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How bilingualism modulates 
selective attention in children
Jacqueline Phelps*, Adam Attaheri & Mirjana Bozic*

There is substantial evidence that learning and using multiple languages modulates selective 
attention in children. The current study investigated the mechanisms that drive this modification. 
Specifically, we asked whether the need for constant management of competing languages in 
bilinguals increases attentional capacity, or draws on the available resources such that they need to 
be economised to support optimal task performance. Monolingual and bilingual children aged 7–12 
attended to a narrative presented in one ear, while ignoring different types of interference in the 
other ear. We used EEG to capture the neural encoding of attended and unattended speech envelopes, 
and assess how well they can be reconstructed from the responses of the neuronal populations 
that encode them. Despite equivalent behavioral performance, monolingual and bilingual children 
encoded attended speech differently, with the pattern of encoding across conditions in bilinguals 
suggesting a redistribution of the available attentional capacity, rather than its enhancement.

The maturation of selective attention is arguably one of the key developmental processes, with even subtle modi-
fications to this process potentially leading to significant consequences. This reflects the findings that selective 
attention is not only linked to inhibitory control1 and working memory2, but associated with the development of 
a variety of skills including speech3, metalinguistic skills4 and arithmetic5. In fact, selective attention is proposed 
to be one of the key foundational skills for academic success in children overall6,7.

One of the factors that has been linked to modification of selective attention in children is bilingualism. Learn-
ing and using multiple languages is a major processing demand for the cognitive system, with evidence showing 
that bilingual language use leads to parallel activation and competition between the two languages, requiring 
the users to selectively prioritise one and inhibit the other8–10. Our neurocognitive system accommodates these 
additional processing demands by modifying and adapting the underlying neural and functional architecture, 
as evidenced by a large number of studies in both children and adults11–13. Importantly, effects of bilingualism 
on aspects of neurocognitive processing have been observed from very early on, with data showing differences 
between monolingual and bilingual infants as young as 4–6 months old14,15 as well as in older children16,17.

Yet, the nature of these adaptive changes is still not entirely clear. One widely held view is that the increased 
processing demands arising from bilingual language use lead to enhanced capacity for selective attention, result-
ing in better performance for bilingual children on selective attention tasks18,19. However this view has also been 
challenged, with a number of reports either not finding evidence for enhanced performance in bilinguals20–22 
or arguing that they can be accounted for by variables other than bilingual experience23,24. One notable finding 
relevant in this context is that neural differences between monolinguals and bilinguals have been observed even 
when they display equivalent behavioural performance25–27 suggesting that these neuroadaptive changes might 
be explained by a different mechanism instead. For instance, a recent paper27 compared behavioural performance 
and the neural encoding of attended and unattended spoken narratives in monolingual and bilingual speakers. 
Participants were instructed to listen to a story in their native language, while ignoring different types of linguistic 
and nonlinguistic interference presented in the other ear. The results showed that, even though the respondents’ 
comprehension scores were the same, there were significant differences in the pattern of neural encoding of the 
attended streams between the monolingual and the bilingual group.

With this in mind, a somewhat different interpretation of the mechanisms of neurocognitive adaptations in 
bilingualism might be that they emerge in order to enable bilingual children (and adults) to achieve and main-
tain optimal behavioural performance under the increased processing demands of bilingualism. Importantly, 
this compensation for the more complex processing environment is achieved in the context of a finite selective 
attention capacity. This account acknowledges that attention is ultimately limited such that we can only process a 
restricted amount of information at any given point28,29, and that selective attention might also require processing 
capacity itself30,31. In the bilingual context this could mean that the process of selecting the target language and 
inhibiting the non-target one will itself utilise some of the existing attentional resources. This would then impact 
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on the remaining attentional resources such that they need to be economised in order to support optimal task 
completion. This view builds on, and extends, the hypothesis that bilingual control processes themselves adapt 
to the recurrent processing demands placed upon them (the adaptive control hypothesis32,33), and while it does 
not preclude the possibility that this may lead to greater flexibility in the usage of the residual capacity, it shifts 
the focus from the often-inconsistent behavioural comparisons to the patterns of modification and adaptation 
in the underlying neural and functional architecture. Critically however, this account also gives rise to a differ-
ent set of predictions about the patterns of these underlying adaptations. In particular, instead of assuming an 
overall enhancement in neural indices of attentional processing for bilinguals compared to monolinguals, this 
view predicts no increase—or possibly even a slight reduction—combined with their different distribution as 
determined by the requirements of the task at hand.

Current study.  To dissociate between these alternatives and establish how bilingualism modulates atten-
tional processing in children, the current study investigated the neural encoding of attended and unattended 
speech envelopes in monolingual and bilingual listeners aged 7–12. The neural encoding of speech envelopes 
is a well-established method for investigating attentional processing, which builds on findings that attention 
causes low-frequency neural oscillations to entrain to the temporal envelope of speech (‘selective entrainment 
hypothesis’34,35). There is a large body of evidence confirming robust correlation between attended speech enve-
lopes and neural activity36–39 and showing that the neural encoding of speech envelopes plays an important role 
for speech intelligibility in both adults40 and children41,42. The current study thus employed EEG to capture the 
neural encoding of attended speech envelopes in monolingual and bilingual children. We used linear regression 
as implemented in the mTRF toolbox43 to model the relationship between the speech signal and the neural data, 
and applied it in a backward direction to assess how well the attended and unattended speech envelopes could be 
reconstructed from the responses of the neuronal populations that encode them (see “Materials and methods” 
section for more details). The accuracy of speech envelope reconstructions from the EEG data was assessed by 
comparing the reconstructions to the original speech envelopes, resulting in reconstruction accuracy scores 
(Pearson’s r)—where the higher r value signifies that more stimulus-relevant information was encoded in the 
EEG signal and the better model could be created, leading to a better reconstruction. Reconstruction scores cal-
culated this way are widely accepted as measures of neural encoding in children41,44 and are consistent with other 
computations of cortical tracking45. Another feature of the reconstruction method is that it maps all available 
neural data simultaneously and is therefore specifically suited to multi-channel systems such as EEG. The mTRF 
technique has also been shown to be particularly suitable for natural speech37,46.

Another important consideration for investigation into the ways bilingualism shapes selective attention in 
children is the trajectory of selective attention development. Auditory selective attention is proposed to have 
developed by age 3–56 and auditory dichotic tasks have been carried out on children as young as 47. Yet a mini-
mum age of 6 has been recommended47, reflecting the inconsistent results and high variance in response speed 
and accuracy in the younger children48. In addition, the established view is that selective attention only stabilises 
around the age of 749 and reaches maturity by the age 8 or 950. Given these considerations, in the current study 
we recruited participants in the age range of 7–12, as this age range not only represents a developmental plateau 
for selective attention in childhood, but is also likely to generate relatively stable effects whilst ensuring that 
children can reliably perform a selective attention task.

To investigate whether and how bilingualism modifies the neural mechanisms of selective attention in chil-
dren, the current experiment used a dichotic listening task51. Following the design we used previously27, children 
were presented with two competing narratives simultaneously and instructed to attend to one while ignoring the 
other. The nature of the competing stream was manipulated across four different conditions to create perceptual 
or linguistic interference. The first condition was ‘Single talker’, a control condition where children attended to 
a narrative presented in one ear, with no interference presented in the other ear. This allowed us to establish the 
extent of attentional encoding in monolingual and bilingual listeners at baseline (i.e., without any interference 
present). In the second condition, children attended to a narrative in English presented in one ear while ignoring 
another English story presented in the other ear (English–English condition). In the third condition, children 
attended to a narrative in English while ignoring a narrative in Latin, a language unknown to them (English–Latin 
condition). These two conditions therefore tested attentional encoding in the context of linguistic interference, 
where the known language distractor (English) could be expected to interfere more strongly with the attended 
stream than the language that children cannot process for meaning (Latin). In the fourth condition, the interfer-
ing stream was Musical Rain (MuR), a nonlinguistic sound that is closely matched to the acoustic properties of 
speech, but does not trigger speech percept and is therefore expected to only engage low-level acoustic processing 
(English–MuR condition). Another key feature of this design was that participants were instructed to listen to 
the attended stream for comprehension, a task that we expected that children in this age group would be able 
to do without difficultly. Based on the existing adult data27 we also expected that there would be no significant 
difference between the ability of monolingual and bilingual listeners to perform the task. By equating on behav-
ioural performance, this approach enabled us to focus on the patterns of modification of the mechanisms that 
underpin selective attention, rather than performance per se.

The set of conditions described above allowed us to investigate whether bilingualism modifies the neural 
underpinnings of selective attention in children, and to directly assess the predictions of the two hypothesised 
mechanisms of this modification discussed earlier. Following the existing evidence27,37–39, we assumed that atten-
tion would modulate the neural encoding of speech envelope in both monolingual and bilingual children, with 
the type of distractor probably further influencing the strength of the encoding of the attended stream. Critically 
however, we assumed that the way different distractors influence attentional encoding might differ between 
the groups. According to the hypothesis that bilingual experience leads to general enhancement of attentional 
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processing, we would expect to see an overall increase in reconstruction accuracy scores for bilingual compared 
to monolingual children. Specifically, while the overall pattern of effects might be similar in the two groups—with 
linguistic distractors likely causing stronger interference than the non-linguistic distractor and the Single talker 
condition—all these markers of attentional encoding would be expected to be enhanced in the bilingual group. 
On the other hand however, we might observe no increase, or even a decrease in the indices of attentional encod-
ing in bilingual children, reflecting the hypothesis that language selection and inhibition themselves might draw 
on the existing attentional capacity, restricting the resources available to track the speech envelope. In addition 
and more importantly, this could lead to a modification of the encoding patterns across conditions in bilinguals, 
suggesting that the remaining attentional capacity has been distributed to maximise this finite resource and meet 
the task requirements in the context of increased processing demands of bilingualism.

Materials and methods
Participants.  48 typically-developing children aged 7–12 were tested, comparable to the sample size of 
similar EEG studies on children37,41,44,52. They were split into two categories: bilingual (n = 24, sixteen males, 
age M = 9.3 year, SD = 1.83) and monolingual (n = 24, thirteen males, age M = 9.6 year, SD = 1.48), which were 
matched groupwise on mean and distribution of age (t = 0.54, p = 0.59). All participants were healthy with no 
history of hearing problems or neurological disorder. 43 were right-handed, with four of the left-handed chil-
dren being monolingual and one bilingual. All participants’ parents completed a language history question-
naire, which provided an overview of children’s exposure to languages. As confirmed by the questionnaire, all 
monolingual participants were native speakers of English, with no significant exposure to other languages. The 
participants in the bilingual group all had a similar profile: the language they first learnt was not English, and 
they used this language at home on a daily basis. They were however fluent and highly proficient in English, 
following English-speaking curriculum at school, and with native-like English conversation skills comparable 
to their monolingual peers. The second languages spoken were Afrikaans, French, Finnish, Greek, Hindi, Hun-
garian, Igbo, Japanese, Lithuanian, Mandarin, Polish and Turkish. Additionally, two children spoke a third lan-
guage proficiently (French and Spanish), and one spoke a total of four languages other than English proficiently 
(Arabic, French, Hebrew and Spanish). Children were recruited via posters, social media, and word of mouth. 
Parental education information was collected as an indication of SES, a well-documented influence on selective 
attention in children52. The majority of participants’ parents (87.2%) were educated to degree level or higher, and 
the groups were not significantly different on this approximation of SES (bilinguals M = 2.56, SD = 0.52; mono-
linguals M = 2.35, SD = 0.79; Mann–Whitney U = 259, p = 0.53).

The study was approved by the Cambridge Psychology Research Ethics Committee, and performed in accord-
ance with relevant guidelines and regulations. Prior to the testing session, parents and children were given 
detailed information on the aims of the project and what to expect from the session. Upon arrival, informed 
consent was given by parents signing a consent form and the children an assent form. They were told they could 
withdraw from the study at any time.

Design.  The experiment consisted of four conditions (Table 1). In each condition, children were attending to 
a story in English in one ear. Condition 1 had no interference in the other ear (‘Single talker’). In the other three 
conditions children were also presented with a distractor in the other ear, which they were instructed to ignore. 
The nature of the distractor varied, from a different story in English (‘English–English’), to a story in a language 
unknown to children (‘English–Latin’) and non-linguistic acoustic interference (‘English-Musical Rain’).

The target stories for the attended ear were four children’s stories in English specifically aimed at this age 
group, taken from online resource storynory.com. All stories were transcribed into 120 sentences each, with 
each sentence lasting approximately 3 s in length. Each target story was then split into 2 blocks and children 
attended to the first half in either the left or right ear (randomly assigned), with interference in the other, and 
then swapped ears for Block 2. Each block (half of a story) consisted of 60 sentences, with all 60 sentences con-
catenated with a 300 ms gap between them to create a single block lasting 3.3 min. Block 1 was always the first 
half of the target story and Block 2 the second half. Latin was chosen as the interference in Condition 3 as a 
non-artificial language which would almost certainly be unknown to the participants. Gender of the speaker was 
kept the same for all stories (same female voice for all target stories, different female voice for interference), to 
reduce segregation strategies based on talker’s gender53. All stories’ volumes were normalised to ensure equivalent 
average amplitude. The non-linguistic interference of Musical Rain was identical in length, root mean squared 
level and long‐term spectrotemporal distribution of energy to the target story in Condition 4, but did not trig-
ger a speech percept54. It was generated in MATLAB by extracting temporal envelopes of the target sentences 
and filling them with 10 ms fragments of synthesized vowels jittered in frequency and periodicity. The resulting 
stream was described by participants as “the sound of a jug pouring water”. Instructions were recorded by the 

Table 1.   Experimental conditions.

Condition Attended stream Interference

1. Single talker English story 1 No interference

2. English–English English story 2 Different story in English

3. English–Latin English story 3 Story in unknown language (Latin)

4. English–MuR English story 4 Nonlinguistic acoustic interference (Musical Rain)
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same female speaker of the target stories. These were played before each block in the target ear, telling the child: 
“This is your right/left ear. Please listen carefully to the story in this ear, on your right/left side, and ignore the 
story or sound in the other ear”.

Procedure.  The participants had a practice session of listening to an English story in both the left and the 
right ear while ignoring a distracting English story in the other ear, in order to familiarise themselves with the 
dichotic listening paradigm. After practice, they were asked to summarise the target story to check they could 
hear correctly and understood the instructions to attend to one ear at a time. The task itself took 45–60 min. 
Children first heard Block 1 of Condition 1 (Single talker) followed by 10 comprehension questions. They then 
listened to Block 2 of Condition 1 (Single talker), again followed by 10 comprehension questions. Each block 
was preceded by the recorded instructions in the relevant (target) ear. This procedure was repeated for the other 
three conditions, which were presented in a random order. Children were instructed to stay as still as possible 
while the stories were playing and were allowed to stretch, yawn etc. during the comprehension breaks. An 
example sequence of a block is presented in Fig. 1a. Comprehension questions consisted of simple sentences to 
check understanding of each story (for example: ‘This story is about a QUEEN/KING’), and children pointed 
or verbally confirmed which option they thought was correct. The children did not receive feedback on their 
responses. At the end of the experiment children were presented with a certificate of completion and compensa-
tion for their time.

Figure 1.   Experimental procedure and mTRF model computation. (a) Procedure: Children were instructed 
to attend to one side. The stimuli were presented for 3.3 min, and children were then asked to complete 10 
comprehension questions about the attended story. (b) mTRF stimulus reconstruction: A backwards mTRF 
decoding model was fit separately to the speech envelope of each of trials for each participant, using a leave-
one-out cross-validation procedure. This generated a reconstruction of each speech envelope that was validated 
against the original stimulus envelope. (c) Reconstruction accuracy score: The blue line shows the speech 
envelope from one trial of the original stimulus. The orange line is the estimate of the envelope reconstructed 
by the decoder. The reconstruction accuracy score (r) is a measure of the correlation between the original (blue) 
and reconstructed speech envelope (orange). Resulting r values per sentence per condition per participant were 
used in statistical analyses.
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Data collection and preprocessing.  EEG was recorded using a 64-channel electrode net (Electrical Geo-
desics Inc., Eugene, OR, USA), connected to Netstation software. The stimuli were played through foam-tipped 
earphones in the pre-allocated part-randomised order. All data were pre-processed in MATLAB: EEGLAB 
Toolbox55. Channels 61–64 (located in muscular/facial areas) were removed, leaving data from 60 channels for 
processing. Data was filtered between 1 and 100 Hz using zero-phase bandpass Hamming windowed FIR filters 
(transition band widths of 1 Hz with cutoff frequencies at − 6 dB) and down-sampled to 250 Hz. Bad channels 
were identified via probability and kurtosis and were interpolated (via spherical interpolation) if they were 5 
SD away from the mean kurtosis and 3 SD from the mean power spectrum. Independent Component Analysis 
(ICA) algorithm (EEGLAB) was conducted to identify components corresponding to artefacts (e.g. eye blinks). 
These were visually inspected and bad components removed from the data. After ICA, epochs were extracted, 
starting at 200 ms pre-onset of the sentence and ending at 2800 ms post onset. This length of epoch was chosen 
so that, after allowing for epoch rejection, there would be a minimum threshold of five minutes of data per 
condition for input to the mTRF toolbox56. After the bad channels were interpolated, bad epochs were rejected 
with the pop_autorej function (EEGLab), removing epochs with values outside a 3SD of the probability and 
kurtosis thresholds. This resulted in an overall epoch rejection of 16.33% for all participants’ data (18.31% for 
monolinguals and 14.35% for bilinguals). By condition, epoch rejection was 14.67% in Single talker, 19.68% in 
English–English, 12.77% in English–Latin and 17.36% in English–MuR datasets. Next, data were re-referenced 
to the average of all channels and finally resampled to 100 Hz to reduce the computational load. Following this 
process, the EEG data from all 48 participants were entered into the subsequent mTRF analysis.

Speech envelopes.  Speech envelopes were calculated using the Hilbert2 function in EEGLAB, downsam-
pled to 100 Hz to match the data and normalised using nt_normcol (Noisetools http://​audit​ion.​ens.​fr/​adc/​Noise​
Tools/).

Analyses.  Neural tracking of the stimulus envelopes was computed using multivariate temporal response 
functions, as implemented in the mTRF toolbox43. TRF uses linear regression to model the relationship between 
speech input and signal at each EEG channel. We used the backward model (reconstruction), which has the 
advantage of mapping all available neural data simultaneously across all channels, calibrating their relative influ-
ence so that informative channels receive greater weights than those which provide less data, and dividing out 
any autocovariance between channels. This way, even stimulus features that are not explicitly encoded in the 
neural response in a one-to-one mapping may be inferred from correlated input features that are encoded, which 
would not be the case using direct correlation to the raw signal. The inputs to the calculation of the TRF models 
were the stimulus (normalised speech envelope), response (normalised EEG data), minimum and maximum 
time lags, sampling rate and a series of ridge regression parameters (λ). To calculate the models, we created 
matrices of EEG data and matching stimuli for each attended and unattended condition per participant per 
group. The size of the matrices corresponded to the number of viable epochs per condition (minimum 100 for 
a single condition in each participant). Decoder weights over time lags from 0 to 250 ms were calculated using 
the cross validation (mTRFcrossval) function. The cross validation uses a ‘leave-one-out’ computation which 
first fits individual models to every trial for each specified λ, then excludes one trial at a time (‘test set’) while 
averaging the others across models (‘training set’). The averaged model from the training set is then convolved 
with the test set to generate a stimulus reconstruction. In each model, this was done in rotation with each trial 
serving once as the ‘test set’, repeated across all λ values (12 λ values, 1 × 10−3:1 × 108). Each reconstruction was 
then validated against the original stimulus, resulting in 12 reconstruction accuracy scores (Pearson’s r) per 
stimulus, with the r value at the optimal λ (identified as that which yields the highest overall  r-value across 
epochs) taken. This optimal lambda value selection mitigated against the potential overfitting of the TRF model. 
The reconstruction accuracy scores were then compared across groups, attention status and condition using lin-
ear mixed-effect models57 as implemented in the lme4 R package58. To arrive at the best-fitting model, we used 
the step function in the lmerTest package59. The Satterthwaite approximation60 was used for degrees of freedom. 
Significant p values are reported at p < 0.05. All post-hoc tests were FDR corrected for multiple comparisons. Fig-
ure 1b,c illustrate the procedure of mTRF model computation, and the outcome of reconstruction for a sample 
sentence ‘This cat was getting skinnier and skinnier’.

Results
Behavioural comprehension scores.  Children from both groups performed the task equally well, with 
overall comprehension scores of 98.1% in the monolingual group, and 98.7% in the bilingual group. To test 
for any differences between them, we converted the comprehension scores to Z scores, then ran a model with 
Z scores as the dependent variable, and factors of group (two levels: monolingual, bilingual), condition (four 
levels: Single talker, English–English, English–Latin and English–MuR) and their interaction, in addition to 
participant age and parental socio-economic status (SES), plus subjects as a random effect. The results showed 
that the only significant factor was condition [F(3,141) = 9.34, p < 0.001, η2 = 0.17], with no effect of group nor 
interaction between condition and group. Post hoc t-tests revealed that this effect of condition was driven by 
a significant difference in performance between the English–English condition and all the other conditions 
[Single talker: t = 3.27, p < 0.05, d = 0.67; English–Latin: t =  − 3.03, p < 0.05, d =  − 0.62; English–MuR: t =  − 2.62, 
p < 0.05, d =  − 0.53]. These results show comparable performance of monolingual and bilingual children in the 
behavioural comprehension task, with the performance in both groups suffering slightly in the English–English 
condition compared to the other conditions. This substantiates reports by participants in both groups that they 
found the interference in English the most difficult. A summary of comprehension scores, standard deviations 
and their differences between groups are shown in Table 2.

http://audition.ens.fr/adc/NoiseTools/
http://audition.ens.fr/adc/NoiseTools/
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EEG DATA​.  The effects of attention on speech reconstruction accuracy.  In the analysis of the neural data, da-
tapoints more than 1.5 interquartile ranges above the upper quartile or below the lower quartile were removed as 
outliers, excluding 170 datapoints (0.5% of the total). Visual inspection of residual plots did not reveal any obvi-
ous deviations from normality. The first analysis of the neural data aimed to test the robustness of the paradigm, 
by establishing whether attention modulated speech reconstruction accuracy in children. It included the three 
conditions where both attended and unattended narratives were presented to the participants (English–English, 
English–Latin and English–MuR); thus excluding the condition where there was no interference (Single talker). 
The dependent variable was reconstruction accuracy score (r), and the fixed factors were group (two levels, 
monolingual, bilingual), attention (two levels, attended and unattended) and condition (three levels), and the 
interactions between them. We also included participant age and parental SES as predictors, and subjects and 
items as crossed random effects. Results showed a significant effect of attention [F(1,712.8) = 46.53, p < 0.001, 
η2 = 0.06]; a significant effect of condition [F(2, 720.6) = 59.3, p < 0.001, η2 = 0.14] and a significant interaction 
between condition and attention [F(2, 710) = 5.4, p < 0.01, η2 = 0.01] as well as between condition and group [F(2, 
28,096.1) = 7.4, p < 0.001, η2 = 0.005] Pairwise comparisons confirmed that the attended stream EEG data showed 
on average higher stimulus reconstruction accuracy than the unattended ones, with the difference between 
them significant overall [rattd = 0.057, runattd = 0.040, t = 8.79, p < 0.001, d = 0.10] and in each condition separately 
[English–English rattd = 0.047, runattd = 0.032, t = 4.21, p < 0.001, d = 0.09; English–Latin rattd = 0.053, runattd = 0.026, 
t = 8.39, p < 0.001, d = 0.17; English–MuR rattd = 0.071, runattd = 0.062, t = 2.38, p < 0.05, d = 0.05]. They confirm that 
attention improves reconstruction accuracy of spoken narratives in children, replicating similar results in the 
literature.

We next tested whether the same general pattern holds in monolingual and bilingual groups separately. In 
monolinguals, a model including attention (two levels, attended and unattended), condition (three levels) and 
their interaction, participant age, parental SES, plus subjects and items as crossed random effects showed signifi-
cant effects of attention [F(1, 706.03) = 29.5, p < 0.001, η2 = 0.04] and condition [F(2, 718.01) = 55.28, p < 0.001, 
η2 = 0.13]. In bilinguals, the equivalent model showed a significant effect of attention [F(1, 731.19) = 29.03, 
p < 0.001, η2 = 0.04], condition [F(2, 731.52) = 21.44, p < 0.001, η2 = 0.06], and their interaction [F(2, 724.01) = 4.66, 
p < 0.01, η2 = 0.01]. Pairwise comparisons confirmed that in both groups attended streams were reconstructed 
more accurately than unattended streams in each condition separately, other than in the English–MuR condition 
in bilinguals. Table 3 and Fig. 2 show reconstruction accuracy scores by group and condition. 

Reconstruction accuracy of attended streams in monolinguals and bilinguals.  A key question driving this 
research was to establish whether bilingualism modulates the neural encoding of attended speech envelopes in 
children; and what pattern does this modulation follow. The next set of analyses therefore asked whether mono-
lingual and bilingual groups differ in reconstruction accuracy of attended streams across conditions. To this 
end we ran a model that included attended condition (four levels: Single talker, English–English, English–Latin, 
English–MuR), group (monolingual, bilingual) and their interaction, participant age, parental SES, plus subjects 
and items as crossed random effects. The results showed that the only significant predictors were condition [F(3, 
483.2) = 13.63, p < 0.001, η2 = 0.08] and group by condition interaction [F(3, 18,283.7) = 3.59, p < 0.05, η2 = 0.005].

To explore what is driving this interaction, we investigated the patterns of reconstruction across attended 
conditions in each group separately. In monolinguals, a model with four levels of attended condition, par-
ticipant age, parental SES, and subjects and items as random effects, showed a significant effect of condition 

Table 2.   Comprehension scores and standard deviation by condition and group.

Condition Monolinguals Bilinguals t(46) p

Single talker 99.6 (1.41) 99.2 (2.41) 0.73 0.62 (ns)

English–English 95.8 (6.02) 96.7 (6.7)  − 0.45 0.65 (ns)

English–Latin 98.8 (2.66) 99.6 (1.41)  − 1.36 0.39 (ns)

English–MuR 98.3 (3.18) 99.4 (2.24)  − 1.31 0.39 (ns)

Overall across conditions 98.1% (3.92) 98.7% (3.92)  − 1.01 0.31 (ns)

Table 3.   Reconstruction accuracy scores (r) by condition and group. attd attended stream, unattd unattended 
stream.

Condition

Monolinguals Bilinguals

attd unattd t p d attd unattd t p d

Single talker 0.075 0.06

English–English 0.048 0.036 2.59  < 0.05 0.08 0.045 0.029 3.29  < 0.01 0.1

English–Latin 0.055 0.028 5.99  < 0.001 0.17 0.051 0.025 5.87  < 0.001 0.16

English–MuR 0.085 0.073 2.45  < 0.05 0.07 0.059 0.054 0.99 ns 0.03

Overall across conditions 0.066 0.045 6.36  < 0.001 0.11 0.054 0.036 6.01  < 0.001 0.1
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[F(3,481.02) = 15.1, p < 0.001, η2 = 0.09] only, with the post-hoc tests showing significantly higher encoding in 
the Single talker condition than in the English–English and English–Latin conditions [t = 5.49, p < 0.001, d = 0.16, 
and t = 4.07, p < 0.001, d = 0.19 respectively], and significantly higher encoding in the English–MuR than the 
English–English and English–Latin conditions [t =  − 7.44, p < 0.001, d =  − 0.22; and t =  − 6.04, p < 0.001, d =  − 0.18 
respectively]. There was a trend of stronger encoding in the Single talker than in the English–MuR condition 
[t =  − 2.01, p = 0.054]; but no difference between the English–English and English–Latin conditions [t =  − 1.41, 
p = 0.16]. The equivalent analysis in bilinguals showed a comparable, but much reduced pattern of differences 
between conditions, with a significant effect of condition [F(3,491.09) = 4.03, p < 0.01, η2 = 0.02] reflecting weaker 
encoding in the English–English condition compared to the Single talker and English–MuR conditions [t = 3.05, 
p < 0.05, d = 0.09; and t =  − 2.81, p < 0.05, d =  − 0.08 respectively]. No other differences emerged in the bilingual 
group, implying that the type of interference significantly modulated attentional encoding in monolinguals but 
had an attenuated effect in bilinguals, comparable to the results seen in adults27. These results are summarised 
in Fig. 3a.

To confirm that monolinguals indeed encoded attended stream envelopes more strongly than bilinguals in 
some of the conditions, we directly compared the reconstruction accuracy between the groups in each attended 
condition separately. These pairwise comparisons for individual conditions showed significantly higher atten-
tional encoding in monolinguals than in bilinguals in the Single talker and English–MuR conditions [t = 3.12, 
p < 0.01, d = 0.09; and t = 5.32, p < 0.001, d = 0.16, respectively], but no difference between the groups in the two 
linguistic interference conditions [English–English: t = 0.74, p = 0.46; English–Latin: t = 0.83, p = 0.46]. Hence, 
even if the attentional encoding in the linguistic interference conditions in bilinguals was comparable to that 
seen in monolinguals, the significantly weaker encoding of the Single talker and the English–MuR conditions 
in this group has resulted in the overall much flatter pattern of results across conditions in bilinguals (Fig. 3a). 

Figure 2.   Reconstruction scores for attended and unattended streams per group and condition. Results show 
robust effects of attention on the reconstruction accuracy of speech envelopes, with higher reconstruction 
accuracy for the attended than for the unattended envelopes in both groups.
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In other words, the key underlying variable behind the differences between the two groups appears to be the 
strength of attentional encoding in conditions of weak or no interference.

Reconstruction accuracy of unattended streams in monolinguals and bilinguals.  Following the same approach 
as used in the analyses of the attended streams, we ran an equivalent model with unattended conditions (three 
levels: English–English, English–Latin, English–MuR), group (monolingual, bilingual) and their interaction, 
participant age, parental SES, and subjects and items as random effects. The results showed a significant main 
effect of condition [F(2, 355.68) = 46.44, p < 0.001, η2 = 0.21], but no main effect of group, and no interaction 
between group and condition. Further analyses confirmed that both groups showed the same pattern on differ-
ences across the three unattended conditions, with the unattended acoustic interference (MuR) showing more 
encoding and higher reconstruction accuracy than the two unattended linguistics distractors (English, Latin). 
For monolinguals, the results of the pairwise t-tests were t = 7.64, p < 0.001, d = 0.22 for English–MuR vs Eng-
lish–English comparison, and t = 9.85, p < 0.001, d = 0.29 for English–MuR vs English–Latin comparison. For 
bilinguals they were t = 5.55, p < 0.001, d = 0.16 and t = 6.62, p < 0.001, d = 0.18 respectively. Neither group showed 
a significant difference in reconstruction accuracy for the unattended envelopes between the English–English 
and English–Latin conditions. Finally, the between group comparisons showed a significantly higher encod-
ing of unattended envelopes in the English–MuR condition for monolinguals compared to bilinguals [t = 4.05, 
p < 0.001, d = 0.11]. These results are summarised in Fig. 3b.

In sum, our results revealed that monolingual children modulate the accuracy of attended stimulus recon-
struction as a function of the type of interference, with linguistic distractors (English, Latin) most strongly inter-
fering with the reconstruction of the attended stream. In contrast, bilingual children showed weaker differentia-
tion in the encoding of attended speech across conditions. The key factor driving these between-group differences 
appears to be the strength of encoding in conditions of little or no interference (Single talker, English–MuR), 
with significantly stronger encoding in monolinguals than in bilinguals here. Monolingual and bilingual children 
showed comparable patterns of reconstruction accuracy of unattended speech.

Discussion
Building on the substantial evidence that learning and using multiple languages modulates selective attention 
in children61, the current experiment investigated the mechanisms that drive this modification. Using a dichotic 
listening task we assessed the patterns of responses to different types of interference in monolingual and bilingual 
children aged 7–12; comparing their behavioural comprehension scores and their cortical tracking of attended 
and unattended speech envelopes. Despite equivalent behavioural performance, we saw clear differences in the 
way monolinguals and bilinguals encoded attended speech, confirming that the processing demands of bilingual-
ism shape the supporting neurocognitive architecture32. Most importantly however we observed that, instead of 
enhanced attentional capacity, these neuroadaptive modifications appear to reflect its redistribution, arguably 
aimed at economising the available resources to support optimal behavioural performance. We discuss these 
results in more detail below.

In terms of behavioural comprehension scores, our results clearly showed that all children performed the 
task equally well, and were able to process the attended stories for meaning. This aligns with the general pattern 
observed in dichotic listening studies that the information presented to the attended ear can usually be processed 
with very few errors51,62. Importantly however, data showed no difference in the pattern of comprehension scores 
between monolingual and bilingual children, with both groups achieving high comprehension scores across the 

Figure 3.   Between-group differences in reconstruction accuracy scores per condition. Summary of the pattern 
of results for (a) attended streams, and (b) unattended streams. Error bars represent 95% CI.
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board, but finding the English–English condition most difficult. Similar to the arguments already made in the 
literature24, this finding that both groups achieved equivalent high-level performance can be taken to imply that 
any modification to the underlying neural mechanisms in the bilingual group could be considered as adaptation 
aimed at supporting such performance, made necessary by the increased processing demands of the bilingual 
environment.

The analysis of the neural data focused on reconstruction accuracy of attended and unattended speech 
envelopes from the EEG data as the index of attentional encoding. As reviewed in the Introduction, it has been 
well established in both children and adults that cortical activity encodes the temporal envelope of speech, syn-
chronizing to its slow amplitude modulations63,64. Selective attention robustly influences these synchronizations, 
with the results showing preferential tracking of the attended stream over the ignored one65,66. These synchro-
nizations between the auditory signal and the neural data were typically investigated by assessing their linear 
relationship using cross-correlation or forward modelling; here we used a backward ‘stimulus reconstruction’ 
approach that has been gaining increased popularity in the recent literature41,44,56,67 as it offers advantages such 
as providing increased sensitivity to signal differences between highly correlated EEG channels43.

Consistent with the existing evidence65,68,69 our results showed a robust effect of attention, with higher recon-
struction accuracy scores consistently seen for the attended than for the unattended envelopes in both groups. 
Given that reconstruction scores reflect how much stimulus-relevant information is encoded in the EEG signal 
and how well we can model this, these results imply that attended streams were encoded more strongly than 
the unattended streams. Also consistent with the existing data39,53,70 we saw that the type of interference influ-
enced attentional processing; with linguistic distractors (English and Latin) reducing reconstruction accuracy 
of the attended envelopes more strongly than the less interfering distractors (Single talker and English–MuR 
conditions). This is arguably because attentional selection between competing streams of information can be 
achieved either on the basis of lower-level sensory differences between them, or based on higher-level syntactic 
and semantic information—with the latter argued to occur later and require more processing capacity30,71. The 
separation between the two streams in the linguistic distractor conditions is more likely to require this latter 
type of processing, more robustly impacting on the attentional capacity available for the processing of attended 
stream in these conditions. Alternatively, this pattern of results might be explained in terms of increased difficulty 
of auditory object formation and selection in the linguistic distractor conditions72, where the similarity between 
the attended and the unattended streams might cause them to be perceived as a unified auditory object, thus 
resulting in poorer sensitivity to the content of the attended target stream.

The key finding of our study however was that the attentional encoding across conditions differed between 
the monolingual and the bilingual children. In the monolingual group, we saw a prominent contrast between 
the conditions with low or no interference and the linguistic interference conditions; yet this effect was markedly 
attenuated in the bilingual group (Fig. 3). The differential patterns of encoding in monolingual and bilingual 
listeners observed here replicates the results found in adults27, adding further support to the hypothesis that 
bilingualism modifies the neural mechanisms of selective attention across the lifespan14,73,74. In the Introduction, 
we presented two accounts that might explain the possible mechanisms of this modification. The first was that 
the need for constant management and inhibition of competing languages in bilinguals enhances their capacity 
for selective attention, resulting in better performance and increased attentional control10. The second was that 
these demands of selection and inhibition will themselves utilise some of the existing attentional resources, which 
might impact on the available attentional capacity and require that the remaining resources are optimised in 
order to achieve full task performance. Our results showed no evidence for the enhanced attentional capacity, 
behaviourally or neurally, in the bilingual group. In contrast there was a trend for weaker neural encoding in 
bilinguals overall (rattd = 0.054 for bilinguals vs rattd = 0.066 for monolinguals), and significantly weaker reconstruc-
tion in conditions of low or no interference in bilingual compared to monolingual children, lending support to 
the second proposition.

The observed indication of reduced cortical encoding overall in bilinguals is not without a precedent, with 
examples of reduced neural activity during selective attention tasks most commonly seen in the cortical areas 
associated with conflict processing. For instance, functional imaging during a Flanker task performed by bilin-
guals and monolinguals75 revealed significantly lower patterns of activation in the anterior cingulate cortex 
(ACC) for bilinguals, leading the authors to conclude that ‘bilinguals…resolve cognitive conflicts with less 
neural resource’. A similar fMRI study of a Stroop-like switching task74 also found that monolinguals activated 
the ACC during the task, whereas bilinguals did not. An ERP study tracking bilingual and monolinguals’ neural 
responses during a variety of selective attention tasks26, predicted superior performance (greater accuracy and 
faster reaction times) and larger N2 amplitudes for bilinguals relative to monolinguals. On the contrary, behav-
iour was equivalent between the two groups; and the monolingual group exhibited larger N2 amplitudes than 
the bilingual group during the Stroop task. The Simon task also elicited the ‘unexpected and surprising’ result 
that monolinguals demonstrated larger P3 amplitudes than bilinguals. Furthermore, higher ERN amplitudes 
for bilinguals than monolinguals in the final Flanker task, which would usually be interpreted as evidence of 
enhanced cognitive control, were due to a longer tail for incongruent trials, indicating a prolonged post-response 
conflict and slower recovery for bilinguals in these trials. Taken together, this evidence supports the hypothesis 
that different configurations of the underlying neurofunctional architecture can support equivalent behavioural 
performance, with these different configurations reflecting different processing demands presented to the sys-
tem over time. This functional plasticity (also known as degeneracy in the scientific literature76–78) is a common 
feature in biological systems, allowing flexible adaptation to changing environments. Hence, while our findings 
reveal that the management of competing languages draws on attentional resources in bilingual children, they 
do not show any adverse effects on performance—the outcome is primarily indicative of the modifications to 
the underlying processing networks that are aimed at supporting performance. In fact, as mentioned in the 
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Introduction, these results could be interpreted as showing increased flexibility in the usage of the available 
resources in bilingual children, enabling them to do ‘more with less’.

We next turn to the more specific pattern of reduced cortical tracking of the attended speech envelope in 
bilinguals observed in our study, where this was most prominent in the Single talker and English–MuR condi-
tions—the two conditions with weakest interference, and thus requiring least effort to comprehend the attended 
steam. We hypothesise that this directly results from the need to economise the available attentional capacity 
in order to support optimal behavioural performance. To understand this, it is again necessary to recall that 
behavioural comprehension scores were equivalent between the groups for all conditions. Yet, achieving optimal 
behavioural performance is not equally demanding across different conditions, and can arguably be more easily 
accomplished with reduced attentional resources in the conditions that are less taxing for the processing system. 
We therefore assume that this reduction in cortical tracking in the conditions of weak or no interference in bilin-
guals arises because it can be most easily accommodated while still retaining full behavioural performance. In 
contrast, reductions of attentional encoding in conditions with stronger interference (English–English and Eng-
lish–Latin) would likely lead to diminished performance compared to the monolingual group. Whilst tentative, 
this interpretation aligns with evidence from research into the mechanisms of adaptive neural plasticity, which 
suggest that ‘experiences contributing to mastery over environmental challenges modulate neural responses in 
ways that enhance optimal performance’79.

The final set of findings to address concerns the pattern of reconstruction accuracy scores seen for the 
unattended streams. Here we saw that, in both groups, the unattended MuR stream was significantly better 
reconstructed than the unattended Latin and English stories. In addition, the MuR encoding was stronger in the 
monolingual than in the bilingual group. Both of these findings might be explained by the same mechanisms 
discussed above, with the selection between competing streams being less demanding for the MuR distractor and 
for monolinguals, thus impacting least on processing capacity available for encoding. However, it is more likely 
that the strong MuR encoding reflects the fact that the unattended MuR envelopes used in the experiment were 
generated from the same narratives that the participants were presented with as target stories in their attended 
ear. Given that the MuR envelope largely preserves the spatio-temporal features of the source utterance, it is 
unsurprising that there is a high degree of similarity between the envelope reconstruction scores for attended and 
unattended steams in the English–MuR condition. Despite this, our results showed that the attended steam was 
more strongly encoded than the unattended steams (significantly so in the monolingual group), adding further 
evidence that attention significantly influences the neural encoding of speech envelope69.

In sum, the current study investigated the mechanisms underlying the modification of selective attention in 
bilingual children. The data showed no evidence for the enhanced attentional capacity in the bilingual group. 
Instead, we observed equivalent behavioural performance, coupled with a modified pattern of neural encoding 
that was most prominent in conditions of weak or no interference. We interpret this data as showing that the 
available resources are economised to support optimal behavioural performance; potentially suggesting increased 
flexibility of their usage in response to the demands of bilingual language processing. Overall however, these 
results emphasise that the demands of learning and using multiple languages modify the mechanisms of selective 
attention in children, which may have significant consequences for their academic performance and beyond.

Data availability
The datasets generated and analysed in the current study are available on request from the first author.
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