
XX

Denotational Semantics with Nominal Scott Domains

STEFFEN LÖSCH and ANDREW M. PITTS, University of Cambridge

When defining computations over syntax as data, one often runs into tedious issues concerning α-
equivalence and semantically correct manipulations of binding constructs. Here we study a semantic frame-
work in which these issues can be dealt with automatically by the programming language. We take the
user-friendly ‘nominal’ approach in which bound objects are named. In particular, we develop a version of
Scott domains within nominal sets and define two programming languages whose denotational semantics
are based on those domains. The first language, λν-PCF, is an extension of Plotkin’s PCF with names that
can be swapped, tested for equality and locally scoped; although simple, it already exposes most of the se-
mantic subtleties of our approach. The second language, PNA, extends the first with name abstraction and
concretion so that it can be used for metaprogramming over syntax with binders.

For both languages, we prove a full abstraction result for nominal Scott domains analogous to Plotkin’s
classic result about PCF and conventional Scott domains: two program phrases have the same observable
operational behaviour in all contexts if and only if they denote equal elements of the nominal Scott domain
model. This is the first full abstraction result we know of for languages combining higher-order functions
with some form of locally scoped names which uses a domain theory based on ordinary extensional functions,
rather than using the more intensional approach of game semantics.

To obtain full abstraction, we need to add two functionals, one for existential quantification over names
and one for ‘definite description’ over names. Only adding one of them is not enough, as we give counter
examples to full abstraction in both cases.

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Denotational semantics; F.4.1 [Mathematical Logic and Formal Languages]: Mathe-
matical Logic—Lambda calculus and related systems

General Terms: Languages, Theory

Additional Key Words and Phrases: Metaprogramming, denotational semantics, domain theory, full abstrac-
tion, nominal sets, symmetry

ACM Reference Format:
Steffen Lösch and Andrew M. Pitts. 2014. Denotational Semantics with Nominal Scott Domains. J. ACM X,
X, Article XX (2014), 45 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
If one wants to express computations not just with numbers, but also with structures
representing the programs of a programming language, or the formulas of a logic,
then one is in a setting called metaprogramming. It arises for example in mecha-
nised theorem proving, or in domain specific languages. We distinguish between an
object-language and a meta-language: we write algorithms in the meta-language for

This work is supported by a Gates Cambridge Scholarship and the ERC Advanced Grant Events, Causality
and Symmetry (ECSYM).
Authors’ address: S. Lösch and A. M. Pitts, University of Cambridge Computer Laboratory, 15 JJ Thomson
Avenue, Cambridge CB3 0FD, United Kingdom.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0004-5411/2014/-ARTXX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:2 S. Lösch and A. M. Pitts

manipulating object-language syntax. For example, if we are using the Coq system
[coq.inria.fr] to prove theorems about C programs, then C is the object-language and
Coq is the meta-language.

Whenever the object-language has name-binding constructs (and most programming
languages do), we run into tedious issues regarding α-equivalence (renaming of bound
names) that programmers like to gloss over, but that have to be dealt with in the de-
sign of a meta-language. The informal approach is to use the first-order representation
of binding as (bound name, body)-pairs and not carry out tedious formal checks that α-
equivalence is respected by computations. A common formal approach to representing
object-language binders is to use function expressions in the meta-language to repre-
sent binding operations. However, the notion of ‘function’ is not absolute in the way
that the notion of ‘pair’ is. As a result it requires some ingenuity (for example, distin-
guishing functions-as-data from functions-as-computation [Licata and Harper 2009])
to ensure that a meta-language using this form of representation for binders can con-
veniently express the wide range of first-order syntax-manipulating algorithms com-
monly employed in informal practice; see Savary-Belanger et al. [2013], for example.

An alternative approach to this problem, that we follow here, is to devise meta-
languages that represent object-language binders using the permutation-based notion
of name abstraction [Pitts 2013, Chapter 4]. This approach lies somewhere between
the first-order and the functional representation and turns out to have good computa-
tional properties [Shinwell et al. 2003; Pitts 2011]. In this paper we will investigate
the denotational semantics of name abstraction using a ‘symmetry-aware’ version of
Scott domains [Scott 1982].

Various forms of symmetry are used in many branches of mathematics and computer
science. The results in this paper have to do with using symmetry to extend the reach of
computation theory from finite data structures and algorithms to ones that, although
they are infinite, become finite when quotiented by a suitable notion of symmetry. Our
motivating example of such data is the abstract syntax trees for an object-language
involving name-binding constructs, since infinitely many abstract syntax trees repre-
sent the same expression modulo permuting their bound names. This way of viewing
α-equivalence via symmetry was the initial stimulus for the development of nominal
sets, introduced by Gabbay and Pitts [2002]. They provide a theory for mathematical
structures involving atomic names1 based on name permutations and the notion of fi-
nite support. We review the concept of nominal set briefly in Section 2, referring the
reader to Pitts [2013] for a comprehensive account.

Nominal sets have been used to develop the semantic properties of binders and lo-
cally scoped names, with applications to functional and logic programming, to equa-
tional logic and rewriting, to type theory and to interactive theorem proving; see Gab-
bay [2011] and Pitts [2013] for recent surveys. The work by Montanari and Pistore
[2000] on the π-calculus and HD-automata provides a somewhat different application
of nominal sets (an independent one, since it uses a notion of ‘named set’ that only
subsequently was shown to be equivalent to nominal sets [Gadducci et al. 2006; Staton
2007]). The use of symmetries of names (of fresh communication channels in this case)
to get finite representations of infinitely many states is at the forefront in their work.
It has recently been subsumed and generalised in a programme of what one might call
‘orbit-finite’ automata theory [Tzevelekos 2011; Bojańczyk et al. 2011; Bojańczyk and
Lasota 2012; Gabbay and Ciancia 2011; Murawski and Tzevelekos 2012].

In this paper we bring together the ‘names and binders’ and the ‘orbit-finite state
space’ aspects of nominal sets. We observe that a key concept underlying the automata-
theoretic research programme of Bojańczyk et al. [2012], that of being an orbit-finite

1Names whose only attribute is their identity; Harper [2013, part XII] calls them ‘symbols’.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:3

subset, turns out to subsume a notion of topological compactness introduced, for quite
different purposes, by Turner and Winskel [2009] in their work on nominal domain
theory for concurrency. We explain the connection and use it to develop a version of
the classic notion of Scott domain within nominal sets. (Previous work on denotational
semantics with nominal sets [Shinwell and Pitts 2005; Turner 2009] has focussed on
less sophisticated notions of domain, analogous either to ω-chain complete posets, or
to algebraic lattices.) The well-known result of Plotkin [1977] proves that PCF with
parallel-or is fully abstract with respect to conventional Scott domains, in the sense
that two expressions have equal denotations if and only if they the have the same
observable operational behaviour in all contexts. We obtain an analogous result for
nominal Scott domains, through adding functionals for existential quantification over
names and ‘definite description’ over names to a programming language for recursively
defined higher-order functions with name abstractions and Odersky [1994] style locally
scoped names.

Outline of the main results in this paper
— We show that the notion of finiteness used in Turner-Winskel nominal domain

theory coincides with the notion of orbit-finite used by Bojańczyk et al. [2012]. Specif-
ically, we prove (Theorem 4.5) that a finitely supported subset of a nominal set is
compact with respect to unions that are uniform-directed in the sense of Turner and
Winskel if and only if it is orbit-finite.

— We use orbit-finite subsets to generalise the notion of Scott domain from ordi-
nary sets to nominal sets (Definition 5.1). We prove that the category of nominal Scott
domains is cartesian closed (Theorem 5.5), has least fixed points and is closed under
forming domains of name abstractions (Theorem 10.1). Although there are infinitely
many names, the nominal Scott domain of names has some strong finiteness prop-
erties. In particular, we show that the functionals for existential quantification over
names and definite description of names denotationally are uniform-compact elements
of their function domains (Examples 5.7 and 5.8) and can be given a structural opera-
tional semantics.

— We define a language λν-PCF that extends the well-known language PCF of
Plotkin [1977] with names that can be locally scoped, swapped, and tested for equal-
ity. λν-PCF’s operational semantics is inspired by [Pitts 2011; Lösch and Pitts 2011].
In particular, it makes use of Odersky [1994] style local names, which have a simple
denotational semantics using nominal Scott domains. We show that this semantics is
computationally adequate, in the sense that equality of denotations implies that two
programs are contextually equivalent for the operational semantics (Theorem 7.5).

— We show by counter examples that the reverse implication of computational ade-
quacy can fail, that is, the denotational semantics is not fully abstract (Theorem 8.4),
even if λν-PCF is extended with either existential quantification over names or definite
descriptions of names. However, extending λν-PCF with both new constructs together,
we prove that the nominal Scott domain model is fully abstract for the resulting lan-
guage: any two expressions are contextually equivalent if and only if they have equal
denotations in the model (Theorem 8.5).

— We illustrate how λν-PCF can be the basis for a metaprogramming language for
object-languages with binding operations by adding facilities for computing with name
abstractions, together with a type representing λ-calculus terms. The resulting lan-
guage, PNA (Programming with Name Abstractions), is given a denotational seman-
tics using nominal Scott domains that is computationally adequate (Theorem 11.2).
Furthermore, this denotational semantics is shown to be fully abstract once PNA is
extended in the same way that λν-PCF was extended, that is, with existential quantifi-
cation over names and definite descriptions of names (Theorem 12.2).

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:4 S. Lösch and A. M. Pitts

There are full abstraction results for higher-order functions with local names using
the intensional approach of game semantics [Abramsky et al. 2004; Tzevelekos 2008;
Laird 2008], but our full abstraction Theorems 8.5 and 12.2 are the first such results
we know of that are based on ordinary extensional functions. There is no similar result
known for FreshML [Shinwell et al. 2003], which uses generative rather than Odersky-
style local names to implement the features that PNA provides for programming with
name abstractions; and yet we believe that PNA (extended with recursive types) is in
principle as expressive as FreshML, in view of our previous work [Lösch and Pitts 2011].
Our proof of the full abstraction theorems seems novel compared with other proofs of
similar full abstraction results in the literature [Curien 2007]. On the other hand it
gives rise to some open problems that we discuss at the end of Section 12, together
with a number of possibilities for future work exploiting the use of orbit-finite subsets
within nominal domain theory.

Note
This is a revised and extended version of Lösch and Pitts [2013]. Compared with that
article, here we show that most of the difficulty with our original full abstraction result
(Theorem 12.2) is already present for the simple extension of PCF with locally scoped
names rather than with name abstraction as well (Theorem 8.5). We thank the POPL
reviewers for indirectly suggesting this approach and for other helpful comments.

In contrast to that article, here we do not extend λν-PCF+ explicitly with parallel-or,
because it can in fact be expressed in terms of existential quantification over names
(Remark 8.3). In addition we resolved the open problem of showing that the nominal
Scott domain models of λν-PCF+the and λν-PCF+ex fail to be fully abstract, using
examples suggested by Tzevelekos (Theorem 8.4), whom we thank for discussions on
the topic of the paper.

2. FINITE SUPPORT
We are interested in the denotational semantics of programs written in languages
featuring names that can be tested for equality and locally scoped by binding con-
structs. To take symmetry into account, we fix some countably infinite set A, whose
elements we call atomic names, and consider finite permutations of A, that is, bijec-
tions π : A ∼= A with the property that π a = a holds for all but finitely many a ∈ A.
Recall that an action of such permutations π on the elements x of a set X is a binary
operation, written (π, x) 7→ π · x and satisfying id · x = x (where id is the identity
permutation) and π′ · (π · x) = (π′ ◦ π) · x (where ◦ is composition), for all x ∈ X.

Actions of finite permutations of A on setsX and Y can be extended to their cartesian
product X × Y by defining for each x ∈ X and y ∈ Y

π · (x, y) , (π · x, π · y). (1)

More interestingly, given actions on X and Y , we get an action on the set of functions
Y X by defining for each f ∈ Y X

π · f , λx ∈ X � π · (f(π−1 · x)) (2)

where π−1 is the inverse of the permutation π. In particular, taking Y = 2 =
{true, false}, a two-element set with trivial action (π · true = true, π · false = false),
we get an action on 2X and hence on subsets of X. This action of finite permutations
on subsets has a simple description: for each S ⊆ X

π · S = {π · x | x ∈ S}. (3)

Programs, being finite syntactic objects, only involve finitely many atomic names in
their construction; whereas the elements of a set X used to denote program behaviours

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:5

may well be infinite mathematical objects. We wish to limit our attention to infinite
behaviours that depend only upon finitely many atomic names, as doing so yields a
richer and better behaved theory. We can make precise what it means to ‘only depend
upon finitely many atomic names’ entirely in terms of symmetry, that is, in terms of
a given permutation action. An element x ∈ X is supported by a set A ⊆ A of atomic
names if every permutation π that preserves each name in A also preserves x:

((∀a ∈ A) π a = a)⇒ π · x = x . (4)

Definition 2.1 (nominal set). We say that a set X equipped with an action of finite
permutations of A is a nominal set if each of its elements is supported by some finite
set of atomic names. In this case one can show (see Pitts [2013, Proposition 2.3] for
example) that for each x ∈ X there is a smallest finite subset of A supporting x, which
we write as suppx. The freshness relation a # x is defined by:

a # x , a /∈ suppx . (5)

Note that since suppx is a finite set and A is not, given x we can always find some
a ∈ A satisfying a # x.

Given a nominal set X, the subsets that possess a finite support with respect to the
action in (3) are called finitely supported subsets of X. Not every subset is finitely sup-
ported. For example, when X = A (with action π · a = π a), the only finitely supported
subsets are those S ⊆ A for which either S, or A − S is finite [Pitts 2013, Proposi-
tion 2.9]. Similarly, not every function f ∈ Y X between nominal setsX and Y is finitely
supported with respect to the action in (2). Functions with empty support are called
equivariant and all such functions satisfy for any finite permutation π and x ∈ X that
f(π · x) = π · (f x).

We write PfsX for the collection of all finitely supported subsets of X. With the ac-
tion in (3), this is a nominal set; indeed it is the power object (in the sense of topos
theory [Johnstone 2002]) for a model of higher-order logic based on nominal sets. The
main difference between this model and the classical one is that it fails to satisfy
the Axiom of Choice: see Pitts [2013, Section 2.7].2 As we discuss next, this difference
causes nominal domain theory to be something more than just ‘classical domain theory
carried out in the nominal model of higher-order logic’.

3. UNIFORM-DIRECTED LEAST UPPER BOUNDS
In this section we recall the nominal domain theory introduced by Turner and Winskel
[2009]. A key idea behind domain theory in general is to give a denotation to a program
with potentially infinite behaviour as a limit of approximations. For domain theory
based on approximation via a partial order (rather than a metric), limits are least
upper bounds of chains (totally ordered subsets), or more generally, least upper bounds
of subsets that are directed (every finite set of elements in the subset has an upper
bound in the subset). So long as one considers chains of arbitrary (ordinal) length,
classically there is no difference between using least upper bounds of chains and using
least upper bounds of directed subsets [Markowsky 1976]. However, the equivalence of
the two approaches relies on the Axiom of Choice and, as we noted above, that fails to
hold for nominal sets. Thus in a nominal version of domain theory, formulating limits
in terms of least upper bounds of chains leads to a different notion of domain than
does the use of least upper bounds of arbitrary directed subsets (of course, both the
chains and the directed subsets should be finitely supported, to make sense nominally).

2The associated model of set theory goes back to work in the 1930s by Fraenkel and Mostowski, who devised
it specifically to negate the Axiom of Choice; see Gabbay [2011, Remark 2.22].

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:6 S. Lösch and A. M. Pitts

Turner and Winskel provide a compelling reason for preferring the former kind of
limit: they show by example that a key notion provided by the nominal approach, the
operation of name abstraction, does not always preserve least upper bounds of finitely
supported, directed subsets. Example 3.2 gives a simplified version of the Winskel-
Turner example of the failure of name abstraction to preserve least upper bounds of
all finitely supported, directed subsets.

Definition 3.1 (name abstraction). A nominal poset is a nominal set D equipped
with a partial order v that is respected by the action of permutations: d v d′ ⇒ π · d v
π · d′. Given such a D, we get a pre-order on A × D by defining (a, d) v (a′, d′) to
hold whenever we have (a a′′) · d v (a′ a′′) · d′ in D for some (or indeed, for any)
a′′ # (a, a′, d, d′). (As usual, (a a′) denotes the permutation that swaps a and a′, leav-
ing all other atomic names fixed.) We write [A]D for the poset obtained by quotienting
A×D by the equivalence relation associated with this pre-order, and 〈a〉d for the equiv-
alence class of (a, d). Defining a permutation action by π · 〈a〉d = 〈π a〉(π · d), one can
show that [A]D is also a nominal poset, with supp〈a〉d = (supp d) − {a}. We call the el-
ements of [A]D name abstractions. They are a generalized form of α-equivalence class
for elements of D – generalized, because D itself may not consist of concrete syntactic
data (we just need to know how name permutations act on its elements).

Example 3.2. For any nominal set X, partially ordering the elements of the nom-
inal set PfsX of finitely supported subsets of X by inclusion, we get a nominal
poset. Consider the case when X = A. Given a ∈ A, the name abstraction function
PfsA → [A](PfsA) mapping each S ∈ PfsA to 〈a〉S does not preserve all least upper
bounds of finitely supported, directed subsets. For example, consider the directed sub-
set F ∈ Pfs(PfsA) consisting of all finite sets of atomic names. F has empty support
and its least upper bound

⊔
F is equal to A. However, fixing upon a 6= a′ in A, one has

〈a〉(
⊔
F) = 〈a〉A = 〈a′〉A 6v 〈a′〉(A − {a}) and one can check that

⊔
{〈a〉F | F ∈ F} v

〈a′〉(A− {a}) (see Pitts [2013, Proposition 11.5]). So 〈a〉(
⊔
F) 6=

⊔
{〈a〉F | F ∈ F}.

Despite this failure of name abstraction to preserve least upper bounds of arbitrary
(finitely supported) directed subsets, we will see (Theorem 10.1) that it does preserve
least upper bounds of finitely supported chains. Preservation of limits of approxima-
tions by a semantic operation is crucial if it is to be used for giving the denotational
semantics of some linguistic construct. So one is naturally led to consider a nominal
domain theory based upon the use of least upper bounds of finitely supported chains.
However, this does not mean that one has to give up entirely the convenience of using
directed sets. This is because closure under least upper bounds of finitely supported
chains turns out to be equivalent to closure under least upper bounds of directed sets
that are not merely finitely supported, but are uniformly supported in the sense of
Turner and Winskel [2009, Definition 1]:

Definition 3.3 (uniform support). Let X be a nominal set. A subset S ⊆ X is uni-
formly supported if there exists a finite set A of atomic names that supports each
x ∈ S. Note that if this is the case, then for all finite permutations π satisfying
(∀a ∈ A) π a = a we have π · S = {π · x | x ∈ S} = {x | x ∈ S} = S; so as well as
supporting each element of S, A supports S itself. Thus a uniformly supported subset
of X is in particular a finitely supported one.

For example, any finite A ⊆f A is a uniformly supported subset (since A itself is a
common finite support for each a ∈ A), whereas A− A is finitely supported (by A), but
not uniformly supported (since any support for each b ∈ A−A has to contain b).

The crucial observation is that finitely supported chains in nominal posets have to
be uniformly supported (as usual, a chain in D is a subset that is totally ordered by v):

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:7

LEMMA 3.4. [Turner 2009, Lemma 3.4.2.1] In a nominal poset D, every finitely sup-
ported chain C is necessarily uniformly supported.

PROOF. Suppose that C is supported by the finite set A ⊆f A. We will show that A
supports each d ∈ C.

For any finite permutation π, if (∀a ∈ A) π a = a, then π · C = C (since A supports
C). So if d ∈ C, then π · d ∈ C. But C is totally ordered, so either d v π · d, or π · d v d.
In the first case, since π is a finite permutation, for sufficiently large n ∈ N we have
πn = id and hence d v π · d v π2 · d v · · · v πn · d = id · d = d; and therefore d = π · d
by antisymmetry of v. Similarly, if π · d v d, then we also get π · d = d. So in either
case π preserves d. Since this holds for all π satisfying (∀a ∈ A) π a = a, we have that
A supports d.

Definition 3.5 (udcpo). A uniform-directed subset of a nominal poset D is a subset
S ⊆ D that is both uniformly supported and directed (that is, each finite subset of S
possesses an upper bound in S). A uniform-directed complete partial order (udcpo) is a
nominal poset that has a least upper bound

⊔
S for all uniform-directed subsets S.

As Turner [2009] points out, using Lemma 3.4, the classic result of Markowsky
[1976] can be extended to show that a nominal poset is a udcpo if and only if it has
least upper bounds for all finitely supported chains. So in effect udcpos give us a domain
theory within the higher-order logic of nominal sets based on chain-completeness. As
we will see in Section 10, they also give us access to the name abstraction construct.

We model potentially infinite program behaviours in languages with names using
denotations that are uniform-directed least upper bounds of approximations to the be-
haviour. Each approximation should be finite in a suitable sense. For classical domain
theory this amounts to being compact (also known as ‘finite’ or ‘isolated’) with respect
to directed least upper bounds. By analogy, we have:

Definition 3.6 (uniform compactness). An element u ∈ D of a udcpo D is uniform-
compact if for all uniform-directed subsets S ⊆ D it is the case that u v

⊔
S ⇒ (∃d ∈

S) u v d. We write KD for the set of uniform-compact elements of D. We say that D is
an algebraic udcpo if each of its elements is the least upper bound of a uniform-directed
subset of KD. D is ω-algebraic if in addition the underlying set of KD is countable.

Recall that a subset of a set is compact with respect to directed least upper bounds
(unions) of subsets if and only if it is a finite set. Here we are restricting attention to a
smaller class of least upper bounds, the uniform-directed ones. Therefore, one should
expect uniform-compactness to be a more liberal notion of finiteness. Indeed, we show
in the next section that it corresponds precisely to the notion of orbit-finite subset
introduced by Bojańczyk et al. [2012, Section 3].3

4. ORBIT-FINITE SUBSETS
The action of finite permutations of A on the elements of a nominal set X partitions
them into orbits: two elements x and x′ are in the same orbit if x′ = π · x for some
finite permutation π. For example A itself has just one orbit; A × A has two, namely
{(a, a) | a ∈ A} and {(a, a′) ∈ A2 | a 6= a′}; and in general An has finitely many orbits,
corresponding to equivalence relations on the finite set {0, 1, . . . , n− 1}. Contrastingly,
the nominal set A∗ of finite lists of atomic names has infinitely many orbits, since lists
of different length cannot be in the same orbit.

3The term ‘finitary subset’ is used in that paper, but in subsequent work the authors use the terminology
we have adopted here.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:8 S. Lösch and A. M. Pitts

Remark 4.1 (orbit-finite = finitely presentable). The category-theoretic generalisa-
tion of the order-theoretic notion of directed least upper bound is the notion of filtered
colimit; and compactness with respect to directed least upper bounds generalises to
the notion of an object being finitely presentable (fp): an object X in a (locally small)
category C with filtered colimits is fp if the hom-functor C(X,) : C → Set preserves
filtered colimits. C is called locally finitely presentable (lfp) if every object is the fil-
tered colimit of fp objects [Gabriel and Ulmer 1971]. The category Nom of nominal
sets and equivariant functions, being a Grothendieck topos, is lfp. Although we will
not need the characterisation here, it is worth remarking that Petrişan [2011, Proposi-
tion 2.3.7] shows that a nominal set is an fp object of Nom if and only if it is orbit-finite,
that is, its set of orbits is finite. See Pitts [2013, Section 5.3].

Definition 4.2 (orbit-finite subsets). A finitely supported subset S ∈ PfsX of a nom-
inal set X is said to be orbit-finite if it is contained in the union of finitely many orbits
of X. We write PofX for the collection of orbit-finite subsets of X.

Bojańczyk et al. investigate orbit-finite data structures and algorithms (for a gener-
alised version of nominal sets over any ‘Fraı̈ssé symmetry’). Note that an orbit-finite
subset may well have infinitely many different elements. For example, A is an orbit-
finite subset of itself. Therefore, in order to compute with orbit-finite subsets one needs
an effective presentation of them and of operations upon them. The following notion
turns out to give an alternative characterisation of orbit-finite subsets that is suitable
for calculation. It was introduced independently by Turner [2009, Definition 3.4.3.2],
Gabbay [2009, Section 3.3; 2011, Definition 3.1; Gabbay and Ciancia 2011, Defini-
tion 3.1] and Bojańczyk et al. [2012, Section 8], whose ‘hull’ terminology we adopt here.
(See also Ciancia and Montanari [2010, Definition 6.10], whose ‘closures’ are hulls of
the form hullsupp x−{a}{x}.)

Definition 4.3 (hulls). Let X be a nominal set. Given finite subsets A ⊆f A and
F ⊆f X, define hullAF , {π · x | π # A ∧ x ∈ F}, where π # A as usual means that
π and A have disjoint support, which in this case means that the finite permutation π
and the finite set of atomic names A satisfy (∀a ∈ A) π a = a. We call such sets hulls.

LEMMA 4.4. A subset of a nominal set X is orbit-finite if and only if it is a hull.
For all finite subsets A ⊆f A and F ⊆f X, we have hullAF ∈ PofX. Conversely, every
S ∈ PofX is of the form hullsuppSF for some F ⊆f X.

PROOF. We sketch the proof and refer the reader to Pitts [2013, Proposition 5.25]
for the details. It is not hard to see that hullAF is supported by A and is contained in
a finite union of orbits of X, namely the orbits of each x ∈ F . What is less obvious is
that every orbit-finite subset is of this form. This follows from a key technical property
of hulls, proved independently by Turner [2009, Lemma 3.4.3.5] and Bojańczyk et al.
[2012, Lemma 3]:

(∀A ⊆ A′ ⊆f A)(∀F ⊆f X)(∃F ′ ⊆f X) hullAF = hullA′F ′. (6)

Now if S is orbit-finite, it is finitely supported and contained in the union of the
orbits of the elements of some finite set F ⊆f X; in other words S ⊆ hull∅F . By
(6), there exists F ′ ⊆f X with hull∅F = hullsuppSF

′ and from this it follows that
S = hullsuppS(F ′ ∩ S).

This lemma can be used to prove the following theorem that makes the connection
between orbit-finite subsets and the notion of uniform-compactness from the previous
section. Consider the nominal poset PfsX of finitely supported subsets of a nominal

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:9

set X, the partial order being subset inclusion. It possesses least upper bounds for all
finitely supported subsets, given by union, and hence in particular it is a udcpo.

THEOREM 4.5. An element of the udcpo PfsX is uniform-compact if and only if it is
an orbit-finite subset of X. Every S ∈ PfsX is the uniform-directed least upper bound of
the orbit-finite subsets contained in and with the same support as S. Thus PfsX is an
algebraic udcpo in the sense of Definition 3.6.

PROOF. Note that for every S ∈ PfsX, since any F ⊆f S satisfies F ⊆ hullsuppSF ⊆ S,
we have

S =
⋃
{hullsuppSF | F ⊆f S} (7)

and the right-hand side is a directed union of orbit-finite subsets that have common
support suppS. Therefore to prove the theorem it just suffices to prove that any S is
uniform-compact if and only if it is orbit-finite.

Suppose S ∈ PofX and S ⊆
⋃
S with S a uniform-directed subset of PfsX. By

Lemma 4.4, S = hullAF for some A ⊆f A and F ⊆f X; and by (6) we may assume
that A supports each element of S. Since F is finite, F ⊆

⋃
S and S is directed, we

have F ⊆ S′ for some S′ ∈ S; and since A supports S′, F ⊆ S′ implies that hullAF ⊆ S′,
that is, S ⊆ S′. So S is uniform-compact.

Conversely, if S ∈ PfsX is uniform-compact, then in view of (7) we have S ⊆
hullsuppSF for some F ⊆f S. Hence S = hullsuppSF is orbit-finite by Lemma 4.4.

5. NOMINAL SCOTT DOMAINS
In view of Theorem 4.5 there is the following analogy

finite
directed

sets ∼ orbit-finite
uniform-directed

nominal sets

which we apply to transfer to nominal sets the classical notion of Scott domain
that arose in the denotational semantics of higher-order functional programming lan-
guages [Plotkin 1977, Lemma 4.4].

Definition 5.1. A nominal Scott domain D is an ω-algebraic udcpo with a least
element and least upper bounds for all finitely supported subsets that have upper
bounds (or equivalently, by Theorem 4.5, least upper bounds for all orbit-finite sub-
sets of KD that have upper bounds). Functions between nominal Scott domains are
called uniform-continuous if they are finitely supported, monotone, and preserve all
uniform-directed least upper bounds. The category Nsd has nominal Scott domains
for its objects and for its morphisms it has functions f : D → D′ that are both equiv-
ariant and uniform-continuous.

Definition 5.2 (flat domains). If X is a nominal set, the flat nominal poset X⊥ is
given by X] {⊥}, with partial order d v d′ ⇔ d = ⊥ ∨ d = d′ and permutation action
extending that on X by π · ⊥ = ⊥. It is easily seen to be a nominal Scott domain, with
K(X⊥) = X⊥, provided the underlying set of X is countable.

Remark 5.3 (Turner-Winskel domain theory). The nominal domain theory for con-
currency of Turner and Winskel [2009] introduces the notion of ‘uniform-directed least
upper bound’ and contains a characterisation of uniform-compact elements in terms of
the hull construct from Definition 4.3. However, their domains are more specific than
ours since they are based on path sets (downwards-closed subsets of preorders), which
form prime-algebraic complete lattices. Modulo countability, their category FMCts∅ is
a full subcategory of Nsd.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:10 S. Lösch and A. M. Pitts

LEMMA 5.4. Let D be a udcpo. If an orbit-finite subset of KD possesses a least upper
bound in D, then that least upper bound is also in KD.

PROOF. Suppose K ∈ Pof(KD) possesses a least upper bound and that
⊔
K v

⊔
S

for some uniform-directed subset S ⊆ D. By Lemma 4.4 and (6) we can assume K =
hullAF where F ⊆f KD and A ⊆f A supports each d ∈ S. Since F ⊆ hullAF = K,
we get (∀u ∈ F) u v

⊔
K v

⊔
S; so since u is uniform-compact, F is finite and S is

directed, there is some d ∈ S satisfying (∀u ∈ F) u v d. Because A supports d, if follows
that (∀u ∈ hullAF) u v d and therefore

⊔
K =

⊔
hullAF v d. So we do indeed have⊔

K ∈ KD.

THEOREM 5.5. Nsd is cartesian closed.

PROOF. The terminal object is given by the trivial flat domain ∅⊥. The product of
D1 and D2 is given by their cartesian product, with permutation action as in (1) and
partial order (d1, d2) v (d′1, d

′
2) , d1 v d′1 ∧ d2 v d′2. Exponentials D1 � D2 have an

underlying set consisting of all functions f ∈ DD1
2 that are uniform-continuous. The

partial order on such functions is also given as usual, argument-wise: f v f ′ , (∀d ∈
D1) f d v f ′d. That D1 � D2 is a udcpo, has a least element, has least upper bounds
of all finitely supported bounded subsets, and has the correct universal property for
an exponential are all easy to verify. Less straightforward is its ω-algebraicity with
respect to uniform-directed least upper bounds: for ordinary Scott domains, compact
elements of the exponential are given by least upper bounds of finite, bounded sets of
step-functions; here we use orbit-finite rather than finite sets. Given uniform-compact
elements ui ∈ KDi (i = 1, 2), consider the step-function

(u1↘ u2) , λd ∈ D1 � if u1 v d then u2 else ⊥ . (8)

It is easily seen to be uniform-continuous (because u1 is uniform-compact) and
uniform-compact (because u2 is uniform-compact). Let (D1 �step D2) ⊆ K(D1 � D2)
be the set of all such step-functions, and note that this is a countable nominal set with
π · (u1 ↘ u2) = (π · u1 ↘ π · u2). For algebraicity of D1 � D2 we show that for each
f ∈ D1 �D2 we have f =

⊔
Sf , where

Sf , {
⊔

hullsupp fF | F ⊆f Kf}
Kf , {(u1↘ u2) ∈ (D1 �step D2) | (u1↘ u2) v f}.

Every hullsupp fF is bounded by f and finitely supported by supp f , so
⊔

hullsupp fF
exists and is uniform-compact by Lemma 5.4. This shows that Sf consists of uniform-
compact elements, is bounded by f , is uniformly supported by supp f and is directed (as
hullA() preserves inclusions), so its least upper bound exists and satisfies

⊔
Sf v f .

To prove f =
⊔
Sf we still need f v

⊔
Sf , which by algebraicity of D1 holds if (∀u1 ∈

KD1) f u1 v (
⊔
Sf)u1. For each u1 ∈ KD1, since D2 is algebraic, we have f u1 =

⊔
U2

for some uniform-directed subset U2 ⊆ KD2. For each u2 ∈ U2, u2 v
⊔
U2 = f u1 and

hence (u1↘u2) v f . Therefore (u1↘u2) ∈ Kf ; and since (u1↘u2) ∈ hullsupp f{(u1↘ u2)}
we get (u1 ↘ u2) v

⊔
hullsupp f{(u1↘ u2)} ∈ Sf . Hence (u1 ↘ u2) v

⊔
Sf and thus

u2 = (u1↘ u2)u1 v (
⊔
Sf)u1. Since this is true for each u2 ∈ U2, we get f u1 =

⊔
U2 v

(
⊔
Sf)u1, as required.

Knowing f v
⊔
Sf also allows us to characterise the uniform-compact elements of

D1 �D2 by

K(D1 �D2) = {
⊔
S | S ∈ Pof(D1 �step D2) ∧ S is bounded} (9)

and this shows that D1 �D2 is ω-algebraic, because PofX is countable if X is.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:11

We give some examples of uniform-compact elements of exponential objects in Nsd
associated with the flat domain of atomic names, A⊥. The examples show that although
A⊥ has a countably infinite underlying set, it has very different uniform-compactness
properties from the flat domain of natural numbers, N⊥, for which the permutation
action is discrete: π · n , n. It turns out that these examples are important for the full
abstraction results developed later in this paper.

Example 5.6 (name equality test). Let 2 = {true, false} be a two-element, discrete
nominal set. For each atomic name a ∈ A, consider the function eqa : A⊥ � 2⊥ given by

eqa d ,


true if d = a

false if d ∈ A− {a}
⊥ if d = ⊥

(10)

for each d ∈ A⊥. This function can be expressed in terms of hulls (Definition 4.3) and
step-functions (8):

eqa =
⊔

hull{a}{(a↘ true), (a′↘ false)}

where a′ is any atomic name not equal to a. Thus from (9) we have eqa ∈ K(A⊥ � 2⊥).

Example 5.7 (exists name). The function existsA : (A⊥ � 2⊥) � 2⊥ defined by

existsAf ,


true if (∃a ∈ A) f a = true

false if (∀a ∈ A) f a = false

⊥ otherwise.
(11)

is not only uniform-continuous, it is in fact uniform-compact. To see this, first note that
picking any a ∈ A, the least upper bound

⊔
hull∅{(a↘ false)} exists and by (9) it is an

element of K(A⊥ � 2⊥). Observe that this least upper bound is exactly the function
kfalse , λd ∈ A⊥ � if d = ⊥ then ⊥ else false and that

(∀f ∈ A⊥ � 2⊥) kfalse v f ⇔ (∀a ∈ A) f a = false . (12)

Furthermore, for any g : (A⊥ � 2⊥) � 2⊥ we have existsA v g if and only if (∀f ∈
A⊥ � 2⊥) existsA f v g f if and only if

(∀f ∈ A⊥ � 2⊥) ((∃a ∈ A) f a = true)⇒ g f = true
∧ ((∀a ∈ A) f a = false)⇒ g f = false

which by definition of step-functions (8) and by (12) is equivalent to

(∀f ∈ A⊥ � 2⊥)(∀a ∈ A) ((a↘ true) v f ⇒ g f = true) ∧ (kfalse v f ⇒ g f = false)

or more simply, to (∀a ∈ A) ((a↘ true)↘ true) v g ∧ (kfalse↘ false) v g. Thus picking
some a ∈ A, we have existsA =

⊔
hull∅{((a↘ true)↘ true), (kfalse↘ false)} and by (9) we

have existsA ∈ K((A⊥ � 2⊥)� 2⊥).

Example 5.8 (definite name description). The name equality tests eqa : A⊥ � 2⊥
from Example 5.6 satisfy

π · eqa = eqπ a

eqa = eqa′ ⇒ a = a′

eqa v f ⇒ eqa = f .

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:12 S. Lösch and A. M. Pitts

From these properties and the uniform-compactness of eqa it follows that the function
theA : (A⊥ � 2⊥)� A⊥ defined by

theA f ,

{
a if f = eqa for some a ∈ A
⊥ otherwise

(13)

satisfies for all g : (A⊥�2⊥)�A⊥ that theA v g holds if and only if (∀a ∈ A) (eqa↘a) v g.
Therefore picking any a ∈ A, we have theA =

⊔
hull∅{(eqa↘ a)} and hence by (9) that

theA ∈ K((A⊥ � 2⊥)� A⊥).

Remark 5.9. The analogue of the equality test function of Example 5.6 for nat-
ural numbers, eqn : N⊥ � 2⊥, is not uniform-compact. To see this, note that it can
be expressed as the least upper bound of a finitely supported chain of functions
eqn =

⊔
{eqn,m | m ∈ N}, where eqn,m is defined by

eqn,m d ,

{
eqn d if d = m′ ∧ m′ ≤ m
⊥ otherwise

If eqn was uniform-compact, then eqn v eqn,m would hold for some m ∈ N, which is not
the case. We cannot use the same kind of argument for eqa, because there is no finitely
supported total ordering of the elements of A.

The functionals for existential quantification and definite description of natural
numbers existsN and theN not only fail to be uniform-compact, they are also not
uniform-continuous. For theN, eqn from above gives a counter-example to uniform-
continuity, because theN(eqn) = n as well as (∀m ∈ N) theN(eqn,m) = ⊥ hold. For existsN,
observe that kfalse from Example 5.7 (for numbers instead of names, so kfalse : N⊥ � 2⊥)
can be characterised by kfalse =

⊔
{kfalse,m | m ∈ N}, where

kfalse,m d ,

{
false if d = m′ ∧ m′ ≤ m
⊥ otherwise.

This contradicts uniform-continuity of existsN, as existsN(kfalse) = false and (∀m ∈
N) existsN(kfalse,m) = ⊥.

Remark 5.10 (least fixed points). If D ∈ Nsd and f ∈ D�D, then {⊥, f ⊥, f2⊥, . . .}
is a uniform-directed subset of D (each element is supported by supp f) whose least
upper bound is fix f , the least fixed point of f , by the usual Tarskian argument. Indeed
for each nominal Scott domain D, the function assigning least fixed points gives us a
morphism in Nsd

fix : (D �D)→ D. (14)

6. SEMANTICS OF LOCALLY SCOPED NAMES
As for any cartesian closed category, Theorem 5.5 allows one to model the typed λ-
calculus using the category Nsd; and in view of Remark 5.10, Nsd also supports
the usual domain-theoretic interpretation of recursively defined terms via least fixed
points. For example, nominal Scott domains subsume the usual Scott semantics of
Plotkin’s language PCF [Plotkin 1977] for recursively defined higher-order numerical
functions. At the same time Nsd can give denotational semantics for programming
language features involving atomic names, such as local scoping and abstraction; fur-
thermore this denotational semantics is pleasingly simple compared with the use of
functor categories, for example by Stark [1994, Chapter 3]. We postpone discussing
name abstraction until Section 9 and concentrate first on the Nsd semantics of locally
scoped names.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:13

τ ∈ Typ ::= types
bool | nat | τ × τ | τ � τ | name
e ∈ Exp ::= expressions
x variable (x ∈ V)
T truth
F falsity
if e then e else e conditional
O number zero
S e successor
pred e predecessor
zero e zero test
(e , e) pair
fst e first projection
snd e second projection
λx : τ � e function abstraction
e e function application
fix e fixed-point recursion
. .
a atomic name (a ∈ A)
νa. e locally scoped name
e = e name equality test
(e
 e) e name swapping

c ∈ Can ::= canonical forms
T | F | O | S c | (e , e) | λx : τ � e | a

Fig. 1. Syntax of λν-PCF

To do so, we consider a combination of Plotkin’s PCF with Odersky’s λν-calculus, a
functional theory of local names [Odersky 1994]. The resulting programming language,
which we call λν-PCF, not only has arithmetic constructs and (call-by-name, higher-
order) recursive functions, but also has a type of atomic names that can be tested for
equality, locally scoped and explicitly swapped (in expressions of any type).

Figure 1 gives the syntax of λν-PCF. In the grammar for expressions, the part below
the dotted line is what is added to PCF. There are two kinds of identifier in the lan-
guage: variables x, y, z, f, . . . ∈ V and atomic names a, b, c, . . . ∈ A. The sets V of vari-
ables and A of atomic names are disjoint and countably infinite. Both kinds of identifier
may be bound; binding forms are function abstraction λx : τ � (for variables) and
local scoping νa. (for atomic names). We identify expressions up to α-equivalence of
bound identifiers. For any expression e, we write fn(e) for its finite set of free atomic
names and fv(e) for its finite set of free variables.

The reason for making a syntactic distinction between variables x and atomic names
a is that they behave differently: an occurrence of x in an expression stands for an
unknown expression; whereas an occurrence of a denotes an entity whose identity is
definitely different from the other atomic names that occur in the expression. Thus
if x and y are two different variables, the meaning of the boolean expression x = y is
indeterminate, whereas if a and b are two different atomic names, then the meaning of
a = b is the boolean value false. For this reason various properties of λν-PCF, such as
its typing judgement, are preserved by the operation of substitution of expressions for
variables, but are only preserved by permutations of atomic names rather than more
general forms of substitution for names. The operation of simultaneous substitution

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:14 S. Lösch and A. M. Pitts

(x : τ) ∈ Γ

Γ ` x : τ

c ∈ {T, F}
Γ ` c : bool

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ Γ ` O : nat

Γ ` e : nat

Γ ` S e : nat

Γ ` e : nat

Γ ` pred e : nat

Γ ` e : nat

Γ ` zero e : bool

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1 , e2) : τ1 × τ2

Γ ` e : τ1 × τ2
Γ ` fst e : τ1

Γ ` e : τ1 × τ2
Γ ` snd e : τ2

Γ, x : τ ` e : τ ′

Γ ` λx : τ � e : τ � τ ′

Γ ` e1 : τ � τ ′ Γ ` e2 : τ

Γ ` e1 e2 : τ ′
Γ ` e : τ � τ

Γ ` fix e : τ

. .

a ∈ A
Γ ` a : name

a ∈ A Γ ` e : τ

Γ ` νa. e : τ

Γ ` e1 : name Γ ` e2 : name

Γ ` e1 = e2 : bool

Γ ` e1 : name Γ ` e2 : name Γ ` e3 : τ

Γ ` (e1
 e2) e3 : τ

Fig. 2. λν-PCF typing rules

of expressions e1, . . . , en for distinct variables x1, . . . , xn in an expression e is written
as e[e1/x1, . . . , en/xn], where the substitution avoids capture of both free variables and
free atomic names by the language’s binding forms. The operation of applying a finite
permutation π : A ∼= A to an expression e is written π · e. It is defined by recursing into
all sub-expressions and applying π to all occurrences of atomic names. This is a per-
mutation action in the sense of Section 2 and makes the set Exp of λν-PCF expressions
into a nominal set. Since the elements of Exp are expressions up to α-equivalence, the
smallest support of an element e of this nominal set of expressions is given by its free
names fn(e); see Pitts [2013, Proposition 8.10].

The language λν-PCF contains one syntactic form absent from Odersky’s λν-calculus:
explicit swapping expressions, (e1
 e2) e. Recall that every finite permutation is a
composition of transpositions (a a′), the permutation that swaps a and a′ while leaving
every other atomic name fixed. It follows that the operation on expressions mapping e
to π · e can be expressed in terms of the operations e 7→ (a a′) · e for all a, a′ ∈ A. The
language λν-PCF internalizes this name-swapping operation with expressions of the
form (e1
 e2) e, where e1 and e2 are expressions of type name that need not be specific
atomic names (for example, they could be variables of type name). These expressions
seem quite natural in the context of semantics based on nominal sets and we use them
in the full abstraction proof in Section 8.

Definition 6.1 (λν-PCF typing). λν-PCF is a simply typed language. The grammar
for types (Figure 1) extends that for PCF (in a version with products τ1 × τ2) with a
type name of atomic names. The inductively defined typing judgement Γ ` e : τ (read
as ‘in the environment Γ the expression e has type τ ’) is defined in Figure 2 by the
usual rules for PCF and, below the dotted line, rules concerning names. The typing
environments Γ = {x1 : τ1, . . . , xn : τn} are finite functions from variables to types
that track occurrences of free variables in e. For simplicity, λν-PCF only features one
sort of atomic name (many-sorted versions are possible; cf. Pitts [2013, Section 4.7]).

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:15

c ∈ {T, F, O, (e1 , e2), λx : τ � e}
c ⇓ c

e ⇓ c
S e ⇓ S c

e1 ⇓ T e2 ⇓ c
if e1 then e2 else e3 ⇓ c

e1 ⇓ F e3 ⇓ c
if e1 then e2 else e3 ⇓ c

e ⇓ S c
pred e ⇓ c

e ⇓ O
zero e ⇓ T

e ⇓ S c
zero e ⇓ F

e ⇓ (e1 , e2) e1 ⇓ c
fst e ⇓ c

e ⇓ (e1 , e2) e2 ⇓ c
snd e ⇓ c

e1 ⇓ λx : τ � e
e[e2/x] ⇓ c
e1 e2 ⇓ c

e (fix e) ⇓ c
fix e ⇓ c

. .

a ∈ A
a ⇓ a

e ⇓ c a\\c := c′

νa. e ⇓ c′
e1 ⇓ a e2 ⇓ a

e1 = e2 ⇓ T
e1 ⇓ a e2 ⇓ a′ a 6= a′

e1 = e2 ⇓ F

e1 ⇓ a1 e2 ⇓ a2 e3 ⇓ c
(e1
 e2) e3 ⇓ (a1 a2) · c

Fig. 3. λν-PCF evaluation rules

Therefore the type of free atomic names is always name and we do not need to add a
component to Γ tracking the types of free atomic names in e.

Definition 6.2 (λν-PCF evaluation). In Figure 3 we extend PCF’s usual rules for an
inductively defined big-step evaluation relation with the rules below the dotted line
that concern atomic names. Thus the relation e ⇓ c defines when a λν-PCF expression
e evaluates to canonical form c. (See Figure 1 for the grammar of canonical forms.)
As for PCF, we only evaluate expressions that are variable-closed in the sense that
fv(e) = ∅. However, expressions for evaluation may contain free atomic names; this is
because, unlike variables, atomic names are canonical forms.

The λν-PCF evaluation relation is easily seen to be deterministic (e ⇓ c ∧ e ⇓ c′ ⇒
c = c′) and type-sound (∅ ` e : τ ∧ e ⇓ c⇒ ∅ ` c : τ). It is also equivariant:

e ⇓ c⇒ π · e ⇓ π · c. (15)

The evaluation rule in Figure 3 for local names makes use of the auxiliary defini-
tion in Figure 4, which implements the characteristic features of Odersky’s functional
theory of local names [Odersky 1994]: scopes intrude in a type-directed fashion. The
operation of name restriction on canonical forms, a, c 7→ a\\c, is partial because a\\a := c
holds for no c. Thus, unlike Pitts [2011], we choose to follow Odersky [1994] and make
νa. a a stuck expression that does not evaluate to any canonical form and whose deno-
tation is ⊥.

Remark 6.3 (generative names). The use of Odersky-style local names means that
the operational semantics of λν-PCF is stateless, unlike the operational semantics of
the more usual, generative version of νa. used in the ν-calculus [Pitts and Stark 1993]
and most practical languages. However, Odersky-style local names are known to be as
expressive as generative ones, at least in a simply typed setting. This follows from
the existence of an adequate continuation-passing style translation from ν-calculus
into the λν-calculus [Lösch and Pitts 2011]. Indeed here we do not escape the subtle

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:16 S. Lösch and A. M. Pitts

c ∈ {T, F, O}
a\\c := c

a\\c := c′

a\\S c := S c′
a 6= a′

a\\a′ := a′ a\\(e1 , e2) := (νa. e1 , νa. e2)

a\\λx : τ � e := λx : τ � νa. e

Fig. 4. λν-PCF partial operation of name restriction

properties of generative names modulo contextual equivalence, but encounter them
higher up the type hierarchy—see (27) in Example 6.5 below.

We adopt the usual definitions of PCF contextual preorder and contextual equiva-
lence (observing the termination behaviour of expressions of higher type in contexts of
ground type), arriving at the following definition for λν-PCF:

Definition 6.4 (contextual equivalence). As usual, a λν-PCF context C[] is an ex-
pression with a single sub-expression replaced by the place-holder ‘ ’, and C[e] is the
expression that results from replacing by an expression e (possibly capturing free
variables and atomic names in e). Given well-typed expressions Γ ` e : τ and Γ ` e′ : τ ,
we write Γ ` e ≤λν-PCF e′ : τ and say that e and e′ are in the contextual preorder if
for all contexts C[] for which ∅ ` C[e] : bool and ∅ ` C[e′] : bool hold, it is the case
that C[e] ⇓ T implies C[e′] ⇓ T. The equivalence relation generated by this preorder is
written ∼=λν-PCF and is called contextual equivalence.

Example 6.5. Although λν-PCF contains the ν-calculus [Pitts and Stark 1993] as
a subset, the two languages have very different semantics for local names – Odersky-
style for λν-PCF versus generative for the ν-calculus. This affects properties of contex-
tual equivalence in the two languages. For example, if Γ, x : τ ` e : τ ′, then

Γ ` νa. λx : τ � e ∼=λν-PCF λx : τ � νa. e : τ � τ ′ (16)

is valid. Indeed, this is a ‘Kleene equivalence’ for λν-PCF (one expression evaluates to
a canonical form if and only if the other does and in that case the canonical forms are
equal); and all such identities can be proved by checking that they hold in the deno-
tational model developed in the next section and then appealing to the computational
adequacy result proved there (Theorem 7.5). However, (16) does not always hold in the
ν-calculus [Pitts and Stark 1993, Example 2]. On the other hand, analogues of some
ν-calculus equivalences are also true for λν-PCF, once one takes into account the fact
that, like PCF, λν-PCF is call-by-name, whereas the ν-calculus is call-by-value. For ex-
ample, here are call-by-name analogues of two equivalences in Pitts and Stark [1993,
Example 4]:

∅ ` νa. λx : name � (x = a) ∼=λν-PCF λx : name � ifx = x then F else F : name� bool
(17)

∅ ` νa. νa′. λ(f : name� bool) � eq (f a) (f a′) ∼=λν-PCF
λ(f : name� bool) � νa. if f a then T else T : (name� bool)� bool (18)

where eq : bool � bool � bool is an abbreviation for a boolean-equality test, defined
using conditionals. In contrast to the ν-calculus, where it takes some effort to prove
equivalences like (17) and (18) (see Tzevelekos [2012]), for λν-PCF these properties
are easily seen to hold in the straightforward and computationally adequate denota-
tional semantics that we describe in the next section; see Example 7.6. However, this
is not always the case: there are valid instances of the λν-PCF contextual preorder and

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:17

equivalence that cannot be established by calculating denotations in our model. Here
are two examples of this phenomenon, suggested by Tzevelekos [private communica-
tion]. Consider the following variable-closed λν-PCF expressions:

botτ , fix (λx : τ � x) (19)

eqBota , λx : name � ifx = a then T else botbool (20)

kBot , λx : name � botbool (21)

F1 , λ(f : (name� bool)� bool) � νa. f eqBota (22)

F2 , λ(f : (name� bool)� bool) � f kBot (23)

eqa , λx : name � (x = a) (24)

G1 , λ(g : (name� bool)� name) � νa. (g eqa = a) (25)

G2 , λ(g : (name� bool)� name) � F . (26)

Thus eqBota, kBot and eqa are of type name�bool; F1 and F2 are of type ((name�bool)�
bool)� bool; and G1 and G2 are of type ((name� bool)� name)� bool. We claim that

∅ ` F1
∼=λν-PCF F2 : ((name� bool) � bool)� bool (27)

∅ ` G1 ≤λν-PCF G2 : ((name� bool) � name)� bool . (28)

The intuitive justification for (27) is that whatever argument of type (name � bool) �
bool is supplied for f by a context, it cannot have a free occurrence of a (because
substitution for f in νa. (f eqa) is capture-avoiding) and hence, it is claimed, cannot
distinguish eqa from kF. Similarly for (28), whatever argument of type (name� bool)�
name is supplied for g by a context will not contain a free and hence, it is claimed,
cannot produce a when applied to eqa. (Since that application may diverge, in (28) we
only have ≤λν-PCF rather than ∼=λν-PCF.) Formal proofs of this intuition are sketched in
Appendix A.

Once we add existential quantification over names (Example 5.7) to the program-
ming language, one does gain the ability to distinguish eqa from kF with a test not
involving a free; and adding definite name description (Example 5.8) allows one to re-
gain a from eqa by applying an expression not containing a free. We use these examples
to establish results about full abstraction in Section 8.

7. DENOTATIONAL SEMANTICS OF λν-PCF
For each λν-PCF type τ , we define a nominal Scott domain JτK by recursion on the
structure of τ as follows:

— JboolK = 2⊥, the flat domain (cf. Definition 5.2) on a discrete nominal set with
two elements, 2 = {true, false}.

— JnatK = N⊥, the flat domain on the discrete nominal set of natural numbers,
N = {0, 1, 2, . . .}.

— Jτ × τ ′K = JτK× Jτ ′K, the product of nominal Scott domains.
— Jτ � τ ′K = JτK � Jτ ′K, the nominal Scott domain of uniform-continuous functions

(the exponential in the cartesian closed category Nsd, Theorem 5.5).
— JnameK = A⊥, the flat domain on the nominal set of atomic names, A = {a, b, c, . . .}.
Typing environments are interpreted as finite cartesian products:

J{x1 : τ1, . . . , xn : τn}K = Jτ1K× · · · × JτnK .
Finite tuples ρ ∈ JΓK can be interpreted as partial functions from variables to domains
such that dom(ρ) = dom(Γ) and ρ(x) ∈ JΓ(x)K for all x ∈ dom(Γ). We call such partial

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:18 S. Lösch and A. M. Pitts

JxKρ = ρ x JTKρ = true JFKρ = false JOKρ = 0

Jif e1 then e2 else e3Kρ =


Je2Kρ if Je1Kρ = true

Je3Kρ if Je1Kρ = false

⊥ otherwise
JS eKρ =

{
n+ 1 if JeKρ = n

⊥ otherwise

Jpred eKρ =

{
n if JeKρ = n+ 1

⊥ otherwise
Jzero eKρ =


true if JeKρ = 0

false if JeKρ = n+ 1

⊥ otherwise

J(e1 , e2)Kρ = (Je1Kρ, Je2Kρ) Jfst eKρ = π1 (JeKρ) Jsnd eKρ = π2 (JeKρ)

Jλx : τ � eKρ = λd ∈ JτK � JeKρ[x 7→ d] Je1 e2Kρ = Je1Kρ (Je2Kρ) Jfix eKρ = fix (JeKρ)

. .

JaKρ = a Jνa. eKρ = (a\JeK)ρ Je1 = e2Kρ =


true if JeiKρ = ai and a1 = a2

false if JeiKρ = ai and a1 6= a2

⊥ otherwise

J(e1
 e2) e3Kρ =

{
(a1 a2) · (Je3Kρ) if JeiKρ = ai
⊥ otherwise

Fig. 5. λν-PCF denotational semantics

functions Γ-valuations. If ρ ∈ JΓK, x /∈ dom(Γ) and d ∈ JτK, then we write ρ[x 7→ d] for
the (Γ, x : τ)-valuation that maps x to d and otherwise acts like ρ.

The denotation of each well-typed expression Γ ` e : τ is an element
JeK ∈ JΓK � JτK

of the exponential domain JΓK � JτK; in other words, JeK is a uniform-continuous func-
tion mapping Γ-valuations ρ ∈ JΓK to elements JeKρ of the nominal Scott domain JτK.
Figure 5 gives the definition of these functions, by recursion over the structure4 of e.
The denotations of constructs from PCF are analogous to the standard denotational
semantics of PCF in Scott domains. The functions π1 and π2 in the clauses for fst e and
snd e are the first and second projection functions for pairs; and fix in the clause for
fix e is the least fixed point function (14). The clauses below the dotted line in Figure 5
are for the syntactic constructs that λν-PCF adds to PCF. Atomic names are their own
denotation. The semantics of explicit swapping expressions, (e1
 e2) e3, make use of
the action of finite permutations that each nominal Scott domain possesses. Finally,
to interpret expressions with locally scoped names, νa. e, we use uniform-continuous
functions

a\() ∈ (JΓK � JτK)� (JΓK � JτK)
that are name restriction operations [Pitts 2013, Definition 9.2]:

Definition 7.1 (uniform-continuous name restriction). A uniform-continuous name
restriction operation on a nominal Scott domain D is a morphism ()\() : A⊥ ×D → D

4Strictly speaking, it is by α-structural recursion [Pitts 2006], since we identify expressions up to α-
equivalence of bound identifiers.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:19

in Nsd satisfying for all a, a′ ∈ A and d ∈ D

⊥\d = ⊥ (29)
a # (a\d) (30)

a # d ⇒ a\d = d (31)
a\(a′\d) = a′\(a\d) (32)

(where as usual # is the freshness relation (5) for D). Since ()\() is equivariant,
(30) is equivalent to asking that a\() be a binding operation, that is, respect the gen-
eralized version of α-equivalence that any nominal set supports: a′ # (a, d) ⇒ a\d =
a′\((a a′) · d). (31) and (32) are basic structural properties that one expects any notion
of local scoping to have; see the discussion at the start of Section 9.1 of Pitts [2013].

THEOREM 7.2. Every flat nominal Scott domain X⊥ has a uniform-continuous
name restriction operation satisfying

a\d =

{
d if a # d

⊥ if a ∈ supp d
(33)

for all a ∈ A and d ∈ X⊥. If D1, D2 ∈ Nsd have uniform-continuous name restriction
operations, their product D1 ×D2 has one satisfying

a\(d1, d2) = (a\d1, a\d2) (34)

for all a ∈ A, d1 ∈ D1 and d2 ∈ D2. If D1, D2 ∈ Nsd and D2 has a uniform-continuous
name restriction operation, then whether or not D1 has one as well, the exponential
D1 �D2 has such an operation, satisfying

(a\f) d = a\(f d) if a # d (35)

for all d ∈ D1 and f ∈ D1 �D2.

PROOF. It is easy to see that (33) and (34) determine uniform-continuous name re-
striction operations on flat and product domains respectively. The case for exponential
domains is less straightforward. (35) at first seems like only a partial specification for
the function a\f : D1 → D2, but in fact determines it uniquely, since it implies that for
all d ∈ D1, f ∈ D1 �D2 and a ∈ A

(a\f) d = a′\(((a a′) · f) d) for some, or indeed any a′ # (f, d). (36)

This and (29)–(32) follow from the results for nominal sets in Pitts [2013, Section 9.3].
One also has to check that each function a\f is uniform-continuous and that f 7→ a\f
is uniform-continuous, but these are routine calculations.

Using this theorem we get a uniform-continuous name restriction operation on the
denotation JτK of each λν-PCF type τ , by recursion on the structure of τ ; and then
we use the theorem again to lift the name restriction operation on JτK to one on the
exponential domain JΓK�JτK, for each typing environment Γ. It is this operation which
is used in Figure 5 to give the denotation of locally scoped expressions νa. e. From (35)
we have

Jνa. eKρ = a\(JeKρ) if a # ρ (37)

where the name restriction operation on the right-hand side is that for JτK. Note that
the side condition a # ρ is always satisfiable, since we identify expressions up to α-
equivalence of ν-bound atomic names.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:20 S. Lösch and A. M. Pitts

Notation 7.3. For the empty typing environment ∅, J∅K = 1 contains a unique ∅-
valuation, ρ0. Given a variable-closed expression ∅ ` e : τ , we simply write JeK for
JeKρ0.

LEMMA 7.4 (λν-PCF SOUNDNESS). If e is a well-typed, variable-closed λν-PCF ex-
pression and e ⇓ c, then JeK = JcK.

PROOF. The proof is by induction on the derivation of e ⇓ c from the rules in Figure 3
and most of the induction steps are routine. As for PCF, to establish closure under the
rule for evaluating function applications we need the following substitution property,
which can be proved by induction on the structure of expressions:

Substitution Lemma. If Γ ` e : τ and Γ, x : τ ` e′ : τ ′, then Γ ` e′[e/x] : τ ′ holds
and for all ρ ∈ JΓK we have Je′[e/x]Kρ = Je′Kρ[x 7→ JeKρ].

(38)

For closure under the rule for evaluating explicit swapping expressions, we use the
fact that the denotational semantics is equivariant:

Equivariance Lemma. For all Γ ` e : τ and all finite permutations π it holds
that π · JeK = Jπ · eK. (39)

Thus we also have (a1 a2) · JcK = J(a1 a2) · cK for all variable-closed canonical forms c.
Finally, for closure under the rule for evaluating locally scoped expressions, we need
the following property of the name restriction operations a\() ∈ JτK � JτK:

Restriction Lemma. If c and c′ are variable-closed canonical forms of type τ
satisfying a\\c := c′ (see Figure 4), then a\JcK = Jc′K in JτK.

(40)

This follows from the definition in Figure 4, by induction on the structure of c; for λ-
abstractions one needs the fact, noted in the proof of Theorem 7.2, that (35) uniquely
determines the name restriction operation on functions defined by (36).

The following result allows one to establish λν-PCF contextual equivalences by prov-
ing equality of denotations.

THEOREM 7.5 (λν-PCF COMPUTATIONAL ADEQUACY). For any Γ ` e : τ and Γ `
e′ : τ , if JeK v Je′K ∈ JΓK � JτK, then Γ ` e ≤λν-PCF e′ : τ . Consequently, if JeK = Je′K, then
Γ ` e ∼=λν-PCF e′ : τ .

PROOF. It is evident from Figure 5 that the denotational semantics is composi-
tional, in the sense that for any suitably typed context C[] one has

JeK v Je′K⇒ JC[e]K v JC[e′]K .

So in view of Lemma 7.4 it suffices to show that if e is a variable-closed expression of
type bool, then

JeK = true⇒ e ⇓ T. (41)

As for PCF, this can be proved by defining a suitable logical relation

d /τ e (d ∈ JτK, ∅ ` e : τ) (42)

between the semantics and the syntax of λν-PCF. See Streicher [2006, Chapter 4] for a
good exposition of this method of proving computational adequacy for the Scott domain
model of PCF. We outline the method, concentrating on how the move to nominal Scott
domains allows us to deal with the new features of λν-PCF.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:21

The definition of (42) is by recursion on the structure of the type τ :

d /γ e , d = ⊥ ∨ (∃c) e ⇓ c ∧ JcK = d for γ ∈ {bool, nat, name}
(d1, d2) /τ1×τ2 e , d1 /τ1 fst e ∧ d2 /τ2 snd e

d /τ1�τ2 e , (∀d1, e1) d1 /τ1 e1 ⇒ d d1 /τ2 e e1 .

The relation is extended to typing environments Γ by:

ρ /Γ s , (∀x ∈ dom(Γ)) ρ x /Γx s x . (43)
Here ρ ∈ JΓK and s ranges over Γ-substitutions, which by definition are functions map-
ping each variable x ∈ dom(Γ) to a variable-closed expression s x of type Γx. This
extension allows us to state the

Fundamental Property of the Logical Relation. For every Γ ` e : τ , ρ ∈ JΓK
and Γ-substitution s

ρ /Γ s ⇒ JeKρ /τ e s (44)
where e s is the variable-closed expression of type τ obtained by simulta-
neous substitution; thus e s , e[e1/x1, . . . , en/xn] if dom(Γ) consists of the
distinct variables x1, . . . , xn and s xi = ei for i = 1, . . . , n.

The fundamental property (44) is proved by induction on the derivation of Γ ` e : τ
from the rules in Figure 2. As for PCF, the proof makes use of the ‘Kleene preorder’
defined by

e ≤k e′ , (∀c) e ⇓ c⇒ e′ ⇓ c (45)
together with the fact, established by induction on the structure of τ , that the logical
relation is closed under this preorder:

d /τ e ∧ e ≤k e′ ⇒ d /τ e
′. (46)

The induction steps in the proof of (44) for PCF constructs are standard, except that
when it comes to fixed point recursion one uses the facts (easily verified by induction
on τ) that each /τ e satisfies ⊥ /τ e and ((∀d ∈ S) d /τ e) ⇒

⊔
S /τ e for all uniform-

directed subsets S ⊆ JτK. The induction step for name swapping (e1
 e2) e3 depends on
the equivariance of the operational semantics (15), of the denotational semantics (39),
and also of the logical relation

d /τ e ⇒ π · d /τ π · e (47)
which can be proved by induction on τ . The induction step for locally scoped names νa. e
follows directly from the fact that the logical relation is closed under name restriction:

d /τ e ⇒ a\d /τ νa. e . (48)
This in turn can be shown by induction on τ , where we use some easily checked facts
about the Kleene preorder:

νa. fst e ≤k fst νa. e
νa. snd e ≤k snd νa. e

a # e1 ⇒ νa. (e e1) ≤k (νa. e) e1

together with (46) and the fact that νa. is a binder.
As a corollary of the fundamental property (44) we have that every variable-closed

expression e of type bool satisfies JeK /bool e. Consequently, if JeK = true, then by
definition of /bool we must have e ⇓ c for some c with JcK = true, that is, e ⇓ T. So we do
indeed have (41) and this completes the proof of the theorem.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:22 S. Lösch and A. M. Pitts

e ∈ Exp ::= expressions
... (as for λν-PCF)
exx. e existential name quantification
thex. e definite name description

Γ, x : name ` e : bool

Γ ` exx. e : bool

Γ, x : name ` e : bool

Γ ` thex. e : name

a ∈ A e[a/x] ⇓ T
exx. e ⇓ T

b # e (∀a′ ∈ fn(e) ∪ {b}) e[a′/x] ⇓ F
exx. e ⇓ F

e[a/x] ⇓ T b # (e, a) (∀a′ ∈ (fn(e)− {a}) ∪ {b}) e[a′/x] ⇓ F
thex. e ⇓ a

Jexx. eKρ = existsA(Jλx : name � eKρ) Jthex. eKρ = theA(Jλx : name � eKρ)

Fig. 6. Syntax and semantics of λν-PCF+

Example 7.6. Using Theorem 7.5 one can prove many contextual equivalences in
λν-PCF, such as (16)–(18), in a straightforward manner via the denotational semantics.
We prove (17) in detail. Since we identify expressions up to α-equivalence, for any given
a′ ∈ A we can pick a representative expression νa. λx : name � (x = a) such that a 6= a′,
then

Jνa. λx : name � (x = a)K a′

= (a\Jλx : name � (x = a)K) a′ using the definition in Figure 5
= a\(Jλx : name � (x = a)K a′) by (35), since a 6= a′

= a\false as a 6= a′

= false by (33)
= Jλx : name � ifx = x then F else FK a′.

Similarly Jνa. λx : name � (x = a)K⊥ = ⊥ = Jλx : name � ifx = x then F else FK⊥.
Hence Jνa. λx : name � (x = a)K = Jλx : name � ifx = x then F else FK and so (17) holds
by Theorem 7.5.

To prove (18) one can combine the definition in Figure 5 with the fact that if a, a′ #
f ∈ (A⊥ � 2⊥)� 2⊥, then f a = f((a a′) · a′) = (a a′) · (f a′) = f a′ (since f a′ ∈ 2⊥).

8. FULL ABSTRACTION
Plotkin [1977] famously proves that the Scott domain model of PCF is computationally
adequate, but not fully abstract: equality of denotations implies, but is not implied
by, PCF contextual equivalence. Furthermore, he shows that the Scott model becomes
fully abstract once one extends PCF with a parallel-or construct.

A similar story unfolds for λν-PCF. We prove in Theorem 8.5 that the nominal Scott
domain model becomes fully abstract once we add the exx. e and thex. e constructs
from Figure 6 to λν-PCF+. If we leave one of these constructs out, then full abstraction
fails, as Theorem 8.4 shows.

Definition 8.1. The language λν-PCF+ is obtained by extending λν-PCF with ex-
pressions for existentially quantifying over name (‘there exists some x : name such

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:23

that. . . ’) and for forming definite descriptions over name (‘the unique x : name such
that. . . ’). The syntax, typing, evaluation rules and denotational semantics for this ex-
tension are given in Figure 6, where the functions existsA ∈ K((A⊥ � 2⊥) � 2⊥) and
theA ∈ K((A⊥ � 2⊥) � A⊥) are defined in Examples 5.7 and 5.8. Both exx. e and
thex. e bind the variable x in e. Contextual equivalence for the extended language
Γ ` e ∼=λν-PCF+ e′ : τ is defined in the same way as it is for λν-PCF in Definition 6.4.

Similarly we define λν-PCF+ex to be λν-PCF with only existential quantification
added, and define λν-PCF+the to be λν-PCF with only definite description added.

Remark 8.2. The addition of existential quantification and definite description is
mainly motivated by the need for them in our proof of full abstraction (Theorem 8.5).
A less strict form of existential quantification for numbers (rather than, as here, for
names) occurs in Plotkin’s original PCF paper [Plotkin 1977]. Definite description has
a long history in logic, but it is harder to motivate from a programming language per-
spective. Note that the analogue for numbers of our definite description and existential
quantification functionals are not computable, as indicated already in Remark 5.9. The
computability of exx. e and thex. e provide an example of the phenomenon of ‘finite
modulo symmetry’ mentioned in the introduction. For example, to prove exx. e ⇓ F, we
just have to show e[a′/x] ⇓ F for each of the finitely many atomic names a′ that occur
free in e and then pick any one of the infinitely many atomic names b that do not occur
free in e and show e[b/x] ⇓ F; equivariance of evaluation (15) ensures that if e[b/x] ⇓ F,
then e[b′/x] ⇓ F holds for any other b′ not occurring free in e.

Remark 8.3 (parallel-or). The parallel-or construct is central in Plotkin’s classical
work on PCF [Plotkin 1977, Table 1], because PCF fails to be fully abstract without it,
but becomes fully abstract with it. It is a boolean-valued operation that evaluates two
boolean expressions ‘in parallel’ and is true whenever one of the expressions evaluates
to true, no matter if the other one diverges. In the presence of exx. e we can define
parallel-or as syntactic sugar by

e por e′ , νa. νa′. exx. ifx = a then e else ifx = a′ then e′ else F

where a, a′ and x do not occur free in e or e′.

THEOREM 8.4 (FAILURE OF FULL ABSTRACTION). The denotational semantics of
neither λν-PCF+ex, nor λν-PCF+the is fully abstract, in the sense that there are ex-
pressions in the contextual preorder relations of those languages which are not in the
denotational partial order.

PROOF. We start with λν-PCF+the. Consider the two expressions F1 and F2 defined
in (22) and (23). Their denotations are (equivariant and uniform-continuous) functions
from (A⊥ � 2⊥)� 2⊥ to 2⊥. Applying existsA from Example 5.7 to them, we get

JF1K(existsA) = a\(existsA JeqBotaK) = a\true = true 6v ⊥ = existsA JkBotK = JF2K(existsA)

where eqBota and kBot are defined in (20) and (21). This shows that JF1K 6v JF2K. Nev-
ertheless, in Appendix A we sketch the proof that

∅ ` F1 ≤λν-PCF+the F2 : ((name� bool)� bool)� bool (49)

which shows that F1 and F2 are counter examples to full abstraction for λν-PCF+the.
We explained informally why (49) holds for λν-PCF in Example 6.5; and adding thex. e
does not add any ability to distinguish the evaluation behaviour of the two expressions
in any boolean context. The formal proof of (49) in Appendix A works via an extension-
ality result (Proposition A.3) that is of interest in its own right.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:24 S. Lösch and A. M. Pitts

For λν-PCF+ex, recall the expressions G1 and G2 from (25) and (26). They are in the
contextual preorder for λν-PCF+ex

∅ ` G1 ≤λν-PCF+ex G2 : ((name� bool)� name)� bool . (50)

and the proof sketch of this is in Appendix A. This provides a counter example to full
abstraction for λν-PCF+ex, because through applying theA from Example 5.8

JG1K(theA) = a\(eqa(theA JeqaK)) = a\(eqa a) = a\true = true 6v false = JG2K(theA)

(using the function eqa from (10) and the expression eqa from (24)), we obtain that
JG1K 6v JG2K.

More positively, we now show that λν-PCF+ is fully abstract with respect to the
nominal Scott domain model.

THEOREM 8.5 (FULL ABSTRACTION FOR λν-PCF+). For all well-typed expressions
Γ ` e : τ and Γ ` e′ : τ in λν-PCF+, we have

JeK v Je′K ∈ JΓK � JτK⇔ Γ ` e ≤λν-PCF+ e′ : τ. (FAτ)

and consequently JeK = Je′K ∈ JΓK � JτK⇔ Γ ` e ∼=λν-PCF+ e′ : τ holds.

The outline of the proof of this theorem occupies the rest of this section, with some
technical details relegated to the appendices. First note that the extension of Theorem
7.5 to λν-PCF+ is straightforward and gives us the left-to-right implication in (FAτ).
Establishing the reverse implication leads to an investigation of the uniform-compact
elements (Definition 3.6) of nominal Scott domains of the form JτK for some type τ ∈
Typ.

Definition 8.6 (definability). An element in the nominal Scott domain model d ∈ JτK
is λν-PCF+-definable if there is a variable-closed λν-PCF+ expression ∅ ` e : τ that
denotes it: d = JeK. We say uniform-compact definability holds at a type τ if all uniform-
compact elements of JτK are definable:

(∀u ∈ KJτK) (∃e) ∅ ` e : τ ∧ u = JeK. (DEFτ)

As Curien [2007] surveys, knowing (DEFτ) for all types τ is enough to show the
right-to-left implication in (FAτ). Our proof follows this proof pattern. However, we
only show uniform-compact definability at certain types that avoid the use of function
types τ1� τ2 in which the nominal Scott domain Jτ2K might contain elements with non-
empty support. So τ2 = nat is OK, but τ2 = name is not, for example. This leads us to
make the following definition:

Definition 8.7 (simple types). Let Styp ⊆ Typ be the subset of types (Figure 1) given
by the following grammar

σ ∈ Styp ::= nat | name | σ × σ | σ � nat

and call types of that grammar simple types.

Note that σ � name is not in Styp. The following lemma is the key to the usefulness
of simple types. It is where the presence of ‘thex. e’ expressions in λν-PCF+ gets used.

LEMMA 8.8. For any type τ ∈ Typ, there is a simple type σ ∈ Styp such that there
is a λν-PCF+-definable embedding-projection pair from τ to σ, meaning that there are
closed λν-PCF+ expressions ∅ ` e : τ � σ and ∅ ` p : σ � τ with Jλx : τ � p (e x)K = idJτK
and Jλx : σ � e (p x)K v idJσK.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:25

PROOF. It is standard that identity functions are embedding-projections, that
embedding-projections compose, and that products and functions give covariant func-
tors with respect to embedding-projections; and all these constructs yield λν-PCF+-
definable embedding-projections when fed them. Furthermore, using ‘thex. e’ expres-
sions, we get a λν-PCF+-definable embedding-projection pair from name to name � nat,
via

e , λx : name � λy : name � ifx = y then O else S O

p , λ(f : name� nat) � thex. (if zero (f x) then T

else if zero (pred (f x)) then F else fix (λx : bool � x)).

It is also not hard to see that there is a λν-PCF+-definable embedding-projection pair
from bool to nat.

Using these facts, it follows by induction on the structure of σ2 ∈ Styp that for all
σ1 ∈ Styp, there is a λν-PCF+-definable embedding-projection pair from σ1�σ2 to some
σ ∈ Styp. (For example, when σ2 = name, then we can take σ = σ1 × name� nat.) Using
this, one can proceed by induction on the structure of τ ∈ Typ to show that there is a
λν-PCF+-definable embedding-projection pair from τ to some simple type.

LEMMA 8.9. If there is a λν-PCF+-definable embedding-projection pair from τ to σ,
then uniform-compact definability at σ implies the same at τ , i.e. (DEFσ)⇒ (DEFτ).

PROOF. Let e and p be as in Lemma 8.8 and suppose we are given u ∈ KJτK. By
Abramsky and Jung [1994, Proposition 3.1.16] we get that JeKu ∈ KJσK and by (DEFσ)
we know that there is a ∅ ` e′ : σ such that Je′K = JeKu. It follows that p e′ defines u,
since Jp e′K = JpK Je′K = JpK(JeKu) = u.

Combining Lemma 8.8 and Lemma 8.9 with the argument in the survey by Curien
[2007, Criterion 2.2], we know that to prove full abstraction for λν-PCF+ (Theorem 8.5)
it suffices to show that (DEFσ) holds for all simple types σ ∈ Styp.

The proof of (DEFσ) in principle follows the structure of the traditional proof of
uniform-compact definability by Plotkin [1977, Lemma 4.5]. A modern account of this
proof can be found in Streicher [2006, Theorem 13.9]. However, in our nominal setting
many uses of finite subsets in the traditional proof are replaced by uses of orbit-finite
subsets and their presentation as hulls (Theorem 4.5). The definition of hullAF involves
existential quantification over finite permutations of A, and for the definability proof
we need to reduce this to existential quantification over elements of A. This is where
the presence of exx. e expressions in λν-PCF+ gets used, in order to prove the following
two crucial lemmas. Neither is trivial to prove; the arguments can be found in Appen-
dices B and C. In particular Lemma 8.11 works by a subtle case distinction over all
the different ways the atomic names in the supports of u and u′ can overlap.

LEMMA 8.10. Recall from (8) the definition of step-functions. For each τ ∈ Typ,
u ∈ KJτK and A ⊆f A, if the step-function (u↘ true) ∈ Jτ � boolK is λν-PCF+-definable,
then so is

⊔
hullA{(u↘ true)}. (Note that the orbit-finite subset hullA{(u↘ true)} of the

nominal Scott domain Jτ � boolK = JτK � 2⊥ is bounded above by the constantly-true
function and so has a least upper bound.)

PROOF. See Appendix B.

LEMMA 8.11. Suppose that τ ∈ Typ, u, u′ ∈ KJτK and A ⊆f A satisfy:

— for all uniform-compact elements v, v′ ∈ KJτK that do not have an upper bound in
JτK, the least upper bound (v↘ true) t (v′↘ false) (exists and) is λν-PCF+-definable;

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:26 S. Lösch and A. M. Pitts

— for all finite permutations π : A ∼= A satisfying π # A (see Definition 4.3), it holds
that u and π · u′ do not have an upper bound in JτK.

Then the least upper bound
⊔

hullA{(u↘ true), (u′↘ false)} (exists and) is λν-PCF+-
definable.

PROOF. See Appendix C.

Using these two lemmas one can complete the proof of (DEFσ) for all simple types
σ ∈ Styp (and hence complete the proof of Theorem 8.5) by showing by simultaneous
induction on the structure of σ that:

— u and (u↘ true) are definable for all uniform-compact elements u ∈ KJσK;
— (u↘ true) t (u′ ↘ false) is definable whenever u, u′ ∈ KJσK are uniform-compact

elements that do not have an upper bound in JσK.

Most of the work involved in the proof of these two properties lies in the case for
functions types, which for simple types are of the form, σ�nat. By Theorem 4.5 and 5.5
each uniform-compact element u of Jσ�natK can be expressed as u =

⊔
hullAF for some

A ⊆f A, F = {(u1↘ n1), . . . , (uk ↘ nk)}, u1, . . . , uk ∈ KJσK and n1, . . . , nk ∈ N. One has
to perform another induction on the size of F and make a case distinction based on
the existence of (u′↘ n′), (u′′↘ n′′) ∈ F such that for all π # A the uniform-compact
elements u′ and π · u′′ have no upper bound in JσK. Using Lemmas 8.10 and 8.11 the
proof goes through following the structure of Streicher [2006, Theorem 13.9], thereby
showing full abstraction for λν-PCF+.

Remark 8.12 (generative names). It is worth noting that the full abstraction result
in this section depends crucially upon the fact that λν-PCF+ uses Odersky-style local
names, rather than generative ones. In Remark 6.3 we noted that an extension of PCF
with the kind of generative local names used for example in the ν-calculus [Pitts and
Stark 1993] can be translated into λν-PCF using continuations. Denotationally, gener-
ative names can be modelled adequately in Nsd with a continuation monad, but full
abstraction fails in this model, because of the results of Stark [1994, Page 66]. So far
the only denotational model of this combination of generative names with higher-order
functions that is known to be fully abstract makes use of game semantics [Abramsky
et al. 2004; Tzevelekos 2008] and is not extensional, that is, quotienting of game strate-
gies by an equivalence relation is needed to make equality in the model coincide with
contextual equivalence.

9. PNA: PROGRAMMING WITH NAME ABSTRACTIONS
As mentioned in the Introduction, our motivation for studying nominal Scott domains
is to explore the denotational semantics of meta-languages that represent object-
language binders using the nominal sets notion of name abstraction [Pitts 2013, Chap-
ter 4]. We have seen in Section 7 that there is a straightforward denotational semantics
of locally scoped names combined with arithmetic and higher-order recursive functions
using nominal Scott domains and the notion of name restriction operation (Defini-
tion 7.1). Now we wish to extend this to cover name abstraction.

To do so, we extend λν-PCF with constructs for name abstraction αa. e and concretion
e1 @ e2, so that it can serve as meta-language. The resulting programming language is
called PNA (Programming with Name Abstractions). To exercise the use of name ab-
straction for expressing object-level binding PNA also features a representative ‘nomi-
nal algebraic datatype’, namely a type for α-equivalence classes of λ-terms, called term.
This datatype comes with three constructors (V for variables, A for applications and L

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:27

τ ∈ Typ ::= types
... (as for λν-PCF)
δ τ type of name abstractions
term type of λ-terms

e ∈ Exp ::= expressions
... (as for λν-PCF)
V e variable term
A e e application term
L e lambda term
case e of (Vx � e | Axx � e | Lx � e) term case
αa. e name abstraction
e @ e name concretion

c ∈ Can ::= canonical forms
. . . (as for λν-PCF) . . . | V c | A c c | L c | αa. c

Fig. 7. Syntax of PNA

for λ-abstractions) and a pattern matching construct

case e of (Vx1 � e1 | Ax2 x
′
2 � e2 | Lx3 � e3) .

Using these new constructs, computation over α-equivalence classes of λ-terms can be
expressed directly in PNA. For example, when subst is the PNA expression

subst , λy : term � λx : name �
fix (λ(f : term� term) � λy′ : term �

case y′ of
Vx1 � ifx1 = x then y else y′

| A y2 y
′
2 � A (f y2) (f y′2)

| L z � L (αa. f(z @ a)))

then subst e1 a e2 computes the λ-term obtained by capture-avoiding substitution of the
λ-term represented by e1 for all free occurrences of the variable named a in the λ-term
represented by e2.

The syntax and typing rules for PNA, extending those for λν-PCF, are given in Fig-
ures 7 and 8. The language’s binding forms are

λx : τ � νa. case e of (Vx � | Axx � | Lx �) αa.

and as before, we identify PNA expressions up to α-equivalence of bound identifiers, be
they variables (x), or atomic names (a).

The operational semantics of PNA is given in Figures 9 and 10. As for λν-PCF, we
choose νa. a to be a stuck expression that does not evaluate to any canonical form and
whose denotation is ⊥. We also choose to evaluate under name abstractions, so that
αa. e is in canonical form if and only if e is.5 These two choices permit a representation
of α-equivalence classes of λ-terms in PNA that is as simple as PCF’s representation of
numbers: they are in bijection with variable-closed canonical forms of type term.

5It is certainly possible to give a different operational semantics in which one does not evaluate under α-
abstractions. The corresponding denotational semantics would make more use of lifting than does the one
in Section 11.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:28 S. Lösch and A. M. Pitts

. . . (as for λν-PCF) . . .

Γ ` e : name

Γ ` V e : term

Γ ` e1 : term Γ ` e2 : term

Γ ` A e1 e2 : term

Γ ` e : δ term

Γ ` L e : term

Γ ` e : term
Γ, x1 : name ` e1 : τ Γ, x2 : term, x′2 : term ` e2 : τ Γ, x3 : δ term ` e3 : τ

Γ ` case e of (Vx1 � e1 | Ax2 x
′
2 � e2 | Lx3 � e3) : τ

a ∈ A Γ ` e : τ

Γ ` αa. e : δ τ

Γ ` e1 : δ τ Γ ` e2 : name

Γ ` e1 @ e2 : τ

Fig. 8. PNA typing rules

. . . (as for λν-PCF) . . .

e ⇓ c
V e ⇓ V c

e1 ⇓ c1 e2 ⇓ c2
A e1 e2 ⇓ A c1 c2

e ⇓ c
L e ⇓ L c

e ⇓ V c e1[c/x1] ⇓ c′

case e of (Vx1 � e1 | · · ·) ⇓ c′

e ⇓ A c c′ e2[c/x2, c
′/x′2] ⇓ c′′

case e of (· · · | Ax2 x
′
2 � e2 | · · ·) ⇓ c′′

e ⇓ L c e3[c/x3] ⇓ c′

case e of (· · · | Lx3 � e3) ⇓ c′

e ⇓ c
αa. e ⇓ αa. c

e1 ⇓ αa. c e2 ⇓ a′ a 6= a′ νa. (a
 a′) c ⇓ c′

e1 @ e2 ⇓ c′

Fig. 9. PNA evaluation rules

. . . (as for λν-PCF) . . .

a\\c := c′

a\\V c := V c′
a\\c1 := c′1 a\\c2 := c′2

a\\A c1 c2 := A c′1 c
′
2

a\\c := c′

a\\L c := L c′
a\\c := c′ a 6= a′

a\\αa′. c := αa′. c′

Fig. 10. PNA partial operation of name restriction

Computing with name abstractions involves deconstructing them, and to do so PNA
features a concretion operation e @ e′ whose operational behaviour is given by the last
rule in Figure 9. This rule might be surprising at first, but it will make sense once we
consider the denotational semantics of name abstraction and concretion in the next
section, in particular the second case of (52).

10. ABSTRACTION AND CONCRETION
The results in this section are the basis for giving denotational semantics using nom-
inal Scott domains to languages with name abstraction operations, such as PNA from
Section 9.

THEOREM 10.1. If D is a nominal Scott domain, then so is the nominal poset [A]D
from Definition 3.1. The operation of name abstraction (a, d) 7→ 〈a〉d extends to a mor-
phism A⊥ ×D → [A]D in Nsd once we define 〈⊥〉d , ⊥.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:29

PROOF. If S ∈ Pfs([A]D) is uniform-directed, then so is {d ∈ D | 〈a〉d ∈ S} ∈ PfsD,
for any a ∈ A. The same holds if S is finitely supported and bounded from above.
In all cases, picking any a # S, one finds that the least upper bound of S in [A]D is
〈a〉(

⊔
{d ∈ D | 〈a〉d ∈ S}). Thus, [A]D has uniform-directed least upper bounds and

least upper bounds of bounded finitely supported subsets, and its least element is 〈a〉⊥
(for any a ∈ A). The above description of uniform-directed least upper bounds in [A]D
implies that 〈a〉u ∈ K(〈A〉D) if and only if u ∈ KD and (hence) that [A]D is ω-algebraic.
It also implies that each λd ∈ D � 〈a〉d is uniform-continuous.

Given a nominal Scott domain D and d ∈ [A]D, for each a ∈ A with a # d there
is a unique element d @ a ∈ D satisfying d = 〈a〉(d @ a), called the concretion [Pitts
2013, Section 4.3] of the name abstraction d at the atomic name a. Note that this
operation is partially defined: to form d@a we require that a not be in the support of d.
For flat domains we can make concretion a total, uniform-continuous function simply
by mapping the pairs where concretion is undefined to ⊥ ∈ D. However, for non-flat
domains this is not possible, because in general it does not give a monotone function.
For example in [A](PfsA), a′ ∈ supp(〈a〉{a, a′}) (assuming a 6= a′), but we cannot define
the concretion of 〈a〉{a, a′} at a′ to be the least element ∅ of PfsA since 〈a〉{a} v 〈a〉{a, a′}
and (〈a〉{a}) @ a′ = {a′} 6= ∅.

One way to deal with this partiality of concretion in a programming language is
to enhance its type system with ‘freshness assumptions’ to ensure statically that
name abstractions are only concreted at fresh atomic names. This is the solution
adopted by the original version of FreshML [Pitts and Gabbay 2000] and is the one
chosen by Winskel and Turner in their language Nominal HOPLA [Turner and Winskel
2009; Turner 2009]. Later versions of FreshML use a conventional type system and
enforce freshness conditions dynamically via the use of generative local names in ex-
pressions [Shinwell et al. 2003]—at the expense of purity [Pottier 2007]. We do the
same with the language PNA, but achieve purity via the use of Odersky-style local
names [Odersky 1994] rather than generative ones. The meaning of this form of local
name construct is type-directed and we used Theorem 7.2 to give its denotational se-
mantics for λν-PCF’s types. This extends to PNA types because of the following result.

THEOREM 10.2. If D ∈ Nsd possesses a uniform-continuous name restriction op-
eration (Definition 7.1), then the name abstraction domain [A]D also has one and it
satisfies

a\(〈a′〉d) = 〈a′〉(a\d) if a 6= a′ (51)
for all a, a′ ∈ A and d ∈ D.

PROOF. First note that (51) uniquely defines name restriction for name abstraction
domains because given a ∈ A, we can always choose a representative for the equiva-
lence class 〈a′〉dwith a 6= a′. The rest of the proof, that is showing that (29)–(32) hold, is
a straightforward generalisation to nominal Scott domains of the corresponding result
for the name abstraction operation on nominal sets [Pitts 2013, Theorem 9.18].

Following Pitts [2011, Corollary 2.14] and assuming D ∈ Nsd has a uniform-
continuous name restriction operation, we can extend the partial operation of con-
cretion to a total equivariant function @t : [A]D × A⊥ → D satisfying

(〈a〉d) @t a = d
(〈a〉d) @t a′ = a\(a a′) · d if a 6= a′

(〈a〉d) @t ⊥ = ⊥.

 (52)

The fact that this is uniform-continuous and hence determines a morphism in Nsd
follows from the description of uniform-directed least upper bounds in [A]D in the

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:30 S. Lösch and A. M. Pitts

. . . (as for λν-PCF) . . .

JV eKρ =

{
[a]α if JeKρ = a

⊥ otherwise
JA e1 e2Kρ =

{
[t1 t2]α if JeiKρ = [ti]α
⊥ otherwise

JL eKρ =

{
[λa.t]α if JeKρ = 〈a〉[t]α
⊥ otherwise

Jcase e of (Vx1 � e1

| Ax2 x
′
2 � e2 | Lx3 � e3)Kρ =


Je1Kρ[x1 7→ a] if JeKρ = [a]α
Je2Kρ[x2 7→ [t]α, x

′
2 7→ [t′]α] if JeKρ = [t t′]α

Je3Kρ[x3 7→ 〈a〉[t]α] if JeKρ = [λa.t]α
⊥ otherwise

Jαa. eKρ = 〈a〉(JeKρ) if a # ρ Je1 @ e2Kρ = (Je1Kρ) @t (Je2Kρ)

Fig. 11. PNA denotational semantics

proof of Theorem 10.1. For fresh names, the total concretion operation agrees with the
‘usual’ concretion

(∀d ∈ [A]D) a # d ⇒ d@t a = d@ a .

We will use the total concretion morphism to interpret name concretion expressions in
the denotational semantics of PNA.

11. DENOTATIONAL SEMANTICS OF PNA

As for λν-PCF, types in PNA denote nominal Scott domains and well-typed expressions
Γ ` e : τ denote uniform-continuous functions JeK ∈ JΓK � JτK. Denotations for typing
environments Γ, booleans bool, numbers nat, product types τ1 × τ2 and function types
τ1 � τ2 are the same as the λν-PCF definitions in Section 7. The type of λ-terms term
and the type of name abstractions δ τ are denoted as follows:

— JtermK = (Λα)⊥, the flat domain on the nominal set of α-equivalence classes of
λ-terms [Pitts 2013, Section 4.1],

Λα , {t ::= a | λa.t | t t}/=α (where a ∈ A). (53)

— Jδ τK = [A]JτK, the domain of name abstractions of the nominal Scott domain JτK
(Theorem 10.1).

Figure 11 gives the additional definitions for the denotations of PNA expressions. In
the clauses involving expressions of type term, we use [t]α to denote the α-equivalence
class of the syntax tree t of a λ-term. By Theorems 7.2 and 10.2 the denotation of every
PNA-type has a uniform-continuous name restriction operation. This operation is used
in the definitions of Jνa. eK and e1 @ e2, where for the latter we use the total concretion
morphism from (52). Note that the side condition in the clause for αa. e can always be
satisfied, because we identify expression up to α-equivalence. The λν-PCF results from
Section 7 carry over to PNA.

LEMMA 11.1 (PNA SOUNDNESS). If e ⇓ c, then JeK = JcK.

PROOF. The Substitution Lemma, Equivariance Lemma and Restriction Lemma
mentioned in the proof of Lemma 7.4 extend from λν-PCF to PNA. Soundness follows
then by rule induction on e ⇓ c.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:31

THEOREM 11.2 (PNA COMPUTATIONAL ADEQUACY). The PNA contextual preorder
(Γ ` e ≤PNA e′ : τ) and contextual equivalence (Γ ` e ∼=PNA e′ : τ) are defined as for
λν-PCF (Definition 6.4). For any Γ ` e : τ and Γ ` e′ : τ , if JeK v Je′K ∈ JΓK � JτK,
then Γ ` e ≤PNA e′ : τ , and hence we have also that JeK = Je′K ∈ JΓK � JτK implies
Γ ` e ∼=PNA e

′ : τ .

PROOF. The overall structure of the proof is the same as in Theorem 7.5, but the
presence of name abstraction and concretion creates complications: see Appendix D.

12. FULL ABSTRACTION FOR PNA+

In this section we show that the full abstraction result from Section 8 can be extended
to include computation with name abstractions. With some tweaks and extensions,
the proof goes through as for λν-PCF+. We extended λν-PCF with existential name
quantification and definite name description in order to gain enough expressivity for
full abstraction. As Theorem 12.2 shows, the same extensions suffice for PNA.

Definition 12.1. PNA+ is the extension of PNA with constructs for existential name
quantification and definite name description, as they are given in Figure 6: PNA+ =
PNA+ ex+ the. Similarly we define the languages PNA+ex and PNA+the. The contex-
tual preorder relations ≤PNA+ , ≤PNA+ex and ≤PNA+the are given as in Definition 6.4.

The results of Appendix A can be extended to PNA, giving us the equivalents of (49)
and (50)

∅ ` F1 ≤PNA+the F2 : ((name� bool)� bool)� bool

∅ ` G1 ≤PNA+ex G2 : ((name� bool)� name)� bool .

Arguing as in the proof of Theorem 8.4, this shows that PNA+ex and PNA+the fail to
be fully abstract. More positively, Theorem 8.5 can be adjusted to the current setting,
showing that PNA+ is fully abstract.

THEOREM 12.2 (FULL ABSTRACTION FOR PNA+). For all well-typed expressions
Γ ` e : τ and Γ ` e′ : τ in PNA+, we have

JeK v Je′K ∈ JΓK � JτK ⇔ Γ ` e ≤PNA+ e′ : τ (PNA+-FAτ)
and hence also JeK = Je′K ∈ JΓK � JτK⇔ Γ ` e ∼=PNA+ e′ : τ .

In the rest of this section we sketch how the proof of Theorem 8.5 can be extended to
a proof of Theorem 12.2.

As for λν-PCF+, we reduce the full abstraction property (PNA+-FAτ) at arbitrary
PNA+ types to this property for simple types, using the same definition of ‘simple type’
as before (Definition 8.7). However, the analogue of Lemma 8.8 for PNA+ fails: it is not
the case that there is a definable embedding-projection pair from each PNA+ type to
some simple type (see the example given below in Open Problem 12.5). However, the
property holds for definable retracts instead of definable embedding-projection pairs
and this suffices for our proof.

LEMMA 12.3. A type τ is a PNA+-definable retract of a type σ if there are closed
PNA+-expressions ∅ ` i : τ � σ and ∅ ` r : σ � τ so that Jλx : τ � r (i x)K = idJτK. It holds
that every PNA+ type τ ∈ Typ is a is a PNA+-definable retract of some σ ∈ Styp.

PROOF. Since name abstraction satisfies a form of η-expansion (Jαa. (e @ a)K = JeK, if
a /∈ fn(e)), each type δ τ is a PNA+-definable retract of name� τ via

i , λ(x : δ τ) � λy : name � x @ y

r , λ(f : name� τ) � αa. f a
(54)

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:32 S. Lösch and A. M. Pitts

(cf. Pitts [2011, Theorem 2.13]). It follows that if τ is a PNA+-definable retract of a
simple type, then so is δ τ (using the fact implicit in the proof of Lemma 8.8 that if σ1

and σ2 are simple, then σ1 � σ2 is a definable retract of a simple type).
Using a suitable Gödel-numbering of λ-terms in the presence of an environment

consisting of a finite list of distinct atomic names (giving the free variables of the λ-
term) one can exhibit term as a PNA+-definable retract of the simple type σ × nat,
where the second component nat is used to codes the term’s syntax tree and the first
component σ , nat × (name � nat) is used to code environments as a pair consisting
of list-length and a function (taking value 0 at all but finitely many arguments) giving
positions in the list.

Every embedding-projection pair forms a retract, so we can combine these observa-
tions about δ τ and term with the argument in the proof of Lemma 8.8 to conclude that
every PNA+-type is a definable retract of a simple type.

We can use the above lemma to show that definability at simple types implies full
abstraction at all types.

LEMMA 12.4. It holds that (∀σ ∈ Styp) (DEFσ) implies (∀τ ∈ Typ) (PNA+-FAτ).

PROOF. The left-to-right direction of (PNA+-FAτ) of course holds already by compu-
tational adequacy (Theorem 11.2). We prove the right-to-left direction first for closed
expressions of simple type, that is JeK 6v Je′K ∈ JσK ⇒ ∅ ` e 6≤PNA+ e′ : σ. This proof
is straight-forward by following the classical definability argument as surveyed by
Curien [2007, Criterion 2.2].

For showing the property for open expressions of simple type JeK 6v Je′K ∈ JΓK�JσK⇒
Γ ` e 6≤PNA+ e′ : σ, we need to take into account that the environment Γ = {x1 :
τ1, . . . , xn : τn} may contain non-simple types. By Lemma 12.3 we know that there is a
σ ∈ Styp such that τ1 × . . .× τn is a definable retract of σ, say with expressions i and r.
It follows from JeK 6v Je′K that there must be a u ∈ KJσK (which is definable) such that
JeK(JrKu1) 6v JeK(JrKu1) ∈ JσK and with that we can use the above argument for closed
expressions to show Γ ` e 6≤PNA+ e′ : σ.

What is left to prove is that if τ is a definable retract of σ, then (PNA+-FAσ) implies
(PNA+-FAτ). Suppose (PNA+-FAσ) holds and that Γ ` e ≤PNA+ e′ : τ . Then we have
Γ ` i e ≤PNA+ i e′ : σ by compositionality of ≤PNA+ . Thus by (FAσ), for any ρ ∈ JΓK
we have JiK(JeKρ) = Ji eKρ v Ji e′Kρ = JiK(Je′Kρ). We know that JiK has a monotone left
inverse JrK, so JeKρ v Je′Kρ. As ρ was chosen arbitrarily we get JeK v Je′K ∈ JΓK � JτK.

λν-PCF+ is included in PNA+, so the proof of uniform-compact definability at simple
types (∀σ ∈ Styp) (DEFσ) for λν-PCF+ in Section 8 directly translates to PNA+. This
completes the proof of full abstraction of PNA+ by Lemma 12.4.

We conclude this section with the discussion of some open problems.

Open Problem 12.5. For an arbitrary PNA+ type τ , are the uniform-compact ele-
ments of JτK PNA+-definable?

The definable retract (54) is not in general an embedding-projection pair. For exam-
ple, when τ = bool one can calculate that JrK ∈ (A⊥ � 2⊥) � [A]2⊥ maps the element
eqa ∈ A⊥ � 2⊥ from Example 5.6 to 〈a〉false; and that JiK maps this name abstraction
to kfalse , λd ∈ A⊥ � if d = ⊥ then ⊥ else false. Since eqa 6v kfalse, we do not have that
Jλ(x : name � bool) � i (r x)K v idJname�boolK. So it seems that PNA+-types are not de-
finably embeddable into simple types. As a result, we cannot deduce the definability
property of Definition 8.6 at arbitrary types from the special case for simple types.

Open Problem 12.6. Is there a fully abstract model of PNA based on games in nom-
inal sets?

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:33

Just as PCF is of more interest from a programming point of view than PCF+por,
we regard PNA (suitably extended with recursive types) as a ‘pure’ version of FreshML
that is potentially useful for functional programming with syntactical data involving
binders. Game semantics provided an interesting solution for the original full abstrac-
tion problem for PCF [Abramsky et al. 2000; Hyland and Ong 2000], and its nominal
version has provided computationally useful, fully abstract models of generative local
state [Abramsky et al. 2004; Tzevelekos 2008; Laird 2008; Murawski and Tzevelekos
2012]. Can nominal game semantics provide a similar thing for PNA?

Open Problem 12.7. Is there a nominal Scott domain semantics for the form of nom-
inal computation embodied by the Nλ language [Bojańczyk et al. 2012]?

With Nλ, Bojańczyk et al. extend the simply-typed λ-calculus with a collection type
representing orbit-finite subsets (Section 2) via a syntax for hulls (Definition 4.3).6 It
is natural to consider adding fixed point recursion to this language, with a denota-
tional semantics using nominal domains rather than nominal sets. The denotational
semantics of such an extension of Nλ will require the development of orbit-finite power
domains FnD in Nsd, whose uniform-compact elements are orbit-finite subsets of the
uniform-compact elements of D.

Open Problem 12.8. What recursive domain equations can be solved in Nsd?
In his thesis, Shinwell [2005, Section 4.5] shows that the traditional method for con-

structing minimally invariant solutions for locally continuous functors of mixed vari-
ance can be applied to the simple notion of nominal domain given by nominal posets
with least upper bounds of finitely supported ω-chains. This can be extended to udc-
pos: see Pitts [2013, Section 11.4]. An interesting alternative approach is to develop
a nominal version of Scott’s information systems [Scott 1982] and construct solutions
for recursive domain equations via inductively defined nominal sets of information to-
kens. We have begun to develop such a theory of nominal Scott information systems
in which the role of finite sets is replaced by orbit-finite nominal sets. From a logi-
cal point of view [Abramsky 1991], nominal information systems are presentations of
non-trivial nominal posets with all orbit-finite meets, rather than just finite meets. We
expect this machinery can be used to good effect for the orbit-finite power domain con-
struct mentioned above, as well as for a version for nominal Scott domains of Moggi’s
monad for dynamic allocation [Moggi 1989, Section 4.14] featuring a freely generated
uniform-continuous name restriction operation (cf. Pitts [2013, Section 9.5]).

13. CONCLUSION
The results in this paper provide further evidence for how a semantic theory (domain
theory in this case) is enhanced by using nominal sets: we gain the ability to model
constructs involving names and their symmetries while preserving most aspects of the
classical theory. The complications arising from the use of nominal sets are feasible
and somehow orthogonal to the other developments. At the same time, their use gives
access to new constructs that are far from trivial. This is the case for the notion of
orbit-finite subset, which formalizes the important idea of finiteness modulo symmetry
within nominal sets. We agree with Bojańczyk et al. [2012] that this is an important
notion with many potential applications. Here we have used it to develop a nominal
domain theory that, via our full abstraction result, has a good fit with higher-type
computation involving local names and name abstractions.

6Their paper [Bojańczyk et al. 2012] is concerned with general ‘Fraı̈ssé nominal sets’. Here we restrict our
attention to the ‘equality symmetry’ and nominal sets in the original sense.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:34 S. Lösch and A. M. Pitts

APPENDIX
A. PROOFS OF (49) AND (50)
We first establish some extensionality results for the λν-PCF+ contextual preorder
(Proposition A.3). These results specialise to λν-PCF+the and λν-PCF+ex and hence
can be used as tools for proving (49) and (50).

Notation A.1. In order to make a better distinction between the programming lan-
guages in use, for this section we tag syntactic sets with the languages they belong to.
So Expλν-PCF

+

is the set of expressions that belong to λν-PCF+; ditto Expλν-PCF+the and
Expλν-PCF+ex, as well as Canλν-PCF

+

and Typλν-PCF
+

. We also extend the logical relation
(42) to open expressions Γ ` e : τ by defining

d /Γ|τ e , (∀ρ, s) ρ /Γ s ⇒ d ρ /τ e s

where d ∈ JΓK � JτK, ρ is a Γ-valuation, s is a Γ-substitution and /Γ is defined in (43).

LEMMA A.2. All expressions e1, e2 ∈ Expλν-PCF
+

satisfy

Γ ` e1 ≤λν-PCF+ e2 : τ ⇔ Je1K /Γ|τ e2.

PROOF. As noted in Theorem 8.5, the adequacy results in Section 7, in particular
the fundamental property of the logical relation (44), extend from λν-PCF to λν-PCF+.
We use these results in this and the forthcoming proofs.

Suppose Je1K /Γ|τ e2 and let a context C[] be given with ∅ ` C[e1] : bool, ∅ ` C[e2] :
bool and C[e1] ⇓ T. Lemma 7.4 implies JC[e1]K = true. We can show by induction on the
structure of C[] that Je1K /Γ|τ e2 ⇒ JC[e1]K /bool C[e2]. Therefore true /bool C[e2]; and
hence C[e2] ⇓ T, by definition of /bool. Thus we obtain Γ ` e1 ≤λν-PCF+ e2 : τ .

To show the converse, one proves by induction on τ that

(d /Γ|τ e1 ∧ Γ ` e1 ≤λν-PCF+ e2 : τ) ⇒ d /Γ|τ e2 . (55)

Then we can apply this to Je1K /Γ|τ e1, which holds by the fundamental property
(44).

PROPOSITION A.3 (EXTENSIONALITY). The contextual preorder for λν-PCF+ is ex-
tensional at functions and ground types for variable-closed expressions. That is for all
e1, e2 ∈ Expλν-PCF

+

we have that if γ ∈ {bool, nat, name}, then ∅ ` e1 ≤λν-PCF+ e2 : γ
holds if and only if

(∀c) e1 ⇓ c⇒ e2 ⇓ c .
At function types ∅ ` e1 ≤λν-PCF+ e2 : τ1 � τ2 holds if and only if

(∀e) ∅ ` e : τ1 ⇒ ∅ ` e1 e ≤λν-PCF+ e2 e : τ2 .

PROOF. The only-if directions are immediate from the definition of ≤λν-PCF+ . Con-
versely, Lemma A.2 tells us that it is enough to show Je1K /τ e2. In the ground type case
τ = γ, if Je1K = ⊥ then Je1K /γ e2 follows directly. Otherwise we must have Je1K = JcK
which implies e1 ⇓ c by the fundamental property (44) at e1. This implies e2 ⇓ c by
assumption, and hence Je1K /γ e2, as required. In the function case τ = τ1 � τ2, let any
d /τ1 e be given. With the fundamental property we get Je1K /τ1�τ2 e1, so by definition
Je1K d /τ2 e1 e. By assumption we know ∅ ` e1 e ≤λν-PCF+ e2 e : τ2 and with (55) this
gives us Je1K d /τ2 e2 e. This shows Je1K /τ1�τ2 e2, by the definition of /τ1�τ2 ; and then
we can apply Lemma A.2 to get ∅ ` e1 ≤λν-PCF+ e2 : τ1 � τ2.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:35

Extensionality holds with the same proofs also for the contextual preorders of
λν-PCF+the and λν-PCF+ex. This allows us to deduce (49) from the following prop-
erty of the λν-PCF+the evaluation relation

a # e ∧ (∀c) e[eqBota/x] ⇓ c ⇒ e[kBot/x] ⇓ c (56)

that holds for any expression e ∈ Expλν-PCF+the of type x : name�bool ` e : bool; eqBota
and kBot are defined in (20) and (21). In the same way we can use extensionality to
deduce (50) from the following property of the λν-PCF+ex evaluation relation

a # e ∧ e[eqa/x] ⇓ a′ ⇒ a 6= a′ (57)

where e ∈ Expλν-PCF+ex with x : name� bool ` e : name and eqa is defined in (24).
We prove (56) and (57) by reformulating the evaluation relation ⇓ in terms of a small-

step transition relation in the style of Felleisen and Hieb [1992], but with evaluation
contexts formulated as stacks of evaluation frames. We call this type of operational
semantics frame-stack semantics, it also known as abstract machine semantics in the
literature. (See Pitts [2002] for a discussion of this technique for proving contextual
equivalences.)

The frame-stack evaluation relation for λν-PCF+

〈F , e〉 → 〈F ′ , e′〉
is defined in Figure 12. We use the name restriction operation from Figure 4 in the
clause for νa. e. For brevity, the cases for exx. e and thex. e use some syntactic sugar:
botτ from (19) and a pattern matching construct case bool for boolean tuples, which can
be defined by conditionals for any tuple length.

The evaluation relation is formulated in terms of a transition system between con-
figurations. However, a configurations 〈F , e〉 is not just a pair built from a frame-stack
F ∈ Stackλν-PCF

+

and an expression e ∈ Expλν-PCF
+

: We identify configurations by a
form of α-equivalence where a binder in a frame (for λν-PCF+ only the frame νa. ·) can
bind free identifiers in later frames or the expression. For example 〈Id◦(νa. ·)◦(· = a),a〉
is α-equivalent to 〈Id ◦ (νa′. ·) ◦ (· = a′) , a′〉, but it is not α-equivalent to 〈Id , νa. a = a〉.
This identification is implicit and results in the following equality for configurations

〈F , e〉 = 〈F ′ , e′〉 ⇔ |F | = |F ′| ∧ F [e] = F ′[e′]

where |F | is the length of the frame-stack F . Let Configλν-PCF
+

be the set of all such
configurations for λν-PCF+. The notions of permutation action, free names, free vari-
ables and capture-avoiding substitution extend to configurations in the obvious way,
taking into account this form of α-equivalence for configurations.

Definition A.4. For each n ∈ N, let the relation→n be defined by

〈F , e〉 →0 〈F ′ , e′〉 , 〈F , e〉 = 〈F ′ , e′〉
〈F , e〉 →n+1 〈F ′ , e′〉 , 〈F , e〉 → 〈F ′′ , e′′〉 ∧ 〈F ′′ , e′′〉 →n 〈F ′ , e′〉

and let 〈F ,e〉 →∗ 〈F ′ ,e′〉 be defined to hold if there is a n ∈ N such that 〈F ,e〉 →n 〈F ′ ,e′〉.
The operational semantics from Section 6 and the frame-stack semantics agree:

PROPOSITION A.5. For all e ∈ Expλν-PCF
+

and c ∈ Canλν-PCF
+

we have e ⇓ c ⇔
〈Id , e〉 →∗ 〈Id , c〉.

PROOF. We prove e ⇓ c⇒ (∀F ∈ Stackλν-PCF
+

) 〈F , e〉 →∗ 〈F , c〉 by rule induction on
e ⇓ c for the left-to-right direction. The right-to-left direction is a consequence of the
more general statement (∀n ∈ N) 〈F , e〉 →n 〈Id , c〉 ⇒ F [e] ⇓ c (proved by induction on

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:36 S. Lösch and A. M. Pitts

F ∈ StackPNA+

::= Id | F ◦ E

E ∈ FramePNA
+

::= if · then e else e | S · | pred · | zero · | fst · | snd · | · e
| νa. · | (·
 e) e | (a
 ·) e | (a
 a) · | · = e | a = ·

〈F , if e1 then e2 else e3〉 → 〈F ◦ if · then e2 else e3 , e1〉

〈F ◦ if · then e2 else e3 , T〉 → 〈F , e2〉 〈F ◦ if · then e2 else e3 , F〉 → 〈F , e3〉

〈F , S e〉 → 〈F ◦ S · , e〉 〈F ◦ S · , c〉 → 〈F , S c〉 〈F , pred e〉 → 〈F ◦ pred · , e〉

〈F ◦ pred · , S c〉 → 〈F , c〉 〈F , zero e〉 → 〈F ◦ zero · , e〉 〈F ◦ zero · , O〉 → 〈F , T〉

〈F ◦ zero · , S c〉 → 〈F , F〉 〈F , fst e〉 → 〈F ◦ fst · , e〉 〈F ◦ fst · , (e1 , e2)〉 → 〈F , e1〉

〈F , snd e〉 → 〈F ◦ snd · , e〉 〈F ◦ snd · , (e1 , e2)〉 → 〈F , e2〉 〈F , e1 e2〉 → 〈F ◦ · e2 , e1〉

〈F ◦ · e2 , λx : τ � e〉 → 〈F , e[e2/x]〉 〈F , fix e〉 → 〈F , e (fix e)〉

〈F , νa. e〉 → 〈F ◦ νa. · , e〉 〈F ◦ νa. · , c〉 → 〈F , c′〉 if a\\c := c′

〈F , (e1
 e2) e3〉 → 〈F ◦ (·
 e2) e3 , e1〉 〈F ◦ (·
 e2) e3 , a1〉 → 〈F ◦ (a1
 ·) e3 , e2〉

〈F ◦ (a1
 ·) e3 , a2〉 → 〈F ◦ (a1
 a2) · , e3〉 〈F ◦ (a1
 a2) · , c〉 → 〈F , (a1 a2) · c〉

〈F , e1 = e2〉 → 〈F ◦ · = e2 , e1〉 〈F ◦ · = e2 , a1〉 → 〈F ◦ a1 = · , e2〉

〈F ◦ a1 = · , a2〉 → 〈F , T〉 if a1 = a2 〈F ◦ a1 = · , a2〉 → 〈F , F〉 if a1 6= a2

〈F , exx. e〉 → 〈F , if e[a/x] then T else botbool〉 for all a ∈ A

〈F , exx. e〉 → 〈F , case bool(e[a1/x], . . . , e[an/x]) of ((F, . . . , F) � F | � botbool)〉
where {a1, . . . , an} = fn e ∪ {b} and b # e

〈F , thex. e〉 → 〈F , νb. case bool(e[a1/x], e[a2/x], . . . , e[an/x], e[b/x])of
((T, F, . . . , F, F) � a1 | (F, T, . . . , F, F) � a2 | . . . | (F, F, . . . , T, F) � an | � botname)〉

where {a1, . . . , an} = fn e and b # e

Fig. 12. Frame-stack operational semantics of λν-PCF+

n), whose proof uses 〈F , e〉 → 〈F ′ , e′〉 ∧ F ′[e′] ⇓ c⇒ F [e] ⇓ c (proved by case analysis of
→) and F [e] ⇓ c⇔ e ⇓ c′ ∧ F [c′] ⇓ c (proved by induction on F).

The frame-stack semantics specialises to λν-PCF+the and λν-PCF+ex in the obvious
way (by dismissing the rules for exx. e or thex. e), and Proposition A.5 remains to be
valid for those languages. The fine-grainedness of the frame-stack rules allows us to
formalise the intuitive justification of (27) in Section 6.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:37

LEMMA A.6. Define for n ∈ N and a ∈ A

eqBota,n , λx : name � νb1. . . . νbn. if(x = a) then T else botbool

EqBota , {eqBota,n | n ∈ N}

kBotn , λx : name � νb1. . . . νbn. botbool

KBot , {kBotn | n ∈ N}
where b1, . . . , bn are distinct and fresh for a. Note that the definitions of eqBota,n and
kBotn are independent of the choice of b1, . . . , bn due to α-equivalence. It then holds that

(∀i ∈ N)(∀a ∈ A)(∀j ∈ N)(∀x1, . . . , xj ∈ V)(∀e1, . . . , ej ∈ EqBota)(∀γ ∈ {bool, nat, name})
(∀〈F , e〉 ∈ Configλν-PCF+the)(∀c ∈ Canλν-PCF+the) a /∈ fn(〈F , e〉) ∧
x1 : name� bool, . . . , xj : name� bool ` F [e] : γ ∧ 〈F , e〉[e1/x1, . . . , ej/xj]→i 〈Id , c〉
⇒ (∀e′1, . . . , e′j ∈ KBot) 〈F , e〉[e′1/x1, . . . , e

′
j/xj]→∗ 〈Id , c〉 .

PROOF. The proof works by induction on i. The i = 0 case is obvious, because then
F = Id and e = c. For the inductive step we proceed by case distinction on the first
transition. Special care needs to be taken in the case where e is a variable, as this is
where we need the generality of having multiple substitutions and name restrictions
in the proof statement.

It is straight-forward to see that (56) is an instance of Lemma A.6. Similarly, we can
use the frame-stack semantics to give a lemma that proves (57).

LEMMA A.7. Define for any n ∈ N

eqa,n , λx : name � νb1. . . . νbn. (x = a)

Eqa , {eqa,n | n ∈ N}

where b1, . . . , bn are distinct and not equal to a. Note that the definition of eqa,n is inde-
pendent of the choice of b1, . . . , bn due to α-equivalence. It follows that:

(∀i ∈ N)(∀a ∈ A)(∀j ∈ N)(∀x1, . . . , xj ∈ V)(∀e1, . . . , ej ∈ Eqa)(∀〈F , e〉 ∈ Configλν-PCF+ex)

(∀a′ ∈ A) x1 : name� bool, . . . , xj : name� bool ` F [e] : name ∧ a /∈ fn(〈F , e〉) ∧
〈F , e〉[e1/x1, . . . , ej/xj]→i 〈Id , a′〉 ⇒ a 6= a′ .

PROOF. We proceed by induction on i and a case distinction on the first transition in
the inductive step. The argument is very similar to the one in the proof of Lemma A.6,
it only simplifies in many cases due to the simpler induction hypothesis.

B. PROOF OF LEMMA 8.10
We suppose given τ ∈ Typ, u ∈ KJτK, A ⊆f A and a λν-PCF+-expression ∅ ` e : τ � bool
such that JeK = (u↘ true). We have to find ∅ ` e′ : τ � bool such that

Je′K =
⊔

hullA{(u↘ true)} . (58)

Let Perm be the set of all finite permutations on A, and define for each f ∈ Perm�2⊥
the analogue of (11) for permutations:

existsPermf ,


true if (∃π ∈ Perm) f π = true

false if (∀π ∈ Perm) f π = false

⊥ otherwise.
(59)

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:38 S. Lösch and A. M. Pitts

This allows us to characterise
⊔

hullA{(u↘ true)} by⊔
hullA{(u↘ true)} = λd ∈ JτK �

{
true if (∃π ∈ Perm)π # A ∧ π · u v d
⊥ otherwise

= λd ∈ JτK � existsPerm(λπ ∈ Perm � π # A ∧ (π · u↘ true) d) . (60)

Notation B.1. We write vectors of atomic names as ~a = a1, . . . , an and define the
swapping of two vectors of the same length by

(~a ~b) , (a1 b1) ◦ · · · ◦ (an bn).

Let A#n be the set of vectors of length n that contain distinct atomic names. When
convenient we confuse notation for vectors and sets, and write for example suppx = ~a.

The quantification over permutations and the permutation action in (60) can be en-
coded with quantification over atomic names and swappings:

LEMMA B.2. Suppose A ⊆f A, π ∈ Perm and π # A. For any element u of a nominal
set, suppose suppu − A = ~a with ~a ∈ A#n, and let bi = π(ai) for i = 1, . . . , n. Note that
~b ∈ A#n (because π is a permutation) and ~b # A (because π # A and ai /∈ A). Picking
any ~c ∈ A#n with ~c # A,~a,~b, we get π · u = (~b ~c) ◦ (~a ~c) · u.

PROOF. It is easy to check that (π−1 ◦ (~b ~c)◦ (~a ~c)) a = a holds for all a ∈ suppu. Then
the defining property (4) of suppu gives us (π−1 ◦ (~b ~c) ◦ (~a ~c)) · u = u, from which the
desired property follows by applying π to both sides of the equation.

Applying this Lemma B.2 to (60), together with the semantics of locally scoped names,
it follows that (58) holds with

e′ , λx : τ � ex y1. . . . ex yn. (distinct ~y) and (~y freshfor A)

and νb1. . . . νbn. (((~y
~b) (~a
~b) e)x)

where JeK = (u ↘ true) as above, ~a , supp u − A and ~b are distinct atomic names
satisfying ~b # u,A. For better readability, we used some syntactic sugar in the above
expression:

— swapping vectors of expressions, (~e
 ~e′) , (e1
 e′1) . . . (en
 e′n)

— boolean conjunction, e1 and e2 , if e1 then e2 else F
— the expression distinct~e stands for the expression that tests if all atomic names

that ~e evaluates to are distinct
— ~e freshfor A expresses that none of the expressions in the vector ~e evaluate to ele-

ments of the finite set A ⊆f A.

The last two constructs can be defined for any length of ~e by using conditionals and
name equality tests.

C. PROOF OF LEMMA 8.11
Suppose we are given τ ∈ Typ such that

(∀v, v′ ∈ KJτK) v 6↑ v′ ⇒ (∃e ∈ Exp) ∅ ` e : τ � bool ∧ JeK = (v↘ true) t (v′↘ false) (61)

where v 6↑ v′ is notation for v and v′ not having an upper bound in JτK. We also suppose
given u, u′ ∈ KJτK and A ⊆f A with

(∀π ∈ Perm) π # A⇒ u 6↑ π · u′ . (62)

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:39

We have to find ∅ ` e : τ � bool such that
JeK =

⊔
hullA{(u↘ true), (u′↘ false)} . (63)

Without loss of generality we may assume
(suppu ∩ suppu′)−A = ∅ (64)

because otherwise we can take u′′ , (~a ~b)·u instead of u′, where ~a , (suppu∩suppu′)−A
and ~b are some distinct and fresh atomic names. (We use notation for swapping lists of
atomic names as in Notation B.1.) It is easy to show that (suppu∩ suppu′′)−A = ∅. We
can replace u′ with u′′ because (~a ~b) # A implies that

⊔
hullA{(u↘ true), (u′↘ false)} =⊔

hullA{(u↘ true), (u′′↘ false)} and that (61) as well as (62) hold for u′′.
Note that (62) entails that whenever there is a π # A with π · u v x, then for all

π′ # A it is the case that π′ · u 6v x (and symmetrically with u and u′ interchanged).
Therefore we get:⊔

hullA{(u↘ true), (u′↘ false)}

= λd ∈ JτK �


true if (∃π ∈ Perm)π # A ∧ π · u v d
false if (∃π′ ∈ Perm)π′ # A ∧ π′ · u′ v d
⊥ otherwise

= λd ∈ JτK �
true if (∃π ∈ Perm)π # A ∧ π · u v d ∧ (∀π′ ∈ Perm)π′ # A⇒ π′ · u′ 6v d
false if (∃π′ ∈ Perm)π′ # A ∧ π′ · u′ v d ∧ (∀π ∈ Perm)π # A⇒ π · u 6v d
⊥ otherwise

= λd ∈ JτK � existsPerm(λπ ∈ Perm � π # A ∧ allPerm(λπ′ ∈ Perm � π′ # A

⇒ ((π · u↘ true) t (π′ · u′↘ false)) d)) (65)
where

allPermf ,


true if (∀π ∈ Perm) f π = true

false if (∃π ∈ Perm) f π = false

⊥ otherwise
is the dual of (59).

As in Appendix B, we can replace the quantifications over π and π′ in (65) by multiple
quantifications over atomic names. Suppose suppu − A consists of the distinct atomic
names ~b = (b1, . . . , bn) ∈ A#n and suppu′ − A consists of the distinct atomic names
~c = (c1, . . . , cm) ∈ A#m; so from (64) we have ~b # ~c. Given π, π′ # A, as in Lemma B.2
we have

π · u = (~b′ ~d) ◦ (~b ~d) · u

π′ · u′ = (~c′ ~d′) ◦ (~c ~d′) · u′

with ~b′ = π · ~b, ~c′ = π′ · ~c and ~d, ~d′ chosen suitably fresh. Therefore in view of (65), to
solve (63) we can take e to be

e , λx : τ � exx1. . . . exxn. (distinct ~x) and (~x freshfor A)

and not (ex y1. . . . ex ym. (distinct ~y) and (~y freshfor A) and not(e′ x)) (66)
provided we can find an expression e′ with typing x1 : name, . . . , xn : name, y1 :
name, . . . , ym : name ` e′ : τ � bool that satisfies for each valuation ρ that

Je′Kρ = ((J~xKρ ~d) ◦ (~b ~d) · u↘ true) t ((J~yKρ ~d′) ◦ (~c ~d′) · u′↘ false) (67)

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:40 S. Lösch and A. M. Pitts

for some/any fresh ~d, ~d′. In (66) we use the syntactic sugar from Appendix B as well as
not e , if e then F else T.

Giving such an e′ might seem easy at first, since in view of (61) and (62), (π · u↘
true)t(π′ ·u′↘ false) is λν-PCF-definable for any particular π, π′ # A. However, it is not
so easy: the problem is that e′ has ~x, ~y as free variables and we need to be parametric
with respect to whatever atomic names those free variables get assigned by a given
valuation ρ. Specifically, to define e′ we need to consider all ways in which atomic
names assigned to ~x and ~y may overlap. Fortunately each way corresponds to a partial
bijection from {1, . . . , n} to {1, . . . ,m} and there are only finitely many of them, N say.
Thus we take

e′ , if not(x1 = y1) and not(x1 = y2) and . . . and not(xn = ym) then e1

else ifx1 = y1 and not(x2 = y2) and . . . and not(xn = ym) then e2

...
else ifx1 = y1 and x2 = y2 and . . . and xn = ym then eN

else λ(x : τ) � F

(68)

and show how to define the expressions e1, . . . , eN in such a way that for each ρ, Je′Kρ =
JeiKρ for the i corresponding to the overlap conditions ρ induces between ~x and ~y. Then
(67) holds because the if-clauses in (68) are exhaustive; in particular the λ(x : τ) � F
case will never be reached. Let fi be the partial bijection corresponding to ei, and define
~bi , {bj | j ∈ domfi}, ~ci , {cfi(j) | j ∈ domfi}, ~c′i , {cj | j 6∈ imfi}, ~xi , {xj | j ∈ domfi},
~yi , {yfi(j) | j ∈ domfi}, ~y′i , {yj | j 6∈ imfi}. By (61) let ∅ ` e′i : τ � bool be given such
that Je′iK = (u↘ true) t ((~ci ~bi) · u′↘ false). This allows us to define

ei , νd1. . . . νdn. νd
′
1. . . . νd

′
m−|domfi|. (

~y′i

~d′) (~x
 ~d) (~c′i

~d′) (~b
 ~d) e′i (69)

where ~d, ~d′ consist of distinct atomic names that satisfy ~d, ~d′ # A,~b,~c; through α-
renaming they may also be chosen to satisfy ~d, ~d′ # J~xKρ, J~yKρ once we are given a
particular valuation ρ. Define also ~di = {dj | j ∈ domfi}. Finally, with π · ((u↘ true) t
(u′↘ false)) = (π · u↘ true) t (π · u′↘ false), property (31),

(J~y′iKρ ~d′) ◦ (J~xKρ ~d) ◦ (~c′i
~d′) ◦ (~b ~d) · u

= (J~y′iKρ ~d′) ◦ (J~xKρ ~d) ◦ (~b ~d) · u as (~c′i
~d′) # ~d

= (J~xKρ ~d) ◦ (~b ~d) · u as (J~y′iKρ ~d′) # J~xKρ

and
(J~y′iKρ ~d′) ◦ (J~xKρ ~d) ◦ (~c′i

~d′) ◦ (~b ~d) ◦ (~ci ~bi) · u′

= (J~y′iKρ ~d′) ◦ (J~xKρ ~d) ◦ (~c′i
~d′) ◦ (~ci ~di) ◦ (~b ~d) · u′ as π ◦ (a b) = (π a π b) ◦ π

= (J~y′iKρ ~d′) ◦ (J~xKρ ~d) ◦ (~c′i
~d′) ◦ (~ci ~di) · u′ as (~b ~d) # u′

= (J~y′iKρ ~d′) ◦ (J~xiKρ ~di) ◦ (~c′i
~d′) ◦ (~ci ~di) · u′ as ~x = ~xi ∪ ~x′i

= (J~y′iKρ ~d′) ◦ (J~yiKρ ~di) ◦ (~c′i
~d′) ◦ (~ci ~di) · u′ as J~xiKρ = J~yiKρ

= (J~yKρ ~d′′) ◦ (~c ~d′′) · u′ as ~y = ~yi ∪ ~y′i, with ~d′′ = ~d′ ∪ ~di
we obtain that JeiKρ = Je′Kρ as required.

This concludes the proof of Lemma 8.11. Since the last part of the proof is combina-
torially complicated, we illustrate the constructions for a simple instance.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:41

Example C.1. Suppose we are in the special case of Lemma 8.11 where A = {a},
suppu = {b1, b2} and suppu′ = {c1, c2}. In this setting, the expression e satisfying
JeK =

⊔
hull{a}{(u↘ true), (u′↘ false)} is defined by

e , λx : τ � exx1. exx2. not(x1 = x2) and not(x1 = a) and not(x2 = a)

and not(ex y1. ex y2. not(x1 = x2) and not(y1 = a) and not(y2 = a) and not(e′ x))

where the expression e′ reads

e′ , if not(x1 = y1) and not(x2 = y2) and not(x1 = y2) and not(xn = ym) then e1

else ifx1 = y1 and not(x2 = y2) then e2 else if not(x1 = y1) and x2 = y2 then e3

else ifx1 = y2 and not(x2 = y1) then e4 else if not(x1 = y2) and x2 = y1 then e5

else ifx1 = y1 and x2 = y2 then e6 else ifx1 = y2 and x2 = y1 then e7

else λx : τ � F.

Compare this to (66) and (68). Let us now define e3 explicitly as in (69). The corre-
sponding partial bijection is f3 = {2 7→ 2} and by (61) we may assume the existence of
e′3 with Je′3K = (u↘ true) t ((c2 b2) · u′↘ false). Then we can define

e3 , νd1. νd2. νd
′
1. (y1
 d′1) (x1
 d1) (x2
 d2) (c1
 d′1) (b1
 d1) (b2
 d2) e′3

for which Je3Kρ = ((Jx1Kρ d1)◦(Jx2Kρ d2)◦(b1 d1)◦(b2 d2)·u↘true)t((Jy1Kρ d′1)◦(Jy2Kρ d2)◦
(c1 d

′
1) ◦ (c2 d2) · u′↘ false) holds for any ρ under the conditions that Jx1Kρ 6= Jy1Kρ and

Jx2Kρ = Jy2Kρ.

D. PROOF OF THEOREM 11.2
The overall structure of the proof of Theorem 11.2 is the same as in Theorem 7.5. We
extend the logical relation to cover the type of λ-terms and abstraction types:

d /term e , d = ⊥ ∨ (∃c) e ⇓ c ∧ JcK = d

d /δ τ e , (Na) d@ a /τ e @ a.

In the second clause we use the freshness quantifier (Na) of nominal logic [Pitts 2013,
Section 3.2]; thus d /δ τ e holds if and only if d @ a /τ e @ a holds for some a # (d, e), or
equivalently, for any a # (d, e).

The proof that this logical relation is closed under restriction, abstraction and con-
cretion

d /τ e ⇒ (∀a) a\d /τ νa. e (70)
d /τ e⇒ (∀a) 〈a〉d /δ τ αa. e (71)
d /δ τ e⇒ (∀a) d@ a /τ e @ a (72)

is not straightforward and occupies the rest of this appendix. Using these three proper-
ties one can then prove the fundamental property of the logical relation as in Theorem
7.5, and computational adequacy follows from that in the usual way.

To prove (70)–(72) we introduce a weaker form of ‘Kleene preorder’ between expres-
sions:

Definition D.1. For every PNA type τ ∈ Typ, let Exp(τ) , {e ∈ Exp | ∅ ` e : τ} and
Can(τ) , {c ∈ Can | ∅ ` c : τ}, and define the weak Kleene preorders

5wk
τ ⊆ Exp(τ)× Exp(τ)

≤wk
τ ⊆ Can(τ)× Can(τ)

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:42 S. Lösch and A. M. Pitts

by simultaneously structural recursion over τ :

e 5wk
τ e′ , (∀c) e ⇓ c ⇒ (∃c′) e′ ⇓ c′ ∧ c ≤wk

τ c′

c ≤wk
γ c′ , c = c′ (γ ∈ {name, bool, nat, term})

c ≤wk
τ1×τ2 c

′ , (∃e1, e2, e
′
1, e
′
2) c = (e1 , e2) ∧ c′ = (e′1 , e

′
2) ∧ e1 5wk

τ1 e′1 ∧ e2 5wk
τ2 e′2

c ≤wk
τ1�τ2 c

′ , (∃x, e, e′) c = λx : τ1 � e ∧ c′ = λx : τ1 � e′

∧ (∀e1 ∈ Exp(τ1)) e[e1/x] 5wk
τ2 e′[e1/x]

c ≤wk
δ τ c

′ , (Na)(∃c1, c′1) c = αa. c1 ∧ c′ = αa. c′1 ∧ c1 ≤wk
τ c′1 .

The next lemma collects together the properties of these preorders that we need.

LEMMA D.2. The following properties hold:

((∀c) e ⇓ c⇒ e′ ⇓ c) ⇒ e 5wk
τ e′. (73)

c ≤wk
τ c′ ∧ a\\c := c1 ⇒ (∃c′1) a\\c′ := c′1 ∧ c1 ≤wk

τ c′1 (74)

e 5wk
τ e′ ⇒ νa. e 5wk

τ νa. e′ (75)

e 5wk
δ τ e

′ ⇒ (∀a) e @ a 5wk
τ e′ @ a (76)

e 5wk
τ1×τ2 e

′ ⇒ fst e 5wk
τ1 fst e′ ∧ snd e 5wk

τ2 snd e′ (77)

e 5wk
τ1�τ2 e

′ ⇒ (∀e1 ∈ Exp(τ1)) e e1 5wk
τ2 e e1 (78)

a′\\c := c1 ∧ a\\c1 := c2 ⇒ (∃c′1, c′2) a\\c := c′1 ∧ a′\\c′1 := c′2 ∧ c2 ≤wk
τ c′2 (79)

νa. νa′. e 5wk
τ νa′. νa. e (80)

a # c ⇒ (∃c′) a\\c := c′ ∧ c ≤wk
τ c′ ∧ c′ ≤wk

τ c (81)

a # e ⇒ νa. e 5wk
τ e ∧ e 5wk

τ νa. e (82)

a 6= a′ ⇒ νa. (e @ a′) 5wk
τ (νa. e) @ a′ (83)

νa. fst e 5wk
τ fst (νa. e) (84)

νa. snd e 5wk
τ snd (νa. e) (85)

a # e1 ⇒ νa. (e e1) 5wk
τ (νa. e) e1 . (86)

PROOF. (73) follows from the definition of 5wk
τ and the easily verified fact that ≤wk

τ
is reflexive. (74) can be proved by induction on the structure of τ from the definition of
5wk; and then (75) and (76) follow from this. The proof of (76) additionally uses that
5wk and ≤wk are equivariant, which is straight-forward to prove. (77) and (78) are
direct consequences of the definition of 5wk. (79) can be proved from the definition of
5wk by induction on the structure of τ ; and then (80) follow from this. Similarly for and
(81) and (82). (83) follows from (79) and (80). (84)–(86) are immediate by using (73).

COROLLARY D.3.

e 5wk
τ (αa. e) @ a (87)

a′ # (a, e) ⇒ νa′. (a a′) · (e @ a′) 5wk
τ e @ a (88)

PROOF. For showing that (88) implies (87), we use transitivity of 5wk
τ and prove

e 5wk
τ νa′. (a a′) · (αa. e @ a′) 5wk

τ αa. e @ a for some/any a′ # a, e. The second preorder
relation is a consequence of (88), whereas the first one can be proved directly.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:43

For (88), suppose a′ # (a, e) and

νa′. (a a′) · (e @ a′) ⇓ c. (89)

We have to show e @ a ⇓ c′, for some c′ with c ≤wk
τ c′. But (89) can only hold because for

some c1 we have

(a a′) · (e @ a′) ⇓ c1 (90)
a′\\c1 := c. (91)

From (90) we get (by equivariance of ⇓) that e @ a′ ⇓ (a a′) · c1; and hence we must have
for some a′′ # (a, a′, e, c, c1) and c2 that

e ⇓ αa′′. c2 (92)
a′′\\(a′′ a′) · c2 := (a a′) · c1. (93)

Since a′ # e, from (92) we get a′ # c2 and hence a′′ # (a′′ a′) · c2. Then by (81) and (93)
we have (a a′) · c1 ≤wk

τ (a′′ a′) · c2 and hence also

c1 ≤wk
τ (a a′)(a′′ a′) · c2. (94)

Applying (74) to (91) and (94), there exists c′ with

a′\\(a a′)(a′′ a′) · c2 := c′ ∧ c ≤wk
τ c′. (95)

Note that since a′ # c2, αa′′. c2 = αa′. (a′′ a′) ·c2 and therefore from (92), e ⇓ αa′. (a′′ a′) ·
c2. Combining this with (95) we get e @ a ⇓ c′ and c ≤wk

τ c′, as required.

We can now complete the proof of properties (70)–(72) of the logical relation:

— (70) follows by structural induction on τ , using (83) for name abstraction types,
(84) and (85) for product types, and (86) for function types.

— (71) follows from (87).
— Finally, for (72), suppose d /δ τ e. Given any a ∈ A, pick a′ # (a, d, e). Then putting

d′ , d @ a′, we have d = 〈a′〉d′ and d @ a = a′\(a a′) · d′. By definition of /δ τ we have
d′ /τ e @ a

′ and hence by equivariance of the logical relation, (a a′) · d′ /τ (a a′) · (e @ a′).
So by (70) and (88), d@a = a′\(a a′) ·d′ /τ νa′. (a a′) · (e@a′) 5wk

τ e@a. So it just remains
to see that the logical relation is closed under composition with 5wk

d /τ e ∧ e 5wk
τ e′ ⇒ d /τ e

′

which follows by combining (76)–(78) with the definitions of 5wk and /.

REFERENCES
S. Abramsky. 1991. Domain Theory In Logical Form. Annals of Pure and Applied Logic 51 (1991), 1–77.
S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B. Stark. 2004. Nominal Games and Full

Abstraction for the Nu-Calculus. In Proc. LICS 2004. IEEE Computer Society Press, 150–159.
S. Abramsky, R. Jagadeesan, and P. Malacaria. 2000. Full Abstraction for PCF. Information and Computa-

tion 163, 2 (2000), 409–470.
S. Abramsky and A. Jung. 1994. Domain Theory. In Handbook of Logic in Computer Science, S. Abramsky,

D. M. Gabbay, and T. S. E. Maibaum (Eds.). Vol. 3. Clarendon Press, 1–168.
M. Bojańczyk, L. Braud, B. Klin, and S. Lasota. 2012. Towards Nominal Computation. In Proc. POPL 2012.

ACM Press, 401–412.
M. Bojańczyk, B. Klin, and S. Lasota. 2011. Automata with Group Actions. In Proc. LICS 2011. IEEE Com-

puter Society Press, 355–364.
M. Bojańczyk and S. Lasota. 2012. A Machine-Independent Characterization of Timed Languages. In Proc.

ICALP 2012, Part II (Lecture Notes in Computer Science), A. Czumaj, K. Mehlhorn, A. M. Pitts, and
R. Wattenhofer (Eds.), Vol. 7392. Springer-Verlag, 92–103.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

XX:44 S. Lösch and A. M. Pitts

V. Ciancia and U. Montanari. 2010. Symmetries, Local Names and Dynamic (De)-allocation of Names. Infor-
mation and Computation 208, 12 (2010), 1349–1367.

P.-L. Curien. 2007. Definability and Full Abstraction. In Computation, Meaning and Logic, Articles dedi-
cated to Gordon Plotkin, L. Cardelli, M. Fiore, and G. Winskel (Eds.). Electronic Notes in Theoretical
Computer Science, Vol. 172. Elsevier, 301–310.

M. Felleisen and R. Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and
State. Theoretical Computer Science 103 (1992), 235–271.

M. J. Gabbay. 2009. A Study of Substitution, Using Nominal Techniques and Fraenkel-Mostowski Sets.
Theoretical Computer Science 410, 12–13 (2009), 1159–1189.

M. J. Gabbay. 2011. Foundations of Nominal Techniques: Logic and Semantics of Variables in Abstract
Syntax. Bulletin of Symbolic Logic 17, 2 (2011), 161–229.

M. J. Gabbay and V. Ciancia. 2011. Freshness and Name-Restriction in Sets of Traces with Names. In Proc.
FOSSACS 2011 (LNCS), Vol. 6604. Springer-Verlag, 365–380.

M. J. Gabbay and A. M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. Formal
Aspects of Computing 13 (2002), 341–363.

P. Gabriel and F. Ulmer. 1971. Lokal Präsentierbare Kategorien. Lecture Notes in Mathematics, Vol. 221.
Springer-Verlag.

F. Gadducci, M. Miculan, and U. Montanari. 2006. About Permutation Algebras, (Pre)sheaves and Named
Sets. Higher-Order Symb. Computation 19 (2006), 283–304.

R. Harper. 2013. Practical Foundation for Programming Languages. Cambridge University Press.
J. M. E. Hyland and C.-H. L. Ong. 2000. On Full Abstraction for PCF: I, II and III. Information and Compu-

tation 163, 2 (2000), 285–408.
P. T. Johnstone. 2002. Sketches of an Elephant, A Topos Theory Compendium, Volumes 1 and 2. Number

43–44 in Oxford Logic Guides. Oxford University Press.
J. Laird. 2008. A Game Semantics of Names and Pointers. Annals of Pure and Applied Logic 151, 2 (2008),

151–169.
D. R. Licata and R. Harper. 2009. A Universe of Binding and Computation. In Proc. ICFP 2009. ACM, New

York, NY, USA, 123–134.
S. Lösch and A. M. Pitts. 2011. Relating Two Semantics of Locally Scoped Names. In Proc. CSL 2011, Vol. 12.

Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 396–411.
S. Lösch and A. M. Pitts. 2013. Full Abstraction for Nominal Scott Domains. In Proc. POPL 2013. ACM

Press, 3–14.
G. Markowsky. 1976. Chain-Complete Posets and Directed Sets with Applications. Algebra Universalis 6

(1976), 53–68.
E. Moggi. 1989. An Abstract View of Programming Languages. Technical Report ECS-LFCS-90-113. Depart-

ment of Computer Science, University of Edinburgh.
U. Montanari and M. Pistore. 2000. π-Calculus, Structured Coalgebras and Minimal HD-Automata. In Proc.

MFCS 2000 (LNCS), Vol. 1893. Springer-Verlag, 569–578.
A. S. Murawski and N. Tzevelekos. 2012. Algorithmic Games for Full Ground References. In Proc. ICALP

2012, Part II (LNCS), Vol. 7392. Springer-Verlag, 312–324.
M. Odersky. 1994. A Functional Theory of Local Names. In Proc. POPL 1994. ACM Press, 48–59.
D. L. Petrişan. 2011. Investigations into Algebra and Topology over Nominal Sets. Ph.D. Dissertation. De-

partment of Computer Science, University of Leicester.
A. M. Pitts. 2002. Operational Semantics and Program Equivalence. In Applied Semantics, Advanced Lec-

tures, International Summer School, APPSEM 2000, Caminha, Portugal, G. Barthe, P. Dybjer, and
J. Saraiva (Eds.). Lecture Notes in Computer Science, Tutorial, Vol. 2395. Springer-Verlag, 378–412.

A. M. Pitts. 2006. Alpha-Structural Recursion and Induction. Journal of the ACM 53 (2006), 459–506.
A. M. Pitts. 2011. Structural Recursion with Locally Scoped Names. Journal of Functional Programming

21, 3 (2011), 235–286.
A. M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoreti-

cal Computer Science, Vol. 57. Cambridge University Press.
A. M. Pitts and M. J. Gabbay. 2000. A Metalanguage for Programming with Bound Names Modulo Renam-

ing. In Proc. MPC 2000 (LNCS), Vol. 1837. Springer-Verlag, 230–255.
A. M. Pitts and I. D. B. Stark. 1993. Observable Properties of Higher Order Functions That Dynamically

Create Local Names, or: What’s new?. In Proc. MFCS 1993 (LNCS), Vol. 711. Springer-Verlag, 122–141.
G. D. Plotkin. 1977. LCF Considered as a Programming Language. Theoretical Computer Science 5 (1977),

223–255.

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

Denotational Semantics with Nominal Scott Domains XX:45

F. Pottier. 2007. Static Name Control for FreshML. In Proc. LICS 2007. IEEE Computer Society Press,
356–365.

O. Savary-Belanger, S. Monnier, and B. Pientka. 2013. Programming Type-Safe Transformations Using
Higher-Order Abstract Syntax. In Certified Programs and Proofs, G. Gonthier and M. Norrish (Eds.).
Lecture Notes in Computer Science, Vol. 8307. Springer-Verlag, 243–258.

D. S. Scott. 1982. Domains for Denotational Semantics. In Proc. ICALP 1982 (LNCS), Vol. 140. Springer-
Verlag, 577–610.

M. R. Shinwell. 2005. The Fresh Approach: Functional Programming with Names and Binders. Ph.D. Disser-
tation. University of Cambridge. Available as University of Cambridge Computer Laboratory Technical
Report UCAM-CL-TR-618.

M. R. Shinwell and A. M. Pitts. 2005. On a Monadic Semantics for Freshness. Theoretical Computer Science
342 (2005), 28–55.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. 2003. FreshML: Programming with Binders Made Simple. In
Proc. ICFP 2003. ACM Press, 263–274.

I. D. B. Stark. 1994. Names and Higher-Order Functions. Ph.D. Dissertation. University of Cambridge.
Available as University of Cambridge Computer Laboratory Technical Report Number UCAM-CL-TR-
363.

S. Staton. 2007. Name-Passing Process Calculi: Operational Models and Structural Operational Semantics.
Ph.D. Dissertation. University of Cambridge. Available as University of Cambridge Computer Labora-
tory Technical Report Number UCAM-CL-TR-688.

T. Streicher. 2006. Domain-Theoretic Foundations of Functional Programming. World Scientific, Singapore.
D. C. Turner. 2009. Nominal Domain Theory for Concurrency. Ph.D. Dissertation. University of Cambridge.

Available as University of Cambridge Computer Laboratory Technical Report UCAM-CL-TR-751.
D. C. Turner and G. Winskel. 2009. Nominal Domain Theory for Concurrency. In Proc. CSL 2009, E. Grädel

and R. Kahle (Eds.). Lecture Notes in Computer Science, Vol. 5771. Springer-Verlag, 546–560.
N. Tzevelekos. 2008. Nominal Game Semantics. Ph.D. Dissertation. University of Oxford. Available as Ox-

ford University Computing Laboratory Technical Report RR-09-18.
N. Tzevelekos. 2011. Fresh-Register Automata. In Proc. POPL 2011. ACM Press, 295–306.
N. Tzevelekos. 2012. Program Equivalence in a Simple Language with State. Computer Languages, Systems

and Structures 38, 2 (2012), 181–198.

Received August 2013; revised February 2014; accepted April 2014

Journal of the ACM, Vol. X, No. X, Article XX, Publication date: 2014.

