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1. Summary
We derive from kinetic theory, fluid mechanics and
thermodynamics the minimal continuum-level equations
governing the flow of a binary, non-electrolytic mixture in
an isotropic porous medium with osmotic effects. For dilute
mixtures, these equations are linear and in this limit provide a
theoretical basis for the widely used semi-empirical relations of
Kedem & Katchalsky (Kedem & Katchalsky 1958 Biochim. Biophys.
Acta 27, 229–246 (doi:10.1016/0006-3002(58)90330-5)), which have
hitherto been validated experimentally but not theoretically. The
above linearity between the fluxes and the driving forces breaks
down for concentrated or non-ideal mixtures, for which our
equations go beyond the Kedem–Katchalsky formulation. We
show that the heretofore empirical solute permeability coefficient
reflects the momentum transfer between the solute molecules that
are rejected at a pore entrance and the solvent molecules entering
the pore space; it can be related to the inefficiency of a Maxwellian
demi-demon.

2. Introduction
It seems that there is currently no correct theoretical development
of the fundamental equations describing the physics of transport
in a porous medium with osmotic effects. At present, all work
to model osmotic flow in a porous medium at the continuum
level ultimately derives from the semi-empirical 1958 formulation
of Kedem & Katchalsky [1]. According to Kedem–Katchalsky,
for dilute solutions, the molar flux of solute (species 1), N1,
and volume flux of solvent (species 2), u2, across a membrane
permeable to the solvent but only partially permeable to the
solute, are

u2 = L(−δp + σRTδc1)

and N1 = −wRTδc1 + (1 − σ )u2c1.

}
(2.1)

These relations were obtained from non-equilibrium thermo-
dynamics under the assumption of linearity between the fluxes
and the driving forces. Here R is the universal gas constant and
the temperature T is assumed constant; δp and δc1 are the pressure
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and molar concentration differences across the membrane, and L is a transport coefficient. The reflection
coefficient σ measures the fraction of solute molecules that are reflected by the membrane [2], taking
the value of one for a perfectly semipermeable membrane and zero for a completely permeable one.
The solute permeability coefficient w is null for a semipermeable membrane (σ = 1); little is known
about the physical meaning of w. The phenomenological coefficients w, σ and L are measured, for a
given solute and membrane, by carefully designed experiments [3]. Post Kedem and Katchalsky, earlier
theoretical proposals for the interaction of osmosis and viscous flow in a porous medium include the use
of a potential-energy field [4] and of friction factors [5], but neither of these approaches relate the ad-hoc
coefficients introduced therein to the properties of the solution and of the porous medium. Later work
relied on a dusty-gas type model [6,7], but has been proved erroneous [8] owing to a double count of the
viscous forces in the fluid and at the fluid–solid boundaries; this model also emphasized the significance
of a ‘partial osmotic pressure’ but failure to distinguish between equilibrium static and non-equilibrium
flow situations may have caused confusion. A similar error has propagated into subsequent literature [9].
More recent models [10,11] have taken into account electrostatic effects outside the pore entrance and exit
to describe the osmotic pressure in terms of an electric double-layer potential; however, these works do
not apply to a non-electrolytic system. In this work, we perform a momentum balance at the molecular
level to derive the minimal continuum-level equations for the flow of a binary, non-electrolytic mixture
in a porous medium in the presence of osmotic effects. We discuss the conditions under which these
equations may be reduced to the simplified, semi-empirical form above, and we address the physical
significance of the solute permeability coefficient, w.

The classical treatment of osmosis considers a system in thermodynamic equilibrium. While the
early works of van’t Hoff [12] and Rayleigh [13] explained osmosis in terms of the work done by the
rebounding molecules of solute on a selective (semipermeable) membrane, the same phenomenon was
later described by Gibbs onwards in terms of the free energy and chemical potential [14]. Different
disciplines have preferred one or the other of these approaches to derive the classical thermostatic
result, but the kinetic and thermodynamic theoretical treatments are entirely equivalent [15]. However, to
quantify the evolution of a system towards such equilibrium, the flux laws governing the flows of solute
and solvent are necessary. Recent osmotic research has focused on molecular-dynamics simulations of
flow, for example in nanopores [16], in nanotube arrays [17] and in nanofluidic diodes [18]. But, in spite
of such numerical studies, little is known about the key intermolecular and molecule–pore interactions
that drive osmotic flow in a pore and how these relate to continuum-level properties of the fluid and
the porous matrix. Yet, it is this translation of the molecular behaviour to a mesoscale involving many
pore lengths, connecting the atomic scale and the macroscopic scale, that is of utmost importance for
the understanding of the role of osmosis in all its manifold applications in physics, chemistry and
biology. Thus, we follow in the spirit of Einstein’s study of Brownian motion [19] in coupling a kinematic
approach to osmosis with fluid mechanics.

In order to develop a simple theoretical argument, we focus on core mechanisms and make the
following assumptions. (i) The porous medium is rigid, isotropic and homogeneous. (ii) The porous
medium and the fluid are in thermal equilibrium and isothermal. (iii) The mixture is binary and non-
electrolytic. (iv) The solute is inviscid and the solvent is viscous. The introduction of solute–solute
interactions through a viscosity for the solute is straightforward [8], but complicates the mathematical
presentation. We have opted to keep the model as simple as possible. (v) The interactions between solute
and solvent molecules are represented by the Maxwell–Stefan diffusivity of the solute in a binary mixture
of solute and the solvent. A discussion of this assumption is provided in the text. (vi) We neglect possible
chemical reaction of the species with each other and solvation at the pore wall. These effects may be
introduced in a further development of the model [9]. (vii) We assume the flow has low Reynolds and
Péclet numbers. The validity of this assumption is discussed in the text.

3. Theoretical derivation
Consider the isothermal flow of a binary fluid, comprising a non-electrolytic solute species 1 and a
solvent species 2, in a porous medium (figure 1). The medium is completely permeable to the molecules
of a viscous solvent but only partially permeable to an inviscid solute owing to chemical or physical
effects. Thus, as the solution flows in a given direction within the pore space, a fraction σ of the molecules
of solute are reflected backward after elastic collision with the solid wall at the entrance to the pore; the
remainder flow forward into the pore space, where they undergo further elastic collisions. The molecules
of solvent do not rebound upon striking the solid walls, but stick to the wall and later leave it with
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Figure 1. Flow of solute and solvent molecules near a pore entrance and exit. Some of the solute molecules rebound from the pore
entrance and subsequently transfer part of their momentum to neighbouring solvent molecules through collisions. A similar process
happens at the pore exit. A difference in the concentrations of solute between the entrance and exit creates an osmotic force. (The
instantaneous velocity of a single solutemolecule impacting at the pore boundary is much larger than the solute average velocity shown
inside the pore; the arrows are not drawn to scale.)

zero average velocity parallel to the pore wall [20]. The mass and energy fluxes of incident and emitted
molecules are equal. However, momentum is not equal for the fluxes of incident and released molecules
at the wall; indeed, viscous shear will transfer momentum to the pore wall. We next quantify each of
the momentum changes undergone by the solute and the solvent molecules. As the molecules of solute
move through the pores of the solid matrix, they change momentum owing to two different types of
interactions: collisions with molecules of solvent within the pore and collisions with the walls of the solid
matrix. The rate of change of momentum of molecules of species 1, per unit volume of mixture in a pure
fluid medium, resulting from collision with molecules of species 2 is RTc1c2(u1 − u2)/((c1 + c2)D12) [21].
In elementary kinetic theory of diffusion [20], the product of concentrations of solute and solvent c1c2
reflects the number of collisions and the difference in the average velocities (u1 − u2), the average
momentum exchanged in a single elastic collision of smooth, rigid, spherical molecules. Of course,
in reality more complex effects may arise through non-elastic collisions, possible multiple molecular
encounters, the effect of non-uniformities in composition and pressure on the Maxwellian velocity
distribution of the molecules, and the presence of internal as well as translational molecular energy [20].
However, the physical interpretation of the Maxwell–Stefan diffusivity of the solute in the binary mixture
of solute and solvent, D12, as an inverse drag coefficient remains valid [21], whether the frictional drag
exerted by one set of molecules moving through the other arises purely from binary elastic intermolecular
collisions or from more complex interactions. In the porous medium, only a fraction (1 − σ ) of solute
molecules enters a pore, so that the number of collisions is proportionally reduced. Also, the molecules
move in tortuous paths around the solid, so that the flux of momentum in any particular direction is
reduced by a factor 1/τ = cos2 θ , where θ is the inclination of a pore relative to the direction specified
and the bar represents an average over all pore directions; τ is the tortuosity of the porous matrix [22].
The rate of change of momentum of molecules of species 1, per unit volume of mixture in a porous
medium, resulting from collisions with molecules of species 2 is then

RT(1 − σ )
c1c2τ (u2 − u1)
(c1 + c2)D12

. (3.1)

The fraction σ of the molecules of solute that impact on the solid and rebound at the entrance and exit
of a pore undergo a change in momentum, per unit volume of fluid, of magnitude

1
2 σRTVc1 − (− 1

2 σRTVc1) = σRTVc1, (3.2)

where σRTVc/2 is the momentum of molecules leaving the solid surface and −σRTVc/2 is the
momentum of the molecules impacting on the solid. This can be viewed as a gradient of osmotic pressure,
and σ can be related to the ratio of the solute molecule size and the pore size; the solvent molecules are
regarded as essentially infinitesimal in size. After the solute molecules rebound from the porous medium,
a fraction of their momentum is transferred to neighbouring solvent molecules through collisions. This
fraction of momentum depends on the distribution of solute and solvent molecules near the rebounding
surface, which is unknown; we assume it takes a constant average value of 2β. Thus, the change in
momentum of the solute molecules caused by collision with the solid surface and with neighbouring
solvent molecules, per unit volume of fluid, is

1
2 σRTVc1 + (1 − 2β) 1

2 σRTVc1 = (1 − β)σRTVc1. (3.3)
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To the best of the authors’ knowledge, the introduction of the parameter β representing the exchange of
momentum through collision between rebounding solute molecules and solvent molecules near a pore
entrance and exit is novel. From a physical point of view, it is clear that such transfer takes place, but
how important is it? We shall confirm later that β is indeed non-zero, and can be related to the solute
permeability coefficient w used in the phenomenological model of Kedem & Katchalsky [1] and more
recently measured experimentally [3].

The total change in momentum of the molecules of solute is balanced by the driving force from the
gradient in chemical potential of the solute, g1, expressed per unit volume of fluid as [21]

c1VTg1 = c1VT,pg1 + φ1Vp, (3.4)

where φ1 is the volume fraction of the solute in the mixture. In effect, this is the driving force for entropy
production owing to irreversible processes [14,23,24]. The momentum balance for the solute may thus be
written as follows:

c1VT,pg1 + φ1Vp = RT(1 − σ )
c1c2τ (u2 − u1)
(c1 + c2)D12

+ (1 − β)σRTVc1. (3.5)

Each of the quantities on the right-hand side of this equation arise from terms (3.1) and (3.3) discussed
earlier. A momentum balance for the molecules of solvent leads to a similar equation

c2VT,pg2 + φ2Vp = RT(1 − σ )
c1c2τ (u1 − u2)
(c1 + c2)D12

+ βσRTVc1 − μ2

k2
φ2u2. (3.6)

Here μ2 is the viscosity and φ2 the volume fraction of the solvent in the mixture; in general, the
permeability of the medium to the solvent in the presence of the solute, k2, varies with the composition
of the mixture. The first term on the right-hand side accounts for the momentum change of the solvent
molecules upon collision with the solute molecules in the pore. The second term quantifies the
momentum change of the solvent molecules through collision with rebounding solute molecules at the
entrance and exit of the pore; as mentioned above, a fraction 2β of the momentum of the rebounding
solute molecules is transferred to the solvent. The last term accounts for the loss of momentum of the
solvent molecules upon collision and sticking at the solid surface inside the pore, as described earlier. It
quantifies the effect of viscous forces averaged over many pore orientations and gives rise to Darcy’s law
for flow in a porous medium [22].

In the momentum balances above for the solute and solvent, we have assumed that the mean free
path of the molecules is sufficiently smaller than the pore diameter in the solid matrix, so that the fluid
may be modelled as a continuum with constant transport properties such as viscosity and diffusivity.
We have also assumed that the momentum change arising from the acceleration or deceleration of the
fluid as it moves through the tortuous paths in the porous medium is negligible; this assumption is
valid [22] for low Reynolds number flows such that Re2 = ρ2|u2|δ/μ2 � 1, where ρ2 is the density of the
solvent and δ is the typical pore length scale. The effects of dispersion of a component arising from such
tortuous motion have been neglected, which is acceptable when the Péclet number of the flow is small,
Pei = |ui|δ/D12 � 1 (i = 1, 2) [22].

The sum of equations (3.5) and (3.6) quantifies the pressure gradient in terms of the velocity of the
solvent and the osmotic effect of the solute

Vp = −μ2

k2
φ2u2 + σRTVc1. (3.7)

Substituting equation (3.7) into (3.5) leads to a relationship between the velocities of the solute and
solvent,

[
RT(1 − σ )

c1c2τ

(c1 + c2)D12

]
(u1 − u2) + φ1φ2

μ2

k2
u2 = −RT[Γ1 − (φ2 − β)σ ]Vc1, (3.8)

where we have used ciVT,pgi = RTΓiVci with Γi = (c1 + c2 − ci)/[(c1 + c2)(1 − φi)], valid for an ideal
solution; for non-ideal behaviour one may introduce activity coefficients [23] in a straightforward
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manner. Solving equations (3.7) and (3.8) for the velocities of the solute and solvent leads to

u1 = (c1 + c2)D12

τc1c2

[
φ1

RT(1 − σ )
Vp − Γ − (φ2 − φ1 − β)σ

1 − σ
Vc1

]
+ u2

and u2 = k2

μ2φ2
(−Vp + σRTVc1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)

The volumetric flux of solvent and the molar flux of solute, per unit area of porous medium, are,
respectively, given by

u = εu2 = k2ε

μ2φ2

(−Vp + σRTVc1
)

and N1 = (1 − σ )c1εu1 = c1 + c2

c2

εD12

τ

×
(

φ1

RT
Vp − [Γ − (φ2 − φ1 − β)σ ]Vc1

)
+ (1 − σ )c1u,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

where ε is the porosity of the medium. We recognize in εD12/τ the effective diffusivity of the solute in
the solvent in the porous medium. For a dilute solution (i.e. in the limit φ1 → 0, φ2 → 1), equations (3.9)
simplify to

u1 = −1 − (1 − β)σ
1 − σ

D12

τc1
Vc1 + u2

and u2 = k2

μ2
(−Vp + σRTVc1).

⎫⎪⎪⎬
⎪⎪⎭ (3.11)

These relations show that the slip velocity between the solute and the solvent arises essentially from the
transfer of momentum from interspecies molecular collisions, i.e. frictional drag between the species,
but not from the presence of the solid matrix. The flow of solvent is affected by viscous stresses between
the fluid and the solid matrix, and the gradient in osmotic pressure owing to the solute. For a dilute
solution, the volumetric flux of solvent and the molar flux of solute, per unit area of porous medium, are,
respectively, given by

u = εu2 = k2ε

μ2
(−Vp + σRTVc1)

and N1 = (1 − σ )c1εu1 = −[1 − (1 − β)σ ]
εD12

τ
Vc1 + (1 − σ )c1u.

⎫⎪⎪⎬
⎪⎪⎭ (3.12)

Equations (3.12) describe the flow of an ideal dilute binary mixture in an isotropic porous medium, with
osmotic effects arising from the interaction of the solute molecules with the solid matrix. The derivation
presented here may be easily extended, for instance, to a multi-component mixture with non-ideal
behaviour, and to include the gravitational force.

4. Discussion
Equations (3.12) have the structure of the semi-empirical equations proposed by Kedem &
Katchalsky [1] given in equations (2.1). The coefficients are expressed in terms of the properties of
the solute, the solvent and the porous matrix, and satisfy Onsager’s reciprocal relation [25] in that
(∂u/∂c1)p = RT[∂(N1/c1 − u)/∂p]c1 . The present work shows that linearity between the fluxes and the
driving forces holds for dilute, ideal mixtures, but not for more concentrated or non-ideal ones, for which
the slip velocity between the solvent and solute is complex (see equation (3.8)). The solute permeability
w reflects the momentum of the solute molecules after rebounding near a pore entrance and exit. It thus
represents the efficiency of the sorting process being carried out, and so we might see the coefficient β

as the inefficiency of the particular Maxwellian demi-demon of the pore (a complete Maxwell demon
[26,27] would require two semipermeable membranes back to back, as Szilard discussed [28,29]).

We hope that this derivation will be of utility to the many people who use the Kedem–Katchalsky
equations, which have hitherto been validated experimentally but not theoretically. The present work
moreover goes beyond Kedem and Katchalsky to the nonlinear regime of concentrated or non-ideal
mixtures. We anticipate that it will stimulate future molecular-dynamical simulations to explore the role
of interspecies momentum transfer at the entrance and exit of nanopores on osmosis, and their impact
on the continuum-level behaviour of the fluid in a porous medium.
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