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Formation and dynamics of quantum hydrodynamical breathing-ring solitons
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We show that exciton-polariton condensates may exhibit a fundamental, self-localized nonlinear excitation in
quantum hydrodynamical systems, which takes the form of a dark ring-shaped breather. We predict that these
structures form spontaneously and remain stable under a combination of uniform resonant and nonresonant forc-
ing. We study single-ring dynamics, ring interactions, and ring turbulence, and explain how direct experimental
observations might be made. We discuss the statistics of ring formation and propose an experimental scheme by
which these structures may be exploited to study the smooth crossover between equilibrium and nonequilibrium
critical phase transitions. The observation of a breathing-ring soliton would represent a fundamental breathing
soliton within the broad field of quantum hydrodynamics.
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Spontaneous pattern formation in disordered systems has
captivated scientists for generations. Of particular interest
are self-localized patterns, which are known as solitons in
integrable systems and as solitary waves in nonintegrable
systems [1,2]. These can be understood as the fundamental
excitations of nonlinear wave systems, and they are typically
found in familiar forms across disparate settings. The first to
be discovered were of the bright type, which are stabilized
by the counterbalancing of dispersion with nonlinear effects.
Other solitons are of the dark type and include vortex- and
domain-wall-type phase dislocations [3–10]. Nonlinear opti-
cal resonators were one of the earliest physical systems in
which nonlinear dynamical pattern formation was studied in
depth [7]. The results of that field translated to many other sys-
tems, such as Bose-Einstein condensates (BECs) of ultracold
atoms [8,11] and of magnon [12] systems. One fundamental
soliton that can be formed in the nonlinear optical resonator
is the so-called ring dark or phase soliton, formed by do-
main walls that close on themselves to form loops [10]. In
equilibrium BECs (such as ultracold atomic BECs), it has
been shown that ring dark solitons are not stable, decaying
either acoustically or into so-called vortex necklaces [13,14].
These structures have been observed experimentally, though
fleetingly, by trapping them along their transverse axes [15].
While with this approach the ring structures are localized in
that they repeatedly break down and reform within the trap,
they are not self-localized and cannot exist in free space.

In this Rapid Communication we show that exciton-
polariton condensates—hybrid light-matter quantum
fluids with strongly nonlinear properties and inherent
nonequilibration—may support a different type of topological
defect: breathing-ring solitons. These breathing rings
are distinct from other solitary structures found in
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exciton-polariton condensates as well as from those found in
other quantum hydrodynamical systems. Geometrically these
excitations are similar to the ring-shaped phase solitons found
in nonlinear optical systems [16], but are distinct in a critical
way: the solitons we present here do not appear to settle into a
stationary state, instead continuing to oscillate indefinitely in
radius and depth [17]. We study the mechanisms of formation
and stabilization of these structures, and report on their
dynamics and interactions, including states of ring solitonic
turbulence. We also study the statistics of spontaneous
ring formation, showing that breathing-ring solitons can be
used to study critical phenomena in systems with tunable
nonequilibration.

Condensates of exciton-polariton quasiparticles (polariton
condensates) have recently been realized in semiconductor
microcavities [18]. As inherently nonequilibrated condensates
of hybrid light-matter quasiparticles, polariton condensates
may be thought of neither as equilibrium condensates nor as
lasers, but rather as something in between [19]. Polaritonic
systems have several advantages with respect to other con-
fined optical systems. One is their extraordinary nonlinear
properties, which arise from their excitonic component. Their
dispersion curves (the so-called lower and upper polariton
branches appearing from the hybridization of photons and
excitons) allow for the individual control of the photonic and
excitonic components via detuning, and their properties and
dynamics can be easily accessed by angular-resolved imaging
or electroluminescence spectroscopy. For low enough densi-
ties, polaritons may be considered as bosonic quasiparticles,
and so can form a coherent state (BEC). Polariton condensates
are nonequilibrium systems set by balance between pumping
and losses due to the short lifetime of polaritons. They can
continuously cross from weak coupling at higher temperatures
and pumping strengths to strong coupling at lower tempera-
tures and lower pumping intensities. In addition, the lifetime
of polaritons in the microcavity systems can be increased by
improving the quality and number of dielectric Bragg mirrors.
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Therefore, depending on the polariton lifetime and pumping
intensities, polariton condensates continuously cross between
strongly nonequilibrium systems—lasers (short lifetimes and
large pumping rates) and equilibrium BECs (large lifetimes
and small pumping).

Polariton condensates can be excited by two different types
of pumping. In the resonant pumping scheme, the energy
and angle of incidence of the excitation laser are set to be
quasiresonant with a mode of the lower polariton branch. In
the nonresonant pumping scheme, the excitation laser has an
energy much higher than that of the lower polariton branch. In
this case, polaritons can spontaneously form macroscopic co-
herent states—polariton lasers or polariton condensates—by
the accumulation of particles in the same quantum state [18].
Recent experiments have started to combine resonant and
nonresonant pumping [20]. In these experiments, chemical
etching of a GaAs substrate has allowed resonant excitation
from the back side of the cavity, preventing backscatter from
the nonresonant pumping, while allowing synchronization.
This technique makes it possible to independently vary the
pumping intensity distributions of resonant and nonresonant
excitations.

The mean-field behavior of polariton condensates is gov-
erned by the generalized complex Ginzburg-Landau equation
(cGLE), with the condensate wave function ψ (r, t ) coupled
to the hot exciton reservoir density NR [19,21–24], so that

i∂tψ = −(1 − iηNR)∇2ψ + |ψ |2ψ + gNRψ

+ i(NR − γ )ψ + Vextψ + iP̄ψ∗(n−1), (1)

∂t NR = P − (b0 + b1|ψ |2)NR, (2)

where we set h̄ = 1 and m = 1/2. In these coupled equa-
tions, g is proportional to the polariton-exciton interaction
strength, η represents the energy relaxation [25,26], γ and b0

are proportional to the inverse lifetime of the polariton and hot
excitons, respectively, and b1 is proportional to the ratio of the
interaction strength between the condensate and the hot exci-
tons to that between condensate particles. The incoherent and
resonant (at n : 1 resonance with the condensate frequency)
pump sources are described by the pumping intensities P(r, t )
and P̄(r, t ), respectively [27]. The external resonant forcing
described by P̄ is at the frequency ωc = nω0 where the nat-
ural (base) frequency of the condensate is ω0 [7,28]. In what
follows we will be interested in the second-order resonance
n = 2. In experiment, 2 : 1 resonance can be achieved with
the same apparatus used for combined nonresonant and n = 1
resonant pumping (for example, Ref. [20]), but tuning it to
twice the frequency of the condensate, which is within the
laser capabilities [29].

The uniform stationary solutions of Eqs. (1) and (2) with
n = 2 and without noise satisfy 0 = R2 + gP̃/(1 + ξR2) +
P̄ sin 2S and γ = P̃/(1 + ξR2) + P̄ cos 2S, where we used the
Madelung transformation ψ = R exp[iS] and denoted P̃ =
P/b0, ξ = b1/b0. Eliminating S gives P̄2 = [R2 + gP̃(1 +
ξR2)−1]2 + [γ − P̃(1 + ξR2)−1]2. For given system param-
eters this equation can be solved to find ρ = R2 with two
expressions for S that differ by π .

The regime of R ∈ R then corresponds to the regime
of phase-bistable, frequency-locked solutions; it is in this

regime that Ising domain walls may exist. These are the
one-dimensional zeros which separate regions of differing
phase. Ising walls are required to either end at the bound-
ary of the condensate or to form closed loops that grow or
shrink until they reach a characteristic radius. In the case of
the nonlinear optical resonator (as in Ref. [10]) such rings
are stable, minimizing the local potential energy, and thus
remain stationary. However, after reaching the critical radius
the rings in polariton condensates behave differently. We de-
termined that the ring solitons self-annihilate (i) in the fast
reservoir regime b0 � γ , (ii) in a small reservoir detuning
regime g � 1, and (iii) in condensates made of long-lived
polaritons. All these regimes are physically relevant to some
experiments [30–32]. However, a slow reservoir evolution
(b0 � γ ), for short-lived polaritons and a sufficiently large
reservoir detuning (all of which correspond to values of typ-
ical GaAs microcavity experiments [18,33,34]), prevent the
ring soliton from disappearing and lead to the appearance of a
ring breather: the dissipative decrease in the radius of the ring
soliton is accompanied by the increase in the reservoir profile
density in the ring core, which imposes a repulsive force in
the outward direction to make the ring expand. This process
repeats itself as shown in Supplemental Material Video 1 [35].
This nonlinear excitation is self-localized by an explicitly
dynamical interaction.

While the existence of a closed-form description of this
dynamical structure is highly unlikely, some insight into its
structure can be gained by treating the breathing behavior
as a perturbation of a stationary solution. Using the Taylor
expansion in the steady state expression for the reservoir den-
sity, NR = P̃(1 + ξ |ψ |2)−1 ≈ P̃ − P̃ξ |ψ |2. The dynamics of
the condensate results from Eqs. (1) and (2) and reads

∂tψ = (i + ηP̃)∇2ψ − κ|ψ |2ψ + P̄ψ∗ + [(gP̃)i + P̃ − γ ]ψ,

(3)

where we denoted κ = P̃ξ + (1 − gP̃ξ )i.
Close to the condensation threshold and for sufficiently

strong external resonant forcing, we can assume that ηP̃ � 1.
Neglecting the corresponding terms, rescaling ψ →�

√
P̄/P̃ξ ,

t → t/P̄, x → x/
√

P̄, and denoting χ = (1 − gP̃ξ )/P̃ξ , α1 =
(P̃ − γ )/P̄, and α2 = gP̃/P̄, we rewrite Eq. (3) as

∂t�i = i∇2� − (1 + iχ )|�|2� + �∗ + (α1 − iα2)�. (4)

The uniform density is given by |�|2 = 1 + α1. We rewrite
the condensate wave function as the sum of real and imaginary
components � = U + iV , so that

∂tU = −∇2V − (U 2 + V 2)U + χ (U 2 + V 2)V

+ (1 + α1)U + α2V, (5)

∂tV = ∇2U − (U 2 + V 2)V − χ (U 2 + V 2)U

− (1 − α1)V − α2U . (6)

In the ring soliton V � U and so |�|2 ≈ U 2 ≈ 1 + α1 ex-
cept for the small healing region that defines the radius of the
ring, and ∂tV ≈ 0. Under these assumptions we solve Eq. (6)
for V ≈ [∇2U − {χ (1 + α1) + α2}U ]/2 and substitute into
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Eq. (5) to get a real Swift-Hohenberg equation (RSHE)

∂tU = − 1
2 [∇2 + �]2U − U 3 + (1 + α1)U, (7)

where we write � = −[χ (1 + α1) + α2].
RSHE is a variational equation, and can be written in the

gradient form ∂tU = −∂F/∂U [36], where the potential F
takes the form F = ∫ +∞

0 { 1
4 [(∇2 + �)U ]2 − 1

4 (U 4 − U 4
0 ) −

1
2 (1 + a1)(U 2 − U 2

0 ) − 1
4�2U 2

0 }dr, denoting the background

contribution as U0 =
√

1 + α1 − 1/2�2.
In one dimension the Ising wall takes the approximate form

U (r) = U0 tanh(r/w), where the width parameter w deter-
mines the healing length. Inserting this into F and evaluating
the integral yields an analytical form for the potential energy.
The Ising wall width w which minimizes this potential can be
written as

w2 =
√

5�2 + 12U 2
0√

5U 2
0

− �

U 2
0

. (8)

The circularly symmetric Ising wall can be approx-
imated with the ansatz U (r) = U0(r + r0)(r − r0)/√

[(r + r0)2 + w2][(r − r0)2 + w2]. Substituting w and
inserting the two-dimensional (2D) ansatz (again taking care
to remove the contribution of the homogenous background),
F is again exactly integrable, yielding an analytical formula
for the potential energy of the ring soliton as a function of
its radius and the system parameters. This potential takes the
exact form

F = U 2
0

1024r5
0w

3
(
r2

0 + w2
)4

{
r0w

( − 27w12

− 4r12
0 (−45 + 96�w2 − 64V 2w4)

− r2
0w

10(229 + 32�w2 + 16V 2w4)

+ 2r4
0w

8(−241 − 192�w2 + 56V 2w4)

+ 2r6
0w

6(127 − 608�w2 + 328V 2w4)

+ r10
0 w2(807 − 1312�w2 + 896V 2w4)

+ r8
0w

4(1545 − 1792�w2 + 1168V 2w4)
)

+ (
r2

0 + w2)4[
27w6 − 4r6

0 (−45 + 96�w2 − 64V 2w4)

+ 2r2
0w

4(65 + 16�w2 + 8V 2w4)

+ r4
0w

2(147 + 96�w2 + 128V 2w4)
]

arctan(r0/w)
}
.

(9)

For typical system parameters, Fig. 1 shows the potential
energy F of the ring as a function of its radius, for several
values of the pump power. This shows that under the ap-
proximation of the breathing-ring soliton’s radial oscillations
as small perturbations of a stationary solution, a significant
amount of insight can be gleaned about the relationship be-
tween the pump strength and the behavior of the ring: too
small, and the ring expands to infinity, but too large, and the
ring contracts to a point. As the inset shows, for a range of
values in between, there exist finite ring radii which minimize
the potential. Over this range, the minimizing radius decreases
with increasing pump power. The steepness of the curve also
decreases towards the large r0 side as the pump is decreased,
suggesting that as the pump strength is lowered, the range of

FIG. 1. The potential energy F as a function of the ring radius
r0, for several pump powers P = P̄, for g = 1. The inset shows the
same, for a smaller range of pump strength, for which there exist
energy minima for finite ring radii.

r0 over the ring oscillation should increase. While the rele-
vant range of pump strengths differs between the analytical
predictions and the full numerical experiments, the behavioral
predictions of the analytical model are entirely consistent with
the numerical experiments.

The destabilizing mechanisms (i)–(iii) have similar effects
on the existence and dynamics of the ring solitons, so we
concentrate on the effect of varying the polariton-exciton in-
teraction strength (parametrized by g). The detuning between
the cavity photon energy and the exciton resonance deter-
mines the relative photonic and excitonic character of the
polariton and, therefore, its effective mass and the strength
of the polariton-exciton interactions [23]. The detuning g can
be further changed by the pumping geometry by considering
trapped condensates separated from the pumps [37]. Finally,
implanting protons into the quantum wells or into the top of
distributed Bragg reflectors allows for an independent spatial
control of both the exciton and the cavity photon energies,
and, therefore, affects g [38] as well. By these mechanisms,
the experimental ranges of our dimensionless parameter g
can vary between 0.1 and 1.5. We observe spontaneous ring
formation in the entire physical range of that parameter. It is
found that the pumping amplitudes for which ring formation
is supported depends on the detuning, extending for a range
of nearly Pth for the case g = 1, and extending for a range
of more than 2Pth for g = 0.1. We note that the experimental
range of values of η are unknown. However, we have observed
ring formation for the range 0.001 � η � 1.

In systems with low g, rings form ad infinitum creating a
sustained state of ring turbulence. A time snapshot of con-
densate density in this regime is shown in Fig. 2(a). In the
high g case, rings are formed only during the condensation
process. They tend to interact attractively, and upon contact
a pair of rings appear to either merge into one or annihilate
each other. Eventually the decay of rings ends and a quasista-
tionary state is reached with rings being pinned by the system
disorder represented in our simulations by setting Vext to white
noise with amplitudes ranging between ±0.005ρ0, where ρ0

031304-3



SAMUEL N. ALPERIN AND NATALIA G. BERLOFF PHYSICAL REVIEW A 102, 031304(R) (2020)

FIG. 2. Spontaneously formed breathing rings in exciton-
polariton condensates for P = P̄ = 5, where P is the amplitude of the
nonresonant pump, and P̄ is that of a second-order resonant pump.
Density contour plots of the condensate shown illustrate (a) a time
snapshot of ring turbulence, (b) a quasistationary state with a single
ring, (c) time averaging of (b) over many ring oscillations, and (d),
(e) different stages of the condensate evolution averaged over the
timescale of the ring oscillation.

is uniform density profile. However, we note that we see the
same type of pinning behavior for Vext = 0, as even when the
only disorder comes from the discretization of the fluid (the
high-energy limit of any numerical simulation, and of any
physical many body system), structures that are far enough
apart interact so negligibly that they remain stationary, pinned
by slightly less negligible disorder (at least up to timescales
relevant to experimental observation). This is demonstrated
in Supplemental Material Video 2 [35], with time snapshots
of the condensate density shown in Figs. 2(d) and 2(e).
Figure 2 shows a time snapshot of a spontaneously formed
breathing-ring soliton after the system has reached its final,
quasistationary state [Fig. 2(b)], as well as a time-integrated
image of that state [Fig. 2(c)]. Further, we note that we find
the rings to be stable against finite noise. Thus we predict that
long-lived breathing-ring solitons are directly observable, and
that their ring-shaped character, radii, locations, and numbers
are directly measurable as well.

The mechanism by which breathing-ring solitons have
been shown to form for high g resembles the Kibble-Zurek
(KZ) mechanism of defect formation in equilibrium systems
[39,40]. The KZ mechanism was first understood in the con-
text of the phase transitions in the early Universe [41–43], and
later in liquid 4He and 3He, liquid crystals, superconductors
[44–47], and equilibrium Bose-Einstein condensates [48,49].
The similarities and differences between the KZ transition and
pattern formation in nonequilibrium systems are the subject
of intense exploration, with an emphasis on the common
mechanism of the defect formation: locally uniform symme-
try breaking in separate parts of the system which cannot
communicate in a finite time, and which thus form to be
globally nonuniform to a degree set by the speed of the phase
transition (the quench rate). The main difference between the

FIG. 3. Number of rings in the quasistationary state as a function
of pump strength (P = P̄ = const), in units of the threshold pump
strength Pth. Results are averaged over ten random iterations of initial
noise and potential disorder. A linear fit is shown in blue. The inset
shows a log-log plot of the number of rings in the quasistationary
state as a function of warmup time, defined as the time over which
the pumps are increased to a fixed amplitude (P = P̄ = 4.2Pth). A
dashed blue line shows the power law t−2.

KZ transition and pattern forming in nonequilibrium systems
is that in the former, it is assumed that the system is driven out
of equilibrium only in the vicinity of the phase transition [43].
In spite of extensive research on both the KZ transition and
on pattern formation in a wide variety of nonequilibrium sys-
tems, questions remain regarding the nature of the crossover
between the two mechanisms, and regarding the types of
the defects that they can result in. Numerical experiments
regarding the rate of polarization defect formation between
quasi-1D spinor polariton condensates formed in chains of
microcavities have been performed [50], but to our knowledge
no proposal of this kind of study has been made in regard
to uniform polariton condensates formed on ordinary GaAs
samples, or in regard to phase defects.

We investigate this relationship by counting the number
of quasistationary rings formed spontaneously from random
initial noise in the presence of a small sample disorder, mod-
eled by setting Vext to a randomly distributed set of needlelike
potentials, with a Gaussian profile and width much smaller
than the healing length of the condensate. This disorder does
not hamper the formation of rings, but rather acts as sand-
paper, resisting their movement across its surface. Figure 3
shows the resulting linear, positive correlation between pump
power and ring soliton density. To elucidate the effect of
the quenching time on the defect formation, we repeated our
simulations linearly increasing the pumps from zero to P = P̄
over different timescales. The results, shown in the inset of
Fig. 3, reveals a t−2 power law. We note that recent theoretical
work on nonequilibrium holographic superfluids has shown
qualitatively similar results: a linear dependence of excitation
strength (temperature in that context) on defect (vortex) den-
sity, and a power-law dependence of quench time on defect
density [51].

In conclusion, we have theoretically predicted the sponta-
neous formation of stable breathing-ring solitons in exciton-
polariton condensates. The proposed experimental realization
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for such topological defects is well within the current exper-
imental conditions and properties of existing microcavities.
These structures represent a fundamental breather and a stable
ring soliton in a quantum hydrodynamical system, and are
made possible by the polariton condensates’ unique combi-
nation of inherent nonequilibration with the existence of a hot
exciton reservoir which scatters particles into the condensate
while repulsively interacting with condensed particles. We
have shown how combining resonant and nonresonant forcing
can be used to suppress the snake instability, and have dis-
cussed how the robust stability of breathing-ring solitons can

be exploited to study nonequilibrium defect formation statis-
tics, and thus to probe the fundamentals of nonequilibrium
phase transitions. Further, we have proposed an experimental
scheme by which these statistics could be probed over the
continuous crossover between equilibrium and nonequilib-
rium phase transitions. This work highlights the exceptional
promise of exciton-polariton condensates in the highly inter-
disciplinary field of nonlinear pattern formation.

N.G.B. acknowledges the support from Huawei. Both authors
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