by the yield of new phage (β − 1). 414

April 26, 2022 12/21



In the limit where ∆t → 0, this will result in a net reproductive rate of the form

R0 = lim
∆t→0

∞∑
t=0

mtlt = lim
∆t→0

∞∑
t=τ

∆tαBss(β − 1)(1−∆t(δ + αIss))
t/∆t, (4)

=

∫ ∞

t=τ

αBss(β − 1)e−(δ+αIss)tdt, (5)

=
αBss(β − 1)

δ + αIss
e−(δ+αIss)τ , (6)

where the integral starts at τ because no offspring are produced prior to that point. 415

Then the generation time T , defined as the average interval between the birth of an
individual and the birth of its offspring, is

T = lim
∆t→0

∑
tltmt

R0
=

∫∞
t=τ

tαBss(β − 1)e−(δ+αIss)tdt

R0
= τ +

1

δ + αIss
. (7)

Here, we will use resident phage parameters α = 3× 10−6, τ = 15, δ = 0.1 and a total 416

bacterial population of B0 = 1000, which leads to Iss = 681 and a generation time of 417

T = 24.8. This generation time is also supported by stochastic simulations of the phage 418

adsorption and death processes (S5 Appendix). Throughout this work, we use the same 419

generation time for both superinfecting and superinfection-excluding populations (more 420

details in S5 Appendix). 421

For comparison, coliphage T7 in liquid culture typically has parameters of 422

τ ≈ 10− 20 min, α ≈ 10−9 ml/min and B0 ≈ 106 − 108 ml−1, thereby yielding an 423

αB0 ≈ 10−3 − 10−1 min−1 [59, 69]. These values are comparable to our own if we 424

equate 1 timestep = 1 min, and so τ = 15 min and αB0 = 3× 10−3 min−1, such that 425

the relative timescales in our simulation remain consistent. The reason behind choosing 426

a larger adsorption rate and smaller bacteria population is purely practical, as the 427

alternative would lead to unreasonably long computational times. Given these values, 428

our choice of decay rate δ is made such that steady-state population sizes are reached. 429

Measuring mutant fitness and growth rate 430

We start by defining a selective advantage sgrowth in terms of the exponential growth 431

rate rmut of the mutant phage population relative to that of the resident phage rres [70]: 432

sgrowth =
rmut

rres
− 1. (8)

The exponential growth rate is determined by simulating the growth of the 433

corresponding phage population in isolation, and performing a linear fit to the 434

log-transformed phage number as a function of time, which is then averaged over 500 435

independent simulations. It should be noted that as there is only one type of phage in 436

these simulations, the growth rate of both superinfecting and superinfection-excluding 437

populations is the same. 438

We also characterised the fitness of mutants in a competitive setting, by simulating a 439

resident population until steady state, and then replacing 50% of the population with 440

the mutant. In this direct competition scenario, we determine the selective 441

(dis)advantage scomp of the mutant phage by tracking the relative growth of mutant and 442

resident populations, so that 443

Vmut

Vres
=

Vmut(t = 0)erres(1+scomp)t

Vres(t = 0)errest
= erresscompt, (9)
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as Vmut(t = 0) = Vres(t = 0). scomp is determined from the average of 200 simulations. 444

Importantly, in contrast to sgrowth, this competitive selective advantage (scomp) can in 445

principle differ between superinfecting (sS) and superinfection-excluding (sSX) phage 446

populations. In the absence of any interactions between the two competing phage 447

populations, sgrowth and scomp are typically expected to be the same. 448

Measuring mutant probability of fixation 449

To measure fixation probabilities of individual mutations, we allow our simulations to 450

reach steady state, we then introduce a single mutant phage into the free phage 451

population, and run the simulation until either fixation or extinction occurs. This 452

process is repeated at least 5 million times for each set of parameters. The probability 453

of mutant fixation Pfix is determined from the fraction of simulations where the mutant 454

fixed, nfix, over the total number of simulations run, n (i.e. Pfix = nfix/n). Assuming 455

a binomial distribution, the error in our estimate of the number of fixation events ∆nfix 456

is given by ∆nfix =
√

nPfix(1− Pfix). Consequently, our error in the estimate of 457

fixation probability ∆Pfix is given by ∆Pfix =
√
Pfix(1− Pfix)/n. It can be easily 458

verified that in the case where nfix ≪ n, as we have here, the error approaches 459

∆Pfix =
√
nfix/n as would be found in a Poisson distribution. 460
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S1 Fig Steady-states are independent of intial conditions. The steady-state
phage population Vss reached does not depend on the initial number of phage V0 in the
simulations. In all, α = 3× 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000.

S1 Appendix Stochasticity in lysis time. Here we discuss the decision to not
incorporate stochasticity in lysis time in the model presented in the main text.

S2 Appendix ODE description of model. The average behaviour of the model
used in the main text is described by a set of ordinary differential equations (ODEs),
showing good agreement with our stochastic simulations.
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S2 Fig s as a function of phage life-history parameters. The selective
advantage s relative to a resident phage that results from a change to adsorption rate α,
burst size β and lysis time τ . This is measured both in terms of the effect on the isolated
growth rate of the mutant (sgrowth, Eq. 8), and in terms of the change in frequency in a
population initiated with 50% mutant and 50% resident (sSX and sS , Eq. 9). Resident
parameters used were α = 3× 10−6, β = 100 and τ = 15. As before δ = 0.1 and
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B0 = 1000. sgrowth determined from 500 simulations, and scomp determined from 200
simulations. Error bars are given by the standard error on the mean of the simulations.
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S3 Fig scomp in the ODE model . The relative change in frequency of two
populations in the ODE model (indicating the average behaviour in the stochastic
model). It can be seen that once at steady-state, changing lysis time τ has no effect.
Parameters used were α = 3× 10−6, β = 100 and τ = 15 unless otherwise stated. As
throughout, δ = 0.1 and B0 = 1000.

S3 Appendix Comparison with expectation from Moran model. A
quantitative comparison between the fixation probabilities obtained in our stochastic
simulations with those that would be predicted in a similarly parameterised Moran
model.

S4 Appendix Repeat measurements with βres = 70. Here we repeat a subset of
the measurements carried out in the main text with different resident phage parameters,
in this instance βres = 70.
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S4 Fig Example decay in heterozygosity. Linear fit to log transformed
heterozygosity data, with slope Λ ≡ 2/Ne revealing that allowing superinfection (red)
results in a larger effective population size compared to the case where superinfection is
prevented (blue). Parameters used were α = 3× 10−6, β = 100, τ = 15, δ = 0.1 and
B0 = 1000. Data obtained is the average of 1000 independent simulations.

S5 Appendix Calculation of generation time. Here we support the generation
time calculated in the main text with results of stochastic simulations. We also include
a more detailed discussion about the differences in generation time between
superinfecting and superinfection-excluding populations.
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Stochasticity in Lysis Time

In the main text we choose to implement stochasticity in both adsorption and burst size, but not in
lysis time. The reason we make this choice is that to introduce stochasticity in lysis time in a realistic
way would require additional parameters. For instance, Campos et al. compare descriptions of lysis
using piece-wise, Gaussian and logistic-like functions [1]. Depending on the mathematical framing of
these functions, each would require at least one parameter that controls the width or rise rate of the
distribution. Given that our model already contains several parameters, we preferred to choose a simpler
description, where lysis time is deterministic.

Nevertheless, here we implement a version of the model described in the main text where we introduce
stochasticity in lysis time. In this version of the model, at the point of infection, a lysis time L is drawn
from a Gaussian distribution with mean τ and standard deviation τ/10. The choice of standard deviation
is based on lysis time data collected for different variants of coliphage T7 (Fig A1). In this case the variants
are an isolate of wild-type T7 originally obtained as an aliquot from the Richardson Lab (Harvard Medical
School, Boston, MA), and T7 mutant D111 (wild-type T7 background with deletions from base 532 to
1662) which was kindly donated by Dr. Vivek Mutalik from the Berkeley Lab (Berkeley, CA). Briefly,
the technique used here is adapted from the single-step growth curve protocol used originally by Ellis and
Delbrück [2], and involves infecting an exponentially growing culture of bacteria with phage and then
periodically sampling, with the samples being plated in soft agar with susceptible host to attain plaques.
Counting the number of plaques yields the plaque forming units (PFUs) as a function of time, and from
this the lysis time and burst size can be inferred.
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Figure A1: One-step growth curves of two coliphage T7 variants. (a) corresponds to an isolate of wild-
type T7, while (b) corresponds to T7 mutant D111 which is the wild-type T7 background with deletions
from base 532 to 1662. Fit to the data is a Gaussian function, with mean lysis time τ , standard deviation
σ and burst size β. These fits yield τa = 14.40(11) min, σa = 1.32(19), βa = 168(2), τb = 16.4(5) min,
σb = 1.5(5) and βb = 168(12). For this data it can therefore be seen that σ ∼ τ/10.

Using this version of the model, we re-run a subset of our simulations in the main text, namely the
simulations used to determine the probability of fixation of neutral mutants. As can be seen in Figs A2
and A3, the introduction of stochasticity in lysis time does not significantly alter the behaviour of the
model. It is still the case that the probability of fixation of a neutral mutant is controlled by its initial
frequency in the population (Fig A2), and that the average behaviour of the model remains unchanged,
with the simulations remaining consistent with an ODE description (S2 Appendix) of the model (Fig A3).
We do note that the difference between superinfecting and superinfection excluding scenarios in Fig A2
is less clear than in the corresponding figure in the main text. We speculate that this is caused by the
increased level of stochasticity introduced here, but a more detailed analysis would be required to test
this systematically.
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Figure A2: Probability of mutant fixation Pfix in the superinfecting (S) and non superinfection exclusing
(SX) scenarios, scaled by the initial frequency of the mutant f∗

0 = 1/(Vss + βIss), as a function of
adsorption rate α, burst size β and lysis time τ . Dashed lines indicate the simple average of the data for
both the superinfecting (blue) and superinfection-excluding (red) scenarios. Unless otherwise stated, the
parameters used were α = 3× 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000. The data is obtained from
a minimum of 10 million independent simulations.
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Figure A3: Probability of mutant fixation Pfix in the superinfection (S) and superinfection-exclusion
(SX) scenarios as a function of adsorption rate α, burst size β and lysis time τ . Error bars are plotted,
although in some instances may be too small to see. This data is compared with the solution of a system
of ODEs used to describe the average behaviour of the model (Appendix 2), where the black dashed
line represents the frequency f∗

0 calculated from the steady-state values. Unless otherwise stated, the
parameters used were α = 3× 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000. The data is obtained from
a minimum of 10 million independent simulations.
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ODE Description of Model

The average behaviour of the model used in the main text can be described by a set of ordinary
differential equations (ODEs):

dV

dt
= −αV (B + I)− δV + βαVt−τBt−τ , (1a)

dB

dt
= −αV B + αVt−τBt−τ , (1b)

dI

dt
= αV B − αVt−τBt−τ , (1c)

where all of the symbols are defined the same as in the main text (V , B and I indicate the concentrations
of phage, uninfected bacteria and infected bacteria as a function of time respectively; α, β, τ and δ
indicate the phage adsorption rate, burst size, lysis time and decay rate respectively). The subscript is
used to indicate that those terms are calculated at time t− τ . The positive term in Eq. 1b accounts for
the instantaneous replacement of lysed cells in our turbidostat environment.

By numerically solving this ODE system, we can verify that for the parameters used in this work, a
steady state solution is reached where V = Vss, B = Bss and I = Iss, in agreement with the average
behaviour of the stochastic model used throughout the main text (Figs B1 and B2).
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Figure B1: The average behaviour of the model in the main text is mostly captured by the ODE descrip-
tion set out in Eqs. 1. Slight discrepancies probably arise from the discreteness of the infection, decay
and lysis steps in the simulations. Parameters used are α = 3 × 10−6, β = 100, τ = 15, δ = 0.1 and
B0 = 1000.
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Figure B2: Probability of mutant fixation Pfix in the superinfection (S) and superinfection-exclusion
(SX) scenarios as a function of adsorption rate α, burst size β and lysis time τ . This is the same as the
data displayed in Fig 3 of the main text, prior to rescaling by the initial frequency f∗

0 = 1/(Vss + βIss).
Error bars are plotted, although in some instances may be too small to see. This data is compared with
the solution of the system of ODEs, where the black dashed line represents the frequency f∗

0 calculated
from the steady-state values.
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Comparison To Moran Model

If we introduce a free scaling parameter ϕ, such that scomp = ϕsgrowth, and optimally fit Eq. 1 in the
main text to the data, we can compare the resulting values for ϕ with our previous estimates of σ to
measure of the quality of agreement between simulations and theory. It should be noted that while we
have described the scaling in terms of scomp, it is mathematically identical to scaling Ne. Through this
optimal fitting we find that ϕSα = 1.2226, ϕSXα = 1.3406, ϕSβ = 1.0321, ϕSXβ = 0.9391, ϕSτ = 0.2681
and ϕSXτ = 0.0076 with subscripts indicating scenario and parameter combinations. This indicates that
the data maps well to an equivalently parameterised Moran model, with an average difference of ∼ 5%.
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βres = 70 Measurements

Here we repeat a subset of the measurements carried out in the main text for different resident phage
parameters, in this instance βres = 70, with all other parameters remaining the same as in the main
text. First, the effective population size is measured in both superinfecting and superinfection-excluding
populations (Fig D1), demonstrating that Ne is larger in superinfecting populations.
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Figure D1: Linear fit to log transformed heterozygosity data, with slope Λ ≡ 2/Ne revealing that allowing
superinfection (red) results in a larger effective population size compared to the case where superinfection
is prevented (blue). Parameters used were α = 3× 10−6, β = 70, τ = 15, δ = 0.1 and B0 = 1000.

We then move on to characterise the fitness of non-neutral mutants, in this instance only varying
burst size β (Fig D2). Again, we find a positive linear relationship between burst size and fitness, both
in terms of the effect on growth rate in isolation and in a competitive setting. Interestingly here we find
that alterations to burst size make slightly less difference in a competitive setting, as compared to the
effect on growth rate. This could potentially be because, at lower burst sizes, any small change in β has
a large impact on the growth rate, but has a smaller impact in a population already at steady state.

Finally, we put both aspects together and measure the probability of fixation of non-neutral mutants
in both superinfecting and superinfection-excluding populations (Fig D3). As in the main text, we find
fairly good, although slightly worse, agreement between our simulation results and the prediction from a
Moran model with our independently measured parameters (Figs D1 and D2). In terms of the additional
fitting parameter introduced in S3 Appendix, we find here that ϕS = 0.8021 and ϕSX = 0.7269. It’s
possible that this discrepancy is caused by imprecision in the measurements of fitness as a function of
burst size. Indeed, over the whole range of β we would not expect a perfect linear relationship between
burst size and fitness, with the benefits of increased burst size being larger for small β, and so at these
lower values of β we find that the linear fit is less of a good approximation.
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Figure D2: (a): The selective advantage s relative to a resident phage that results from a change to burst
size β. This is measured both in terms of the effect on the isolated growth rate of the mutant (sgrowth,
Eq. 8 in main text), and in terms of the change in frequency in a population initiated with 50% mutant
and 50% resident (sSX and sS , Eq. 9 in main text). (b): The fitness in a competitive setting scomp is
then shown as a function of the fitness in an isolated setting sgrowth. Straight line fits are shown as
dashed lines, with gradient σ such that scomp = σsgrowth. From the above data we find σS = 0.9181 and
σSX = 0.8032. Resident parameters used were α = 3× 10−6, β = 70 and τ = 15. As before δ = 0.1 and
B0 = 1000. sgrowth determined from 500 simulations, and scomp determined from 200 simulations. Error
bars are given by the standard error on the mean of the simulations.
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Figure D3: Probability of mutant fixation Pfix as a function of selective growth advantage sgrowth.
Points indicate simulation results, while lines indicate theoretically predicted values in a Moran model
with equivalent parameters (Eq. 1 in main text). The error in our estimate of the fixation probability
∆Pfix is given by ∆Pfix =

√
nfix/n, where n and nfix represent the total number of simulations and the

number of simulations where the mutant fixes respectively. Error bars in the x-axis represent the errors
on the growth rate fitness sgrowth that each burst size corresponds to. These are calculated by fitting a
linear relation to growth rate measurements such that sgrowth = m(βmut − βres). The fractional error on
the sgrowth is then equal to the fractional error on the fitted gradient m. The data is obtained from a
minimum of 20 million independent simulations.
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Calculation of Generation Time

In the main text we show that the generation time T can be written as

T = τ +
1

δ + αIss
. (1)

This yields T = 24.80 for the parameters used in the main text (α = 3 × 10−6, τ = 15, δ = 0.1 and
Iss = 681).

We here verify the results of this expression using stochastic simulations. We simulate a single phage,
which in each time-step ∆t has a probability of successfully adsorbing to an uninfected host (αBss∆t),
and a probability of dying ((δ + αIss)∆t). In the event that the phage successfully adsorbs to a host
before it dies, the number of steps tsteps taken for this to occur is noted, and the time T = τ + tsteps is
recorded (representing the time between the ‘birth’ of the original phage and the ‘birth’ of it’s offspring,
as per the definition of generation time in the main text). A schematic representation of this process
is shown in Fig E1. This process was repeated 10 million times, with the the time T being recorded in
all of the instances where the phage successfully reproduced. This yields an average generation time of
T = 24.78(3) in agreement with the analytical calculation.

Figure E1: Schematic diagram illustrating the processes used to verify the generation time T in
superinfection-excluding populations.

Throughout the main text we use the above generation time for both superinfection-excluding and
superinfecting populations. However, the superinfection scenario differs from that laid out above in
that adsorption to infected cells does not result in death, and relatedly, the time between successful
host infection and offspring production may be less than τ . To evaluate the error we introduce with
our approximation of generation time, we modify the simple stochastic simulations above to take into
account these differences. In this scenario, in a single time-step the phage has a probability δ∆t of dying,
and a probability αB0∆t of infecting a host (either infected or uninfected). In the case where infection
occurs, the phage has a probability Bss/B0 of infecting an uninfected host, which as before, results in
a generation time T = τ + tsteps. In the remainder of infection cases, phage will infect already infected
hosts. Because of the nature of the process of within-host replication, secondary infections that occur too
late after the initial infection generate almost no offspring of the superinfecting phage. We account for
this observation by assuming that only secondary infections occurring within the first n steps post initial
infection will successfully produce offspring. Given that we are considering populations at steady state,
we assume that infected cells are equally likely to be found any number of steps post-infection (< τ), and
so infection a cell in the first n steps post initial infection simply occurs a fraction n/τ of the times that

secondary infection occurs. In this case, the generation time is given by T = tsteps + τ −
∑n

1 k

n , where the

1



final two terms represent the average number of steps between secondary infection and lysis. This final

term can be simplified by noting that
∑n

1 k

n = n(n+1)
2n = n+1

2 . A schematic representation of this process
is shown in Fig E2.

Figure E2: Schematic diagram illustrating the processes used to measure the generation time T in
superinfecting populations.

Using a value of n = 3, this process was again repeated 10 million times, yielding an average generation
time of T = 24.11(3). It can be seen that the difference in generation time is marginal. It is however
worth noting that were we to fully account for the shorter generation time in superinfecting populations,
it would result in an even larger effective population size, further emphasising our main findings.
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