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Summary

Bayesian Methods for Spatial Proteomics
Oliver M. Crook

Proteins are biomolecules that govern the biochemical processes of the cell. Correct cellular
function, therefore, depends on correct protein function. For a protein to function as intended,
there need to be sufficient copies of that protein, it should be correctly folded into its tertiary
structure and ought to be in proximity of its interaction partners, amongst many other
requirements. For a protein to be in the proximity of its interaction partners, whether those be
other proteins, RNA or metabolites, it needs to be localised to the required compartment. Cells
from all organisms display sub-cellular compartmentalisation, though to vastly differing degrees.
E. coli, for example, has remarkably simple sub-cellular organisation, whilst the apicomplexan
Toxoplasma gondii has a vast number of specialised organelles.

In seminal experiments, Christian De Duve showed that upon biochemical fractionation of
the cell, proteins co-fractionated if they were localised to the same organelle. These experiments
led to the discovery of two organelles: the lysosome and the peroxisome, for which Christian De
Duve was awarded the Nobel prize. Upon the advent of mass-spectrometry, these experiments
were refashioned into high-throughput techniques with the development of Localisation of
Organelle Proteins by Isotope Tagging (LOPIT) and Protein Correlation Profiling (PCP).
Now these techniques have been redeveloped and a typical experiment can accurately measure
thousands of proteins per experiments, whilst also providing information on (at least) a dozen
subcellular compartments.

To analyse spatial proteomics data, they are first annotated with marker proteins, which
are proteins with a priori known unambiguous localisations. Typical analysis proceeds by
training a machine learning classifier to assigned proteins with unknown localisations to one of
the compartments based on the spatial proteomics data. However, this framework holds back
spatial proteomics from answering more complex questions. The first challenge is that proteins
are not necessarily localised to a single compartment and so there is uncertainty associating a
protein with an organelle. There is also uncertainty associated with the experiment itself, for
example, reproducing the biochemical fraction and the stochastic nature of mass spectrometric
quantitation. Two chapters of my thesis are dedicated to alleviating this problem by developing a
Bayesian model for spatial proteomics data, with dedicated software. These approaches perform
competitively with state-of-the-art classification algorithms whilst Markov-chain Monte Carlo
algorithms are employed to sample from the posterior distribution of localisation probabilities.
This is the basis for quantifying uncertainty in protein-organelle associations.

This Bayesian approach has several limitations, for example it still relies on marker proteins.
This precludes analysis of poorly annotated non-model organisms using spatial proteomics
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techniques. A chapter of my thesis is dedicated to this challenge with a motivating application
to the T. gondii sub-proteome. Following on from this in a separate chapter, I develop a
semi-supervised Bayesian model that reduces the reliance on marker proteins. The application
to T. gondii constitutes a massive knowledge expansion revealing localisation of thousands of
proteins to complex specialised niches. I also analyse the relative redundancy of the organelle
sub-proteomes and the selective pressure of the host-adaptive response, revealing previously
unknown insights.

The semi-supervised Bayesian approach makes use of the principle of over-fitted mixtures,
currently used for data clustering, by extending it to model spatial proteomics data. Reanalysis
of spatial proteomics data reveals new annotations in all datasets and allows interrogation
of previously overlooked organelles. Another limitation of the approaches, thus far, is the
parametric assumptions made by the Bayesian approach. One chapter is dedicated to placing
the analysis of spatial proteomics in the semi-supervised Bayesian non-parametric context.

In the final chapters of thesis, I summarise the modern questions that spatial proteomics
seeks to answer, including deciphering multi-localisation, change in localisation and the effect
of post-translation modifications on subcellular localisation. I carefully define these problems
and motivate further Bayesian models. I develop a Bayesian model to analyse differential
localisation experiments; that is, spatial proteomics concerned with changes in localisation.
This approach improves over currently ad-hoc methods applied to such data. I conclude with
the limitations of our approach and potential solutions to the other methods.
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Preface

The work presented in this thesis is either published or in preparation for submission to a
scientific journal. The details are:

• Chapter 2 is published in PLOS Computational Biology.

• Chapter 3 is published in F1000 Research.

• Chapter 4 is in press at Cell Host and Microbe.

• Chapter 5 is in press at PLOS Computational Biology.

• Chapter 6 is in review at The Annals of Applied Statistics.

• Chapter 7 is in preparation for a biological sciences journal and parts are published in
Proteomics.

A stylistic "we" is used throughout this thesis for the purpose of clarity.
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Chapter 1

Introduction

1.1 The post genomic era

The human genome was sequenced almost two decades ago, in what was a marvel for biological
sciences [255]. The human genome has illuminated our understanding of human development,
physiology, medicine and evolution. What followed is commonly referred to as the GWAS
(genome-wide association study)-era [148]. This period saw, one study after another, the link
between genetic variability and disease phenotype unravel [193]. However, these associations
tell us little of the function of the gene products of interest [447].

The number of proteoforms, specific molecular forms of a protein arising from a specific
gene product, vastly outnumber the number of genes because of alternative splicing and post-
translational modifications (PTMs) [3]. A major goal of biology is to determine the function of
all these proteoforms, though it is not clear that all of them are, in fact, functional. This task
is also complicated by the observation that each protein may carry out more than one function
- they moonlight [231]. Furthermore, whilst the genome is somewhat constant, proteomes can
differ from one cell to another even amongst the same cell type, there is tissue specific variability
and proteomes are not static with respect to time.

The desire for high-throughput deconvolution of protein function has led to intense
biotechnology development [20]. There are many lenses with which we can look at protein
function, for example via protein abundance, via protein interactions, via protein structure, via
subcellular localisation, via thermal stability. Each assay provides a different perspective on
the proteome, eventually allowing us to pinpoint protein function.

The central advancement of these biotechnologies is the invention of electrospray ionization
[127] and the Orbitrap mass analyzer [211], which celebrate their 31st and 21st anniversaries
at the time of writing. These advancements, along with others, spurred more interest in
proteomics [2]. Now a mainstay of the biological community, mass spectrometry-based
proteomics experiments can now measure thousands of proteoforms per experiment. These
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advancements allow highly sophisticated functional proteomic experiments [3]. Though, as with
the sequencing of the human genome, these advancements come with the challenging task of
how to analyse the resultant data.

1.2 Proteomics

Proteomics is the study of proteins on a system-wide scale. Practitioners of proteomics are
interested in all aspects of proteins and the deconvolution of protein complexity. Two-dimensional
gel electrophoresis was possibly the first technique that could be considered proteomics [347, 9].
Many original analyses used the transcriptome as a proxy for understanding the proteome
[179]. However, this provides an unsatisfactory picture because not all mRNA is translated,
proteins are degraded at different rates and there is an increasing appreciation for the role of
post-transcriptional regulation [23, 277].

There are many approaches to proteomics and proteins can be detected using immunoassays
or mass spectrometry. Other common techniques used by biochemists include enzyme-linked
immunosorbent assay (ELISA) [1], western blotting, reverse phase protein arrays (RPPA) and,
even earlier, the use of Edman degradation allowed proteins to be sequenced [260]. However,
mass spectrometry with the use of electrospray ionization and the Orbitrap coupled with nano
liquid chromatography has been a driving force in increasing the throughput of proteomics [20].

1.3 Mass spectrometry

At its core mass spectrometry is a method to measure the mass-to-charge ratio of ions. Typically,
the readout from a mass spectrometer is the mass spectrum - the intensity plotted as a function
of mass-to-charge ratio. Typically, ions are identified by comparing this mass spectrum to in
silico fragmentation patterns [268]. The analyte must first be ionized and in most biological
samples this is performed by electrospray ionization (ESI) [2].

The electrospray disperses the liquid analyte by generating an aerosol [128]. More precisely,
the electrospray emits a jet of liquid droplets, which are subject to high voltage. One can
usually observe the so-called Taylor cone - a cone of liquid at the edge of the electrospray
capillary. A fine jet of droplets emanates from the cone and the solvent rapidly evaporates.
This process causes the liquid droplets to become progressively more charged. Finally, a phase
transition occurs at the so-called Rayleigh limit (the theoretical maximum amount of charge a
liquid droplet can hold), at which the droplet dissociates leaving a stream of positively charged
ions [480].

In brief, the ions enter the mass spectrometer through a quadrupole [279]. Using oscillating
electric fields, only the ions in a certain mass-to-charge ratio range are passed through the system,
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which is comprised of a series of chambers in vacuum. After entering the mass spectrometer, ions
are transmitted, captured and fragmented in a variety of different devices including quadrupoles,
hexapoles and ion traps. In some mass-spectrometers, these ions then enter further chambers
one of which contains the Orbitrap [211]. The Orbitrap contains a spindle-like electrode which
holds the ions in orbital motions around the central spindle. This is due to the balancing of
the electrostatic attraction of the ions to the electrode with the inertia of the ions themselves.
Hence, the ions trace out elliptical trajectories around the electrode. Using electrostatics a
quadro-logarithmic potential is generated, resulting in the ions moving back and forth along the
central spindle. Viewed in three-dimensions, one would observe a helical like motion around the
central electrode [290]. This motion is harmonic and only depends on the ions mass-to-charge
ratio [290]. The angular frequency is governed by the well known equation ω =

√
k

m/z , where k
is the force constant of the potential. This process generates a waveform or image current that
can be measured. The Fourier transform of the image current can be converted into the mass
spectrum [295].

1.4 Mass-spectrometry based proteomics workflows

In a typical proteomics workflow the quantities of interest: proteins or proteoforms, are not
directly measured. Indeed, proteins are first proteolytically digested to peptides using an
enzyme. For example, a trypsin digest generally cleaves proteins at the C-terminal side of the
residues lysine and arginine, except when either is bound to a proline on their C-terminal side
[392]. Measurement of (semi)-tryptic peptides is a surrogate for the protein from which the
peptides have been derived. To perform peptide identification the peptides are first fragmented.
This ion fragmentation creates a series of nested fragments, the masses of which are measured
and search engines are employed to achieve identification [444, 48, 78].

For quantitative proteomics a number of different methods are used. In the label-free
strategy, commonly referred to as LFQ, peptide quantitation is given by the integral under the
spectral peak, which is assumed linearly proportional to the concentration of the protein in the
sample. For isobaric tagging methods such as tandem mass tags (TMT) peptides are tagged
using a chemical tag. Each tag is isobaric but the reporter group is sample specific. Thus,
when the tag is fragmented from the peptide inside the mass-spectrometer a unique reporter
ion signature is observed in the low m/z area of the mass spectrum. An in vivo strategy is to
use stable isotope labelling using amino acids in cell culture (SILAC). In this approach, cells
metabolically incorporate heavy or light amino acids from their growth media. Thus, in the
heavy sample all peptides are heavier, by a known amount, than their lighter counterparts.
This difference can be differentiated in a mass-spectrometer and the ratio of the peak intensities
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in the mass spectrum is assumed to reflect the abundance ratio for the two peptides. See
Pappireddi et al. [354] for a recent summary and review.

1.5 Spatial proteomics

Compartmentalisation and localisation are ways of life. Biological organisms display compart-
mentalisation in a multi-scale fashion. Humans have organs: the heart, for example, has several
chambers and each heart cell is subdivided into complex organelles and subcellular niches.
Proteins are distributed amongst these subcellular niches in accordance with their function.
Thus determining a protein’s subcellular localisation is a key part in the process of pinpointing
a protein’s function. Subcellular localisation can be studied either using imaging approaches or
mass spectrometry based methods, each of which can be further subdivided [286].

1.5.1 Fluorescent microscopy

Imaging based spatial proteomics are a set of methods that allow for the visualization of proteins
in situ [455]. These approaches do not require cell lysis and can obtain single cell information.
This allows the visualisation of cell-to-cell variability in protein subcellular localisation. The
visualisation of proteins themselves however is a daunting task, requiring either an antibody
to the target protein or by expressing a fluorescent protein fusion [72, 264]. The process
of generating antibodies and genetically modified proteins limits the throughput of imaging
approaches [286]. The process is time intensive and also expensive. There are also uncertainties
around the specificity of the antibody to the target protein - with frequent cross reactivity with
nuclear proteins observed [407, 430]. In all, imaging based approaches are useful, however they
will currently remain in low throughput. Lack of reproducibility in antibody-based localisation
has contributed to a reproducibility crisis [16].

1.5.2 Proximity labelling

Mass-spectrometry based spatial proteomics can be performed using proximity labelling [42].
Here, bait proteins are tagged with an enzyme, such as ascorbate peroxidase (APEX) [460] or a
biotin ligase (BioID) [398]. These enzymes catalyse the production of activated biotin, which
results in the biotinylation of accessible lyseine residues on proteins in close proximity. It is
also possible to use protein engineering to target the tagged protein to an organelle of interest.
In addition, the use of multiple baits can provide additional information and reduce false
positives [286]. Mass-spectrometry is used to identify the proteins with increased biotinylation
in comparison to the background. However, again the tagging may result in artefacts, the
information per bait is minimal, the method is low in throughput and relies on accessible lysines
in close proximity [460].
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1.5.3 Subcellular fractionation coupled to mass spectrometry

High-throughput mass spectrometry based methods that provide a holistic view of the spatial
proteome are possible by coupling subcellular fractionation with mass spectrometry [135, 118].
The key idea rests on observations made by Christian de Duve in a series of experiments
[100, 95, 97, 98]. De Duve developed the following technique. First, cells are gently lysed in
a fashion that maintains the integrity of the organelles. Then cellular content is fractionated
using centrifugation, with each fraction differentially enriched for different organelles. Using
this principle de Duve was able to localize enzymes to the cellular structure with which they
are associated, by correlating the relative enzyme enrichment with known organelle properties.
At the time this was performed by measuring the activity of the enzymes of interest in each
fraction. These experiments led de Duve to discover the lysosome and peroxisome, along with
cataloguing the properties of a large number of enzymes [96, 94, 99, 101].

Modern inceptions of this experiment begin in much the same way. After gentle cell lysis, the
cellular content is then fractionated using either density gradient centrifugation or differential
centrifugation. Depending on the experimental design, the fractions are then collected and
possibly multiplexed using isobaric labelling reagents [118]. These samples are then subject to
quantitative analysis using a mass spectrometer. This method can also be performed label-free
with the caveat of excessive missing values [135]. An overview of the approach is given in figure
1.1.

Whilst providing a cell-wide view and being high-throughput, this approach requires
extensive data analysis and relies on marker proteins with localisation known prior to any
experimentation [154]. This thesis will focus on the challenging task of statistical and machine
learning analysis of this flavour of spatial proteomics data. More detail on the experimental
approach is introduced throughout the thesis as it becomes necessary.
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Fig. 1.1 An overview of profiling spatial proteomics methods. (A) After gentle cell lysis, cellular
content is loaded onto a preformed iodixanol density gradient. The tube is then subject to
centrifugation, typically at 106g for 8 hours. After centrifugation organelles have migrated to
their buoyant densities and proteins localised to these organelles will be more abundant in that
part of the density gradient. (B) Discrete fractions are collected along the density gradient.
Proteins localised to the same organelle share characteristic distributions across the fractions.
(C) After multiplexing, fractions are analysed by mass-spectrometry. (D) Proteins with a priori
known localisation are annotated. Proteins from the same sub-cellular niche share the same
(median-centered) abundance profiles.
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1.6 Statistical inference

There is no one approach to statistical inference. Though likelihood and frequentist approaches
are straightforward and informative, they do have limitations. When we bring together different
datasets and desire the quantification of uncertainty the Bayesian paradigm is often more
amenable to answer the question of interest [232]. Furthermore, in the presence of many latent
variables the Bayesian framework offers a clear approach. The development of a generative
model for the data also allows tools for model criticism and simulation to be used [29]. The
thesis concerns itself mostly with the use of Bayesian tools to analyse spatial proteomics
data. Bayesian modelling and computation is revisited throughout this thesis for clarity and
completeness.

1.7 Thesis outline and contributions

The next two chapters of this thesis focus on the development of a Bayesian model for spatial
proteomics data. We revisit current approaches used to analyse the data and provide a thorough
background of Bayesian inference tools to lay the foundation for later chapters. We then develop
a Bayesian mixture model for analysing spatial proteomics data and demonstrate is utility
by comparing it with other methods. Reanalysis of a mouse stem cell dataset demonstrates
the information gain by employing a Bayesian model. The chapter ends by discussing some
limitations of the approach.

Chapter 3 discusses a software implementation of the method provided in chapter 2. We
provide a completely reproducible analysis of spatial proteomics data. A walk-through is
provided so that those not versed in Bayesian methodology can still use sophisticated methods
to analyse their data. Furthermore, we develop more visualisations and include more in depth
discussion on prior choices in our Bayesian model.

Chapter 4 applies our Bayesian model to a challenging spatial proteomics dataset on
Toxoplasma gondii. We introduce the cellular biology of T. gondii and why the organism is
important to study. We demonstrate that our Bayesian analysis of this dataset constitutes a
massive knowledge expansion. We map genomic features onto our spatial proteomics dataset
and reveal spatial heterogeneity in these features. We conclude with the limitations of our
analysis, laying the foundation for later chapters.

The limitations discussed in chapter 2,3 and 4 motivate further extensions of our original
model. One of these limitation is the reliance on annotation and markers. In chapter 5, we
develop a semi-supervised Bayesian model that can also uncover additional phenotypes within
the data without markers. This method relies on a technique called overfitted mixtures. This
opens up spatial proteomics to organisms that have little or no annotation.
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In chapter 6, we develop non-parametric Bayesian approaches and contrast these with
parametric alternatives presented in chapter 2. This chapter mostly focuses on the statistical
challenge of deriving a model that is closer to the mechanisms that generate the data. This
chapter also develops functional data analysis tools that are important for more advanced
models. We also introduce methods to alleviate computation in these complex models.

Having extensively discussed the allocation problem, we turn to the dynamic question:
which proteins change localisation upon perturbation of the subcellular environment? We
introduce the concept of differential localisation in chapter 7 and argue that these experiments
provide an opportunity to revolutionise our understanding of cell biology. Building on previous
chapters, we develop a semi-supervised integrative Bayesian mixture model and show that it
outperforms current ad-hoc approaches in the literature. We provide an extensive case study
on human cytomegalovirus infection.

We conclude by summarising the contributions of this thesis and outline research directions
for the future.



Chapter 2

A Bayesian mixture modelling
approach for spatial proteomics

This chapter introduces computational spatial proteomics and commonly used machine learning
algorithms that are applied to such data. We highlight the limitations of such machine learning
algorithms and present a new Bayesian model for spatial proteomics data. The material
presented here is an edited version of Crook et al. [83].

2.1 Motivation

2.1.1 Abstract

The analysis of the spatial sub-cellular distribution of proteins is of vital importance to fully
understand context-specific protein function. Some proteins can be found with a single location
within a cell, but up to half of proteins may reside in multiple locations, can dynamically
re-localise, or reside within a compartment of unknown function. These considerations lead to
uncertainty in associating a protein to a single location. Currently, mass spectrometry (MS)
based spatial proteomics relies on supervised machine learning algorithms to assign proteins to
sub-cellular locations based on common gradient profiles. However, such methods fail to quantify
uncertainty associated with sub-cellular class assignment. Here we reformulate the framework
on which we perform statistical analysis. We propose a Bayesian generative classifier based on
Gaussian mixture models to assign proteins probabilistically to sub-cellular niches, thus proteins
have a probability distribution over sub-cellular locations, with Bayesian computation performed
using the expectation-maximisation (EM) algorithm, as well as Markov-chain Monte-Carlo
(MCMC). Our methodology allows proteome-wide uncertainty quantification, thus adding a
further layer to the analysis of spatial proteomics. Our framework is flexible, allowing many
different systems to be analysed and reveals new modelling opportunities for spatial proteomics.
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We find our methods perform competitively with current state-of-the-art machine learning
methods, whilst simultaneously providing more information of biological significance. We
highlight several examples where classification based on the support vector machine is unable to
make any conclusions, while uncertainty quantification using our approach provides biologically
intriguing results. To our knowledge this is the first Bayesian model of MS-based spatial
proteomics data.

2.2 Introduction and literature review

Spatial proteomics is an interdisciplinary field studying the localisation of proteins on a large-
scale. Where a protein is localised in a cell is a fundamental question, since a protein must
be localised to its required sub-cellular compartment to interact with its binding partners
(for example, proteins, nucleic acids, metabolic substrates) and carry out its function [171].
Furthermore, mis-localisations of proteins are also critical to our understanding of biology, as
aberrant protein localisation has been implicated in many pathologies [350, 283, 259, 102, 69],
including cancer [240, 393, 257, 419] and obesity [423].

Sub-cellular localisations of proteins can be studied by high-throughput mass spectrometry
(MS) [154]. MS-based spatial proteomics experiments enable us to confidently determine the
sub-cellular localisation of thousands of proteins within in a cell [68], given the availability of
rigorous data analysis and interpretation [154].

In a typical MS-based spatial proteomics experiment, cells first undergo lysis in a fashion
which maintains the integrity of their organelles. The cell content is then separated using
a variety of methods, such as density separation [119, 68], differential centrifugation [220],
free-flow electrophoresis [356], or affinity purification [194]. In LOPIT [118, 119, 400] and
hyperLOPIT [68, 324], cell lysis is proceeded by separation of the content along a density
gradient. Organelles and macro-molecular complexes are thus characterised by density-specific
profiles along the gradient [98]. Discrete fractions along the continuous density gradient are
then collected, and quantitative protein profiles that match the organelle profiles along the
gradient, are measured using high accuracy mass spectrometry [324]. LOPIT-DC is a variant of
this workflow where sub-cellular compartments are fractions based on differential centrifugation
strategies [159].

The data are first visualised using principal component analysis (PCA) and known sub-
cellular compartments are annotated [45]. Supervised machine learning algorithms are then
typically employed to create classifiers that associate un-annotated proteins to specific organelles
[155], as well as semi-supervised methods that detect novel sub-cellular clusters using both
labelled and un-labelled features [43]. More recently, a state-of-the-art transfer learning (TL)
algorithm has been shown to improve the quantity and reliability of sub-cellular protein
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assignments [44]. Applications of such methods have led to organelle-specific localisation
information of proteins in plants [119], Drosophila [448], chicken [185], human cell lines [43],
mouse pluripotent embryonic stem cells [68] and cancer cell lines [455].

Classification methods which have previously been used include partial least squares
discriminate analysis [119], K nearest neighbours [181], random forests [349], naive Bayes
[341], neural networks [450] and the support vector machine amongst others (see [155] for an
overview). Although these methods have proved successful within the field, they have limitations.
Typically, such classifiers output an assignment of proteins to discrete pre-annotated sub-cellular
locations. However, it is important to note that half the proteome cannot be robustly assigned
to a single sub-cellular location [68, 455], which may be a manifestation of proteins in so far
uncharacterised organelles or proteins that are distributed amongst multiple locations. These
factors lead to uncertainty in the assignment of proteins to sub-cellular localisations, and thus
quantifying this uncertainty is of vital importance [246].

To allow us to quantify uncertainty, this chapter presents a probabilistic generative model
for MS-based spatial proteomics data. Our model posits that each annotated sub-cellular
niche can be modelled by a multivariate Gaussian distribution. Thus, the full complement of
annotated proteins is captured by a mixture of multivariate Gaussian distributions. With the
prior knowledge that many proteins are not captured by known sub-cellular niches, we augment
our model with an outlier component. Outliers are often dispersed and thus this additional
component is described by a heavy-tailed distribution: the multivariate Student’s t-distribution,
leading us to a T Augmented Gaussian Mixture model (TAGM).

Given our model and proteins with known location, we can probabilistically infer the
sub-cellular localisation of thousands of proteins. We can perform inference in our model by
finding maximum a posteriori (MAP) estimates of the parameters. This approach returns the
probability of each protein belonging to each annotated sub-cellular niche. These posterior
localisation probabilities can then be the basis for classification. In a more sophisticated, fully
Bayesian approach to uncertainty quantification, we can additionally infer the entire posterior
distribution of localisation probabilities. This allows the uncertainty in the parameters in our
model to be reflected in the posterior localisation probabilities. We perform this inference
using Markov-chain Monte-Carlo methods; in particular, we provide an efficient collapsed Gibbs
sampler to perform inference.

We perform a comprehensive comparison to state-of-the-art classifiers to demonstrate that
our method is reliable across 19 different spatial proteomics datasets and find that all classifiers
we considered perform competitively. To demonstrate the additional biological advantages our
method can provide, we apply our method to a hyperLOPIT dataset on mouse pluripotent
embryonic stem cells [68]. We consider several examples of proteins that were unable to be
assigned using traditional machine-learning classifiers and show that, by considering the full
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posterior distribution of localisation probabilities, we can draw meaningful biological results
and make powerful conclusions. We then turn our hand to a more global perspective, visualising
uncertainty quantification for over 5,000 proteins, simultaneously. This approach reveals global
patterns of protein organisation and their distribution across sub-cellular compartments.

We make extensive use of the R programming language [372] and existing MS and proteomics
packages [153, 156]. We are highly committed to creating open software tools for high quality
processing, visualisation, and analysis of spatial proteomics data. We build upon an already
extensive set of open software tools [156] as part of the Bioconductor project [166, 212] and
our methods are made available as part of this project. In chapter 3, we focus on the software
implementation of our method.

This chapter is organised as follows, we first introduce supervised machine-learning algorithms
with a particular focus on the those most applied in spatial proteomics: kernel methods and
the K-nearest neighbours algorithm. We then divert to mixture models, first in the context of
clustering, and their robust formulations. We proceed to provide the necessary background
on Bayesian inference; such that we can formulate Bayesian inference for mixture models.
Our methods end with the exposition of a semi-supervised robust Bayesian mixture model for
spatial proteomics data. This model is then compared with state-of-the-art approaches, before
a detailed case study on mouse pluripotent Embryonic Stem Cells (mESCs) is provided. We
conclude the chapter with the limitations of our approach.

2.3 Methods

2.3.1 Previous methods

Kernel Machines

The discussion henceforth follows excellent books by Cristianini et al. [80] and Schölkopf
et al. [409], the seminal text of Cortes and Vapnik [76], as well as the review of Smola and
Schölkopf [429]. Consider the scenario where we are given data that arise from two classes
{(x1, y1), ..., (xn, yn)} ⊂ X × {−1, 1}. Here X denotes the abstract space in which the input
data live and is typically a subset of Euclidean space. We also briefly restrict ourselves to cases
where the possible class labels yi are either −1 or 1. If there is a hyperplane that separates
these two classes, then there exists β, such that ∥β∥2 = 1, that satisfies yiβTxi > 0 for all i.
Indeed, β is a unit-normal vector to the hyperplane that partitions the two classes. Such a
hyperplane may not be unique and so we focus interest on the hyperplane that maximises the
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margin between the two classes. This can be formulated as the following optimisation problem:

max
β∈X ,M≥0

M

subject to: yixTi β ≥M, i = 1, ..., n.
(2.1)

The current assumption that there is a hyperplane separating the two classes is unlikely in
practice. In more realistic scenarios, we wish to replace the constraint with a penalty for
allowing xi to be on the wrong side of the margin boundary. A sensible choice of penalty is
equal to the distance over the boundary measured in units of M . Thus, the penalty has the
form 1− yixTi β/M . Now, instead of enforcing ∥β∥2 = 1, we can rescale such that ∥β∥2 = 1/M ,
which eliminates M from our objective function. Hence, we may write the penalty in following
form

arg min
β∈X

n∑
i=1

(1− yixTi β)+ + λ∥β∥22, (2.2)

where (.)+ denotes the positive part and λ is a free parameter. Note that we reformulated
maxβ∈X ,M≥0M as minβ∈X ∥β∥2. To allow hyperplanes that do not intersect the origin we can
replace xTi → (xi − b)T . Then, with minor algebraic manipulation, we may rewrite the penalty
as:

arg min
β∈X ,µ∈R

n∑
i=1

(1− yi(xTi β + µ))+ + λ∥β∥22. (2.3)

This is the typical objective function of the support vector machine; however, we wish to
generalise further using kernels.

Definition 1. A kernel k is a symmetric map k : X × X → R such that for all n ∈ N and all
x1, .., xn ∈ X the matrix K, with entries Kij = k(xi, xj) is positive semi-definite.

It is useful to note that linear combinations and pointwise products of kernels are also
kernels. Some examples of kernels include the following [435]:

Linear kernel: k(xi, xj) = xTi xj ,

Gaussian kernel: k(xi, xj) = exp
(
∥xi − xj∥22

σ2

)
,

Sobelev kernel: k(xi, xj) = min(xi, xj).

(2.4)

The following theorem identifies k with a feature map.

Theorem 1. For every kernel k there exists a feature map φ taking values in some inner
product space H such that k(xi, xj) = ⟨φ(xi), φ(xj)⟩.

The proof of this theorem is omitted for brevity, but the important insight is that φ(x) :
X → R is identified as φ(x) = k(·, x). The space H from theorem 1 can be studied in more
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detail. The completion of H (by adding the limits of all Cauchy sequences) makes H a Hilbert
space (a complete inner product space). Actually, H is more than a Hilbert space it is a
reproducing kernel Hilbert space (RKHS) [13].

Definition 2. A Hilbert space H of function f : X → R is a reproducing kernel Hilbert space
(RKHS) if for all x ∈ X , there exists kx ∈ H such that

f(x) = ⟨kx, f(x)⟩ for every f ∈ H. (2.5)

The function k : X × X → ⟨ defined by k(x, x′) = kx′(x) is called the reproducing kernel. A
reproducing kernel can be written as the inner product between two feature maps and so it
is a kernel. Furthermore, for any kernel k there is a unique RKHS with reproducing kernel k.
An illustrative example is the following, let H = {f : f(x) = xTβ, β ∈ Rp}. The norm on this
space is ∥f∥2H = ∥β∥22 and thus H is the RKHS corresponding to the linear kernel. Thus far,
we have overlooked the rather crucial consideration that optimisation of a loss function over H
could be a fruitless endeavour, because H is potentially infinite dimensional. It is the content
of the Representer theorem that overcomes this observation [242, 408].

Theorem 2. The Representer Theorem
Let c : {−1, 1}n×X n×Rn → R be a loss function, and let J : [0,∞)→ R be strictly increasing.
Let x1, .., xn ∈ X , y1, ..., yn ∈ {−1, 1}. Furthermore, let f ∈ H, where H is an RKHS with
reproducing kernel k, and let Kij = k(xi, xj). Then f̂ minimises:

R1(f) := c(y1, ..., yn, x1, ...., xn, f(x1), ..., f(xn)) + J(∥f∥2H) (2.6)

over f ∈ H if and only if f̂ =
∑n
i=1 α̂ik(·, xi) and α̂ ∈ R minimises the following over α ∈ Rn:

R2(α) := c(y1, ..., yn, x1, ...., xn,Kα) + J(αTKα). (2.7)

The proof of this theorem is omitted, but its implications are somewhat remarkable. Viewing
the Theorem in its reverse implication tells us that optimising R1 is not hopeless, since it
is equivalent to finding α̂i that optimise R2, which is a finite dimensional problem. This is
opposed to the infinite dimensional problem of optimising R1. Now returning to the objective
function of the SVM in equation 2.3, we observe that

(µ̂, f̂) = arg min
f∈H,µ∈R

n∑
i=1

(1− yi(f(xi) + µ))+ + λ∥f∥2H, (2.8)

where H is the RKHS corresponding to the linear kernel, is equivalent to this formulation. Now,
applying the Representer theorem generalises this to an arbitrary RKHS with kernel k with
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corresponding kernel matrix K, with the following objective function

(µ̂, α̂) = arg min
α∈Rn,µ∈R

n∑
i=1

(1− yi(KT
i α+ µ))+ + λαTKα. (2.9)

The objective function has a free parameter λ, typically referred to as the cost, and the Gaussian
Kernel (a popular kernel) has free parameter σ. The parameters are typically chosen using a
grid search and k-fold cross-validation. The score for an observation x is given by

n∑
i=1

α̂ik(x, xi) + µ̂, (2.10)

and the class is given by the sign of the score. Frequently, it is desired to obtained “probabilities”
from these scores. This is usually performed using logistic regression with scores as input and
maximum likelihood estimation is used for inference. The errors of the predictors are usually
assumed to follow a centred Laplace distribution. The process is often referred to as Platt
scaling or a variant thereof [365, 269].
To this point, we have only considered binary classification. To extend to the multi-class
situation, we use a one-vs-one schema. In this framework, a binary classifier is used pairwise
on the c(c−1)

2 classification problems, where c is the number of classes. A simple vote is used
to obtain the predicted class. To compute “probabilities” in the multi-class framework, we
use pairwise probabilities computed from the logistic regression approach previously described.
Thus, we have estimates of the pairwise class probabilities rij = p(y = i|y = i or y = j, x), but
we wish to obtain pi = p(y = i|x) for i = 1, ..., c. Though a number of approaches are available
(see Wu et al. [485]), we explain a popular approach which is frequently used because of its
stability [485]. Consider the following optimisation problem

min
p

1
2

c∑
i=1

∑
j:j ̸=i

(rjipi − rijpj)2,

subject to:
c∑
i=1

pi = 1, pi ≥ 0.
(2.11)

This can be re-formulated as

min
p

1
2p

TQp,

where Qij =
∑
s:s ̸=i

r2
si if i = j, otherwise Qij = rjirij ,

(2.12)

which is a classical linear-constrained convex quadratic programming problem [141]. A standard
approach is to use Lagrange multipliers to solve this problem; however, iterative methods
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are more frequently used because of improved numerical stability [141]. There are several
criticisms of this process. The first is that the SVM computes a hard margin and so the
scores do not contain information on probabilities distant from 0.5. Secondly, the obtained
probabilities are not necessarily consistent in the sense that the class which maximises the score
will not necessarily maximise the probability. Finally, the probabilities are not produced from a
generative probabilistic model and so calibration of the probabilities cannot be criticised from
predictive checks. Highly optimised libraries and software are available to implement SVMs
[238, 63].

K-Nearest Neighbours

The k-Nearest Neighbours (k-NN) algorithm, first proposed by Fix [134] and Cover and Hart
[77], is perhaps the simplest non-parametric classification approach. Suppose we are given data
of the form ((x1, y1), ..., (xn, yn)) ⊂ X ×{1, ..., c}, where we begin in the multi-class setting with
c possible classes. The k-nearest neighbour algorithm assigns a class to a data point using the
following procedure. Firstly, the k nearest neighbours are computed, where nearest is computed
with respected to a distance - usually the Euclidean distance. The class labels of these k nearest
neighbours are tallied and the most frequent class amongst the tally is the assigned class. The
first question to answer is: how to choose k? Firstly, it is preferred that k is odd, since this
avoids ties. Though ties can be overcome using random assignment [77]. Then, typically, a
grid search is employed and cross-validation used to select the k. Though we will not use this
approach here, for completeness we highlight another approach used to select k. Hall et al. [184]
derive conditions for the optimal choice of k, in the sense of minimising risk, for data obtained
from Poisson and Binomial models. The theory motivates using a bootstrapping procedure to
empirically select an optimal k.

As for the SVM, we frequently desire probabilities from the k-NN algorithm. Consider, the
following equation [223]

p(yi = j|xi) = 1
k

∑
l∈Ni

I(yl = j), (2.13)

where Ni denotes the indices of the k nearest neighbours to xi. The above provides a reasonable
probabilistic interpretation of k-NN algorithm. However, this formula results in most classes
receiving 0 probability and frequent ties. Alternatively, we could interpret the proportion of
neighbours as a non-parametric posterior probability. To avoid non-zero probabilities for classes,
we perform Laplace smoothing; that is, the posterior allocation probability is given by

p(zi = j|xi) = Nij + αdjc

k + αc
, (2.14)
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where Nij is the number of neighbours belonging to class j in the neighbourhood of xi, c
is the number of classes, K is the number of nearest neighbours (optimised through cross
validation) and dj is the incidence rate of each class in the training set. Finally, α > 0 is
the pseudo-count smoothing parameter. Motivated by a Bayesian interpretation of placing
a Jeffrey’s type Dirichlet prior over multinomial counts [232], it is typical to choose α = 0.5
[190, 462, 293].

Mixture models for clustering

For pedagogical reasons, we introduce mixture models in the unsupervised/clustering setting.
This allows us to seamlessly transition into mixture models for classification and lays the
foundation for the various types of semi-supervised mixture models introduced in later chapters.

The following material is well described in a number of articles, books and technical
reports (such as Banfield and Raftery [19], McLachlan and Basford [301], McLachlan and Peel
[303], Murphy [327], Scrucca et al. [412]). Finite mixture models are of the form,

p(x|π,θ) =
K∑
k=1

πkF (x|θk), (2.15)

where K is the number of mixture components, πk are the mixture proportions, and F (x|θk)
are the component densities. We assume each component density to have the same parametric
form, but with component-specific parameters, θk.

We suppose that we have a collection of n data points, X = {x1, . . . ,xn} that we seek to
model using Equation (2.15). We associate with each of these data points a latent component
indicator variable, zi ∈ {1, . . . ,K}, which indicates which component generated observation xi.
The likelihood of this model is then given by

p(X|π, θ) =
n∏
i=1

K∑
k=1

πkF (xi|θk) =
n∏
i=1

K∏
j=1

F (xi|θzi)I(zi=j). (2.16)

Though any likelihood is admissible in practice, we focus on the Gaussian case for clarity. In
the Gaussian case the form of F is given explicitly as:

F (xi|µk,Σk) = (2π)−(p/2) |Σk|−1/2 exp
{
−1

2(xi − µk)TΣ−1
k (xi − µk)

}
. (2.17)

To fit this model, one typically uses maximum likelihood estimation. However, the log-likelihood
in this scenario depends on the latent (unobserved) variables zi. The expectation-maximisation
(EM) algorithm is a general method for handling scenarios of this type and is guaranteed to
reach a local maximum [108, 302]. The expectation-maximisation algorithm iterates between
an expectation step, which is taken with respect to the latent variables and a maximisation
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step, seeking to maximise the log-likelihood with respect to the estimated values of the latent
variables. The algorithm iterates until the change in the log-likelihood is below some tolerance
threshold. The expectation-maximisation algorithm for the Gaussian mixture model is [302, 327]

• Expectation Step: Compute for every i = 1, ..., n and j = 1, ...,K

rij = πjF (xi|θj)∑K
k=1 πkF (xi|θk)

. (2.18)

• Maximisation Step:

πk =
∑n
i=1 rik∑K

j=1
∑n
i=1 rij

,

µk =
∑n
i=1 rijxi∑n
i=1 rik

,

Σk =
∑n
i=1 rij(xi − µk)T (xi − µk)∑n

i=1 rik
.

(2.19)

• Compute the log-likelihood Q(θt).

• Repeat for t→ t+ 1, until |Q(θt)−Q(θt−1)| < tolerance.

A standard issue with this approach is variance collapse [327]. This is when a mixture component
is centred exactly on a data point or data points are (nearly) collinear. The eigenvalues of the
covariance matrix then shrink to 0, causing the log-likelihood to increase indefinitely, as well
as leading to singular covariance matrices which causes estimation issues. One way to handle
variance collapse is to monitor the smallest eigenvalue of the covariance matrix of each mixture
component. If this value falls below a threshold then reset the covariance matrix to its initial
value [412]. However, if one is willing to move beyond the likelihood framework then there is
an alternative approach using priors, which we defer momentarily [412].
Until this point, we have assumed the number of components K is given. However, we may
wish to perform model selection on the number of components. We refrain from saying infer K,
because this assumes that K is random - whereas K is (currently) fixed. The typical approach to
selecting K, is to consider a number of different values for K and choose an “optimal” K using
the Bayesian Information Criterion (BIC) [411, 303]. The Bayesian information is so-called
because it approximates the Bayes factor under a flat prior [31]. The derivation requires a
Laplace approximation and application of the Weak Law of Large Numbers (WLLN) [31]. For
model based clustering the BIC is given by

BIC = 2 log p(x|θ̂,M)−m log(n), (2.20)
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where log p(x|θ̂,M) is the maximised log likelihood for the model and the data, m is the number
of parameters in model M and n is the number of data points. It is clear from the above
equation that as more parameters are introduced, such as the number of components, the
greater the penalty on the model.

To allow the inclusion of prior information and avoid problems associated with variance
collapse, we may instead adopt a Bayesian approach and introduce priors on the mixture
components. In the Gaussian case, a common and practical choice is the use of a normal-
inverse-Wishart prior. That is

µ|Σ ∼ N (µ0,Σ/λ0)

Σ ∼ IW(ν0, S0)

∝ |Σ|
ν0+d+1

2 exp
[
−1

2trace(Σ−1S−1
0 )

]
,

(2.21)

for each mixture component and where d is the dimension of the data. As a result, maximum
likelihood inference is replaced with maximum a posterori (MAP) inference. We do not derive
the update equations here as a more complex example is presented later. To complete this
discussion, we need to specify the hyperparameters. Fraley and Raftery [139] introduce diffusive
priors that make minimal assumptions about the data, but they are set semi-empirically as to
obtain the correct scale of the data. The hyperparameters are selected as follows

µ0 = 1
n

n∑
i=1

xi,

λ0 = 0.01,

ν0 = d+ 2,

S0 = (diag (var(X)))
K1/d .

(2.22)

Each hyperparameter is interpreted in the following way. The prior mean is the mean of the
data. Then λ0 is viewed as the number of observations with data µ0 which are added to each
component-specific mean. This value is small to avoid strong prior influence. The marginal
prior distribution (or prior predictive) for a component-specific mean µ is given by a student’s
t-distribution. This can be observed by recalling that the student’s t-distribution arises by
marginalisation of the covariance from a normal distribution. Now, to ensure this t-distribution
has finite covariance we require that ν0 > d+ 1. Thus, the choice presented here is the smallest
integer value of ν0 that ensures a finite covariance matrix. Hence, we have a well defined
t-distribution with heavy tails. The empirically chosen scale matrix S0 is chosen to roughly
partition the range of the data into K balls of equal size.
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Robust mixture models

Previously, we have assumed that our observations arise out of one of possibly c components/clusters.
However, some measurement errors may produce outliers that do not arise from any of these
clusters or require their own cluster. The covariance of a cluster can be artificially stretched to
accommodate these outliers - this leads to poor inference for the observations that do, in fact,
cluster. If these outliers require their own clusters, this can lead to numerical, estimation, and
interpretation problems. Neither of these considerations is satisfactory. A number of approaches
have been suggested in the literature and the first relies on the idea of spatial Poisson processes
[180].

Definition 3. Spatial Poisson process
Let B ⊂ Rn be a Borel measurable set. Let N(B) denote a point process confined to B. N(B)
is called a spatial Poisson process with intensity λ > 0 if

P (N(B) = n) = (λ|B|n)
n! exp (−λ|B|) , (2.23)

and for finite k ≥ 1, given disjoint Borel sets B1, ..., Bk, the number of points arising in N(Bi)
has distribution given by

P (N(Bi) = ni, i = 1, ..., k) =
k∏
i=1

(λ|Bi|ni )
ni!

exp (−λ|Bi|) . (2.24)

The mixture model can be reformulated, using spatial Poisson process:

p(x|π,θ) =
K∑
k=1

πkF (x|θk) + π0
V
, (2.25)

where V is the hypervolume of the data [19, 412]. An alternative approach, rather than relying
on a noise component to model the outliers, is to use a heavy tailed family in the in the
likelihood. For example a generalised Student’s t-distribution could be used and the modified
model becomes [358]

p(x|π,θ) =
K∑
k=1

πkG(x|θk), (2.26)

where G denotes the density corresponding to the t-distribution. The outliers in this scenario
are those that lie in low density regions of these components. However, Hennig et al. [197]
showed that neither of these approaches are breakdown-robust. Loosely, this means that a
sequence of points can be added to the data which can arbitrarily drive an estimator from its
original value [152, 149, 150]. For example the scale parameter of a component of a Gaussian
or Student’s t mixture can be driven towards 0. This sequence of points is what we colloquially
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refer to as outliers. Coretto and Hennig [75] proposed an alternative approach, which is to
introduce a pseudo-model where the noise component is an improper density :

p(x|π,θ) =
K∑
k=1

πkF (x|θk) + π0δ, (2.27)

where δ > 0. The parameter δ is not considered a formal parameter to be inferred, but a
tuning parameter that is to be set based on prior knowledge. Coretto and Hennig [75] suggest
a number of data-driven strategies to select δ. This approach, though displaying desirable
theoretical properties, requires a complex EM algorithm over a carefully constrained parameter
space and is sensitive to initialisation [75]. Furthermore, it fails to be a formal density and thus
cannot be used as a generative model [75]. Thus, the interpretation of this pseudo-model is
complex and a Bayesian interpretation, for uncertainty quantification, is impossible.

Bayesian mixture models

Thus far, we have discussed mixture models for clustering, their robust formulations and
methods to perform inference in these models. However, these approaches have all been
optimisation focused. If uncertainty quantification is desired then Bayesian inference is an
alternative approach, which is performed by obtaining samples from the posterior distribution
of the parameters and latent variables [164]. A number of approaches are available for Bayesian
inference in mixture models, notably Markov-chain Monte-Carlo (MCMC) [110, 294, 229],
variational inference (VI) [74, 330, 34], expectation-propagation (EP) [315, 314], amongst others
[112].

As the prevailing method in the literature, because of its well-studied theoretical properties
and relative ease of implementation, we focus on MCMC for Bayesian inference [173, 287, 10,
288, 151, 47]. We provide a brief interlude to discuss the key ideas of MCMC for Bayesian
inference (the text follows closely that of Andrieu et al. [10]). The goal of MCMC sampling is to
produce samples from the posterior distribution, generically written p(x|y). This is challenging
because it typically involves intractable integration problems. Markov-chain Monte-Carlo relies
on its namesake: the Monte-Carlo method [309].

The Monte-Carlo method seeks to produce samples {x(i)}Ni=1 from some target density T (x)
(usually, but not necessarily, a posterior distribution), where T (x) is defined in some space X .
These samples can then be used as an empirical estimator for the density:

pN (x) = 1
N

N∑
i=1

δx(i)(x), (2.28)
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where δx(i)(x) is the Dirac measure located at x(i). Then, one can approximate the intractable
integral of interest I(f) with finite sums IN (f) ([180]):

IN (f) = 1
N

N∑
i=1

f(x(i))→a.s I(f) =
∫

X
f(x)T (x) dx. (2.29)

By the strong law of large numbers (SLLN), the estimate IN (f) converges almost surely (a.s.)
to I(f) as N →∞. If we also assume that

σ2
f = ET (x)

[
f2(x)

]
− I2(f) <∞, (2.30)

then var(IN (f)) = σ2
f

N and a central limit theorem holds ([382, 180])

√
N(IN (f)− I(f))→d N (0, σ2

f ). (2.31)

For very few distributions is it simple to obtain samples from T (x). A number of sampling
algorithms are available, including rejection sampling [382], importance sampling [399, 168],
sequential importance sampling [275, 274], sequential Monte-Carlo samplers [105], as well
as auxiliary variable samplers such as slice sampling [334] and Hamiltonian Monte-Carlo
[115, 335, 28]. The latter will be introduced later in this thesis. For now, we focus on general
MCMC algorithms.

MCMC applies in the general setting where we are interested in some target T (x) from
which we cannot draw samples directly, but can evaluate up to some normalising constant. The
strategy of MCMC is to obtain samples x(i) from the target, whilst efficiently exploring the
state space X . The mechanism of the MCMC algorithm is a Markov-chain [180].

Definition 4. Let X be a measurable space and let K be a Markov kernel. A stochastic process
(Xn) on X is called a time homogeneous Markov-chain with Markov kernel K and initial
distribution µ if

P (X0 ∈ A0, ..., Xn ∈ An) =
∫
A0,...,An

K(xn−1|An)K(xn−2|xn−1)...µ(x0), (2.32)

for any n ∈ N and any measurable sets A0, ..., An.

We can think of the Markov kernel as how the Markov-chain transitions around the space.
The key result for Markov-chain theory is that if the kernel satisfies some technical conditions
(such as Harris recurrence) then they admit a unique stationary distribution, as well as desirable
convergence properties [396]:

p
(
x(i+1)

)
=
∫
p(x(i))K(x(i+1)|x(i)) dx(i). (2.33)
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Thus, if the Markov-chain is carefully constructed then the stationary distribution is the target
distribution from which we are interested in sampling [456]. Again, under technical assumptions,
Ergodic theorems and central limit theorems hold for these samples [449, 456, 22, 151, 160, 227,
311, 345, 383, 386, 384, 385, 388, 389, 395, 396, 406, 449]. Thus we can use {x(i)} to construct
Markov-chain Monte-Carlo estimators of the quantities of interest [456]. In Bayesian analysis
the target stationary distribution of the MCMC algorithm is the posterior distribution [456].

The challenge is to construct a valid Markov kernel with the desired properties. The elegance
of the Metropolis-Hastings algorithm is a generic method for construct valid Markov kernels
[310, 187, 382]. Let T (x) be the target distribution of interest and let q(x∗|x) be a proposal
distribution; that is, we sample a candidate value x∗ from q(|x). The Metropolis-Hastings step
of the Markov chain is to move to x∗ with the follow acceptance probability:

A(x, x∗) = min
{

1, T (x∗)q(x|x∗)
T (x)q(x∗|x)

}
, (2.34)

otherwise the Markov chain stays at x. A key insight is that for any proposal distribution the
Metropolis-Hastings transition kernel defines a valid Markov kernel:

KMH = A(x, x∗) · q(x∗|x) + r(x) · δx(x∗), (2.35)

where
r(x) =

∫
X
q(x∗|x)(1−A(x, x∗)) dx∗. (2.36)

We can see from the construction of the Metropolis-Hastings algorithm that it satisfies so-called
detailed balance:

T (x∗)KMH(x|x∗) = T (x)KMH(x∗|x) (2.37)

and this has stationary distribution (or formally invariant measure associated to) T (x). Technical
conditions such as aperiodicity and irreducibility ensure convergence of the algorithm [389].
Further technical arguments establish geometric ergodicity [228] and other convergence results
[227]. It is often useful to cycle through different kernels to explore different parts of the target
distribution in different ways or use mixtures of kernels to allow global and local moves through
the target [386, 388]. The choice of proposal distribution strongly affects how well the MH
algorithm mixes (how many effective samples are produced per unit time) [382]. The Gibbs
sampler is a special case of the MH for a particular choice of proposal [383].

Suppose we have access to the full conditional distributions p(xj |x−j) for j = 1, ..., n, where
xj denotes the jth co-ordinate of x and x−j denotes all but the jth co-ordinate. Then let the
proposal distribution of the Gibbs sampler be defined as follows, for j = 1, .., n

q(x∗|x(i)) = T (x∗
j |x

(i)
−j) if x(i)

−j = x∗
−j , (2.38)
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otherwise the proposal distribution is 0. Let us compute the acceptance probability

A(x(i), x∗) = min
{

1, T (x∗)q(x(i)|x∗)
T (x(i))q(x∗|x(i))

}

= min

1,
T (x∗)T (x(i)

j |x
(i)
−j)

T (x(i))T (x∗
j |x∗

−j)


= min

1,
T (x∗

j |x
(i)
−j)T (x(i)

−j)T (x(i)
j |x

(i)
−j)

T (x(i)
j |T (x(i)

−j))T (x(i)
−j)T (x∗

j |x∗
−j)


= min

1,
T (x∗

−j)

T (x(i)
−j)


= 1

(2.39)

Thus proposals from the Gibbs sampler are always accepted. In practice, when only some
conditional distributions are available in closed form, we can cycle between MH moves and
Gibbs moves.

We provide a brief review of Bayesian inference for finite mixture models (see, for example
[261, 110, 139] for more details). We recall that finite mixture models are of the form,

p(x|π,θ) =
K∑
k=1

πkF (x|θk), (2.40)

where K is the number of mixture components, πk are the mixture proportions, and F (x|θk)
are the component densities. We assume each component density to have the same parametric
form, but with component-specific parameters, θk. We denote the prior for these unknown
component parameters by G0(θ). We suppose that we have a collection of n data points,
X = {x1, . . . ,xn} that we seek to model using Equation (2.40). We associate with each of these
data points a component indicator variable, zi ∈ {1, . . . ,K}, which indicates which component
generated observation xi. Given the mixing proportions, the joint prior distribution of these
indicators is multinomial with parameter vector π = [π1, . . . , πK ],

P (z1, . . . , zn|π) =
K∏
k=1

πnk
k , (2.41)

where nk is the number of data points xi for which zi = k. If we assign the mixture proportions
a symmetric Dirichlet prior with concentration parameter α/K, then we may marginalise the
πk in order to yield the following joint distribution for the indicators [327],

P (z1, . . . , zn|α) = Γ(α)
Γ(n+ α)

K∏
i=1

Γ(ni + α/K)
Γ(α/K) . (2.42)
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For Gibbs sampling, we require the conditional priors for a single indicator, zi, given all of the
others, z−i. These are given by [327],

P (zi = k|z−i, α) = n−i,k + α/K

N − 1 + α
, (2.43)

where n−i,k is the number of observations, excluding xi, that are associated with component
k. If we are given the parameters, θk, associated with each of the components then we may
combine the above conditional priors with the likelihoods, F (xi|θk), in order to obtain the
conditional posterior:

P (zi = k|z−i) ∝
n−i,k + α/K

N − 1 + α
F (xi|θk). (2.44)

An alternative to integrating out the mixture proportions is to sample them directly from the
posterior, which leads to increased posterior variance [160, 60] but can be computationally
advantageous. Conjugacy of the Dirichlet prior and multinomial likelihood means that the
posterior distribution of the mixing proportions is also Dirichlet,

π|z1, ..., zn, α ∼ Dir(α/K + n1, ..., α/K + nK). (2.45)

In this situation the conditional posterior becomes

P (zi = k|π) ∝ πkF (xi|θk). (2.46)

If G0(θ) is conjugate for F (x|θk), then we perform Gibbs sampling for θk, otherwise we can
perform a MH move. In fact, in the case of conjugacy, we can go further and analytically
compute the following integral

G(x|H) =
∫
θk

F (x|θk)G0(θk|H) dθk. (2.47)

That is to say we have marginalised the parameters θk. In these cases, we do not need to
sample θk, but rather update prior hyperparameters at each iteration of the MCMC algorithm.
This is frequently referred to as collapsed Gibbs sampling [386].

2.3.2 Semi-supervised robust Bayesian mixture models

To summarise thus far, we have introduced mixture models for clustering, typical model fitting
and selection methods for mixture models, as well as robust methods. We have also provided a
primer on Bayesian inference, Markov-chain Monte-Carlo and Bayesian inference in mixture
models. The goal of this section is to introduce a mixture model, which is suitable for spatial
proteomics data. The first goal is to formulate a generative model so that we can perform
uncertainty quantification on quantities of interest. Mixture models are mostly used in the
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clustering paradigm, in our scenario we wish to classify proteins to organelles, using labelled
and unlabelled data, so our second goal is the development of a semi-supervised model. Finally,
the robust mixture model in equation 2.27 is a pseudo-model and includes an improper density.
This precludes a Bayesian interpretation and so we mimic this strategy whilst maintaining a
proper generative model.

We observe N protein profiles each of length L, corresponding to the number of quantified
fractions along the gradient density, including combining replicates. For i = 1, . . . , N , we denote
the profile of the i-th protein by xi = [x1i, . . . , xLi]. We suppose that there are K known
sub-cellular compartments to which each protein could localise (e.g. cytoplasm, endoplasmic
reticulum, mitochondria, . . . ). Henceforth, we refer to these K sub-cellular compartments as
components, and introduce component labels zi, so that zi = k if the i-th protein localises to
the k-th component. We denote by XL the set of proteins whose component labels are known,
and by XU the set of unlabelled proteins. If protein i is in XU , we desire the probability that
zi = k for each k = 1, . . . ,K. That is, for each unlabelled protein, we want the probability of
belonging to each component (given a model and the observed data).

We initially model the distribution of profiles associated with proteins that localise to the
k-th component as multivariate normal with mean vector µk and covariance matrix Σk, so that:

xi|zi = k ∼ N (µk,Σk). (2.48)

For any i, we define the prior probability of the i-th protein localising to the k-th component
to be p(zi = k) = πk. Letting θ = {µk,Σk}Kk=1 denote the set of all component mean and
covariance parameters, and π = {πk}Kk=1 denote the set of all mixture weights, it follows (from
the law of total probability) that:

p(xi|θ,π) =
K∑
k=1

πkf(xi|µk,Σk), (2.49)

where f(x|µ,Σ) denotes the density of the multivariate normal with mean vector µ and
covariance matrix Σ evaluated at x.

Equation (2.49) defines the previously introduced mixture model, which posits a generative
model for the data. Such models are useful for describing populations that are composed of a
number of distinct homogeneous subpopulations. In our case, we model the full complement of
measured proteins as being composed of K subpopulations, each corresponding to a different
organelle or sub-cellular compartment. The literature of mixture model applications to biology
is rich and some recent example include applications to retroviral integration sites [245], genome-
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wide associations studies [267], single-cell transcriptomics [280] and affinity purification MS
proteomics [66].

Though some proteins are well described as belonging to a single component, many proteins
multi-localise or might belong to uncharacterised organelles. In order to allow the model to
better account for these “outliers” that cannot be straightforwardly allocated to any single
known component, we extend it by introducing an additional “outlier component”. To do this,
we augment our model by introducing a further indicator latent variable φ. Each protein xi is
now described by an additional variable φi, with φi = 1 indicating that protein xi belongs to
a organelle derived component and φi = 0 indicating that protein xi is not well described by
these known components. This outlier component is modelled as a multivariate T distribution
with degrees of freedom κ, mean vector M, and scale matrix V . Thus equation (2.48) becomes

xi|zi = k, φi ∼ N (µk,Σk)φiT (κ,M , V )1−φi . (2.50)

Further let g(x|κ,M,V) denote the density of the multivariate T-distribution so that
Equation (2.49) becomes:

p(xi|θ,π, φi, κ,M, V ) =
K∑
k=1

πk
(
f(xi|µk,Σk)φig(xi|κ,M , V )1−φi

)
. (2.51)

For any i, we define the prior probability of the i-th protein belonging to the outlier
component as p(φi = 0) = ϵ.

We can then rewrite equation (2.51) in the following way (by marginalising φi):

p(xi|θ,π, κ, ϵ,M, V ) =
K∑
k=1

πk ((1− ϵ)(f(xi|µk,Σk) + ϵg(xi|κ,M , V )) . (2.52)

This mimics the strategy of Hennig et al. [197] (see equation 2.27), whilst remaining a proper
density. Indeed, ϵ can be inferred from the data and thus can be interpreted as a regular
parameter rather than a pseudo-parameter. Throughout we take κ = 4, M as the global
mean, and V as half the global variance of the data, including labelled and unlabelled proteins.
The reason for formulating the model as in equation (2.51) is because it leads to a flexible
modelling framework. Furthermore, φ has an elegant model selection interpretation, since it
decides whether xi is better modelled by the known components or the outlier component. It
is important to note that f and g could be replaced by many combinations of distributions and
thus could be valuable in modelling other datasets. The choice of parameters for the multivariate
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T-distribution was decided so that it mimicked a multivariate normal component with the same
mean and variance but with heavier tails to better capture dispersed proteins, which we refer
to as outlier proteins throughout the text. The variance of the multivariate T-distribution is
designed to be large such that is relatively flat when compared with multivariate Gaussian
distributions which describe annotated components. We refer back to the section on robust
mixture models for other strategies for modelling outliers in the literature.

2.3.3 Model fitting

We adopt a Bayesian approach toward inferring the unknown parameters, θ = {µk,Σk}Kk=1,
π = {πk}Kk=1, and ϵ of the mixture model presented in Equation (2.51). For π, we take a
conjugate symmetric Dirichlet prior with parameter β, so that π1, . . . , πK ∼ Dirichlet(β); and
for the component-specific parameters µk and Σk we take conjugate normal-inverse-Wishart
(NIW) priors with parameters {µ0, λ0, ν0, S0}, so that:

µk,Σk ∼ N
(

µk|µ0,
Σk

λ0

)
IW (Σk|ν0, S0) . (2.53)

We also place a conjugate Beta prior on ϵ with parameters u and v, so that ϵ ∼ B(u, v).
Allowing ϵ to be random allows us to infer the number of proteins that are better described by
an outlier component rather than any known component.

The full model, which we henceforth refer to as a T-augmented Gaussian Mixture model
(TAGM), can then be summarised by the plate diagram shown in Figure 2.1.

xi

zi

φi

π

ε

M

V

[K]

βu, v µk

[L]

Σ2
k

[LxL]

µ0 λ0 ν0 s0

N

K

Fig. 2.1 Plate diagram for TAGM model. This diagram specifies the conditional independencies
and parameters in our model [327].

To perform inference for the parameters, we make use of both the labelled and unlabelled
data. For the labelled data XL, since zi and φi are known for these proteins, we can update the
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parameters with their data analytically by exploiting conjugacy of the priors [see, for example,
162]. For the unlabelled data we do not have such information and so in the next sections we
explain how to make inferences of the latent variables.

2.3.4 Prediction of localisation of unlabelled proteins

Having obtained the posterior distribution of the model parameters analytically using, at first,
the labelled data only, we wish to predict the component to which each of the unlabelled
proteins belongs. The probability that a protein belongs to any of the K known components,
that is zi = k and φi = 1, is given by (see appendix A.1 for derivations):

p(φi = 1, zi = k|xi,θ,π, ϵ, κ,M, V ) = πk(1− ϵ)f(xi|µk,Σk)∑K
k=1 πk ((1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V ))

, (2.54)

whilst on the other hand,

p(φi = 0, zi = k|xi,θ,π, κ, ϵ,M, V ) = πkϵg(xi|κ,M, V )∑K
k=1 πk ((1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V ))

. (2.55)

Processing of the unlabelled data can be done by performing maximum a posteriori (MAP)
estimation for the parameters. However, this approach fails to account for the uncertainty in
the parameters, thus we additionally explore inferring the distribution over these parameters.

Maximum a posteriori prediction

We use the Expectation-Maximisation (EM) algorithm [108] to find maximum a posteriori
(MAP) estimates for the parameters [see, for example, 327]. To specify the parameters of the
prior distributions, we use the same choices as in the section on mixture modelling. By defining
the following quantities:

aik =p(zi = k, φi = 1|xi), bik = p(zi = k, φi = 0|xi)

wik =p(zi = k|xi) = aik + bik,

ak =
n∑
i=1

aik, a =
K∑
k=1

ak,

bk =
n∑
i=1

bik, b =
K∑
k=1

bk,

rk =
n∑
i=1

wik,

(2.56)
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we can compute

λk =λ0 + ak,

νk =ν0 + ak,

mk =akx̄k + λ0µ0
λk

,

S−1
k =S−1

0 + λ0ak
λk

(x̄k − µ0)T (x̄k − µ0) +
n∑
i=1

aik(xi − x̄k)T (xi − x̄k).

(2.57)

Then the parameters of the posterior mode are:

µ̂k =mk,

Σ̂k = 1
νk +D + 2S

−1
k .

(2.58)

We note if xi is a labelled protein then aik = 1 and these parameters can be updated without
difficulty. The above equation constitutes a backbone of the E-step of the EM algorithm, with
the entire algorithm specified by the following summary:

E-Step: Given the current parameters compute the values given by equations (2.56), with
formulae provided in equations (2.54) and (2.55).

M-Step: Compute
ϵ = u+ b− 1

(a+ b) + (u+ v)− 2 ,

and
πk = rk + βk − 1

N +
∑
βk −K

,

as well as
x̄k = 1

ak

(
n∑
i=i

aikxi

)
.

Finally, compute the MAP estimates given by equations (2.58). These estimates are then
used in the following iteration of the E-step. Denoting by Q the expected value of the log-
posterior and letting t denote the current iteration of the EM algorithm, we iterate until
|Q(θ|θt)−Q(θ|θt−1)| < δ for some pre-specified δ > 0. Once we have found MAP estimates
for the parameters θMAP , πMAP and ϵMAP we proceed to perform prediction. We plug the
MAP parameter estimates into Equation (2.54) in order to obtain the posterior probability of
protein i localising to component k, p(zi = k, φ = 1|xi,θMAP ,πMAP , ϵMAP , κ,M, V ). To make
a final assignment, we may allocate each protein according to the component that has maximal
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probability. A full technical derivation of the EM algorithm can be found in the appendix
(appendix A.1).

Uncertainty in the posterior localisation probabilities

The MAP approach described above provides us with a probabilistic assignment, p(zi = k, φ =
1|xi,θMAP ,πMAP , ϵMAP , κ,M, V ), of each unlabelled protein to each component. However,
it fails to account for the uncertainty in the parameters θ, π and ϵ. To address this, we can
sample parameters from the posterior distribution.

Let {θ(t),π(t), ϵ(t)}Tt=1 be a set of T sampled values for the parameters θ, π, ϵ, drawn from
the posterior. The assignment probabilities can then be summarised by the Monte-Carlo
average:

p(zi = k, φ = 1|xi, ϵ,M, V ) ≈ T−1
T∑
t=1

p(zi = k, φ = 1|xi,θ(t),π(t), ϵ(t), κ,M, V ).

Other summaries of the assignment probabilities can be determined in the usual ways to obtain,
for example, interval-estimates. We summarise interval-estimates using the 95% equi-tailed
interval, which is defined by the 0.025 and 0.975 quantiles of the distribution of assignment
probabilities, {p(zi = k, φ = 1|xi,θ(t),π(t), ϵ(t),M, V )}Tt=1.

Sampling parameter values in our model requires us to compute the required conditional
probabilities and then a straightforward Gibbs sampler can be used to sample in turn from
these conditionals. In addition, we can bypass sampling the parameters by exploiting the
conjugacy of our priors. By marginalising parameters in our model we can obtain an efficient
collapsed Gibbs sampler and therefore only sample the component allocation probabilities and
the outlier allocation probabilities. The derivations and required conditionals can be found in
the appendix (appendix A.2).

2.4 Comparisons

We first concern ourselves with the predictive qualities of our proposed approach. To compare
the classification performance of the two above learning schemes (MCMC and MAP estimation)
to the K-nearest neighbours (KNN) and the support vector machine (SVM) classifiers.

We use the following standard schema to assess the classification performance of all methods.
We split the marker sets for each experiment into a class-stratified training (80%) and test
(20%) partitions, with the separation formed at random. The true classes of the test profiles
are withheld from the classifier, whilst the algorithm is trained. The algorithm is then assessed
on its ability to predict the classes of the proteins in the test partition for generalisation
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accuracy. How each classifier is trained is specific to that classifier. The KNN and SVM
have hyperparameters optimised using 5-fold cross-validation. This 80/20 data stratification is
performed 100 times in order to produce 100 sets of macro-F1 [192] scores and class specific F1
scores [44]. The F1 score is the harmonic mean of the precision and recall, more precisely:

precision = tp

tp+ fp
, recall = tp

tp+ fn
.

tp denotes the number of true positives; fp the number of false positives and fn the number
of false negatives. Thus

F1 = 2× precision× recall
precision + recall .

High Macro F1 scores indicate that marker proteins in the test dataset are consistently correctly
assigned by the classifier. We note that accuracy alone is an inadequate measure of performance,
since it fails to quantify false positives and is not adjusted for baseline prediction.

However, a Bayesian generative classifier produces probabilistic assignment of observations
to classes. Thus, while the classifier may make an incorrect assignment it may do so with low
probability. The F1 score is unforgiving in this situation and will not use this information.
To measure this uncertainty, we introduce the quadratic loss (Brier Score) which allows us
to compare probabilistic assignments [176]. For these comparisons, we use the probabilistic
interpretations of the SVM and K-NN algorithm introduced in previous sections. The quadratic
loss is given by the following formula:

Q2 =
N∑
i=1
∥qi − pi∥22, (2.59)

where ∥·∥2 is the l2 norm and qi is the true classification vector and pi is a vector of predicted
assignments to each class. It is useful to note that the corresponding risk function is the mean
square error (MSE), which is the expected value of the quadratic loss.

It is desirable to compute these metrics not only for a single dataset but several, so that we
can see that the approach is robust across similar but varying experimental designs. For the
KNN algorithm, the number of nearest neighbours, is optimised via an additional internal 5-fold
cross-validation and the hyperparameters for the SVM, sigma and cost, are also optimised via
internal 5-fold cross validation [208].

We test our methods on the following datasets: Drosophila [448], chicken [185], mouse
pluripotent embryonic stem cells from [68] and [44], the human bone osteosarcoma epithelial
(U2-OS) cell line [455], the HeLa cell line of [220], the 3 HeLa cell lines from [202] and 10 primary
fibroblast datasets from [24]. These datasets represent a great variety of spatial proteomics
experiments across many different workflows.
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The two hyperLOPIT datasets on mouse pluripotent embryonic stem cells and the U-2 OS
cell line use TMT 10-plex labelling and contain the greatest number of proteins. Earlier LOPIT
experiments on the Drosophila and chicken use iTRAQ 4-plex labelling, whilst another LOPIT
mouse pluripotent embryonic stem cell dataset uses iTRAQ 8-plex. The datasets of [220] and
[202] employ a different methodology completely - separating cellular content using differential
centrifugation (as opposed to along a density-gradient). Furthermore, the methods use SILAC
rather than iTRAQ or TMT for labelling. The experiments of [202] were designed to explore
the functional role of AP-5 by coupling CRISPR-CAS9 knockouts with spatial proteomics
methods. We analysed all three datasets from [202], which includes a wild type HeLa cell line as
a control, as well as two CRISPR-CAS9 knockouts: AP5Z1-KO1 and AP5Z1-KO2 respectively.

In addition, we analyse the spatio-temporal proteomics experiments of [24], which uses
TMT-based MS quantification. This experiment explored infecting primary fibroblasts with
Human cytomegalovirus (HMCV) and the goal of these experiments was to explore the dynamic
perturbation of host proteins during infection, as well as the sub-cellular localisation of viral
proteins throught the HCMV life-cycle. They produced spatial maps at different time points:
24, 48, 72, 96, 120 hours post infection (hpi), as well as mock maps at these same time points to
serve as a control - this results in 10 different spatial proteomics maps.

In each case, a dataset specific marker list was used, which is curated specifically for the
each cell line. We removed “high-curvature ER” annotations from the HeLa dataset [220], as
well as the “ER Tubular”, “Nuclear pore complex” and “Peroxisome” annotations from the
HeLa CRISPR-CAS9 knockout experiments [202] as there are too few proteins to correctly
perform cross-validation. Table 2.1 summarises these datasets, including information about
number of quantified proteins, the workflow used and the number of fractions.

Figure 2.2 compares the Macro-F1 scores across the datasets for all classifiers and demonstrates
that no single classifier consistently outperforms any other across all datasets, with results being
highly consistent across all methods, as well as across datasets. We perform a pairwise unpaired
t-test with multiple testing correction applied using the Benjamini-Höchberg procedure [25] to
detect differences between classifier performance.

In the Drosophila dataset only the KNN algorithm outperforms the SVM at significance level
of 0.01, whilst no other significant differences exist between the classifiers. In the chicken DT40
dataset only the MCMC method outperforms the KNN classifier at significance level of 0.01,
no other significant conclusion can be drawn. In the mouse dataset the MAP based method
outperforms the MCMC method at significance level of 0.01, no other significant conclusions
can be drawn. In the HeLa dataset all classifiers are significantly different at a 0.01 level. These
differences may exist because the dataset does not fit well with our modelling assumptions; in
particular, this dataset set has been curated to have a class called “Large Protein Complex”,
which likely describes several sub-cellular structures. These might include nuclear compartments
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MS-based Spatial Proteomics datasets
Cell line or
organism

Workflow Labelling Fractions
(including
combined
replicates)

Proteins

Drosophila LOPIT iTRAQ 4 888
Chicken DT40 LOPIT iTRAQ 16 1090
Mouse pluripotent
E14TG2a stem
cell

HyperLOPIT TMT 20 5032

HeLa (Itzhak et
al.)

Organeller Maps SILAC 30 3766

HeLa (Hirst et al.) Organeller Maps SILAC 15 2046
U-2 OS cell line HyperLOPIT TMT 37 5020
Primary
Fibroblast

Spatio-Temporal
Methods

TMT 6 2196

E14TG2a
(Breckels et
al.)

LOPIT iTRAQ 8 2031

Table 2.1 Summary of spatial proteomics datasets used for comparisons

and ribosomes, as well as any cytosolic complex and large protein complexes which pellet during
the centrifugation conditions used to capture this mixed sub-cellular fraction. Moreover, the
cytosolic and nuclear fraction were processed separately leading to possible imbalance with
comparisons with other datasets. Thus, the large protein complexes component might be better
described as itself a mixture model or more detailed curation of these data may be required. We
do not consider further modelling of this dataset in this chapter. For the U-2 OS all classifiers
are significantly different at a significance level of 0.01 except for the SVM classifier and the
MCMC method, with the MAP method performing the best. Figure 2.2 shows that for this
dataset all classifiers are performing extremely well. In the three Hirst datasets the MAP
method significantly outperforms all other methods (p < 0.01), whilst in the wild type HeLa
and in the CRISPR-CAS9 KO1 there is no significant difference between the KNN and MCMC
method. In the CRISPR-CAS9 KO2 the MCMC method outperforms the SVM and KNN
methods (p < 0.01). In the interest of brevity, the remaining results for the t-tests can be found
in tables in appendix A.5.
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Fig. 2.2 Boxplots of the distributions of Macro F1 scores for all spatial proteomics datasets.
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The Macro-F1 scores do not take into account that whilst the TAGM model may misclassify,
it may do so with low confidence. We therefore additionally compute the quadratic loss, which
allows us to make use of the probabilistic information provided by the classifiers. The lower
the quadratic loss the closer the probabilistic prediction is to the true value. We plot the
distributions of quadratic losses for each classifier in figure 2.3. We observe highly consistent
performance across all classifiers across all datasets. Again, we perform a pairwise unpaired
t-test with multiple testing correction.

We find that in 16 out of 19 datasets (all of those except HeLa Wild type, HeLa KO1
and HeLa KO2) the MCMC methods achieves the lowest quadratic loss at a significance level
< 0.0001 over the SVM and KNN classifiers. In 6 out of these 16 datasets there is no significant
difference between the MCMC and the MAP methods. In the three Hirst datasets in which the
MCMC did not achieve the lowest quadratic loss, the SVM outperformed. However, in two
of these datasets (HeLa Wild type and KO1) the MAP method and SVM classifier were not
significantly different. In the Hirst KO2 dataset there were no significant differences between
the MAP and MCMC methods.

In the vast majority of cases, we observe that if the TAGM model, using the MCMC
methodology, makes an incorrect classification it does so with lower confidence than the SVM
classifier, the KNN classifier and the MAP based classifier, whilst if it is correct in its assertion
it does so with greater confidence. Additionally, a fully Bayesian methodology provides us with
not only point estimates of classification probabilities but uncertainty quantification in these
allocations, and we show in the following section that this provides deeper insights into protein
localisation. The lack of stability in the performance of the SVM might draw some concern.
A clear limitation of the SVM is the conversion of scores to probabilities. If this conversion
is unmerited then this results in poor downstream inferences. Indeed, we note that for the
more recent datasets, which usually have more annotated sub-cellular niches, the performance
is worse.
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Fig. 2.3 Boxplots of the distributions of Quadratic losses for all spatial proteomics datasets.
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Computing distributions of F1 scores and quadratic losses, which can only be done on the
marker proteins, can help us understand whether a classifier might have greater generalised
performance accuracy. However, we are interested in whether there is a large disagreement
between classifiers when prediction is performed on proteins for which we have no withheld
localisation information. This informs us about a systematic bias for a particular classifier or
whether a classifier ensemble could increase performance. To this end, we examine the SVM
and TAGM-MCMC results for the mESC dataset [68] more closely. To maintain a common
set of proteins, we set thresholds for each classifier in turn and compare to the other classifier
without thresholding. Firstly, we set a global threshold of 0.95 for the TAGM-MCMC and
then for these proteins plot a contingency table against the classification results from the SVM.
Secondly, we set a 5% FDR for the SVM and then for these proteins plot a contingency table
against the classification results from the TAGM-MCMC. We visualise the contingency tables
as heat plots in figure 2.4.
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Fig. 2.4 A heatmap representation of a contingency table, where we compare assignment results
for proteins with unknown protein localisation using the TAGM-MCMC and SVM on the
mESC dataset. The scale ranges from 0 to 1 with values indicating the proportion of assigned
proteins to that sub-cellular location. Values along the diagonal represent agreement between
classifiers whilst other values represent disagreement. The coherence between the classifiers is
very high. (a) In this case we set a probability threshold of 0.95 for the TAGM assignments
with no threshold for the SVM. (b) In this case we set a 5% FDR threshold for the SVM and
no threshold for the TAGM-MCMC.

In general, we see an extremely high level of coherence between the TAGM and the SVM,
with almost all proteins predicted to concordant sub-cellular compartments. Figure 2.4 shows
there is some disagreement between assigning proteins to the lysosome and plasma membrane,
to the cytosol and proteasome, and between the large and small ribosomal subunits. However,
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we have not used the uncertainty in the probabilistic assignments to produce the contingency
tables above. In the next sections, we explore examples of proteins with uncertainty in their
posterior localisation probabilities. Selecting biologically relevant thresholds is important for any
classifier and exploring uncertainty is of vital importance when drawing biological conclusions.

2.5 Case study: mouse pluripotent embryonic stem cells

Pluripotency is the ability of a cell to differentiate into multiple germ layers: the endoderm
(intestinal tract), mesoderm (muscle, bone, blood) and ectoderm (nervous system) [41, 428]. A
cell’s potency is toggled by molecular cues; such as, transcriptional regulation [62], epigenetic
imprints [353] and gene regulatory networks [132]. However, these processes are yet not fully
understood. mES cells are derived from blastocysts that then transition to differentiation to
become an ensemble of cell types [41]. Mounting evidence suggest a role for post-transcriptional
regulation of pluripotency [404, 51, 109, 420]. The path from self-renewal to differentiation
involves dramatic changes to the cell’s morphological features, implicating intracellular organisation
and compartmentalisation as key factors. Hence, the analysis of the spatial proteome of mESCs
is of paramount importance to understand the molecular basis for pluripotency.

Having establish that our method has excellent predictive performance on many data
datasets. We wish to model mouse pluripotent embryonic stem cell (E14TG2a) data [68] to
demonstrate our approach. This dataset contains quantitation data for 5032 proteins. This high-
resolution map was produced using the hyperLOPIT workflow [324], which uses a sophisticated
sub-cellular fractionation scheme. This fractionation scheme is made possible by the use of
Tandem Mass Tag (TMT) 10-plex and high accuracy TMT quantification was facilitated by
using a mass spectrometry approach that uses synchronous precursor selection MS3 (SPS-
MS3) [298], which reduces well documented issues with ratio distortion in isobaric multiplexed
quantitative proteomics [457]. The data resolves 14 sub-cellular niches with an additional
chromatin preparation resolving the nuclear chromatin and non-chromatin components. Two
biological replicates of the data are concatenated, each with 10 fractions along the density
gradient. We defined gold standard organelle markers as those with unambiguous single
annotation [155]. A protein marker list for the mESCs was manually curated using information
from the UniProt database, the Gene Ontology and the literature, as was performed in [68].
The following section applies our statistical methodology to these data and we explore the
results.

Maximum a posteriori prediction of protein localisation

We first derive MAP estimates for the model parameters of the TAGM model and use these
for prediction. Visualisation is important for data analysis and exploration. A simple way to
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visualise our model is to project probability ellipses onto a PCA plot, where the ellipse is obtained
by evaluating the multivariate Gaussian at θMAP and then projecting into PCA coordinates.
Note that this is different from the posterior distribution of the allocation probabilities which
will not, in general, be elliptical. Each ellipse contains a proportion of total probability of a
particular multivariate Gaussian density. The outer ellipse contains 99% of the total probability
whilst the middle and inner ellipses contain 95% and 90% of the probability respectively.
Visualising only the first two principal components can be misleading, since proteins can be
more (or less) separated in subsequent principal components. We visualise the first two principal
components along with the first and fourth principal components as a representative example.
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Fig. 2.5 (a) PCA plot of the 1st and 2nd principal components for the curated marker proteins
of the mouse stem cell data. The organelles are, in general, well separated. Though some
organelles overlap, they are separated along different principal components. The densities used
to produce the ellipses are derived from the MAP estimates. (b) Marker resolution along the
1st and 4th principal components show that the mitochondrion and peroxisome markers are
well resolved, despite overlapping in the 1st and 2nd component. We also see that the ER/Golgi
apparatus markers are better separated from the extracellular matrix markers.

We now apply the statistical methodology described in section 2.3.2, to predict the
localisation of proteins to organelles and sub-cellular components. In brief, we produce MAP
estimates of the parameters by using the expectation-maximisation algorithm, to form the basis
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of a Bayesian analysis (TAGM-MAP). We run the algorithm for 200 iterations and inspect a
plot of the log-posterior to assess convergence of the algorithm (see appendix A.3). We confirm
that the difference of the log posterior between the final two iterations is less than 10−6 and we
conclude that our algorithm has converged. The results can be seen in figure 2.6 (left), where
the posterior localisation probability is visualised by scaling the pointer for each protein.

Figure 2.6 (right) demonstrates a range of probabilistic assignments of proteins to organelles
and sub-cellular niches. We additionally consider a full, sampling-based Bayesian analysis
using Markov-chain Monte Carlo (MCMC) to characterise the uncertainty in the localisation
probabilities. As explained previously a collapsed Gibbs sampler is used to sample from the
posterior of localisation probabilities. The remainder of this chapter focuses on analysis of
spatial proteomics in this fully Bayesian framework.
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Fig. 2.6 PCA plot of the protein quantitation data with colours representing the predicted
class (5032 proteins) illustrating protein localisation predictions using TAGM-MAP (left) and
TAGM-MCMC (right) respectively. The pointer size of a protein is scaled to the probability
that particular protein was assigned to that organelle. Markers, proteins whose localisations
are already known, are automatically assigned a probability of 1 and the size of the pointer
reflects this.

Quantifying the uncertainty in the posterior localisation probabilities

This section applies the TAGM model to the mESC data, by considering the uncertainty in
the parameters and exploring how this uncertainty propagates to the uncertainty in protein
localisation prediction. In figure 2.7, we visualise the model as before using the first two principal
components along with the first and fourth principal component as a representative example.
For the TAGM model, we derive probability ellipses from the expected value (Monte-Carlo
estimator) of the posterior normal-inverse-Wishart (NIW) distribution.

We apply the statistical methodology detailed in section 2.3.2. Firstly, we perform posterior
computation in the Bayesian setting using standard MCMC methods (TAGM-MCMC). We run
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6 chains of our Gibbs sampler in parallel for 15, 000 iterations, throwing away the first 4, 000
iterations for burn-in and retain every 10th sample for thinning. Thus 1,100 sample are retained
from each chain. We then visualise the trace plots of our chains; in particular, we monitor the
number of proteins allocated to the known components (see appendix A.4). We discard 1 chain
because we do not consider it to have converged. For the remaining 5 chains, we further discard
the first 500 samples by visual inspection. We then have 600 retained samples from 5 separate
chains. For further analysis, we compute the Gelman-Rubin convergence diagnostic [163, 46],
which is computed as R̂ ≈ 1.05. Values of R̂ far from 1 indicate non-convergence and since our
statistic is less than 1.1, we conclude our chains have converged. The remaining samples are
then pooled to produce a single chain containing 3000 samples.

We produce point estimates of the posterior localisation probabilities by summarising
samples by their Monte-Carlo average. These summaries are then visualised in figure 2.6 (right
panel), where the pointer is scaled according to the localisation probabilities of the sub-cellular
niche with the largest posterior probability. Monte-Carlo based inference also provides us with
additional information; in particular, we can interrogate individual proteins and their posterior
probability distribution over sub-cellular locations.

Figure 2.8 illustrates a clear example of the importance of capturing uncertainty. The E3
ubiquitin-protein ligase TRIP12 (G5E870) is an integral part of ubiquitin fusion degradation
pathway and is a protein of great interest in cancer because it regulates DNA repair pathways.
The SVM failed to assign this protein to any location, with assignment to the 60S Ribosome
falling below a 5% FDR and the MAP estimate assigned the protein to the nucleus non-chromatin
with posterior probability < 0.95. The posterior distribution of localisation probabilities inferred
from the TAGM-MCMC model, shown in figure 2.8, demonstrates that this protein is most
probably localised to the nucleus non-chromatin. However, there is some uncertainty about
whether it localises to the 40S ribosome. This could suggest a dynamic role for this protein,
which could be further explored with a more targeted experiment.
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Fig. 2.7 (a) Probability ellipses produced from applying the MCMC method. The density is
derived from the expected value of the NIW distribution. (b) Probability ellipses visualised
along the 1st and 4th principal component, also from the MCMC method.
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Distribution of Subcellular Membership for Protein G5E870

Fig. 2.8 A violin plot visualising the posterior distribution of localisation probabilities of
protein E3 ubiquitin-protein ligase (G5E870) to organelles and sub-cellular niches. The most
probable localisation is nucleus non-chromatin, however there is uncertainty associated with
this assignment.
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Enrichment analysis of outlier proteins

In previous sections, we demonstrated that we can assign proteins probabilistically to sub-cellular
compartments and quantify the uncertainty in these assignments. Some proteins cannot be
well described as belonging to any annotated component and we model this using an additional
T-distribution outlier component (see Section 2.3.2).

It is biologically interesting to decipher what functional role proteins that are far away from
known components play. We perform an over-representation analysis (hyper-geometric test) of
gene ontology (GO) terms to asses the biological relevance of the outlier component [39, 489].
We take 1111 proteins that were allocated to known components with probability less than 0.95.
Note that these 1111 proteins exclude proteins that are likely to belong to a known location,
but we are uncertain about which localisation. We then perform enrichment analysis against
the set of all proteins quantified in the hyperLOPIT experiment. We search against the cellular
compartment, biological process and molecular function ontologies.

Supplementary figure A.3 shows this outlier component is enriched for cytoskeletal part (p <
10−7) and microtubule cytoskeleton (p < 10−7). Cytoskeleton proteins are found throughout
the cell and therefore we would expect them to be found in every fraction along the density
gradient, with no characteristic buoyant density. We also observe enrichment for highly dynamic
sub-cellular process such as cell division (p < 10−6) and cell cycle processes (p < 10−6), again
these proteins are unlikely to have steady-state locations within a single component. We also
see enrichment for molecular functions such as transferase activity (p < 0.005), another highly
dynamic process. These observations justify including an additional outlier component in our
mixture model, as these proteins are unlikely to be captured by any single component.
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Interpreting and exploring uncertainty

Protein sub-cellular localisation can be uncertain for a number of reasons. Technical variations
and unknown biological novelty, such as yet uncharacterised functional compartments, can be
some of the reasons why a protein might have an unknown or uncertain localisation. Furthermore
many proteins are known to reside in multiple locations with possibly different functional duties
in each location (referred to as moonlighting in the literature) [231]. With these considerations in
mind, it is pertinent to quantify the uncertainty in our allocation of proteins to organelles. This
section explores several situations where proteins display uncertain localisation and considers
the biological factors that influence uncertainty. We later explore and visualise whole proteome
uncertainty quantification.

Exportin 5 (Q924C1) forms part of the micro-RNA export machinery of the nucleus,
transporting miRNA from the nucleus to the cytoplasm for further processing. It then
translocates back through the nuclear pore complex to return to the nucleus. Exportin 5
can then continue to mediate further transport between nucleus and cytoplasm. The SVM
was unable to assign a localisation of Exportin 5, with its assignment falling below a 5%
FDR to wrongly assign this protein to the proteasome. This incorrect assertion by the SVM
was confounded by the similarity between the cytosol and proteasome profiles. Figure 2.9
demonstrates, according to the TAGM-MCMC model, that Exportin 5 most likely localises to
the cytosol but there is some uncertainty with this assignment. This uncertainty is reflected
in possible assignment of Exportin 5 to the nucleus non-chromatin and this uncertainty is a
manifestation of the fact that the function of this protein is to shuttle between the cytosol and
nucleus.

The Phenylalanine–tRNA ligase beta subunit protein (Q9WUA2) has an uncertain localisation
between the 40S ribosome and the nucleus non-chromatin demonstrated in figure 2.10. This
protein was left unclassified by the SVM because its score fell below a 5% FDR threshold to
assign it to the 40S ribosome. Considering that this protein is involved in the acylation of
transfer RNA (tRNA) with the amino acid phenylalanine to form tRNA–Phe to be used in
translation of proteins, it is therefore unsurprising that this protein’s stead-state location is
ribosomal. Whilst the SVM is unable to make an assignment, TAGM-MCMC is able to suggest
an assignment and quantify the uncertainty.

Relatively little is known about the Dedicator of cytokinesis (DOCK) protein 6 (Q8VDR9),
a guanine nucleotide exchange factor for CDC42 and RAC1 small GTPases. The SVM could
not assign localisation to the ER/Golgi, since its score fell below a 5% FDR. Furthermore,
the TAGM-MCMC model assigned this DOCK 6 to the outlier component with posterior
probability > 0.95. Figure 2.11 shows possible localisation to several components along the
secretory pathway. As an activator for CDC42 and RAC1 we may expect to see them with
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similar localisation. CDC42, a plasma membrane associated protein, regulates cell cycle and
division and is found with many localisations. Furthermore RAC1, a small GTPase, also
regulates many cellular processes and is found in many locations. Thus the steady-state
distribution of DOCK6 is unlikely to be in a single location, since its interaction partners are
found in many locations. This justifies including an outlier component in our model, else we
may erroneously assign such proteins to a single location.
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Distribution of Subcellular Membership for Protein Q924C1
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Fig. 2.9 Exportin 5 (Q924C1) showing localisation to the cytosol with some uncertainty about
association to the nucleus non-chromatin. (a) The violin plot shows uncertain localisation
between these two sub-cellular localisations. (b) The quantitative profile of this protein shows
mixed profile between the profiles of the organelle markers. (c) The density plot shows a
complex distribution over localisations for this protein. (d) The protein Q924C1 has steady-
state distribution between the cytosol and nucleus non-chromatin.
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Fig. 2.10 Phenylalanine-tRNA ligase beta subunit protein TRIP12 (Q9WUA2) showing
localisation to the 40S Ribosome with some uncertainty about association to the nucleus
non-chromatin. (a) The violin plot shows uncertain localisation between these two sub-cellular
localisations. (b) The quantitative profile of this protein shows mixed profile between the profiles
of the organelle markers. (c) The density plot shows a complex distribution over localisations
for this protein. (d) The protein Q9WUA2 has steady-state distribution skewed towards the
40S Ribosome and close to the nucleus non-chromatin.



50 A Bayesian mixture modelling approach for spatial proteomics

0.00

0.25

0.50

0.75

40
S

 R
ib

os
om

e

60
S

 R
ib

os
om

e

A
ct

in
 c

yt
os

ke
le

to
n

C
yt

os
ol

E
nd

op
la

sm
ic

 r
et

ic
ul

um
/G

ol
gi

 a
pp

ar
at

us

E
nd

os
om

e

E
xt

ra
ce

llu
la

r 
m

at
rix

Ly
so

so
m

e

M
ito

ch
on

dr
io

n

N
uc

le
us

 −
 C

hr
om

at
in

N
uc

le
us

 −
 N

on
−

ch
ro

m
at

in

P
er

ox
is

om
e

P
la

sm
a 

m
em

br
an

e

P
ro

te
as

om
e

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

Distribution of Subcellular Membership for Protein Q8VDR9

(a)

X
12

6.
re

p1

X
12

6.
re

p2

X
12

7N
.r

ep
2

X
12

7N
.r

ep
1

X
12

7C
.r

ep
2

X
12

7C
.r

ep
1

X
12

8N
.r

ep
2

X
12

8N
.r

ep
1

X
12

8C
.r

ep
2

X
12

8C
.r

ep
1

X
12

9N
.r

ep
2

X
12

9N
.r

ep
1

X
12

9C
.r

ep
1

X
12

9C
.r

ep
2

X
13

0N
.r

ep
2

X
13

0N
.r

ep
1

X
13

1.
re

p2

X
13

1.
re

p1

X
13

0C
.r

ep
1

X
13

0C
.r

ep
2

Profile of Protein Q8VDR9 with marker distributions 

Endoplasmic reticulum/Golgi apparatus
Extracellular matrix

(b)

0

1

2

0.00 0.25 0.50 0.75 1.00

Membership Probability

D
en

si
ty Organelle

Endoplasmic reticulum/Golgi apparatus

Extracellular matrix

Density plot of Subcellular Membership for Protein Q8VDR9

(c)

−6 −4 −2 0 2 4

−
4

−
2

0
2

4

PCA plot with Protein Q8VDR9 indicated

PC1 (48.41%)

P
C

2 
(2

3.
85

%
)

40S Ribosome
60S Ribosome
Actin cytoskeleton
Cytosol
Endoplasmic reticulum/Golgi apparatus
Endosome
Extracellular matrix
Lysosome
Mitochondrion
Nucleus − Chromatin
Nucleus − Non−chromatin
Peroxisome
Plasma membrane
Proteasome
unknown

Q8VDR9

(d)

Fig. 2.11 Q8VDR9 showing localisation to the outlier component. (a) The violin plot shows
uncertain localisation between several sub-cellular niches. (b) The quantitative profile of this
protein shows mixed profile between the profiles of the organelle markers. (c) The density plot
shows a similar localisation probabilities for both the ER/Golgi and Extracellular matrix. (d)
The protein Q8VDR9 has steady-state distribution in the centre of the plot skewed toward the
secretory pathway; in particular, the ER/Golgi and Extracellular matrix components.
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Visualising whole sub-cellular proteome uncertainty

The advantage of the TAGM-MCMC model is its ability to provide proteome wide uncertainty
quantification. Regions where organelle assignments overlap are areas where uncertainty is
expected to be the greatest, as well as areas with no dominant component. We take an
information theoretic approach to summarising uncertainty in protein localisation by computing
the Shannon entropy [415] for each Monte-Carlo sample t = 1, ..., T of the posterior localisation
probabilities of each protein

{
H(t) = −

K∑
k=1

p
(t)
ik log

(
p

(t)
ik

)}T
t=1

, (2.60)

where p(t)
ik denotes the posterior localisation probability of protein i to component k at

iteration t. We then summarise this as a Monte-Carlo averaged Shannon entropy. The greater
the Shannon entropy the more uncertainty associated with the assignment of this protein. The
lower the Shannon entropy the lower the uncertainty associated with the assignment of this
protein. In figure 2.12 panel (a), we visualise the Shannon entropy of each protein in a PCA
plot, by scaling the pointer in accordance to this metric. We also note that while localisation
probability (of a protein to its most probable location) and the Shannon entropy are correlated,
figure 2.12 panel (c), it is by no means perfect. Thus it is important to use both the localisation
probabilities and the uncertainty in these assignments to make conclusions.

Figure 2.12 demonstrates that the regions of highest uncertainty are those in regions where
organelles assignments overlap. The conclusions from this plot are manifold. Firstly, many
proteins are assigned unambiguously to sub-cellular localisations; that is, not only are some
proteins assigned to organelles with high probability but also with low uncertainty. Secondly,
there are well defined regions with high uncertainty, for example proteins in the secretory
pathway or proteins on the boundary between cytosol and proteasome. Finally, some organelles,
such as the mitochondria, are extremely well resolved. This observed uncertainty in the secretory
pathway and cytosol could be attributed to the dynamic nature of these parts of the cell with
numerous examples of proteins that traffic in and out of these sub-cellular compartments as
part of their biological role. Moreover, the organelles of the secretory pathway share similar and
overlapping physical properties making their separation from one another using biochemical
fractionation more challenging. Furthermore, there is a region located in the centre of the
plot where proteins simultaneously have low probability of belonging to any organelle and
high uncertainty in their localisation probability. This suggests that these proteins are poorly
described by any single location. These proteins could belong to multiple locations or belong
to undescribed sub-cellular compartments. The information displayed in these plots and the
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conclusion therein would be extremely challenging to obtain without the use of Bayesian
methodology.
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Fig. 2.12 PCA plots of the mouse pluripotent embryonic stem cell data, where each point
represents a protein and is coloured to its (probabilistically-)assigned organelle. (a) In this plot,
the pointer is scaled to the Shannon entropy of this protein, with larger pointers indicating
greater uncertainty. (b) In this plot, the pointer is scaled to the probability of that protein
belonging to its assigned organelle. (c) We plot the localisation probabilities against the
Shannon entropy with each protein.
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2.6 Discussion and limitations

This chapter introduced a Bayesian framework, based on Gaussian mixture models, for spatial
proteomics that can provide whole sub-cellular proteome uncertainty quantification on the
assignment of proteins to organelles. We have demonstrated that such information is invaluable.
Performing MAP inference using our generative model provides fast and straightforward
approach, which is vital for quality control and early data exploration.

Full sampling-based posterior inference using MCMC provides not only point estimates of
the posterior probability that a protein belongs to a particular sub-cellular niche, but uncertainty
in this assignment. Then, this uncertainty can be summarised in several ways, including, but
not limited to, equi-tailed credible intervals of the Monte-Carlo samples of posterior localisation
probabilities. Posterior distributions for individual proteins can then be rigorously interrogated
to shed light on their biological mechanisms; such as, transport, signalling and interactions.

As well as the local uncertainty seen by exploring individual proteins, we further explored
using a Monte-Carlo averaged Shannon entropy to visualise global uncertainty. Regions of high
uncertainty, as measured using this Shannon entropy, reflect highly dynamic regions of the
sub-cellular environment. Hence, biologists can now explore uncertainty at different levels and
then are able to make quantifiable conclusions and insights about their data. Furthermore, our
Bayesian model is interpretable and our inferences are fully conditional on our data, allowing
them to be easily modified with changing experimental design.

In addition, we produced competitive classifier performance to the state-of-the-art classifiers.
We considered two traditional machine-learning methods: the SVM and KNN classifiers; as
well as two classifiers based on our model: a MAP classifier and classification based on MCMC.
We compared all methods on 19 different spatial proteomics datasets, across four different
organisms. When considering the macro-F1 score as a performance metric, no single classifier
outperformed another across all datasets. However, using MCMC based inference our method
significantly outperforms the SVM and KNN classifiers with respect to the quadratic loss in 16
out of 19 datasets. This allows us to have greater confidence in our conclusions when they are
draw from our Bayesian inferences. Furthermore, using MCMC provides a wealth of additional
information, and so becomes the method of choice for analysing spatial proteomics data.

Analysis of a hyperLOPIT experiment applied to mouse pluripotent embryonic stem cells
demonstrated that the additional layer of information that our model provides is biologically
relevant and allows further avenues for additional exploration. Moreover, applying our method
to a biologically significant dataset now provides the scientific community with localisation
information on up to 4000 proteins for the mouse pluripotent stem cell proteome. Figure 2.13
demonstrates that from an initial input of roughly 1000 marker proteins with a priori known
location and 4000 proteins with unknown location, SVM and TAGM-MCMC can provide
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rigorous localisation information on roughly 2000 proteins. However, our methodology, by also
considering uncertainty, allows us to obtain information on another 1000 proteins. Thus, we have
augmented this dataset by providing uncertainty quantification on the localisation of proteins
to their sub-cellular niches, which had been previously unavailable. We note that our method
is general enough to be applied to many MS-based spatial proteomics protocols including:
LOPIT, hyperLOPIT, protein correlation profiling (PCP) [135], differential centrifugation
approaches and spatio-temporal proteomics methods. In our flexible software implementation,
all hyperparameters for the priors can be changed if users have precise priors they wish to
specify.
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Fig. 2.13 The barplot demonstrates the effect of applying different methodologies on protein
assignment when applied the mouse pluripotent embryonic stem cell data. Roughly 2000
proteins are classified using either SVM and TAGM-MCMC; however, TAGM-MCMC can draw
additional conclusions about an extra 1000 proteins by quantifying uncertainty.

We have also provided a new set of visualisation methods to accompany our model, which
allow us to easily interrogate our data. High quality visualisation tools are essential for rigorous
quality control and sound biological conclusions. The methods have been developed in the R
statistical programming language and we continue to contribute to the Bioconductor project
[166, 212] with inclusion of our methods within the pRoloc package (>= 1.21.1) [156]. The
underlying source code used to generate the results and figures of this chapter is available at
https://github.com/lgatto/2018-TAGM-paper. The details of our software implementation is
the content of the next chapter.

Currently, our model does not integrate localisation information from different data sources,
nor does it explicitly model proteins with multiple localisation. However, one (of many)

https://github.com/lgatto/2018-TAGM-paper
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biological explanations for the uncertainty that we model in the allocation probabilities is
provided by multiple localisation. Thus a protein with uncertain allocation to two sub-cellular
niches might, in reality, be resident in both. Further chapters explore different sources of
uncertainty in more detail.

There are a number of limitations of our approach. Analysis of the outlier component
suggests that there are perhaps un-annotated sub-cellular niches within the data. Analysis of
spatial proteomics data is heavily reliant of these marker annotations and these are not readily
variable for all sub-cellular niches. Furthermore, some organisms to which we wish to apply
spatial proteomics have extremely poor annotations. Thus, to enable spatial proteomics as a
powerful discovery tool, we need methods to simultaneously assign proteins to organelles and
detect un-annotated sub-cellular niches. This is the content of a later chapter.

One of the motivations of our model was that it needed to be robust to outliers. However,
robust mixture models in the frequentist literature rely on pseudo-models, which are not readily
translated into the Bayesian paradigm. Heavy-tailed mixture models and Poisson process based
outlier densities lack breakdown robustness properties. The presented model was motivated by
the pseudo-model in a way that was amenable to the Bayesian framework. However, we did not
characterise the theoretical breakdown robustness properties of our model. This would be a
substantial endeavour and it is not explored in this thesis.

The t-augmented Gaussian mixture model hints at a possible general strategy for mixture
models. Mixture models with mixed parametric components have been explored in the literature,
but mostly from the perspective of Bayesian model selection and testing [237]. The properties
of mixed-mixtures where the different parametric components arise from different families has
not been readily explored [292]. Perhaps the most interesting cases are where some parametric
components model deviant behaviour. For example, a heavy-tailed log-Gaussian component can
be included in a mixture of Gammas or, as we presented, a t-distribution amongst a mixture of
Gaussians. There is also scope for exploring discrete models, such as an over-dispersed negative
binomial component amongst a Poisson mixture. Characterising the behaviour of these models
with respect to robustness and model misspecification would be a further avenue to explore.



Chapter 3

A Bioconductor workflow for the
Bayesian analysis of spatial
proteomics

This chapter introduces software infrastructure for analysing spatial proteomics data, following
on from the methodology described in the previous chapter. Current software is not able to
provide bespoke Bayesian analysis for spatial proteomics data. Furthermore, it is unlikely that
many practitioners of spatial proteomics are versed in Bayesian analysis so we provide some
additional details for users. This is an edited version of Crook et al. [84] and there is significant
textual overlap.

3.1 Motivation

3.1.1 Abstract

Knowledge of the subcellular location of a protein gives valuable insight into its function.
The field of spatial proteomics has become increasingly popular due to improved multiplexing
capabilities in high-throughput mass spectrometry, which have made it possible to systematically
localise thousands of proteins per experiment. In parallel with these experimental advances,
improved methods for analysing spatial proteomics data have also been developed. In this
chapter, we demonstrate using “pRoloc” to perform Bayesian analysis of spatial proteomics
data. We detail the software infrastructure and then provide step-by-step guidance of the
analysis, including setting up a pipeline, assessing convergence, and interpreting downstream
results. In several places we provide additional details on Bayesian analysis to provide users
with a holistic view of Bayesian analysis for spatial proteomics data.
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3.2 Introduction and literature review

Determining the spatial subcellular distribution of proteins enables novel insight into protein
function [83]. Many proteins function within a single location within the cell; however, it
is estimated that up to half of the proteome is thought to reside in multiple locations,
with some of these undergoing dynamic relocalisation [455]. These phenomena lead to
variability and uncertainty in robustly assigning proteins to a unique localisation. Functional
compartmentalisation of proteins allows the cell to control biomolecular pathways and biochemical
processes within the cell. Therefore, proteins with multiple localisations may have multiple
functional roles [231]. Machine learning algorithms that fail to quantify uncertainty are unable
to draw deeper insight into understanding cell biology from mass spectrometry (MS)-based
spatial proteomics experiments. Hence, quantifying uncertainty allows us to make rigorous
assessments of protein subcellular localisation and multi-localisation.

For proteins to carry out their functional role they must be localised to the correct subcellular
compartment, ensuring the biochemical conditions for desired molecular interactions are met
[171]. Many pathologies, including cancer and obesity are characterised by protein mis-
localisations [350, 259, 283, 102, 69, 240, 393, 257, 419, 423]. High-throughput spatial proteomics
technologies have seen rapid improvement over the last decade and now a single experiment
can provide spatial information on thousands of proteins at once [119, 135, 68, 159]. As a
result of these spatial proteomics technologies many biological systems have been characterised
[119, 448, 43, 68, 455]. The popularity of such methods is now evident with many new studies
in recent years [68, 24, 222, 221, 307, 202, 91, 351, 339].

Mass spectrometry-based spatial proteomic experiments begin with the gentle lysis of a
population of cells in a fashion that maintains the integrity of the organelles. To separate
cellular content a variety of methods are available, including equilibrium gradient-density
separation [68, 324] or differential centrifugation [159]. For example, in hyperLOPIT [324] cell
lysis is followed by the separation of subcellular components along a continuous density gradient
based on their buoyant density. Discrete fractions along this gradient are then collected, and
protein distributions revealing organelle specific correlation profiles within the fractions are
achieved using high accuracy MS. Proteins from the dataset are then manually annotated with
well-documented single localisations curated from the literature, referred to as organelle markers
(see Gatto et al. [155]). A prediction model is then trained from these markers to create a
classifier, which assigns proteins with unknown localisation to a sub-cellular niche [155].

Bayesian approaches to machine learning and statistics can provide more insight, by
providing uncertainty quantification [162]. In a parametric Bayesian setting, a parametric
model is proposed, along with a statement about our prior beliefs of the model parameters.
Bayes’ theorem tells us how to update the prior distribution of the parameters to obtain the
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posterior distribution of the parameters after observing the data. It is the posterior distribution
which quantifies the uncertainty in the parameters. This contrasts from a maximum-likelihood
approach where we obtain only a point estimate of the parameters.

Adopting a Bayesian framework for data analysis, though of much interest to experimentalists,
can be challenging. Once we have specified a probabilistic model, computational approaches
are typically used to obtain the posterior distribution upon observation of the data. These
algorithms can have parameters that require tuning and a variety of settings, hindering their
practical use by those not familiar with Bayesian methodology. Even once the algorithms have
been correctly set-up, assessments of convergence and guidance on how to interpret the results
are often sparse. This chapter presents a Bayesian analysis of spatial proteomics to elucidate
the process for practitioners. Our workflow also provides a template for others interested in
designing tools for the biological community which rely on Bayesian inference.

Our model for the data is the t-augmented Gaussian mixture (TAGM) model proposed in
the previous chapter of this thesis. Chapter 2 provided a detailed description of the model,
rigorous comparisons and testing on many spatial proteomics datasets. In addition, we included
a case study of a hyperLOPIT experiment performed on mouse pluripotent stem cells [68, 324].
Revisiting these details of that chapter is not the purpose of this chapter; rather we present
how to correctly use the software and provide step-by-step guidance for interpreting the results.

As a brief reminder, the TAGM model posits that each annotated sub-cellular niche can be
modelled using a Gaussian distribution. Thus the full complement of proteins within the cell is
captured as a mixture of Gaussians. The highly dynamic nature of the cell means that many
proteins are not well captured by any of these multivariate Gaussian distributions, and thus the
model also includes an outlier component, which is mathematically described as a multivariate
student’s t distribution. The heavy tails of the t distribution allow it to better capture dispersed
proteins. The outlier component is included to avoid allocating proteins which are far from any
annotated subcellular niche. These proteins can be interpreted in multiple ways: they could be
part of an unannotated subcellular niche, they could reside in multiple locations, they could
have highly variable sub-cellular niches or they could have been poorly quantified.

There are two approaches to perform inference in the TAGM model. The first, which we
refer to as TAGM MAP, allows us to obtain maximum a posteriori estimates of posterior
localisation probabilities; that is, the modal posterior probability that a protein localises to that
class. This approach uses the expectation-maximisation (EM) algorithm to perform inference
[108]. Whilst this is an interpretable summary of the TAGM model, it only provides point
estimates. For a richer analysis, we also present a Markov-chain Monte-Carlo (MCMC) method
to perform fully Bayesian inference in our model, allowing us to obtain full posterior localisation
distributions. This method is referred to as TAGM MCMC throughout the text.
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This chapter begins with some details about the R programming language and the
Bioconductor project. We highlight some other workflows from which we draw inspiration.
From there we provide a brief review of some of the basic features of mass spectrometry-
based spatial proteomics data, including our state-of-the-art computational infrastructure and
bespoke software suite. We then present each method in turn, detailing how to obtain high
quality results. We provide an extended discussion of the TAGM MCMC method to highlight
some of the challenges that may arise when applying this method. This includes how to
assess convergence of MCMC methods, as well as methods for manipulating the output. We
then take the processed output and explain how to interpret the results, as well as providing
some tools for visualisation. We conclude with some remarks and directions for the future.
Source code for this chapter, including code used to generate tables and figures, is available on
[GitHub](https://github.com/ococrook/TAGMworkflow)

S4 Object Orientation in R

Object-oriented programming (OOP) is a programmatic paradigm with the idea of an “object”
taking the central role [317]. In class-based OOP languages objects are instances of classes
[317]. These classes determine the type of the object. Methods are recipes or procedures than
can be applied to particular classes. For example a “show” method, usually intended to produce
some short output, produces a different outcome depending on whether it applied to one object
or another. Object orientation is somewhat complex in R because it supports multiple OOP
frameworks. We refer to Wickham [478] for further details. The S3, S4 and R6 are the most
commonly used frameworks. R6, which we mention only briefly for completeness, works based
on the encapsulation paradigm and as such methods belong to objects not generics - that is
the data and methods are bundled together. Objects in R6 are mutable meaning that the
object’s state can be modified after it is created. On the other hand S3, the simplest OOP
system in R is informal and ad hoc. However, its flexibility makes it quite popular. In the S3
paradigm there is no formal definition of a class, whilst the S4 paradigm is far more formal.
Classes, generics and methods make use of precise defining functions and S4 also boasts the
slot - accessed via the subsetting operator @. Given we are building on a large body of code,
formality and robustness are desirable over flexibility - thus we opt for the S4 paradigm.

The Bioconductor Project and Workflows

The Bioconductor project [166, 212] is an open source and open development software project,
originally focused on the analysis of genomic data. The project is design to facilitate reproducible
and powerful statistical analysis of biological data. Bioconductor packages are required to
have a vignette (task-oriented documentation), unit testing and be written in S4. Packages
are required to not rebuild infrastructure or data types that can be meaningfully reused. A
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number of fields have substantial contributions from the Bioconductor project, include spatial
proteomics [45], microbiome data [55], single-cell RNA sequencing [285, 362], methylation arrays
[291], ChIP-seq data [284] and CyTOF data [344].

Workflows in Bayesian Analysis

Workflows in Bayesian analysis are sparse compared to those for biological tailored applications.
There are books with detailed code for example see McElreath [299]; however, these often
require substantial statistical knowledge and the application is not substantial. There are
papers on general good practise for Bayesian workflows [405, 147], though these usually focus
on the principal application of Bayesian analysis rather than the application itself. There is a
clear need for more workflows detailing analysis on specific applications.

3.3 Getting started and infrastructure

In this workflow chapter, we are using version 1.23.2 of pRoloc (Gatto, Breckels, et al. 2014b).
The package pRoloc contains algorithms and methods for analysing spatial proteomics data,
building on the MSnSet structure provided in MSnbase. The pRolocdata package provides
many annotated datasets from a variety of species and experimental procedures. The following
code chunks install and load the suite of packages require for the analysis.

if (!require("BiocManager"))

install.package("BiocManager")

BiocManager::install(c("pRoloc", "pRolocdata"))

library("pRoloc")

library("pRolocdata")

##

## This is pRolocdata version 1.22.0.

## Use ’pRolocdata()’ to list available data sets.

We assume that we have a MS-based spatial proteomics dataset contained in a MSnSet

structure. For information on how to import data, perform basic data processing, quality
control, supervised machine learning and transfer learning we refer the reader to [45]. Here, we
start by loading a spatial proteomics dataset on mouse E14TG2a embryonic stem cells [44].
The LOPIT protocol [118, 119] was used and the normalised intensity of proteins from eight
iTRAQ 8-plex labelled fraction are provided. The methods provided here are independent
of labelling procedure, fractionation process or workflow. Examples of valid experimental
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protocols are LOPIT [118], hyperLOPIT [68, 324], label-free methods such as PCP [135], and
when fractionation is perform by differential centrifugation [220, 159].

In the code chunk below, we load the aforementioned dataset. The printout demonstrates
that this experiment quantified 2031 proteins over 8 fractions.

data("E14TG2aR") # load experimental data

E14TG2aR

## MSnSet (storageMode: lockedEnvironment)

## assayData: 2031 features, 8 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: n113 n114 ... n121 (8 total)

## varLabels: Fraction.information

## varMetadata: labelDescription

## featureData

## featureNames: Q62261 Q9JHU4 ... Q9EQ93 (2031 total)

## fvarLabels: Uniprot.ID UniprotName ... markers (8 total)

## fvarMetadata: labelDescription

## experimentData: use ’experimentData(object)’

## Annotation:

## - - - Processing information - - -

## Loaded on Thu Jul 16 15:02:29 2015.

## Normalised to sum of intensities.

## Added markers from ’mrk’ marker vector. Thu Jul 16 15:02:29 2015

## MSnbase version: 1.17.12

In figure 3.1, we can visualise the mouse stem cell dataset use the plot2D function. We
observe that some of the organelle classes overlap and this is a typical feature of biological
datasets. Thus, it is vital to perform uncertainty quantification when analysing biological data.

plot2D(E14TG2aR)

addLegend(E14TG2aR, where = "topleft", cex = 0.6)
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Fig. 3.1 First two principal components of mouse stem cell data.

3.4 Methods: TAGM MAP

3.4.1 Introduction to TAGM MAP

We can use maximum a posteriori (MAP) estimation to perform Bayesian parameter estimation
for our model. The maximum a posteriori estimate is the mode of the posterior distribution
and can be used to provide a point estimate summary of the posterior localisation probabilities.
In contrast to TAGM MCMC (see later), it does not provide samples from the posterior
distribution, however it allows for faster inference by using an extended version of the expectation-
maximisation (EM) algorithm. The EM algorithm iterates between an expectation step and
a maximisation step. This allows us to find parameters which maximise the logarithm of the
posterior, in the presence of latent (unobserved) variables. The EM algorithm is guaranteed to
converge to a local mode. The code chunk below executes the tagmMapTrain function for a
default of 100 iterations. We use the default priors for simplicity and convenience, however
they can be changed, which we explain in a later section. The output is an object of class
MAPParams, that captures the details of the TAGM MAP model.

set.seed(2)

mappars <- tagmMapTrain(E14TG2aR)

## co-linearity detected; a small multiple of

## the identity was added to the covariance
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mappars

## Object of class "MAPParams"

## Method: MAP

Aside: collinearity

The previous code chunk outputs a message concerning data collinearity. This is because the
covariance matrix of the data has become ill-conditioned and as a result the inversion of this
matrix becomes unstable with floating point arithmetic. This can lead to the failure of standard
matrix algorithms upon which our method depends. In this case, it is standard practice to add
a small multiple of the identity to stabilise this matrix. The printed message is a statement
that this operation has been performed for these data.

3.4.2 Model visualisation

The results of the modelling can be visualised with the plotEllipse function on figure 3.2.
The outer ellipse contains 99% of the total probability whilst the middle and inner ellipses
contain 95% and 90% of the probability respectively. The centres of the clusters are represented
by black circumpunct (circled dot). We can also plot the model in other principal components.
The code chunk below plots the probability ellipses along the first and second, as well as the
fourth principal component. The user can change the components visualised by altering the
dims argument.

par(mfrow = c(1, 2))

plotEllipse(E14TG2aR, mappars)

plotEllipse(E14TG2aR, mappars, dims = c(1, 4))

3.4.3 The expectation-maximisation algorithm

The EM algorithm is iterative; that is, the algorithm iterates between an expectation step and
a maximisation step until the value of the log-posterior does not change [108]. This fact can be
used to assess the convergence of the EM algorithm. The value of the log-posterior at each
iteration can be accessed with the logPosteriors function on the MAPParams object. The code
chuck below plots the log posterior at each iteration and we see on figure 3.3 the algorithm
rapidly plateaus and so we have achieved convergence. If convergence has not been reached
during this time, we suggest increasing the number of iterations by changing the parameter
numIter in the tagmMapTrain method. In practice, it is not unexpected to observe small
fluctuations due to numerical errors and this should not concern users.
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Fig. 3.2 PCA plot with probability ellipses along PC 1 and 2 (left) and PC 1 and 4 (right). The
ellipses show the component-conditional densities obtained from the fitted model evaluated at
θMAP
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Fig. 3.3 Log-posterior at each iteration of the EM algorithm demonstrating convergence.

plot(logPosteriors(mappars), type = "b", col = "blue",

cex = 0.3, ylab = "log-posterior", xlab = "iteration")

The code chuck below uses the mappars object generated above, along with the E14RG2aR

dataset, to classify the proteins of unknown localisation using tagmPredict function. The
results of running tagmPredict are appended to the fData columns of the MSnSet.

E14TG2aR <- tagmPredict(E14TG2aR, mappars) # Predict protein localisation

The new feature variables that are generated are:

• tagm.map.allocation: the TAGM MAP predictions for the most probable protein
sub-cellular allocation.

table(fData(E14TG2aR)$tagm.map.allocation)

##

## 40S Ribosome 60S Ribosome Cytosol

## 34 85 328

## Endoplasmic reticulum Lysosome Mitochondrion

## 284 147 341

## Nucleus - Chromatin Nucleus - Nucleolus Plasma membrane
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## 143 322 326

## Proteasome

## 21

• tagm.map.probability: the posterior probability for the protein sub-cellular allocations.

summary(fData(E14TG2aR)$tagm.map.probability)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00000 0.06963 0.93943 0.63829 0.99934 1.00000

• tagm.map.outlier: the posterior probability for that protein to belong to the outlier
component rather than any annotated component.

summary(fData(E14TG2aR)$tagm.map.outlier)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0000000 0.0002363 0.0305487 0.3452624 0.9249810 1.0000000

We can visualise the results by scaling the pointer according to the posterior localisation
probabilities. To do this we extract the MAP localisation probabilities from the feature columns
of the the MSnSet and pass these to the plot2D function (figure 3.4).

ptsze <- fData(E14TG2aR)$tagm.map.probability # Scale pointer size

plot2D(E14TG2aR, fcol = "tagm.map.allocation", cex = ptsze)

addLegend(E14TG2aR, where = "topleft", cex = 0.6, fcol = "tagm.map.allocation")

The TAGM MAP method is easy to use and it is simple to check convergence, however it is
limited in that it can only provide point estimates of the posterior localisation distributions.
To obtain the full posterior distributions and therefore a rich analysis of the data, we use
Markov-Chain Monte-Carlo methods. In our particular case, we use a collapsed Gibbs sampler
[427].

3.5 Methods: TAGM MCMC a brief overview

The TAGM MCMC method allows a fully Bayesian analysis of spatial proteomics datasets.
It employs a collapsed Gibbs sampler to obtain samples from the posterior distribution of
localisation probabilities, providing a rich analysis of the data. This section demonstrates the
advantage of taking a Bayesian approach and the biological information that can be extracted
from this analysis.
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Fig. 3.4 TAGM MAP allocations, where the pointer is scaled according to the localisation
probability and coloured according to the most probable subcellular niche.

For those unfamiliar with Bayesian methodology, some of the key ideas for a more complete
understanding are as follows. Firstly, MCMC based inference contrasts with MAP based
inference in that it samples from the posterior distribution of localisation probabilities. Hence,
we do not just have a single estimate for each quantity but a distribution of estimates. MCMC
methods are a large class of algorithms used to sample from a probability distribution, in
our case the posterior distribution of the parameters (Gilks, Richardson, and Spiegelhalter
1995). Once we have sampled from the posterior distribution, we can estimate the mean of the
posterior distribution by simply taking the mean of the samples. In a similar fashion, we can
obtain estimates of other summaries of the posterior distribution.

A schematic of MCMC sampling is provided in figure 3.5 to aid understanding. Proteins,
coloured blue, are visualised along two variables of the data. Probability ellipses representing
contours of a probability distribution matching the distribution of the proteins are overlaid. We
now wish to obtain samples from this distribution. The MCMC algorithm is initialised with a
starting location, then at each iteration a new value is proposed. These proposed values are
either accepted or rejected (according to a carefully computed acceptance probability) and over
many iterations the algorithm converges and produces samples from the desired distribution.
Samples from this distribution are coloured in red in the schematic figure. A large portion of
the earlier samples may not reflect the true distribution, because the MCMC sampler has yet
to converge. These early samples are usually discarded and this is referred to as burn-in [173].
The next state of the algorithm depends on its current state and this leads to auto-correlation
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in the samples. To suppress this auto-correlation, we only retain every rth sample. This is
known as thinning. The details of burn-in and thinning are further explained in later sections.
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Fig. 3.5 A schematic figure of MCMC sampling. Proteins are coloured in blue and probability
ellipses are overlaid representing contours of a probability distribution matching the distribution
of the proteins. MCMC samples from this distribution are then coloured in red.

The TAGM MCMC method is computationally intensive and requires at least modest
processing power. Leaving the MCMC algorithm to run overnight on a modern desktop is
usually sufficient, however this, of course, depends on the particular dataset being analysed.
For guidance: it should not be expected that the analysis will finish in just a couple of hours
on a medium specification laptop, for example.
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To demonstrate the class structure and expected outputs of the TAGM MCMC method, we
run a brief analysis on a subset (400 randomly chosen proteins) of the tan2009r1 dataset from
the pRolocdata, purely for illustration. This is to provide a bare bones analysis of these data
without being held back by computational requirements. We perform a complete demonstration
and provide precise details of the analysis of the stem cell dataset considered above in the next
section.

set.seed(1)

data(tan2009r1)

tan2009r1 <- tan2009r1[sample(nrow(tan2009r1), 400), ]

The first step is to run a few MCMC chains (below we use only 2 chains) for a few iterations
(we specify 3 iterations in the below code, but typically we would suggest in the order of tens of
thousands; see for example the algorithms default settings by typing ?tagmMcmcTrain) using
the tagmMcmcTrain function. This function will generate a object of class MCMCParams.

p <- tagmMcmcTrain(object = tan2009r1, numIter = 3,

burnin = 1, thin = 1, numChains = 2)

p

## Object of class "MCMCParams"

## Method: TAGM.MCMC

## Number of chains: 2

Information for each MCMC chain is contained within the chains slot. If needed, this
information can be accessed manually. The function tagmMcmcProcess processes the MCMCParams

object and populates the summary slot.

p <- tagmMcmcProcess(p)

p

## Object of class "MCMCParams"

## Method: TAGM.MCMC

## Number of chains: 2

## Summary available

The summary slot has now been populated to include basic summaries of the MCMC
chains, such as organelle allocations and localisation probabilities. Protein information can
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be appended to the feature columns of the MSnSet by using the tagmPredict function, which
extracts the required information from the summary slot of the MCMCParams object.

res <- tagmPredict(object = tan2009r1, params = p)

We can now access new variables:

• tagm.mcmc.allocation: the TAGM MCMC prediction for the most likely protein sub-
cellular annotation.

table(fData(res)$tagm.mcmc.allocation)

##

## Cytoskeleton ER Golgi Lysosome mitochondrion

## 12 98 23 9 39

## Nucleus Peroxisome PM Proteasome Ribosome 40S Ribosome 60S

## 26 3 102 29 30 29

• tagm.mcmc.probability: the mean posterior probability for the protein sub-cellular
allocations.

summary(fData(res)$tagm.mcmc.probability)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.2972 0.8995 0.9901 0.9080 1.0000 1.0000

We can also access other useful summaries of the MCMC methods:

• tagm.mcmc.outlier the posterior probability for the protein to belong to the outlier
component.

• tagm.mcmc.probability.lowerquantile and tagm.mcmc.probability.upperquantile

are the lower and upper boundaries to the equi-tailed 95% credible interval of
tagm.mcmc.probability.

• tagm.mcmc.mean.shannon a Monte-Carlo averaged Shannon entropy, which is a measure
of uncertainty in the allocations.
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3.6 Methods: TAGM MCMC the details

This section explains how to manually manipulate the MCMC output of the TAGM model.
In the code chunk below, we load a pre-computed TAGM MCMC model. The data file
e14tagm.rda is available online1 and is not directly loaded into “pRoloc” due to its size. The
file itself if around 500mb, which is too large to load directly.

load("e14Tagm.rda")

The following code, which is not evaluated dynamically, was used to produce the tagmE14

MCMCParams object. We run the MCMC algorithm for 20,000 iterations with 10,000 iterations
discarded for burn-in. We then thin the chain by 20. We ran 6 chains in parallel and so
we obtain 500 samples for each of the 6 chains, totalling 3,000 samples. The resulting file is
assumed to be in our working directory.

e14Tagm <- tagmMcmcTrain(E14TG2aR,

numIter = 20000,

burnin = 10000,

thin = 20,

numChains = 6)

Manually inspecting the object, we see that it is a MCMCParams object with 6 chains.

e14Tagm

## Object of class "MCMCParams"

## Method: TAGM.MCMC

## Number of chains: 6

3.6.1 Data exploration and convergence diagnostics

Assessing whether or not an MCMC algorithm has converged is challenging. Assessing and
diagnosing convergence is an active area of research and throughout the 1990s many approaches
were proposed [169, 163, 387, 46] and these discussions have been refined in recent years (see
Vats and Knudson [466], Vehtari et al. [467]. We provide a more detailed exploration of this
issue, but readers should bear in mind that the methods provided below are diagnostics and
cannot guarantee convergence. We direct readers to several important works in the literature
discussing the assessment of convergence. Users that do not assess convergence and base their
downstream analysis on unconverged chains are likely to obtain poor quality results.

1https://drive.google.com/open?id=1zozntDhE6YZ-q8wjtQ-lxZ66EEszOGYi

https://drive.google.com/open?id=1zozntDhE6YZ-q8wjtQ-lxZ66EEszOGYi
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We first assess convergence using a parallel chains approach. We find producing multiple
chains is beneficial not only for computational advantages but also for analysis of convergence
of our chains. As with other authors, we suggest a minimum of 4 chains [467]. This is the
default setting in the software. However, in this workflow we run 6 chains to highlight some
challenges.

## Get number of chains

nChains <- length(e14Tagm)

nChains

## [1] 6

The following code chunks set up a manual convergence diagnostic check. We make use of
objects and methods in the package coda to perform this analysis [367]. Our function below
automatically coerces our objects into coda for ease of analysis. We first calculate the total
number of outliers at each iteration of each chain and, if the algorithm has converged, this
number should be the same (or very similar) across all 6 chains.

## Convergence diagnostic to see if we need to discard any

## iterations or entire chains: compute the number of outliers for

## each iteration for each chain

out <- mcmc_get_outliers(e14Tagm)

We can observe this from the trace plots and histograms for each MCMC chain (figure 3.6.
Unconverged chains should be discarded from downstream analysis.

## Using coda S3 objects to produce trace plots and histograms

for (i in seq_len(nChains))

plot(out[[i]], main = paste("Chain", i), auto.layout = FALSE, col = i)

Chains 3, 5 and 6 are centred around an average of 153, with rapid back and forth oscillations.
Chain 2 should be immediately discarded, since it has a large jump in the chain with clearly
skewed histogram. The other two chains oscillate differently with contrasting quantiles to the 3
chains (3, 5 and 6) that agree with one another, suggesting these chains have yet to converge.
We can use the coda package to produce summaries of our chains. Here is the coda summary
for the third chain.

https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=coda
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Fig. 3.6 Trace (left) and density (right) of the 6 MCMC chains. 500 iterations were subsampled
from the MCMC chains of 20,000 iterations
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## Chains average around 153 outliers

summary(out[[3]])

##

## Iterations = 1:500

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 500

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## 153.4520 14.0771 0.6295 0.6820

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## 127 144 153 162 183

Applying the Gelman diagnostic

So far, our analysis appears promising. Three of our chains are centred around an average of
153 outliers and there is no observed monotonicity in our output. However, for a more rigorous
and unbiased analysis of convergence we can calculate the Gelman diagnostic using the coda
package [163, 46]. This statistic is often referred to as R̂ or the potential scale reduction factor.
The idea of the Gelman diagnostics is to compare the inter and intra chain variances. The
ratio of these quantities should be close to one. A more detailed and in depth discussion can be
found in the references. The coda package also reports the 95% upper confidence interval of the
R̂ statistic. In this case, our samples are approximately normally distributed (see histograms
on the right in figure 3.6. The coda package allows for transformations to improve normality
of the data, and in some cases we set the transform argument to apply log transformation.
Gelman and Rubin [163] suggest that chains with R̂ value of less than 1.2 are likely to have
converged, though recent literature suggests considerably smaller values and a thredhold of
1.01 is likely to lead to more stable and reliable results [466, 467].

https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=coda
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gelman.diag(out, transform = FALSE)

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 1.14 1.32

gelman.diag(out[c(1, 3, 4, 5, 6)], transform = FALSE)

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 1.13 1.31

gelman.diag(out[c(3, 5)], transform = TRUE) # the upper C.I is 1.01

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 1 1.01

In all cases, we see that the Gelman diagnostic for convergence is < 1.2, but only in the final
case is it < 1.01. However, the upper confidence interval is 1.32 when all chains are used; 1.31
when chain 2 is removed and when chains 1, 2 and 4 are removed the upper confidence interval
is 1.01 indicating that the MCMC algorithm for chains 3, 5 and 6 might have converged.

We can also look at the Gelman diagnostics statistics for groups or pairs of chains. The first
line below computes the Gelman diagnostic across the first three chains, whereas the second
calculates the diagnostic between chain 3 and chain 5.

gelman.diag(out[1:3], transform = FALSE) # the upper C.I is 1.62

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 1.22 1.62

To assess another summary statistic, we can look at the mean component allocation at each
iteration of the MCMC algorithm and as before we produce trace plots of this quantity (figure
3.7).
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meanAlloc <- mcmc_get_meanComponent(e14Tagm)

for (i in seq_len(nChains))

plot(meanAlloc[[i]], main = paste("Chain", i), auto.layout = FALSE, col = i)

As before we can produce summaries of the data.

summary(meanAlloc[[1]])

##

## Iterations = 1:500

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 500

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## 5.686713 0.059112 0.002644 0.002644

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## 5.552 5.646 5.692 5.728 5.795

We already observed that there are some slight differences between these chains, which raises
suspicion that some of the chains may not have converged. For example each chain appears to
be centred around 5.7, but chains 2 and 4 have clear jumps in their trace plots. To be more
precise, we note the jump that occurs are between iteration 100-150 in chain 2 and between
iteration 200-250 in chain 4. For a more quantitative analysis, we again apply the Gelman
diagnostics to these summaries.

gelman.diag(meanAlloc)

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 1 1.01
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Fig. 3.7 Trace (left) and density (right) of the mean component allocation of the 6 MCMC
chains. 500 iterations were subsampled from the MCMC chains of 20,000 iterations.
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The above values are close to 1 and so there are no significant differences between the chains.
As observed previously, chains 2 and 4 look quite different from the other chains and so we
recalculate the diagnostic excluding these chains. The computed Gelman diagnostic below
suggest that chains 3, 5 and 6 have converged and that we should discard chains 1, 2 and 4
from further analysis.

gelman.diag(meanAlloc[c(3, 5, 6)])

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 1 1

For a further check, we can look at the mean outlier probability at each iteration of the MCMC
algorithm and again computing the Gelman diagnostics between chains 3, 5 and 6. An R̂

statistic of 1 is indicative of convergence, since it is less than the recommended value of 1.01.

meanoutProb <- mcmc_get_meanoutliersProb(e14Tagm)

gelman.diag(meanoutProb[c(3, 5, 6)])

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## [1,] 1 1.01

Applying the Geweke diagnostic

Along with the Gelman diagnostic, which uses parallel chains, we can also apply a single
chain analysis using the Geweke diagnostic [169]. The Geweke diagnostic tests to see whether
the mean calculated from the first 10% of iterations is significantly different from the mean
calculated from the last 50% of iterations. If they are significantly different, at say a level
0.01, then this is evidence that particular chains have not converged. The following code
chunk calculates the Geweke diagnostic for each chain on the summarising quantities we have
previously computed.

geweke_test(out)

## chain 1 chain 2 chain 3 chain 4 chain 5 chain 6

## z.value 0.5749775 8.816632e+00 0.470203 -0.3204500 -0.6270787 -0.7328168

## p.value 0.5653065 1.179541e-18 0.638210 0.7486272 0.5306076 0.4636702
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geweke_test(meanAlloc)

## chain 1 chain 2 chain 3 chain 4 chain 5 chain 6

## z.value 1.1952967 -3.3737051063 -1.2232102 2.48951993 0.3605882 -0.1358850

## p.value 0.2319711 0.0007416377 0.2212503 0.01279157 0.7184073 0.8919122

geweke_test(meanoutProb)

## chain 1 chain 2 chain 3 chain 4 chain 5 chain 6

## z.value 0.1785882 1.205500e+01 0.6189637 -0.5164987 -0.2141086 -0.02379004

## p.value 0.8582611 1.825379e-33 0.5359403 0.6055062 0.8304624 0.98102008

The first test suggests chain 2 has not converged, since the p-value is less than 10−10 suggesting
that the mean in the first 10% of iterations is significantly different from those in the final
50%. Moreover, the second test and third tests also suggest that chain 2 has not converged.
Furthermore, for the second test chain 4 has a marginally small p-value, providing further
evidence that this chain is of low quality. These convergence diagnostics are not limited to the
quantities we have computed here and further diagnostics can be performed on any summary
of the data.

An important question to consider is whether removing an early portion of the chain might
lead to an improvement of the convergence diagnostics. This might be particularly relevant
if a chain converges some iterations after our originally specified burn-in. For example, let
us take the second Geweke test above, which suggested chains 2 and 4 had not converged
and see if discarding the initial 10% of the chain improves the statistic. The function below
removes 50 samples, known as burn-in, from the beginning of each chain and the output shows
that we now have 450 samples in each chain. In practice, as 2 chains are sufficient for good
posterior estimates and convergence we could simply discard chains 2 and 4 and proceed with
downstream analysis with the remaining chains.

burn_e14Tagm <- mcmc_burn_chains(e14Tagm, 50)

chains(burn_e14Tagm)

## Object of class "MCMCChains"

## Number of chains: 6

chains(burn_e14Tagm)[[4]]
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## Object of class "MCMCChain"

## Number of components: 10

## Number of proteins: 1663

## Number of iterations: 450

The following function recomputes the number of outliers in each chain at each iteration of
each Markov-chain.

out2 <- mcmc_get_outliers(burn_e14Tagm)

The code chunk below computes the Geweke diagnostic for this new truncated chain and
demonstrates that chain 4 has an improved Geweke diagnostic, whilst chain 2 does not. Thus,
in practice, it may be useful to remove iterations from the beginning of the chain. However, as
chain 4 did not pass the Gelman diagnostics we still discard it from downstream analysis.

geweke_test(out2)

## chain 1 chain 2 chain 3 chain 4 chain 5 chain 6

## z.value -0.1455345 6.379618e+00 -1.6392215 0.3836940 0.1241201 0.6654703

## p.value 0.8842889 1.775298e-10 0.1011671 0.7012053 0.9012202 0.5057497

In this section, we have highlighted that assessing convergence is an essential part of Bayesian
analysis. As well as the summaries considered here, we recommend that users assess other
posterior summaries of the data. Since the best practices for assessing convergence also change
overtime, we also suggest searching the literature for current consensus.

3.6.2 Processing converged chains

Having made an assessment of convergence, we decide to discard chains 1, 2 and 4 from any
further analysis. The code chunk below removes these chains and creates a new object to store
the converged chains.

removeChain <- c(1, 2, 4) # The chains to be removed

e14Tagm_converged <- e14Tagm[-removeChain] # Create new object

The MCMCParams object can be large and therefore if we have a large number of samples
we may want to subsample our chain, known as thinning, to reduce the number of samples.
Thinning also has another purpose. We may desire independent samples from our posterior
distribution but the MCMC algorithm produces auto-correlated samples. Thinning can be
applied to reduce the auto-correlation between samples. The code chunk below, which is not
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evaluated, demonstrates retaining every 5th iteration. Recall that we thinned by 20 when we
first ran the MCMC algorithm.

e14Tagm_converged_thinned <- mcmc_thin_chains(e14Tagm_converged, freq = 5)

We initially ran 6 chains and, after having made an assessment of convergence, we decided
to discard 3 of the chains. We desire to make inference using samples from all 3 chains, since
this leads to better posterior estimates. In their current class structure all the chains are stored
separately, so the following function pools all sample for all chains together to make a single
longer chain with all samplers. Pooling a mixture of converged and unconverged chains is likely
to lead to poor quality results so should be done with care.

e14Tagm_converged_pooled <- mcmc_pool_chains(e14Tagm_converged)

e14Tagm_converged_pooled

## Object of class "MCMCParams"

## Method: TAGM.MCMC

## Number of chains: 1

e14Tagm_converged_pooled[[1]]

## Object of class "MCMCChain"

## Number of components: 10

## Number of proteins: 1663

## Number of iterations: 1500

To populate the summary slot of the converged and pooled chain, we can use the tagmMcmcProcess

function. As we can see from the object below a summary is now available. The information
now available in the summary slot was detailed in the previous section. We note that if there
is more than 1 chain in the MCMCParams object then the chains are automatically pooled to
compute the summaries.

e14Tagm_converged_pooled <- tagmMcmcProcess(e14Tagm_converged_pooled)

e14Tagm_converged_pooled

## Object of class "MCMCParams"

## Method: TAGM.MCMC

## Number of chains: 1

## Summary available
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To create new feature columns in the MSnSet and append the summary information, we apply the
tagmPredict function. The probJoint argument indicates whether or not to add probabilistic
information for all organelles for all proteins, rather than just the information for the most
probable organelle. The outlier probabilities are also returned by default, but users can change
this using the probOutlier argument.

E14TG2aR <- tagmPredict(object = E14TG2aR,

params = e14Tagm_converged_pooled,

probJoint = TRUE)

head(fData(E14TG2aR))

## Uniprot.ID UniprotName Protein.Description Peptides PSMs GOannotation markers.orig markers tagm.map.allocation tagm.map.probability
## Q62261 Q62261 SPTB2_MOUSE Spectrin beta chain, brain 1 (multiple isoforms) 42 42 PLM-SKE unknown unknown Endoplasmic reticulum 8.165817e-09
## Q9JHU4 Q9JHU4 DYHC1_MOUSE Cytoplasmic dynein 1 heavy chain 1 33 33 SKE unknown unknown Nucleus - Chromatin 9.996798e-01
## Q9QXS1 Q9QXS1 PLEC_MOUSE Isoform PLEC-1I of Plectin 33 33 unknown unknown unknown Plasma membrane 1.250898e-06
## P16546 P16546 SPTA2_MOUSE Spectrin alpha chain, brain (multiple isoforms) 32 32 PLM-SKE-CYT unknown unknown Nucleus - Chromatin 4.226696e-07
## Q69ZN7 Q69ZN7 MYOF_MOUSE Myoferlin (multiple isoforms) 28 28 VES unknown unknown Plasma membrane 9.994502e-01
## P30999 P30999 CTND1_MOUSE Catenin delta-1 (multiple isoforms) 24 24 PLM-NUC PLM Plasma membrane Plasma membrane 1.000000e+00
## tagm.map.joint.40S Ribosome tagm.map.joint.60S Ribosome tagm.map.joint.Cytosol tagm.map.joint.Endoplasmic reticulum tagm.map.joint.Lysosome tagm.map.joint.Mitochondrion
## Q62261 2.543800e-02 3.905306e-02 1.581542e-01 1.430889e-01 5.992007e-02 2.133626e-01
## Q9JHU4 8.145897e-06 1.250578e-05 5.064502e-05 4.582071e-05 1.918793e-05 6.832416e-05
## Q9QXS1 2.543797e-02 3.905301e-02 1.581540e-01 1.430887e-01 5.991999e-02 2.133624e-01
## P16546 2.543799e-02 3.905304e-02 1.581542e-01 1.430889e-01 5.992004e-02 2.133625e-01
## Q69ZN7 2.755266e-06 4.229952e-06 1.713015e-05 1.549838e-05 4.479797e-04 2.310994e-05
## P30999 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## tagm.map.joint.Nucleus - Chromatin tagm.map.joint.Nucleus - Nucleolus tagm.map.joint.Plasma membrane tagm.map.joint.Proteasome tagm.map.outlier tagm.mcmc.allocation
## Q62261 7.280971e-02 9.016054e-02 1.859906e-01 1.202229e-02 0.9999999857 Endoplasmic reticulum
## Q9JHU4 9.997031e-01 2.887171e-05 5.955892e-05 3.849844e-06 0.0003202255 Nucleus - Chromatin
## Q9QXS1 7.280961e-02 9.016043e-02 1.859916e-01 1.202228e-02 0.9999987491 Proteasome
## P16546 7.281009e-02 9.016050e-02 1.859905e-01 1.202228e-02 0.9999995462 Endoplasmic reticulum
## Q69ZN7 7.886235e-06 9.765556e-06 9.994703e-01 1.302170e-06 0.0001083130 Plasma membrane
## P30999 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 0.0000000000 Plasma membrane
## tagm.mcmc.probability tagm.mcmc.probability.lowerquantile tagm.mcmc.probability.upperquantile tagm.mcmc.mean.shannon tagm.mcmc.outlier tagm.mcmc.joint.40S Ribosome
## Q62261 0.5765793 0.0020296117 0.9992504 0.201623229 2.547793e-01 4.401228e-10
## Q9JHU4 0.9738206 0.7594516090 0.9998822 0.081450206 3.335134e-05 1.936225e-18
## Q9QXS1 0.4957129 0.0002886457 0.9947100 0.447665536 6.423799e-01 2.213861e-07
## P16546 0.5214374 0.0014041362 0.9946959 0.252833750 2.119112e-01 1.576023e-09
## Q69ZN7 0.9997025 0.9981794326 0.9999954 0.002395147 7.274103e-06 3.510523e-22
## P30999 1.0000000 1.0000000000 1.0000000 0.000000000 0.000000e+00 0.000000e+00
## tagm.mcmc.joint.60S Ribosome tagm.mcmc.joint.Cytosol tagm.mcmc.joint.Endoplasmic reticulum tagm.mcmc.joint.Lysosome tagm.mcmc.joint.Mitochondrion
## Q62261 2.778620e-07 2.650861e-12 5.765793e-01 1.108757e-11 5.020528e-08
## Q9JHU4 1.645727e-21 1.887645e-17 1.548053e-17 5.577415e-24 2.835919e-22
## Q9QXS1 1.495170e-01 9.062280e-09 1.768681e-04 1.150706e-04 5.832273e-19
## P16546 3.150122e-06 1.471329e-08 5.214374e-01 3.687975e-09 4.522032e-08
## Q69ZN7 5.152312e-16 2.063009e-24 8.397027e-09 2.974966e-04 6.143974e-39
## P30999 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## tagm.mcmc.joint.Nucleus - Chromatin tagm.mcmc.joint.Nucleus - Nucleolus tagm.mcmc.joint.Plasma membrane tagm.mcmc.joint.Proteasome
## Q62261 4.231731e-01 1.279255e-05 1.914808e-11 2.345204e-04
## Q9JHU4 9.738206e-01 2.617943e-02 3.514851e-29 7.841425e-11
## Q9QXS1 7.920397e-03 1.130580e-05 3.465462e-01 4.957129e-01
## P16546 4.776913e-01 3.448558e-05 2.489652e-07 8.333595e-04
## Q69ZN7 4.872032e-21 7.042891e-30 9.997025e-01 1.003778e-10
## P30999 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00

3.6.3 Priors

Introduction

Bayesian analysis requires users to specify prior information about the parameters. This may
appear to be a challenging task; however, good default options are often possible. Should expert
information or domain specific knowledge be available for any of these priors then the users
should provide this, otherwise we have found that the default choices work well in practice.
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The priors also provide regularisation and shrinkage to avoid overfitting. Given enough data
the likelihood overwhelms the prior and the influence of the prior is weak [162].

Empirical Bayes priors on the mixture components

We place a normal inverse-Wishart prior on the parameters of the multivariate normal mixture
components. The normal inverse-Wishart prior has 4 hyperparameters that must be specified.
These are: the prior mean mu0 expressing the prior location of each organelle; a prior shrinkage
lambda0, which is a scalar expressing uncertainty in the prior mean; the prior degrees of freedom
nu0; and a scale prior S0 on the covariance. Together, nu0 and S0 specify the prior variability
on organelle covariances. The same prior distribution is assumed for the parameters of all
multivariate normal mixture components.

An empirical Bayes approach is used to set these priors, which is a pragmatic approach when
little prior information is known. The choices for these priors are based on the recommendation
by [138]. The prior mean mu0 is set to be the mean of the data. lambda0 is set to be 0.01
meaning some uncertainty in the covariance is propagated to the mean, increasing lambda0

increases shrinkage towards the prior. nu0 is set to the number of feature variables plus 2,
which is the smallest integer value that ensures a finite covariance matrix. The prior scale
matrix S0 is set to

S0 =
diag( 1

n

∑
(X − X̄)2)

K1/D , (3.1)

and represents a diffuse prior on the covariance. Another good choice, which is often used, is a
constant multiple of the identity matrix [412].

Prior on the mixing proportions

The prior on the mixing proportions is the Dirichlet distribution with concentration parameters
beta0 set to 1 for each organelle. Another reasonable choice would be the non-informative
Jeffery’s prior for the Dirichlet hyperparameter, which sets beta0 to 0.5 for each organelle. The
following discussion assesses the quality and sensitivity of our prior choice. We compute the
posterior z-score which assesses how the posterior recovers the assumed true model configuration
with small values for the posterior z-score suggesting good calibration [29]. We also compute
the posterior shrinkage, which quantifies how much is learnt about a given parameter from the
data [29]. Values of the posterior shrinkage close to 1 suggest that the parameter values are
strongly informed by the data.
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Fig. 3.8 Scatter plot of the posterior shrinkage against the posterior z-score for the mixing
proportions of the model

mixing_posterior_check(object = E14TG2aR,

params = e14Tagm_converged_pooled[[1]],

priors = e14Tagm@priors)

We see that most parameter values concentrate in the lower right hand corner of the plot,
which suggests good shrinkage and calibration. However, the parameter for the mitochondrion
is located in the top right of the plot suggesting the posterior deviates from the prior. The
biological interpretation for this is that the experiment resolved the mitochondrial proteins
extremely well and thus allocated many more proteins to this class than perhaps we might
have expected. This could be remedied with a more informative prior. If we prefer to use an
informative prior, rather than a non-informative prior, it is practical to use information from
previous data. To demonstrate this, we consider another experiment on mouse pluripotent
stem cells and examine the number of proteins that were allocated to each subcellular niche.
The code chunk below extracts this information from another spatial proteomics experiment.

data("hyperLOPIT2015")

priordata <- table(fData(hyperLOPIT2015)$final.assignment)

priordata

##
## 40S Ribosome 60S Ribosome Actin cytoskeleton Cytosol
## 48 62 46 339
## Endoplasmic reticulum/Golgi apparatus Endosome Extracellular matrix Lysosome
## 426 60 17 80
## Mitochondrion Nucleus - Chromatin Nucleus - Non-chromatin Peroxisome
## 585 297 396 25
## Plasma membrane Proteasome unknown
## 392 34 2225

It is clear that the allocations are not uniformly distributed across the classes and that the
mitochondrion has more allocations than the other subcellular niches. However, we also do
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not have prior information on all the classes. The Dirichlet distribution can be interpreted
as specifying the prior relative proportions of the number of proteins allocated to each niche.
For the classes where we have no information, we assume equal uniform allocations. First,
we compute the number of proteins in this experiment. Then create a vector with proteins
allocated equally to each class.

N <- nrow(unknownMSnSet(E14TG2aR)) # number of proteins

K <- length(getMarkerClasses(E14TG2aR)) # number of subcellular niches

# uninformative beta0, proteins allocated symmetrically

beta_uninformed <- rep(N/K, K)

names(beta_uninformed) <- getMarkerClasses(E14TG2aR)

The code chunk below extracts the data for which we have prior information.

shared_info <- intersect(getMarkerClasses(hyperLOPIT2015),

getMarkerClasses(E14TG2aR))

# extracts useful information from other dataset

informativePrior <- priordata[shared_info]

We then reweight the prior number of proteins allocated to each class by their relative
proportions in the other dataset. We then use this information to create an informative prior.

beta_informed <- beta_uninformed

beta_informed[shared_info] <- sum(beta_uninformed[shared_info]) *

informativePrior/sum(informativePrior)

Now, we can check that this prior has captured our beliefs correctly, mainly that the
mitchondrion should have more allocations than the other subcellular niches and that distribution
is not symmetric. To do this, we simulate 10000 values from the informative prior and compute
the expected (prior) number of proteins allocated to each niche.

prior_simulation <- colMeans(gtools::rdirichlet(n = 10000,

alpha = beta_informed) * N)

names(prior_simulation) <- getMarkerClasses(E14TG2aR)

prior_simulation

## 40S Ribosome 60S Ribosome

## 34.72586 44.99799

## Cytosol Endoplasmic reticulum Lysosome

## 245.62171 166.50286 57.99014
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## Mitochondrion Nucleus - Chromatin Nucleus - Nucleolus

## 423.32247 215.53612 166.26266

## Plasma membrane Proteasome

## 283.48035 24.55985

par(mar = c(11.5, 6.5, 0.5, 0.5), mgp = c(10, 1, 0))

barplot(prior_simulation, las = 2, col = "darkgreen", xlab =

"sub-cellular niche", ylab = "prior expected number of allocations")
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Fig. 3.9 A barplot showing the expected (prior) number of proteins allocated to each niche

It is clear that this prior captures the information that the mitochondrion has more
allocations than the other subcellular niches and that the allocations across the classes are
not symmetric. It is useful to note that many spatial proteomics datasets can be found in the
pRolocdata package from which useful information could be extracted.
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Prior on the proportion of outlier proteins

The prior for the proportion of outlier proteins is a B(u, v) distribution. The default for u = 2
and the default for v = 10. This represents the reasonable belief that u

u+v = 1
6 proteins a priori

might be an outlier and we believe is unlikely that more than 50% of proteins are outliers,
which was elicited from expert domain knowledge and analysis of previous datasets. Decreasing
the value of v, represents more uncertainty about the number of proteins that are outliers.

To visualise that this prior captures these beliefs, we simulate from the prior and produce a
histogram.

x <- rbeta(n = 1500, shape1 = 2, shape2 = 10)

gg <- ggplot(data.frame(x), aes(x)) + geom_histogram(fill = "darkgreen",

col = "black") +

theme_minimal() +

theme(panel.grid.major =

element_blank(), panel.grid.minor = element_blank(),

panel.border = element_rect(colour = "black", fill = NA, size = 1),

plot.title = element_text(hjust = 0.5, size = 20),

legend.text=element_text(size = 14)) +

ggtitle(label = "Histogram of simulations from the prior") +

xlim(c(-0.05, 1))

gg

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## Warning: Removed 2 rows containing missing values (geom_bar).
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The probability that more than 50% of the proteins are outliers is small but non-zero. The
probability there are fewer than 1% outliers is also small. These quantiles can be used to
calibrate the prior beliefs.
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pbeta(0.5, shape1 = 2, shape2 = 10, lower.tail = FALSE) # more than 50% outliers

## [1] 0.005859375

Now we turn to the posterior distribution for this quantity of interest and overlay onto the
prior.

out <- mcmc_get_outliers(e14Tagm_converged_pooled)

propout <- out[[1]]/nrow(unknownMSnSet(E14TG2aR))

df <- data.frame(x = c(x, propout),

y = as.factor(rep(c("prior", "posterior"), each = 1500)))

gg <- ggplot(df, aes(x = x, fill = y)) +

geom_histogram(alpha = 0.7, col = "black", position = "identity",

bins = 40) +

theme_minimal() +

theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.border = element_rect(colour = "black", fill = NA, size = 1),

plot.title = element_text(hjust = 0.5, size = 20),

legend.text=element_text(size = 14)) + labs(fill = "Distribution") +

scale_fill_manual(values = c("purple", "darkgreen")) +

ggtitle(label = "Histogram of samples from the prior and posterior") +

xlim(c(-0.05, 1))

gg

## Warning: Removed 4 rows containing missing values (geom_bar).
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It is clear that the prior and posterior concentrate in the same region, and are thus not
in conflict. The variance of the posterior is clearly smaller than that of the prior and so
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there is high posterior shrinkage. One could argue that the prior is too diffuse to provide
regularisation; however, specifying tighter priors risk biasing the model away from the data
generating mechanism.

3.6.4 Analysis, visualisation and interpretation of results

Now that we have a single pooled chain of samples from a converged MCMC algorithm, we can
begin to analyse the results. Preliminary analysis includes visualising the allocated organelle
and localisation probability of each protein to its most probable organelle, as shown on figure
3.10.

layout(matrix(c(1,1,2,2), nrow = 4, ncol = 1, byrow = TRUE))

plot2D(E14TG2aR, fcol = "tagm.mcmc.allocation",

cex = fData(E14TG2aR)$tagm.mcmc.probability,

main = "TAGM MCMC allocations")

addLegend(E14TG2aR, fcol = "markers",

where = "topleft", ncol = 2, cex = 0.6)

plot2D(E14TG2aR, fcol = "tagm.mcmc.allocation",

cex = fData(E14TG2aR)$tagm.mcmc.mean.shannon,

main = "Visualising global uncertainty")

addLegend(E14TG2aR, fcol = "markers",

where = "topleft", ncol = 2, cex = 0.6)

We can visualise other summaries of the data including a Monte-Carlo averaged Shannon
entropy, as shown in figure 3.10 on the right. This is a measure of uncertainty and proteins with
greater Shannon entropy have more uncertainty in their localisation. The Shannon Entropy
(and hence uncertainty) is greatest when all localisations are equiprobable and lowest when
the probabilities are concentrated on a single localisation. For additional discussion, we refer
readers to Crook et al. [83] and Crook et al. [86] and references therein. We observe global
patterns of uncertainty, particularly in areas where organelle boundaries overlap. There are
also regions of low uncertainty indicating little doubt about the localisation of these proteins.

We are also interested in the relationship between localisation probability to the most
probable class and the Shannon entropy. Even though the two quantities are evidently correlated
there is still considerable spread. Thus it is important to base inference not only on localisation
probability but also a measure of uncertainty, for example the Shannon entropy. Proteins with
low Shannon entropy have low uncertainty in their localisation, whilst those with higher Shannon
entropy have uncertain localisation. Since multi-localised proteins have uncertain localisation to
a single subcellular niche, exploring the Shannon can aid in identifying multi-localised proteins.
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Fig. 3.10 TAGM MCMC allocations. In the upper plot, pointer sizes have been scaled based
on allocation probabilities. On the lower plot, the pointer sizes have been scaled based on the
global uncertainty using the mean Shannon entropy.
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Fig. 3.11 Shannon entropy and localisation probability.

Examples of well characterised multi-localising proteins from the literature are discussed in [83].
The interpretation of uncertain allocations in relation to multi-localisation is further discussed
in [83, 86].

cls <- getStockcol()[as.factor(fData(E14TG2aR)$tagm.mcmc.allocation)]

plot(fData(E14TG2aR)$tagm.mcmc.probability,

fData(E14TG2aR)$tagm.mcmc.mean.shannon,

col = cls, pch = 19,

xlab = "Localisation probability",

ylab = "Shannon entropy")

addLegend(E14TG2aR, fcol = "markers",

where = "topright", ncol = 2, cex = 0.6)

There are further ways in which we can visualise the uncertainty quantified by the Bayesian
analysis. For example, we can use the samples from the MCMC algorithm to visualise the
uncertainty in the mean localisation of each organelle/niche on a PCA plot. At each iteration
of the MCMC, we compute the mean for each organelle as the mean of all associated proteins
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Fig. 3.12 Visualising uncertainty in the mean of each subcellular niche. The pointers correspond
to results from different iterations of the MCMC algorithm and are coloured according to the
corresponding subcellular niche

to that organelle. These data are then projected on to the PCA plot, having aligned them
across the random samples (see [37], as well as [379] and [337] for similar examples).

nicheMeans2D(object = E14TG2aR, params = e14Tagm_converged_pooled[[1]],

prior = e14Tagm_converged_pooled@priors)

The main quantity of interest is the posterior localisation probability of each protein to
each organelle. However, visualising how these probabilities vary in different regions of data
space are be challenging, especially with large numbers of proteins. Furthermore, interrogating
individual proteins one by one can be cumbersome. Thus, we consider visualising how the
probabilities vary across different regions of the PCA plot. To perform this analysis, we first
compute the underlying coordinates of the whole data in PC space. That is if P = XW

is the PCA decomposition of the data matrix X and W is a matrix whose columns are the
eigenvectors of XTX. Then the ith row of P , Pi, gives the coordinates of measurement xi in
PC space. We can then proceed by linearly interpolating a regular grid in this coordinate
system. To obtain the localisation probabilities on this grid, we use a Nadaraya-Watson kernel
smoother [329, 474]. Let Y (v) : Rp → R be C1(R). For each v0 ∈ Rp, the Nadaraya-Watson
kernel smoother parameterised by λ is

Y (v0) =
∑N
i=1Kλ(v0, vi)Y (vi)∑N

i=1Kλ(v0, vi)
, (3.2)
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Fig. 3.13 Visualising how the posterior localisation probabilities vary smoothly across different
regions of the PCA plot. The colours correspond the different subcellular niches. The inner
most contour corresponds to a probability of 0.99 and the following contour to 0.95, with each
subsequent contour descreasing in 0.05 increments

for N observed points and Y (vj) is the observation at vj . A number of kernels are available
and we opt for the Wendland kernel [476]. A fast Fourier transform is used to accelerate
computations [424, 434, 175]. A contour plot, in the PC coordinates, of these probabilities is
then visualised, where the distribution for each organelle is coloured accordingly (see figure
3.12). The code chunk below produces this plot.

spatial2D(object = E14TG2aR)

Aside from global visualisation of the data, we can also interrogate each individual protein.
As illustrated on figure 3.14, we can obtain the full posterior distribution of localisation
probabilities for each protein from the e14Tagm_converged_pooled object. We can use the
plot generic on the MCMCParams object to obtain a violin plot of the localisation distribution.
Simply providing the name of the protein in the second argument produces the plot for that
protein. The solute carrier transporter protein E9QMX3, also referred to as Slc15a1, is most
probably localised to plasma membrane in line with its role as a transmembrane transporter
but also shows some uncertainty, potentially also localising to other compartments. The first
violin plot visualises this uncertainty. The protein Q3V1Z5 is a supposed constitute of the 40S
ribosome and has poor UniProt annotation with evidence only at the transcript level. From the
plot below it is clear that Q3V1Z5 is a ribosomal associated protein, but its previous localisation
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has only been computationally inferred and here we provide experimental evidence of a ribosomal
annotation. Thus, quantifying uncertainty recovers important additional annotations.

plot(e14Tagm_converged_pooled, "E9QMX3")

plot(e14Tagm_converged_pooled, "Q3V1Z5")
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Fig. 3.14 Full posterior distribution of localisation probabilities for individual proteins.
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3.7 Discussion and limitations

The Bayesian analysis of biological data is of clear interest to many because of its ability to
provide richer information about the experimental results. A fully Bayesian analysis differs
from other machine learning approaches, since it can quantify the uncertainty in our inferences.
Furthermore, we use a generative model to explicitly describe the data, which makes inferences
more interpretable compared to the less interpretable outputs of black-box classifiers such as,
for example, support vector machines (SVM).

Bayesian analysis is often characterised by its provision of a (posterior) probability distribution
over the biological parameters of interest, as opposed to single point estimate of these
parameters. In the case that is presented in this workflow, a Bayesian analysis “computes” a
posterior probability distribution over the protein localisation probabilities. These probability
distributions can then be rigorously interrogated for greater biological insight; in addition, it
may allow us to ask additional questions about the data, such as whether a protein might be
multi-localised.

Despite the wealth of information a Bayesian analysis can provide, the uptake amongst cell
biologists is still low. This is because a Bayesian analysis presents a new set of challenges and
little practical guidance exists regarding how to address these challenges. Bayesian analyses
often rely on computationally intensive approaches such as Markov-chain Monte-Carlo (MCMC)
and a practical understanding of these algorithms and the interpretation of their output is a
key barrier to their use. A Bayesian analysis usually consists of three broad steps: (1) Data
pre-processing and algorithmic implementation, (2) assessing algorithmic convergence and (3)
summarising and visualising the results. This workflow provides a set of tools to simplify these
steps and provides step-by-step guidance in the context of the analysis of spatial proteomics
data.

We have provided a workflow for the Bayesian analysis of spatial proteomics using the
pRoloc and MSnbase software. We have demonstrated, in a step-by-step fashion, the challenges
and advantages associated with taking a Bayesian approach to data analysis. We hope this
workflow will help spatial proteomics practitioners to apply our methods and will motivate
others to create detailed documentation for the Bayesian analysis of biological data.

Of course a workflow can always be expanded to provide ever more details on the analysis.
Further directions for improving the software suite is perhaps more guidance for users on
performing prior and posterior predictive checks. There is also scope for automatically pulling
data from databases about the proteins of interest to alleviate manual literature searches.



Chapter 4

A subcellular atlas of Toxoplasma
reveals functional context of the
proteome

This chapter applies the ideas developed in the previous two chapters to a complex application.
The spatial proteome of Toxoplasma gondii is poorly characterised and there are few known
ground truths, thus it is an excellent use case for uncertainty quantification. The hyperLOPIT
experiments were performed by Konstantin Barylyuk (KB) and the gene editing was performed
by Ludek Koreny, Huiling Ke and Simon Butterworth. Myself and Konstantin performed the
data analysis and this chapter borrows from [21]. Figures are used with kind permission of
Konstantin Barylyuk.

4.1 Motivation

4.1.1 Abstract

Spatial proteomics methods are now well established for model organisms [68, 220, 324, 159, 339].
However, these techniques are most promising as a discovery tool in poorly annotated organisms.
In this chapter, we demonstrate that hyperLOPIT can be applied to an apicomplexan cell.
Apicomplexan parasites are major burdens on human health and food security. Toxoplasma
gondii is a master biochemist with highly specialised cellular machinery, which allows elaborate
modulation of the human host. The evolutionary adaptation of the subcellular landscape comes
with extensive proteomic novelty. However, a majority of T. gondii proteins are hypothetically
predicted from the genome and a majority have no or simply generic functional annotation.
The application of hyperLOPIT, here, provides huge knowledge expansion of these parasites.
The lack of functional annotations to verify results motivates uncertainty quantification and we
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demonstrate that the Bayesian model developed in the previous chapters provides localisation
information for thousands of proteins to 26 subcellular niches and sub-niches. We map genomic
features onto our spatial atlas and show that compartmental adaptation and evolution is
heterogeneous across the landscape.

4.2 Introduction and literature review

The protozoan phylum apicomplexa contains thousands of species of intracellular parasites
[468]. Amongst these parasites are Toxoplasma gondii and Plasmodium falciparum, the primary
parasitic agents of Toxoplasmosis and Malaria, respectively [468]. These parasites have been
highly successful and infect potentially every vertebrate and most invertebrates [251, 438].
Toxoplasmosis causes chronic infection in 30% of the human population, as well as congenital
toxoplasmosis, foetal malformation and abortion, retinochoroiditis and encephalitis [189].
The success of these parasites is, in part, due to their specialised cell compartments [342].
For example, the “apical complex” enables penetration and invasion of animal cells without
destruction of the host [210]. This complex includes a set of secretory organelles (micronemes,
rhoptries and dense granules) which release biomolecules required for locating, recognising,
penetrating and exploiting the host [59, 117, 401, 451, 402]. Furthermore, Toxoplasma
contains a complete set of usual eukaryotic compartments [182, 233, 359], as well as a remnant
endosymbiotic organelle: a plastid (apicoplast) [248, 394, 136]. The typical ER, Golgi complex,
nucleus are all present within Toxoplasma [233], along with a single copy of the mitochondrion
[413, 305, 459] . However, Toxoplasma has also developed novel organisation. Upon invasion of
the host, the parasite remains within a “parasitophorous vacuole” embellished with parasite
proteins [59, 117]. This highly synchronised and specialised organellar biology has made
Toxoplasma a master biochemist allowing it unfettered modulation of its host [361, 183].

T. gondii has three infectious stages [116] (see figure 4.1). This involves the tachyzoites,
bradyzoites and sporozoites, which form part of the complex life cycle of Toxoplasma [116].
The sporozoites (oocysts) are passed from the definitive feline host via their faecal matter to
another host [130]. When ingested by livestock, usually through contaminated water or feed,
the oocysts form tissue cysts (bradyzoites) [129]. In uncooked meat, the parasites are passed
onto human or feline hosts [116]. Within non-intestinal epithelial cells the resultant tachyzoites
rapidly multiply (and can even infect the foetus via the placenta) [116]. The tachyzoites display
the most complex compartmentalisation, though are not entirely different from bradyzoites and
differ only in their nucleus placement and rhoptry structure [116] (see figure 4.2 and figure 4.3).

Tachyzoites penetrate through the host cell plasma membrane and form a parasitophorous
vacuole (PV) [416]. Within the PV a tubulovesicular membranous network develops derived
from the posterior of the tachyzoite [416] (see figure 4.4). Apicomplexa boast a surprising
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Life cycle of T. gondii.

J. P. Dubey et al. Clin. Microbiol. Rev. 1998; 
doi:10.1128/CMR.11.2.267

Fig. 4.1 The life cycle of Toxoplasma gondii. Toxoplasma transitions from its definitive feline
host to intermediate ruminants via infected feed. Ingestion of contaminated meat allows humans
to become infected. Figure taken from Dubey et al. [116].
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Schematic drawings of a tachyzoite (left) and a bradyzoite (right) of T. gondii. 

J. P. Dubey et al. Clin. Microbiol. Rev. 1998; 
doi:10.1128/CMR.11.2.267

Fig. 4.2 Schematic figures of tachyzoite and bradyzoite Toxoplasma gondii. Toxoplasma displays
complex subcellular organisation with highly polarised organelle structure. Figure taken from
Dubey et al. [116].

strategy for replication: assembling daughter cells de novo within the cytoplasm [416, 209]. This
contrasts with the familiar events of binary fission in other eukaryotes [7]. This endodyogeny
generates progeny within the parent parasite before consuming it [416]. This process requires
an extraordinary set of physical and molecular events to occur (see Nishi et al. [342] for more
detail), including deriving their own membrane from that of the mother. Fluorescent markers
have allowed the study of organellar dynamics in living parasites with detail [439, 440, 191,
209, 359, 121, 461, 464, 186, 210]. For example, the apicoplast has been shown to replicate
almost synchronously with nuclear division during early endodyogeny [440]. Nishi et al. [342]
use time-lapse microscopy to elucidate how the complex process of endodyogeny and highly
polarised organisation of the parasite are compatible. They note that the mitochondrion enters
the daughters very late in the cycle whilst the micronemes and rhoptries are generated entirely
de novo.

The organellar structure of Toxoplasma can be seen in 3 parts (see figure 4.5). Firstly,
the bare essential organelles that allow basic molecular processes to be carried out, such as
metabolism and intracellular signalling. Secondly, the organelles that are specifically adapted to
host mechanisms and, finally, those that allow the transition to parasitism. The huge divergence
of these apicomplexan compartments is concordant with a wealth of genomic and proteomic
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Transmission electron micrograph of a tachyzoite of the VEG strain of T. gondii in a mouse 
peritoneal exudate cell. 

J. P. Dubey et al. Clin. Microbiol. Rev. 1998; 
doi:10.1128/CMR.11.2.267

Fig. 4.3 Trasmission electron micrograph of tachyzoite of T. gondii within a mouse peritoneal
exuldate cell. The complex organelle structure is observed. Annotations are as follows: Am,
amylopectin granule; Co, conoid; Dg, electron-dense granule; Go, Golgi complex; Mn, microneme;
No, nucleolus, Nu, nucleus; Pv, parasitophorous vacuole; Rh, rhoptry. Figure taken from Dubey
et al. [116].

novelty [442]. Unique apicomplexan proteins are frequently annotated as hypothetical and each
lineage, such as Toxoplasma, possesses its own set of adapting proteins [482]. The polarity of
the subcellular organisation means that protein compartmentalisation and function are tightly
knit. Despite this and decades of effort to unravel the distribution of parasite proteins – the
spatial proteome remains poorly characterised [483].

Recent advances in genome-wide tools have allowed the screening and testing of the
importance of Toxoplasma’s extensive protein repertoire [247, 258, 53, 421, 422, 469]. However,
these datasets lack a spatial context for superior interpretation. In this chapter, we explore
the application of hyperLOPIT and Bayesian modelling to characterise the spatial proteome of
Toxoplasma gondii. We provide unrivalled insight into the organisation of an apicomplexan cell
and derive cellular atlases of genomic features.
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Transmission electron micrograph of four tachyzoites of the VEG strain of T. gondii in the final 
stages of endodyogeny that are still attached by their posterior ends to a common residual body 

(Rb); note that several host cell mitochondria (∗) are situated close to the parasitophorous 
vacuole (Pv), which contains extensively developed tubulovesicular membranes (Tv). 

J. P. Dubey et al. Clin. Microbiol. Rev. 1998; 
doi:10.1128/CMR.11.2.267

Fig. 4.4 Transmission electron micrograph of four tachyzoites of Toxoplasma in the final stages
of endodyogeny that are attached by their posterior ends to a common residual body (Rb);
note that several host cell mitochondria (*) are situated close to the parasitophorous vacuole
(PV), which contains extensively developed tubulovesicular membranes (TV). Am, amylopectin
granule; Co, conoid; Dg, electron-dense granule; Hn, host cell nucleus; Mn, microneme; Mp,
micropore; Nu, nucleus; Rh, rhoptry. Figure taken from Dubey et al. [116].
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Fig. 4.5 Tachyzoite of Toxoplasma gondii, where the compartments are divided up with
accordance to their function. Image used by permission of KB.
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4.3 Methods and datasets

This section describes the processes by which the data where generated and auxiliary datasets
that augment our findings.

4.3.1 Adapting the hyperLOPIT protocol

The hyperLOPIT protocol [68, 324] was adapted for spatial proteomics of Toxoplasma gondii
tachyzoites (see figure 4.6). Tachyzoites were cultured by serial passaging in a culture of human
foreskin fibroblasts. The tachyzoites boasts a cell pellicle that cannot be disrupted by hypotonic
lysis. Optimisation of cell disruption, with validation by western blotting, identified nitrogen
cavitation [472] as an effective means of cell lysis. 10 billion cells were pressurised to 2,000
psi then cavitated in two cycles. Poorly dispersed cell material was returned to a subsequent
cavitation cycle via differential centrifugation. The membranous compartments were then
separated from soluble cytosolic material using ultracentrifugation with density-barriers of 6%
and 25% iodixanol. A linear gradient was then used to fractionate the remaining material
(see figure 4.6). Fractions were sampled along these gradients and peptides were labelled
with TMT10plex isobaric tags. Quantification was then performed across all fractions using
LC-SPS-MS3.

126 127N 127C 128N 128C 129N 129C 130N 130C 131 TMT10pl. tag

–RON4
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density

6 %
25 %

ho
m
og
en
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• nitrogen cavitation 2 × 2,000 PSI

• density-gradient fractionation of subcellular particles

• proteins

• peptides

Fig. 4.6 A schematic overview of the ToxoLOPIT protocol. Edited from the original image by
permission of KB.



104 A subcellular atlas of Toxoplasma reveals functional context of the proteome

4.3.2 Genomic features

Selection Pressure

Previous genomic data has been collected for 62 geographical isolates of Toxoplasma gondii [281].
We wish to analyse single nucleotide polymorphism (SNP) properties across the subcellular
compartments. The rate of non-synonymous mutation denoted dN , which is a nucleotide
mutation that results in the amino acid sequence of a protein changing. This contrasts with a
synonymous mutation where a base substitution does not lead to change to the amino acid
sequence. The rate of synonymous mutations is denoted as dS . We can compare the ratio dN/dS
at a particular locus, which provides information on the rate of evolution of that sequence. A
gene where synonymous mutations outpace non-synonymous ones, and so dN/dS < 1, suggests
the sequence is being constrained for coding a particular protein. In the case of an elevated
ratio, there is positive selection for change.

Genetic Polymorphism

The distribution of SNPs is not homogeneous (uniform) along the genome and, for example,
they occur more frequently in the non-coding regions of the genome. There are few SNPs
in regions where natural selection is in action and the allele is being “fixed” (elimination of
variants). SNP density is computed as the average number of SNPs in a 10kb sequence of the
genome. SNP density in a protein coding region provides information on its evolution. The
distribution of SNP density across a compartment highlights the evolutionary behaviour of
proteins within that compartment.

Functional Redundancy

Genome-wide CRISPR-Cas9 knockout screens allow us to examine the relative redundancy
of the proteome across the subcellular landscape [421]. The CRISPR-Cas9 knockout screen
works by introducing targeted loss-of-function mutations at specific sites in the genome [414].
Cas9 can be designed to induce DNA double strand breaks at desired genomic loci using a
synthetic single guide RNA (sgRNA). When this sgRNA is targeted to coding regions of genes
they can create indel mutations, resulting in a frame shift and thus loss-of-function of the
allele. Frequently, a phenotype score is reported which is the log2 fold change for each sgRNA
averaged across the top 5 scoring guides. The mean phenotype score is reported across four
replicates. Higher scores indicate higher fitness conferring genes.
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4.3.3 Validation by gene editing

A CRISPR-Cas9 genomic tagging strategy was used to perform endogenous gene tagging
with epitope tags for protein localisation in Toxoplasma. A generic strategy for C-terminal
tagging proceeds as follows. Cells are co-transfected with (1) a plasmid (a circular autonomous
extrachromosomal DNA molecule) expressing Cas9 endonuclease and a specific gRNA, and (2) a
PCR reaction product containing the tag of interest (an epitope or a fluorescent protein) followed
by a terminator, a spacer, and a drug resistance cassette (chloramphenicol acetyltransferase,
CAT, or dehydrofolate reductase, DHFR). The gRNA sequence is designed to direct Cas9
at a specific site of the gene where it introduces a double-strand DNA break. The tagging
construct is flanked by short sequences homologous to the target gene sequence to direct
specific integration into the genomic locus via homologous recombination. C-terminal tagging
is preferred to avoid disruption of any possible N-terminal signal sequence. Furthermore, as a
protein is translated N to C-terminus, if a tag is introduced early in the sequence it is more
likely to disrupt protein synthesis. We refer to Barylyuk et al. [21] for precise details.

4.4 Results

4.4.1 Mapping the spatial proteome of Toxoplasama gondii

HyperLOPIT was applied to three independent experiments with minor alterations to the cell
rupturing and to the density gradients. Each experiment quantified roughly 4, 100 proteins
with quantitative measurements for all 10 fractions. 3, 832 proteins (46% of the total proteome)
were common to all three datasets providing full profile information for 30 fractions. As a first
visualisation of the data, we used t-distributed stochastic neighbour embedding (t-SNE) (see
figure 4.7). t-SNE projections reveal the distinct clustering of proteins according to different
sub-cellular niches. As a verification of the observed clusters, we applied unsupervised clustering
(HDBSCAN) to the untransformed data. A collection of 656 marker proteins were compiled
from the literature from previous studies of proteins with unambiguous subcellular localisation
(see figure 4.8). Mapping these proteins onto the t-SNE projections reveal that the clustering
is according to sub-cellular niche. These clusters represent a total of 23 known apicomplexan
compartments and suggest that application of hyperLOPIT affords exquisite resolution of the
Toxoplasma tachyzoite.

We observe that we can resolve the major subcellular components of Toxoplasma. Thus,
allowing us a substantial insight into the spatial distribution of the proteome and how genomic
features may distribute across the different organelles. First, to examine the quality of the
clusters, 62 proteins associated with the clusters were epitope-tagged by endogenous gene fusion
and immunofluorescnece microscopy was used to determine the protein localisation (see methods).
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The 62 proteins were chosen so that they were either completely uncharacterised by previous
studies or their current functional annotation was in-conflict with the localisation inferred here.
All tested proteins showed subcellular localisation concordant with their hyperLOPIT derived
localisation (see figures 4.9, 4.10, 4.11, and 4.12).
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Fig. 4.7 t-SNE projection of the hyperLOPIT data. Clustering is observed according to different
subcellular components. Edited from the original image by permission of KB.
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Fig. 4.8 (A) Marker profiles of each subcellular niche, demonstrating characteristic abundance
profiles. (B) Hierarchical clustering of the subcellular niches. Edited from the original image by
permission of KB.
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Having established the reliability of the data, the 62 validated proteins are added to the set
of markers to bringing the total to 718 proteins. We now apply the methodology developed in
the previous two chapters. We apply TAGM-MAP with default prior settings to compute the
posterior localisation probability that each protein belongs to each class. This probability was
obtained for the 3,114 remaining proteins. We obtain the probability of every protein belonging
to the respective subcellular class and not being an outlier protein. Proteins are considered
confident allocations if their localisation probability exceeds 0.99 (see figure 4.13 a). As a result,
1, 916 proteins with previously unknown localisation were allocated to one of 26 subcellular
niches (see figure 4.13 c). Roughly 30% of protein are not assigned to any single location.

As previously discussed, determination of a protein to a single localisation overlooks the
dynamic behaviour of proteins. A protein may not be well described by any single localisation
because it has a dynamic localisation, continually trafficks between different compartments, is
localised to an interface between two organelles or exists in genuine multiple pools in different
locations. Thus, we wish to quantify the uncertainty in the localisation probabilities using our
TAGM-MCMC method. TAGM-MCMC was applied as described in the previous chapter, with
some minor modifications. The algorithm was run for 25, 000 iterations for 9 chains in parallel.
Then 10, 000 iterations were discarded for burn-in and the chains were thinned by retaining
every 20th protein. We discarded 5 chains by visual inspection and assessed convergence using
the remaining chains. Using the Gelman-Rubin diagnostic, an R̂ ≈ 1.02 was computed. We
concluded our chains were sufficiently well mixed and continued with downstream analysis,
pooling the samples from the converged chains.

Most high confidence proteins assigned by TAGM-MAP and TAGM-MCMC are concordant
(see figure 4.13 b). However, some proteins display probability distributions of their posterior
localisation probability consistent with behaviour across multiple compartments. For example,
proteins of the integral plasma membrane, Golgi and endomembrane vesicles show shared
probability in some cases (see figure 4.13 b), whilst proteins of the secretory organelles; such as
the rhoptries, micronemes and dense granules appear to have well defined single localisations.
These results are in agreement with the interpretation that there is significant exchange of
proteins between the plasma membrane, Golgi and vesicles, whilst the proteomes of the secretory
organelles are mostly static in Toxoplasma gondii.

The observed uncertainty in different subcellular localisation follows closely the overlapping
of the markers for different subcellular niches. Figure 4.14 shows the marker distributions for
different components and, whilst it is clear that niches form distinct clusters, there is significant
overlap between some niches. This is typical for subcellular niches that share confounding
biochemical properties and cannot be completely separated using subcellular fractionation
methods. Improved separation could be achieved with more fractions or an orthogonal method
to tease apart these proteins. Furthermore, we observe that the marker proteins for the cytosol
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and the nuclear compartments are more diffuse than for other organelles. There are multiple
explanations for this observation. The first is that nuclear rupturing means that nuclear proteins
are more dispersed along the density gradient. In addition, cytosolic and nuclear proteins have
a large dynamic range of abundances. Thus quantitative accuracy for these proteins can differ
considerably, resulting in greater variance.
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Fig. 4.14 PCA plots along different PC dimensions. The PCA plots demonstrate a high degree
of resolution between the different subcellular niches. Though the secretory and parasitic niches
overlap more severely than the components of core cellular machinery. The cytosol and nuclear
components are more diffuse than other organelles.
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Delving deeper into the characterisation of the uncertainty of proteins’ localisation, we
project the posterior localisation probabilities into PCA coordinates (see figure 4.15). Figure
4.15 demonstrates a clear spatial pattern of localisation probabilities, ranging from tightly
formed clusters to diffuse patterns. This observation adds to the mounting evidence that some
subcellular niches are challenging to separate. However, with uncertainty quantification we can,
at least, obtain deeper insights - even if the statements are not definitive.

The posterior distribution of the localisation probabilities for those proteins with uncertain
localisations can be visualised in a violin plot. These plots allows us to discern in which
localisations the proteins are most likely to reside or, potentially, jointly reside. For example 3
uncharacterised toxoplasma proteins are plotted in figure 4.16. These previously hypothetical
proteins now have a suggested localisation, despite no precise localisation. One reason that
these proteins are challenging to localise is that the Golgi is a particularly transient organelle
in terms of protein content [68]. Another, perhaps appealing, interpretation is that these
proteins are partially distributed across these organelles. This could either been through
genuine multilocalisation, dynamic localisation between the two compartments or the protein
being resident in different locations across the cellular population.
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Fig. 4.15 A PCA plot with the posterior localisation probabilities projected as contours (see
previous chapter). Subcellular niche display clear separation with contours mostly overlapping
for the secretory organelles. The inner contour represent (approximately) a localisation
probability of 0.99. The subsequent contour is approximately 0.95 with decreasing increments
of 0.05.
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Fig. 4.16 Violin plots of the posterior distribution of localisation probabilities for 3
uncharacterised proteins from Toxoplasma gondii. Each of these proteins display uncertain
localisation between the Golgi and integral plasma membrane suggesting these proteins are
perhaps recycling between these localisations.
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4.4.2 HyperLOPIT provides extensive characterisation the subcellular proteome
of Toxoplasma

The hyperLOPIT experiments have characterised 26 compartments and sub-compartments
of Toxoplasma. Many of the organelles are clearly defined, where class boundaries are well
separated form those of neighbouring subcellular niches. This is particularly the case for
membrane-bound organelles, such as the mitochondrion, apicoplasts and rhoptries. Though
there is also some suggestion of possible disruption of the membranes of these organelles, given
that the mitochondrion is associated with two clusters: one enriched for integral membrane
proteins and the other is depleted in proteins which are anchored to the membrane.

The inner membrane complex (IMC) is a unique organelle to apicomplexans. The IMC is a
crucial element of the invasion machinery of Toxoplasma, allowing the tachyzoite to maintain
its distinct crescent shape and subcellular organisation. The separated IMC cluster from the
plasma membrane suggest that they have disassociated during cell lysis.

Proteins belonging to the apical region of the parasite are resolved from the IMC, and
include proteins involved with the conoid and apical polar ring. These two invasion associated
niches are located at the extreme of the cell. The apical proteins resolved as two separate
clusters; however, there does not appear to be difference in these clusters based purely on
spatial organisation. Rather it appears that these two apical associated niches are enriched
for different biochemical properties. The first appears to be enriched in proteins with basic
pI (isoelectric point); the second acidic pI. That is to say the two clusters represent the same
subcellular niche within the cell but cluster separately as a result of the hyperLOPIT protocol.

Proteins of other classes appear to display sub-organellar resolution with the plasma
membrane dividing into two peripheral associated clusters and a plasma membrane cluster
enriched for external facing proteins. The ER also separates into two distinct clusters, again
one enriched for integral membrane proteins and the other the other soluble proteins. The data
also appear to resolve large protein complexes such as the ribosomes and proteosomes, as well
as proteins of the cytosol and the numerous sub-niches of the nucleus.

4.4.3 Resolution of subcellular proteomes constitutes massive knowledge
expansion

The hyperLOPIT experiments and subsequent Bayesian modelling have assigned a total of
1, 916 proteins to one of the 26 compartments. Of these proteins 795 were annotated simply
as “hypothetical” prior to these experiments; 335 where the only annotation was a conserved
domain; 256 proteins with generic functional annotations such a “transporter”; 228 where
a putative functional annotation was posited. As a result, only 302 of these proteins had
some certainty to their functional annotation. Though, despite having functional annotations,
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many of these proteins do not have validated subcellular localisations. Dozens to hundreds
of proteins are allocated to particular niches, including the organelles that are necessary for
parasite function. This section proceeds to annotate the spatial proteome with genomic features
to characterise the heterogeneity across the subcellular niches.

Relative redundancy of subproteomes

As described in the methods, we extracted data from a genome-wide CRISPR-Cas9 knockout
screen in T. gondii [421]. Integration of this screen with its spatial context, provided by the
hyperLOPIT datasets, allows us to explore the heterogeneity of dispensable and indispensable
protein across subcellular landscape. To perform this analysis, we performed a permutation test
by randomly permuting the class labels and computing the mean phenotype score for each niche.
Repeating this process 106 times allows us to approximate the null distribution of class means.
We then ranked the observed values amongst instances from the null distribution, computed
approximate p-values, and corrected for multiplicity [93, 363, 25]. There is clearly an uneven
spread across the different compartments (see figure 4.17 A). The plasma membrane, dense
granules, micronemes and rhoptries and the IMC show a bias towards dispensable proteins
p < 0.01, indicating functional redundancy. These subproteomes are thus not part of the typical
parasitic evolutionary trend for austerity. These niches are responsible for host invasion and
thus high overturn is required for continued species prosperity. Meanwhile, the apicoplast, a
remnant of a former photosynthetic being, shows a dearth of dispensable proteins p < 0.01.
Thus, the interpretation that the apicoplast is evolutionary baggage is unsupported and it
has become a minimalistic, essential organelle. Unsurprisingly, the proteomes of the basic
cell machinery, such as the mitochondrion and ribosome are indispensable because they are
necessary for fundamental cell biochemistry.

Selective pressure of the host-adaptive response

The host immune system is constantly at watch for host invasion. Furthermore, T. gondii
can exploit a variety of warm-blooded hosts suggesting highly successful adaptation. However,
such successes and the constant bombardment from the host immune system comes at the cost
of huge selective pressure. The magnitude and direction of selection pressure on a protein is
characterised by the ratio dN/dS , as described in the methods (section 4.3.2). The distribution
of dN/dS values across the subcellular landscape provide insight into these pressures for each
subproteome. Positively-skewed dN/dS distributions are those of the plasma membrane, the
soluble content of the rhoptries (rhoptries 1) and the dense granules p < 0.01. This observed
distribution, exemplified in figure 4.17 B, implies a request and tolerance for change in these
niches. Given that these niches are the war-zone of the host-pathogen interaction, this adaptation
reflects a desire to outpace the host. However, for the integral plasma membrane there is a bias
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for purification (against change) p < 0.01. This suggest an antagonism between maintaining
correct and proper function of the plasma membrane and the exposure of these proteins to the
host immune system.

Whilst SNP density (per 10K of coding sequence) is correlated with dN/dS and also reports
on subproteome evolution, there are some unexpected behaviours. Soluble mitochondrial
proteins show enrichment for higher than average SNP densities p < 0.01, but no corresponding
increase in dN/dS (see figure 4.17 B and C). The interpretation here is somewhat challenging,
but the enrichment of silent mutations here could suggest implications for metabolic flux control.
Thus, modulation of the mitochondrial metabolic processes might be a secondary driver of
host-adaptive response. Unsurprisingly, the peripheral plasma membrane proteins stand out
amongst the niches with elevated levels of SNP density. Constant selective pressure of this niche
has resulted in a high level of redundancy and pressure to adapt. This has strong implications
for drug targets as our analysis suggests targeting these proteins would be of little avail.



120 A subcellular atlas of Toxoplasma reveals functional context of the proteome

dN/dS

A B

C

Fig. 4.17 Genomics features of the proteins are displayed in the original t-SNE coordinates of
the spatial proteomics data. These quantities clearly have spatial context. Figure used with
permission of KB
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4.5 Discussion and limitations

This chapter has explored the application of hyperLOPIT and Bayesian analysis to Toxoplasma
gondii extracellular tachyzoites. This is the first comprehensive and detailed spatial proteome
of an apicomplexan cell. Overall we have identified thousands of proteins allocated with high
posterior probability to 26 possible subcellular niches. A large proportion of these proteins had
essentially no annotation prior to these experiments and analysis. Thus, we have significantly
expanded the knowledge of the Toxoplasma proteome.

HyperLOPIT experiments are independent of functional or localisation prediction tools
that are derived from sequence motifs or orthologues in model organisms. The approaches here
demonstrate that hyperLOPIT is applicable to non model organisms and can provide insight
into a significant proportion of the spatial proteome. Furthermore, Toxoplasma has very little
prior knowledge and we have highlighted that Bayesian analysis can alleviate many of the
challenges by quantifying uncertainty.

There still remain proteins that are not allocated to any particular class. TAGM is unable to
model subcellular niches without annotation or those that have insufficient number of proteins
to provide a reasonable set of markers. These proteins are usually classified with low probability
to one of the classes or as an outlier protein. Furthermore, it is not just the computational
approach that has limitations; the experiment and mass-spectrometry are also not perfect.
Firstly, for proteins of low abundance MS-based quantitation becomes more challenging and
less accurate resulting in distorted abundance profiles. Secondly, perhaps more importantly,
hyperLOPIT reports on the steady-state localisation of proteins. Thus proteins that are being
constantly recycled between two subcellular niches or in constant dynamic transit between two or
more organelles will have composite (not necessarily mixed profiles). Uncertainty quantification
can go some way to providing a lens on these proteins, but since there are multiple sources of
uncertainty the reasons for this uncertainty will always be a point of interpretation.

HyperLOPIT provides a platform for molecular screens to be placed in their spatial context.
Indeed, we have demonstrated that several important genomic features can be mapped onto the
spatial data and provide additional insights into apicomplexan function. Future systems-wide
studies of Toxoplasma will be able to map their data on the subcellular landscape we have
provided and they can examine their data within the context it deserves.

Looking forward, it is clear that hyperLOPIT can be applied to non-model organisms to
provide exquisite insights. The natural directions are to apply it to even more poorly annotated
organisms, different stages of parasite life cycles and to host cells infected with parasites. Each
of these tasks will require new computational tools - some of which are beyond the scope of
this thesis. For the proteomes of organisms with poor annotation, whilst there might not
be sufficient markers present to perform a supervised analysis, the proteins will still cluster
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according to their biochemical fractionation properties. Our Bayesian model TAGM can be
extended to allow additional niches to be discovered and this is the content of the next chapter.



Chapter 5

A semi-supervised Bayesian
approach for simultaneous protein
subcellular localisation and novelty
detection

5.1 Motivation

Following on from the previous chapter, we noted that one of the limitations of our Bayesian
modelling, thus far, is that it is reliant on marker proteins. For well annotated organisms,
such as when working with human cell lines, this is not a substantial limitation. However, as
we highlighted in the previous chapter there is desire to apply spatial proteomics methods
to non-model organisms. This chapter presents an extension to our Bayesian model to allow
additional unannotated subcellular niches to be inferred. This work is an edited version of
Crook et al. [81] and there is significant textual overlap.

5.1.1 Abstract

The cell is compartmentalised into complex micro-environments allowing an array of specialised
biological processes to be carried out in synchrony. Determining a protein’s sub-cellular
localisation to one or more of these compartments can therefore be a first step in determining its
function. High-throughput and high-accuracy mass spectrometry-based sub-cellular proteomic
methods can now shed light on the localisation of thousands of proteins at once. Machine learning
algorithms are then typically employed to make protein-organelle assignments. However, these
algorithms are limited by insufficient and incomplete annotation. We propose a semi-supervised
Bayesian approach to novelty detection, allowing the discovery of additional, previously
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unannotated sub-cellular niches. Inference in our model is performed in a Bayesian framework,
allowing us to quantify uncertainty in the allocation of proteins to new sub-cellular niches,
as well as in the number of newly discovered compartments. In this chapter, we apply our
approach across 10 mass spectrometry based spatial proteomic datasets, representing a diverse
range of experimental protocols. Application of our approach to hyperLOPIT datasets validates
its utility by recovering enrichment with chromatin-associated proteins without annotation and
uncovers sub-nuclear compartmentalisation which was not identified in the original analysis.
Moreover, using sub-cellular proteomics data from Saccharomyces cerevisiae, we uncover a
novel group of proteins trafficking from the ER to the early Golgi apparatus. Overall, we
demonstrate the potential for novelty detection to yield biologically relevant niches that are
missed by current approaches.

5.2 Introduction and literature review

In previous chapters, we have demonstrated the importance of characterising the sub-cellular
localisation of proteins. Proteins are compartmentalised into sub-cellular niches, including
organelles, sub-cellular structures, liquid phase droplets and protein complexes. For some
organisms, such as apicomplexans this compartmentalisation can be highly polarised [21]. These
compartments ensure that the biochemical conditions for proteins to function correctly are met,
and that they are in the proximity of interaction partners [171].

As a brief reminder, a common approach to map the global sub-cellular localisation of proteins
is to couple gentle cell lysis with high-accuracy mass spectrometry (MS) [68, 324, 159, 351]. These
methods are designed to yield fractions differentially enriched in the sub-cellular compartments
rather than purifying the compartments into individual fractions. As such, these spatial
proteomics approaches aim to interrogate the greatest number of sub-cellular niches possible by
relying upon rigorous data analysis and interpretation [154, 155].

Current computational approaches in MS-based spatial proteomics utilise machine learning
algorithms to make protein-organelle assignments (see [155] for an overview). Within this
framework, novelty detection, the process of identifying differences between testing and training
data, has multiple benefits. For model organisms with well annotated proteomes, novelty
detection can potentially uncover groups of proteins with shared sub-cellular niches not described
by the training data. Novelty detection can also prove useful in validating experimental design,
either by demonstrating that contaminants have been removed or that increased resolution of
organelle classes has been achieved by the experimental approach. As we saw from the previous
chapter for most non-model organisms, we have little a priori knowledge of their sub-cellular
proteome organisation. This makes it challenging to curate the marker set (training dataset)
from the literature [21]. In these cases, novelty detection can assist in annotating the spatial
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proteome. Crucially, if a dataset is insufficiently annotated, i.e. sub-cellular niches detectable
in the experimental data are missing from the marker set, then this leads to the classifier
making erroneous assignments, resulting in inflated false discovery rate (FDR) and uncertainty
estimates (where available). Thus, novelty detection is a useful feature for any classifier, even if
novel niche detection is not a primary aim.

Previous efforts to discover novel niches within existing sub-cellular proteomics datasets
have proved valuable. Breckels et al. [43] presented a phenotype discovery algorithm called
phenoDisco to detect novel sub-cellular niches and alleviate the issue of undiscovered phenotypes.
The algorithm uses an iterative procedure and the Bayesian Information Criterion (BIC) [411]
is employed to determine the number of newly detected phenotypes. Afterwards, the dataset
can be re-annotated and a classifier employed to assign proteins to organelles, including those
that have been newly detected. Breckels et al. [43] applied their method on several datasets
and discovered new organelle classes in Arabidopsis [119] and Drosophila [448]. This approach
later successfully identified the trans-Golgi network (TGN) in Arabidopsis roots [181].

This thesis, thus far, has demonstrated the importance of uncertainty quantification in
spatial proteomics studies. In chapter 2 and 3, we proposed a generative classification model
and took a Bayesian approach to spatial proteomics data analysis by computing probability
distributions of protein-organelle assignments using Markov-chain Monte-Carlo (MCMC). These
probabilities were then used as the basis for organelle allocations, as well as to quantify the
uncertainty in these allocations. On the basis that some proteins cannot be well described by
any of the annotated sub-cellular niches, a multivariate student’s t-distribution was included in
the model to enable outlier detection. The proposed T-Augmented Gaussian Mixture (TAGM)
model was shown to achieve state-of-the-art predictive performance against other commonly
used machine learning algorithms (see chapter 2). Furthermore, the model has been successfully
applied to reveal unrivalled insight into the spatial organisation of Toxoplasma gondii (see
chapter 4).

This chapter explores an extension to TAGM to allow simultaneous protein-organelle
assignments and novelty detection. One assumption of the existing TAGM model is that the
number of sub-cellular niches is known. Here, we design a novelty detection algorithm based on
allowing an unknown number of additional sub-cellular niches, as well as quantifying uncertainty
in this number.

Quantifying uncertainty in the number of clusters in a Bayesian mixture model is challenging
and many approaches have been proposed in the literature (see for example Ferguson [131],
Antoniak [11], Richardson and Green [380]). Here, we make use of asymptotic results in
Bayesian analysis of mixture models [397]. The principle of overfitted mixtures allows us to
specify a (possibly large) maximum number of clusters. As shown in Rousseau and Mengersen
[397] these components empty if they are not supported by the data, allowing the number of
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clusters to be inferred. Kirk et al. [243] previously made use of this approach in the Bayesian
integrative modelling of multiple genomic datasets. In our application, some of the organelles
may be annotated with known marker proteins and this places a lower bound on the number
of sub-cellular niches. Bringing these ideas together results in a semi-supervised Bayesian
approach, which we refer to as Novelty TAGM. Table 5.1 summarises the differences between
the current available machine-learning methods for spatial proteomics.

In this chapter, we begin by reviewing a number of classical and Bayesian approaches to
inferring or performing model selection on the number of clusters in a mixture model. This
motivates our extension to TAGM to novelty detection which we refer to as Novelty TAGM.
We apply Novelty TAGM to 10 spatial proteomic datasets across a diverse range of protocols,
including hyperLOPIT [68, 324], LOPIT-DC [159], Dynamic Organellar Maps (DOM) [220]
and spatial-temporal methods [24]. Application of Novelty TAGM to each dataset reveals
additional biologically relevant compartments. Notably, we detect 4 sub-nuclear compartments
in the U-2 OS hyperLOPIT dataset: the nucleolus, nucleoplasm, chromatin-associated, and
the nuclear membrane. In addition, an endosomal compartment is robustly identified across
hyperLOPIT and LOPIT-DC datasets. Finally, we also uncover collections of proteins with
previously uncharacterised localisation patterns; for example, vesicle proteins trafficking from
the ER to the early Golgi in Saccharomyces cerevisiae.
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MS-based Spatial Proteomics Computational Methods for Prediction and Novelty Detection
Method Localisation

prediction
Uncertainty
in protein
localisation

Outlier
detection

Novelty
detection

Uncertainty
in number
of novel
phenotypes

Uncertainty
in allocation
to new
phenotypes

Integrative

Supervised
Machine Learning
(as reviewed in
[155])

X ✗ ✗ ✗ ✗ ✗ ✗

Correlation
Profiling
[135, 252]

X ✗ ✗ ✗ ✗ ✗ ✗

Transfer Learning
[44] X ✗ ✗ ✗ ✗ ✗ X

Mclust (as used in
[351]) ✗ ✗ X X ✗ ✗ ✗

PhenoDisco [43]
✗ ✗ X X ✗ ✗ ✗

TAGM [83]
X X X ✗ ✗ ✗ ✗

Novelty TAGM
(This chapter) X X X X X X ✗

Table 5.1 Examples of computational methods for spatial proteomics datasets for prediction and novelty detection.
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5.3 Methods

5.3.1 Previous methods

The perennial question of unsupervised clustering is how to choose, infer or deduce the number
of clusters [137]. Indeed, research focusing on this question can, at least, be traced back to the
middle of the last century [454] and advances are still being made [145]. Some approaches claim
to avoid the choosing of the number of clusters, such as hierarchical clustering but frequently
this is replaced with a more obscure question: where to cut the tree [473]? A full survey of the
literature covering this topic is beyond the scope of this chapter and we focus on a few key
ideas, especially in the context of mixture models.

Frequentist approaches

The most popular approach for selecting the number of clusters in a mixture model is using the
BIC (see discussion in chapter 2). The preference for the BIC over the AIC, given below, is
because the AIC tends to produce spurious clusters because the number of parameters in the
model is not sufficiently penalised [6]:

AIC = 2m− 2 log p(x|θ̂,M). (5.1)

Variations on the theme of criteria, one may choose a number of different approaches, such
as the integrated complete likelihood [32] or the singular BIC [114]. The singular BIC was
developed because the dimensionality penalty on the BIC is too large [114]. Alternatively, one
might consider a classic approach of using the likelihood ratio test statistic λ for a model with
k clusters,Mk, against a model with k+ 1 clusters,Mk+1. Given that these models are nested
one might hope to apply Wilk’s theorem that −2 log(λ) is chi-squared distributed under the
null hypothesis. However, in mixture models it is typical that the variance component of the
expanded model is essentially zero, which violates the regularity assumption of Wilk’s theorem.
This does not negate, however, the use of a likelihood ratio test. It simply implies that p-values
should not be obtained from the asymptotic chi-squared distribution. One way to circumvent
this issue to use a parametric bootstrap [300]. It is then simple to obtain the appropriate order
statistic to approximate the required p-value.

Bayesian approaches

Typically, a Bayesian approach to selecting an appropriate number of components in the mixture
model would compute the Bayes factors between a model with k components or k′ components:

BFk,k′ = p(x|Mk′)
p(x|Mk)

. (5.2)
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The argument for the Bayes factor is seen through the lens of the marginal likelihood:

p(x|Mk) =
∫
θk

p(x|θk,Mk)p(θk|Mk) dθk, (5.3)

because it automatically penalises more complex models via the prior probability p(θk|Mk).
In fact, one need not necessarily select one single best mixture model but average over them
using Bayesian model averaging (see [85] in the mixture model context). However, for nested
models the expanded model is only penalised at a polynomial rate [61]. The implication is
that Bayesian models still tend to produce spurious clusters despite the automatic penalisation
usually attributed as “Occam’s razor”. This has led some other to use other criteria such as the
pseudo-marginal likelihood [471].

Another approach is to consider a single large number of components, say k∗ and discard
unoccupied components. Rousseau and Mengersen [397] demonstrate that if the prior on the
components weights p(π|Mk∗) = Dir(π;β) is set such that maxj βj < d/2, where d is the
dimension of the data, then the posterior distribution of π concentrates at 0 for unnecessary
components at rate n−1/2. In essence, for some choices of β, which includes the Jeffrey prior
β = 0.5, the spurious components “empty”. The authors advocate for even stronger shrinkage
β ≈ n−1, empirically [465]. More elaborate non-local priors have also been considered [145].

A seminal approach by Richardson and Green [380], in the context that k is still fixed
but unknown, is using Bayesian inference to mix over k. Richardson and Green [380] use
reversible-jump MCMC (RJMCMC), which allows mixture components to be split or combined
at each iteration of the MCMC algorithm with a carefully computed acceptance probability.
A prior is placed directly on k, for example from the Poisson family. The challenge with this
approach is that the parameter dimension changes at every iteration, making inferences of
important quantities challenging.

Bayesian non-parametric approaches

The Bayesian non-parametric approach to determining the number of clusters is different to a
traditional Bayesian perspective. In a Bayesian parametric approach there is assumed to be
a true fixed number of clusters and the posterior contracts onto this value as the number of
observations grow. Meanwhile, in a Bayesian non-parametric setting, the model is allowed to
expand as more observations are obtained. The Dirichlet process mixture model is, perhaps,
the simplest non-parametric mixture [130, 11]. The Dirichlet process (DP) is the infinite
dimensional extension of the Dirichlet distribution and has a single concentration parameter β.
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A typical DP mixture model is specified as follows

G ∼ DP (β),

θi|G ∼ G,

xi|θi ∼ F (θi),

(5.4)

for some parametric distribution F. The Dirichlet process inherits the conjugacy property from
the Dirichlet distribution and a Polya urn scheme makes computations straightforward [33].
Having made i− 1 observations, the clustering property of the Dirichlet process is that given a
new observation xi, it has prior probability β/(β + i − 1) of belonging to a new cluster and
nk/(β + i − 1) prior probability of belonging to cluster k. Here, nk denotes the number of
observations such that θi = θk. This is frequently referred to has the rich gets richer property
of the DP. The distribution of the number of clusters K, clearly depends on the number of
observations. Briefly, the expectation and variance are:

E[K|n] =
n∑
i=1

β

β + i− 1 ≈ β log(1 + n

β
)

V[K|n] =
n∑
i=1

β(i− 1)
(β + i− 1)2 ≈ β log(1 + n

β
).

(5.5)

The results follow by simple application of the harmonic series (see Teh et al. [452]). Clearly, the
concentration parameter β directly controls the number of clusters and the number of clusters
clearly grow logarithmically in n. It might then be sensible to infer β, for example placing a
gamma prior on β [125]. Some authors have argued that a single parameter to control mean and
variance is overly restrictive and have proposed generalisations based on the marginals following
a two parameter Poisson-Dirichlet distribution [364, 219]. Despite being a flexible approach, we
do not consider the Bayesian non-parametric approach for this chapter for two reasons. Firstly,
the increase in computation is burdensome and secondly, we do not believe spatial proteomics
applications warrant that the number of clusters growing as more observations are added: we
do not expect to observe new organelles as we increase the number of proteins measured.

phenoDisco

Breckels et al. [43] proposed phenoDisco to perform novelty detection in subcellular proteomics
datasets. The approach is a semi-supervised extension of mclust [412], a finite frequentist
mixture modelling approach that uses the BIC for model selection.

The method proceeds by first computing the first two principal components of the data.
Then we select one of the k organelle classes at random. After that, we cluster the data for this
class along with the unlabelled data using Gaussian mixture modelling (GMM) with the BIC
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used to select the number of clusters. If proteins cluster with class k they are considered to be
candidates of that class. Then for each candidate of class k perform the following steps. The
data points belonging to class k are modelled themselves using a GMM and the log-likelihood
is a obtained.

Samples are then drawn from this distribution and combined with the observed data. As
an aside, this can be seen as a parametric bootstrap sample combined with the observed data.
The GMM is then recomputed on this new data, then the log likelihood and log likelihood ratio
statistic are computed. This process is repeated 500 times, essentially mimicking a parametric
bootstrap approximation of the likelihood ratio distribution.

The log likelihoods for the original cluster along with the candidates (one at a time) are
computed and compared to the approximated likelihood ratio distribution. Candidates are
rejected if they rank in the tail of the likelihood ratio distribution. Accepted candidates are
merged with class k and the process is repeated until all classes have been considered. Once
this process is finished, the proteins not merged with any class but which clustered together
during the algorithm are considered as new phenotypes.

The process is repeated 100 times, where a new phenotype is declared if, over those 100
repetitions, the proteins consistently cluster together. A minimum group size is specified by
the user.

5.3.2 Extending TAGM to allow novelty detection

The goal of this section to use the principle of overfitted mixture to allow TAGM to not only
assigned proteins to an annotated organelle but to detect unannotated subcellular niches. Figure
5.1 gives an idea of the approach. Let us briefly remind ourself of the TAGM model.

Let N denote the number of observed protein profiles each of length L, corresponding to
the number of quantified fractions. The quantitative profile for the i-th protein is denoted
by xi = [x1i, . . . , xLi]. In chapter 2, the model was formulated such that there are K known
sub-cellular compartments to which each protein could be localised (e.g. cytosol, endoplasmic
reticulum, mitochondria, . . . ). We introduce component labels zi, so that zi = k if the i-th
protein localises to the k-th component. To fix notation, we denote by XL the set of proteins
whose component labels are known, and by XU the set of unlabelled proteins. If protein i is in
XU , we seek to evaluate the probability that zi = k for each k = 1, . . . ,K.

The distribution of quantitative profiles associated with each protein that localises to the
k-th component is modelled as multivariate normal with mean vector µk and covariance matrix
Σk. However, many proteins are dispersed and do not fit this assumption. To model these
“outliers”, we introduced a further indicator variable φ. Each protein xi is then described
by an additional variable φi, with φi = 1 indicating that protein xi belongs to an organelle-
derived component and φi = 0 indicating that protein xi is not well described by these known
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components. This outlier component is then modelled as a multivariate T distribution with
degrees of freedom κ, mean vector M, and scale matrix V . Thus the model can be written as:

xi|zi = k, φi ∼ N (µk,Σk)φiT (κ,M , V )1−φi . (5.6)

Let f(x|µ,Σ) denote the density of the multivariate normal with mean vector µ and covariance
matrix Σ evaluated at x, and similarly let g(x|κ,M,V) denote the density of the multivariate T-
distribution. For any i, the prior probability of the i-th protein localising to the k-th component
is denoted by p(zi = k) = πk. Letting θ = {µk,Σk}Kk=1 denote the set of all component mean
and covariance parameters, and π = {πk}Kk=1 denote the set of all mixture weights, it follows
that:

p(xi|θ,π, φi, κ,M, V ) =
K∑
k=1

πk
(
f(xi|µk,Σk)φig(xi|κ,M , V )1−φi

)
. (5.7)

For any i, we set the prior probability of the i-th protein belonging to the outlier component as
p(φi = 0) = ϵ, where ϵ is a parameter that we infer. Equation (5.7) can then be rewritten in
the following way:

p(xi|θ,π, κ, ϵ,M, V ) =
K∑
k=1

πk ((1− ϵ)(f(xi|µk,Σk) + ϵg(xi|κ,M , V )) , (5.8)

As in chapter 2, we fix κ = 4, M as the global empirical mean, and V as half the global
empirical variance of the data, including labelled and unlabelled proteins. To extend this model
to permit novelty detection, we specify the maximum number of components Kmax > K. Our
proposed model then allows up to Knovelty = Kmax −K ≥ 0, new phenotypes to be detected.
Equation 5.8 can then be written as

p(xi|θ,π, κ, ϵ,M, V ) =
K∑
k=1

πk ((1− ϵ)(f(xi|µk,Σk) + ϵg(xi|κ,M , V ))

+
Kmax∑
k=K+1

πk ((1− ϵ)(f(xi|µk,Σk) + ϵg(xi|κ,M , V )) ,
(5.9)

where, in the first summation, the K components correspond to known sub-cellular niches
and the second summation corresponds to the new phenotypes to be inferred. The parameter
sets are then augmented to include these possibly new components; that is, we redefine
θ = {µk,Σk}Kmax

k=1 to denote the set of all component mean and covariance parameters, and
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π = {πk}Kmax
k=1 denotes the set of all mixture weights. Relying on the principle of over-fitted

mixtures [397], components that are not supported by the data are left empty with no proteins
allocated to them. We find setting Knovelty = 10 is ample to detect new phenotypes. Note
that we have to choose maxj βj < d/2, which is satisfied in all examples by setting βj = 0.5 for
every j. Importantly, we cannot use the weakly informative prior on π suggested in chapter 3,
since minj βj > d/2.

Bayesian inference and convergence

The MCMC algorithm used in chapter 2 is insufficient to handle inference of unknown phenotypes.
As before, a collapsed Gibbs sampler approach is used, but a number of modifications are
made. Firstly, to accelerate convergence of the algorithm half the proteins are initially allocated
randomly amongst the new phenotypes. Secondly, the parameters for the new phenotypes are
simply proposed from the prior. Otherwise, the same default prior choices are used.

Handling label switching

Bayesian inference in mixture models suffers from an identifiability issue known as label switching
- a phenomenon where the allocation labels can flip between runs of the algorithm [380, 436].
This occurs because of the symmetry of the likelihood function under permutations of these
labels. We note that this only occurs in unsupervised or semi-supervised mixture models. This
makes inference of the parameters in mixture models challenging. In our setting the labels for
the known components do not switch, but for the new phenotypes label switching must occur.
One standard approach to circumvent this issue is to form the so-called posterior similarity
matrix (PSM) [142]. The PSM is an N × N matrix where the (i, j)th entry is the posterior
probability that protein i and protein j reside in the same component. More precisely, if we let
S denote the PSM and T denote the number of Monte-Carlo iterations then

Sij = P (zi = zj |X,θ,π, κ, ϵ,M, V ) ≈ 1
T

T∑
t=1

I(z(t)
i = z

(t)
j ), (5.10)

where I denotes the indicator function. The PSM is clearly invariant to label switching and so
avoids the issues arising from the label switching problem.

Visualising patterns in uncertainty

To simultaneously visualise the uncertainty in the number of newly discovered phenotypes, we
use a heatmap representation of this quantity.
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Summarising posterior similarity matrices

To summarise the PSMs, we take the approach proposed by Fritsch et al. [142]. A general
strategy to summarise a PSM into a clustering is as follows. First, we propose some loss function
or measure of similarity between two clusterings L(z∗, z). We then wish to find the allocation
vector ẑ that minimises the expected loss with respect to the true clustering

ẑ = arg min
z∗

E[L(z∗, z)|X,θ,π, κ, ϵ,M, V ]. (5.11)

Fritsch et al. [142] propose to use the adjusted Rand index (AR) [374, 213], a measure of cluster
similarity, as the utility function. Then we find the allocation vector ẑ that maximises the
expected adjusted Rand index with respect to the true clustering z. Formally, we write

ẑ = arg max
z∗

E[AR(z∗, z)|X,θ,π, κ, ϵ,M, V ], (5.12)

which is known as the Posterior Expected Adjusted Rand index (PEAR). One obvious pitfall is
that this quantity depends on the unknown true clustering z. However, this can be approximated
from the MCMC samples:

PEAR ≈ 1
T

T∑
t=1

AR(z∗, z(t)). (5.13)

The space of all possible clustering over which to maximise is infeasibly large to explore. Thus
we take an approach taken in Fritsch et al. [142] to propose candidate clusterings over which to
maximise. Using hierarchical clustering with distance 1− Sij , the PEAR criterion is computed
for clusterings at every level of the hierarchy. The optimal clustering ẑ is the allocation vector
which maximises the PEAR.

Uncertainty quantification

We may be interested in quantifying the uncertainty in whether a protein belongs to a new
sub-cellular component. Indeed, it is important to distinguish whether a protein belongs to a
new phenotype or if we simply have large uncertainty about its localisation. The probability
that protein i belongs to a new component is computed from the following equation:

P (zi ∈ {K + 1, ...,Kmax}|X) = 1− P (zi ∈ {1, ...,K}|X), (5.14)

which we approximate by the following Monte-Carlo average:

1− 1
T

T∑
t=1

P (z(t)
i ∈ {1, ...,K}|X) = 1− 1

T

T∑
t=1

K∑
k=1

P (z(t)
i = k|X), (5.15)
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Fig. 5.1 An overview of novelty detection in subcellular proteomics.

where T is the number of Monte-Carlo iterations. Throughout, we refer to equation 5.15 as the
discovery probability.

Applying the model in practice

Applying Novelty TAGM to spatial proteomics datasets consists of several steps. After having
run the algorithm on a dataset and assessing convergence, we proceed to explore the ouput of
the method. We explore putative phenotypes, which we define as newly discovered clusters with
at least 1 protein with discovery probability greater than 0.95.

5.3.3 Validating computational approaches

In a supervised framework the performance of computational methods can be assessed by using
the training data, where a proportion of the training data is withheld from the classifier to
be used for the assessment of predictive performance. In an unsupervised or semi-supervised
framework we cannot validate in this way, since there is no “ground truth” with which to
compare. Thus, we propose several approaches, using external information, for validation of
our method.

Artificial masking of annotations to recover experimental design

Removing the labels from an entire component and assessing the ability of our method to
rediscover these labels is one form of validation. We consider this approach for several of
the datasets; in particular, chromatin enrichment was performed in two of the hyperLOPIT
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experiments, where the intention was to increase the resolution between chromatin and non-
chromatin associated nuclear proteins [68, 324, 455]. As validation of our method we hide these
labels and seek to rediscover them in an unbiased fashion.

The Human Protein Atlas

A further approach to validating our method is to use additional spatial proteomic information.
The Human Protein Atlas (HPA) [455, 441] provides confocal microscopy information on
thousands of proteins, using validated antibodies. When we consider a dataset for which there
is HPA annotation, we use this data to validate the novel phenotypes for biological relevance.

Gene Ontology (GO) term enrichment

Throughout, we perform GO enrichment analysis with FDR control performed according to the
Benjamini-Höchberg procedure [25, 14, 489]. The proteins in each novel putative phenotype
are assessed in turn for enriched Cellular Component terms, against the background of all
quantified proteins in that experiment.

Robustness across multiple MS-based spatial proteomics datasets

On occasion some cell lines have been analysed using multiple spatial proteomics technologies
[159]. In these cases, the putative phenotypes discovered by Novelty TAGM are compared
directly. If the same phenotype is discovered in different proteomic datasets we consider this as
robust evidence for sufficient resolution of that phenotype.

5.3.4 Datasets

In this section, we provide a brief description of the datasets used in this chapter. We
analyse hyperLOPIT data, in which sub-cellular fractionation is performed using density-
gradient centrifugation [118, 119, 324], on pluripotent mESCs (E14TG2a) [68], human bone
osteosarcoma (U-2 OS) cells [455, 159], and S. cerevisiae (bakers’ yeast) cells [339]. The mESC
dataset combines two 10-plex biological replicates and quantitative information on 5032 proteins.
The U-2 OS dataset combines three 20-plex biological replicates and provides information
on 4883 proteins. The yeast dataset represents four 10-plex biological replicate experiments
performed on S. cerevisiae cultured to early-mid exponential phase. This dataset contains
quantitative information for 2846 proteins that were common across all replicates. Tandem Mass
Tag (TMT) [453] labelling was used in all hyperLOPIT experiments with LC-SPS-MS3 used
for high accuracy quantitation [457, 298]. Beltran et al. [24] integrated a temporal component
to the LOPIT protocol. They analysed HCMV-infected primary fibroblast cells over 5 days,
producing control and infected maps every 24 hours. We analyse the control and infected maps
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24 hours post-infection, providing information on 2220 and 2196 proteins respectively. In a
comparison with phenoDisco, we apply Novelty TAGM to a dataset acquired using LOPIT-based
fractionation and 8-plex iTRAQ labelling on the HEK-293 human embryonic kidney cell line,
quantifying 1371 proteins [43].

Our approach is not limited to spatial proteomics data where the sub-cellular fractionation is
performed using density gradients. We demonstrate this through the analysis of DOM datasets
on HeLa cells and mouse primary neurons [220, 221], which quantify 3766 and 8985 proteins
respectively. These approaches used SILAC quantitation with differential centrifugation-based
fractionation. We analyse 6 replicates from the HeLa cell line analyses in [220] and 3 replicates
from the mouse primary neuron experiments in [221]. [202] also used the DOM protocol coupled
with CRISPR-cas9 knockouts in order to explore the functional role of AP-5. We analyse the
control map from this experiment. Finally, we consider the U-2 OS data which were acquired
using the LOPIT-DC protocol [159] and quantified 6837 proteins across 3 biological replicates.
In favour of brevity, we do not consider protein correlation profiling (PCP) based spatial
proteomics datasets in this chapter, though our method also applies to such data [135, 254, 253]
and other sub-cellular proteomics methods which utilised cellular fractionation [351].

5.4 Results

Motivated by the need for novelty detection methods which also quantify the uncertainty in the
number of clusters and the assignments of proteins to each cluster, we developed Novelty TAGM.
Our proposed methodology allows us to interrogate individual proteins to assess whether they
belong to a newly discovered phenotype. To demonstrate the value of this approach, we applied
Novelty TAGM to a diverse set of spatial proteomics datasets.

5.4.1 Validating experimental design in hyperLOPIT

Initially, we validated Novelty TAGM in a setting where we have a strong a priori expectation
for the presence of an unannotated niche. For this we used a human bone osteosarcoma cell (U-2
OS) hyperLOPIT dataset [455] and an mESC hyperLOPIT dataset [68]. These experimental
protocols used a chromatin enrichment step to resolve nuclear chromatin-associated proteins
from nuclear proteins not associated with chromatin. Removing the nuclear, chromatin and
ribosomal annotations from the datasets, we test the ability of Novelty TAGM to recover them.

Human bone osteosarcoma (U-2 OS) cells

For the U-2 OS dataset, Novelty TAGM reveals 9 putative phenotypes, which we refer to as
phenotype 1, phenotype 2, etc... These phenotypes, along with the uncertainty associated with
them, are visualised in figure 5.2. We consider the HPA confocal microscopy data for validation
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[455, 441]. The HPA provides information on the same cell line and therefore constitutes an
excellent complementary resource. This hyperLOPIT dataset was already shown to be in strong
agreement with the microscopy data [455, 159]. Proteins in phenotypes 3, 4, 5 and 8 have
a nucleus-related annotation as their most frequent HPA annotation, as well as differential
enrichment of nucleus-related GO terms (figure 5.2). Phenotype 3 validates the chromatin
enrichment preparation (figure 5.2 panel (c)) and phenotype 4 reveals a nucleoli cluster, where
nucleoli and nucleoli/nucleus are the 2nd and 3rd most frequent HPA annotations for proteins
belonging to this phenotype. For phenotype 5, the most associated term is nucleoplasm from
the HPA data and this is further supported by GO analysis (figure 5.2 panel (c)). Phenotype 8
demonstrates further sub-nuclear resolution and has nuclear membrane as its most frequent
HPA annotation and has corresponding enriched GO terms (figure 5.2 panel (c)). In addition,
phenotypes 1 and 2 are enriched for ribosomes and endosomes respectively.
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Fig. 5.2 (a) PCA plot of the hyperLOPIT U-2 OS cancer cell line data. Points are scaled
according to the discovery probability with larger points indicating greater discovery probability.
(b) Heatmaps of the posterior similarity matrix derived from U-2 OS cell line data demonstrating
the uncertainty in the clustering structure of the data. We have only plotted the proteins which
have greater than 0.99 probability of belonging to a new phenotype and probability of being an
outlier less than 0.5 for the U-2 OS dataset to reduce the number of visualised proteins. (c)
Tile plot of discovered phenotypes against GO CC terms to demonstrate over-representation,
where the colour intensity is the -log10 of the p-value.
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mESC chromatin enrichment validation

For the mESC dataset, Novelty TAGM reveals 8 new putative phenotypes. Novelty TAGM
recovers the masked annotations with phenotype 2 having the enriched terms associated with
chromatin, such as chromatin and chromosome (p < 10−80). Phenotype 3 corresponds to
a separate nuclear substructure with enrichment for the terms nucleolus (p < 10−60) and
nuclear body (p < 10−30). Thus, in the mESC dataset Novelty TAGM confirms the chromatin
enrichment preparation designed to separate chromatin and non-chromatin associated nuclear
proteins [324]. In addition, phenotype 4 demonstrates enrichment for the ribosome annotation
(p < 10−35). Phenotype 1 is enriched for centrosome and microtubule annotations (p < 10−15),
though observing the PSM in figure 5.3 we can see there is much uncertainty in this phenotype.
This uncertainty quantification can then be used as a basis for justifying additional expert
annotation.
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Fig. 5.3 (a) PCA plot of the hyperLOPIT mESC dataset. Points are scaled according to the
discovery probability. (b) Heatmaps of the posterior similarity matrix derived from mESC data
demonstrating the uncertainty in the clustering structure of the data. We have only plotted
the proteins which have greater than 0.99 probability of belonging to a new phenotype and
probability of being an outlier less than 0.95 for the mESC dataset to reduce the number of
visualised proteins.
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5.4.2 Uncovering additional sub-cellular structures

Having validated the ability of Novelty TAGM to recover known experimental design, as well
as uncover additional sub-cellular niches resolved in the data, we turn to apply Novelty TAGM
to several additional datasets.

U-2 OS cell line revisited

We first consider the LOPIT-DC dataset on the U-2 OS cell line [159]. Again, we removed
the nuclear, proteasomal, and ribosomal annotations. Novelty TAGM reveals 10 putative
phenotypes (figure 5.4).

In a similar vein to the analysis performed on the hyperLOPIT U-2 OS dataset, we initially
use the available HPA data to validate these clusters [455]. Phenotypes 3, 5, 7 and 9 display
nucleus-associated terms as their most frequent HPA annotation. Clear differential enrichment of
phenotypes with GO Cellular Component terms is evident from figure 5.4 panel (e). This analysis
reveals nucleolus, ribosome, proteasome phenotypes. Furthermore, a chromatin phenotype is
also resolved. Notably, this is the first evidence for sub-nuclear resolution in this LOPIT-DC
dataset. Phenotype 6 represents a cluster with mixed plasma membrane and extracellular
matrix annotations and this is supported by HPA annotation with vesicles, cytosol, and plasma
membrane being the top three annotations. An extracellular matrix-related phenotype was
not previously known in these data and might correspond to exocytic vesicles containing ECM
proteins. Furthermore, phenotype 8 is significantly enriched for endosomes, again a novel
annotation for this data. In addition, 107 of the proteins in this phenotype are also localised
to the endosome-enriched phenotype presented in the U-2 OS hyperLOPIT dataset (section
5.4.1). Thus, we robustly identify new phenotypes across different spatial proteomics protocols.
Hence, we have presented strong evidence for additional annotations in this dataset, beyond
the original analysis of the data [159]. In particular, although a separate chromatin enrichment
preparation was not included in the U-2 OS LOPIT-DC analysis and the original authors did not
identify sufficient resolution between the nucleus and chromatin clusters in this dataset, Novelty
TAGM could, in fact, reveal a chromatin-associated phenotype in the U-2 OS LOPIT-DC
data. In addition, we have joint evidence for an endosomal cluster in both the LOPIT-DC and
hyperLOPIT datasets. Finally, through the discovery probability and by using the PSMs we
have quantified uncertainty in these proposed phenotypes, enabling more rigorous interrogation
of these datasets.

Saccharomyces cerevisiae

Novelty TAGM uncovers 8 putative phenotypes in the yeast hyperLOPIT data [339]. Four
of these phenotypes have no significant over-represented annotations. Figure 5.4 panel (f)
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demonstrates that the remaining four phenotypes are differentially enriched for GO terms.
Firstly, a mixed cell periphery and fungal-type vacuole phenotype is uncovered along with a
kinetochore phenotype, and a cytoskeleton phenotype. Phenotype 8 represents a joint Golgi
and ER cluster with several enriched GO terms. Indeed, most of the proteins in this phenotype
have roles in the early secretory pathway that involve either transport from the ER to the early
Golgi apparatus, or retrograde transport from the Golgi to the ER [52, 217, 352, 487], (also
reviewed in [106]). To be precise, 11 out of the total 20 proteins in this cluster are annotated
as core components of COPII vesicles and 6 associated with COPI vesicles. The protein Ksh1p
(Q8TGJ3) is further suggested through homology with higher organisms to be part of the early
secretory pathway [477]. The proteins Scw4p (P53334), Cts1p (P29029) and Scw10p (Q04951)
[57], as well as Pst1p (Q12355)[355], and Cwp1p (P28319) [486], however, are annotated in the
literature as localising to the cell wall or extracellular region. It is therefore possible that their
predicted co-localisation with secretory pathway proteins observed here reflects a proportion of
their lifecycle being synthesised or spent trafficking through the secretory pathway. The protein
Ssp120p (P39931) is of unknown function and has been shown to localise in high throughput
studies to the vacuole [487] and to the cytoplasm in a punctate pattern [215]. The localisation
observed here may suggest that it is therefore either part of the secretory pathway, or trafficks
through the secretory organelles for secretion or to become a constituent of the cell wall.

HCMV-infected fibroblast cells

We apply Novelty TAGM to the dataset corresponding to the HCMV-infected fibroblast cells
24 hours post infection (hpi) [24], and discover 9 putative additional phenotypes (demonstrated
in figure 5.5). Phenotype 2 contains a singleton protein and phenotypes 4, 6, 7, 8 and 9
are not significantly enriched for any annotations. However, phenotype 3 is enriched for
the mitochondrial membrane and mitochondrial envelope annotations (p < 10−4); this is an
addition to the already annotated mitochondrial class, indicating sub-mitochondrial resolution.
Phenotype 1 is a mixed ribosomal/nuclear cluster with enrichment for nucleoplasm (p < 10−5)
and the small ribosomal subunit (p < 10−4), which is distinct from phenotype 5 which is
enriched for the large ribosomal subunit (p < 10−10). This demonstrates unbiased separation of
the two ribosomal subunits, which was overlooked in the original analysis [24].

Fibroblast cells without infection

Novelty TAGM reveals 7 putative phenotypes in the control fibroblast dataset [24]. Phenotypes
2, 4, 5, 6 and 9 have no significantly enriched Gene Ontology terms (threshold p = 0.01).
However, we observe that phenotype 3 is enriched with the large ribosomal subunit with
significance at level p < 10−7. Phenotype 1 represents a mixed peroxisome (p < 10−2) and
mitochondrion cluster (p < 10−2), an unsurprising result since these organelles possess similar
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Fig. 5.4 (a, c) PCA plots of the LOPIT-DC U-2 OS data and the hyperLOPIT yeast data.
The points are scaled according to the discovery probability. (b, d) Heatmaps of the posterior
similarity matrix derived from the U-2 OS and yeast datasets demonstrating the uncertainty
in the clustering structure of the data. We have only plotted the proteins which have greater
than 0.99 probability of belonging to a new phenotype and probability of being an outlier less
than 0.95 (10−5 for LOPIT-DC to reduce the number of visualised proteins). (e, f) Tile plots of
phenotypes against GO CC terms where the colour intensity is the -log10 of the p-value.
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biochemical properties and therefore similar profiles during density gradient centrifugation-based
fractionation [159, 104]. The differing number of confidently identified and biologically relevant
phenotypes discovered between the two fibroblast datasets could be down to the differing levels
of structure between the two datasets. Indeed, it is evident from figure 5.5 that we see differing
levels of clustering structure in these datasets.
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Fig. 5.5 (a, c) PCA plots of the HCMV-infected fibroblast data 24 hpi and the mock fibroblast
data 24 hpi. The points are coloured according to the organelle or proposed new phenotype and
are scaled according to the discovery probability. (b, d) Heatmaps of the posterior similarity
matrix derived from the infected fibroblast data and mock fibroblast data demonstrating the
uncertainty in the clustering structure of the data. We have only plotted the proteins which
have greater than 0.99 probability of belonging to a new phenotype and probability of being an
outlier less than 0.95.
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5.4.3 Refining annotation in organellar maps

The Dynamic Organellar Maps (DOM) protocol was developed as a faster method for MS-based
spatial proteomic mapping, albeit at the cost of lower organelle resolution [220, 157]. The
three datasets analysed here are two HeLa cell lines [220, 202] and a mouse primary neuron
dataset [221]. All three of these datasets have been annotated with a class called “large protein
complexes”. This class contains a mixture of cytosolic, ribosomal, proteasomal and nuclear
sub-compartments that pellet during the centrifugation step used to capture this mixed fraction
[220]. We apply Novelty TAGM to these data and remove this “large protein complexes” class,
to derive more precise annotations for these datasets.

HeLa cells (Itzhak et. al 2016)

The HeLa dataset of [220] has 3 additional phenotypes uncovered by Novelty TAGM. Figure
5.6 panel c shows a mitochondrial membrane phenotype, distinct from the already annotated
mitochondrial class. Phenotype 2 represents a mixed cluster with nucleus-, ribosome- and
cytosol-related enriched terms. The final phenotype is enriched for chromatin and chromosome,
suggesting sub-nuclear resolution. Furthermore, as a result of quantifying uncertainty, we can
see that there are potentially more sub-cellular structures in this data (figure 5.6). However,
the uncertainty is too great to support these phenotypes.

Mouse primary neurons

The mouse primary neuron dataset reveals 10 phenotypes after we apply Novelty TAGM.
However, 8 of these phenotypes have no enriched GO annotations. This is likely a manifestation
of the dispersed nature of this dataset, where the variability is generated by technical artefacts
rather than biological signal. Despite this, Novelty TAGM is able to detect two relevant
phenotypes: the first phenotype is enriched for nucleolus (p < 0.01); the second for chromosome
(p < 0.01). This suggests additional annotations for this dataset.

HeLa cells (Hirst et. al 2018)

The HeLa dataset of [202], which we refer to as HeLa Hirst, reveals 7 phenotypes with at least
1 protein with discovery probability greater than 0.95. However, three of these phenotypes
represent singleton proteins. Phenotype 1 reveals mixed cytosol/ribosomal annotations with
the terms cytosolic ribosome (p < 10−30) and cytosolic part (p < 10−25) significantly over-
represented. There are no further phenotypes with enriched annotations (threshold p = 0.01),
except phenotype 2 which represents a mixed extracellular structure/cytosol cluster. For
example, the terms extracellular organelle (p < 10−13) and cytosol (p < 10−10) are over-
represented.



148 Bayesian novelty detection

−10 −5 0 5 10

−
5

0
5

PCA of HeLa (itzhak 2016) data with pointer scaled to discovery probability

PC1 (63.56%)

P
C

2 
(2

0.
49

%
)

Actin binding proteins
Endosome
ER
ER_high curvature
Ergic/cisGolgi
Golgi
Lysosome
Mitochondrion
Nuclear pore complex
Peroxisome
Phenotype 1
Phenotype 2
Phenotype 3
Phenotype 4
Phenotype 5
Phenotype 6
Phenotype 7
Phenotype 8
Phenotype 9
Plasma membrane

(a) (b)
HeLa (Itzhak et al.)

P
henotype 1

P
henotype 2

P
henotype 3

integral component of mitochondrial membrane

cytosolic ribosome

nucleolus

nuclear body

chromosome

chromatin

0

10

20

30

40

-log10(p.value)

(c)

Fig. 5.6 (a) PCA plots of the HeLa data. The pointers are scaled according to their discovery
probability. (b) Heatmaps of the HeLa Itzhak data. Only the proteins with discovery probability
greater than 0.99 and outlier probability less than 0.95 are shown. The heatmaps demonstrate
the uncertainty in the clustering structure present in the data. (c) Tile plot of phenotypes
against GO CC terms where the colour intensity is the -log10 of the p-value.
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Fig. 5.7 (a),(c) PCA plots of the mouse primary neuron data and HeLa Hirst data. The pointers
are scaled according to their discovery probability. (b),(d) Heatmaps of the mouse neuron data
and HeLa Hirst data. Only the proteins whose discovery probability is greater than 0.99 and
outlier probability less than 0.95 (10−2 for the mouse primary neuron dataset to reduce the
number of visualised proteins) are shown. The heatmaps demonstrate the uncertainty in the
clustering structure present in the data.
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5.5 Comparison between Novelty TAGM and phenoDisco

Next, we compare an already available novelty detection algorithm, phenoDisco [43], with
Novelty TAGM. Despite both methods performing novelty detection, the algorithms are quite
distinct. The first major difference is that Novelty TAGM is a Bayesian method that performs
uncertainty quantification. Novelty TAGM quantifies the uncertainty in both the number of
newly identified phenotypes and whether individual proteins should belong to a new phenotype.
On the other hand, phenoDisco uses the Bayesian Information Criterion (BIC) to select just a
single clustering, without taking into account the uncertainty in the number of phenotypes,
and does not provide an estimate of individual protein-to-phenotype allocation uncertainty.
Another difference is the input to both methods; Novelty TAGM uses the data directly,
whereas phenoDisco takes the top principal components (by default, the first two) as input.
PhenoDisco also requires an additional parameter - the minimum group size. This parameter
can be challenging to specify, since there is a trade-off between identifying functionally relevant
phenotypes of different sizes and picking up small spurious protein clusters. Furthermore,
phenoDisco struggles to scale to many of the datasets presented in this manuscript, because it
requires iteratively refitting models and building of an outlier test statistic.

To demonstrate the differences between the two approaches, we apply phenoDisco and
Novelty TAGM to the HEK-293 spatial proteomics dataset interrogated by [43]. The PCA
plots in figure 5.8 reveal broad similarities in the location of the discovered phenotypes. Novelty
TAGM provides more information than phenoDisco; for example, we can scale the pointer size to
the discovery probability. We note that both methods reveal 8 putative phenotypes in the data.
Figure 5.8 (panels d and e) reveals the distribution of proteins across these phenotypes. We
conclude that both approaches are able to discover small and large clusters, with both methods
identifying phenotypes with a few proteins, but also phenotypes with greater than 100 proteins.
Figure 5.8 (panel f) shows that both methods find the same number of phenotypes; however, not
all of these phenotypes are functionally enriched. For phenoDisco, four of the phenotypes had
at least 1 significant Gene Ontology term, whereas this was true for five of the Novelty TAGM
phenotypes. Figure 5.8 (panel g) characterises the protein overlap between the two approaches.
We see that both methods are in broad agreement, with most of the disagreement attributed
to cases where one method assigns a protein as unknown whilst the other allocates to it a
phenotype or organelle. For example, Novelty TAGM associates phenoDisco phenotype 3, which
is a lysosome-enriched phenotype, with the plasma membrane (albeit with low probability).
On the other hand, Novelty TAGM phenotypes 2 and 3, enriched for chromatin and ribosome
respectively, are associated with the mitochondria by phenoDisco. This demonstrates the ability
of Novelty TAGM to derive more biologically meaningful phenotypes.
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Fig. 5.8 (a) PCA plot showing marker proteins for the HEK-293 dataset. (b) PCA plot with
phenotypes identified by phenoDisco. (c) PCA plot with phenotypes identified by Novelty
TAGM with pointer size scaled to discovery probability. (d, e) Barplots showing the number
of proteins allocated to different phenotypes by phenoDisco and Novelty TAGM respectively.
(f) A table demonstrating the number of phenotypes with functional enrichment for both
methods and the number of phenotypes discovered. (g) A heatmap showing the overlap between
phenoDisco and Novelty TAGM allocations.
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5.6 Improved annotation allows exploration of endosomal processes

Given the information that the U-2 OS hyperLOPIT dataset resolves an endosomal cluster
not previously explored, we perform a re-analysis of this dataset focusing on the endosomes.
We curate a set of marker proteins for the endosomes and add these annotations to the U-2
OS hyperLOPIT dataset. After which, we apply our Bayesian generative classifier TAGM
to the data with this additional annotation. Protein allocations to each sub-cellular niche
are visualised in the PCA plot of figure 5.9 (panel a). Figure 5.9 (panel c) demonstrates the
increased number of proteins that can be characterised by improved annotation of the U-2 OS
cell dataset. Furthermore, we examine 7 (of 240) proteins with uncertain endosomal localisation,
which can be visualised in each of the violin plots in figure 5.9 (panel d).

All 7 proteins with uncertain assignment to our new endosome cluster are known to function
in endosome dynamics. Rab5a and Rab5b (P20339; P61020) are isoforms of Rab5, a small
GTPase which is considered a master organiser of the endocytic system, regulating clathrin-
mediated endocytosis and early endosome dynamics [425, 484, 493, 381, 308, 64, 158, 262].
RN-tre (Q92738) is a GTPase-activating protein which controls the activity of several Rab
GTPases, including Rab5, and is therefore a key player in the organisation and dynamics
of the endocytic pathway [256, 158]. KIF16B (Q96L93) is a plus end-directed molecular
motor which regulates early endosome motility along microtubules. It is required for the
establishment of the steady-state sub-cellular distribution of early endosomes, as well as the
balance between PM recycling and lysosome degradation of signal transducing cell surface
receptors including EGFR and TfR [203, 58]. Notably, it has been demonstrated that KIF16B
co-localises with the small GTPase Rab5, whose isoforms Rab5a and Rab5b we also identified
as potentially localised to the endosome and PM in this dataset. ZNRF2 (Q8NHG8) is an
E3 ubiquitin ligase which has been shown to regulate mTOR signalling as well as lysosomal
acidity and homeostasis in mouse and human cells and has been detected at the endosomes,
lysosomes, Golgi apparatus and PM according to the literature [12, 207]. Ykt6 (O15498) is a
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein that
regulates a wide variety of intracellular trafficking and membrane tethering and fusion processes.
The membrane-associated form of Ykt6 has been detected at the PM, ER, Golgi apparatus,
endosomes, lysosomes, vacuoles (in yeast), and autophagosomes as part of various SNARE
complexes [111, 445, 144, 304, 446, 296, 272, 488]. In line with this, our results show a mixed
sub-cellular distribution for Ykt6 with potential localisation to the endosome and cytosol (figure
5.9, panel d). EHD3 (Q9NZN3) is an important regulator of endocytic trafficking and recycling,
which promotes the biogenesis and stabilisation of tubular recycling endosomes by inducing
early endosome membrane bending and tubulation [15, 196]. We observe a mixed steady-state
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potential localisation to the endosome and PM for EHD3 (figure 5.9, panel d). This is in
agreement with EHD3’s role in recycling endosome-to-PM transport [331, 332, 167, 54, 196].

Of these 7 proteins with uncertain endosome assignment, only 4 have localisations annotated
in HPA (figure 5.9 (b)). The HPA assigns Rab5b to the vesicles which, in this context,
include the endosomes, lysosomes, peroxisomes and lipid droplets. Therefore, a more precise
annotation is available using Novelty TAGM. Ykt6 is localised to the cytosol, in support of our
observations. EHD3 has approved localisation to the plasma membrane, again in agreement
with our assignments. KIF16B is assigned to the mitochondrion, which contradicts our findings
as well as previously published literature on the localisation and biological role of this protein.
We speculate that this disagreement arises from the uncertainty associated with the specificity
of the chosen antibody [455]. Thus, Novelty TAGM enables sub-cellular fractionation-based
methods to identify proteins in sub-cellular niches which cannot be fully interrogated by
immunocytochemistry.



154 Bayesian novelty detection

−10 −5 0 5 10

−
5

0
5

10

PCA of U2OS hyperLOPIT data
CHROMATIN
CYTOSOL
ENDOSOME

ER
GA
LYSOSOME

MITOCHONDRION
NUCLEUS
PEROXISOME

PM
PROTEASOME
RIBOSOME 40S

RIBOSOME 60S

(a) (b)

0

1000

2000

3000

4000

5000

TAGM allocations
Method

N
um

be
r 

of
 P

ro
te

in
s 

Legend
Markers
Protein allocations
Reannotation allocations
Unknown

Protein allocations

(c)

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

C
H

R
O

M
A

T
IN

C
Y

T
O

S
O

L

E
N

D
O

S
O

M
E

E
R

G
A

LY
S

O
S

O
M

E

M
IT

O
C

H
O

N
D

R
IO

N

N
U

C
LE

U
S

P
E

R
O

X
IS

O
M

E

P
M

P
R

O
T

E
A

S
O

M
E

R
IB

O
S

O
M

E
 4

0S

R
IB

O
S

O
M

E
 6

0S

C
H

R
O

M
A

T
IN

C
Y

T
O

S
O

L

E
N

D
O

S
O

M
E

E
R

G
A

LY
S

O
S

O
M

E

M
IT

O
C

H
O

N
D

R
IO

N

N
U

C
LE

U
S

P
E

R
O

X
IS

O
M

E

P
M

P
R

O
T

E
A

S
O

M
E

R
IB

O
S

O
M

E
 4

0S

R
IB

O
S

O
M

E
 6

0S

C
H

R
O

M
A

T
IN

C
Y

T
O

S
O

L

E
N

D
O

S
O

M
E

E
R

G
A

LY
S

O
S

O
M

E

M
IT

O
C

H
O

N
D

R
IO

N

N
U

C
LE

U
S

P
E

R
O

X
IS

O
M

E

P
M

P
R

O
T

E
A

S
O

M
E

R
IB

O
S

O
M

E
 4

0S

R
IB

O
S

O
M

E
 6

0S

C
H

R
O

M
A

T
IN

C
Y

T
O

S
O

L

E
N

D
O

S
O

M
E

E
R

G
A

LY
S

O
S

O
M

E

M
IT

O
C

H
O

N
D

R
IO

N

N
U

C
LE

U
S

P
E

R
O

X
IS

O
M

E

P
M

P
R

O
T

E
A

S
O

M
E

R
IB

O
S

O
M

E
 4

0S

R
IB

O
S

O
M

E
 6

0S

C
H

R
O

M
A

T
IN

C
Y

T
O

S
O

L

E
N

D
O

S
O

M
E

E
R

G
A

LY
S

O
S

O
M

E

M
IT

O
C

H
O

N
D

R
IO

N

N
U

C
LE

U
S

P
E

R
O

X
IS

O
M

E

P
M

P
R

O
T

E
A

S
O

M
E

R
IB

O
S

O
M

E
 4

0S

R
IB

O
S

O
M

E
 6

0S

C
H

R
O

M
A

T
IN

C
Y

T
O

S
O

L

E
N

D
O

S
O

M
E

E
R

G
A

LY
S

O
S

O
M

E

M
IT

O
C

H
O

N
D

R
IO

N

N
U

C
LE

U
S

P
E

R
O

X
IS

O
M

E

P
M

P
R

O
T

E
A

S
O

M
E

R
IB

O
S

O
M

E
 4

0S

R
IB

O
S

O
M

E
 6

0S

C
H

R
O

M
A

T
IN

C
Y

T
O

S
O

L

E
N

D
O

S
O

M
E

E
R

G
A

LY
S

O
S

O
M

E

M
IT

O
C

H
O

N
D

R
IO

N

N
U

C
LE

U
S

P
E

R
O

X
IS

O
M

E

P
M

P
R

O
T

E
A

S
O

M
E

R
IB

O
S

O
M

E
 4

0S

R
IB

O
S

O
M

E
 6

0S

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

Distribution of Subcellular Membership for Protein Q92738 Distribution of Subcellular Membership for Protein P61020 Distribution of Subcellular Membership for Protein O15498

Distribution of Subcellular Membership for Protein Q9NZN3 Distribution of Subcellular Membership for Protein P20339-2 Distribution of Subcellular Membership for Protein Q96L93-6

Distribution of Subcellular Membership for Protein Q8NHG8

(d)

Fig. 5.9 (a) PCA of U-2 OS hyperLOPIT data with pointer scaled to localisation probability
and outliers shrunk. Points are coloured according to their most probable organelle. (b)
Immunofluorescence images and sub-cellular localisation annotation taken from the HPA
database (https://www.proteinatlas.org/humanproteome/cell) for the proteins with UniProt
accessions P61020 (Rab5b), O15498 (Ykt6), Q9NZN3 (EHD3), and Q96L93 (KIF16B). The
nucleus is stained in blue; microtubules in red, and the antibody staining targeting the protein
in green. (c) A barplot representing the number of proteins allocated before and after re-
annotation of the endosomal class. (d) Violin plots of full probability distribution of proteins
to organelles, where each violin plot is for a single protein.
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5.7 Discussion and limitations

In this chapter, we developed a semi-supervised Bayesian approach that simultaneously allows
probabilistic allocation of proteins to organelles, detection of outlier proteins, as well as the
discovery of novel sub-cellular structures. Our method unifies several approaches present in
the literature, combining the ideas of supervised machine learning and unsupervised structure
discovery. Formulating inference in a Bayesian framework allows for the quantification of
uncertainty; in particular, the uncertainty in the number of newly discovered annotations.

To demonstrate the broad applicability of our method, we applied it to 10 different spatial
proteomic datasets acquired using diverse fractionation and MS data acquisition protocols and
displaying varying levels of resolution revealed additional annotation in every single dataset.
Our analysis recovered the chromatin-associated protein phenotype and validated experimental
design for chromatin enrichment in hyperLOPIT datasets. Our approach also revealed additional
sub-cellular niches in the mESC hyperLOPIT and U-2 OS hyperLOPIT datasets.

Our method revealed resolution of 4 sub-nuclear compartments in the U-2 OS hyperLOPIT
dataset, which were validated by Human Protein Atlas annotations. An additional endosome-
enriched phenotype was uncovered and Novelty TAGM robustly identified an overlapping
phenotype in U-2 OS LOPIT-DC data, providing strong evidence for endosomal resolution.
Further biologically relevant annotations were uncovered in these, as well as other datasets. For
example, a group of vesicle-associated proteins involved in transport from the ER to the early
Golgi was identified in the yeast hyperLOPIT dataset; resolution of the ribosomal subunits was
identified in the fibroblast dataset, and separate nuclear, cytosolic and ribosomal annotations
were identified in the DOM datasets.

A direct comparison with the state-of-the-art approach phenoDisco demonstrates clear
differences between the approaches. Novelty TAGM, a fully Bayesian approach, quantifies
uncertainty in both the number of newly discovered phenotypes and the individual protein-
phenotype associations - phenoDisco provides no such information.

Improved annotation of the U-2 OS hyperLOPIT data allowed us to explore endosomal
processes, which have not previously been considered with this dataset. We compare our
results directly to immunofluorescence microscopy-based information from the HPA database
and demonstrate the value of orthogonal spatial proteomics approaches to determine protein
sub-cellular localisation. Our results provide insights on the sub-cellular localisation of proteins
for which there is no information in the HPA Cell Atlas database.

During our analysis, we observed that the posterior similarity matrices have potential sub-
clustering structures. Many known organelles and sub-cellular niches have sub-compartmentalisation,
thus methodology to detect these sub-compartments would be desirable. Furthermore, we
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have observed that different experiments and different data modalities provide complementary
results. Thus, integrative approaches to spatial proteomics analysis are also desired.

Our method is widely applicable within the field of spatial proteomics and builds upon
state-of-the-art approaches. The computational algorithms presented here are disseminated as
part of the Bioconductor project [166, 212] building on MS-based data structures provided in
[153] and are available as part of the pRoloc suite, with all data provided in pRolocdata [156].

There are a number of further directions that our work could take. For example, Breckels
et al. [44] develop a multiple kernel SVM method and demonstrate that this can improve
classifications. An integrative Bayesian approach to quantify uncertainty is certainly desirable
and we could extend TAGM in this direction, for example using multiple dataset integration
[243]. Furthermore, new experimental designs are becoming available for spatial proteomics
so that data are collected in a control and treatment setting. There are no bespoke methods
to analyse these data. In a more statistical direction, we have not explicitly encoded known
prior information about the correlation structure present in the data. Indeed, a multivariate
Gaussian distribution ignores that the fractions have a particular ordering according to the
density gradient. To include this information, we could appeal to Gaussian processes. A more
bespoke model for these data are developed in next chapter.



Chapter 6

Semi-supervised non-parametric
Bayesian modelling of spatial
proteomics

6.1 Motivation

Previous chapters have developed Bayesian approaches in the analysis of spatial proteomics
data and we have developed approaches to reduce our reliance on marker proteins. Uncertainty
quantification has allowed us to make powerful insights and important advances in the analysis
of spatial proteomics data. We now consider a more subtle statistical question: can we develop a
model that better reflects the data generating process of the data? In this chapter, we consider
functional data analysis approaches to analyse spatial proteomics data. This chapter is an
edited version of Crook et al. [86] and there is significant textual overlap.

6.1.1 Abstract

Understanding sub-cellular protein localisation is an essential component in the analysis of
context specific protein function. Recent advances in quantitative mass-spectrometry (MS)
have led to high resolution mapping of thousands of proteins to sub-cellular locations within
the cell. Novel modelling considerations to capture the complex nature of these data are thus
necessary. We approach analysis of spatial proteomics data in a non-parametric Bayesian
framework, using mixtures of Gaussian process regression models. The Gaussian process
regression model accounts for correlation structure within a sub-cellular niche, with each
mixture component capturing the distinct correlation structure observed within each niche.
Proteins with a priori labelled locations motivate using semi-supervised learning to inform the
Gaussian process hyperparameters. We moreover provide an efficient Hamiltonian-within-Gibbs
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sampler for our model. Furthermore, we reduce the computational burden associated with
inversion of covariance matrices by exploiting the structure in the covariance matrix. A tensor
decomposition of our covariance matrices allows extended Trench and Durbin algorithms to be
applied to reduce the computational complexity of inversion and hence accelerate computation.
We provide detailed case-studies on Drosophila embryos and mouse pluripotent embryonic stem
cells to illustrate the benefit of semi-supervised functional Bayesian modelling of the data.

6.2 Introduction and literature review

Throughout this thesis we have already demonstrated the value of spatial proteomics and the
importance of quantification of uncertainty in these experiments. This chapter is more statistical
in flavour and considers the challenging task of developing a model that more accurately reflects
the data generating process. We begin by revisiting the mechanisms for data generation and an
overview of a typical spatial proteomics experiment is provided in Figure 6.1A.

We recall that cells are first gently lysed to expose the cellular content while preserving
the integrity of the organelles. The cellular content is then separated using, for example,
differential centrifugation [220, 159, 351] or equilibrium density centrifugation [118, 119, 68],
among others [356, 194]. After centrifugation, the cellular content is then fractionated, and the
abundance of each protein in each fraction is determined experimentally using high accuracy
mass-spectrometry. This gives, for each protein, an abundance profile across the fractions.

In the LOPIT (Localisation of Organelle Proteins by Isotope Tagging) [118, 119, 400] and
hyperLOPIT [68, 324] approaches, cell lysis is proceeded by the separation of sub-cellular
components along a continuous density gradient based on their buoyant density. Discrete
fractions along this gradient are then collected, multiplexed using tandem mass tags (TMT)
[453] and protein distributions revealing organelle specific correlation profiles within the fractions
are achieved using synchronous precursor selection mass-spectrometry (SPS-MS3).

In work that contributed to the discovery of previously unknown organelles and the award
of a Nobel prize, de Duve and colleagues [120, 98, 35] observed that proteins belonging to
the same organelle possessed very similar abundance profiles (Figure 6.1B). This motivates
the following data analysis problem: given the abundance profiles of proteins that are already
known to localise to a particular organelle, can we determine which other proteins might also
localise to that organelle? In many previous analyses, this problem has been addressed as a
black-box classification problem.

The classification approach has a number of major limitations. For example, it implicitly
assume that all proteins can be robustly assigned to a primary location, which will often not
be the case, since many proteins function in multiple cellular compartments. Other sources
of uncertainty include the inherit stochastic processes involved in MS-based quantitation,
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as well as each protein’s physical properties, which influence how well it is quantified. Post-
translation modifications and protein isoforms also add to the challenge of protein quantification.
Furthermore, many elements of the experimental procedure are variable and context specific;
such as, cell lysis, formation of the density gradients and protein extraction. In addition,
organelle integrity maybe disrupted during many of the downstream processing steps. Hence,
there are many factors that contribute to the downstream challenge of making protein-niche
associations.

We have already developed a generative mixture model of MS spatial proteomics data
and, using this model, computed posterior distributions of protein localisation probabilities.
However, our model made a number of assumptions that simplified the analysis, but which do
not accurately reflect the data generating process. In this chapter, we develop a generative
model for the data that is more clearly motivated by the data generating process.

6.2.1 Model development

We proceed by providing a more mathematical description of the data to clarify the modelling
task. Let x be the spatial axis along which density gradient separation occurs (see Figure 6.1A),
and let x1 < x2 be two distinct points along x. We assume that the k-th organelle may be
characterised by a smooth latent probability density function, pk(x) (Figure 6.1C), such that,
for any protein i that uniquely localises to the k-th organelle, the (unobserved) absolute quantity
of protein i in the region [x1, x2] after separation is given by:

qk(x1, x2) =
∫ x2

x=x1
pk(x) dx. (6.1)

In a spatial proteomics experiment, quantification occurs in discrete fractions, which we assume
to be of approximately the same depth, ∆. Thus, an idealised spatial proteomics experiment
would provide us with the quantities qk(xj , xj + ∆), where {x1, . . . , xD} is a grid of spatial
coordinates. To simplify notation, we write qk(xj) to mean qk(xj , xj + ∆), i.e. for any protein
that uniquely localises to the k-th organelle, qk(xj) is the absolute quantity of that protein in
the fraction spanning the region from xj to xj + ∆.

In practice, current spatial proteomics experiments are unable to determine absolute
quantities. We assume that the abundances provided by current spatial proteomics experiments
can be expressed as a continuous deterministic function, h, of the absolute quantities, such that
the measured abundance, µk(xj) of protein i in the interval from xj to xj + ∆ can be expressed
as µk(xj) = h(qk(xj)); see Figure 6.1D. Since both h and qk are unknown, we adopt a functional
data analysis approach and treat µk as an unknown function to be inferred. We learn µk using
data from proteins whose localisation to organelle k is already known (see Figure 6.1E), and
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Fig. 6.1 An overview of the experimental design of a spatial proteomics experiment using
density-gradient centrifugation. (A) Cellular content is loaded onto a preformed iodixanol
density gradient. The tube is then subject to centrifugation, typically at 106g for 8 hours. After
centrifugation organelles have migrated to their buoyant densities and proteins localised to these
organelles will be more abundant in that part of the density gradient. (B) Discrete fractions are
collected along the density gradient. Proteins localised to the same organelle share characteristic
distributions across the fractions. (C) Organelles are assumed to be characterised by a smooth
latent probability density function p(x). Example characteristic probability density shown for
organelle B with fractions a, b and c indicated with assumed fixed depth ∆. (D) Observed
abundance profile for a protein belonging to Organelle B, after high-accuracy mass-spectrometry.
(E) Proteins with a priori known localisation are annotated. Proteins from the same sub-cellular
niche share the same (median-centred) abundance profiles.
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use a semi-supervised approach to further improve the inference of µk using data from proteins
whose allocations to organelles are unknown a priori (see Section 6.3.6)

6.2.2 Functional data analysis literature

We briefly review functional data analysis tools before introducing those specifically needed
for this chapter. Functional data analysis concerns itself with the analysis of data, where the
sampled data for each subject is a function [373]. Wang et al. [470] recently reviewed the current
major approaches in functional data analysis, including functional principal component analysis
[234], functional linear regression [320], functional clustering [225] and functional classification
[370]. For classification, the linear discriminant analysis method was extended to the functional
setting using splines [224]. Mixture discriminant analysis in the functional setting applied
to model bike sharing data was considered by Bouveyron et al. [38], using an functional EM
algorithm. Bayesian approaches to functional classification have also been considered; such
as, the wavelet based functional mixed model approach [496] and Bayesian variable selection
has also been extended to the functional setting [495]. Rodríguez et al. [391] use dependant
Dirichlet processes in the non-parametric Bayesian setting to cluster functional data. The
Gaussian process approach to analysing functional data in biomedical applications is extensive
[205, 276, 433, 235, 195, 458]

We assume each quantitative protein profile can be described by some unknown function,
with the uncertainty in this function captured using a Gaussian process (GP) prior. Each
sub-cellular niche is described by distinct density-gradient profiles, which display a non-linear
structure with no particular parametric assumption being suitable. The contrasting density-
gradient profiles are captured as components in a mixture of Gaussian process regression
models. Gaussian process regression models have been applied extensively and we refer to
[375] and [376] for the general theory. In molecular biology and functional genomics the focus
of many applications has been on expression time-series data, where sophisticated models
have been developed [244, 71, 235, 243, 198]. We remark that many of these applications
consider unsupervised clustering problems. In contrast, here we have (partially) labelled data
(proteins with location known prior to our experiments) and so we may consider semi-supervised
approaches. We explore inference of GP hyperparameters in two ways: firstly, an empirical Bayes
approach in which the hyperparameters are optimised by maximising a marginal likelihood;
secondly, by placing priors over these GP hyperparameters and performing fully Bayesian
inference using labelled and unlabelled data.

A number of computational aspects need to be considered if inference is to be applied to
spatial proteomics data. The first is that correlation in the GP hyperparameters can lead
to slow exploration of the posterior, thus we use Hamiltonian evolutions to propose global
moves through our probability space [115] avoiding random walk nature evident in traditional
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symmetric random walk proposals [310, 27]. Hamiltonian Monte-Carlo (HMC) has been
explored previously for hyperparameter inference in GP regression [479], and here we show
that HMC can be up to an order of magnitude more efficient than a Metropolis-Hastings
approach. Furthermore, a particular costly computation in our model is the computation of the
marginal likelihood (and its gradient) associated with each mixture component, which involves
the inversion of a large covariance matrix - even storage of such a matrix can be challenging.
We demonstrate that a simple tensor decomposition of the covariance matrix allows application
of fast matrix algorithms for covariance inversion and low memory storage [494].
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6.3 Methods

6.3.1 Previous methods

The workhorses of non-linear functional regression are spline [470] and Gaussian processes [375],
though splines can be seen as a special case of Gaussian processes for a particular choice of
kernel [242]. For completeness, we introduce details on Gaussian processes and we follow [376]
and [434] in the discussion that proceeds.

Gaussian processes

A Gaussian Process (GP) is a continuous stochastic process such that any finite collection of
these random variables is jointly Gaussian. A Gaussian process is completely specified by its
mean function and covariance function. The mean function m(x) and the covariance function
C(x, x′) of a real function f(x) is defined as

m(x) = E[f(x)] (6.2)

C(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (6.3)

and hence we can write
f(x) ∼ GP(m(x), C(x, x′)). (6.4)

Prediction with Gaussian processes

Let us consider a typical modelling scenario, where we observe noisy observations of a regression
function y = f(x) + ϵ, where ϵ is i.i.d Gaussian noise with variance σ2. Under the prior, the
covariance of the noisy observations can be written as

cov(y) = C(X,X ′) + σ2I, (6.5)

where I is the identity of matrix. Hence, we can write the joint distribution of the observed
values of y and the function values at test locations (under the prior) y

f(x∗)

 ∼ N
0,

C(X,X) + σ2I C(X,X∗)
C(X∗, X) C(X∗, X∗)

 (6.6)
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Once, we have observed data y at locations X, we can derive the predictive distribution at a
test locations as

f(x∗)|X, y,X∗ ∼N (f̄(x∗), cov(f(x∗))), where (6.7)

f̄(x∗) :=E [f(x∗)|X, y,X∗] = C(X∗, X)
[
C(X,X) + σ2I

]−1
y (6.8)

cov(f(x∗)) =C(X∗, C∗)− C(X∗, X)
[
C(X,X) + σ2I

]−1
C(X,X∗) (6.9)

Examining the equations carefully, we notice that the mean prediction equation is a linear
combination of the observations y. Another way to write this equation would be

f̄(x∗) =
n∑
i=1

αiC(xi, x∗), (6.10)

where we identify α =
[
C(X,X) + σ2I

]−1
y. The is a rather curious observation. We can write

the predictive equation as a finite sum, despite the GP being an infinite dimensional object
(and hence requiring an infinite number of basis function to represent it). This result is a
consequence of the representer theorem (see theorem 2), which we introduced in Chapter 2.

Covariance functions

We have already introduced kernels in the context of support vector machines. A covariance
function is a positive semi-definite symmetric kernel. In most cases, the definition of a kernel
and covariance function co-inside. The language difference arises because of the use of covariance
and covariance matrix in the study of distributions. We introduce two covariance functions
for the sake of brevity. The squared exponential function assumes no prior periodicity nor
symmetry and the resultant sample paths are smooth:

C(xi, xj) = a2 exp
(
−∥xi − xj∥

2
2

l

)
. (6.11)

The hyperparameter a2 is a marginal variance and can be seen to control the amplitude of the
sample paths, whilst l is a length-scale parameter and controls the decay of correlations. A
popular kernel, other than the squared exponential covariance is the Matérn covariance [434].
We use the following parameterisation of the Matérn covariance [271]:

Cv(xi, xj) = a2 21−ν

Γ(ν)

(
√

8ν ∥xi − xj∥
2
2

ρ

)ν
Kv

(
√

8ν ∥xi − xj∥
2
2

ρ

)
, (6.12)

where Γ is the gamma function and Kv denotes the modified Bessel function of the second kind
of order ν > 0. Furthermore, a and ρ are positive parameters of the covariance. a2 is interpreted
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as a marginal variance, whilst the non-standard choice of
√

8ν in the definition of the matérn
covariance, allows us to interpret ρ as a range parameter and thus ρ is the distance at which
the correlation is 0.1 for any ν. The parameter ν controls the differentiability of the resulting
sample paths; such that, ⌈v⌉ is the number of mean-square derivatives. For typical applications,
ν is poorly identifiable and fixed [271]. ν = 1/2 recovers the exponential covariance, whereas
taking the limit ν →∞ one obtains the squared exponential covariance.

6.3.2 Non-parametric Bayesian modelling

Having establish the background on functional data analysis and Gaussian processes, we can
now return to our modelling task. In our experiment, we make discrete observations along a
continuous density gradient yi = [yi(x1), ..., yi(xD)], where yi(xj) indicates the measurement
of protein i in the fraction spanning the spatial region from xj to xj + ∆ along the density
gradient. We assume that protein intensity yi varies smoothly with the distance along the
density-gradient. We then define the following regression model for the measured abundance of
protein i as a function of the spatial coordinate x:

yi(x) = µi(x) + ϵi, (6.13)

where µi is an unknown deterministic function and ϵi a noise variable. We assume that
ϵi ∼iid N (0, σ2

i ), for simplicity and remark that more elaborate noise models could be chosen
but at additional computational cost and greater model complexity. Proteins are grouped
together according to their sub-cellular localisation, with all proteins associated with sub-cellular
niche k = 1, ...,K sharing the same regression model; that is, µi = µk and σi = σk for all
proteins in the k-th sub-cellular niche. For clarity, we refer to sub-cellular structures, whether
that be organelles, vesicles or large multi-protein complexes, as components. Thus proteins
associated with component k can be modelled as i.i.d draws from a multivariate Gaussian
random variable with mean vector µk = [µk(x1), ..., µk(xD)] and covariance matrix σ2

kID. To
perform inference for the unknown function µk, as is typical for spatial correlated data [161, 432],
we specify a Gaussian Process (GP) prior for each µk:

µk(x) ∼ GP (mk(x), Ck(x, x′)). (6.14)

The full complement of proteins is then modelled as a finite mixture of Gaussian process
regression models. To elaborate, assuming a GP prior for µk means that for indices x1, ..., xD,
the joint prior of µk = [µk(x1), ..., µk(xD)]T , is multivariate Gaussian with mean vector mk =
[mk(x1), ...,mk(xD)] and covariance matrix Ck(i, j) = Ck(xi, xj). Given no prior belief about
symmetry or periodicity in our deterministic function, we assume our GP is centred with
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squared exponential covariance function

Ck(xi, xj) = a2
k exp

(
−∥xi − xj∥

2
2

lk

)
. (6.15)

6.3.3 Marginalising the unknown function

Having adopted a GP prior with component specific parameters ak and lk for each unknown
function µk, we let observations associated with component k be denoted by Yk = {y1, ..., ynk

}.
Our model tells us that

Yk|µk, σk ∼ N (µk, σ
2
kID). (6.16)

Then, we can write this as

Yk(x1), ..., Yk(xD)|µk, σk ∼

N (µk(x1), ..., µk(xD), ..., µk(x1), ..., µk(xD), σ2
kInkD),

(6.17)

where µk(x1), ..., µk(xD) is repeated nk times. Our GP prior tell us

µk(x1), ..., µk(xD), ..., µk(x1), ..., µk(xD)|ak, lk ∼ N (0, Ck), (6.18)

where Ck is an nkD × nkD matrix. This matrix is organised into nk × nk square blocks each
of size D. The (i, j)th block of Ck being Ak, where Ak is the covariance function for the kth

component evaluated at τ = {x1, ..., xD}.

Ck =


Ak Ak . . . Ak

Ak Ak . . . Ak
...

... . . . ...
Ak Ak . . . Ak

 . (6.19)

Letting θk =
{
ak, lk, σ

2
k

}
, we can then marginalise µk to obtain,

Yk(x1), ..., Yk(xD)|θk ∼ N (0, Ck + σ2
kInkD), (6.20)

thus avoiding inference of µk. Let Yk(τ) denote the vector of length nk × D equal to
[y1(x1), ..., y1(xD), . . . , ynk

(x1), ..., ynk
(xD)]. Then we may rewrite equation 2.44 by marginalising

µk to obtain:

P (zi = k|z−i) ∝
n−i,k + α/K

K − 1 + α

∫
p(yi|µk)p(µk|θk, Y−i,k(τ)) dµk, (6.21)

where Y−i,k(τ) is equal to Yk(τ) with observation i removed.
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6.3.4 Tensor decomposition of the covariance matrix for fast inference

Our covariance matrix has a particularly simple structure allowing us to exploit extended
Trench and Durbin algorithms for fast matrix computations [494]. We are interested in the
inversion of matrices of the following form

C =


A+ σ2ID A . . . A

A A+ σ2ID . . . A
...

... . . . ...
A A . . . A+ σ2ID

 . (6.22)

Note that A is a positive symmetric matrix of size D × D and furthermore it is Toeplitz
(constant diagonal and perisymmetric). Let Jn denote an n× n matrix of ones. It is clear that
we can write C in the following form:

C = σ2InD +B, (6.23)

where
B = Jn ⊗A, (6.24)

and ⊗ denotes the Kronecker (tensor) product.
Let en denote a column vector of ones of length n. It is easy to see that Jn = ene

T
n . Trivially,

we can write A = IDA and this leads to the following factorisation

B =
(
ene

T
n

)
⊗ (IDA).

=(en ⊗ ID)(eTn ⊗A),
(6.25)

where the second equality follows from the mixed-product property of the Kronecker product.
Observing that en ⊗ ID is a matrix of size nD ×D, and eTn ⊗A is matrix of size D × nD. We
thus arrive at the following factorisation:

C = σ2InD + (en ⊗ ID)ID(eTn ⊗A), (6.26)

which is in the following form

C = M + URV

M = σ2InD, U = (en ⊗ ID),

R = ID, V = eTn ⊗A.

(6.27)
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Matrices of this form have a simple formula for their inverse (Woodbury Identity):

(M + URV )−1 = M−1 −M−1U(R−1 + VM−1U)−1VM−1. (6.28)

In our case R is trivially its own inverse and the inversion of M requires only a single computation.
Thus the only challenge is to invert (R−1 + VM−1U), which we now consider. Consider the
following:

R−1 + VM−1U = ID + (eTn ⊗A)(σ−2InD)(en ⊗ ID)

= ID + σ−2(eTnen)⊗ (AID)

= ID + σ−2n⊗A

= ID + σ−2nA

(6.29)

Recall that A is a D × D Toeplitz matrix and so it is easy to see from the above that
R−1 + VM−1U is also Toeplitz and hence its inverse may be computed efficiently. Denote this
inverse by Z, then it follows from equation 6.28 that we have:

(M + URV )−1 = σ−2InD − σ−4(en ⊗ ID)(Z)(eTn ⊗A)

= σ−2InD − σ−4(en ⊗ ID)(eTn ⊗ ZA)

= σ−2InD − σ−4(eneTn )⊗ (ZA)

= σ−2InD − σ−4Jn ⊗ (ZA)

= σ−2InD −
1
nσ2Jn ⊗ (I − Z),

(6.30)

where the last line follows from the following computations, denoting Z−1 = Q:

Q = ID + σ−2nA

=⇒ Q− σ−2nA = ID

=⇒ Q−1Q− σ−2nQ−1A = Q−1

=⇒ ID − σ−2nQ−1A = Q−1 (6.31)

=⇒ ID − Z = σ−2nZA

=⇒ ZA = (ID − Z)σ2

n
.

Thus the inversion of C requires only the inversion of a D×D matrix that can be performed in
O(D2) computations. This should be compared with a naïve inversion of C requiring O((nD)3)
computations, which represents significant savings. We also need the determinant of C and the
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calculation is straightforward using an elementary determinant lemma.

det(C) = det(M + URV )

= det(R−1 + VM−1U) det(R) det(M)

= det(ID + ((eTn ⊗A)(σ−2InD)(en ⊗ ID))) det(M)

= (σ2)nD det(ID + σ−2nA).

(6.32)

As before the term in the determinant is Toeplitz and hence the determinant can be computed
efficiently. The extended Trench and Durbin algorithms are stated in the appendix.

6.3.5 Sampling the underlying function

Whilst it is often mathematically convenient to marginalise the unknown function µk from a
computational perspective it is not always advantageous to do so. To be precise, marginalising
µk induces dependencies among the observations; that is, we cannot exploit the conditional
independence structure given the underlying function µk. After marginalising, Gibbs moves
must be made sequentially for each protein in turn and this can slow down computation.

The alternative approach is to sample the underlying function and exploit conditional
independence. Once a sample is obtained from the GP posterior on µk, conditional independence
allows us to compute the likelihood for all proteins at once, exploiting vectorisation. If there are
a particularly large number of observation in each component it is also possible to parallelize
computation over the components k = 1, ...,K.

6.3.6 Gaussian process hyperparameter inference

Supervised approach: optimising the hyperparameters

Inference of the hyperparameters θk can be dealt with in several ways. The first is to learn
them using only the labelled data (i.e. data that pertains to proteins with well documented
sub-cellular locations). Using the labelled data for each component constitutes maximise the
marginal likelihood of the hyperparameters with respect to the data. These hyperparameters
are then fixed throughout the inference of the unlabelled data. The marginal likelihood can be
obtained quickly by recalling that

Yk(x1), ..., Yk(xD)|θk ∼ N(0, Ck + σ2
kInkD). (6.33)
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Thus the log marginal likelihood is given by

log p(Yk|τ,θk)

= −1
2Yk(τ)

(
Ck + σ2

kInkD

)−1
Yk(τ)T − 1

2 log|Ck + σ2
kInkD| −

nkD

2 log 2π.
(6.34)

For convenience of notation set Ĉk = Ck + σ2
kInkD. To maximise the marginal likelihood given

equation 6.34, we find the partial derivatives with respect to the parameters [375]. Hence, we
can use a gradient based optimisation procedure. Positivity constraints on a2

k, lk, σ
2
k are dealt

with by re-parametrisation and so, dropping the dependence on k for notational convenience,
and abusing notation, we set l = exp(θ1), a2 = exp(2θ2) and σ2 = exp(2θ3).

Application of the quasi-Newton L-BFGS algorithm [273] for numerical optimisation of the
marginal likelihood with respect to the hyperparameters is now straightforward. The L-BFGS
can only find a local optimum and so we initialise over a grid of values. We terminate the
algorithm when successive iterations of the gradient are less than 10−8. We make extensive use
of high performance R packages to interface with C++ [122, 123].

Semi-supervised hyperparameter inference

The advantage of adopting a Bayesian approach to hyperparameter inference is that we can
quantify uncertainty in these hyperparameters. Uncertainty quantification in GP hyperparameter
inference is important, since different hyperparameters can have a strong effect on the GP
posterior [375]. Furthermore, we consider a semi-supervised approach to hyperparameter
inference. By a semi-supervised approach we mean that a posterior distribution for the
hyperparameters can be inferred using both the labelled and unlabelled data, rather than just
the labelled data.

Consider at some iteration of our MCMC algorithm the data associated to the kth component
Yk. We can partition this data into the unlabelled (U) and labelled data (L); in particular,
Yk =

[
Y

(L)
k , Y

(U)
k

]
. To clarify, the indicators zi are known for Y (L)

k prior to any inference,

whilst allocations zi for Y (U)
k are sampled at each iteration of our MCMC algorithm. If we

believe our labelled data Y (L)
k are true representatives of the distribution of that component, it is

computationally advantageous just to consider the labelled data when performing hyperparameter
inference. However, there could be a sampling bias in the labelled data and so the labelled data
alone is insufficient to explain the variability in the data. A semi-supervised approach allows
the posterior distribution of the hyperparamters to reflect the uncertainty in the component
allocations zi and therefore improve our abilities to predict allocations and quantify uncertainty
in allocations.
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Semi-Supervised approach: hyperparameter inference using MH

In a Bayesian framework, we treat the hyperparameters as random variables and place
hyperpriors overs them. Positivity constraints motivate working with the log of the hyperparameters
and using, for example, standard normal priors [333]. Unfortunately loss of conjugacy between
the prior on the hyperparameters g0(θ) and the likelihood f(y|θ) is unavoidable, and hence we
use a Metropolis-Hastings step or Hamiltonian Monte-Carlo step for inference. The Metropolis-
Hastings sampler can be summarised as follows:

Metropolis-Hastings algorithm with random walk proposals: Suppose θt is the most recently
sampled value. Sample a value ξ ∼ N(0, 1), setting θt+1 = θt + ξ and compute the Metropolis
ratio

Λ = p(θt+1|Yk(τ))
p(θt|Yk(τ)) = p(Yk(τ)|θt+1)p0(θt+1)

p(Yk(τ)|θt)p0(θt)
. (6.35)

This ratio can be computed in log form using equation 6.34. Then sample a uniform random
number u ∼ U [0, 1] if log(Λ) ≥ log(u) set θt+1 = θt + ξ, otherwise θt+1 = θt.

Semi-Supervised approach: hyperparameter inference using HMC

To avoid the random walk nature of the MH sampler, we also consider a Hamiltonian Monte-
Carlo approach, which exploits the geometry of the space to provide more efficient proposals
[115, 206, 336, 174]. In short, Hamiltonian Monte-Carlo allows us to construct Hamiltonian
evolutions H(y,p) such that the resulting dynamics efficiently explore a target distribution
p(y). We augment our probability distribution with an auxiliary momentum component p.

The Hamiltonian can be decomposed into potential and kinetic energies H(y,p) = U(y) +
K(p). The canonical distribution is then given by:

p(y,p) ∝ exp(−H(y,p)) ∝ p(y)p(p). (6.36)

The distribution of momentum component is chosen as a Gaussian distribution with diagonal
covariance matrix M = diag(m1, ...,mr) and thus the distribution and kinetic energies are
given by

p(p) = N(0,M)

K(p) = pM−1pT

2
∇K = M−1p.

(6.37)

It is easy to see from the canonical distribution that U(y) = − log(p(y)) is the required choice
for the potential. In practice, we need to simulate from Hamiltonian dynamics. Hamilton’s
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equations are given by a coupled system:

dp

dt
= −∇yH(y,p)

dy

dt
= ∇pH(y,p).

(6.38)

Such a system is called symplectic and thus a numerical schema which is a symplectic integrator
is required to simulate the required dynamics [336]. The leapfrog algorithm is the standard
choice [288]. This algorithm does not exactly conserve energy and so a Metropolis accept/reject
step is required is remove the induced bias [27]. An MCMC algorithm can then be constructed to
sample from the required distribution, where proposals are made using Hamiltonian evolutions.
Recall, we are required to simulate the Hamiltonian evolutions. To simulate an evolution over
time T , take L steps of size δ such that Lδ ≥ T . One step of the leapfrog algorithm of size δ
for Hamilton’s dynamics starting at time t is given by the following

p(t+ δ/2) = p(t)− δ

2∇Uy(t)

y(t+ δ) = y(t) + δ∇Kp(t+ δ/2)

p(t+ δ) = p(t+ δ/2)− δ

2∇Uy(t+ δ).

(6.39)

We can now summarise the HMC algorithm to sample n samples from a target distribution
p(y).

1. Set t = 0.

2. Sample a position value from the prior y0 ∼ p0.

3. Do until t = n

(a) Set t = t+ 1.

(b) Sample an initial momentum variable p0 ∼ p(p).

(c) Set y0 = yt−1.

(d) Run algorithm 6.39 for L step of size δ and obtain proposal states y∗ and p∗.

(e) Compute the Metropolis ratio:

Λ = exp(−(U(y∗) +K(p∗)) + (U(y0) +K(p0))). (6.40)

(f) Sample u ∼ U [0, 1] if Λ > u set yt = y∗, else yt = yt−1.

We can now specify the details for sampling the hyperparameters of a Gaussian Process
with standard normal hyperpriors. Using a squared exponential covariance function and
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re-parametrising, as before, we first specify our target distribution p(y) = p(θ|X(τ)) ∝
p(X(τ)|θ)p0(θ). Now considering

U(y) = − log(p(y)) = − log(p(X(τ)|θ))− log(p0(θ)) + constant, (6.41)

the first term can be computed by marginalising and is recognised as the marginal likelihood.
Recalling that we have a standard normal prior the negative log prior and its gradient is given
by:

− log(p0(θ)) = 3
2 log((2π)) + θθT

2
∇(− log(p0(θ))) = θ,

(6.42)

where θ = (θ1, θ2, θ3). Hence, we can write down the gradient of the potential energy. We
further reintroduce the dependence on k,

∇U(y) = ∇(− log(p(y))) =1
2 tr

((
Ĉ−1
k − αα

T
)
∇Ĉk

)
+ y

α = Ĉ−1
k Xk(τ).

(6.43)

Thus we have everything we need to simulate Hamiltonian dynamics to explore our target
distribution. In practice, we make a few standard adaptations to the above algorithm as
detailed in [336]. We sample δ from a uniform distribution on U [a, b], as well as using a partial
momentum refreshment with parameter α. More specifically, given p from the previous iteration
of the HMC algorithm and a sample n ∼ p0(p) set p′ as

p′ = αp + (1− α2)1/2n. (6.44)

In previous sections, we saw we can exploit a tensor decomposition to accelerate computation
of the likelihood and similar formulae are available to accelerate computation of the gradient
for use in L-BFGS and Hamiltonian Monte Carlo. These formulae can be found in appendix.

Hyperpriors for Gaussian process hyperparameters

The hyperpriors for the Gaussian process hyperparameters a2, l, σ2 need careful attention and
the challenge of selecting them is well documented [26, 357, 103, 463, 143]. The values of the
hyperparameters have a strong effect of the resultant sample paths of the Gaussian process
and, in particular, a ridge in the marginal likelihood means different hyperparameters lead to
unconditional prior simulations with the same spatial pattern but different scales [376, 143].
A number of priors are possible and we opt for log-normal priors, since they satisfy positivity
constraints, are flexible, and allow for the encoding of expert knowledge [333, 376, 243]. We
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choose log-normal priors with mean 0 and variance 1 in our analysis, since they provide
the correct scale, whilst remaining somewhat vague (simulations from the prior predictive
distribution led to infrequent extreme expression values: p0(|y| < 4) ≈ 0.97). The sharp left tail
of these priors penalises small values, and the right tails allow large length-scales and variances
- if supported by the data. If we desire a more informative prior the hyperprior mean could
be selected using the labelled data. Later, our sensitivity analysis shows that changing the
hyperprior mean has little effect on predictive performance. However, overly precise choices for
the variance on unmotivated locations can lead to poor results.

An overview of the MCMC algorithm for posterior Bayesian computation

In our model g0(θ) and f(y|θ) are non-conjugate, which means the integral in equation 6.21
cannot be obtained analytically. A Gibbs sampling scheme with either an additional Metropolis-
Hastings or Hamiltonian Monte Carlo update is used. Each iteration of the MCMC algorithm
includes a sampled value for the component indicators, outlier components and current values
of the hyperparameters. We also keep track of associated posterior probabilities and marginal
likelihoods as appropriate. Furthermore, we can sample the hyperparameters every T iterations
of the MCMC algorithm to accelerate computations.

6.3.7 Summary of Bayesian non-parametric model

We can reuse much of the machinery we have developed in previous chapters. Indeed, our non-
parametric likelihood model can be integrated into our Robust mixture modelling framework
seamlessly. Hence, the outlier components and summarisation of the model remains the same
as earlier chapters. Furthermore, the quadratic loss (Brier score) is still used to compare model
predictions.

6.4 Results

6.4.1 Case Study I: Drosophila melanogaster embryos

Application

The first case study is the Drosophila melanogaster (common fruit fly) embryos [448], in
which we compare the supervised and semi-supervised approaches for updating the model
hyperparameters. In particular, we explore the effect on the component specific noise term
σ2, by adopting different inference approaches. For each sub-cellular niche, we learn the
hyperparameters by either maximising their marginal likelihood or sampling from their posterior
using MCMC. The posterior distribution for the hyperparameters can either be found solely
using the labelled data for each component or by making use of labelled and unlabelled data.
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Figure 6.2 demonstrates several phenomena. Reassuringly, the estimates of the noise
parameters σ2

k for k = 1, ...,K obtained by using the L-BFGS algorithm to maximise the
marginal likelihood coincide with the posterior distributions of the noise parameters, inferred
using only the labelled data for each component. However, when we perform inference in a
semi-supervised way, by using both the labelled and unlabelled data to make inferences, we
make several important observations.

Firstly, in many cases, the posterior using both the labelled and unlabelled data is shifted
right towards 0. Recalling that we are working with the log of the hyperparameters, this
indicates that the noise parameters is smaller when solely using the labelled data. This is
likely a manifestation of experimental bias, since it is reasonable to believe that proteins
with known prior locations are those which have less variable localisations and are therefore
easier to experimentally validate. A semi-supervised approach is able to overcome these issues,
by adapting to proteins in a dense region of space. In some cases the shift is pronounced,
with posteriors of the parameters using labelled and unlabelled data found in the tails of the
posterior only using the labelled distribution. Furthermore, we notice shrinkage in the posterior
distribution of the noise parameter in the semi-supervised setting. The reduction in variance
reduces our uncertainty about the underlying true value of σ2

k for k = 1, ...,K. This variance
reduction is observed in most cases even when these is little difference in the mean of the
posteriors.

The primary goal of spatial proteomics is to predict the localisation of unknown proteins
from data. Our modelling approach allows the allocation probability of each protein to each
component to be used to predict the localisation of unknown proteins. Proteins may reside
in multiple locations and some sub-cellular niches are challenging to separate because of
confounding biochemical properties, leading to uncertainty in a proteins localisation. Thus
adopting a Bayesian approach and quantifying this uncertainty is of great importance. Our
methods allow point-estimates as well as interval estimates to be obtained for the posterior
localisation probabilities. Figure 6.3 demonstrates the results of applying our method. Each
protein in this PCA plot is scaled according to mean of the Monte-Carlo samples from the
posterior localisation probability. To visualise the allocation probabilities for proteins across
organelles, we produce a heatmap, M , where the (i, j)th entry of M is the Monte-Carlo estimate
of the allocation probability of the ith protein to organelle j (figure 6.4).

Further visualisation of the model and data are possible. We plot two representative
example of gradient-density profiles for two components the endoplasmic reticulum (ER) and
the nucleus, in figure 6.5. We plot both the labelled proteins, in colour, which were assigned
to each component before our analysis. In grey, for both components, we plot the unlabelled
proteins which have been allocated to these components probabilistically. We observe that they
have the same gradient-density shape as the labelled proteins - in line with our beliefs about
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the underlying biology: that proteins from the same components should co-fractionate and
therefore have similar density gradient profiles. In addition, we overlay the posterior predictive
distribution for these components and observe they represent the data well.
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Fig. 6.2 Posterior distributions for the log noise parameter σ2 on the Drosophila data. In
general, we observe a shift towards 0, indicating that the labelled data underestimates the value
of the noise term for each component. We also observe increased posterior shrinkage for many
components with the variance of the noise parameters reduced in the semi-supervised setting.
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in colour and protein probabilistically assigned to those components in grey. The profiles of
the assigned proteins closely match the profiles of the components. The predictive posterior of
these components is also overlayed.
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Sensitivity analysis for hyper-prior specification

We use the Drosophila melanogaster dataset to test for sensitivity of the hyper-prior specification.
To test for sensitivity, we see if predictive performance is affected by changes in the choice of
hyper-prior. The following cross-validation schema assesses whether predictive performance
is affected by choice of hyper-prior. We split the labelled data for each experiment into class-
stratified training (80%) and test (20%) partitions, with the separation formed at random. The
true classes of the test profiles are withheld from the classifier, whilst MCMC is performed.
This 80/20 data stratification is performed 100 times in order produce a distribution of scores.
We compare the ability of the methods to probabilistically infer the true classes using the
quadratic loss, also referred to as the Brier score [176]. Thus a distribution of quadratic losses
is obtained for each method, with the preferred method minimising the quadratic loss. Each
method is run for 10, 000 MCMC iterations with 1000 iterations for burn-in. We vary the
mean of the standard normal hyper-prior for each hyperparameter in turn for a grid of values
m̃ = (0,−1,−2,−3,−4), keeping the hyper-prior for the other variables held the same as a
standard normal distribution. The results are displayed in figure 6.6.
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Fig. 6.6 Boxplots of quadratic losses to assess the sensitivity of semi-supervised hyperparameter
inference to hyper-prior choices.

We observe only minor sensitivity to the choice of hyper-prior, with no significant difference
in performance noted (KS test, threshold = 0.01). Sensitivity analysis for hyperparameters
of GPs is vital, since these hyperparameters have a strong effect on the posterior of the GP
[375]. The observed lack of sensitivity in our case is advantageous, since prior information can
be included without fear of over fitting. However, practitioners should always take care when
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specifying priors, especially for variance/covariance parameters as many authors have noted
sensitivity of Bayesian models to these parameters [162, 287, 165, 471, 410].

6.4.2 Case Study II: mouse pluripotent embryonic stems cells

Application

Our main case study is the mouse pluripotent E14TG2a stem cell dataset of [68]. This dataset
contains 5032 quantitative protein profiles, and resolves 14 sub-cellular niches. We first plot the
density-gradient profiles of the marker proteins for each sub-cellular niche in figure 6.7. We fit
a Gaussian process prior regression model for each sub-cellular niche with the hyperparameters
found by maximising the marginal likelihood. A table of unconstrained log hyperparameter
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Fig. 6.7 Quantitative profiles of protein markers for each sub-cellular niche. A GP prior
regression model is fitted to these data and the predictive distribution is displayed. We observe
distinct distributions for each sub-cellular niche generated by the unique density-gradient
properties of each sub-cellular niche.

values found by maximising the marginal likelihood in the appendix. Alternatively, placing
standard normal priors on each of the log hyperparameters and using a Metropolis-Hastings
update we can infer the distributions over these hyperparameters. We perform 20, 000 iterations
for each sub cellular niche and discard 15, 000 iterations for burn-in and proceed to thin the
remaining samples by 20. We summarise the Monte-Carlo sample by the expected value as well
as the 95% equi-tailed credible interval, which can also be found in the appendix.
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We go further to predict proteins with unknown localisation to annotated components using
our proposed mixture of GP regression models. As before, we adopt a semi-supervised approach
to hyperparameter inference. Again we place standard normal hyper-priors on the log of the
hyperparameters. We run our MCMC algorithm for 20, 000 iterations with half taken as burnin
and thin by 5, as well as using HMC to update the hyperparameters. The PCA plot in figure
6.8 visualises our results. Each pointer represent a single protein and is scaled either to the
probability of membership to the coloured component (figure 6.8) or scaled with the Shannon
entropy (figure 6.9) . As before, we also visualise the allocation probabilities for proteins across
organelles in a heatmap (figure 6.10). In these plots we observe regions of high-probability
and confidence to each organelle, as well as obtaining a global view of uncertainty. In this
example, we observe regions of uncertainty, as measured by the Shannon entropy, concentrating
where components overlap. We also observe uncertainty in regions where there is no dominant
component. This Bayesian analysis provides a wealth of information on the global patterns of
protein localisation in mouse pluripotent embryonic stem cells.
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Fig. 6.8 A pca plot for the mouse pluripotent embryonic stem cell data where points, representing
proteins, are coloured by the component of greatest probability. The pointer for each protein is
scaled with membership probability.

6.4.3 Assessing predictive performance

We compare the predictive performance of the methods proposed here, as well as against the
fully Bayesian TAGM model of [83], where sub-cellular niches are described by multivariate
Gaussian distributions rather than GPs. The following cross-validation schema is used to
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Fig. 6.9 A pca plot for the mouse pluripotent embryonic stem cell data where points, representing
proteins, are coloured by the component of greatest probability. The pointer for each protein is
scaled with the Monte-Carlo averaged Shannon Entropy.

compare the classifiers. We split the labelled data for each experiment into class-stratified
training (80%) and test (20%) partitions, with the separation formed at random. The true
classes of the test profiles are withheld from the classifier, whilst MCMC is performed. This
80/20 data stratification is performed 100 times in order produce a distribution of scores. We
compare the ability of the methods to probabilistically infer the true classes using the quadratic
loss, also referred to as the Brier score [176]. Thus a distribution of quadratic losses is obtained
for each method, with the preferred method minimising the quadratic loss. Each method is
run for 10, 000 MCMC iterations with 1000 iterations for burn-in. For fair comparison we held
priors the same across all datasets.

We compare across 5 different spatial proteomics datasets across three different organisms.
The datasets we compare our methods on are Drosophila melanogaster embryos from [448],
the mouse pluripotent embryonic stem cell dataset of [68], the HeLa cell line dataset of [220],
the mouse primary neuron dataset of [221] and finally a CRISPR-CAS9 knock-out coupled
to spatial proteomics analysis dataset (AP5Z1-KO1) of [202]. The results are found in figure
6.11. We see that our in four out of five datasets there is an improvement of the GP models
over the TAGM model (Kolmogorov-Smirnov (KS) two-sample test p < 0.0001 ), because the
GP model is provided with more explicit correlation structure of the data. The empirical
Bayes slightly method outperforms the fully Bayesian approach in three of the data sets ((KS)
two-sample test p < 0.01 ). These are the mouse pluripotent embryonic stem cell dataset,
the HeLa data set of [220] and the HeLA AP5Z1 knock-out dataset of [202]. However, the
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Fig. 6.10 A heatmap of organelles by proteins, where the (i, j)th entry is the Monte-Carlo
estimate of the probability that a protein i belongs to organelle j. Allowing us to visualise the
range of probabilities for each protein. Proteins are allocated to their most probable class and
these allocations are shown in the colour bar on the left.

size of these difference is small, and there is at most a 6 point difference. This corresponds
to better assignments for at most 3 proteins. This is hardly worth the loss in uncertainty
quantification in the GP hyperparameters when using empirical Bayes over the fully Bayesian
approach and the lost ability to provide expert prior information on the GP hyperparameters.
Meanwhile, the improvement of the GP methods over the TAGM model is marked in the 4
datasets where we see improvement. Improvements range from score differences of roughly 16
to almost 80, this corresponds to 8 to 40 proteins with better allocations. The GP methods
have only 3 parameters for the structured covariance to be inferred, whilst the TAGM model
requires inference of full unstructured covariance matrices, which is potentially hundreds of
parameters. Improved predictive performance in a lower parameter model is highly desirable.

We observe that the TAGM model outperforms the GP methods in the Itzhak et al. [220]
dataset. The authors of this study used differential centrifugation to separate cellular content
and curated a “large protein complex” class. This class could contain multiple sub-cellular
structures such as ribosomes, as well as cytosolic and nuclear proteins - as observed in chapter 5.
In any case, our modelling assumptions are violated in both models and this issue is exacerbated
by parametrising the covariance structure. One solution to this would be to model this mixture
of large protein complexes as its own class. However, as this class contains a quite diverse set
of sub-cellular compartments, it is difficult to predict behaviour. This class could be itself a
mixture of GPs, however the number of components of the class would be unknown and this
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Fig. 6.11 Boxplots of quadratic losses comparing predictive performance of the TAGM against
the two semi-supervised Gaussian process models described here, where either an empirical
Bayes (EB) approach or fully Bayesian (FB) approach is used for hyperparameter inference.
That is (EB) denotes the model where hyperparameters are fixed and learnt for the labelled data
only, using L-BFGS to optimise the hyperparameters with respect to the marginal likelihood.
(FB) denotes the semi-supervised model where hyperparameters are given priors and the
unlabelled data are allowed in the inference of the hyperparameters.

would have to be carefully modelled, perhaps using reversible jump methods [380] or Dirichlet
process approaches [125].

6.5 Discussion and limitations

This chapter presents semi-supervised non-parametric Bayesian methods to model spatial
proteomics data. Sub-cellular niches display unique signatures along subcellular fractions
and we exploit this information to construct GP regression models for each niche. The full
complement of sub-cellular proteins is then described as a mixture of GP regression models, with
outliers captured by an additional component in our mixture. This provides cell biologists with
a fully Bayesian method to analyse spatial proteomics data in the non-parametric framework
that more closely reflects the biochemical process used to generate the data. This greatly
increases model interpretation and allows us to make more biologically sound inferences from
our model.

We compared the proposed semi-supervised models to the state-of-the-art model on 5
different spatial proteomics datasets. Modelling the correlation structure along the subcellular
fractions leads to competitive predictive performance over state-of-the-art models. Empirical
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Bayes procedures perform either equally well or better than the fully Bayesian approach,
at the loss of uncertainty quantification in the hyperparameters. Though this performance
improvement should not be over interpreted, since cross-validation assessment is only performed
on the labelled data and will not reflect any biased sampling mechanisms that could be at play.

To accelerate computation in our model, we note that the structure of our covariance matrix
admits a tensor decomposition, which can be exploited so that fast algorithms for matrix
inversion of Toeplitz matrices can be employed. These decomposition can then be used to
derive formulae for fast computation of the likelihood and gradient of a GP. A stand-alone
R-package implementing these methods using high-performance C++ libraries is available at
https://github.com/ococrook/toeplitz. These algorithms and associate formulae are useful
to those outside the spatial proteomics community to anyone using GPs with equally spaced
observations, even in the unsupervised case.

We demonstrated that in the presence of labelled data there are two approaches to
hyperparameter inference. This first, is to use empirical-Bayes to optimise the hyperparameters;
the other a fully-Bayesian approach, taking into account the uncertainty in these hyperparameters.
We propose to use HMC to update these hyperparameters, since highly correlated hyperparameters
can induce high autocorrelation and exacerbate issues with random-walk MH updates. We
demonstrate that, in the situation presented here, HMC updates can be up to an order of
magnitude more efficient than MH updates. We further explored the sensitivity of our model
to hyper-prior specification, which gives practitioners good default choices.

In two case-studies, we highlighted the value of taking a semi-supervised approach to
hyperparameter inference, allowing us to explore the uncertainty in our hyperparameters. In a
fully Bayesian approach the uncertainty in the hyperparamters is reflected in the uncertainty of
the localisation of proteins to components. Quantifying uncertainty provides cell biologists with
a wealth of information to make quantifiable inference about protein sub-cellular localisation.

Thus far in our method development, we have tackled several questions related to classification
of proteins to organelles. These methods have allowed uncertainty quantification in the
assignment of proteins to organelles, as well as the detection of unannotated niches. We also
quantified uncertainty in the discovery of these niches. In this chapter, we framed spatial
proteomics in the semi-supervised non-parametric Bayesian framework. These models can
of course be extended, for example describing some niches themselves as mixtures of GPs
or using hierarchical GPs to model the correlation between replicates (rather than assuming
independence between biological replicates). However, most of these modelling tasks would be
incremental improvements beyond the methods discussed here. A number of more interesting
questions are still open in spatial proteomics; such as, which proteins change localisation upon
external stimulus and what is the role of post-translation modifications? In the following
chapter, we develop a Bayesian model for differential localisation.





Chapter 7

Inferring differential subcellular
localisation in comparative spatial
proteomics using BANDLE

7.1 Motivation

In previous chapters we have focused on the allocation problem in spatial proteomics. We have
developed parametric and non-parametric Bayesian methods and we have reduced the reliance
on marker proteins. We now turn to focus on the relatively new dynamic question: which
proteins change their resident organelle upon subcellular perturbation? To answer this question
we need to carefully consider the experimental design and define a new concept: differential
localisation. Building on the work of previous chapters we develop a Bayesian model to answer
the differential localisation problem. Motivation for this chapter and some of the concepts are
published in [82]; however, the majority of this chapter is in preparation for submission.

7.1.1 Abstract

The steady-state localisation of proteins provides vital insight into their function. These
localisations are context specific with proteins translocating between different sub-cellular
niches upon perturbation of the subcellular environment. Differential localisation provides a
step towards mechanistic insight of subcellular protein dynamics. Aberrant localisation has been
implicated in a number of pathologies, thus differential localisation may help characterise disease
states and facilitate rational drug discovery by suggesting novel targets. High-accuracy high-
throughput mass spectrometry-based methods now exist to map the steady-state localisation
and re-localisation of proteins. Here, we propose a principled Bayesian approach, BANDLE
(Bayesian ANalysis of Differential Localisation Experiments), that uses these data to compute the
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probability that a protein differentially localises upon cellular perturbation, as well quantifying
the uncertainty in these estimates. Furthermore, BANDLE allows information to be shared
across spatial proteomics datasets to improve statistical power. Extensive simulation studies
demonstrate that BANDLE reduces the number of both type I and type II errors compared
to existing approaches. Application of BANDLE to datasets studying EGF stimulation and
AP-4 dependent localisation recovers well studied translocations, using only two-thirds of the
provided data. Moreover, we implicate TMEM199 with AP-4 dependent localisation. In an
application to cytomegalovirus infection, we obtain novel insights into the rewiring of the
host proteome. Integration of high-throughput transcriptomic and proteomic data, along with
degradation assays, acetylation experiments and a cytomegalovirus interactome allows us to
provide the functional context of these data.

7.2 Introduction and literature review

Throughout this thesis, we have explored Bayesian methods for spatial proteomics in the static
setting. Determining a protein’s steady-state localisation can be a first step in determining its
function. Furthermore, many biological processes are regulated by re-localisation of proteins,
such as transcription factors shuttling from the cytoplasm to the nucleus, which are difficult to
map using imaging methods at scale [366]. To simultaneously study the steady-state localisation
and re-localisation of proteins, one approach is to couple gentle cell lysis and cell fractionation
with high-accuracy mass spectrometry (MS) [68, 324, 159, 351]. Dynamic experiments have
given us unprecedented insight into HCMV infection [24], EGF stimulation [220], EGFR
inhibition [351]. In addition, CRISPR-Cas9 knockouts coupled with spatial proteomics has
given insights into AP-4 vesicles [92], as well as AP-5 cargo [202]. In a study by Shin et al. [418],
the golgin long coiled-coil proteins that selectively capture vesicles destined for the Golgi were
re-located to the mitochondria by replacing their Golgi targeting domains with a mitochondrial
transmembrane domain [418]. This allowed the authors to readily observe the vesicle cargo and
regulatory proteins that are redirected to the mitochondria, whilst avoiding technical issues
that arise because of the redundancy of the golgins and their transient interaction with vesicles.
Together, these collections of experiments suggest spatial proteomics can provide unprecedented
insight into biological function.

In dynamic and comparative experiments; that is, those where we expect re-localisation
upon some stimulus to sub-cellular environment, the data analysis is more challenging. The task
can no longer be phrased as a supervised learning problem, but the question under consideration
is clear: which proteins have different sub-cellular niches after cellular perturbation? Procedures
to answer this question have been presented by authors [24, 220, 221, 241] and reviewed in
Crook et al. [81]. The approach of Itzhak et al. [220, 221] relies on coupling a multivariate
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outlier test and a reproducibility score - termed the (movement-reproducibility) MR method.
A threshold is then applied to these scores to obtain a list of proteins that re-locate; “moving”
proteins. However, these scores can be challenging to interpret, since their ranges differ from
one experiment to another and require additional replicates to calibrate the scores. Furthermore,
the test ignores the spatial context of each protein, rendering the approach inefficient with
some applications allowing false discovery rates of up to 23% [202]. Finally, the approach does
not quantify uncertainty which is of clear importance when absolute purification of sub-cellular
niches is impossible and multi-localising proteins are present. Recently, Kennedy et al. [241]
introduced a computational pipeline for analysing dynamic spatial proteomics experiments by
reframing it as a classification task. However, this formulation ignores that some changes in
localisation might be shifts in multi-localisation patterns or only partial changes. Furthermore,
their approach cannot be applied to replicated experiments and so its applicability is limited.
In addition, the authors found that they needed to combine several of the organelle classes
together to obtain good results. Finally, the framing of the problem as a classification task only
allows a descriptive analysis of the data. These considerations motivate the development of a
more sophisticated and reasoned methodology.

In this chapter, we present Bayesian ANalysis of Differential Localisation Experiments
(BANDLE) - an integrative semi-supervised functional mixture model, to obtain the probability
of a protein being differentially localised between two conditions. Posterior Bayesian computations
are performed using Markov-chain Monte-Carlo and so uncertainty estimates are also available
[173]. We associate the term differentially localised to those proteins which are assigned different
sub-cellular localisations between two conditions. Then, we refer precisely to this phenomenon
as differential localisation, throughout the text. Hence, our main quantity of interest is the
probability that a protein is differentially localised between two conditions.

BANDLE models the quantitative protein profiles of each sub-cellular niche in each replicate
of each experiment non-parametrically [84]. A first layer of integration combines replicate
information in each experiment to obtain the localisation of proteins within a single experimental
condition. Then a joint prior distribution on protein allocations across experimental conditions
allows information to be shared across experiments and a differential localisation probability
to be obtained. Two prior distributions are proposed: one using a matrix extension of the
Dirichlet Distribution and another based on Pólya-Gamma augmentation [368, 65, 270].

A number of integrative mixture models have been proposed including Multiple Dataset
Integration [243], infinite tensor factorisation approaches [18], Bayesian Consensus Clustering
[278] and Clusternomics [146]. The methods have been developed mostly in the context
of cancer sub-typing or transcriptional module discovery. Our approach is most similar to
Clusternomics, which places a prior on the tensor product between the mixing proportions;
but instead our model defines mixing proportions across datasets - upon which we introduce a
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prior. Importantly, our approach demands that there is an explicit link between components in
each dataset, which can be difficult to assume outside the semi-supervised setting because of a
statistical issue known as label-switching [380].

In this chapter, we first review previous methods to tackle the differential localisation
problem, as well as integrative mixture models. We then demonstrate the utility of BANDLE,
by first performing extensive simulations and compare to the MR approach. We show that
our approach reduces the number of Type I and Type II errors, and, as a result, can report
an increased number of differentially localised proteins. These simulations also highlight the
robustness of our approach to a number of experimental scenarios including batch effects. Our
simulation studies also highlight that BANDLE provides interpretative improvements and
clearer visualisations, and makes less restrictive statistical assumptions. We then apply our
method to a number of datasets with well studied examples of differential localisation, including
EGF stimulation and AP-4 dependent localisation. We recover known biology and provide
additional cases of differential localisation, and demonstrate that TMEM199 localisation is AP-4
dependent. Finally, we apply BANDLE to a human cytomegalovirus (HCMV) dataset - a case
where the MR approach is not applicable because the MR approach requires multiple replicates.
Integration of high-throughput transcriptomic and proteomic data, along with degradation
assays, acetylation experiments and a cytomegalovirus interactome allows us to provide the
functional context of these data. In particular, we provide the spatial context of the interactome
data.
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7.3 Methods

7.3.1 Previous methods

The Movement-Reproducibility method

The movement-reproducibility (MR) method was proposed by Itzhak et al. [220, 221] and this
is our interpretation of their method. We suppose that we are given two spatial proteomics
experiments under a single contrast/perturbation/treatment, and denote unperturbed by (d = 1)
and (d = 2) for the perturbed condition. Furthermore, assume we measure each condition
with r = 1, ..., R biological replicates. Let X1 = [X(1)

1 , ..., X
(R)
1 ] denote the concatenation of

replicates for condition 1 and likewise for condition 2 denotes X2 = [X(1)
2 , ..., X

(R)
2 ]. We first

compute delta matrices as follows
∆ = X1 −X2, (7.1)

where ∆ = [∆(1), ...,∆(R)]. This assumes that both features and replicates are comparable in
some way; that is, a feature in the rth replicate is directly comparable to the same feature in
another replicate. Then for each ∆r, r = 1, .., R, the squared Mahalanobis distance DM from
each protein to the empirical mean is computed using a robust estimate of the covariance matrix
- the minimum covariance determination method [214]. Under a Gaussian assumption on ∆r,
DM (pi) follows a chi-squared distribution with degrees of freedom equal to the dimension of
the data G. Then, for each protein and each replicate a p-value is computed, such that there
are R such p-values for each protein. These p-values are combined into a score by taking the
cube of the largest p-value for each protein, correcting for multiple hypothesis testing using the
Benjamini-Höchberg procedure and computing the − log10 of the resultant value. The final
score is called the M score.

This process means that the computed value can no longer be interpreted as truly derived
from a p-value. To maintain this interpretation one could instead combine p-values using
Fisher’s method [322]. Furthermore, the authors are, implicitly, concerned with finding any
false positives and as such control over the FWER is desired rather than the FDR. Since FWER
≥ FDR, control of the FDR does not lead to control over the FWER.

A so-called reproducibility (R) score is obtained by first computing the Pearson correlation
pairwise between matrices ∆i,∆j , i ≠ j for each protein. A final R score, for each protein,
is obtain by taking the minimum value for each protein. Again this score could have been
interpreted in a formal testing procedure using a permutation test [124] and furthermore
includes an assumption of bivariate normality. Moreover, Pearson’s correlation is unresponsive
to many non-linear relationships which might be present.

Finally, each protein has an associated pair of scores, referred to as the MR-score. To
determine thresholds for these scores the authors take a desired FDR = 0.01. Thus they repeat
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a control experiment 6 times to determine thresholds M = 2, R = 0.9 a region with no false
discoveries.

Repeating the control experiment 6 times is a costly process and likely to be prohibitive for
most experiments, particularly for cells that are expensive to culture. Furthermore, since the
thresholds are empirically derived, this process needs to be repeated for every new experiment
to determine optimal thresholds.

Integrative mixture models

For completeness, we include the background material on other Bayesian integrative mixture
models. We introduce the different models and then compare them in detail. The first example
we consider is the multiple dataset integration (MDI) method of Kirk et al. [243], where the
joint prior for allocations (in the two dataset scenario) is given by:

φ ∼ G(a, b)

π1 ∼ Dir(
α1
K1

, ....,
α1
K1

)

π2 ∼ Dir(
α2
K2

, ...,
α2
K2

)

p(zi1, zi2|φ) ∼ πzi1πzi2(1 + φ1(zi1 = zi2)).

(7.2)

Meanwhile for clusternomics [146] the prior is

ρ ∼ Dir(γvec(π1 ⊗ π2))

π1 ∼ Dir(
α1
K1

, ....,
α1
K1

)

π2 ∼ Dir(
α2
K2

, ...,
α2
K2

)

p(zi1 = k, zi2 = j) = ρkj .

(7.3)

The model for Bayesian Consensus Clustering (BCC) is the following [278]. First, define a
global latent allocation C = {c1, ..., cn}, to one of K possible clusters. Then, for the dth dataset
define the local latent allocation zid, where the conditional probability is given by

p(zid = k|ci) = αd1(zid = ci) + 1− αd
K − 1 (1− 1(zid = ci)). (7.4)

The key idea of BCC is that first a global latent allocation (or clustering) is defined and then
local clusterings are defined conditional on the global clustering. The concentration parameter
αd controls the level of association between the global and local allocation. Importantly, note
that if the kth global component is empty, then corresponding local component probability is
0 if and only if αd = 1. Hence, in general there will be more local components than global
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components. The approach is most similar to MDI, which allows the clusters to vary arbitrarily
between the datasets. In the language of BCC and clusternomics, each dataset is allowed
its own set of local clusters. Then the parameter φ up weights the prior probability that
observations are allocated to the corresponding local components in each dataset. Note if φ = 0
then we are in the independent case and so, in general, there is some up weighting of the joint
allocation probabilities as p0(φ > 0) > 0 and more up weighting if the datasets are more similar.
Clusternomics is, somewhat, the reverse of BCC. In contrast, allocations are defined first at
the local level and then information is shared via a global allocation. As the number of local
clusters increases so does the number of global clusters. Furthermore, the global concentration
parameter γ controls the level of cluster sharing across the datasets.

A model for differential localisation

In the following, we layout our model for BANDLE, along with methods for inference,
and approaches for summarising and visualising the output. Firstly, suppose we have two
spatial proteomics experiments with unperturbed (d = 1) and perturbed conditions (d = 2).
Furthermore, assume we measure each condition with r = 1, ..., R biological replicates. Let
X1 = [X(1)

1 , ..., X
(R)
1 ] denote the concatenation of replicates for condition 1 and likewise for

condition 2 denotes X2 = [X(1)
2 , ..., X

(R)
2 ]. We introduce the following latent allocation variable

zi,d, denoting the localisation of protein i in condition d. Thus, if zi,d = k this means that
protein i localises to organelle k in dataset d. Given this latent allocation variable, we assume
that the data from replicate r = 1, ..., R arises from some component density F (·|θ(r)

k ). Hence,
denoting by θ the set of all component parameters, we can write

x
(r)
i,d |zi,d, θ ∼ F (x(r)

i,d |θ
(r)
zi,d

). (7.5)

We assume that biological replicates are independent and so we factorise as follows

p(xi,d|zi,d, θ) =
R∏
r=1

p(x(r)
i,d |zi,d, θ

(r)
zi,d

). (7.6)

To couple the two conditions together we assume a joint prior structure for the latent allocation
variable in each dataset. To be more precise, we construct a prior for the pair (zi,1, zi,2). We
fix the possible number of subcellular niches to which a protein may localise to be K. Now, we
introduce the matrix Dirichlet distribution, which we denote asMDir(α,K). The concentration
parameter α is a K × K matrix, such that for a matrix π, the pdf of the matrix Dirichlet
distribution is

f(π|α) =
K∏
k=1

1
B(αk)

K∏
j=1

π
αjk−1
jk , (7.7)
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where B denotes the beta function, αk denotes the kth row of α, and
∑
j,k πjk = 1. Thus, we

propose the following hierarchical structure

π|α ∼MDir(α,K) (7.8)

(zi,1, zi,2) ∼ cat(π), (7.9)

where (zi,1, zi,2) ∼ cat(π) means that the prior allocation probabilities are given by

p(zi,1 = k, zi,2 = k′|π) = πkk′ . (7.10)

The above model is conjugate, and so if nj,k = | {(zi,1, zi,2) = (j, k)} |, it follows that the
conditional posterior of π is

π|(Z1, Z2), α ∼MDir(γ,K) (7.11)

where γj,k = αjk +nj,k. The likelihood models for the data are Gaussian Random Fields, which
we elaborate on in the following section. Hence, the conditional posterior of the allocation
probabilities are

p(zi,1 = j, zi,2 = k|π) ∝ πjk
R∏
r=1

p(x(r)
i,1 |zi,1 = j)p(x(r)

i,2 |zi,2 = k). (7.12)

Likelihood Model

The model described in the previous section is presented in a general form, so it could be
applied to many different modes of data. We describe the model for a single spatial proteomics
experiment, since the same model is assumed across all spatial proteomics experiments, that
are then subsequently joined together using the approach in the previous section. Though the
model is the same across experiments, the parameters are experiment-specific.

The likelihood model is the same as the previous chapter but we repeat here to set notation,
as well as language choices. We assume that the protein intensity xi at each fraction sj can be
described by some regression model with unknown regression function:

xi(sj) = µi(sj) + εij , (7.13)

where µi is some unknown deterministic function of space and εij is a noise variable, which
we assume is εij ∼ N (0, σ2

i ). Proteins are grouped together according to their subcellular
localisation; such that, all proteins associated to subcellular niche k = 1, ...,K share the same
regression model. Hence, we write µi = µk and σi = σk. Throughout, for clarity, we refer to
sub-cellular structures, whether they are organelles, vesicles or large protein complexes, as
components. The regression functions µk are unknown and thus we place priors over these
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functions to represent our prior uncertainty. Protein intensities are spatially correlated and thus
we place Gaussian Random Field (GRF) priors over these regression functions. We pedantically
refer to these as GRF priors rather than Gaussian Process (GP) priors to make the distinction
between the 1D spatial process that separates sub-cellular niches and the experimental cellular
perturbations, which are potentially temporal in nature. Hence, we write the following

µk ∼ GRF (mk(s), Ck(s, s′)), (7.14)

which is defined as:

Definition 5. Gaussian Random Field
If µ(s) ∼ GRF (mk(s), Ck(s, s′)) then for any finite dimensional collection of indices s1, ..., sn,
[µ(s1), ..., µ(sn)] is multivariate Gaussian with mean [m(s1), ...,m(sn)] and covariance matrix
such that Cij = C(si, sj).

Each component is thus captured by a Gaussian Random Field model and the full complement
of proteins as a finite mixture of GRF models. The protein intensity for each experiment maybe
measured in replicate. For a sufficiently flexible model, we allow different regression models
across different replicates. To be more precise, consider the protein intensity x(r)

i for the ith

protein measured in replicate r at fraction s
(r)
j , then we can write the following

x
(r)
i

(
s

(r)
j

)
= µ

(r)
k

(
s

(r)
j

)
+ ε

(r)
ij , (7.15)

having assumed that the ith protein is associated to the kth component. The (hyper)parameters
for the Gaussian Random Field priors for the rth replicate in experiment d are denoted by
θ

(r)
k,d. We denote by θ the collection of all hyperparameters and the collection of priors for these

by G0(θ). The loss of conjugacy between the prior on the hyperparameters and likelihood is
unavoidable.

The GRF is used to model the uncertainty in the underlying regression functions; however,
we have yet to consider the uncertainty that a protein belongs to each of these components. To
capture these uncertainties, we can use the model in the previous section, allowing information
to be shared across each condition. Following from the previous section, the conditional posterior
of the allocation probabilities is

p(zi,1 = j, zi,2 = k|π) ∝ πjk
R∏
r=1

p(x(r)
i,1 |zi,1 = j)p(x(r)

i,2 |zi,2 = k), (7.16)

where, in the specific case of our likelihood model, the probabilities in the terms of the product
can be computed using the appropriate GRF.
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We assume that our Gaussian random fields are centred and that the covariance is from the
Matérn class [434], as described in the previous chapter. The Matérn covariance is specified as
follows

Cv(d) = a2 21−ν

Γ(ν)

(√
8ν d
ρ

)ν
Kv
(√

8ν d
ρ

)
, (7.17)

Recall the parameter ν controls the differentiability of the resulting sample paths; such that,
⌈v⌉ is the number of mean-square derivatives. For typical applications, ν is poorly identifiable
and fixed. ν = 1/2 recovers the exponential covariance, whereas taking the limit ν →∞ one
obtains the squared exponential (Gaussian) covariance. We fix ν = 2.

A ridge in the marginal likelihood for the marginal variance and range parameters of the
Matérn covariance makes inference challenging. Indeed, different hyperparameters lead to
unconditional prior simulations with the same spatial pattern but different scales [376, 143].
Furthermore, when the intrinsic dimension of the Gaussian random field is less than four, there
is no consistent estimator under in-fill asymptotics for ρ and a. A principled prior, which allows
domain expertise to be expressed, is thus desired to enable stable inferences. A number of
works considered reference priors for GRFs [26, 357, 103, 463]. Here, we employ a recently
introduced collection of weakly-informative priors, which we introduce in the next section.

Penalised Complexity Priors

The penalised-complexity (PC) prior framework introduced by Simpson et al. [426] and Fuglstad
et al. [143] allows priors to be specified in modular fashion. In brief, the PC prior framework
considers model components, such as GRFs, a flexible extension of some base model. Priors
are then constructed such that they shrink the more flexible model towards the base model.
The first consideration is an appropriate distance from the base model P0 to the flexible model
P . Simpson et al. [426] choose the distance as

√
2KL(P ||P0), where KL(P ||P0) denotes the

Kullback-Leibler divergence from P0 to P . The square root and the factor 2 puts the distance
on the appropriate scale [426]. A constant-rate penalisation principle is then used to derive the
following condition

π(t+ δ)
π(t) = rδ t, δ > 0, (7.18)

where 0 < r < 1 is the constant rate decay. This construction means that the strength of
the penalty on the model increases as we depart from the base model. The only continuous
distribution that satisfies this property is the exponential distribution π(t) = λ exp(−λt) for
t > 0. The hyperparameter λ allows expert information to be expressed, once the prior has
been transformed onto the quantity of interest.
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Penalised Complexity Priors for GRFs

To derive PC priors for GRF with a Matérn covariance requires some complex considerations.
Firstly, it is required to parametrise the Matérn covariance to clarify which parameters are
identifiable under in-fill asymptotics [143]. This parametrisation loses physical interpretation
but is more amenable to theoretical considerations:

κ =
√

8ν
ρ

and τ = aκν

√
Γ(ν + 1/2)(4π)1/2

Γ(ν) . (7.19)

Thus, since τ can be inferred under in-fill asymptotics and κ cannot, a joint PC prior π(κ, τ) =
π(τ |κ)π(κ) is constructed in two stages. Fuglstad et al. [143] argue that the appropriate base
model in the this scenario are GRFs with infinite length-scales and zero marginal variance.
Using spectral representations of the GRFs Fuglstad et al. [143] derive the required joint PC
prior for κ and τ . It is then simple to parametrise the prior for the parameters ρ and a. The
joint PC prior is stated below [143]:

Theorem 3. Joint PC prior for GRFs
Let u be a GRF defined on R, with Matérn covariance with parameters a, ρ and ν. Then the
joint PC prior π(a, ρ) corresponding to a base model with infinite range and zero variance is

π(a, ρ) = λ1λ2
2 ρ−3/2 exp(−λ1ρ

−1/2 − λ2a), (7.20)

where P (ρ < ρ0) = α1 and P (a > a0) = α2 are achieved by

λ1 = − log(α1)ρ1/2 and λ2 = − log(α2)
a0

. (7.21)

Penalised complexity prior for the noise model

The noise effect is distributed according to εij ∼ N (0, σ2
k) for k = 1, ...,K. We additionally

choose a PC prior in this scenario, first we reparametrize in terms of a precision τk = 1/σ2
k

for k = 1, ...,K. Then appealing to Simpson et al. [426] the PC prior is a type-2 Gumbel
distribution

π(τ) = λ3
2 τ

−3/2 exp(−λ3τ
−1/2). (7.22)

The penalised complexity prior in this case shrinks towards zero variance. The hyperparameter
λ3 can be set using the following tail probability p(σk > U) = α results in λ3 = − log(α)

U .

Modelling outliers and hyperparameter inference

Outlier modelling is performed as described in previous chapter using an additional heavy tailed
student’s t-component. Hyperparameters are inferred using optimisation rather than sampling
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from the posterior distribution using MCMC and we refer to chapter 6 for details. This is to
reduce the computational burden of this more complex model.

Calibration of Dirichlet prior

The following section describes how to calibrate the Dirichlet prior based on expert information
and prior predictive checks. Recall the prior on the allocation probabilities is the following

p(zi,1 = k, zi,2 = k′|π) = πkk′ . (7.23)

The matrix π has πjk as its (j, k)th entry and πjk is the prior probability that a protein belongs
to organelle j in dataset 1 (control) and k in dataset 2 (contrast). The diagonal terms represent
the probability that the protein was allocated to the same organelle in each dataset. The
non-diagonal terms are the prior probability that the protein was not allocated to the same
organelle. Since the number of non-diagonal terms greatly exceeds to the number of diagonal
entries it is important to specify this prior carefully. Recall that the prior is given a matrix
Dirichlet distribution with concentration parameter α.

Firstly, we are interested in the prior expectation of the number of proteins that are
differentially localised; that is, proteins not allocated to the same organelle in both conditions.
Let ρ be the prior probability that a protein is not allocated to the same organelle. Then it
follows that

p(zi,1 ̸= zi,2|π) =: ρ =
∑

j,k;j ̸=k
πjk. (7.24)

By properties of the Dirichlet distribution we have that

πjk ∼ B(αjk, α0 − αjk). (7.25)

Thus, the expected value of ρ is computed as follows

E[ρ] =
∑

j,k;j ̸=k
E[πjk]

=
∑

j,k;j ̸=k

αjk
α0

.
(7.26)

We are further interested in the probability that a certain number of proteins, say q, are
differentially localised. Letting NU be the number of unlabelled proteins in the experiment,
then the distribution of the prior number of differential localised proteins is

p(NUρ > q) = p

NU

∑
j,k;j ̸=k

πjk > q

 = δ. (7.27)
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Computing δ is not simple; however, it is straightforward to estimate δ using Monte-Carlo by
simply sampling from Beta distributions:

p

NU

∑
j,k;j ̸=k

πjk > q

 ≈ 1
T

T∑
t=1

1

NU

∑
j,k;j ̸=k

π
(t)
jk > q

 . (7.28)

Thus, we recommend calibrating the Dirichlet prior using the above expectation and quantile.
It many be important to calibrate several quantiles to ensure sufficient mass is placed on desired
regions of the probability space. For example, let q1 < q2, then we may desire that δ1, below, is
not so small to rule out reasonable inferences and that δ2 < δ1 is sufficiently large. These can
be computed from the equations below.

p

NU

∑
j,k;j ̸=k

πjk > q

 ≈ 1
T

T∑
t=1

1

NU

∑
j,k;j ̸=k

π
(t)
jk > q1

 = δ1, (7.29)

p

NU

∑
j,k;j ̸=k

πjk > q

 ≈ 1
T

T∑
t=1

1

NU

∑
j,k;j ̸=k

π
(t)
jk > q2

 = δ2. (7.30)

More precise and informative prior biological knowledge can be specified; for example, should
we suspect that some relocalisation events between particular organelles are more likely than
others due to the stimuli, these can be encoded into the prior. If we expect more relocalisation
events between organelle j and k1 than organelle j and k2, this can be encoded by ensuring

1
T

T∑
t=1

1
(
π

(t)
jk1

> π
(t)
jk2

)
> δ3 > 0. (7.31)

Alternatively, if an objective Bayesian analysis is preferred, the Jeffery’s prior sets αjk = 0.5
for every j, k = 1, ..,K. We do not generally recommend this approach, because the diagonal
terms of π have a different interpretation to the off-diagonal terms.

Differential localisation probability

The main posterior quantity of interest is the probability that a protein is differentially localised.
This can be approximated from the T Monte-Carlo samples as follows, suppressing notational
dependence on all data and parameters for clarity

χi = p(zi,1 ̸= zi,2) ≈ 1
T

T∑
t=1

1(z(t)
i,1 ̸= z

(t)
i,2), (7.32)

where t denotes the tth sample of the MCMC algorithm. It is important to note that this
quantity is agnostic to the assigned subcellular niche.
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To perform uncertainty quantification on the the differential localisation probability, we
use the non-parametric bootstrap on the Monte-Carlo samples. More precisely, first sample
uniformly with replacement from {z(t)

i,1}Tt=1 and {z(t)
i,2}Tt=1 to a total of T samples. This produces

a bootstrap sample indexed by B1. Then we compute our statistic of interest

χ∗
i,B1 ≈

1
|B1|

∑
t∈B1

1(z(t)
i,1 ̸= z

(t)
i,2). (7.33)

This process is then repeated to obtain a set of bootstrap samples B = {B1, ..., Bb}, for some
large b, say 1000. For each Br ∈ B, we compute χ∗

i,Br
for r = 1, ..., b, obtaining a sampling

distribution for χr from which we can compute functionals of interest.

Posterior localisation probabilities

A further quantity of interest is the posterior probability that a protein belongs to each of
the K sub-cellular niches present in the data. For the control this is given by the following
Monte-Carlo average

p(zi,1 = k|Θ) ≈ 1
T

T∑
t=1

p(z(t)
i,1 = k|Θ), (7.34)

where Θ denotes all other quantities in the model. A corresponding formula also holds for the
second dataset

p(zi,2 = k|Θ) ≈ 1
T

T∑
t=1

p(z(t)
i,2 = k|Θ). (7.35)

The posterior distribution of these quantities and uncertainty estimates can be computed and
visualised in standard ways described in the previous chapters.

A non-conjugate prior

Thus far, we have been using a conjugate Dirichlet prior for the a priori mixing proportions π.
Our model assumes no correlation across π due to the use of the Dirichlet distribution. However,
we can extend the model to include correlation efficiently using Polya-Gamma augmentation.
In the interest of brevity these models are relegated to the appendix, but the results of the
model are shown in the chapter.

7.4 Results

7.4.1 The BANDLE workflow

For clarity, we visualise the BANDLE workflow in figure 7.1. The workflow begins with a well
defined mass-spectrometry based spatial proteomics experiment. A cellular perturbation of
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interest is performed alongside control experiments in wild-type cells. The usual principles
of experimental design for proteomics apply, to avoid confounding [154]. Additional quality
control steps are undertaken specifically for spatial proteomics experiments [154, 155, 157].
To apply the Bayesian model, we first calibrate the prior based on prior predictive checks
[162]. In all scenarios, we check the prior expected number of differentially localised proteins
and the probability that more than l proteins are differentially localised. These are reported
in the appendix. We then proceed with Bayesian parameter inference using Markov-chain
Monte-Carlo (MCMC) [173] and the checking of convergence. We then visualise our results
principally using rank plots, where proteins are ranked from those most likely to be differentially
localised to those least likely. Results are then interpreted using other functional screens, assays
and databases.
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Fig. 7.1 An overview of the BANDLE workflow. (A) A motivated differential localisation
experiment is set-up with a perturbation of interest (B) Mass-spectrometry based spatial
proteomics methods are applied to generate the data. (C) BANDLE is applied by first
calibrating the prior, then performing inference using MCMC, as well as algorithmic assessing
convergence. (D) The major results of BANDLE are represented in a rank plot. (E) Results
are interpreted using auxiliary data or additional experiments.
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7.4.2 Simulations demonstrate superior performance of BANDLE

BANDLE reduces false positives and increases power

To assess the performance of BANDLE and the MR approach, we run a number of simulations
allowing us to ascertain the difference between each method in scenarios where we know the
ground truth. We first start with a real dataset on Drosophila embryos and simulate replicates,
as well as 20 protein re-localisations [448]. To simulate these datasets a bootstrapping approach
is used, coupled with additional noise effects. The first simulation uses a simple bootstrapping
approach, where a niche-specific noise component is included (see appendix). The subsequent
simulations start with the basic bootstrapping approach and add additional effects. The second
and third simulations add batch effects: random and systematic respectively (see appendix).
The fourth simulation generates misaligned features across datasets by permuting them (fraction
swapping) - this models misaligned fractions between replicates (see appendix). The final
simulation includes both batch effects and feature permutations. The simulations are repeated
10 times, where each time we simulate entirely new datasets and re-localisations - this is
repeated for each simulation task. We assess the methods on two metrics - the area under the
curve (AUC) of the true positive rate and false positive rate for the detection of differentially
localised proteins. Furthermore, we determine the number of correctly differentially localised
proteins at fixed thresholds (see appendix).

Our proposed method, BANDLE, significantly outperforms the MR method with respect to
AUC in all scenarios (t-test p < 0.01). Furthermore, it demonstrates that BANDLE is robust
to a variety of situations, including batch effects. The performance of BANDLE based on the
Dirichlet prior is already very good and thus it is unsurprising that we do not observe any
significant improvements in AUC by including prior information on correlations captured by
the Pólya-Gamma prior. Additional comparisons are made in the appendix where we make
similar observations

The improved AUC, which demonstrates improved control of false positives and increased
power, translates into increased discovery of differentially localised proteins. Indeed, BANDLE
with the Dirichlet prior discovers around twice as many such re-localising proteins. Allowing
prior correlations through the Pólya-Gamma prior demonstrates that additional differentially
localised proteins are discovered. This is an important reality of those performing comparative
and dynamic spatial proteomics experiments, since the experiments become more worthwhile
with additional biological discoveries. In practice, the authors of the MR approach advocate
additional replicates to calibrate which thresholds are used to declare a protein differentially
localised. This assumes that the perturbation of interest does not have a strong effect on
the properties of the sub-cellular niches, which restricts applicability. In contrast, BANDLE
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does not need additional mass-spectrometry experiments to calibrate its probabilistic ranking
meaning more discoveries are made at lower cost.

In the following section, we examine the differences between the approaches in a simulated
example. There we focus on the output, interpretation and statistical qualities of each approach,
rather than the predictive performance of the methods.
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Fig. 7.2 Boxplots comparing the performance of the MR approach and our proposed method
BANDLE. BANDLE is separated into whether a Dirichlet-based prior was used or if the
Polya-Gamma augmentation was applied. Each boxplot correspond to a different simulation
scenario. The first 5 boxplots show BANDLE has significantly improved AUC in all scenarios.
These AUCs are translated into the correct number of re-localisations and we can see that our
method clearly outperforms the MR approach.
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BANDLE quantifies uncertainty and is straightforward to interpret

In this section, we further explore the application of BANDLE with a Dirichlet prior and the
MR approach, focusing on the interpretation and statistical properties of the two methods.
Again, we simulate dynamic spatial proteomics data, starting from the Drosophila experiment
in the scenario in which the MR method performed best. This is where there are cluster specific
noise distributions but no other effects, such as batch effects, were included. Sample PCA plots
of the data are presented in figure 7.3 A. There is a clear pattern of localisations across the
data where proteins with known sub-cellular localisations are closer to each other. However, the
organelle distributions clearly overlap and in some cases are highly dispersed - a representation
of the challenges faced in real data. These data are annotated with 11 sub-cellular niches
and 888 proteins are measured across 3 replicates of control and 3 of treatment (totalling 6
experiments). Re-localisations are simulated for 20 proteins.

We first apply the MR method according to the methods in [220, 221]. We provide a brief
description of the approach with full details in the methods. To begin, the difference profiles are
computed by subtracting the quantitative values for each treatment from each control. Then
the squared Mahalanobis distance is computed to the centre of the data and under a Gaussian
assumption the null hypothesis is that these distances follow a Chi-squared distribution, ergo a
p-value is obtained. This process is repeated across the 3 replicates and the largest p-value was
then cubed and then corrected from multiple hypothesis testing using the Benjamini-Höchberg
procedure [25]. A negative log10 transform is then performed to obtain the M-score. To produce
the R-score, Pearson correlations are computed between each difference profile for all pairwise
combination of difference profiles. The lowest of the three R-scores is reported. The M-score
and R-score are plotted against each other (see figure 7.3 B) and the proteins with high M-score
and high R-score are considers “hits”.

There are a number of assumptions underlying the MR methodology. Firstly, comparing
difference profiles pairwise assumes that the features in both datasets exactly correspond.
However, this precludes any stimuli that changes the biochemical properties of the organelles,
since changing these properties may result in differing buoyant densities or pelleting of niches at
different centrifugation speeds. Thus, whether density-gradient or differential centrifugation is
used for organelle separation this assumption must be carefully assessed. Secondly, the Gaussian
assumption ignores the natural clustering structure of the data because of the different organelle
properties. Indeed, examination of the p-value distributions in a histogram (figure 7.3 C) shows
that it clearly deviates from the mixture of distributions expected (p-values are uniformly
distributed under the null). The peaking of p-value towards 1 suggests poor distributional
assumptions [204]. Thus perhaps the Chi-squared distribution is a poor fit for the statistic of
interested. Exploring this further, we fit a Chi-squared and Gamma distribution empirically
to the statistics using maximum likelihood estimation (MLE) of the parameters. Figure 7.3
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D show that the Gamma distribution is a better distributional fit - successfully capturing
the tail behaviour of the statistic. The Chi-squared family is nested in the Gamma family of
distributions, so if the theoretical Chi-squared distribution was a good fit the distributions would
overlap. For a quantitative assessment of model fits we compute the negative log-likelihood of the
data given the optimal distributions - the Gamma distribution has a markedly lower negative
log-likelihood (Figure 7.3 E). This provides strong evidence that the underlying Gaussian
assumptions are likely violated. Thirdly, it is inappropriate to cube p-values: to combine
p-value across experiments one could use Fisher’s method [322, 49, 250] or the Harmonic mean
p-value (HMP) [178, 481] depending on the context. Indeed, the cube of the p-value is no
longer a p-value. To elaborate, if P are a set of p-values, then under the assumption of the null
hypothesis P is uniformly distributed; however, the cube is clearly not uniformly distributed.
Since we no longer work with p-values, Benjamini-Höchberg correction becomes meaningless
in this context. Transforming these values to a “Movement score”, conflates significance with
effect size which confounds data interpretation. Finally, summarising to a single pair of scores
ignores their variability across experimental replicates.

BANDLE first models each sub-cellular niche non-parametrically (since the underlying
functional forms are unknown [84]). Visualisation of the posterior predictive distributions
from these fits for selected sub-cellular niches is given in figure 7.3 H - we observe a good
correspondence between the model and the data. We can see that the different sub-cellular niches
have contrasting correlation structures and thus niche specific distributions are required. These
distributions are specific for each replicate of the experiment and also the two experimental
conditions. The information from the replicates, and the control and treatment are combined
using an integrative mixture model. Briefly, mixing proportions are defined across datasets
allowing information to be shared between the control and treatment (see methods for more
details). This formulation allows us to compute the probability that a protein is assigned to a
different sub-cellular niche between the two experiments - the differential localisation probability.
The proteins can then be ranked from most probably differentially localised to least (figure
7.3 H). The figure is simple to interpret: the proteins with highest rank are the most likely to
have differentially localised during the experiment, having been confidently assigned to different
sub-cellular niches in the control versus treatment. The proteins with lowest rank are highly
unlikely to have moved during the experiment - the localisations are stable. This is important
information in itself, especially when combined with other information such as changes in
abundance or post translational modification. Figure 7.3 G shows the 30 proteins with highest
rank visualising the uncertainty in the differential localisation probability (see methods). This
ranking allows us to prioritise which proteins to follow up in validation experiments. The
ranking can also be mapped onto other experimental data, such as expression or protein-protein
interaction data. The probabilistic ranking produced by BANDLE is more closely aligned with
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the phenomenon of interest. Indeed, we divide the data into the proteins that were differentially
localised and those that were not. Then from plotting the distribution of the statistics from
the respective methods, it is clear that output from BANDLE is most closely associated with
re-localisation events (figure 7.3 I).
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Fig. 7.3 (A) example PCA plots where pointers correspond to proteins. Marker proteins
are coloured according to their subcellular niche, whilst proteins with unknown localisation
are in grey. Simulated translocations are highlighted in black, where the left corresponds to
control and right to the perturbed dataset. (B) An MR-plot showing movement score against
reproducibility score. Each pointer correspond to a protein and orange pointers correspond to
simulated translocations and blue otherwise. Teal lines are drawn at suggested thresholds with
proteins in the top right corner considered hits. (C) A p-value histogram from the statistic
underlying the MR-method. A purple line indicates uniformity. This histogram clearly deviates
from uniform behaviour. (D) A histogram of the raw statistics underlying the MR method. A
Chi-square (orange) and Gamma (blue) fit are overlaid (obtained using maximum likelihood
estimation). The Gamma distribution clearly captures the tail behaviour. (E) model selection
on the raw statistic using the Chi-squared and Gamma models. The Gamma model has lower
negative log-likelihood and is thus a better model fit. (F) A BANDLE rank plot where proteins
are ranked from most to least likely to differentially localised. The differentially localisation
probability is recorded on the y-axis. (G) A BANDLE rank plot of the top 30 differentially
localised proteins with uncertainty estimates for the differential localisation probability. Proteins
marked in orange were simulated translocations. (H) Posterior predictive distributions (black)
overlayed on the marker profiles for different subcellular niches showing the quality of the
non-parametric BANDLE fits. (I) Violin plots for the differential localisation probabilities, the
M score and R score. The distribution are split between differentially localised (movers) and
spatially stable proteins. Clearly, the differential localisation probabilities correlate most closely
with the phenomena of interest.
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7.4.3 Applications to differential localisation experiments

Characterising differential localisation upon EGF Stimulation

Having carefully assessed the statistical properties of our approach, BANDLE, and the MR
method, we apply these approaches to a number of datasets. First, we consider the Dynamics
Organeller Maps (DOMs) dataset of [220], exploring the effects EGF stimulation in HeLa cells.
In this experiment, SILAC labelled HeLa cell were cultured and recombinant EGF was added
to the culture at a concentration of 20 ng ml−1 (see [220]). A total of 2237 complete protein
profiles were measured across 3 replicates of control and 3 replicates of EGF treated HeLa cells.
Principal Component Analysis (PCA) projections of the data can be visualised in the appendix.
A quality control assessment was performed using the approach of [157]. As a result, nuclear
pore complex, peroxisome and Golgi annotations were removed, since the marker proteins of
these classes were highly dispersed.

The MR method was applied as described in the methods and the results can be visualised
in figure 7.4 C. 7 proteins are predicted to be differentially localised with the MR method
with the thresholds suggested by [220]. These include 3 core proteins of the EGF signalling
pathway SHC1, GRB2 and EGFR [346] and other, potentially related, proteins TMEM214,
ACOT2, AHNAK, PKN2. Since the MR approach does not provide information about how the
functional residency of the proteins change, it is challenging to interpret these results without
further analytical approaches.

To quantify uncertainty and gain deeper insight into the perturbation of HeLa cell after EGF
stimulation we applied our BANDLE pipeline. Firstly, the rank plots display a characteristic
shape suggesting that most proteins are unlikely to be differentially localisation upon EGF
stimulation (figure 7.4 D). Furthermore, we provide uncertainty estimates in the probability
that a protein is differentially localised for select top proteins (figure 7.4 E). We also visualise
the change in localisation for the proteins known to re-localise upon EGF stimulation: SHC1,
GRB2 and EGFR (figure 7.4 G). This is displayed by projecting the posterior localisation
probabilities on to the corresponding PCA coordinates. These probabilities are then smoothed
using a Nadaraya-Watson kernel estimator [329, 474] and visualised as contours.

Given the well-documented interplay between phosphorylation and sub-cellular localisation
[265, 67, 371, 17], we hypothesised that proteins with the greatest differential phosphorylation
would correlate with proteins that were more likely to be differentially localised. To this end,
we integrated our analysis with a time-resolved phosphoproteomic dataset of EGF stimulation
using MS-based quantitation [249]. In their study, EGF stimulated cells were cultured to 8
different time points: 0, 2, 4, 8, 16, 32, 64, 128 mins. For MS-based quantitation trypsin digested
peptides are laballed using iTRAQ 8-plex and pooled. Immunoprecipitation was used to enrich
for phosphorylated tyrosine residues [369] and the enrichment of phosphosites on serine and
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threonine residues was performed via immobilized metal affinity chromatography (IMAC)
[133, 321].

For each phosphopeptide corresponding to a unique protein, we computed the largest log2

fold change observed across the time course. Given that the changes in localisation occur within
20 minutes, we restricted ourselves to the first 6 time points [220]. We then took the top 10
proteins ranked by each of the MR method and BANDLE. These rankings are then correlated
with rankings obtained from the changes in phosphorylation. The Spearman rank correlations
were recomputed for 5, 000 bootstrap resamples to obtain bootstrap distributions of correlations
(see figure 7.4). We report the mean correlation and the 95% boostrap confidence intervals.
The correlation between the ranks of the MR method and the phosphoproteomic dataset was
ρS = 0.40 (−0.49, 0.85), whilst the the correlation when using the ranking of BANDLE was
ρS = 0.68 (0.02, 0.98). That is to say the proteins which are more likely to be declared as
differentially localised according to BANDLE are more likely to differentially phosphorylated
than those declared as differentially localised according to the MR method. Alongside the
statistical and interpretable benefits of BANDLE, it is clear the approach has the utility to
provide insight into localisation dynamics.
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Fig. 7.4 (A) An MR-plot where dark green lines are drawn at suggested threshold and hits
are highlighted in orange. (B) BANDLE rank plot showing the distribution of differentially
localised proteins. (C) The top differentially localised proteins from BANDLE plotted with
uncertainty estimates. (D) Boostrap distributions of correlations with a phosphoprotemomic
time-course experiment. The BANDLE confidence intervals differ significantly from 0, whilst
the MR method do not. (E) PCA plots with (smoothed) localisation probabilities project
onto them. Each colour represent an organelle and ellipses represent lines of isoprobability.
The inner ellipse corresponds to 0.99 and the proceed line 0.95 with further lines decreasing
by 0.05 each time. The protein are highlight demonstrating example relocalisations. EGFR
(P005330) clearly relocalises from the PM to endosome, whilst SHC-1 (P29353) and GRB2
(P62993) relocalise from unknown localisation to the Lysosome.
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BANDLE obtains deeper insights into AP-4 dependent localisation

The adaptor protein (AP) complexes are a set of heterotetrameric complexes, which transport
transmembrane cargo protein vesicles [390]. The AP1-3 complexes are well characterised: AP-1
mediates the transport of lysosomal hydrolases from the trans-Golgi to the endsomes [239, 199];
AP-2 has a significant role in the regulation of endocytosis [323]; AP-3 is involved in the sorting
of trans-Golgi proteins targeted to the lysosome [107]. However, the role of the AP-4 complex
is still poorly understood [200, 201], despite loss-of-function mutations resulting in early-onset
progressive spastic paraplegia [319].

AP-4 consists of four subunits (β4, ε, µ4 and σ4) forming an obligate complex [107]. Davies
et al. [92] study the functional role of AP-4 using spatial proteomics; in particular, the DOM
workflow mentioned previously. As part of their study, they use AP-4 CRISPR knockout cells
to interrogate the effect on the spatial proteome when AP-4 function has been ablated.

The DOM experiment we re-analyse from [92] provides full quantitative measurements for
3926 proteins across two replicates of wild-type cells and two replicates where the β4 subunit
has been knocked-out. The data are visualised as PCA plots (see appendix) . As in the previous
analysis, we run a quality control step removing the Actin binding protein and Nuclear pore
complex annotations [157]. This dataset is particular challenging to analyse because there are
only two replicates for control and treatment. The value of Bayesian analysis is the ability to
provide prior information to regularise, as well as the quantification of uncertainty which is
more critical in data sparse scenarios.

Previous application of the MR methods led to authors to find that SERINC 1 (Q9NRX5)
and SERINC 3 (Q13530) were differentially localised [92]. Their results suggest that SERINC 1
and 3 are cargo proteins of the AP-4 complex that are packaged into vesicles at the trans-Golgi
before being transported to the cell periphery. All together their results suggest AP-4 provides
spatial regulation of autophagy and that AP-4 neurological pathology is linked to disturbances
in membrane trafficking in neurons [297, 92].

We apply our method BANDLE in order to gain further insights into AP-4 dependent
localisation. We compute the differential localisation probability and rank proteins according
to this statistic (see figures 7.5 A and B). Characteristic S shape plots are observed with
most proteins not differentially localisation upon knock-out of AP-4 β4. The results of both
SERINC 1 and 3 are validated, as we compute a differentially localisation probability greater
than 0.95 for these proteins. Furthermore, 16 of the top 20 proteins are membrane-bound
or membrane-associated proteins (FDR < 0.01 hyper-geometric test). To demonstrate the
benefit of our probabilistic ranking, we perform two-sided KS rank test against the functional
annotations provided in the STRING database (corrected for multiple testing within each
functional framework) [443]. We find that processes such as ER to Golgi transport and lipid
metabolism are more highly ranked that would be expected at random (FDR < 0.01), as well as
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endosome and Golgi localisations (FDR < 0.01). Whilst processes associated with translation,
ribosome localisation and function appear significantly lower in the ranking (FDR < 0.01). As
expected, this provides a high level overview and evidence for the functional nature of AP-4 in
the secretary pathway.

Taking a more precise view on our results, we examine the top 20 differentially localised
proteins in more detail. We compute the Spearman correlation matrix between these proteins
and observe clustering, suggesting the proteins act in a coordinated way (see figure 7.5 C).
Visualising the data in a heatmap (figure 7.5 D), after mean and variance normalisation, we
observe a highly concordant pattern: most proteins are enriched in fractions 4 and 5. These
fractions are obtained from the highest centrifugation speeds and so differentially pellet light
membrane organelles, such as endosomes and lysosomes [220, 159]. Again, further evidence for
the role of AP-4 dependent localisation dynamics within the secretary pathway.

In figure 7.5 C, we observe a large cluster of 9 proteins, which includes SERINC 1 and 3.
Amongst these 9 proteins is SLC38A2, a ubiquitously expressed amino-acid transporter that is
widely express in the central nervous system and is recruited to the plasma membrane from
a pool localised in the trans-Golgi [188, 30, 177, 306] Thus, its differential localisation here
provides further evidence for the role of AP-4 as a membrane trafficker from the trans-Golgi.
Another protein in this cluster is TMEM 199 (Q8N511) a protein of unknown function that
is involved in lysosomal degradation [313]. Furthermore, it has been implicated in Golgi
homoeostasis but the functional nature of this process is unknown [226]. Probing further,
we observe that TMEM199 acts in a coordinated fashion with SERINC 1 and 3. Marked
re-localisations are observed on PCA plots toward the endo/lysosomal regions (see figure 7.5 E)
and we note that the quantitative profiles of SERINC 1, SERINC 3 and TMEM199 act in an
analogous way upon AP-4 knockout (see figure 7.5 F). Our findings motivate additional studies
to elucidate AP-4 dependent localisation.
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Fig. 7.5 (A) BANDLE rank plot showing the distribution of differentially localised proteins.
(B) The top differentially localised proteins from BANDLE plotted with uncertainty estimates.
(C) A Spearman correlation heatmap showing strong correlations and coclustering behaviour
of proteins that have AP-4 dependent localisation (D) Normalised mass-spectrometry profiles
plotted as a heatmap from the AP-4 knockout data. Proteins are shown to have similar
behaviour with greater intensity in fraction 5, where light membrane organelles are likely to
pellet. (E) PCA plots with (smoothed) localisation probabilities project onto them. Each
colour represent an organelle and ellipses represent lines of isoprobability. The inner ellipse
corresponds to 0.99 and the proceed line 0.95 with further lines decreasing by 0.05 each time.
The proteins SERINC 1 and 3, as well as TMEM199 are highlight demonstrating example
relocalisations. (F) Normalised abundance profiles showing that SERINC 1, SERINC 3 and
TMEM199 show similar behaviour upon knockout of AP-4.
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7.4.4 Rewiring the proteome in response to Cytomegalovirus infection

The host spatial-temporal proteome

Human Cytomegalovirus (HCMV) infection is a ubiquitous herpesvirus that burdens the
majority of the populous [56]. In healthy immune systems, HCMV establishes latent infection
following initial viral communication [377] and reactivation can lead to serious pathology in
certain imunno-compromised individuals [36]. HCMV has a highly expanded genome with
vast capabilities to encode functional proteins [325, 437]. For the virus to succeed it carefully
modulates cellular functions en masse [230].

Initial viral infection involves endocytosis of the virion into the cell [218], host machinery
is then used to transport viral capsids into the nucleus [348]. Within the host nucleus viral
transcription and genome replication occurs [312, 172, 236]. Meanwhile, other viral proteins
are targeted to the secretory pathway to inhibit immune response and regulate the expression
of viral genes [431, 126, 216, 316, 79, 266], rewire signalling pathways [491] and modulate
metabolism [490]. These processes perform part of the early phases on the infection cycle. In
later phases, the cellular trafficking pathways and the secretory organelles are hijacked for the
formation of the viral assembly complex (vAC) [50, 318, 8, 89, 88]. Thus, HCMV biology is a
paradigm to analyse complex viral processes [475].

There has been a recent flurry in applying system-wide proteomic approaches to the HCMV
infection model. Weekes et al. [475] developed quantitative temporal viromics a multiplexed
proteomic approach to understand the temporal response of thousands of cellular host and
viral proteins. More recently, to discover proteins with innate immune function a multiplexed
proteasome-lysosome degradation assay found that more than 100 proteins are degraded shortly
after infection [340]. Meanwhile, a comprehensive mass spectrometry interactome analysis has
identified thousands of host-virus interactions [343]. Furthermore, high-throughput temporal
proteomic analysis has revealed acetylation, a lysine posttransational modification, as an integral
component of HCMV infection [328].

Beltran et al. [24] use spatial and temporal proteomics to investigate the response of the
human host proteome to HCMV infection. The authors perform subcellular fractionation on
uninfected (control) and HCMV infected (treated) cells at 5 different time point (24, 48, 72, 96, 120)
hours post infection (hpi). The authors then used neural networks to classify proteins to sub-
cellular niches at each time point in the control and treated cells, allowing a descriptive initial
analysis of the data. Proteins with differential classification at each time point are those that
are believed to be differentially localised. However, the challenge of this study is that only a
single replicate is produced in each situation. This renders the MR method of Itzhak et al.
[220] inapplicable.



7.4 Results 219

Differential classification is a reasonable approach to probe differential localisation though
it neglects information shared across both experiments and it is not quantitative. In the case of
single replicates, by sharing information and providing prior information we are able to improve
inference and obtain deeper insights. We apply BANDLE to control and HCMV-treated cells
at 24 hpi, in the interest of brevity, to explore further the host spatial-temporal proteome. Our
analysis reflects extensive rewiring of the proteome with hundreds of proteins differentially
localised on HCMV infection. We highlight an example of differential localisation with SCARB1
(see figure 7.6 A), with a localisation in the secretory pathway shifting toward a PM/cytosolic
localisation, similar to what has previously been observed [24].

To obtain global insights into the functional behaviour of the differentially localised proteins,
we performed a Gene Ontology (GO) enrichment analysis. An extensive list of terms are enriched
and these can be divided broadly into subcategories such as translation and transcription;
transport; viral processes; and immune process (see appendix). These results reflect closely the
early phase of HCMV infection [230]. Pathway enrichment analysis highlights terms related
to a viral infection (Viral mRNA Translation, Influenza Life Cycle, Infectious disease, Innate
Immune System, Immune System, MHC class II antigen presentation, Antigen processing-Cross
presentation, Host Interactions of HIV factors, HIV Infection) (see figure 7.6 B). Pathway
analysis also reveals known processes that are modulated on HCMV infection, such as membrane
trafficking [40, 338, 492], Extracellular matrix organization [378] and rab regulation of trafficking
[282].
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Fig. 7.6 (A) PCA plots with (smoothed) localisation probabilities project onto them. Each
colour represent an organelle and ellipses represent lines of isoprobability. The inner ellipse
corresponds to 0.99 and the proceed line 0.95 with further lines decreasing by 0.05 each time.
The relocalisation of SCARB1 is highlighted on the plot (B) Reactome pathway enrichment
results. (C) A heatmap representation of the MG132 inhibitor degradation data at 24 hpi.
log10 p-values are overlaid onto the spatial patterns across MOCK and HCMV infected cell 24hpi.
The y-axis corresponds to localisation in the MOCK dataset whilst the x-axis corresponds to
HCMV infected cells. (D) as for C but for the leupeptin inhibitor. (E) mean log2 abundance
fold changes are overlaid on a heatmap according to their spatial pattern (F) the p-values
corresponding to the fold changes observed in E.
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Integrating HCMV proteomic datasets to add functional relevance to spatial proteomics
data

The spatial information obtained here allows us to perform careful integration with other
high-resolution proteomic datasets. The degradation screens by [340] identified proteins that
were actively degraded during HCMV infection but gave no information regarding the spatial
location of the targets. To determine the location of host proteins targeted by HCMV for
degradation, the BANDLE revised spatial data at 24 hpi was overlapped with proteins that
were degraded by the proteasome or lysosome. The subcellular location of the host proteins is
displayed for the 24 h timepoint. To determine the spatial granularity of the degradation data
we tested whether the proteins assigned to each spatial pattern had a significantly different
degradation distribution that the distribution of all proteins in the experiment (t-test). We note
that proteins that are differentially localised are no more likely to be targeted for degradation
than those that are not (see appendix).

Degradation data from [340] are overlaid as a heatmap, showing a − log10(p-value) for each
inhibitor (figure 7.6 C and D). For proteasomal targeted proteins (MG132), the data highlight a
high number of proteins degraded from the mitochondria. The mitochondria act as a signalling
platform for apoptosis and innate immunity and it is already well established that HCMV can
subvert these processes to its advantage [87]. Furthermore, there is a high degree of protein
degradation as one might expect in proteasome fractions (dense cytosol), with an enrichment
of proteins recruited from the ER and cytosol (see appendix). For lysosomal targeted proteins
(leupeptin) there was a high degree of proteins degraded from the mitochondria, cytosol and
plasma membrane. There were also several proteins degraded that moved from the cytosol to
the dense cytosol.

Many host proteins are up or down regulated upon HCMV infection [475]. We examine
more recent abundance data from [328] at 24 hpi and first we note that differentially localised
proteins are not more abundant than spatially stable proteins (see appendix). However, we see
a strong spatial pattern when we overlay the abundance pattern on a heatmap. In figure 7.6 E
, we report the mean log2 fold change for proteins stratified according to predicted subcellular
localisation. It is important to combine spatial and abundance data, since a differentially
localised protein may not undergo a true translocation event but rather a new pool of proteins
is synthesised. The significance of these abundance changes is highlighted in figure 7.6 F. For
example, there is a significant decrease in the abundance of the protein recruited to the dense
cytosol from the ER (see appendix). Some of the larger changes are not significant because
there are too few proteins with the same spatial pattern. We note that FAM3C, a protein
involved in platelet degranulation, is upregulated at 24 hpi. Furthermore, FAM3C relocalises
from the Golgi to the Lysosome, its Golgi localisation is in concordance with the Human Protein
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Atlas (HPA) [455] and its Lysosome relocalisation suggests that it is trafficked through the
secretory pathway before undergoing degranulation.

Upon integration of the acetylation data of [328], the spatial patterns are much more
nuanced (see figures 7.7 A and B). Perhaps surprisingly, we do not observe increased acetylation
levels amongst differentially localised proteins (see appendix). The only significant pattern
is for proteins relocalising from the dense cytosol to the cytosol; however, we observe this is
driven by a single protein Skp1 (see appendix), which shows a 2.5-fold increase in acetylation
at 24 hpi for Skp1 and there is an increase in its RNA transcript at 24 hpi [340]. The Skp1
protein is part of an E3 ubiquitin ligase complex that targets proteins for degradation. E3
ligases are often manipulated by viruses in order to control cellular processes to create a cell
states that benefit viral replication and survival [289]. It is therefore possible that HCMV is
controlling Skp1 activity through acetylation at its C-terminus, leading to its translocation and
likely change in function.
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Fig. 7.7 (A) A heatmap representation of the mean log2 fold changes in acetylation overlaid on
spatial pattern of HCMV infection 24 hpi. (B) p-values for the changes shown in figure A. (C)
The spatial allocation derived from BANDLE where each entry of the heatmap is the number
of proteins. The y-axis represents localisation in the mock dataset and the x-axis localisation
in the HCMV infected cells 24 hpi. (D) UL148A interactome mapped onto the BANDLE
determined spatial patterns. (E) UL70 interactome mapped onto the BANDLE determined
spatial patterns (F) UL8 interactome mapped onto the BANDLE determine spatial patterns.
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The recent publication of the HCMV interactome has provided a wealth of data that
gives insights into the function of the 170 canonical and 2 non-canonical viral protein-coding
genes [343]. However, a common difficulty with analysing large interactome projects is the
ability to reduce the number of false-positive interactions, leading to poor agreement between
experimental and computational datasets. This can be controlled through replicates, supervised
machine learning and increased statistical stringency; however, background contamination can
never be eliminated. If a protein is located in a single location, it would be expected that true
positive interactors to be located in the same subcellular compartment. Therefore, to narrow
the list of viral-protein interactors, we overlapped spatial information from [24] with the viral
interactors from [343] (figure 7.7 D,E,F).

We plot heatmaps to indicate the spatial distribution of the host proteins (figure 7.7). The
overall distribution is plotted in the heatmap of figure 7.7 C. Firstly, we are interested in
scenarios where the interacting host proteins were more likely to retain their localisation upon
HCMV infection (than the computed posterior distribution would have predicted). Thus, for
each viral bait, we simulated from a binomial A ∼ Bin(n, p) where p is the posterior probability
that a random protein was assigned to the same localisation and n is the number of interactors
of that viral bait. We then simulated from this distribution 5, 000 times to obtain a histogram
(see appendix). Viral baits of interest are those were the observed statistic in the tails of these
histograms.

Examples of such cases are shown for viral proteins UL8 and UL70 (see figure 7.7 E and F).
The majority of UL8 interactors were located in the plasma membrane and cytosol. UL8 is a
transmembrane protein that is transiently localised at the cell surface, with a small cytoplasmic
pool [360], perfectly mimicking the location of the majority of UL8 interactors. Practically
all UL70 interactors were located in the cytosol. Viral UL70 is a primase known to locate to
both the nucleus and cytoplasmic compartments during HCMV infection [417]. As the nucleus
was removed prior to fractionation then one expects only to be able to interrogate cytosolic
interactors. An example were the host proteins were spatially diffuse was UL148A an elusive
viral protein of unknown function, believed to be involved with modulating the innate immune
response [90]. UL148A appears to interact with host proteins distributed throughout the cell
suggesting it is highly promiscuous (figure 7.7 D). Perhaps UL148A is a moonlighting protein
[231] making its function hard to pinpoint and such an observation would not be uncommon
for viral proteins because of limited genomic size [70, 73]. These results illustrate the strength
in overlapping spatial proteomics with interactome studies to decrease the number of false
positives and focus research on higher confidence protein-protein interactions. The entire list of
spatially resolved viral protein interactions is shown in the appendix.
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7.5 Discussion and limitations

We have presented a Bayesian model for comparative and dynamic spatial proteomic experiments.
Unlike current approaches, our flexible integrative mixture model allows any number of replicate
experiments to be included. Furthermore, subcellular profiles are modelled separately for
each condition and each replicate, allowing cases where the correlation profiles differ between
experiments. Crucially, our model facilitates the computation of differential localisation
probability, which cannot be performed by other methods in the literature. Furthermore,
BANDLE probabilistically assigns proteins to organelles and can model outliers meaning
that further supervised machine learning after application of BANDLE is not required. The
probabilistic ranking obtained from BANDLE can be used for downstream pathway or GO
enrichment analysis, likewise it can be mapped onto other high-throughput datasets.

We compared BANDLE to the MR approach of [220, 221]. The MR method is not as
broadly applicable as BANDLE, and BANDLE does not require additional experiments to
interpret the thresholds. In our careful simulation study, we demonstrate reduced Type 1 error
and increased power when using our approach. In a further simulation, we demonstrated that
BANDLE has more desirable statistical properties than the MR approach, the results are easier
to interpret and more information is available. Since we are in a Bayesian framework, our
approach also quantifies uncertainty.

Application of our approach to 3 dynamic and comparative mass-spectrometry based spatial
proteomic experiments demonstrates the broad applicability of our approach. We validate
many previously known findings in the literature, placing confidence in these results. When
BANDLE was applied to EGF stimulation dataset, we saw increased correlation between our
differential localisation results and a phosphoproteomic timecourse than when compared to the
results of the MR approach.

We applied BANDLE to an AP-4 knockout dataset to investigate AP-4 dependant localisation
and, as with other studies, we observe SERINC 1 and SERINC 3 are AP-4 Cargo. Furthermore,
we implicate TMEM199 as potentially overlooked AP-4 cargo. We apply BANDLE to datasets
where the MR approach is not applicable - an HCMV infection spatial proteomic dataset.
Pathway and GO enrichment results implicate differentially localised protein in well-studied
processes of early viral infection; such as, membrane trafficking and immune response.

We then carefully integrated several HCMV proteomic datasets and place a spatial perspective
on these data, including proteins targeted for degradation, as well as abundance and acetylation
dataset. In addition, we augment a recent HCMV interactome by placing it in its spatial
context and note that most host protein interactomes are in the same localisation as their
viral bait. This provides an excellent resource for the community and highlights the benefit of
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integrating spatial proteomics and interactomics datasets. This analysis also reveals potential
moonlighting proteins.

Our analysis here highlights the potential role for post-translational modifications (PTMs)
and their influence on localisation. The current datasets are limited because the spatial
information is averaged over different PTMs. Thus, it is vital to develop methods to obtain
spatial PTM information and develop corresponding computational tools to analyse these
data. In this scenario, a testing approaching might be more realistic and there is a fear
that our computational methods will not scale to peptide-centric studies. Furthermore, our
approach here can only look at a single condition at a time. In the future, more complex spatial
proteomics designs will be available that will study multiple perturbations simultaneously. A
clear limitation of our work is not being able to analysis dynamic experiments that depend on
additional covariates.

Overall, differential localisation experiments seek to add an orthogonal perspective to other
assays, such as classical high-throughput differential abundance testing. Currently, differential
localisation has not been extensively explored in high-throughput. We hope rigorous statistical
methods will spur extensive and illuminating applications.

Another limitation of our analysis is that integration with other datasets happens in a
multiple step approach, feeding our results into the output of our methods. From a statistical
point of view sharing information across datasets in an integrative approach is clearly desirable.
Modelling covariate based designs and integration with other data sources also, again, raises
the question of scalability of our computational methods. We have also assumed independence
between biological replicates, but note that statistical dependence structure could be modelled
using hierarchical Gaussian processes [198]. However, this will also reduce the scalability of our
approach.



Chapter 8

Conclusion

Christian De Duve’s principle of fractionating the cell and associating proteins within subcellular
niches by their shared profiles across subcellular fractions, has been turned into a powerful
profiling spatial proteomic technique. Coupling either density-gradient or differential centrifugation
to high-accuracy mass spectrometry allows for high-throughput interrogation of the spatial
proteome. The modern inceptions of De Duve’s principle not only provide localisation
information on thousands of proteins but they have also uncovered significant levels of multi-
localisation and hence potentially multifunctional proteins [159]. The methodology has also
been refashioned to study protein dynamic in the form of trans-locations or, more precisely,
differential localisation.

The data analysis challenges posed by mass spectrometry based spatial proteomics has been
well documented [154, 155, 157]. Machine learning algorithms trained on marker proteins have
a number of limitations and often cannot be easily manipulated to answer more challenging
questions. In this thesis, we explored Bayesian approaches to the spatial proteomics problem
both in the parametric and non-parametric framework. The Bayesian treatment allows for
quantification of uncertainty through the posterior distribution of the parameters and of latent
variables. As mass spectrometry based spatial proteomics becomes more prominent and it is
extended to more complex designs and questions, we believe the use of Bayesian modelling will
form a key part of the process.

8.1 Main findings and contributions

In chapter 2, we developed a class of semi-supervised robust Bayesian mixture models. We
showed that the predictive output of these models matches that of the state-of-the-art machine
learning algorithms currently applied to spatial proteomics data. Application to many datasets
showed that our model was flexible enough to perform well in diverse experimental designs.
Moreover, our model provides more information. Using MCMC sampling we can sample from
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the posterior distribution of localisation probabilities. Through a detailed case study on mouse
pluripotent embryonic stem cells, we showed that the uncertainty quantification is biologically
meaningful, allowing us to report on potential cases of multi-localisation. We developed ways to
summarise the uncertainty, as well as clear visualisations allowing a thorough treatment of the
spatial proteomics data. We also highlight a more general interpretation of our model, which
could useful in applications to other datasets. We continued along this line in chapter 3, in
which we walked through the analysis of a typical spatial proteomics dataset and provided an
easy to use software implementation for our approach. We developed further visualisations and
provided a primer on Bayesian analysis with an unversed practitioner in mind. This allowed a
more extensive discussion of the model priors.

Chapter 4 presented a substantial application of our Bayesian model to Toxoplasma gondii.
Since T. gondii is not a model organism most of its functional annotation arises from various
indirect sources, such as homology with other organisms [21]. Many proteins are still classed as
“hypothetical” from the genome. Many knowledge gaps are overcome in our analysis, where we
can confidently allocate thousands of proteins to 26 distinct subcellular niches. This allows us to
integrate other datasets with the data. One example is a genome-wide CRISPR-CAS9 knockout
screen, in which we identify, for example, that the apicoplast is enriched for indispensable
proteins. Uncertainty quantification also allows us to explore some aspects of localisation
dynamics. We also highlight some major limitations of our approach in light on this application.

Chapters 5 and 6 explore extensions to our original model. In chapter 5, we first discuss
several approaches for selecting or inferring the number of clusters in mixture models. We opt to
apply the method of over fitted mixtures. This can be considered an additional semi-supervised
extension of our model, which allows us to perform novelty detection. We show how we can
perform uncertainty quantification in this model using the discovery probability. Furthermore,
application to 10 spatial proteomics datasets, covering a broad range of biological systems,
provides new putative annotations in every dataset. Moving forward this will allow spatial
proteomics to be applied to poorly annotated organisms and reduce the reliance on marker
proteins. On the other hand, chapter 6 sets out to develop a model that more closely captures
the data generating mechanisms. The increased computation of this Bayesian non-parametric
approach is offset by the development of several matrix algorithms that extend classical methods.
Extensive simulations demonstrate that our model is largely robust to prior choices and can
make more accurate predictions than previous models.

In chapter 7, we rigorously defined the concept of differential localisation - a fundamental
biological phenomenon. We review current data analysis methods and show that they have
poor statistical properties and restrictive assumptions. This motivates a Bayesian model for
uncertainty quantification in differential localisation experiments. We show that our method
reduces false positives and increases power over current methods. Furthermore, it has clearly
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motivated statistical properties and is straightforward to interpret. We developed several
visualisations to help interrogate the data. Application to three case studies shows the benefit
of our approach and we uncover new differential localisations in several high profile experiments.

8.2 Limitations and future work

In this final section, we summarise the limitations of this thesis and suggest some directions for
future research.

8.2.1 Theoretical and empirical properties of mixed mixtures

If we defined a mixed mixture model as a mixture model with parametric components with an
additional parametric term from a family with heavier tails than the other components, we can
ask questions about its theoretical properties and empirical behaviour. In particular, one would
wish to obtain results as in Coretto and Hennig [75] beyond frequentist estimators in Gaussian
mixture models. Finite sample robustness properties in the Bayesian setting for these models
would a valuable contribution and is currently missing from the literature. Extensive empirical
comparisons, especially in the context of likelihood misspecification would also be valuable. We
have not established these results for our models and this is a clear limitation of our work.

8.2.2 Missing values

Our models cannot currently handle missing values. The main motivation for TMT multiplexing
is that it reduced missing values; however, this is only partially true, since in different replicates
one still observes missingness between different batches. Imputation is a general strategy for
handling missing values but the optimal strategy will depend on experimental design [263].
Missing values in the Bayesian framework can be handled in two ways. The first is to introduce
latent indicators of missingness and treat them as values to be inferred [170]. The second is to
restrict to the values of interest for the required computations so that missing data does not
contribute to the likelihood [170]. Either method could be implemented within our model.

8.2.3 Hierarchical models

Throughout this thesis, we have assumed that biological replicates are statistically independent.
Of course, they are independent experiments; however, they share useful information. A
hierarchical model could be developed to share information across replicated experiments. The
challenge here is that the density gradients are not exactly the same and so the integration
might involve some registration or careful assumptions at that level of the hierarchy.
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8.2.4 Sub-niche resolution

Some subcellular niches show sub-clustering behaviour. For example the ER might be split
into lumen or membrane components. One strategy to investigate sub-clustering would be
to take the output of our model and consider each cluster in turn. A mixture model could
then be fitted to each component again in turn and the number of components inferred. If
more than one sub-cluster is observed then that might be evidence for sub-organeller resolution.
However, multiple components could also arise purely as an effect of model mis-specification.
One might wish to compare the marginal likelihood with a scale-skew t-distribution as a strategy
to diagnose potential mis-specification. One could also approach this within the model itself by
building a mixture of mixture models, though there are severe identifiability issues with such
models [292].

8.2.5 Protein-protein interaction and protein complexes

There is visual evidence that interacting proteins or protein complexes exhibit co-behaviour
in spatial proteomics data [324]. Computational strategies could be developed to allow the
probability of two proteins interacting given spatial proteomics data to be computed. The
challenge here is demonstrating that the results are valid and would require extensive external
validation. Some work in this direction is present in the literature [113, 403] but no methods
have been put proposed to deduce protein complexes from LOPIT data.

8.2.6 Computation

For increasingly large datasets our approaches can require excessive computation. Reimplementing
in a low-level language could alleviate this problem, as well as approximate Bayesian methods,
such as variational inference [34], could be employed.

8.2.7 Data integration

None of the models we have presented can integrate datasets of different modalities that provide
complementary information on protein subcellular localisation. However, there is clear evidence
that there is utility in such approaches [44]. One strategy could be to use the multiple dataset
integration framework of Kirk et al. [243], extended to the semi-supervised setting.

8.2.8 Summarisation of raw data

A mass-spectrometry based spatial proteomics dataset actually measures peptide spectrum
matches (PSMs), which are quickly summarised to proteins. However, in summarising, one
might average over two protein isoforms that have different sub-cellular localisation or similarly
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average over different modified version of the protein, each of which with localisations. There
are several ways to tackle this problem. One way would be to use a model based summarisation
approach and propagate the uncertainty to the protein level or qualitatively explore the
behaviour of proteins with uncertainty in their quantitation. Another approach would be to
apply the models at the PSM level - though this could place a strain on computation. This
thesis has not explored issues that arise because of uncertainty in the protein quantitation.
Furthermore, this is a general problem in all of proteomics and warrants substantial attention.
Let yijkl be log PSM quantitation for protein i in sample j for peptide k for PSM l. Then
consider the following linear Bayesian model

yijkl = βprotein
ij + βpeptide

ik + βPSM
ikl + εijkl (8.1)

βprotein
ij ∼ N (0, σProtein

ij ) (8.2)

βpeptide
ik ∼ N (0, σPeptide

ik ) (8.3)

βPSM
ikjl ∼ N (0, σPSM

ikl ) (8.4)

εijkl ∼ T (0, σijkl), (8.5)

(8.6)

where suitable priors, such as folded Normal distributions, are placed on the variances of
the noise terms. One could then use MCMC to sample from this model. The Monte-Carlo
estimator for βprotein

ij quantifies the amount of protein i in sample j. This could then be used for
downstream analysis. However, one could also obtain samples from the posterior distribution
q ∼ p(βprotein

ij |Y ). The downstream analysis could then be performed for all values of this
posterior and we could observe the variation in the final quantities of interest. Though this
would be a computationally intensive process, the results could be illuminating.

8.2.9 Subcellular localisation of post-translational modifications

An under explored area is the effect of post-translational modification on subcellular localisation,
despite the well studied case of phosphorylation. Using a variety of different enrichment
approaches including titanium dioxide metal cation chelates, it is possible to extend spatial
proteomics methods to allow the quantitation of phosphopetides and other antibody enrichments
could be used for other modifications [252]. The goal in this scenario would be to test whether
the profiles were different for the modified peptide and non-modified form. A testing approach
is permissible because the same gradient is used for organelle separation and subsequent
enrichment. A Bayesian semi-parametric two-sample test could be developed to tackle this
question. More precisely, a shared model, where non-modified and modified peptides share
the same functional profile would be compared to an independent model, where non-modified
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and modified peptides have different models. These models would be nested and the standard
Bayesian approach to hypothesis testing could be used [164]. Extension to multiple simultaneous
modifications would also be of interest.

8.2.10 Differential localisation with multiple perturbations

Linear models are frequently used when one is interested in multiple contrasts, that is comparing
multiple perturbations. For example, we might be interested in differential localisation at
three different stages of the cell cycle. Currently, our differential localisation model cannot
handle this scenario and can only perform pairwise comparisons. Now, let us denote zi,j the
localisation of protein i in experiment j. We would be interested in the following quantities of
interest p(zi,1 ≠ zi,2), p(zi,2 ̸= zi,3), p(zi,1 ̸= zi,3). Naively, we could generate a mixture model
over the three experiments; however if there were K subcellular niches this would require K3

parameters. With careful prior choices this would be possible but a new, bespoke approach
might be better starting point.

8.2.11 Differential localisation with temporal perturbations

Time course experiments are performed frequently in systems biology and additive models are
usually employed to handle these situations. Again, our differential localisation model does not
model these scenarios. To formalise the setting, let t1, t2 and t3 be three time points at which
we have interest. For example, times after infection or cellular heat shock. One possibility
would be to assume a Markov structure on the allocations at these times. For example, we
could assume p(zi,t1 |Xt1 , Xt2 , Xt3) = p(zi,t1 |Xt1) and p(zi,t2 |Xt1 , Xt2 , Xt3) = p(zi,t2 |Xt2 , zi,1),
p(zi,t3 |Xt1 , Xt2 , Xt3) = p(zi,t3 |Xt3 , zi,2). Other independence structures might also be possible.

8.2.12 Differential localisation with covariates

The previous two scenarios can be summarised more compactly as differential localisation with
covariates. Let β be some covariate either continuous or discrete, for example space, time,
temperature, life cycle stage and many more. The independence structure of the localisation
with respect to the covariate is the modelling aspect that is challenging in this setting. That
is, what is the independence structure of the following probability p(zi,β(s)|Xβ(S/s), zi,β(S/s)),
where S is some indexing set and S/s indicates the set excluding s.

Future experiments might also combine several functional proteomics techniques into a single
experiment to obtain, for example, subcellular structural information. These and the limitations
we have mentioned are the subject of future work.
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Appendix A

Appendix to chapter 2

A.1 Appendix 1: Derivation of EM algorithm for TAGM model

This appendix give a formal derivation of the EM algorithm used for our model. Computations
are standard but useful and similar technical summaries can be found (for example see [138, 326])
We let H = {µ0, λ0, ν0, S0} denote the parameters of the normal-inverse-Wishart prior. More
precisely:

µk,Σk ∼ N
(

µk|µ0,
Σk

λ0

)
IW (Σk|ν0, S0) . (A.1)

Furthermore, let θk = {µk,Σk}, and let Θ = {κ,M, V } be the parameters of the global T
distribution. We specify the following hierarchical Bayesian model.

π|β ∼ Dir(β),

θk|H ∼ NIW(H),

zi|π ∼ cat(π),

ϵ|u, v ∼ B(u, v)

φi|ϵ ∼ Ber(1− ϵ)

xi|zi = k, θ,Φ,Θ ∼ N (xi|µk,Σk)1(φi=1)T (xi|κ,M, V )1(φi=0)

(A.2)

Since p(φi = 1) = 1− ϵ, we can rewrite the last line of the model (A.2) as the following:

p(xi|zi = k, θ,Φ,Θ) = (1− ϵ)N (xi|µk,Σk) + ϵT (xi|κ,M, V ).

The total joint probability is
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p(θ,Θ, X, Z,Φ) =p(X,Z,Φ|θ, π, ϵ)p(ϵ|u, v)p(θ|H)p(π|β)

=
n∏
i=1

K∏
k=1

(
πk((1− ϵ)N (xi|µk,Σk))1(φi=1)(ϵT (xi|κ,M, V ))1(φi=0)

)1(zi=k)

·
(

K∏
k=1
NIW(H)

)
·Dir(β) · B(u, v).

(A.3)

Before we formally derive an EM algorithm for this model, we derive a few useful quantities.
Let f(x|µ,Σ) denote the density of the multivariate normal with mean vector µ and covariance
matrix Σ evaluated at x and further let g(x|κ,M, V ) denote the density of the multivariate
T-distribution. We compute that

p(φi = 1|zi = k,xi) =p(φi = 1,xi|zi = k)
p(xi|zi = k)

=p(xi|zi = k, φi = 1)P (φi = 1|zi = k)
p(xi|zi = k)

= (1− ϵ)f(xi|µk,Σk)
(1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V ) .

(A.4)

Likewise we see that,

p(φi = 0|zi = k,xi) = ϵf(xi|M,V )
(1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V ) . (A.5)

Thus

p(φi = 1, zi = k|xi)

= p(φi = 1|zi = k,xi)p(zi = k|xi)

= p(φi = 1|zi = k,xi)
p(xi|zi = k)p(zi = k)

p(xi)

= p(φi = 1|zi = k,xi)
(p(xi|zi = k, φi = 0)p(φi = 0) + p(xi|zi = k, φi = 1)p(φi = 1)) p(zi = k)

p(xi)
(A.6)

and then substituting values leads to
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(1− ϵ)f(xi|µk,Σk)
(1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V )

πk ((1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V ))∑K
k=1 πk ((1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V ))

=

πk(1− ϵ)f(xi|µk,Σk)∑K
k=1 πk ((1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V ))

.

(A.7)

We also see that

p(φi = 0, zi = k|xi) = πkϵg(xi|κ,M, V )∑K
k=1 πk ((1− ϵ)f(xi|µk,Σk) + ϵg(xi|κ,M, V ))

. (A.8)

We can now formally derive the EM algorithm for this model. First, we compute the
expected value of the log-posterior function with respect to the conditional distribution of the
latent variable given the observations (under the current estimate of the parameters). For
notational convenience we suppress the dependence on the parameters.

Q(θ|θ̂)

=EZ,Φ|X,θ̂[log p(θ;X,Z,Φ)]

=
n∑
i=1

EZ,Φ|X,θ̂[log p(θ; xi, zi, φi)]

=
n∑
i=1

K∑
k=1

1∑
r=0

p(zi = k, φi = r|xi) log(L(θk|xi, zi = k, φi)) + log(p(π) +
K∑
k=1

log(p(θk))

=
n∑
i=1

K∑
k=1

1∑
r=0

p(zi = k, φi = r|xi) log(p(xi, zi = k, φi|θk)) + log(p(π) +
K∑
k=1

log(p(θk))

=Q′(θ|θ̂) +D(π,θ)
(A.9)

We note that the equation splits up into a likelihood term Q′ plus the log prior D. The
coefficient of the first term in the equation above has already been derived and the other term
is given by:

p(xi, zi = k, φi)|θk)

= p(xi, φi|θk, zi = k)p(zi = k|θk)

= πkp(xi, φi|θk, zi = k)

= πk (p(xi|θk, zi = k, φi)p(φi|θk, zi = k))

= πk
(
((1− ϵ)f(xi|µk,Σk))φi(ϵg(xi|κ,M, V ))1−φi

)
,

(A.10)
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where we used that φi was a binary random variable. Thus we see that

Q′(θ|θ̂)

=
n∑
i=1

K∑
k=1

∑
Φ
p(zi = k, φi|xi) log(p(xi, zi = k, φi|θk))

=
n∑
i=1

K∑
k=1

∑
Φ
p(zi = k, φi|xi) log(πk((1− ϵ)f(xi|µk,Σk))φi(ϵg(xi|κ,M, V ))1−φi)

=
n∑
i=1

K∑
k=1

∑
Φ
p(zi = k, φi|xi) (log(πk) + φi log((1− ϵ)f(xi|µk,Σk)) + (1− φi) log(ϵg(xi|κ,M, V )))

=(A) + (B) + (C) + (D)
(A.11)

where

(A) =
n∑
i=1

K∑
k=1

p(zi = k|xi) log(πk)

(B) =
n∑
i=1

K∑
k=1

∑
Φ
p(zi = k, φi|xi)(φi log(1− ϵ) + (1− φi) log(ϵ))

(C) =
n∑
i=1

K∑
k=1

∑
Φ
p(zi = k, φi|xi)φi log(f(xi|µk,Σk))

(D) =
n∑
i=1

K∑
k=1

∑
Φ
p(zi = k, φi|xi)(1− φi) log(g(xi|κ,M, V )).

(A.12)

Then again using that φi is binary we can make the following simplifications.

(B) =
n∑
i=1

K∑
k=1

p(zi = k, φi = 1|xi) log(1− ϵ) + p(zi = k, φi = 0|xi) log(ϵ)

(C) =
n∑
i=1

K∑
k=1

p(zi = k, φi = 1|xi) log(f(xi|µk,Σk))

(D) =
n∑
i=1

K∑
k=1

p(zi = k, φi = 0|xi) log(g(xi|κ,M, V )).

(A.13)

Terms can now be maximised by considering terms independently because of linearity. Note
that the equations 2.54 and 2.55 are computed with respect to the current estimated values of
the parameters. For convenience set the following notation
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aik =p(zi = k, φi = 1|xi)

bik =p(zi = k, φi = 0|xi)

wik =p(zi = k|xi) = aik + bik

ak =
n∑
i=1

aik, a =
K∑
k=1

ak

bk =
n∑
i=1

bik, b =
K∑
k=1

bk

rk =
n∑
i=1

wik

(A.14)

The maximisation step requires finding argmaxθQ(θ|θ̂), this can be found for parameter
separately for each linear term. To find ϵ̂, we need only consider computing the maximisation
step from equation (B). First set ϵ1 = 1− ϵ and ϵ2 = ϵ and add the log prior term to equation
(B). Thus, the required Lagrangian is

Lϵ = a log(ϵ1) + b log(ϵ2) + (u− 1) log(ϵ2) + (v − 1) log((ϵ1) + λ(ϵ1 + ϵ2 − 1) + constant.

(A.15)

Solving this system leads to

ϵ = u+ b− 1
(a+ b) + (u+ v)− 2 . (A.16)

To find the MAP estimate for π, we examine equation (A) and add the log prior. Furthermore
we must maximise π under the constraint that

∑K
k=1 πk = 1. The Lagrangian for this constrained

optimisation problem is the following,

L =
n∑
i=1

K∑
k=1

wik log(πk)− log(B(β)) +
K∑
k=1

(βk − 1) log(πk) + λ

(
K∑
k=1

πk − 1
)
. (A.17)

The fixed point of this Lagrangian solves the required constrained optimisation problem
and B(β) denotes the Beta function with parameter β.
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∂L
∂πk

= rk
πk

+ βk − 1
πk

+ λ = 0

∂L
∂λ

=
K∑
k=1

πk − 1 = 0
(A.18)

Solving this pair of equations yields

πk = rk + βk − 1
N +

∑
βk −K

. (A.19)

To find the posterior mode of the remaining parameters requires some work. First we recall
that the normal inverse-Wishart prior is proportional to:

K∏
k=1
|Σk|

ν0+D+2
2 exp

(
−1

2 tr(Σ
−1
k S−1

0 )
)

exp
(
−λ0

2 tr(Σ
−1
k (µk − µ0)T (µk − µ0))

)
. (A.20)

The required equation we are interested in is (C).

n∑
i=1

K∑
k=1

aik log(f(xi|µk,Σk))

=
K∑
k=1

{
−

n∑
i=1

aik
D log(2π)

2 − 1
2

n∑
k=1

aik log |Σk| −
1
2

n∑
i=1

aiktr
(
Σ−1
k (xi − µk)T (xi − µk)

)}

=
K∑
k=1

{
−ak

D log(2π)
2 − 1

2ak log |Σk| −
1
2 tr

(
Σ−1
k

n∑
i=1

aik(xi − µk)T (xi − µk)
)}

.

(A.21)

Now to derive the M-step objective we remove the constant terms and add on the log prior.
This leads to

K∑
k=1

{
ν0 +D + 2

2 log |Σk| −
1
2 tr

(
Σ−1
k S−1

0

)
− λ0

2 tr
(
Σ−1
k (µk − µ0)T (µk − µ0)

)}

+
K∑
k=1

{
−1

2ak log |Σk| −
1
2 tr

(
Σ−1
k

n∑
i=1

aik(xi − µk)T (xi − µk)
)}

.

(A.22)

This can be rewritten as
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K∑
k=1

{
ν0 +D + 2 + ak

2 log |Σk| −
1
2 tr

(
Σ−1
k S−1

0

)
− λ0

2 tr
(
Σ−1
k (µk − µ0)T (µk − µ0)

)}

+
K∑
k=1

{
−1

2 tr
(

Σ−1
k

n∑
i=1

aik(xi − µk)T (xi − µk)
)}

.

(A.23)

Now define x̄k = (
∑n
i=i aikxi)/ak and note the following algebraic rearrangements.

n∑
i=1
aik(xi − µk)T (xi − µk)

=
n∑
i=1

aikxTi xi − µT
k xi − xTi µk + µT

k µk

=
n∑
i=1

aikxTi xi − µT
k

n∑
i=1

aikxi −
(

n∑
i=1

aikxTi

)
µk + akµ

T
k µk

=
n∑
i=1

aikxTi xi − akµT
k x̄k − akx̄Tk µk + akµ

T
k µk

=
n∑
i=1

aikxTi xi − akx̄Tk x̄k + ak(x̄k − µk)T (x̄k − µk)

=
n∑
i=1

aik(xi − x̄k)T (xi − x̄k) + ak(x̄k − µk)T (x̄k − µk)

(A.24)

This allows us to rewrite equation A.23 as

K∑
k=1

{
ν0 +D + 2 + ak

2 log |Σk| −
1
2 tr

(
Σ−1
k

(
S−1

0 +
n∑
i=1

aik(xi − x̄k)T (xi − x̄k)
))}

+
K∑
k=1

{
−1

2 tr
(
Σ−1
k

(
λ0(µk − µ0)T (µk − µ0)

)
+ ak(x̄k − µk)T (x̄k − µk)

)} (A.25)

This can be written as:

K∑
k=1

{
νk +D + 2

2 log |Σk| −
1
2 tr

(
Σ−1
k S−1

k

)
− 1

2 tr
(
Σ−1
k

(
λk(µk −mk)T (µk −mk)

))}
(A.26)

where,
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λk =λ0 + ak

νk =ν0 + ak

mk =akx̄k + λ0µ0
λk

S−1
k =S−1

0 + λ0ak
λk

(x̄k − µ0)T (x̄k − µ0) +
n∑
i=1

aik(xi − x̄k)T (xi − x̄k)

(A.27)

Thus the parameters of the posterior mode are:

µ̂k =mk

Σ̂k = 1
νk +D + 2S

−1
k

(A.28)

To summarise the EM algorithm, we iterate between the two steps:

E-Step: Given the current parameters compute the values given by equations (A.14), with
formulas provided in equations (2.54) and (2.55).

M-Step: Compute
ϵ = u+ b− 1

(a+ b) + (u+ v)− 2 ,

and
πk = rk + βk − 1

N +
∑
βk −K

,

as well as
x̄k = 1

ak

(
n∑
i=i

aikxi

)

Compute the MAP estimates given by equations (A.28). These estimates are then used
in the following iteration of the E-step. Iterate until |Q(θ|θt) − Q(θ|θt−1)| < δ for some
pre-specified δ > 0.

A.2 Appendix 2: Derivation of collapsed Gibbs sampler for
TAGM model

To derive the Gibbs sampler, we write down all the conditional probabilities. Then, exploiting
conjugacy, we can marginalise parameters in the model. Recall the total joint probability is the
following:
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p(θ,Θ, X, Z,Φ) =p(X,Z,Φ|θ,π, ϵ)p(ϵ|u, v)p(θ|H)p(π|β)

=
n∏
i=1

K∏
k=1

(
πk((1− ϵ)N (xi|µk,Σk))1(φi=1)(ϵT (xi|κ,M, V ))1(φi=0)

)1(zi=k)

·
(

K∏
k=1
NIW(H)

)
·Dir(β) · B(u, v).

(A.29)

Suppose we know the hidden latent component allocations zi and outlier allocations φi.
Then we could sample from the a required normal distribution. The conditional probability of
the parameters given the allocations is given by:

p(θk|X,Z,Φ, θ−k, β, u, v,H) ∝ p0(θk)
n∏
i=1

N(xi|µk,Σk)1(φi=1). (A.30)

The prior is conjugate and so the posterior belongs to the same parametric family as the
prior, a NIW distribution, and so the parameters can be updated as follows:

mk =nkx̄k + λ0µ0
λk

λk =λ0 + nk

νk =ν0 + nk

Sk =S0 +
∑

i:zi=k,φi=1
(xi − x̄)T (xi − x̄) + λ0nk

λk
(x̄− µ0)T (x̄− µ0),

(A.31)

where nk = |{xi|zi = k, φi = 1}|. Now we write down the conditional of the component
allocations

p(zi = k|X, z−i,Φ, θ, β, u, v,H) ∝ p0(zi = k|z−i, β)p(xi|x−i, z−i, zi = k,Φ, H). (A.32)

The first term in this equation is

p0(zi = k|z−i, β) = p(zi = k, z−i|β)
p(z−i|β) = p(Z|β)

p(z−i|β) . (A.33)

To calculate the numerator we proceed by marginalising over π as follows
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p(Z|β) =
∫
p(z|π)p(π|β)dπ = Γ(β)

Γ(n+ β)

K∏
k=1

Γ(nk + βk)
Γ(βk)

. (A.34)

Hence, we arrive at the following probability:

p0(zi = k|z−i, β) =
nk\i + βk

n+
∑
βk − 1 .

(A.35)

The conditional for the second term of A.32 is more tricky. First note the following
conditional distributions

xi|zi = k,Xk\i, φi = 1,Φ, z−i ∼ N (xi|θk)

xi|zi = k,Xk\i, φi = 0,Φ, z−i ∼ T (xi|κ,M, V ),

xi|zi = k,Xk\i, φi,Φ, z−i ∼ N(xi|θk)1(φi=1)T (xi|, κ,M, V )1(φi=0),

(A.36)

where we denote Xk\i as the observations associated with class k, besides xi. Now, we first
note that:

p(xi|zi = k,Xk\i, φi,Φ, H, z−i) = p(xi|Xk\i, φi,Φ, H) =
p(xi, Xk\i|φi,Φ, H)
p(Xk\i|φi,Φ, H) . (A.37)

Thus, we find an equation for the numerator, using the fact that terms associated with
φi = 0 do not depend on k and thus can be absorbed into the normalising constant.

p(Xk|φi,Φ, H) ∝
∏

i:φi=1

∫
p(xi|zi = k,Φ, H, θk)p(θk|H)dθk. (A.38)

This is the marginal likelihood of the data. Thus the ratio in A.37 is the posterior predictive
which is given by the non-centred T-distribution with formula given by:

T
(
vk − d+ 1,mk,

(1 + λk)Sk
λk(vk − d+ 1)

)
.

Thus, we can compute the following:
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p(zi = k|X, z−i,Φ, θ, β, u, v,H) ∝ p0(zi = k|z−i, β)p(xi|x−i, z−i,Φ, zi = k,H)

=
nk\i + βk

n+
∑
βk − 1T

(
xi|vk − d+ 1,mk,

(1 + λk)Sk
λk(vk − d+ 1)

)
.

(A.39)

It remains to compute the conditional for the φi. By first recalling that φi is binary we see
that

p(φi|X,Z, θ, β, u, v,H) ∝ p0(φi)
n∏
i=1

N(xi|θzi)1(φi=1)T (xi|κ,M, V )1(φi=0) (A.40)

can be written as

p(φi = 1|X,Z, θ, φ−i, β, u, v,H) ∝ p0(φi = 1|φ−i, u, v)p(xi|x−i, φi = 1, Z, θ,Φ, β, u, v,H),

p(φi = 0|X,Z, θ, φ−i, β, u, v,H) ∝ p0(φi = 0|φ−i, u, v)p(xi|x−i, φi = 0, Z, θ,Φ, β, u, v,H).
(A.41)

First we need to compute a formula for p0(φi|φ−i, u, v). First we see that

p0(φi|φ−i, u, v) = p(Φ|u, v)
p(φ−i|u, v) . (A.42)

The numerator can be computed by marginalising over ϵ:

p(Φ|u, v) =
∫
p(Φ|ϵ)p(ϵ|u, v)dϵ. (A.43)

We denote
∑
1(φi = 1) = τ1 and

∑
1(φi = 0) = τ0 = 1− τ1. Then it is easy to see that

p(Φ|u, v) =
∫
p(Φ|ϵ)p(ϵ|u, v)dϵ

= 1
B(u, v)

∫
(1− ϵ)τ1+v−1ϵτ0+u−1dϵ

= B(τ0 + u, τ1 + v)
B(u, v) .

(A.44)

Hence,
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p(φi = 1|φ−i, u, v) = B(τ0 + u, τ1 + v)
B(u, v) · B(u, v)

B(τ0 + u, τ1 + v − 1)

= τ1 + v − 1
n+ u+ v − 1 ,

(A.45)

where n = τ1 + τ2. In general,

p(φi = s|φ−i, u, v) =
τs\i + vsu1−s

n+ u+ v − 1 .
(A.46)

Now we return to computing p(xi|x−i, Z, θ, φi = 1,Φ, β, u, v,H). First we see that

p(xi|x−i, Z, θ, φi = 1,Φ, β, u, v,H) = p(X|Z, θ, φi = 1,Φ, β, u, v,H)
p(x−i|Z, θ, φi = 1,Φ, β, u, v,H) . (A.47)

Thus if we integrate over the parameters, we would have a ratio of marginal likelihoods
giving the posterior predictive which is a non-centred T-distribution:

p(xi|x−i, Z, θ, φi = 1,Φ, β, u, v,H) = T
(
vk − d+ 1,mk,

(1 + λk)Sk
λk(vk − d+ 1)

)
. (A.48)

In the other case that φ = 0, we have that

p(xi|x−i, Z, θ, φi = 0,Φ, β, u, v,H) = T (xi|κ,M, V ). (A.49)

Thus we can compute:
p(φi|X,Z, θ, φ−i, β, u, v,H) (A.50)

and sample from the required distribution. Thus, we can summarise the collapsed Gibbs
sampler as follows:

1. Update the priors with the labelled data

2. For the unlabelled observations, in turn, compute the probability of assigning to each
component

3. Sample a label according to this probability

4. Compute the probability of belonging to this class or the outlier component

5. Sample an indicator to a class specific component or the outlier component
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6. If we assign to the class specific component update the class specific posterior distribution
with the statistics of this observation

7. Update other posteriors as appropriate.

8. Once all unlabelled observations have a been assigned, consider the observations sequentially,
removing the statistics from the posteriors and then performing steps 2-7. We repeat this
process for all unlabelled observations.

9. repeat 7-8 until convergence of the Markov-chain.

The computational bottleneck in the algorithm is computing the posterior updates for the
parameters

mk =nkx̄k + λ0µ0
λk

λk =λ0 + nk

νk =ν0 + nk

Sk =S0 +
∑

i:zi=k,φi=1
(xi − x̄)T (xi − x̄) + λ0nk

λk
(x̄− µ0)T (x̄− µ0),

(A.51)

We first note that

Sk =S0 +
∑

i:zi=k,φi=1
xTi xi + λ0µT

0 µ0 − λkµT
k µk (A.52)

Let us denote T =
∑
i:zi=k,φi=1 xTi xi. Thus we can derive a set of iterative updates to speed

up computation when adding/removing statistics from clusters. More precisely, indicating
updated posterior parameters by a prime, if we remove statistics of observation i from cluster
k, we see that

m′
k =λkmk − xi

λk − 1
λ′
k =λk − 1

ν ′
k =νk − 1

T ′ =T − xTi xi
S′
k =S0 + T ′ + λ0µT

0 µ0 − λkm′T
k m

′
k.

(A.53)

Likewise if we add the statistics of observation i to cluster k, we see that
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m′
k =λkmk + xi

λk + 1
λ′
k =λk + 1

ν ′
k =νk + 1

T ′ =T + xTi xi
S′
k =S0 + T ′ + λ0µT

0 µ0 − λkm′T
k m

′
k.

(A.54)
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Fig. A.1 Plot of the log-posterior at each iteration of the EM algorithm to demonstrate
monotonicity and convergence
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A.4 Appendix 4: Trace plots for assessing MCMC convergence
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Fig. A.2 Trace plots of the number of proteins allocated to the known components in each of 6
parallel MCMC runs. Chain 4 is discarded because of lack of convergence. 600 samples are
retained from remaining chains and pooled.
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A.5 Appendix 5: F1 t-tests

SVM KNN MAP
KNN 2.7E-03
MAP 3.3E-02 3.4E-01

MCMC 3.4E-01 3.3E-02 2.3E-01
Table A.1 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Drosophila dataset

SVM KNN MAP
KNN 1.2E-02
MAP 2.7E-01 1.5E-01

MCMC 4.9E-01 1.9E-03 1.1E-01
Table A.2 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Chicken DT40 dataset

SVM KNN MAP
KNN 1.0E+00
MAP 1.0E+00 1.0E+00

MCMC 3.3E-01 6.0E-02 1.1E-05
Table A.3 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the mouse dataset

SVM KNN MAP
KNN 1.4E-35
MAP 3.3E-06 6.7E-21

MCMC 8.0E-59 3.2E-91 2.4E-70
Table A.4 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the HeLa dataset
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SVM KNN MAP
KNN 1.3E-02
MAP 4.3E-04 3.3E-09

MCMC 5.8E-01 3.5E-03 3.1E-03
Table A.5 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the U2-OS dataset

SVM KNN MAP
KNN 2.2E-08
MAP 1.0E-34 6.8E-14

MCMC 7.4E-05 5.3E-02 1.0E-20
Table A.6 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the HeLa wild (Hirst et al.) dataset

SVM KNN MAP
KNN 5.3E-02
MAP 1.7E-23 7.9E-27

MCMC 9.1E-02 5.8E-04 1.8E-19
Table A.7 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the HeLa KO1 (Hirst et al.) dataset

SVM KNN MAP
KNN 1.3E-01
MAP 1.1E-55 1.1E-55

MCMC 1.0E-18 6.3E-22 2.0E-26
Table A.8 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the HeLa KO2 (Hirst et al.) dataset

SVM KNN MAP
KNN 9.6E-02
MAP 4.1E-07 1.1E-09

MCMC 2.8E-27 1.0E-28 6.3E-10
Table A.9 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 24hpi dataset
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SVM KNN MAP
KNN 6.6E-07
MAP 1.3E-10 2.0E-01

MCMC 1.6E-05 2.0E-01 6.2E-03
Table A.10 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 48hpi dataset

SVM KNN MAP
KNN 3.9E-03
MAP 9.5E-01 8.6E-03

MCMC 6.4E-02 3.0E-01 8.6E-02
Table A.11 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 72hpi dataset

SVM KNN MAP
KNN 8.6E-03
MAP 1.1E-02 8.6E-01

MCMC 3.7E-06 1.6E-02 3.3E-02
Table A.12 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 96hpi dataset

SVM KNN MAP
KNN 1.9E-23
MAP 1.4E-02 2.3E-34

MCMC 3.8E-07 1.6E-81 2.0E-02
Table A.13 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 120hpi dataset

SVM KNN MAP
KNN 4.6E-01
MAP 2.6E-05 1.7E-04

MCMC 1.7E-04 1.3E-03 5.5E-01
Table A.14 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 24hpi dataset
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SVM KNN MAP
KNN 1.0E-02
MAP 4.6E-01 1.5E-03

MCMC 1.2E-02 7.3E-01 1.5E-03
Table A.15 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 48hpi dataset

SVM KNN MAP
KNN 5.5E-02
MAP 9.5E-06 3.4E-02

MCMC 1.1E-01 6.2E-01 6.4E-03
Table A.16 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 72hpi dataset

SVM KNN MAP
KNN 2.8E-01
MAP 2.6E-09 7.2E-08

MCMC 4.2E-10 5.6E-09 5.7E-01
Table A.17 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 96hpi dataset

SVM KNN MAP
KNN 2.3E-04
MAP 7.1E-04 3.8E-10

MCMC 1.4E-01 5.7E-02 6.0E-05
Table A.18 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 120hpi dataset

SVM KNN MAP
KNN 6.7E-06
MAP 6.3E-05 4.4E-01

MCMC 4.4E-01 6.7E-06 8.3E-05
Table A.19 Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the E14TG2a dataset
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SVM KNN MAP
KNN 5.9E-13
MAP 1.1E-04 9.6E-124

MCMC 2.2E-23 3.3E-58 5.9E-171
Table A.20 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Drosphila dataset

SVM KNN MAP
KNN 3.2E-08
MAP 1.7E-26 1.3E-128

MCMC 4.2E-13 8.8E-37 7.0E-135
Table A.21 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Chicken DT40 dataset

SVM KNN MAP
KNN 5.5E-14
MAP 3.0E-25 6.3E-128

MCMC 7.4E-26 1.7E-129 1.6E-14
Table A.22 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the mouse dataset

SVM KNN MAP
KNN 1.2E-02
MAP 9.4E-07 7.4E-86

MCMC 5.5E-08 2.7E-89 2.4E-12
Table A.23 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the HeLa dataset
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SVM KNN MAP
KNN 6.8E-02
MAP 7.4E-17 1.1E-73

MCMC 1.4E-20 6.7E-81 8.3E-41
Table A.24 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the U2-OS dataset

SVM KNN MAP
KNN 2.3E-92
MAP 9.0E-13 2.4E-83

MCMC 6.6E-19 3.0E-81 1.1E-01
Table A.25 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the HeLa wild (Hirst et al.) dataset

SVM KNN MAP
KNN 5.2E-97
MAP 1.4E-02 1.2E-90

MCMC 2.3E-09 7.0E-95 2.2E-02
Table A.26 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the HeLa KO1 (Hirst et al.) dataset

SVM KNN MAP
KNN 8.9E-93
MAP 3.1E-01 8.1E-91

MCMC 9.0E-06 1.5E-83 8.9E-05
Table A.27 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the HeLa KO2 (Hirst et al.) dataset

SVM KNN MAP
KNN 6.1E-13
MAP 1.4E-18 4.4E-81

MCMC 3.2E-18 7.2E-77 5.9E-03
Table A.28 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 24hpi dataset
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SVM KNN MAP
KNN 6.1E-18
MAP 3.6E-24 2.2E-57

MCMC 1.4E-24 3.6E-61 3.6E-04
Table A.29 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 48hpi dataset

SVM KNN MAP
KNN 1.2E-15
MAP 4.5E-23 2.5E-89

MCMC 4.2E-23 5.1E-91 4.4E-01
Table A.30 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 72hpi dataset

SVM KNN MAP
KNN 1.8E-13
MAP 1.4E-20 3.6E-126

MCMC 5.0E-20 1.5E-109 5.3E-07
Table A.31 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 96hpi dataset

SVM KNN MAP
KNN 6.7E-14
MAP 1.0E-19 2.6E-45

MCMC 8.0E-20 2.4E-45 2.5E-02
Table A.32 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 120hpi dataset

SVM KNN MAP
KNN 6.0E-22
MAP 2.8E-27 6.4E-53

MCMC 1.4E-27 1.5E-56 3.0E-03
Table A.33 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 24hpi dataset
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SVM KNN MAP
KNN 1.9E-26
MAP 1.3E-33 2.7E-84

MCMC 1.3E-33 2.7E-84 6.0E-01
Table A.34 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 48hpi dataset

SVM KNN MAP
KNN 6.3E-20
MAP 1.9E-25 2.7E-57

MCMC 1.2E-25 3.4E-58 1.5E-02
Table A.35 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 72hpi dataset

SVM KNN MAP
KNN 1.7E-25
MAP 9.3E-32 1.9E-56

MCMC 9.3E-32 1.2E-54 7.1E-01
Table A.36 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 96hpi dataset

SVM KNN MAP
KNN 6.5E-25
MAP 5.3E-32 1.1E-71

MCMC 7.1E-32 8.4E-71 5.7E-02
Table A.37 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 120hpi dataset

SVM KNN MAP
KNN 4.7E-04
MAP 4.7E-21 1.5E-103

MCMC 3.3E-12 1.8E-57 1.3E-137
Table A.38 Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the E14TG2a dataset
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Fig. A.3 Gene Ontology over representation analysis on outlier proteins - that is proteins
allocated with less than probability 0.95. We analyse the enrichment of terms in the cellular
compartment, biological process, and molecular function ontologies. We display the top 10
significant results in the dotplots.
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Appendix to chapter 6

B.1 Appendix 1: Matrix algorithms

We state here the require algorithm to invert the covariance matrix C = σ2InD + Jn ⊗A for a
Toeplitz matrix A. The algorithms are a minor modification of the algorithms found in [494] to
handle the tensor product.

Algorithm 1 Tensor extended Trench algorithm
1: procedure Trench(C = σ2InD + Jn ⊗A) ◃ C−1 and log detC, for Toeplitz A
2: Q← ID + σ−2nA
3: q ← QT1,:
4: Input q to algorithm 2, returning v ∈ RD and l ∈ RD
5: Q̄(1, 1 : D)← v(D : 1)
6: Q̄(1 : D, 1)← v(D : 1)
7: Q̄(D, 1 : D)← v(1 : D)
8: Q̄(1 : D,D)← v(1 : D)
9: for i = 2 : ⌊(D − 1)/2⌋+ 1 do

10: for j = i : N − i+ 1 do
11: Q̄(i, j)← Q̄(i− 1, j − 1) + v(D+1−j)v(D+1−i)−v(i−1)v(j−1)

v(D)
12: Q̄(j, i)← Q̄(i, j)
13: Q̄(N − i+ 1, N − j + 1)← Q̄(i, j)
14: Q̄(N − j + 1, N − i+ 1)← Q̄(i, j)
15: end for
16: end for
17: Z ← Q̄
18: C−1 = σ−2InD − 1

nσ2J
T
n ⊗ (I − Z)

19: log detC ← nD log(σ2) + l
20: end procedure



296 Appendix to chapter 6

Algorithm 2 Vector-Inverse and log-determinant algorithm
1: procedure Vector-Inverse(q) ◃ v and l as required by algorithm 1
2: ξ ← q(2:D)

q(1)
3: Input D − 1 and ξ to algorithm 3, returning z ∈ RD−1 and l ∈ RD
4: l← l +D log q(1)
5: v(D)← 1

(1+ξT z)q(1)
6: v(1 : D − 1)← v(D)z(D − 1 : 1)
7: end procedure

Algorithm 3 extended Durbin’s algorithm
1: procedure Durbin(m, ξ) ◃ z and l as required by algorithm 1
2: z(1)← −ξ(1)
3: β ← α← 1
4: l← 0
5: for i = 1 : m− 1 do
6: β ← (1− α2)β
7: l = l + log β
8: α← ξ(i+1)+ξ(i:1)T z(1:i)

β
9: z(1 : i)← z(1 : i) + αz(i : 1)

10: z(i+ 1)← α
11: end for
12: β ← (1− α2)β
13: l← l + log β
14: end procedure
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B.2 Appendix 2: Derivative of the marginal likelihood

The derivatives of the marginal likelihood given in the main text are given by [375]

∂

∂θj
log {p(Yk|τ,θk)} = 1

2Yk(τ)T Ĉ−1
k

(
∂Ĉk
∂θj

)
Ĉ−1
k Yk(τ)− 1

2 tr
{
Ĉ−1
k

(
∂Ĉk
∂θj

)}
. (B.1)

The partial derivatives of the covariance functions can obtained in a straightforward manner
and once evaluated at observations can be structured into blocks as was performed in the main
text. Letting Âk be the diagonal blocks of the covariance matrix. The corresponding diagonal
blocks of the derivative are given in equation B.2. Blocks not on the diagonal are similar and
do not include the derivative with respect to θ3.[

∂Âk
∂θ1

]
rs

=a exp
{(
−(xr − xs)2

eθ1

)}(
(xr − xs)2

eθ1

)
[
∂Âk
∂θ2

]
rs

=2e2θ2 exp
(
−(xr − xs)2

l

)
[
∂Âk
∂θ3

]
rs

=2e2θ3δrs.

(B.2)

B.3 Appendix 3: Tensor decompositions for derivatives of the
marginal likelihood

In this appendix we derive formulae for the derivative of the marginal likelihood exploiting the
block structure of our matrices. We first make some preliminary manipulations. We set the
following notation ∂θj

= ∂
∂θj

. First we note that

Ĉ−1
k (∂θj

Ĉk)Ĉ−1
k = −∂θj

Ĉ−1
k . (B.3)

We recall the following
Ĉ−1
k = σ−2InD − σ−4Jn ⊗ (ZA), (B.4)

and hence the following is true

∂θj
Ĉ−1
k = ∂θj

(σ−2InD)− ∂θj

{
σ−4Jn ⊗ (ZA)

}
. (B.5)

We then note that ∂θj
Jn = 0 and so the following algebraic manipulations hold

∂θj
{Jn ⊗ (ZA)} =∂θj

Jn ⊗ (ZA) + Jn ⊗ ∂θj
(ZA)

= Jn ⊗ (∂θj
Z ·A+ Z · ∂θj

A).
(B.6)
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We recall that
Z = (ID + σ−2nA)−1 = Q−1 (B.7)

and so
∂θj
Z = −Q−1(∂θj

Q)Q−1. (B.8)

It is obvious that
∂θj
Q = ∂θj

(σ−2nA), (B.9)

and so
∂θj
Z = −Z∂θj

(σ−2nA)Z. (B.10)

Whence it follows that

∂θj
Ĉ−1
k = ∂θj

(σ−2InD)− ∂θj
(σ−4)Jn ⊗ (ZA)− σ−4

{
−Z∂θj

(σ−2nA)ZA+ Z∂θj
A
}
. (B.11)

Recall that

∂θ1Ars = ArsSrs

∂θ2Ars = 2Ars
(B.12)

where Srs = (tr−ts)2

l . We now derive formulae for the derivatives of the marginal likelihood in
which we denote by A⊙B the Hadamard (element-wise) product of matrices A and B.

Proposition 1. The derivative of the marginal likelihood in equation B.1 with respect to θ1 is
given by

∂θ1 log {p(X|τ,θ)} = 1
2X(τ)Tσ−4Jn ⊗ (ZASZ)X(τ)− 1

2 tr
(
Ĉ−1
k ∂θ1Ĉk

)
, (B.13)

where
tr
(
Ĉ−1
k ∂θ1Ĉk

)
= σ−2n

∑
i

(AS)i,i − σ
−2n

∑
i,j

{(ID − Z)⊙ (AS)}ij . (B.14)

Proof. We note the following equalities, which follow from our preliminary manipulations

∂θ1Ĉ
−1
k = σ−4(−Z(σ−2n∂θ1A)ZA+ Z∂θ1A)

= −σ−4Jn ⊗
{

(Z∂θ1A)(−σ−2nZA+ ID)
}

= −σ−4Jn ⊗ {Z(∂θ1A)Z}

= −σ−4Jn ⊗ (ZASZ),

(B.15)
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where the third line follows from the second because

Q = ID + σ−2nA

=⇒ Q− σ−2nA = ID

=⇒ Q−1Q− σ−2nQ−1A = Q−1

=⇒ ID − σ−2nQ−1A = Q−1 (B.16)

For the trace term, recall that the trace of a product of two matrices is the sum of the
Hadamard product of those two matrices. That is

tr
(
Ĉ−1
k ∂θj

Ĉk
)

=
∑
i,j

(
Ĉ−1
k ⊙ ∂θj

Ĉk
)
i,j
. (B.17)

Applying the mixed product property, we see that the following equalities hold

Ĉ−1
k ⊙ ∂θ1Ĉk =

{
σ−2InD − σ−4Jn ⊗ (ZA)

}
⊙ {Jn ⊗ (AS)}

= σ−2InD ⊙ {Jn ⊗ (AS)} − σ−4 {Jn ⊗ (ZA)} ⊙ {Jn ⊗ (AS)}

= σ−2InDdiag(AS,AS, . . . , AS)− σ−4 [Jn ⊗ {(ZA)⊙ (AS)}] .

(B.18)

Hence,
tr
(
Ĉ−1
k ∂θ1Ĉk

)
= σ−2n

∑
i

(AS)i,i − σ
−4n2∑

i,j

{(ZA)⊙ (AS)}ij . (B.19)

Thus the derivative of the log marginal likelihood is

∂θ1 log {p(X|τ,θ)} = 1
2X(τ)Tσ−4Jn ⊗ (ZASZ)X(τ)− 1

2 tr
(
Ĉ−1
k ∂θ1Ĉk

)
(B.20)

Then we can substitute ZA = (I − Z)σ2

n to obtain the required result.

Proposition 2. The derivative of the marginal likelihood in equation B.1 with respect to θ2 is
given by

∂θ2 log {p(X|τ,θ)} = 1
2X(τ)Tσ−4Jn ⊗ (2ZAZ)X(τ)− 1

2 tr
(
Ĉ−1
k ∂θ2Ĉk

)
(B.21)

where
tr
(
Ĉ−1
k ∂θ2Ĉk

)
= 2σ−2n

∑
i

(A)i,i − σ
−2n

∑
i,j

{(I − Z)⊙ (2A)}ij . (B.22)
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Proof. As in the previous proposition we observe:

∂θ2Ĉ
−1
k = σ−4(−Z(σ−2n∂θ1A)ZA+ Z∂θ2A)

= −σ−4Jn ⊗
{

(Z∂θ2A)(−σ−2nZA+ I)
}

= −σ−4Jn ⊗ {Z(∂θ2A)Z}

= −σ−4Jn ⊗ (2ZAZ).

(B.23)

For the trace term, as for θ1 we proceed as follows

Ĉ−1
k ⊙ ∂θ2Ĉk =

{
σ−2InD − σ−4Jn ⊗ (ZA)

}
⊙ {Jn ⊗ (2A)}

= σ−2InD ⊙ {Jn ⊗ (2A)} − σ−4 {Jn ⊗ (ZA)} ⊙ {Jn ⊗ (2A)}

= 2σ−2InDdiag(A,A, . . . , A)− σ−4 [Jn ⊗ {(ZA)⊙ (2A)}] .

(B.24)

Hence,
tr
(
Ĉ−1
k ∂θ2Ĉk

)
= 2σ−2n

∑
i

(A)i,i − σ
−4n2∑

i,j

{(ZA)⊙ (2A)}ij . (B.25)

Thus the derivative of the log marginal likelihood is

∂θ2 log {p(X|τ,θ)} = 1
2X(τ)Tσ−4Jn ⊗ (2ZAZ)X(τ)− 1

2 tr
(
Ĉ−1
k ∂θ2Ĉk

)
(B.26)

Then we can substitute ZA = (I − Z)σ2

n to obtain the required result.

Proposition 3. The derivative of the marginal likelihood in equation B.1 with respect to θ1 is
given by

∂θ3 log {p(X|τ,θ)} = σ−2∥X(τ)∥22 +X(τ)TJn ⊗
{

(Z2 − I)
σ2n

}
X(τ)− 1

2 tr
(
Ĉ−1
k ∂θ3Ĉk

)
,

(B.27)

where
tr(Ĉ−1

k ∂θ3Ĉk) = 2nD − 2
∑
i

(I − Z)ii. (B.28)

Proof. We note that ∂θ3Ĉk = 2σ2InD is a scalar multiple of the identity matrix and thus
commutes. Hence, we need only compute Ĉ−1

k Ĉ−1
k and the trace term. Note the following
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algebraic manipulations:

Ĉ−1
k Ĉ−1

k =
{
σ−2InD − σ−4Jn ⊗ (ZA)

}{
σ−2InD − σ−4Jn ⊗ (ZA)

}
= σ−4InD − 2σ−6Jn ⊗ (ZA) + σ−8(JnJn)⊗ (ZAZA)

= σ−4InD − 2σ−6Jn ⊗ (ZA) + nσ−8(Jn)⊗ (ZAZA)

= σ−4InD + Jn ⊗ (−2σ−6ZA+ nσ−8ZAZA)

= σ−4InD + Jn ⊗
{
σ−6(−2ID + nσ−2ZA)ZA

}
= σ−4InD + Jn ⊗

{
σ−6(−2ID + ID − Z)ZA

}
= σ−4InD + Jn ⊗

{
−σ−6(ID + Z)ZA

}
= σ−4InD + Jn ⊗

{
−σ−4(ID − Z2)/n

}
.

(B.29)

To compute the trace we note that the following follows directly from the tensor decomposition
of Ĉ−1

k :
tr(Ĉ−1

k ) = nDσ−2 − σ−4n
∑
i

(ZA)ii = nDσ−2 − σ−2∑
i

(I − Z)ii. (B.30)

Substituting the formulae provides the desired result.

In practice, we never need to compute or even store the full nD × nD inverse matrix C−1,
since we can only need to keep track of summaries of the data matrix rather than the full data
matrix itself. This is demonstrated in the following proposition.

Proposition 4. Let

X =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
... . . . ...

xD1 xD2 xD3 . . . xDn

 ,

be a D × n matrix. Let Yi =
∑
j Xi,j be the sum of the ith row of X and written concisely

Y = Xen, where en is a n× 1 vector of ones. We write Jn to be the n× n matrix of ones. Let
R be any D ×D matrix. Then the following holds

vec(X)T (Jn ⊗R)vec(X) = Y RY, (B.31)

where vec(X) denotes the vectorisation of X; that is, the Dn × 1 vector formed by stacking
columns of X.
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Proof. Firstly, observe the following standard algebraic manipulations

(Jn ⊗R)vec(X) = vec(RXJn)

= vec(RXeneTn )

= vec(RY eTn )

= (en ⊗R)vec(Y )

= (en ⊗R)Y.

(B.32)

Thus, using the above, it follows that

vec(X)T (Jn ⊗R)vec(X) = vec(X)T (en ⊗R)Y

= vec(RTXen)TY

= vec(RTY )TY

= (RTY )TY

= Y TRY,

(B.33)

as required.

B.4 Appendix 4: Further sensitivity analysis

In this appendix, we assess the effects of prior choices on our applied analysis. Our investigation
is two-fold: we establish how the posterior distributions change under different prior choices, as
well as how this impacts the partitioning of the data. The partitioning of the data is produced
by assigning proteins to their most probable organelle. To visualise the uncertainty in the
potential partitions of the data, we use the posterior similarity matrix [142]. The posterior
similarity matrix is the matrix S such that entry (i, j) is given by

Sij ≈
1
T

T∑
t=1

1(z(t)
i = z

(t)
j ). (B.34)

In words, this is the proportion of times that protein i and protein j are allocated to the same
component, during the MCMC algorithm. The similarity of two partitions is calculated using
the adjusted Rand index (ARI) [213], which is 0 under partitions from a random model. The
ARI is 1 for identical partitions and can be negative if two partitions are less similar than one
would be expected by random.

We begin by assessing the sensitivity with respect to the prior on the outlier proportions, which
is given a beta prior: φi ∼ B(u, v). The default choices for this parameters are (u, v) = (2, 10),
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we assess how (u, v) = (2, 4) and (2, 2) impacts our results. All other prior choices are held at
their defaults. First, we plot the inferred posterior distribution of these parameters and we also
include the samples from the prior for reference (figure B.1). We observe posterior shrinkage
and it is clear that the priors are strongly informed by the data. The similarity of the posterior
distributions reflects the insensitivity of the results to the prior choice.
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Fig. B.1 The first three facets display histograms of the posterior distribution for the mixture
weight of the outlier component under different prior choices. The prior choices are indicated
on the right hand panel, as well as in the legend. We note that the posterior distribution are
similar across these different choices. The lowest facet is a histogram of samples from the
default prior distribution and is shown for reference.

Furthermore, we assess whether component mixture proportions are affected by the choice
of prior. Again, we observe insensitivity to the prior choice. Two examples are plotted in figure
B.2.

Now, that we have established that the posterior distributions are insensitive to the choice
of prior, we analyse whether different prior choices generate substantially different partitions
of the data. We visualise these partitions and associated uncertainty in the following PSMs
(figure B.3). It is clear that the PSMs are similar across the different prior choice. For further
quantitative analysis, we compute the adjusted Rand Index across the different partitions. The
partitions are near identical across the different choices (table B.1).

We now turn to the (hyper)-prior on the GP hyperparameters. The default choice for the
amplitude a2, length-scale l and noise σ2 are log-normal priors with zero mean and standard
deviation 1. Holding the mean constant at zero, we assess how the posterior distributions and
data partitions are impacted on setting the standard deviation to 0.5 and 0.1 (whilst other
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Fig. B.2 (a,b) In each plot the first three facets display histograms of the posterior distribution
for mixture weights for (a) the Cytoskelton component and (b) the Golgi component. The prior
choice are indicated in the right hand panel, as well as the legend. The posterior distributions
are similar across the different choices. The lowest facet in both figures is a histogram of
samples from the default prior (a marginal Beta distribution)

Table B.1 adjusted Rand index for partitions generated from different prior choices

Prior B(2,10) B(2,4) B(2,2)
B(2,10) 1 0.983 0.983
B(2,4) - 1 1
B(2,2) - - 1

choices are held at defaults). We plot representative and illustrative examples of posterior
distributions for the hyperparameters and the default prior is plotted for reference (figure B.4).
We observe posterior shrinkage in all situations; however, to differing degrees. σ2 is the most
strongly informed parameter by the data. Furthermore, smaller prior standard deviations causes
concentration of the posterior around the prior locations. In these scenarios, we may conclude
there is insufficient data to inform such a strong prior assertion on these hyperparameters.
Thus, our diffuse default choice appears a good choice in practice. If we wish to specify strongly
informative priors, we could estimate the mean parameter of the hyperprior by examining the
fitted values from maximum marginal likelihood estimation (Type II ML) for the labelled data
only.

Again, we explore how these differing prior settings induce different posterior partitions of the
data. The posterior similarity matrices are robust to alteration of the prior in most of the
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Fig. B.3 Posterior similarity matrices generated from different choices of prior for the outlier
component weight. The colour bar on the left indicates the assigned organelle and we note that
the PSMs are similar across each of the choices. (a) B(2, 10), (b) B(2, 4), (c) B(2, 2).

scenarios, showing only slight differences (figures B.5, B.6 and B.7). This is corroborated by
extremely similar ARIs across the different settings (tables B.2, B.3 and B.4). However, when
we specify the following prior for the noise: σ2 ∼ LN (0, 0.1), we no longer observe reasonable
results. This is a manifestation of a strong prior on an inappropriate configuration of the
model. This is not a limitation of the analysis, because it demonstrates that if expert opinion
is available it can be encoded, with effect, into the data. However, we wishes to demonstrate
that without care to the choice of the hyperprior, one should expect poor results. We note that
such sensitivity is not observed for the other hyperparameters.

Finally, we perform sensitivity analysis for the prior for the mixing proportions. The default
choice is the symmetric uniform prior π ∼ Dir(1) and we test sensitivity with respect to the
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Fig. B.4 The first three histograms in each figure are posterior distribution for the GP
hyperparameters, (a) noise, (b) length-scale, (c) amplitude, for different choices of hyperprior.
These choices are shown in the right hand bar, as well as in the legend. For reference, the
lowest facet in each figure displays a histogram of samples from the prior distribution. The
distributions are plotted on the log scale to aid visualisation.

Table B.2 adjusted Rand index for partitions generated from different prior choices on the
amplitude

Prior LN(0, 1) LN(0, 0.5) LN(0, 0.1)
LN(0, 1) 1 0.970 0.986

LN(0, 0.5 ) - 1 0.976
LN(0, 0.1) - - 1

Jeffrey’s prior π ∼ Dir(0.5) and π ∼ Dir(0.1). All other priors are set to default. We plot
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Fig. B.5 Posterior similarity matrices generated from different choices of hyperprior for the
amplitude hyperparameter. The colour bar on the left indicates the assigned organelle and we
note that the PSMs are similar across each of the choices. (a) LN (0, 1), (b) LN (0, 0.5), (c)
LN (0, 0.1).

Table B.3 adjusted Rand index for partitions generated from different prior choices on the
length-scale

Prior LN(0, 1) LN(0, 0.5) LN(0, 0.1)
LN(0, 1) 1 0.969 0.965

LN(0, 0.5 ) - 1 0.990
LN(0, 0.1) - - 1

two illustrative examples in figure B.8, showing insensitivity of our analysis to the prior choice.
As with previous example, we explore the how the different prior induce different posterior
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Fig. B.6 Posterior similarity matrices generated from different choices of hyperprior for the
length-scale hyperparameter. The colour bar on the left indicates the assigned organelle and
we note that the PSMs are similar across each of the choices. (a) LN (0, 1), (b) LN (0, 0.5), (c)
LN (0, 0.1).

Table B.4 adjusted Rand index for partitions generated from different prior choices on the noise

Prior LN(0, 1) LN(0, 0.5) LN(0, 0.1)
LN(0, 1) 1 0.966 0.196

LN(0, 0.5) - 1 0.200
LN(0, 0.1) - - 1

partitions of the data and accordingly visualise the PSMs, as well reporting the ARIs across
these partitions (figure B.9 and table B.5). The reported PSMs are very similar and the ARIs
are all close to 1.
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Fig. B.7 Posterior similarity matrices generated from different choices of hyperprior for the noise
hyperparameter. The colour bar on the left indicates the assigned organelle and we note that
the PSMs are similar across each of the choices. (a) LN (0, 1), (b) LN (0, 0.5), (c) LN (0, 0.1).

Table B.5 adjusted Rand Index for partitions generated from different prior choices on the
mixing proportions

Prior Dir(1) Dir(0.5) Dir(0.1)
Dir(1) 1 0.984 0.986

Dir(0.5) - 1 0.999
Dir(0.1) - - 1
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Fig. B.8 In both figures the first three facets are histograms of the posterior distribution for
the mixing weight of (a) the Nucleus component (b) the Golgi component as representative
examples. Each facet is for a different choice of prior distribution stated in the right hand bar
and also the legend. The lowest facet in both figures is a histogram of samples from the prior
distribution as a reference.
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Fig. B.9 Posterior similarity matrices generated from different choices of prior for the mixture
proportions. The colour bar on the left indicates the assigned organelle and we note that the
PSMs are similar across each of the choices. (a) Dir (1), (b) Dir (0.5), (c) Dir (0.1).
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B.5 Appendix 5: Simulation study

We perform a simulation study to assess the robustness of our model to different settings of the
priors, assumptions about the distribution of the unlabelled data, and misspecification of the
covariance function and of the outlier distribution. To simulate new spatial proteomics data,
we simulate from the posterior predictive distribution using only the labelled data for model
fitting. The hyperparameters are found by optimising the marginal likelihood using L-BFGS.
To visualise the variability that these simulated datasets capture, we take each dataset in turn
and compute the mean location of each organelle (as the mean of all proteins arising from
that organelle). We then align each dataset onto the same PCA coordinates and visualise the
projected means of the organelles with an overlay of density contours (see figure B.10). In each
of the simulation scenarios we consider, we simulate 10 datasets and report the distribution of
scores across these simulated datasets.

Given that we know the class from which protein comes from, we focus on analysing
predictive performance (as measured using the quadratic loss) and whether proteins were
correctly or incorrectly identified as outliers. Our first set of simulations assess the effect of
predictive performance on changing the prior hyperparameters, whilst keeping all other values
are their defaults. The following scenarios are assessed:

• Default Settings

• B(2, 4) prior on the outlier component

• B(2, 2) prior on the outlier component

• LN (0, 0.5) prior on the Amplitude

• LN (0, 0.5) prior on the length-scale

• LN (0, 0.5) prior on the Noise

Figure B.11 demonstrate that there is no considerable effect on changing the prior to the
predictive performance of our method. Next, we explore the effect of changing the value of the
noise parameter when simulating new data. More precisely, once σ2

k for k = 1, ...,K has been
computed for the labelled data only, we simulate unlabelled data according to the following
scenarios:

• The variance of the unlabelled data is twice that of the labelled data

• The variance of the unlabelled data is five times that of the labelled data

• The variance of the unlabelled data is ten times that of the labelled data
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We note that the observed variance of the unlabelled data is always less than twice that of the
labelled data in case studies and thus the simulations are extreme scenarios. Unsurprisingly,
as the variance of the unlabelled data departs from that of the labelled data the predictive
performance decreases (see figure B.11). We now turn to the covariance function and the effect
of misspecification by using the Matérn covariance. The marginal variance and range parameters
are found by optimisation with respect to the marginal likelihood. Our original model with
squared exponential covariance is then fitted to the model and predictive performance is assessed.
We assess the following scenarios:

• Matérn covariance with ν = 2

• Matérn covariance with ν = 3.

Figure B.11 demonstrates that there is little sensitivity to misspecification with slightly
improved performance when simulations were draw from a smoother Matérn covariance. Finally,
we consider a simulation scenario where we consider a different distribution for the outlier
component. In robust mixture modelling it is typical to use spatial poisson process to model
outliers [19, 140]. Thus, we simulate outlier data according to a spatial poisson process on the
D-disk (disk of dimension D) with radius r = 2 ×max(|X|). The predictive performance in
this scenario is comparable to that of our simulation settings (see figure B.11). Though for
this example of misspecification of the outlier distribution it is more interesting to examine
whether outliers are correctly identified. In table B.6 we report the proportion of proteins that
are incorrect identified as outliers (amongst those that are not outliers) and those that are
correctly identified as outliers. We also report the 95% confidence interval for these results. We
also report these results for the other simulation settings and note that results are stable across
the different scenarios.
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Fig. B.10 PCA projection of organelle means generated from posterior predictive distributions.
We simulate 100 datasets from the posterior predictive using labelled data only. For each
dataset, we compute the mean of each organelle as the mean of all proteins associated with that
organelle. We then align each of these datasets onto the same PCA coordinates and visualise.
Contours are overlaid to visualise uncertainty in the location in the PCA plot across different
datasets. (a) Principal components 1 and 2 are shown; (b) visualises principal components 1
and 3.
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Fig. B.11 The quadratic loss (Brier Score) across different simulation scenarios. The simulations
are in order of those presented in the text. Furthermore, the legend indicates the different
simulation settings that have been achieved. Results are similar across most of the scenarios,
whilst we see decreased performance as the noise of the unlabelled data increases.
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Fig. B.12 Example PSMs of the induced posterior partition when the data are simulated from
the Matern model and inference is perform using the squared exponential covariance; that is,
the case of covariance function misspecification. (a) Example PSM when the smoothness is 2;
(b) Example PSM when the smoothness is 3.
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Table B.6 A table reporting the proportion of outliers that were incorrectly allocated as outliers
along with 95% confidence intervals. Those correctly allocated as outliers are also report
along with with 95% confidence intervals. The left hand column indicates the corresponding
simulation scenario.

Simulation setting Incorrectly allocated as outlier Correctly allocated as outlier

Defaults 0 [0,0.02] 0.82[0.44,0.89]
B(2,4) 0 [0,0.02] 0.82[0.40,0.89]
B(2,2) 0 [0,0.02] 0.82[0.41,0.92]

Amplitude LN(0,0.5) 0 [0,0.02] 0.82[0.42,0.92]
Length Scale LN(0,0.5) 0 [0,0.02] 0.82[0.40,0.89]

Noise LN(0,0.5) 0 [0,0.01] 0.82[0.38,0.87]

Unlabelled Noise times 2 0 [0,0.01] 0.96[0.72,1.00]
Unlabelled Noise times 5 0 [0,0.02] 0.87[0.42,0.97]
Unlabelled Noise times 10 0.02[0,0.04] 0.88[0.50,0.99]

Matern smoothness is 2 0 [0,0.01] 0.85[0.68,1.00]
Matern smoothness is 3 0 [0,0.00] 0.85[0.58,0.99]

Poisson process outlier 0 [0,0.01] 0.83[0.74,0.99]
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B.6 Appendix 6: Efficiency of HMC versus MH for hyparameter
updates

Table B.7 A table summarising the difference in performance between Metropolis-Hastings
and Hamiltonian Monte Carlo at sampling the hyperparameters of a GP for several different
organelles. For each organelle and for each method we report the acceptance rate and the
time-normalised effective sample size. It is clear that HMC outperforms MH according to this
metric.

Component Method Iterations Acceptance Length-scale Amplitude Noise
rate

Cytosol MH 50,000 0.240 523 659 9375
HMC 500 0.716 35348 54730 134485

Ribosome 40S MH 50,000 0.297 259 582 10756
HMC 500 0.742 14114 44662 27758

Lysosome MH 50,000 0.273 403 821 10385
HMC 500 0.710 28558 40955 543828

Proteosome MH 50,000 0.267 408 712 10410
HMC 500 0.800 16243 27186 55923

Actin MH 50,000 0.409 436 1129 10841
HMC 500 0.598 5750 479 6342



B.7 Appendix 7: Tables of hyperparameters 319

B.7 Appendix 7: Tables of hyperparameters

Tables of hyperparameters and hyperparameter distributions for the mouse pluripotent stem
cell data.

Table B.8 A table of log hyperparameters for a GP found by optimising the marginal likelihood
using L-BFGS

Sub-cellular niche Length-scale Amplitude Noise
40S Ribosome 0.81 -2.45 -4.23
60S Ribosome 0.61 -2.90 -4.28

Actin cytoskeleton 0.44 -2.67 -3.77
Cytosol 0.80 -2.17 -3.66

ER/Golgi apparatus 0.96 -2.60 -3.82
Endosome 0.48 -2.48 -3.49

Extracellular matrix 0.53 -2.74 -4.06
Lysosome 0.64 -2.43 -4.03

Mitochondrion 0.55 -2.26 -3.77
Nucleus - Chromatin 0.46 -2.23 -3.71

Nucleus - Non-chromatin 0.23 -2.25 -3.47
Peroxisome 0.78 -2.40 -3.78

Plasma membrane 0.28 -2.41 -3.92
Proteasome 0.70 -2.01 -4.16

Table B.9 A table of log GP hyperparameters with 95% equi-tailed credible intervals summarised
from samples produced using HMC

Length-scale Amplitude Noise
40S Ribosome 0.54 [−0.64, 1.08] −2.39 [−2.74,−2.01] −4.23 [−4.29,−4.17]
60S Ribosome 0.51 [−0.20, 0.93] −2.77 [−3.18,−2.31] −4.28 [−4.31,−4.23]

Actin cytoskeleton 0.33 [−0.52, 0.81] −2.55 [−2.89,−2.20] −3.76 [−3.84,−3.68]
Cytosol 0.69 [−0.01, 1.11] −2.04 [−2.43,−1.60] −3.66 [−3.70,−3.61]

ER/Golgi apparatus 0.89 [0.29, 1.37] −2.53 [−2.90,−1.89] −3.82 [−3.85,−3.79]
Endosome 0.39 [−0.24, 0.84] −2.37 [−2.68,−1.92] −3.48 [−3.58,−3.39]

Extracellular matrix 0.37[−0.32, 0.92] −2.65[−2.97,−2.24] −4.05 [−4.14,−3.96]
Lysosome 0.54 [−0.31, 0.94] −2.36 [−2.69,−2.00] −4.03 [−4.09,−3.98]

Mitochondrion 0.53 [0.12, 0.95] −2.12 [−2.38,−1.80] −3.77 [−3.78,−3.75]
Nucleus - Chromatin 0.46 [0.05, 0.86] −2.14 [−2.45,−1.81] −3.71 [−3.75,−3.68]

Nucleus - Non-chromatin 0.05 [−1.19, 0.69] −2.09 [−2.48,−1.71] −3.47 [−3.50,−3.44]
Peroxisome 0.75 [0.28, 1.17] −2.31 [−2.62,−1.92] −3.78 [−3.85,−.3.69]

Plasma membrane 0.02 [−1.03, 0.67] −2.32 [−2.65,−1.91] −3.91 [−3.95,−3.86]
Proteasome 0.59 [0.16.0.97] −1.94 [−2.26,−1.52] −4.15 [−4.21,−4.10]
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Appendix to chapter 7

C.1 Appendix 1: Additional simulations

We perform additional simulations comparing the MR approach to BANDLE. The simulation
scenarios are the same as performed in the main text. However, we start from the LOPIT-DC
dataset of [159] instead. The conclusion are as for the main text that BANDLE significantly
outperforms the MR method.
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Fig. C.1 The first 5 boxplots compare MR to BANDLE with two different prior settings, using
the area under curve (AUC). Distributions are over new simulated datasets. The second set of
boxplots demonstrate how these AUCs translate into confident differential localisation events.
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C.2 Appendix 2: Convergence analysis EGF stimulation

We ran our MCMC sampler for 20, 000 iterations, where we discarded 10, 000 iterations for
burn-in and retained every 10th iteration for thinning to reduce autocorrelation. 8 chains were
run in parallel and two were discarded for lack convergence by visual inspection. Example
trace plots are plotted below. We further assessed convergence by computing R̂ for parallel
chains of the mixing weights and confirmed that they were less than 1.01 indicating that are
chains are well-mixed. Finally, we concatenated the 6 remaining chains and computed the rank
of each sample. These ranks are the plotted in separate histograms for each chain separately.
Departures from uniformity of these histograms indicates non-convergence and we observe well
behaved rank plots.
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Fig. C.2 MCMC traceplot for EGF data
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Fig. C.3 MCMC traceplot for EGF data
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Fig. C.4 MCMC traceplot for EGF data
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Fig. C.5 MCMC traceplot for EGF data
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Fig. C.6 MCMC rank plot for EGF data
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C.3 Appendix 3: EGF stimulation phosphoproteomics time
course

Example abundance changes for the phosphoproteomic time course experiment.
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Fig. C.7 Example trajectories from the timecourse phosphoproteomics experiment

C.4 Appendix 4: Convergence analysis AP-4 knockout

We ran our MCMC sampler for 20, 000 iterations, where we discarded 10, 000 iterations for
burn-in and retained every 50th iteration for thinning to reduce autocorrelation. 6 chains were
run in parallel and one was discarded for lack convergence by visual inspection. Example trace
plots are plotted below. We further assessed convergence by computing R̂ for parallel chains
of the mixing weights and confirmed that they were less than 1.01 indicating that are chains
are well-mixed. Finally, we concatenated the 5 remaining chains and computed the rank of
each sample. These ranks are the plotted in separate histograms for each chain separately.
Departures from uniformity of these histograms indicates non-convergence and we observe well
behaved rank plots.
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Fig. C.8 MCMC trace plot for AP-4 dataset
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Fig. C.9 MCMC traceplot for AP-4 dataset
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Fig. C.10 MCMC rank plot for AP-4 dataset
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C.5 Appendix 5: Convergence analysis for HCMV datasets

We ran our MCMC sampler for 20, 000 iterations, where we discarded 10, 000 iterations for
burn-in and retained every 50th iteration for thinning to reduce autocorrelation. 6 chains were
run in parallel and convergence was analysed by visual inspection, and one chains was discarded.
Example trace plots are plotted below. We further assessed convergence by computing R̂ for
parallel chains of the mixing weights and confirmed that they were less than 1.01 indicating
that are chains are well-mixed. Finally, we concatenated the 5 remaining chains and computed
the rank of each sample. These ranks are the plotted in separate histograms for each chain
separately. Departures from uniformity of these histograms indicates non-convergence and we
observe well behaved rank plots.
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Fig. C.11 MCMC trace plot for HCMV dataset 24 hpi
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Fig. C.12 MCMC rank plot for HCMV dataset 24 hpi
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C.6 Appendix 6: Prior settings and sensitivity analysis

The hyperparameter α is the prior on the mixing weights π, where πij is the prior probability
that a protein belongs to the ith niche in the control dataset and niche j in the treatment dataset.
The entries of α can be interpreted as the prior relative proportions of protein allocations. Let
J be the matrix of all ones, it is typical in Bayesian mixture modelling to set α = 0.5J or
α = J , corresponding to the Jeffreys’ prior and the symmetric prior respectively. However,
in our scenario the diagonal and off-diagonal terms have different meanings. The diagonal
terms correspond to proteins allocated to the same niche in both datasets and the off-diagonal
terms correspond to differential localised proteins. However, there are far more off diagonal
terms than diagonal terms. Hence, the Jeffreys’ and symmetric priors implicitly assume that
the there are more differentially localised proteins that spatial stable. Of course, this is at
odds with our expectations and thus we opt for a more sensible weakly informative prior as a
default. We set αjj = 1 and αjk = 0.01 for k ≠ j. This assume that there are roughly an order
of magnitude fewer differentially localised proteins that spatially stable ones. This default is
used in all simulations and application except the EGF simulation dataset. In that case, we
have prior knowledge of a differentially localisation between the Plasma membrane and the
Endosome and so we set the corresponding entry of α to 1.

In general, we do not find that our analysis is very sensitive to the prior choice. To
demonstrate, we perform a sensitivity analysis for the results using the Jeffreys’ prior, the
symmetric prior and our weakly informative prior. In the context of the simulation example
in section 7.4.2, we apply the different prior choice an examine the results. Since the primary
quantity of interest is the prediction of differentially localised proteins we examine this quantity.
The following ROC curve demonstrate that the results are almost identical across the different
prior choices.

Prior information is carefully encoded using domain knowledge and previous analysis. In
brief, for the EGF application, we encode that the most likely transition is from plasma
membrane to Lysosome. To evaluate the coherence of our prior we perform a prior predictive
check [162]. The summary statistic of interest is the number of differential localisation and the
expected number of differential localisation, given our prior, is roughly 4.6. Furthermore, the
prior probability that there are more than 15 differential localisation is less than 0.01.

For the AP-4 Application, we first performed a prior predictive check and find that our
prior configuration leads to a 5.3 proteins a priori differential localisation in expectation and
the probability that more than 15 proteins are differential localised is ≈ 0.03.

For the HCMV application, priors are set such that the expected prior number of differential
localisation is roughly 3.
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Fig. C.13 ROC curve for examining prior sensitivity. Blue corresponds to default, dark
green to the Jeffreys’ prior and orange to the symmetric prior. The curves are essentially
indistinguishable.

C.7 Appendix 7: Selecting τ

One hyperparameter that we haven not yet discussed in the choice of τ when using the empirical
strategy to select the prior for the Pólya-Gamma based prior (see supplementary methods).
One possible way to select τ is to first perform a prior predictive check. However, this can be
arduous if a reasonable value is not known in advance. We suggest on strategy for generating
appropriate values of τ . The first is to select a weakly informative Dirichlet prior, for example,
the default we have suggested in the previous section. We then compute the standardised
KL divergence between this weakly informative Dirichlet prior and the a range of possible
Pólya-Gamma based priors. If we believe that our Dirichlet prior is sensible then a sensible
Pólya-Gamma prior will have low KL divergence. In figure C.14, we vary the value of τ (on the
log scale) for different values of mean for the Pólya-Gamma prior. There is a clear elbow in
this plot. We do not advise purely selecting the value of τ which minimises this KL divergence,
rather choose τ roughly in the that region and perform a prior predictive check to ensure that
it leads to sensible prior inferences. A default value of τ = 0.3 appears to work well in practice.
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Fig. C.14 KL divergence plot show KL divergence between the Polya-Gamma prior and the
weakly informative default Dirichlet prior for vary values of τ . Each colour indicates a different
choice of mean for the Polya-Gamma based prior.
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C.8 Appendix 8: EGF stimulation figures
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Fig. C.15 A PCA plot of the control HeLA dataset from [220]. Each pointer corresponds to a
protein and marker proteins are highlighted according to their subcellular niche.
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Fig. C.16 A PCA plot of the EGF stimulated HeLA dataset from [220]. Each pointer corresponds
to a protein and marker proteins are highlighted according to their subcellular niche.
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C.9 Appendix 9: AP-4 knockout figures
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Fig. C.17 A PCA plot of the control HeLA dataset from [92]. Each pointer corresponds to a
protein and marker proteins are highlighted according to their subcellular niche.
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Fig. C.18 A PCA plot of the AP-4 knockout HeLA dataset from [92]. Each pointer corresponds
to a protein and marker proteins are highlighted according to their subcellular niche.
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C.10 Appendix 10: HCMV PCA plots

-2 -1 0 1 2 3 4

-3
-2

-1
0

1
2

HCMV 24hpi

PC1 (53.39%)

P
C

4 
(5

.4
4%

)

Fig. C.19 A PCA plot of control fibroblast cells dataset from [24]. Each pointer corresponds to
a protein and marker proteins are highlighted according to their subcellular niche.
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Fig. C.20 A PCA plot of HCMV infected fibroblast cells dataset from [24]. Each pointer
corresponds to a protein and marker proteins are highlighted according to their subcellular
niche.
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C.11 Appendix 11: GO enrichment analysis HCMV dataset
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Fig. C.21 GO enrichment results (Translation and Transcription terms)
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C.12 Appendix 12: HCMV additional figures abundance and
degradation assays
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Fig. C.25 Boxplots of the global degradation distributions for MG132 and leupeptin. Separate
distributions are plotted for differentially localised proteins are those are not. No difference is
observed.
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Fig. C.26 Leupeptin distributions of protein recruited from the cytosol to the dense cytosol,
showing increased proteins targeted for degradation.
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Fig. C.27 Global abundance distributions for proteins 24 hpi separated into differentially
localised or not. There is no difference between differentially proteins and those that are not.
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Fig. C.28 Boxplots for log2 normalised abundance distributions. Proteins recruited from the
ER to dense cytosol show a decrease in abundance when compared to the global distribution.
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Fig. C.29 The temporal abundance of Q92520, clearly Q92520 is upregulated until 92 hpi.
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C.13 Appendix 13: HCMV additional figures acetylation data
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Fig. C.30 Global distributions for acetylation changes for HCMV 24 hpi compare to MOCK.
We do not observe any correlations between differential localisation and acetylation changes.
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Fig. C.31 Temporal acetylation profiles for HCMV infected cells which relocalise from dense
Cytosol to the Cytosol. Skp1 has a 2.5 fold increase in acetylation at 24 hpi.

C.14 Appendix 14: HCMV interactome figures
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Fig. C.32 Distributions for predicted number of proteins to be in the same localisation given
the spatial pattern observed in A for each of the viral interactomes. The observed statistic
is marked in orange, UL8 and UL70 have more proteins in the same location than would be
expected at random. This is not true for UL148A.
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Fig. C.33 Protein localisation distribution and relocalisation for viral interactomes
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C.15 Appendix 15: Supplementary methods

C.15.1 A non-conjugate prior

Thus far we have been using a conjugate Dirichlet prior for the a priori mixing proportions
π. Our model assumes no correlation across π due to the use of the Dirichlet distribution.
However, we describe how we can extend the model to include correlations. Firstly, the joint
prior of the allocation probabilities is

(zi,1, zi,2) ∼ cat(f(π)), (C.1)

where f(π) = exp(π)∑
j,k

exp(πjk) . Thus the prior correlations between organelles can be included
using a multivariate Gaussian

vec(π)|µ,Σ ∼ N (µ,Σ). (C.2)

Given π the underlying conditional posterior allocation probabilities are the same as before. The
conditional posterior of π now changes and because of loss of conjugacy a metropolis-hastings
step is required. In the next section, we develop a prior using stick-breaking Pólya-Gamma
augmentation to facilitate Gibbs sampling.

C.15.2 Pólya-Gamma augmentation

A random variable X has a Pólya-Gamma distribution with parameters b > 0 and c ∈ R,
denoted X ∼ PG(b, c) if [368]

X =d
1

2π2

∞∑
k=1

gk

(k − 1
2)2 + c2

4π2

, (C.3)

where gk ∼iid G(b, 1). The fundamental equation that renders Pólya-Gamma augmentation
useful is the following

(eφ)a

(1 + eφ)b = 2−beκφ
∫ ∞

0
e−ωφ2/2p(ω) dω, (C.4)

where κ = a−b/2 and w ∼ PG(b, 0). This is advantageous because of the following construction.
Consider the binomial regression problem

yi = Binom
(
ni,

1
1 + e−xT

i β

)
, (C.5)
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where β has the Gaussian prior N (µ,Σ). To sample from the posterior using Pólya-Gamma
augmentation, we first introduce strategic variables w and then sample according to

wi|β ∼ PG(ni, xTi β) (C.6)

β|y, w ∼ N (µ̃, Σ̃), (C.7)

where

Σ̃ = (XTΩX + Σ−1)−1 (C.8)

µ̃ = Σ̃(XTκ+ Σ−1µ), (C.9)

and

κ = (y1 − n1/2, ..., yN − nN/2) (C.10)

Ω = diag(ω1, ..., ωN ). (C.11)

Thus, a simple tuning free two step auxiliary variable sampler is required rather than Metropolis-
Hastings move. To adapt this method to our situation we consider a slightly different
construction in the following section.

C.15.3 Stick-breaking Pólya-Gamma augmentation

In this section, we extended the Pólya-Gamma augmentation of the previous section to
multinomial variables using a stick-breaking approach [270]. Consider a likelihood of the
form

p(x|φ) = c(x) (eφ)a(x)

(1 + eφ)b(x) . (C.12)

The joint probability distribution can then be written as

p(φ, x) = p(φ)c(x) (eφ)a(x)

(1 + eφ)b(x) = p(φ)c(x)2−b(x)eκ(x)φ
∫ ∞

0
e−ωφ2/2p(ω) dω (C.13)

Thus, the conditional distribution can be written as

p(φ|x, ω) ∝ p(φ)eκ(x)φe−ωφ2/2, (C.14)

which is Gaussian if p(φ) is Gaussian. Furthermore, by the exponential tilting property of the
Pólya-Gamma distribution [368] it follows that

ω|φ, x ∼ PG(b(x), φ). (C.15)
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Now consider a multinomial model on K categories with N trials with probability vector π. It
can be written as a stick-breaking construction of binomials as follows

Multi(x|N, π) =
K−1∏
k=1

Binom(xk|Nk, π̃k), (C.16)

where

Nk = N −
∑
j<k

xj (C.17)

π̃k = πk
1−

∑
j<k πj

(C.18)

Let σ(φk) = exp(φk)/(1 + exp(φk)) and π̃k = σ(φk). Now Substituting into the stick-breaking
model

Multi(x|N, π) =
K−1∏
k=1

Binom(xk|Nk, σ(φk)) (C.19)

=
K−1∏
k=1

(
Nk

xk

)
σ(φk)xk(1− σ(φk))Nk−xk (C.20)

=
K−1∏
k=1

(
Nk

xk

)
(eφk)xk

(1 + eφk)Nk
. (C.21)

Thus, we can set ak(x) = xk and bk(x) = Nk and introduce Pólya-Gamma variables wk. Then

p(x,w|φ) ∝
K−1∏
k=1

exp
[(
xk −

Nk

2

)
φk −

wkφ
2
k

2

]
∝ N(φ|Ω−1κ(x),Ω−1), (C.22)

where Ω = diag(ω1, ..., ωK) and κ(xk) = xk −Nk/2.

C.15.4 A correlated model for differential localisation

The above schema allows us to construct a correlated differential localisation model, using
stick-breaking Pólya-Gamma augmentation. Suppose that there are K organelles to which a
protein could localises. Then we specify a joint model on the allocation probabilities

vec(π)|µ,Σ ∼ N (µ,Σ) (C.23)

(zi,1, zi,2) ∼ cat(f(π)) (C.24)

ω ∼ PG(1, 0), (C.25)
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For easy of notation let ψ = vec(π) and f is the stick-breaking map. Then it follows from the
previous sections

p(ψ|Z1, Z2, ω) ∝ N(ψ|Ω−1κ,Ω−1)N(ψ|µ,Σ) ∝ N(ψ|µ̃, Σ̃), (C.26)

where

µ̃ = Σ̃
(
κ+ Σ−1µ

)
(C.27)

Σ̃ =
(
Ω + Σ−1

)−1
. (C.28)

To compute κ, first let nj,k =
∑
i 1(zi1 = j, zi2 = k) and let n = vec(n). Then κl = nl − 1

2 for
l = 1, ...,K2. Finally, we can sample the conditional posterior of the Pólya-Gamma variables

ωl|Z1, Z2, ψ ∼ PG(1, ψl). (C.29)

C.15.5 Calibration of Polya-Gamma prior

The Polya-Gamma augmentation method was used to take advantage of the knowledge that
some classes were known to be correlated a priori. The Polya-Gamma prior admits are more
flexible prior to be placed on the prior allocation probabilities. Recall that the following prior
on the allocation probabiltiies

p(zi,1 = k, zi,2 = k′|π) = f(πkk′). (C.30)

This prior is then expanded hierarchically in the following fasion:

vec(π)|µ,Σ ∼ N (µ,Σ) (C.31)

(zi,1, zi,2) ∼ cat(f(π)) (C.32)

ω ∼ PG(1, 0), (C.33)

where,
f(πkk′) = σ(πkk′)(1−

∑
j<k,j′<k′

f(πjj′)) (C.34)

There are no analytic formula for the moments of the logit-normal distribution and thus
analysing the behaviour of the above prior above is challenging. The implied distribution on
f(π) can be computed by standard transformations:

p(f(π)|µ,Σ) = N (vec(π)|µ,Σ) ·
∏
k,k′

 1−
∑
j<k,j′<k′ f(πjj′)

f(πkk′)
(
1−

∑
j≤k,j′≤k′ f(πjj′

)
 . (C.35)
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This equation clearly demonstrate the complexity of the prior. Recall we are interested in the
quantity

p(zi,1 ̸= zi,2|π) =: ρpg =
∑

j,k;j ̸=k
f(πjk). (C.36)

The prior expectation of the above and the following prior quantile can be used to calibrate the
prior:

p(NUρpg > q) = p

NU

∑
j,k;j ̸=k

f(πjk) > q

 = δ. (C.37)

This computation can be performed via Monte-Carlo simulation and corresponding quantiles as
for the Dirichlet prior can be calibrated.

p

NU

∑
j,k;j ̸=k

f(πjk) > q

 ≈ 1
T

T∑
t=1

1

NU

∑
j,k;j ̸=k

f(π(t)
jk ) > q

 (C.38)

However, this is impractical in general for user to specify such a complex prior, since it
requires the specification of a full covariance matrix. To alleviate this we suggest using prior
data to set this prior. We suggest computing Σ1 ,the covariance between the classes using the
marker data from the first dataset, and likewise Σ2, the covariance between the classes from
the second dataset. We then set the prior covariance

Σ = τ−1 · (Σ1 + λIK ⊗ Σ2 + λIK) (C.39)

or the precision
Σ−1 = τ ·

(
(Σ1 + λIK)−1 ⊗ (Σ2 + λIK)−1

)
, (C.40)

where τ is a tuning parameter that is user specified and λIK is constant multiple of the identity
to provide stability.

C.15.6 Prior Coherence Analysis

The previous sections have constructed two different priors, that capture prior beliefs in different
ways. The Dirichlet prior is considerably easier to specify and illicit for domain expertise;
however, the stick-breaking Pólya-Gamma prior is much more flexible and can encode more
complex prior beliefs - with the task that the prior is more challenging to specify. This section
elaborates on the differences between the priors.
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Suppose we are given a Dirichlet prior on π, we can compute the corresponding distribution
on ψ = g−1

SB(π), where gSB denotes the stick-breaking map. Recall the matrix Dirichlet prior:

q(π|α) =
K∏
k=1

1
B(αk)

K∏
j=1

π
αjk−1
jk . (C.41)

The induced prior on ψ, computed from a change of variables, is the following

q(ψ|α) = 1
B(α)

∏
k,k′

σ(ψk,k′)αkk′σ(−ψk,k′)
∑

j>k,j>k′ αjj′ . (C.42)

As well as looking at the induced priors on the corresponding parameter spaces, we can compute
how far about these priors are from each other. Aitchison demonstrated that the the Dirichlet
distribution and logit-Normal are never equal for any choice of parameters; however, there are
parameters choices that minimise the Kullback-Leibler (KL) divergence between them [4, 5]. The
stick-breaking Polya-Gamma prior in less straightforward to work with than the Logit-Normal,
but facilitates Gibbs sampling. Furthermore, the Logit-Normal transform preserves permutation
symmetry in the density; while the stick-breaking transform does not preserve symmetry.

In light of similar analysis, we compute the KL divergence, defined below, between the two
priors: the Gaussian Prior and the prior induced on this space by the inverse stick-breaking
map from the Dirichlet prior. The KL divergence is

KL(P ||Q) =
∫

X
log

(
dP

dQ

)
dP, (C.43)

for probability measures P and Q defined on measurable space X and dP
dQ the Radon-Nikodym

derivative of P with respect to Q. Thus, we compute as follows, where, for ease of notation, we
re-label the indexes, such that vec(α) = [α1, ..., αD] and likewise for ψ (with abuse of notation).

KL(p(ψ|µ,Σ)||q(ψ|α)) =
∫
p(ψ|µ,Σ) log p(ψ|µ,Σ)

q(ψ|α) dψ

= E[logN (ψ|µ,Σ)]− E[log q(ψ|α)]

= (A)− (B),

(C.44)
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where the expectations are computed with respect to p. Continuing the computation

(A) = E
[
log

(
(2π)−D/2|Σ|−1/2 exp

(1
2(ψ − µ)TΣ−1(ψ − µ)

))]
= −D2 log(2π)− 1

2 log |Σ| − 1
2E
[
tr
(
(ψ − µ)TΣ−1(ψ − µ)

)]
= −D2 log(2π)− 1

2 log |Σ| − 1
2Σ−1tr

(
E
[
(ψ − µ)(ψ − µ)T

])
= −D2 log(2π)− 1

2 log |Σ| − 1
2D

= −1
2 log((2πe)D|Σ|),

(C.45)

where in the second line we employed the trace trick and in the third line the linearity of the
expectation. For part (B), we write

(B) = E [log q(ψ|α)]

= E
[
log

(
1
B(α)

D−1∏
k=1

σ(ψk)αkσ(−ψk)
∑D

j=k+1 αj

)]

= − logB(α) +
D−1∑
k=1

E

αk log(σ(ψk)) +
D∑

j=k+1
αj log(σ(−ψk))


= − logB(α) +

D−1∑
k=1

αkE [log(σ(ψk))] +
D−1∑
k=1

D∑
j=k+1

αjE [log(σ(−ψk))]

= − logB(α) +
D−1∑
k=1

αkE [log(σ(ψk))] +
D∑
k=2

(k − 1)αkE [log(σ(−ψk))]

(C.46)

To compute the first summand, we expand the logistic function and then make a second order
Taylor approximation about x0 = E[x].

D−1∑
k=1

αkE [log(σ(ψk))] = −
D−1∑
k=1

αkE
[
log(1 + e−ψk)

]

≈ −
D−1∑
k=1

αk

(
log(1 + e−E[ψk]) + eE[ψk]

(1 + eE[ψk])2 · V(ψk)
)

= −
D−1∑
k=1

αk

(
log(1 + e−µk) + eµk

(1 + eµk)2 · Σkk

)
(C.47)
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Then, likewise for the second summand

D∑
k=2

(k − 1)αkE [log(σ(−ψk))] = −
D∑
k=2

(k − 1)αkE
[
log(1 + eψk)

]

≈ −
D∑
k=2

(k − 1)αk

(
log(1 + eE[ψk])− eE[ψk]

(1 + eE[ψk])2 · V(ψk)
)

= −
D∑
k=2

(k − 1)αk
(

log(1 + eµk)− eµk

(1 + eµk)2 · Σkk

)
(C.48)

Hence,

KL(p(ψ|µ,Σ)||q(ψ|α)) ≈ −1
2 log((2πe)D|Σ|) + logB(α)

+
D−1∑
k=1

αk

(
log(1 + e−µk) + eµk

(1 + eµk)2 · Σkk

)

+
D∑
k=2

(k − 1)αk
(

log(1 + eµk)− eµk

(1 + eµk)2 · Σkk

) (C.49)

To obtain a reasonable scale for the above result, we state the KL divergence between two
Dirichlet distributions and two Gaussian distributions. Let us note that the KL divergence
between two Dirichlet distribution is the following

KL(Dir(π|α)||Dir(π|α′)) = log Γ(α0)−
K∑
k=1

log Γ(αk)− log Γ(α′
0)

+
K∑
k=1

log Γ(α′
k) +

K∑
k=1

(αk − α′
k)(ψ(αk)− ψ(α0)),

(C.50)

where ψ denotes the digamma function. Likewise the KL divergence between two Gaussian
distributions is the following

KL(p(x|µ,Σ)||q(x|µ′,Σ′)) = 1
2

(
tr(Σ′−1Σ) + (µ′ − µ)Σ′−1(µ′ − µ)−K + log |Σ

′|
|Σ|

)
(C.51)

C.15.7 Simulating dynamic spatial proteomics experiments

We describe the ways in which we produce produce synthetic dynamic spatial proteomics
experiments from real dataset. The expression value for each protein can be written as follows:

yi = fk + εi (C.52)
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for some value k = 1, ...,K which index the K possible subcellular niches. The value of fk is
unknown so we estimate it from the data. We use K-NN classification, with the number of
nearest neighbours K̂ = 10, to assign every protein to an organelle. That is, the probability the
ith protein belongs to the jth organelle is approximated by:

P (zi = j|Y = yi) ≈
1
K̂

∑
l∈Ni

1(yl = j), (C.53)

where Ni is the set of K̂ closest labelled points to yi. We then assign proteins to their most
probable subcellular niche. We proceed to estimate fk for k = 1, ...,K by the mean of expression
values of all the proteins allocated to that niche:

f̂k ≈
1
|nk|

∑
i∈nk

yi, (C.54)

where nk indexes the proteins assigned to the kth subcellular niche. We then use the residual
bootstrap to generate synthetic data. To be precise, we first compute the residuals

ε̂i = yi − f̂k i = 1, ..., N, (C.55)

where k is the organelle to which protein i was assigned by K-NN classification. We then obtain
E = {ε̂i,g}Gg=1, where G is length of the vector yi. The we use a nonparamateric bootstrap
(uniform sampling with replacement) to obtain EB = {ε̂∗

i,g}Gg=1. Replicates of the data are then
obtained as follows

yrepi = f̂k + ε̂∗
i i = 1, ..., N. (C.56)

We further propose to use
yrepi = f̂k + νε̂∗

i i = 1, ..., N, (C.57)

where ν is some deterministic or random value. In addition, we consider organelle specific
multiplicative noise:

yrepi = f̂k + νkε̂
∗
i i = 1, ..., N, (C.58)

where νk are different random values for k = 1, ...,K.
The above process produce replicates without any translocation events. To simulate

translocation events we randomly select, with equal probability, L proteins. Then for each of
these l proteins we randomly select, with equal probability, one of the K possible organelles to
which we translocate the protein. Then we replace the quantitative value for lth protein with a
sample from the following distribution

yl ∼ N (f̂k, σ̂2
fk

), (C.59)
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where k is the newly assigned organelle and σ̂2
fk

is an unbiased estimator of the population
variance of f̂k:

σ̂2
fk

= 1
|nk| − 1

∑
i∈nk

(yi − f̂k). (C.60)

Different spatial proteomics experiments are usually run on different mass-spectrometry runs
and thus both random and systematic batch effects can occur. Furthermore, differences in the
labelling efficiency of each tag, as well as slight differences in the amount of protein labelled
and how well ions fly in the mass-spectrometer can lead to systematic difference between
experiments. Furthermore, there is inherent technical variability in the apparatus and sample
handling; for example, density-gradients or differential centrifugation speeds are never precisely
the same. We propose three approaches to test the robustness of the available methods to these
effects.

Random batch effects. After the replicates have been produced and translocation events
simulated. We propose to generate random batch effects through the following process. For
each replicate in turn, we sample a fraction with equal probability from SG = {1, ..., G}. For
the sampled fraction, say g, we add a random biased effect, µbatch, to that fraction; such that,

yrep,batchi,g = yrepi,g + µbatch (C.61)

Systematic batch effects. Systematic batch effects are produce in identical manner to random
batch effects, but instead the fraction is sampled first and the effect is added to same fraction
across the experiments. The magnitude of the effect is allow to differ across experiments.

Fraction permutations We permute the fractions in different experiments, which is designed to
reflect the inherent technical variabilities of the procedure. Let σ : SG → SG be a permutation
such that σ(SG) = {σ(1), ..., σ(G)}. We then replace each fraction with its permuted value, as
follows:

yrep,permi,g = yrepi,σ(g). (C.62)

In the five possible simulation scenarios, which are all repeated 10 times, the following setting
are used.

• νk ∼ U [1, 2]

For the systematic and random batch effects we take

• µbatch = 0.3
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